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Abstract: The emergence of nanotechnology in medicine, particularly using iron oxide
nanoparticles (IONPs), may impact cancer treatment strategies. IONPs exhibit unique
properties, such as superparamagnetism, biocompatibility, and ease of surface modification,
making them ideal candidates for imaging, and therapeutic interventions. Their application
in targeted drug delivery, especially with traditional chemotherapeutic agents like cisplatin,
has shown potential in overcoming limitations such as low bioavailability and systemic
toxicity of chemotherapies. Moreover, IONPs, by releasing iron ions, can induce ferroptosis,
a form of iron-dependent cell death, which offers a promising pathway to reverse radio- and
chemoresistance in cancer therapy. In particular, IONPs demonstrate significant potential as
radiosensitisers, enhancing the effects of radiotherapy by promoting reactive oxygen species
(ROS) generation, lipid peroxidation, and modulating the tumour microenvironment to
stimulate antitumour immune responses. This review explores the multifunctional roles
of IONPs in radiosensitisation through ferroptosis induction, highlighting their promise
in advancing treatment for head and neck cancers. Additional research is crucial to fully
addressing their potential in clinical settings, offering a novel approach to personalised
cancer treatment.

Keywords: metallic nanoparticles; ferroptosis; head and neck cancers

1. Clinical Context and Objectives
Cancer remains one of the most challenging diseases, accounting for a significant

number of deaths worldwide. According from GLOBOCAN database, in 2022, nearly
20 million new cases were reported and 9.7 million deaths were recorded [1]. Europe is
particularly affected by this burden as it represents less than 10% of the population but
accounts for 20.4% of cancer-related deaths. It is estimated that around 50% of patients
suffering from cancer will need radiotherapy. The number of patients needing this treatment
is expected to increase with the increasing incidence of new cases of cancer in the future [2].
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Head and neck cancers (HNCs) are the seventh most common cancer and also benefit
from radiotherapy. In 2022, more than 940.000 cases of HNC were reported and more
than 480.000 deaths were recorded [1]. Despite advances in understanding HNC biology
(EGFR overexpression and p53 mutation), and the evolution of therapeutic strategies
(chemoradiation treatment, targeted therapy, and immunotherapy) [3–5], these cancers
often exhibit radioresistance, leading to treatment failure and poor prognoses.

Radiotherapy is essential in HNC treatment, as the sole treatment and alternative
to surgery in early stages (I and II), and as part of a combined approach with cisplatin,
radically or adjuvant to surgery in locally advanced stages (III and non-metastatic IV).
Combination therapy in the latter stages is effective in over 50% of patients. However,
HNCs are challenging due to the anatomical complexity of the region, involving critical
structures at the intersection of the digestive and respiratory systems and the vocal cords.
Despite significant advancements in radiotherapy in recent years, side effects remain
common and often debilitating. A prominent example is xerostomia, a persistent dry-
mouth condition that severely impacts patients’ quality of life [6]. Another major limitation
is the difficulty in re-irradiating the same area. Indeed, re-exposure to radiation significantly
increases toxicity risks, even though it can improve overall survival [7]. Furthermore, these
cancers are frequently associated with the development of new primary tumours in the
same region. These tumours arise due to continued exposure to known risk factors, such
as the combined consumption of tobacco and alcohol [8–10], making re-irradiation even
more challenging.

In this context, the development of radiosensitising agents is of critical importance.
These agents have the potential to enhance the efficacy of treatments while possibly reduc-
ing the required radiation dose, thereby mitigating toxic side effects. Innovative strategies
using nanoparticles (NPs) targeting tumours in combination with radiotherapy have been
developed and have already shown promise in sensitising cancer cells to radiation, im-
proving tumour control. The effect has been demonstrated using multiple nano-objects,
including those based on gold, platinum, gadolinium, and hafnium in a wide variety of tis-
sues [11]. These preclinical results have paved the way for an initial positive phase II study.
The Act.In.Sarc trial (NCT02379845) demonstrated that the nanoparticle NBTXR3 (hafnium
oxide), when activated by preoperative radiation therapy, doubled the rate of pathologic
complete response after resection compared with preoperative radiotherapy alone in adult
patients with locally advanced soft tissue sarcoma of the extremity or trunk wall (16.1% vs.
7.9%). Moreover, NBTXR3 did not impact the patients’ quality of life, notably in terms of
late-onset adverse events such as fibrosis, oedema, and joint stiffness [12].

Our ongoing research has focussed on iron oxide nanoparticles (IONPs), which have
demonstrated both radiosensitising properties [13] and use as magnetic resonance (MRI)
contrast agents [14]. Although clinical trials of HNCs involving IONPs are still limited, a
study currently underway is evaluating the effect of hafnium oxide nanoparticles combined
with radiotherapy and immunotherapy (NCT04862455), highlighting the relevance of using
metallic nanoparticles in combination with current treatments for HNCs.

Additionally, the concept of ferroptosis, a unique form of regulated cell death triggered
by toxic lipid peroxidation, has recently gained attention in cancer therapy [15]. Ferroptosis
is linked with iron metabolism and the accumulation of reactive oxygen species (ROS),
ultimately leading to cell death.

In this review, we specifically focus on the properties of iron oxide nanoparticles
and their therapeutic effects on HNC cells. We also explore their role in the induction of
ferroptosis, which represents a vulnerability in HNCs. Finally, we examine the known
effects of combining iron oxide nanoparticles with radiotherapy and propose this thera-
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peutic regimen in the context of HNCs, as there are already few studies on the subject, all
suggesting great promise for improving treatment outcomes.

2. Ferroptosis
2.1. History

Damage induced by lipid peroxidation has been recognised for decades in relation to
neuronal damage [16], increased cancer risk [17,18], and ischemia/reperfusion injury [19]
and has been extensively described since then. The term ferroptosis appeared much later,
and the concept of toxic lipid peroxidation has been implicated in other human pathologies
including cancers.

