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3CeREF, Chaussée de Binche 159, 7000 Mons, Belgium
4Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom

(Received 12 November 2024; accepted 17 March 2025; published 8 April 2025)

We discuss boson stars and black holes with scalar hair in a model where the complex scalar field
forming the boson star and the hair on the black hole, respectively, interacts with a real scalar field via a
Hénon-Heiles-type potential. We demonstrate that black holes and boson stars carrying only a real scalar
field with cubic self-interaction are possible and that black holes with both real and complex scalar field
branch off from these solutions for sufficiently large interaction between the two fields and/or sufficiently
large horizon radius rh. The latter possess lower mass for the same choice of coupling constants than the
former, however seem to be thermodynamically preferred only for high enough temperature.
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I. INTRODUCTION

Boson stars are theorized compact objects, the result of
gravitationally bound compact collections of bosonic
particles which mediate an outward scalar field [1–5].
The nongravitating counterparts of these solutions are
often referred to as Q-balls [6], nontopological solitons
formed of a complex scalar field with harmonic time-
dependence. These solitons exist only for (nonrenormaliz-
able) self-interaction potentials of (at least) sextic order.
This changes when considering boson stars, where only a
mass term for the scalar field is required. Following studies
of topological solitons and the possibility of inserting
black holes into the centers of these objects thus con-
structing hairy black holes (see, e.g., the construction of
these solutions in a model with magnetic monopole
solutions [7,8]) it was considered that placing a black
hole inside the center of a boson star might lead to a black
hole with complex scalar hair. However, this does not work
when the radial pressure associated to the scalar field is
larger than the pressure in angular direction and when the
weak energy condition is fulfilled [9]. For the spherically
symmetric, nonrotating boson star with energy-momentum
content fulfilling the weak energy condition the radial
pressure is always larger than the pressure in angular
direction and hence black holes cannot carry complex
scalar hair. However, spherically symmetric, nonrotating

black holes with complex scalar hair can, e.g., be con-
structed1 when the model possesses a U(1) gauge field
[10,11] allowing for the radial pressure to be smaller than
the pressure in angular direction. Another possibility is to
consider rotating black holes [12]. In both of the cases
discussed, a so-called synchronization condition has to be
fulfilled which assigns either the electric potential at the
horizon or the horizon velocity to the frequency of the
complex scalar field, respectively.
In this paper, we discuss another possibility: black holes

which carry interacting complex and real scalar hair that
interact via a Hénon-Heiles potential. In our model, the
weak energy condition can be violated for certain choices
of the coupling constants. Black holes with real scalar hair
have recently been constructed in a model with a quartic,
asymmetric potential [13] and in a model where a U(1)
gauged complex scalar field interacts with a real scalar field
via a potential that is quadratic in the complex and quartic
in the real scalar field [14], respectively.
Here, we will choose a scalar potential which describes

the interaction between a real and complex scalar field
inspired by the Hénon-Heiles potential from classical
mechanics [15]. This potential has been first proposed
in the latter study as an effective, time-independent
and axisymmetric, potential for a star moving in a plane
around a galactic center. It reads Uðx; yÞ ¼ 1

2
ðx2 þ y2 þ

2x2y − 2
3
y3Þ, where x and y are cartesian coordinates in the

plane. Also in [15] it has been shown that this potential
may lead to chaotic trajectories for some energies. Since
then, the Hénon-Heiles potential and its generalizationsPublished by the American Physical Society under the terms of
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1We do not discuss extended gravity models here.
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have become widely used toy models to study chaotic
dynamics, see, e.g., the recent work [16] and references
therein. The Hénon-Heiles potential has also been shown
to emerge as an effective potential for a test particle in a
Schwarzschild geometry perturbed by quadrupolar and
octupolar terms [17,18]. It has at most cubic terms in the
fields, depends on two masses and two coupling constants.
Solitons [19] and Q-ball solutions to this model have been
examined as well [20]. It is through coupling to gravity that
we extend these solutions in the present work.
Our paper is organised as follows: in Sec. II, we give

the model and the equations of motion resulting from
a spherically symmetric ansatz. In Sec. III, we discuss
scalarised boson stars, i.e., boson stars that carry a real
scalar field as well as solitonic objects made off only a real
scalar field, while in Sec. IV, we discuss the hairy black
hole solutions. We conclude in Sec. V.

