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Abstract

Controlling and understanding the behavior of a quantum emitter close to a
nanostructure is under extensive research. However, the study of advanced nanostructures is
hampered by a lack of efficient numerical and theoretical methods.

Therefore, the main objective is to implement novel modeling methods for high-order
transitions, beyond the standard dipolar approach, which is relevant for the current
nanocavities with highly confined light. Then, the developed framework will be applied for
innovative structures.
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Figure A — Emitter coupled to a surface plasmon
supported by a 2D material. The light confinement
makes the wavelength approaches the emitter size.
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Context

Motivation: Two-Photon Spontaneous Emission (TPSE) is around 5 to 8 orders of
magnitude slower than the emission of a single photon - How to make it accessible ?

Solution: coupling with surface plasmons = Emission rate enhanced by the Purcell effect
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enhancement for an electric dipole transition of an
emitter placed 10 nm above a bilayer Ag nanodisk [1].
Problem: the electric dipole approximation is not appropriate for highly confined light [1]

= We need to develop a framework which studies TPSE beyond the standard

electric dipole approximation
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Results and Conclusions

Framework in progress
* Let's consider a system composed of a quantum emitter located by r, close to a surface of
arbitrary shape. The interaction Hamiltonian ¥ is studied up to the quadrupolar order
V =—d.E(ro) — m.B(ro) — [QV].E(ro)

* The approach is based on Fermi’s golden rule. The n-order transition rate from an initial
state |i) to a final state |f) is then given by intermediate state
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*  First step: express T’ fﬁ)f depending on Purcell factors. For example, for a second-order
electric dipole transition the spectral TPSE rate is
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where t,;,(w) is a tensor that depends on the electronic structure of the emitter and P, ;- (w)
is the radiative Purcell factor for a transition electric dipole moment oriented along e, [1]

+ Second step: compute classically the Purcell factors with the COMSOL Multiphysics®
software (finite element method)

Characteristics of the framework
» Concerns the TPSE of a quantum emitter coupled with plasmonic nanostructures

* Based on the Fermi’s golden rule

» Based on numerical calculations of the Purcell factors

= Study and optimize nanostructures

e Goes beyond the standard electric dipole approximation by considering
magnetic dipole and electric quadrupole transitions

Figure B has been reproduced with the framework = COMSOL can be used

Planning

«  Finish the framework: express T &

i»f

depending on Purcell factors for a magnetic

dipole transition and an electric quadrupole transition — estimation
» Study interference effects between multipolar transition channels of TPSE
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