In 2003, Dolma et al. conducted a high-throughput screening aimed at uncovering
new compounds capable of inducing cell death in genetically modified tumour cells.
This screening yielded several promising molecules, including one that demonstrated the
ability to induce cell death specifically in a mutant cell line but not in the wild-type cell
line. This cell line harboured a mutation of the HRAS (RASV12) oncogenic gene and also
expressed the small T oncoprotein from simian virus 40. This molecule was named erastin,
in reference to “eradicator of RAS- and small T oncoprotein (ST)-expressing cells”, and was
revealed to trigger cell death through a non-apoptotic pathway [20]. Building upon this
discovery, in 2008, the team conducted another screening which led to the identification of
an RAS-selective lethal (RSL) compound, also capable of inducing cell death in oncogenic
RAS-mutant cell lines via a non-apoptotic mechanism [21].

By 2012, the same group developed a deeper understanding of this cell death pathway
activated by erastin and RSL3, suggesting the term ferroptosis to characterise this novel
form of cell death [22]. Further insights regarding the initial observations on ferroptosis
pathways are described in the work by Tal Hirschhorn and Brent R Stockwell [23].

2.2. Morphological Features

The researchers at Stockwell’s laboratory were pioneers in studying the morphological
features of cells undergoing ferroptosis. This pathway presents a distinctive phenotype
compared to other forms of cell death. Unlike apoptosis, there is no release of cytochrome c
from mitochondria, no activation of caspases, and no staining with annexin V. Additionally,
the nuclei maintain their structure without undergoing morphological changes such as
chromatin condensation or fragmentation [20,22,24,25]. Ferroptotic cells also differ from
necrotic cells by the absence of cytoplasmic swelling and direct plasma membrane rup-
ture [22]. Furthermore, ferroptosis can be distinguished from autophagy by the lack of
double-membrane vesicles [22] and from pyroptosis by the absence of blebbing and early
plasma membrane rupture [25,26]. Notably, ferroptotic cells display smaller mitochondria
with increased membrane density [22]. At the molecular level, ferroptosis diverges from
other regulated cell death pathways, as it is triggered by specific inducers and does not
involve the same cellular machinery [27].

2.3. Ferroptotic Markers

Ferroptotic markers are biological indicators or characteristics associated with the
occurrence or progression of ferroptosis. These markers are molecular, cellular, or histo-
logical features which indicate the presence or extent of ferroptosis in various biological
systems, including cancer. Common ferroptotic markers are lipid peroxidation, glutathione
depletion, iron accumulation, mitochondrial dysfunction, oxidative stress, and altered
expression of ferroptosis-related genes, such as SLC7A11 (solute carrier family 7 member
11), GPX4 (glutathione peroxidase 4), and FTH1 (ferritin heavy polypeptide 1) [22,25,28].
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2.4. Ferroptosis Mechanisms

Ferroptosis refers to iron-dependent cell death. It is driven by the intracellular accu-
mulation of iron, which promotes the production of reactive oxygen species (ROS) through
the Fenton reaction, leading to excessive lipid peroxidation of the cell membranes. These
processes ultimately cause cell death as a result of toxic lipid damage.

2.4.1. Iron Metabolism

In physiological conditions, iron primarily enters cells bound to transferrin (Figure 1).
This iron–transferrin complex binds to transferrin receptor 1 on the cell surface and is
internalised by endocytosis [29]. Within the endosome, Fe3+ is released and then reduced to
Fe2+ by endosomal ferrireductase [29]. Fe2+ is subsequently transported into the cytoplasm
through the divalent metal transporter 1 (DMT1) and is included in the labile iron pool [29].
It can be (1) utilised for cellular processes and incorporated into iron-containing proteins,
(2) exported by ferroportin 1 (FPN1) and then reoxidised to Fe3+ by ferroxidase [30], or
(3) stored in ferritin if in excess [29].
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Figure 1. Overview of the different pathways involved in the induction of ferroptosis. Ferroptosis
is a cell death pathway dependent on iron metabolism, lipid metabolism, and ROS metabolism.
ROS production through the Fenton reaction can lead to the conversion of phospholipids hy-
droperoxide into phospholipid hydroperoxy radicals and promote excessive lipid peroxidation.
Red dots: Fe3+ ions, yellow dots: Fe2+ ions, Tf: transferrin, STEAP3: STEAP3 metalloreduc-
tase, DMT1: divalent metal transporter 1, labile iron pool: represented in yellow and contains
Fe2+, PCBP: poly (rC)-binding protein 1, NCOA4: nuclear receptor coactivator 4, ROS: reactive
oxygen species, DHODH: dihydroorotate dehydrogenase (quinone), FSP1: ferroptosis suppressor
protein 1, CoQ: coenzyme Q (ubiquinone), CoQH2: reduced form of coenzyme Q10 (ubiquinol),
PUFAs: polyunsaturated fatty acids, PUFA-PLs: PUFA phospholipids, PUFA-PL-OOH: phospho-
lipid hydroperoxide, PUFA-PL-OH: phospholipid alcohol, ACSL4: acyl-CoA synthetase long-chain
family member 4, LPCAT3: lysophosphatidylcholine acyltransferase 3, xCT: cystine/glutamate an-
tiporter, GSH: reduced glutathione, GSSG: oxidised glutathione, GPX4: glutathione peroxidase 4,
BH4: tetrahydrobiopterin. Created using BioRender (https://www.biorender.com/).

Importantly, storage in ferritin is crucial to preventing redox reactions with iron. To
this end, Fe2+ enters ferritin and is oxidised into Fe3+, which is then stored in the cavity of
ferritin [29]. Chaperone proteins known as poly (rC)-binding proteins (PCBPs 1–4) mediate
the transport of iron into ferritin [29]. Iron release occurs through the degradation of ferritin
in the lysosome, a mechanism termed ferritinophagy, which is part of the autophagy

https://www.biorender.com/
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process [31]. Nuclear receptor coactivator 4 (NCOA4) serves as a receptor and binds to
ferritin for its delivery to the lysosome [31].