II. THE MODEL

We consider the following action that describes a
complex scalar field nonminimally coupled to a real scalar
field in curved space-time:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
þ Lm

�
ð2:1Þ

with the matter Lagrangian density given by that of two
scalar fields (one complex, one real) interacting:

Lm ¼ −∂μϕ�
∂
μϕ −

1

2
∂μξ∂

μξ −Uðjϕj; ξÞ;

Uðjϕj; ξÞ ¼ m2
1ϕ

�ϕþ 1

2
m2

2ξ
2 − g1ξϕ�ϕ − g2ξ3 ð2:2Þ

where R is the Ricci scalar, G Newton’s constant, ϕ the
complex-valued scalar field and ξ the real-valued scalar
field. m1 and m2 are the masses of the complex and real
scalar field, respectively, and g1 and g2 are the interaction
and self-interaction couplings, respectively. The original
Hénon-Heiles model is such that g2 ¼ −g1=3 [15], but
generalized forms have been extensively studied in
classical mechanics, see, e.g., [21] for a review of soliton-
like solutions in generalized Hénon-Heiles potentials. Here
we assume that all parameters belong toRþ

0 . The model has
recently been studied in flat space-time [20]. The equations
that result from the variation of the action (2.1) with respect
to the metric and matter fields are the Einstein equation
(α ¼ 4πGN; c ¼ 1 in the following):

Gμν ¼
8πGN

c4
Tμν ¼ 2αTμν ð2:3Þ

with energy-momentum tensor Tμν ¼ gμνLm − 2 ∂Lm
∂gμν

given by

Tμν ¼ −gμν
�
1

2
gσρð∂σϕ�

∂ρϕþ ∂ρϕ
�
∂σϕþ ∂σξ∂ρξÞ

þm2
1ϕ

�ϕþ 1

2
m2

2ξ
2 − g1ξϕ�ϕ − g2ξ3

�

þ ∂μϕ
�
∂νϕþ ∂νϕ

�
∂μϕþ ∂μξ∂νξ ð2:4Þ

as well as the Klein-Gordon equations for the two scalar
fields

�
□ −

∂U
∂jϕj2

�
ϕ ¼ 0; □ξ −

∂U
∂ξ

¼ 0: ð2:5Þ

We are interested in spherically symmetric solutions
and hence use spherical coordinates (t; r; θ;φ). The ansatz
then reads

ϕ ¼ eiωt
FðrÞffiffiffi

2
p ; ξ ¼ GðrÞ; ð2:6Þ

for the matter fields with FðrÞ and GðrÞ real-valued
functions, and

ds2 ¼ −NðrÞσðrÞ2dt2 þ 1

NðrÞ dr
2 þ r2dθ2 þ r2sin2θdφ2;

N ¼ 1 −
2mðrÞ

r
ð2:7Þ

for the metric.mðrÞ is the mass function. The equations that
result from the variation of the action with respect to the
matter and metric field functions read

N0 ¼ −αr
�
m2

1F
2 þm2

2G
2 − g1GF2 − 2g2F3

þ ω2F2

Nσ2
þ NF02 þ NG02

�
þ 1

r
−
N
r
; ð2:8Þ

σ0

σ
¼ αr

�
F02 þG02 þ F2ω2

N2σ2

�
; ð2:9Þ

F00 ¼ 1

N

���
m2

1−
ω2

Nσ2

�
−g1G

�
F−

�
N0 þσ0N

σ
þ2N

r

�
F0
�
;

ð2:10Þ

G00 ¼ 1

N

�
ðm2

2 − 3g2GÞG −
g1F2

2
−
�
N0 þ σ0N

σ
þ 2N

r

�
G0
�
;

ð2:11Þ

where the prime here and in the following denotes the
derivative with respect to r. In order to obtain asymptoti-
cally flat, finite energy solutions, we need to require the
following conditions at infinity:
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Fðr→∞Þ→0; Gðr→∞Þ→0; σðr→∞Þ→1: ð2:12Þ

Other boundary conditions are determined by the object
in question. We examine two cases: globally regular
solutions as well as black holes. In the former case
boundary conditions will be imposed at r ¼ 0 and in the
black hole case they will be imposed at the horizon r ¼ rh.
We have solved the differential equations (2.8)–(2.11)
numerically using a collocation method with adaptive grid
scheme [22,23].
Note that in the following we will frequently use

dimensionless quantities. This is possible because of the
following scaling:

r→
r
m1

; ϕ→
m2

1

g2
ϕ; ξ→

m2
1

g2
ξ; ω→m1ω;

α→
m6

1

g22
α; mi →

mi

m1

; gi →
gi
g2
; i¼ 1;2 ð2:13Þ

which makes all physical quantities and coupling constants
dimensionless.