Iron can contribute to the accumulation of ROS through various mechanisms. Firstly,
iron and its derivatives can be incorporated into proteins involved in ROS production, such
as NADPH oxidase, lipooxygenases, cytochrome P450 enzymes, and enzymes from the
electron transport chain in the mitochondria [32]. Iron pools are present in the lysosomes,
the mitochondrial matrix, and the cytosol, where they can initiate the Fenton reaction [32],
which catalyses the formation of Fe3+ from Fe2+ and hydrogen peroxide (H2O2) and
generates hydroxide (OH-) and hydroxyl radicals (OH•) [33,34].

It is worth noting that iron overload is associated with metabolic diseases such as
haemochromatosis, a condition in which excessive iron is absorbed through the intestine
and cannot be effectively eliminated by the body. This leads to organ damage, most
commonly affecting the liver, but it can also lead to diabetes and impact the gonads and
heart [35]. Additionally, iron uptake itself can be linked to various side effects, including
gastrointestinal disorders such as nausea, vomiting, diarrhoea, constipation, and abdominal
pain. Other side effects may include skin rashes and blood pressure abnormalities [36,37].
These side effects could potentially be prevented or reduced through the use of targeted
IONPs, which will be discussed later in this review.

2.4.2. Lipid Peroxidation Process

Lipid oxidation by ROS, also termed peroxidation, occurs in three distinct steps
wherein peroxide products are generated, maintain the reaction, and induce damage [38].
The first target of ROS is polyunsaturated fatty acids (PUFAs), mainly due to the presence
of unstable carbon–carbon double bonds between methylene groups [34]. This process is
pivotal in ferroptosis, particularly targeting arachidonic acid and adrenic acid, the main
PUFAs susceptible to peroxidation [30,39]. An excessive rate of lipid peroxidation can
deplete cellular antioxidant capacities, ultimately triggering programmed cell death [34].

The three steps of lipid peroxidation are initiation, propagation, and termination.
Initiation begins with the removal of a hydrogen atom from a PUFA by free radicals
such as OH•, resulting in the formation of a lipid radical. In the propagation step, lipid
radicals form lipid peroxy radicals, which further react with another adjacent lipid to
produce a lipid radical and lipid hydroperoxide. Finally, antioxidant molecules become
involved in the termination phase by reacting with lipid peroxy radicals and stopping
the process [34,38]. Peroxidation products, such as lipid hydroperoxide, malondialde-
hyde (MDA), and 4-hydroxy-2-nonenal (4-HNE), can induce cell death by reacting with
biomolecules [34]. Moreover, lipid peroxidation can lead to changes in cell membrane
integrity and functionality. It can alter membrane fluidity, permeability, lipid–lipid and
lipid–protein interactions, and ion gradients. Additionally, it can impact the initiation
of signalling pathways [40,41]. Of note, as mentioned by Tang et al. and Liu et al., the
precise end-effectors of the ferroptotic pathway remain unidentified. Since ferroptotic cell
death leads to cell lysis, the identification of proteins involved in pore-forming membrane
activities needs to be elucidated, along with an exploration of the roles played by the
aforementioned peroxidation products [30,42].

Very recently, Scott J. Dixon and James A. Olzmann summarised the mechanisms
leading to cell membrane rupture. The increase in lipid peroxidation causes an increase in
membrane tension that activates ion channels sensitive to these changes. These events will
induce unregulated ion efflux and loss of ionic homeostasis and eventually rupture the cell
membrane after nanopore formation and cell swelling [43].

Ferroptosis is not regulated by the same factors as other cell death pathways, but it
appears to be promoted by autophagy. This is evident from the turnover of ferritin, the
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primary iron storage protein, within the autophagy process. Additionally, autophagic
effectors have been observed to influence ferroptosis induction [30,42,44]. However, as
mentioned in a recent review by Chen et al., several pathways within autophagy can either
enhance ferroptosis or have cytoprotective effects against it [45].

Mitochondria are protected from membrane lipid peroxidation through the storage of
iron by ferritin and antioxidant systems (notably DHODH, as explained in Section 2.5.4).
Through their essential role in maintaining ROS balance, mitochondria are also involved
in the induction of ferroptosis. A detailed exploration of the role each organelle plays
in ferroptosis can be found in the reviews [43,46], and specific information regarding
mitochondria can be found in the articles [47–49].

2.5. Antioxidant Defence Systems Against Ferroptosis

Ferroptosis is a complex, iron-dependent cell death pathway driven by ROS pro-
duction and lipid peroxidation, with key mechanisms involving disrupted iron and lipid
metabolism. Understanding these pathways and their regulation could open potential
therapeutic strategies. Multiple antioxidant systems have been shown to play a role in pre-
venting ferroptosis. Understanding these protective pathways offers valuable insights into
potential therapeutic strategies for diseases involving ferroptotic cell death, particularly by
targeting these key antioxidant mechanisms.

2.5.1. Xc−/GSH/GPX4 Pathway

The selenoprotein glutathione peroxidase 4 (GPX4) is the main enzyme involved in
antioxidant defence mechanisms [50] and protects cells against lipid peroxidation [51].
GPX4 functions by reducing lipid hydroperoxides (LOOHs) into corresponding nontoxic
hydroxy derivatives (LOH) through the oxidation of GSH to GSSG [39,50] (Figure 1).
Specifically, the selenol group in GSH is oxidised into selenic acid along with the reduction
in toxic lipids into nontoxic alcohol. Subsequently, selenic acid is reduced back to selenol
with two molecules of GSH [52]. Notably, GPX4 is the only GSH peroxidase capable of
reducing phospholipid hydroperoxides present in the membrane [52].

Thus, the Xc−/GSH/GPx4 pathway regulates ferroptosis. Cystine is transported
into the cell by the antiporter Xc− in exchange for intracellular glutamate [52]. Cystine is
then reduced to cysteine, a precursor of GSH [52], and this reaction is mainly catalysed
by thioredoxin reductase 1 (TXNRD1) [53]. GPX4 then utilises GSH as a cofactor for
its antioxidant activity [52]. Inhibition of the Xc− antiporter, its subunit SLC7A11, GSH
synthesis, or GPX4 activity all promote ferroptosis. Moreover, GPX4 protects cells from
ROS formation induced by Fe2+ by converting lipid hydroperoxides into nontoxic lipid
alcohols [54].

2.5.2. NAD(P)H/FSP1/CoQ10 Pathway

Olzmann and his team identified ferroptosis suppressor protein 1 (FSP1), previously
known as apoptosis-inducing factor mitochondrial 2 (AIFM2), as an additional pathway
which prevents lipid peroxidation and protects cells from ferroptosis [55]. Indeed, FSP1
and GSH/GPX4 axes are parallel pathways that operate to reduce toxic lipid peroxidation.

FSP1 is recruited to lipid droplets and to the plasma membrane [55], serving as a
biomarker of ferroptosis resistance [55]. FSP1 acts as an oxidoreductase and reduces CoQ10
(ubiquinone) to CoQ10H2 (ubiquinol) using NAD(P)H/H+ as an electron source [55,56]
(Figure 1). CoQ10H2 operates as an antioxidant to prevent lipid peroxidation and can
indirectly generate α-tocopherol (vitamin E) [56], which further reduces lipid radicals [55].
CoQ10 is generated from isopentenyl pyrophosphate via the mevalonate pathway. In-
terestingly, inhibiting the rate-limiting enzyme (HMG-CoA reductase) of the mevalonate
pathway has been shown to sensitise cells to ferroptosis [53]. NADPH plays a crucial role
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in ferroptosis as an electron donor to the GSH and thioredoxin systems, as well as for
mevalonate synthesis [53].

There seems to be another pathway that protects cells from ferroptosis and is de-
pendent on FSP1. This protein can promote the endosomal sorting complex required for
transport III (ESCRT-III), which is notably involved in membrane repair [56] and thereby
prevents ferroptosis.

2.5.3. BH4

Tetrahydrobiopterin (BH4) seems to be part of another GPX4-independent path-
way that can inhibit ferroptosis (Figure 1). BH4 is a cofactor for various enzymes,
is involved in the synthesis of some neurotransmitters, and is a free-radical-trapping
molecule [57,58]. BH4 thereby prevents autooxidation in lipid membranes [59]. The en-
zyme GTP cyclohydrolase-1 (GCH1) is the rate-limiting enzyme in the synthesis of BH4.
BH4 can be recycled by dihydrofolate reductase (DHFR) [57,58]. DHFR also supports the
anti-ferroptotic activity of BH4 [59].

2.5.4. DHODH and CoQ10/CoQH2

Another pathway which prevents lipid peroxidation accumulation and ferroptosis
is found in the mitochondria. Indeed, dihydroorotate dehydrogenase (DHODH) acts in
parallel with mitochondrial GPX4 in order to reduce mitochondrial lipid peroxidation
(Figure 1). DHODH acts by reducing CoQ into CoQH2 [60], which is an antioxidant
molecule that inhibits initiation and propagation in lipid peroxidation [61]. This new
ferroptosis defence mechanism was first reported by Chao Mao et al. [60].

2.5.5. Other Antioxidant Pathways

Other antioxidant systems can prevent ferroptosis. These include enzymes respon-
sible for the detoxification of secondary products, like 4-HNE, or through reshaping the
composition of the plasma membrane, as explained in the review of Punziano et al. [62].

Ferroptosis is a specific form of cell death involving precise induction mechanisms,
including increased ferrous iron, ROS imbalance, and lipid peroxidation. Understanding
the primary pathways leading to ferroptosis is essential for developing therapeutic strate-
gies and interventions. The Section 2.7 will discuss the molecular targets of ferroptosis that
have already been studied in HNCs.

2.6. Ferroptotic Pathways and Involvement in Head and Neck Cancers

Several of the molecular pathways mentioned above are particularly interesting as
potential targets in the context of HNCs, as they serve as markers for survival prognosis.
The key targets are summarised in Table 1, identified through data from The Human
Protein Atlas, specifically using The Cancer Genome Atlas (TCGA) dataset and RNA ex-
pression profiles [63]. Targeting the associated overexpressed proteins presents a promising
approach to inducing cell death specifically in this type of cancer. Indeed, other studies
have identified these proteins as prognostic markers: high thioredoxin has been shown
to correlate with poorer survival in tongue carcinoma (p < 0.05) [64]; positive staining
(determined by a specific established score in the review) of SLC7A11 is associated with
poorer survival in laryngeal carcinoma (p < 0.05) [65]; and high expression of FTH1 is
linked to poorer overall survival (p < 0.01) and worse disease-free survival (p < 0.001) in
HNCs [66].
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Table 1. Survival probabilities associated with targets from the ferroptotic pathway in HNCs. FPN1
(SLC40A1): ferroportin 1 and solute carrier family 40 member 1, responsible for exporting Fe2+

PCBP1: poly(rC)-binding protein 1, NCOA4: nuclear receptor coactivator 4, FTH1: ferritin heavy
chain 1, TXNRD1/2: thioredoxin reductase 1/2, SLC7A11: solute carrier family 7 member 11,
facilitating glutamine transport, FSP1 (AIFM2): ferroptosis suppressor protein 1 (apoptosis-inducing
factor mitochondria associated 2).