A. Physical quantities

The model is invariant under a global Uð1Þ symmetry
ϕ → eiχϕ, χ ∈R. The corresponding locally conserved
Noether current jμ reads

jν ¼ iðϕ�
∂
νϕ − ϕ∂νϕ�Þ ¼ ωF2

Nσ2
: ð2:14Þ

Hence, the solutions possess a conserved charge QN
given by

QN ¼
Z ffiffiffiffiffiffi

−g
p

jtd3x ¼ 4ωπ

Z
∞

r0

F2r2

Nσ
dr ð2:15Þ

where r0 ¼ 0 for boson stars and r0 ¼ rh for black holes.
This has frequently been interpreted as the number of scalar
bosons making up the boson star and the scalar cloud
surrounding the black hole, respectively.
In the probe limit, i.e., when α ¼ 0, we compute the

mass of the solution via the spatial integral of the energy
density E ¼ −Tt

t as follows:

M ¼ −
Z ffiffiffiffiffiffi

−g
p

Tt
td3x

¼ 4π

Z
r2σ

�
ω2F2

2Nσ2
þ N

2
ðF02 þG02Þ

þm2
1F

2

2
þm2

2G
2

2
−
g1GF2

2
− g2G3

�
dr ð2:16Þ

while for α ≠ 0, we use the ADM mass such that
M ¼ MADM ¼ m∞=α with m∞ ¼ mðr → ∞Þ.

For black holes, we can further define thermodynamical
quantities. The temperature of a static black hole is given by
TH ¼ κs=ð2πÞ with surface gravity κs

κ2s ¼−
1

4

�
gttgij

∂gtt
∂xi

∂gtt
∂xj

�
r¼rh

¼
�
N0jr¼rhσðrhÞ

2

�
2

: ð2:17Þ

The entropy S and free energy F are given as follows:

S ¼ Ah

4
¼ πr2h; F ¼ M − THS ð2:18Þ

where Ah is the surface area of the horizon.

III. SCALARIZED BOSON STARS

In the following, we will discuss the boson stars that are
made up out of the complex scalar field ϕ. We will show
that in our model, these boson stars can carry additional real
scalar fields. Next to the boundary conditions (2.12) we
need to impose boundary conditions at r ¼ 0 to ensure that
we find globally regular solutions to the Eqs. (2.8)–(2.11).
These read:

Nð0Þ ¼ 1; F0ð0Þ ¼ 0; G0ð0Þ ¼ 0: ð3:1Þ

We set m1 ¼ 1, g2 ¼ 2 without losing generality by using
(2.13). Moreover, we let m2 ¼ 2 to simplify the analysis
with the hope that this case is representative for the general
features of the model.
For α ¼ 0, the Q-ball solutions of this model have been

discussed in detail [20]. Here, we will focus on investigat-
ing the effect of backreaction, i.e., we will choose different
values of α and determine how the properties of the
solutions change. In Fig. 1 we show typical solutions for
different values of α. We observe that the minimal value of
NðrÞ as well as the value of the metric function σðrÞ at
r ¼ 0 decreases when increasing α from zero. We also
observe that the scalar field functions become more
compact in the sense that the fall-off of the functions
happens at smaller r. The value of Fð0Þ increases with
increasing α, while the value of Gð0Þ is fixed in our
calculations. The solutions correspond to different values of
ω: ω ¼ 0.9888, ω ¼ 0.9527, ω ¼ 0.9107, and ω ¼ 0.8525
for α ¼ 0, α ¼ 0.01, α ¼ 0.025 and α ¼ 0.05, respectively.
This means that keeping Gð0Þ fixed leads to a decrease in
the frequency of the complex scalar field when increasing
the gravitational backreaction.
We will now examine the qualitative changes in the

boson star solutions for the three cases of g1 ¼ g2, g1 > g2
and g1 < g2. The relative value of the couplings g1 and g2
have a clear impact on the system, an observation that has
already been made for the corresponding flat space-time
solutions [20].
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A. The case g1 = g2
We first examine the range of solutions in the g1 ¼ g2