Molecular Pathway RNA Levels Survival Probability

Iron metabolism FPN1 (SLC40A1) High expression associated with better survival (p < 0.05)
Iron metabolism PCBP1 High expression associated with poorer survival (p < 0.01)
Iron metabolism NCOA4 High expression associated with better survival (p < 0.05)
Iron metabolism FTH1 High expression associated with poorer survival (p < 0.001)

Antioxidant defences TXNRD1 High expression associated with poorer survival (p < 0.05)
Antioxidant defences TXNRD2 High expression associated with poorer survival (p < 0.01)
Glutamine pathway SLC7A11 High expression associated with poorer survival (p < 0.05)
Glutamine pathway FSP1 (AIFM2) High expression associated with poorer survival (p < 0.05)

2.7. Pharmacological Inducers and Inhibitors of Ferroptosis in Head and Neck Cancers

Several molecules can be used to induce ferroptosis. It is generally described that
ferroptosis inducers can be classified according to their targets: system Xc− (xCT or specifi-
cally subunit SLC7A11), GSH synthesis, GPX4, and others such as NRF2. There are multiple
research projects focussing on ferroptosis induction in HNCs. This review presents the
pharmacological molecules that have been shown to play a role in inducing/inhibiting
ferroptosis in such cancers. Indeed, ferroptosis emerges as a promising avenue in HNC
therapy, underscored by the intricate interplay between NRF2 inhibition and downstream
pathways, such as FTH1-mediated iron sequestration, further accentuating the significance
of targeting iron accumulation and ferritinophagy for ferroptosis induction. Additionally,
the differential response of HNC cells to ferroptosis inducers and the multifaceted roles
of molecules like FSP1 and SLC7A11 emphasise the complex landscape of ferroptosis
regulation, offering new possibilities for combinatory strategies in HNC treatment.

2.7.1. NRF2 Inhibition and Its Downstream Pathway

A treatment strategy largely explored in the literature for various cancers is the
inhibition of NRF2. Roh et al. investigated the ability of artesunate (an antimalarial
drug) to induce ferroptosis in cisplatin-resistant HNCs by promoting ROS accumulation
and depleting GSH (Figure 2). However, some resistant HNC cells were less sensitive
to artesunate due to the activation of the NRF2/ARE pathway, which confers protection
against ferroptosis. Combining artesunate with NRF2/ARE pathway inhibition proved
to be an effective approach for inducing cell death in such resistant HNC cells [67]. More
recently, Shin et al. demonstrated that resistance to the GPX4 inhibitor RSL3 (RAS-selective
lethal 3) could be attributed to NRF2 activation. Treatment with RSL3 induced endoplasmic
reticulum (ER) stress, resulting in increased p62 expression. After ER stress, the p62–Keap1
interaction activates NRF2, inducing the transcription of genes containing antioxidant
response elements (AREs) [68]. Downstream targets of AREs include FTH1, FPN, and HO-1,
which act to reduce free iron in the cytoplasm or enhance antioxidant defences, thereby
conferring protection against ferroptosis [68] (Figure 2).

2.7.2. Strategies Targeting Iron Accumulation and Ferritinophagy

Liu et al. observed variations in the sensitivity of HNCs to ferroptosis inducers. High
levels of FTH1, the heavy chain of ferritin, which is also a target gene of NRF2, were found
to reduce sensitivity to ferroptosis inducers, such as erastin and RSL3, by facilitating iron
storage and consequently preventing ferroptosis [69] (Figure 2).
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Lee and Roh demonstrated that the silencing of divalent metal transporter 1 (DMT1) or
the use of salinomycin (a selective anti-cancer stem cell agent, traditionally used as an anti-
coccidial drug) could induce ferroptosis by promoting iron accumulation (Figure 2). DMT1,
located on the lysosome membrane, facilitates the transport of Fe2+. The inhibition of DMT1,
either through silencing or salinomycin treatment, results in iron sequestration within the
lysosome and triggers an iron starvation response in the cytoplasm. Consequently, the
cellular response leads to an increase in the labile iron pool, the activation of the Fenton
reaction, and the production of hydroxyl radicals, all of which are prerequisites for lipid
peroxidation and ferroptosis [70].

Cystine deprivation through xCT inhibition by sulfasalazine leads to reduced GSH,
increased lipid peroxidation, and increased ferroptosis (Figure 2). This effect was shown to
be dependent on the activity of the glutaminolysis pathway. The dihydrolipoamide dehy-
drogenase (DLD) enzyme is part of the KGDH complex (itself part of the glutaminolysis
pathway), which can produce ROS molecules and impact lipid peroxidation. Therefore,
both DLD inhibition and glutaminolysis inhibition prevent the effects of cystine deprivation
on the induction of ferroptosis. A lack of cystine increases intracellular Fe2+ accumulation
via two pathways: (1) stimulation of KGDH activity that eventually leads to mitochondrial
lipid peroxidation and iron accumulation and (2) upregulation of the iron starvation re-
sponse [71]. It has to be highlighted that the glutaminolysis pathway seems to be connected
with the induction of ferroptosis.

Cisplatin-resistant HNC cells are less sensitive to ferroptosis inducers. However, the
combination of the ferroptosis inducer sulfasalazine and suppression of glutaredoxin 5
(GLRX5) shows an increase in intracellular free iron, lipid peroxidation, and then ferroptosis.
GLRX5 is a mitochondrial protein that plays an important role in iron homeostasis [72].

https://www.biorender.com/
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Finally, targeting poly (rC)-binding protein 1 (PCBP1) represents another potential
strategy to induce ferroptosis in HNCs. PCBP1 regulates ALOX15 and BECN1, both of
which play crucial roles in PUFA generation and ferritinophagy, respectively. Therefore, the
knockdown of PCBP1 promotes ferritinophagy, enhances Fe2+ accumulation, induces mito-
chondrial dysfunction and ROS production, and facilitates oxidised PUFA generation [73],
all essential steps for triggering ferroptosis (Figure 2).

2.7.3. Mesenchymal Phenotype

Erlotinib-tolerant persister HNC cells exhibit increased mesenchymal traits and a
metabolic switch toward glutaminolysis, rendering them more susceptible to ferroptosis
inducers. Erlotinib is an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine
kinase. This sensitivity may be attributed to the KDM5A/MPC1 axis regulation in these
cancer cells. Indeed, mitochondrial pyruvate carrier 1 (MPC1) plays a pivotal role in
transporting pyruvate into mitochondria, a critical step in oxidative phosphorylation,
and also regulates epithelial–mesenchymal transition (EMT). Erlotinib-tolerant persister
cells demonstrated reduced MPC1 expression, and the inhibition of MPC1 subsequently
increased glutaminolysis, leading to elevated mitochondrial ROS production and increased
susceptibility to ferroptosis inducers [74].

Another study revealed HNC cells with mesenchymal properties to be more responsive
to ferroptosis inducers (Figure 2). EMT regulation can be achieved through epigenetic
mechanisms. For instance, resveratrol activates the histone deacetylase sirtuin 1, resulting
in increased expression of zinc finger E-box-binding homeobox 1 (ZEB1), a transcription
factor involved in EMT [75].

In a model of salivary adenoid cystic carcinoma, the monoclonal antibody OMP-52 M51
was able to bind NOTCH1, inhibited its subsequent pathway, suppressed tumour growth,
and mitigated EMT. Moreover, this antibody exhibited the ability to induce ferroptosis and
sensitise cells to the ferroptosis inducer erastin. This represents an interesting strategy for
this type of HNC [76].

2.7.4. FSP1 and ACSL4

Recent studies have highlighted elevated levels of FSP1 in drug-tolerant persister HNC
cells (describing a group of cells that survives from primary therapy and are responsible
for drug resistance) with resistance to cisplatin, along with activation of the FSP1/ACSL4
axis. Combining an FSP1 inhibitor with cisplatin led to a significant reduction in tumour
size in a patient-derived xenograft (PDX) mouse model [77].

More recently, Xu et al. identified SUMO-specific peptidase 1 (SENP1) as a predictive
biomarker for HNC treatment. They observed that the overexpression of SENP1 in HNCs
was correlated with disease progression. SENP1 influences the stability of ACSL4 through
deSUMOylation, thereby promoting GPX4 activity and inhibiting ferroptosis. Silencing
SENP1 enhances ACSL4 stability, suppresses GPX4 activity, and promotes lipid peroxide
accumulation, consequently inducing ferroptosis [78]. Of note, ACSL4 plays a crucial role
in converting fatty acids to fatty acyl-CoA esters [56].

The fat mass- and obesity-related gene (FTO) functions as a demethylase, erasing
N6-methyladenosine (m6A) epigenetic modification in mRNA. FTO has been demonstrated
to remove m6A modifications from ACSL3 and GPX4 mRNA, known as anti-ferroptotic
factors, thereby promoting ferroptosis by decreasing the stability of these mRNAs. FTO
represents a potential therapeutic target for oral squamous cell carcinoma [79].

2.7.5. SLC7A11 (xCT)

The combination of cisplatin and RSL3 at low concentrations was found to induce
significant cell death, with cisplatin enhancing ferroptosis caused by RSL3 (Figure 2).
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This effect may be attributed to the increased expression of mutant p53 induced by the
chemotherapeutic agent. This phenomenon could be explained by the subsequent suppres-
sion of SLC7A11, as directly highlighted by Ye et al. [80].

In this context, You et al. showed that paclitaxel-tolerant persister cancer cells were
more sensitive to ferroptosis inducers targeting xCT but less sensitive to ferroptosis inducers
such as RSL3. This sensitivity shift was accompanied by an increase in fatty acid oxidation
and an upregulation of the PGRMC1 protein. PGRMC1 silencing in paclitaxel-tolerant
persister cells decreased the sensitivity to ferroptosis inducers. Additionally, it was observed
that PGRMC1 induced lipophagy and autophagy, suggesting that altered lipid metabolism
could promote ferroptosis [81].

Furthermore, overexpression of the short non-coding RNA miR-34c-3p was shown to
downregulate the expression of SLC7A11 and induce an increase in ferroptotic markers [82].

2.7.6. Other Inducers/Inhibitors

The growth factor epiregulin functions as a ligand of EGFR. Silencing epiregulin in
combination with cetuximab (monoclonal antibody against EGFR) has been demonstrated
to induce Fe2+ accumulation, elevate lipid peroxide levels, and downregulate GPX4 in
HNCs [83]. These findings suggest that the loss of epiregulin could serve as a predictive
marker for sensitivity to ferroptosis following cetuximab treatment, indicating the potential
benefit of combining cetuximab with ferroptosis inducers in such patients.

Other molecules were found to induce ferroptosis in a nasopharyngeal cell line, includ-
ing cucurbitacin B [84] and the plant-derived triterpenoid lupeol [85]. In addition, silencing
adipocyte enhancer-binding protein 1 (AEBP1) predisposed cisplatin-resistant oral cancer
cells to ferroptosis inducers in vitro [86], and ascorbic acid can induce ferroptosis in a model
of oropharyngeal carcinoma [87].

Altogether, targeting ferroptosis pathways through pharmacological inducers and
inhibitors offers promising therapeutic opportunities for HNCs, especially by modulating
key regulators like NRF2, SLC7A11, FSP1, and GPX4. Strategies such as iron accumulation,
glutaminolysis inhibition, and the suppression of protective pathways (i.e., NRF2 activation
and FSP1) support the potential for combination therapies to overcome radiotherapy
resistance and improve treatment outcomes in HNCs.

3. Radiotherapy
Head and neck cancers (HNCs) are predominantly treated with radiotherapy, often

serving as a primary or adjuvant therapy depending on the stage and location of the tumour.
Radiotherapy is effective in targeting cancer cells while preserving surrounding healthy
tissues, making it a cornerstone in the management of HNCs. It is commonly combined
with surgery or chemotherapy to enhance treatment outcomes, particularly in advanced or
aggressive cases.