case. Our results are shown in Fig. 2, where we give the
values of Fð0Þ and Gð0Þ in function of ω. Note that due to
the boundary conditions (3.1) imposed, Fð0Þ ¼ 0 implies
FðrÞ ≡ 0. For α ¼ 0, nontrivial solutions exist on the
interval ω∈ ½ωmin;ωmax� where the maximal possible value
of ω ¼ ωmax ¼ 1. We find that for each ω exactly one
solution exists and that the central value of Fð0Þ is maximal
at some intermediate value of ω, while Gð0Þ is a strictly
increasing function when decreasing ω with Gð0Þ ¼ 0 at
ωmax ¼ 1. When increasing α from zero, we observe that
while ωmax ¼ 1, the minimal value of ω, ωmin, decreases
with increasing α. Moreover, the maximal value of Fð0Þ
now corresponds to the minimal value of ω ¼ ωmin and the
second branch of solutions reaches Fð0Þ ¼ 0 at ωcr > ωmin.
At the same time, Gð0Þ increases from 0 at ω ¼ ωmax ¼ 1
to ω ¼ ωmin and then continues to increase on the second
branch of solutions when increasing ω from ωmin to ωcr.
Gð0Þ reaches its maximal value when Fð0Þ ¼ 0 on the
second branch of solutions. For increasing α, the difference
between ωmin and ωcr increases such that the two branches
in Fð0Þ intersect at some value of ω which is smaller than
ωcr and larger than ωmin. We see no such intersection for

Gð0Þ. In Fig. 3 we show the two solutions that exist for the
same choice of all parameters of the model: α ¼ 0.011,
ω ¼ 0.946 and g1 ¼ g2 ¼ 1. Branch 1 here refers to the
branch that starts at ω ¼ 1, while branch 2 is the branch that
ends at ωcr. Clearly, the solutions are different. The central
values of the scalar fields, Fð0Þ and Gð0Þ, are smaller for
the solutions on branch 1 as compared to those on branch 2.
Moreover, the minimal value of NðrÞ as well as the central
value of the metric function σðrÞ, σð0Þ, is smaller on branch
1 as compared to branch 2. This suggests a stronger
curvature of space-time for the solutions on branch 1.
In Fig. 2 (bottom left), we show the mass M of the

solutions in function of ω for different values of α. In the
α ¼ 0 limit, the mass diverges at ω ¼ 1, while it tends to
zero at ωmin ¼ ωcr. For α ≠ 0, this changes and the mass
tends to zero at both ωmax as well as at ωcr. This is a well
known phenomenon for boson stars that does not change in
the presence of the additional real scalar field. In Fig. 2
(bottom right) we show the ratio M=QN, which can be
thought of as the energy per bosonic particle, in function of
QN. We find that for α ¼ 0, this ratio is always larger than
unity and thatQN tends asymptotically to unity from above.
When α > 0, QN has a finite maximal value which
decreases with increasing α. We approach the limit

FIG. 1. Metric functions NðrÞ (top left), metric function σðrÞ (top right) as well as the scalar field functions FðrÞ (bottom left) and
GðrÞ (bottom right), respectively, for Gð0Þ ¼ 0.5, g1 ¼ g2 ¼ 1 and different values of the gravitational coupling α.
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M=QN ¼ 1 from M=QN < 1 with a doubling back of the
curve. This is a crucial result. It demonstrates that in our
model we have bound states. Typically QN is thought of as
the number of scalar bosons that make up the boson star
and hence m1QN would be the total mass of QN bosons of
individual mass m1. Our rescaling allow us to set m1 ¼ 1.

Hence comparing M with QN tells us whether the boson
star forms a bound state of QN individual bosons or not.
Boson stars with M=QN < 1 are stable with respect to the
decay intoQN individual scalar bosons. Note, however, that
this statement does not allow to draw conclusion about the
dynamical (in)stability of these objects.

FIG. 3. We show the two solutions that exist for the same values of the parameters with α ¼ 0.011, ω ¼ 0.946 and g1 ¼ g2 ¼ 1:
branch 1 (black) and branch 2 (blue). The metric functions NðrÞ (solid) and σðrÞ (dashed) are shown on the left, while the scalar field
functions FðrÞ (solid) and GðrÞ (dashed) are shown on the right.

FIG. 2. The central value of the complex scalar field Fð0Þ (top left) and the central value of the real scalar field Gð0Þ (top right) in
function of ω for different choices of α and g1 ¼ g2 ¼ 1 (color coding as in bottom figures). The mass M in function of ω (bottom left)
and the ratio of the mass and the Noether charge M=QN (bottom right) in function of the Noether charge QN for different choices of α
and g1 ¼ g2 ¼ 1.
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B. The case g1 ≠ g2
We will first discuss the case g1 > g2 ¼ 1. In [20] it

was shown that the solutions exist on an interval in
ω∈ ½ωmin∶ωmax� with ωmax ¼ 1. Increasing g1 from unity
it was found that the minimal value of ω ¼ ωmin decreases,
i.e., that a stronger coupling between the complex and real
scalar field allows the solutions to exist for smaller values
of the frequency ω. We confirm this result and find that the
qualitative pattern does not change significantly when
including backreaction.
This can be seen in Fig. 4, where we give Fð0Þ andGð0Þ,

respectively, as function of ω for α ¼ 0.2 and different
values of g1. We find that ωmin ¼ 0 for sufficiently large g1.
The figure demonstrates that while for g1 ¼ 2.1, Fð0Þ
becomes zero at a finite value of ω, the qualitative pattern
changes for larger g1. In this case Fð0Þ ¼ 0 only at ω ¼ 1,
while Fð0Þ > 0 at ω ¼ 0. These limiting solutions have
QN ¼ 0. Increasing g1 further leads to an increase of Fð0Þ
and a decrease of Gð0Þ. We also find that, as in the g1 ¼ g2
case, bound state solutions exist.

Our results for the case g1 < g2 ¼ 1 are shown in Fig. 5
for α ¼ 0.025. Qualitatively similar to the α ¼ 0 limit, two
branches exist in ω which meet at ωmin. We find that ωmin
increases with decreasing g1, i.e., solutions exist on smaller
intervals of ω when decreasing g1 from unity. The second
branch of solutions always ends at Fð0Þ ¼ 0 with Gð0Þ ≠
0 which is different to the case g1 > g2. However, we see
now also a crucial difference to the α ¼ 0 case. We find
that increasing α increases both ωmin as well as the
maximal value of Fð0Þ for any g1 < g2. Moreover,
decreasing g1 at fixed α leads to an increase in ωmin,
which is the opposite of what was observed for α ¼ 0,
where decreasing g1 decreases ωmin. In comparison to the
g1 > g2 case, the range of ω for which solutions exist
appears more sensitive to α and we were able to obtain
solutions for larger values of α.
We also find that for g1 < g2 we can produce bound

states and—since we can increase α to larger values—that
these bound states are stronger bound as compared to the
g1 ≥ g2 case. For α ¼ 0.025 we find, e.g., that the minimal
value of M=QN is approximately 0.92.

FIG. 4. Left: the central values Fð0Þ as function of ω for α ¼ 0.2 and several values of g1 > g2 ¼ 1. Right: the corresponding values
of Gð0Þ.

FIG. 5. Left: the central values Fð0Þ as function of ω for α ¼ 0.025 and several values of g1 < g2 ¼ 1. Right: the corresponding values
of Gð0Þ.
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IV. SCALARIZED BLACK HOLES

We impose a horizon at r ¼ rh > 0 with NðrhÞ ¼ 0. We
require all matter fields to be regular at rh and hence need to
impose the following boundary conditions

N0F0jr¼rh ¼ ðm2
1 − g1GÞFjr¼rh

ð4:1Þ

N0G0jr¼rh ¼
�
ðm2

2 − 3g2GÞG −
g1F2

2

�����
r¼rh

ð4:2Þ

These conditions result from the requirement of regu-
larity of the solutions at r ¼ rh and can be read off from the
Eqs. (2.10) and (2.11). Moreover, as the scalar field
equations demonstrate, we need to choose ω ¼ 0 making
the complex scalar field real. Again, this results from the
requirement of regularity at the horizon. These three
boundary conditions above, along with the three already
provided in (2.12), give the required six boundary con-
ditions to solve the equations of motion (2.8)–(2.11). There
are now six parameters: m1, m2, α, g1, g2, and rh. We will
comment on appropriate scalings that allow to set some of
these values to fixed values without losing generality in the
following.