3.1. Different Cell Death Pathways Following Radiation

Radiotherapy can induce various forms of cell death, depending on several factors
including (1) radiation characteristics such as fraction size, (2) cellular properties such as
cell type, cell cycle phase, and antioxidant defences, and (3) the cellular microenvironment,
which encompasses tissue oxygen levels [88]. Oxygen levels play a crucial role in radiore-
sistance, with high oxygen levels promoting increased ROS production and thus a better
response to radiotherapy. Conversely, low oxygen levels serve as a mechanism of resistance
to conventional radiotherapy, leading to decreased ROS generation. Moreover, the presence
of oxygen helps to accumulate DNA damage induced by radiation [88,89].
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Cell death was previously classified into three types based on morphological fea-
tures [90]. However, cell death pathways are now defined by the Nomenclature Committee
on Cell Death (NCCD), taking into account morphological, biochemical, and functional
characteristics [91]. Cell death subtypes are categorised as regulated cell death (RCD),
including programmed cell death, and accidental cell death (ACD) [92]. As described by
Reindl et al., there are four main types of cell death mechanisms following irradiation:
apoptosis, necrosis, autophagy, and mitotic catastrophe [88]. Regarding HNCs, it has been
noted that a single dose of 4 Gy administered to various HNC cell lines primarily induces
mitotic catastrophe and senescence [93].

Molecular pathways leading to apoptosis, necrosis, and autophagy following radia-
tion are already thoroughly synthesised in other reviews. Interestingly, and as a reminder,
mitotic catastrophe is not a distinct form of cell death but rather a cellular stress response
that can lead to various other cell death pathways [94,95]. Indeed, it occurs when cells fail
to complete proper mitosis [95] or enter mitosis without completing preceding phases [88].
Mitotic catastrophe may result in mitotic arrest, but not always, and cells may die during
mitosis, in the subsequent G1 phase, or exit mitosis and enter senescence [88]. Cell death
in mitotic catastrophe can also occur during interphase or metaphase following irradia-
tion, and cells may undergo multiple divisions before activating apoptosis or undergoing
necrosis [88]. After irradiation, mitotic catastrophe serves as a significant mechanism
of cell death. Indeed, X-ray-induced DNA damage disrupts the mitotic cycle, resulting
in cellular abnormalities, such as abnormal chromosome segregation and cell division,
leading to the formation of multinucleated giant cells and micronuclei [88,94,96]. The
fate of cells following DNA damage and mitotic failure depends on the activity of the
transcription factor p53. Functional p53 leads to the activation of apoptosis, causing cell
death in the subsequent G1 phase. Conversely, in the absence of functional p53, cells
continue to divide and accumulate chromosomal anomalies before dying [88]. Additionally,
p53 regulates cell cycle checkpoints. In the absence of p53, radiation fails to activate p21,
and the CDK2-cyclin A/E complex remains uninhibited. This complex plays a role in
centrosome duplication, contributing to the observed hyper-amplification of centrosomes
seen in mitotic catastrophe [96]. Notably, HNCs involve additional regulation of p53 in
relation to HPV infection, particularly in oropharyngeal cancer, where E6 induces complete
degradation of the transcription factor [97].

Other types of cell death have been described after radiotherapy. These include
parthanatos, pyroptosis, immunogenic cell death, and senescence [98], and also NETosis
and methuosis, which are parts of necrosis along with pyroptosis and ferroptosis [88].

3.2. Mechanisms of Ferroptosis Induction After Irradiation

Ferroptosis is considered a form of regulated necrosis and can also be triggered by
ionising radiation (Figure 3) [88]. In 2015, Ivanov et al. demonstrated that administering
iron-containing water before radiotherapy enhanced the efficacy of treatment in a rat glioma
model [99]. In 2019, Lang et al. revealed that radiotherapy and immunotherapy could
induce ferroptosis via the suppression of the subunit SLC7A11 of the Xc− transporter [100].
Their study demonstrated that radiotherapy can induce ferroptosis by increasing lipid
peroxidation both in vitro and in vivo. Treatment with a ferroptosis antagonist reduced
the effects of radiotherapy. Moreover, ferroptosis agonists were found to sensitise cancer
cells to radiotherapy, presenting a novel radiosensitisation strategy [100]. In the same
year, Shibata et al. used erastin to radiosensitise adenocarcinoma cells and observed
a radiosensitising effect in vitro as well as a decrease in GSH levels and GPX4 protein
expression. In vivo experiments showed that pre-treatment with erastin prior to radiation
resulted in a significant decrease in tumour volume 15 days after irradiation [101]. Lei et al.
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also demonstrated that X-ray radiation induced ferroptosis and cell death in different cell
lines, including A549, H460, and H1299, which are lung carcinoma models [102].
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Thus, several studies have reported that radiotherapy can induce ferroptosis, as
evidenced by various markers. Lipid peroxidation has been observed through C11-BODIPY
staining or by measuring the levels of specific ferroptosis markers, such as MDA or 4-HNE,
along with the observation of morphological alterations of mitochondria. Evidence of
ferroptosis induction was also demonstrated by the suppression of radiation effects using
iron chelators [94,102,103].

Five pathways have been identified, and these lead to ferroptosis following radiother-
apy, predominantly through lipid peroxidation or the suppression of SLC7A11 (Figure 3).
These pathways were mainly highlighted in two reviews [104,105].

• DNA damage induced by radiotherapy is recognised by ataxia–telangiectasia mutated
(ATM) kinase and associated proteins, implicating the ATM signalling pathway in
ferroptosis induction [88] via the inhibition of the SLC7A11 subunit [105]. ATM has
been postulated to induce ferroptosis by modulating iron metabolism in response to
DNA damage [106]. Activation of the cGAS/STING pathway by DNA abnormalities
can also lead to ferroptosis induction, as it can trigger autophagy via STING protein,
and this pathway has been shown to promote ferroptosis in specific contexts [105,107].