A. Probe limit

For α ¼ 0 the gravity equations have a simple solution:
σ ≡ 1 and NðrÞ ¼ 1 − rh=r. This is the Schwarzschild
solution and we will first study the two interacting scalar
fields in the background of this space-time.

1. The case F ≡ 0

As is easy to see from (2.10), FðrÞ ≡ 0 is a solution to the
equations of motion. A first question is therefore whether
Schwarzschild black holes can support the real scalar field
GðrÞ. The equation for GðrÞ reads
�
1 −

rh
r

��
G00 þ 2

r
G0
�
þ rh

r2
G0 ¼ m2

2G − 3g2G2; ð4:3Þ

which has to be solved subject to the boundary conditions

G0ðrhÞ ¼ rhðm2
2GðrhÞ− 3g2G2ðrhÞÞ; Gðr→∞Þ ¼ 0:

ð4:4Þ

Note that since the coupling constant g1 becomes irrelevant
in this case, appropriate rescalings of the function GðrÞ and
of the radial coordinate r allows us to set g2 ¼ 1 and m2 ¼
1 without losing generality. In the probe limit the only
parameter that remains is the horizon radius rh.
In spite of its simplicity, we found no closed form

solution of this boundary value problem. Analytical results
are known for a classical Hénon-Heiles model in spaces
with constant curvature [24], but not in the background of a

Schwarzschild black hole. We therefore solved the problem
numerically for several values of the horizon value rh. Our
results are shown in Fig. 6, where we give the dependence
of GðrhÞ and G0ðrhÞ on the horizon radius rh. Since all
values are finite, the solutions are regular at rh. We will
refer to these solutions as G-clouds in the following. The
limit rh ¼ 0 is smooth with Gð0Þ finite and corresponds to
solutions discussed in [20].

2. Two interacting scalar fields

Let us now consider the case when the two scalar fields
are nontrivial.
The constant g2 and the mass m1 can be set to unity by

appropriate rescalings of GðrÞ and of the radial coordinate
r. The two remaining constants g1 and m2 now play a
crucial role for the domain of existence of the solutions
which we will refer to as F-G-clouds in the following. We
observe that with fixed rh and m2 the solutions with
FðrÞ ≠ 0 exist only for g1 ≥ g1;cr. Our results indeed
demonstrate that the function FðrÞ tends uniformly to
the null function for g1 → g1;cr. In other words: the F-G-
clouds become G-clouds in this limit. Remembering that
the G-clouds exist irrespective of the g1 coupling constant,
the F-G-cloud can be seen as bifurcating from the
G-clouds at the critical value g1;cr. Such a bifurcation is
shown in Fig. 7 (left) for rh ¼ 1, where we give the values
of FðrhÞ and GðrhÞ in function of the horizon radius rh.
Note that for G-clouds the value of FðrhÞ ≡ 0 and
GðrhÞ ≡ 3.8333, where the latter results from the choice
m2 ¼ 2. The values GðrhÞ for F-G-cloud solutions are
lower than the ones for G-cloud. Moreover, the mass M is
lower for the F-G-clouds at fixed horizon radius. This can
be seen in Fig. 7 (right) and demonstrates the important
role of the a priori complex scalar field in the system. In
Fig. 8 we show the domain of existence of F-G-clouds in

FIG. 6. We show the values of GðrhÞ and G0ðrhÞ in function of
rh for α ¼ 0 and G-clouds, i.e., solutions with FðrÞ ≡ 0.
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the m2-g1-plane for two different values of rh (left) and in
the g1-rh-plane for two different values of m2 (right). This
demonstrates that g1;cr depends on m2 and rh. We find that
for small values of m2, the value of g1;cr is not very
sensitive to the size (and hence mass) of the black hole. For
large(r) values ofm2 smaller black holes need larger values
of g1 to be able to be surrounded by an F-G-cloud. We also
find that an increase in m2 lowers the value of g1;cr at fixed
rh. In summary, we find that the larger the black hole and
the larger the mass of the real scalar field, the easier it is to
have F-G-clouds on a Schwarzschild black hole.

B. Black holes with scalar hair

In the following, we will discuss the case α > 0, i.e., we
will study spherically symmetric, static black hole solutions
that carry either one or two scalar fields on their horizon
and demonstrate how the backreaction of the space-time
changes the solutions. We will set g2 ¼ m1 ¼ 1 without
loss of generality in the following.

1. Black holes with G-hair

We will first study the case FðrÞ ≡ 0. We have fixed the
value of α and varied rh for g1 ¼ m2 ¼ 1. We show the
values of GðrhÞ and G0ðrhÞ in function of rh in Fig. 9.
Clearly, GðrÞ is nontrivial in this case, i.e., we have
constructed black holes with G-hair. Our numerical data
suggests that the solutions are not limited by a maximal
value of rh, i.e., we can make the black holes carrying
G-hair as large as we want. The value ofGðrhÞ increases up
to a maximal value at some critical value of rh ¼ rh;cr from
where it monotonically decreases. The corresponding value
of G0ðrhÞ decreases up to rh;cr and increases from there. We
find that increasing α decreases the value of rh;cr. Hence, for
small black holes, an increase in the size as well as in the
backreaction allows for larger values of the real scalar hair
on the black hole horizon with scalar field values decreas-
ing for r > rh. For large black holes, the backreaction
increases the value of the scalar field on the horizon, while
increase in size leads to decrease in the value of the scalar

FIG. 7. Left: we show the values of FðrhÞ (purple) and GðrhÞ (black) in function of g1 for rh ¼ 1, m2 ¼ 2, α ¼ 0. The solid lines
correspond to F-G-clouds, while the dashed lines with constant GðrÞ ¼ 3.3833 and FðrhÞ ≡ 0 correspond to G-clouds. Right: we show
the values of the mass M in function of g1 for rh ¼ 1, m2 ¼ 2, α ¼ 0. The constant line at M ≈ 2.0298 corresponds to the G-clouds.

FIG. 8. Left: the domain of existence ofG-clouds and F-G-clouds in them2-g1-plane for two different values of rh for α ¼ 0,m1 ¼ 2,
m2 ¼ 1, and g2 ¼ 1. Right: the domain of existence of G-clouds and F-G-clouds in the g1-rh-plane for two different values of m2,
α ¼ 0, m1 ¼ 2, and g2 ¼ 1. The F-G-clouds exist above the corresponding curves, while G-clouds exist in the full domain. In both
figures, the curves correspond to the value of g1;cr.
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field at rh. Moreover, our results show that for r > rh;cr the
scalar field increases in value when moving away from the
horizon.
The mass of the solutions increases with increasing rh,

see Fig. 10 (left), although we find that the slope of the

rh-M-curve decreases with increasing α. For small α, we
see a strong increase in mass M when increasing rh, while
M seems nearly unchanged for large α. At the same time,
the black hole temperature TH decreases monotonically for
increasing rh, see Fig. 10, when α is small. For large α, on

FIG. 9. We show the values ofGðrhÞ (left) and G0ðrhÞ (right), respectively, in dependence of the horizon radius rh for several values of
α and FðrÞ ≡ 0. Moreover g1 ¼ g2 ¼ 1, m1 ¼ m2 ¼ 1.

FIG. 10. The values of the ADMmassM (left) and the temperature TH (right) in dependence of rh for several values of α and FðrÞ ≡ 0,
g1 ¼ g2 ¼ 1 and m1 ¼ m2 ¼ 1.

FIG. 11. Left: the metric function NðrÞ of black holes with G-hair (FðrÞ ≡ 0) for different values of the horizon radius rh and
g1 ¼ g2 ¼ 1, m1 ¼ m2 ¼ 1, α ¼ 1.0. Right: the metric function NðrÞ of black holes with G-hair (FðrÞ ≡ 0) for different values of the
gravitational coupling α and g1 ¼ g2 ¼ 1, m1 ¼ m2 ¼ 1, rh ¼ 1.0.
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the other hand, we find that the temperature seems to
possess a local minimum at some intermediate horizon
value. In the limit rh → 0 the temperature diverges and we
find a regular solution. These are the gravitating versions of
the solitons made of real scalar fields first discussed in [20]
for α ¼ 0. For soliton solutions in models with more
general potentials see also [25]. We find that for α ¼ 0.1
we have Gð0Þ ≈ 1.4, while [20] finds Gð0Þ ¼ 1.397 for
α ¼ 0. Hence, the solitonic solutions made of a real scalar
generalize to curved space-time.
Typical profiles of the metric functionNðrÞ are presented

in Fig. 11 (left) for three values of rh, α ¼ 1.0, g1 ¼ g2 ¼ 1,
m1 ¼ m2 ¼ 1. We also show profiles of the metric function
for a constant horizon radius rh ¼ 1 and several values of α
in Fig. 11 (right). We find for all parameter choices
presented in these figures that NðrÞ possesses a local
maximum and a local minimum outside the horizon—
expect for the choice rh ¼ 1, α ¼ 0.1. The maximal value
of NðrÞ increases, while the minimal value of NðrÞ
decreases when decreasing rh for fixed α. For fixed rh,
the minimal value does not show strong dependence on α
(although it shifts to large r when increasing α), however,
the maximal value increases strongly when increasing α.
We hence find, as expected, the strongest change in the
metric function NðrÞ for small black holes with large
backreaction.

2. Black holes with F-G-hair

Let us finally present the results for black holes carrying
both real as well as complex scalar hair, i.e., F-G- scalar
hair.

We show the values of FðrhÞ and GðrhÞ in function of
g1 for different values of α with rh ¼ 0.15, m2 ¼ 1 and
g1 ¼ 1 in Fig. 12. Here we see that increasing the
gravitational strength lowers the value of g1 at which
solutions with F-G-hair bifurcate from those with only
G-hair. In Fig. 13 we show the free energy F in function of
the temperature TH for black holes with G-hair and black
holes with F-G-hair for α ¼ 0.5,m2 ¼ 2 and g1 ¼ 2.5. For
low temperature, the black hole with only G-hair is
thermodynamically preferred, while at sufficiently high
temperature the black holes with F-G-hair have lower free
energy.

V. CONCLUSIONS

We have extended the work of [20] to include gravity.
We have found globally regular as well as black hole
solutions. The globally regular solutions are boson stars
(made of the complex scalar field) which carry an addi-
tional real scalar field. In comparison to the nonbackreacted
case we find that now two solutions exist for the same
values of the couplings and the frequency of the complex
scalar field. Moreover, there exist solutions that are stable
with respect to the decay into the individual bosonic
particles that make up the star. Interestingly, globally
regular solutions made solely out of a real scalar field
can exist in our model as was already shown in [20] in flat
space-time. While this seems to be in disagreement with
Derrick’s theorem [26] which forbids localized, finite
energy solutions made out of static, real scalar fields in
three spatial dimensions, one of the requirements, namely
that the potential be positive definite, is not fulfilled in our
model for appropriate choices of the coupling constants.
Hence these solutions can exist and do not contradict the
theorem.

FIG. 12. The values of FðrhÞ andGðrhÞ in dependence of g1 for
several values of α with m1 ¼ m2 ¼ 1, g2 ¼ 1, and rh ¼ 0.15.
The solid lines are associated to the black holes with F-G-clouds,
while the dashed lines are those for the black holes with
G-clouds. The lines at zero or starting from zero at a finite value
of g1 represent the values of FðrhÞ, while the constant lines with
nonvanishing, positive values and those starting from these
correspond to the values of GðrhÞ.

FIG. 13. We show the free energy F in function of the
temperature TH for black holes with G-hair and with F-G-hair,
respectively. Here α ¼ 0.5, m1 ¼ 1, m2 ¼ 2, g1 ¼ 2.5, g2 ¼ 1.
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Interestingly, we also have constructed static, spherically
symmetric and asymptotically flat black holes with scalar
hair (real or real and complex). This is not in disagreement
with the theorem given in [9] which states that static,
spherically symmetric, asymptotically flat black hole
space-times with energy-momentum content fulfilling the
weak energy condition as well as Tθ

θ ≥ Tr
r are necessarily

trivial. While the latter condition is always fulfilled in our
case, the former is not: E ¼ −Tt

t is not necessarily positive
definite as the scalar field potential becomes negative for
specific choices of the self-couplings.
Finally, we would like to emphasize, that we have not

investigated the thermodynamical (in)stability of the black

holes, we merely stated that one hairy black hole is
thermodynamically preferred above the other. If one had
established thermodynamical (in)stability a relation to
dynamical (in)stability could be made via the work of
Wald and Hollands [27] who have shown that thermody-
namical stability implies dynamical instability under
certain assumptions for the perturbations (axially sym-
metric and δM ¼ 0, δϕi ¼ 0, where the ϕi are the scalar
fields).

DATA AVAILABILITY

No data were created or analyzed in this study.
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