• Radiation enhances ROS production through water radiolysis, promoting the forma-
tion of PUFA radicals (PUFA•) that transform into lipid peroxyl radicals (PUFA-OO•),
ultimately resulting in lipid hydroperoxide formation (PUFA-OOH) [104], a key step
in ferroptosis.

• Radiotherapy upregulates the ACSL4 enzyme, which catalyses the conversion of
PUFAs into PUFA-CoA, which is then esterified via LPCAT3 (lysophosphatidylcholine
acyltransferase) [108]. ACSL4 knockout reduces PUFA-containing lipids and then
radiotherapy efficacy in vivo [100].

• Radiation exposure depletes GSH levels, reducing GPX4 activity and promoting lipid
peroxidation [103,104]. The combination of radiotherapy with ferroptosis inducers
synergises for GSH depletion [103], likely due to SLC7A11 inhibition, leading to
decreased cysteine levels and GSH synthesis [100].

https://www.biorender.com/
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• The activation of p53 by radiotherapy contributes to SLC7A11 suppression [109]
through two pathways: (1) activation of the ER stress response via the sensor protein
PERK, leading to p53 activation [105,110], and (2) p53 activation via the DNA damage
response signalling cascade [74,81,82,109,111]. Subsequently, p53 represses SLC7A11
transcription, reducing GSH levels and GPX4 activity [98]. It is important to note the
ambiguous role of p53 in ferroptosis. While p53 can influence various targets within
the ferroptosis pathway, its precise role as a tumour suppressor in this process remains
controversial. Although many studies suggest that p53 promotes ferroptosis, its impact
varies depending on contextual factors such as the specific cell lines under study, the
levels of stress factors, and inherent gene expression profiles. These variations lead to
differential signalling pathways upon p53 activation [111,112].

3.3. Limitations in Radiotherapy Treatment of HNCs

As stated in the introduction, radiotherapy is an essential part of the treatment of
HNCs. It may be used alone as an alternative to surgery in stage I and II diseases or
in combination with cisplatin, either as a radical treatment or after surgery for locally
advanced HNCs. Radiotherapy itself has undergone a revolution in the last thirty years
with the introduction of intensity-modulated radiotherapy (IMRT) in combination with
image-guided radiotherapy (IGRT), allowing for more precise targeting of tumours while
better sparing radiosensitive healthy tissues surrounding the tumours. Additionally, modi-
fications to radiotherapy treatment regimens, such as (I) hyperfractionation, which allows
healthy tissues to recover between treatment fractions, thereby limiting toxicity, and (II)
accelerated radiotherapy, designed to reduce cancer cell recovery, have contributed to
improved tumour control.

In the same period, concomitant treatment with cisplatin and irradiation became
a standard of care in non-operable locally advanced head and neck cancers (LAHNCs),
adding 6.5% to the five-year survival [113]. In the adjuvant setting, cisplatin is indicated
in the case of positive margins and capsule rupture [114–116]. However, despite the
advances in radiotherapy, the toxicity of this combination therapy remains high [117] and
the prognosis is reserved (5-year survival of 40–60%). Attempts to replace cisplatin with
a less toxic radiosensitiser have largely failed. In this context, the monoclonal anti-EGFR
antibody Cetuximab (a targeted therapy), the most promising of them all, was for a long
time a recommended alternative for cisplatin-unfit patients after an initial publication in
2006 [118] about its superiority over radiotherapy alone. However, it finally failed to show
an advantage over classical cisplatin in a randomised way [119,120]. Not only was patient
survival lower, but the toxicity profile was also less favourable. Finally, the very popular
and often-efficient immunotherapy has so far failed to show an added beneficial value in
non-metastatic HNCs [121,122].

Related to toxicity, efficacy is an even bigger problem, even in HPV-positive HNCs
known to have a better prognosis than the classical alcohol–tobacco-related HPV-negative
HNCs. Despite one of the highest doses used in the field of radiotherapy (i.e., 70 Gy), HNCs
most often recur within the high-dose area, due to intrinsic resistance and the hypoxic
nature of these cancers [123,124]. Duprez et al. showed the dose-limiting toxicity to be
mucosal ulcers, limiting the dose at 84 Gy [125,126].

The combination of high toxicity and suboptimal efficacy in current state-of-the-art
concomitant radiochemotherapy demands urgent research into alternative solutions. As
radiotherapy schemes appear to have reached their maximum tolerated doses and systemic
radiosensitisation remains largely dependent on the outdated yet toxic cisplatin, new
options are essential. In this context, we emphasise our contributions by focussing on the
radiosensitising potential of IONPs as a promising and novel approach. Our review reports



Pharmaceuticals 2025, 18, 325 15 of 38

and explores their ability to enhance radiotherapy efficacy while potentially minimising
toxicity, offering a significant advancement in the search for safer and more effective
radiosensitisation strategies.

Thus, radiotherapy remains a key treatment of HNCs, serving as a primary or combi-
nation therapy to improve patient outcomes. However, limitations due to toxicity, hypoxia-
induced radioresistance, and suboptimal efficacy underscore the need for innovative ra-
diosensitisation strategies to improve treatment while minimising adverse effects, by using
IONPs, for example.

4. Iron Oxide Nanoparticles (IONPs)
IONPs have emerged as a promising strategy to enhance the efficacy of radiotherapy

in cancers. Their unique properties, such as efficient radiation dose enhancement, targeted
delivery, and minimal toxicity, make them ideal candidates for improving tumour radiosen-
sitivity while reducing damage to surrounding healthy tissues. By exploiting their ability
to generate ROS and therefore amplify local radiation effects, IONPs could represent a
significant advancement in overcoming current limitations associated with radiotherapy.

4.1. Structural Descriptions of the IONPs

Among the nanomaterials studied for biomedical applications, IONPs have become
a keystone through the years due to their high surface–volume ratio, biocompatibility,
and magnetic properties [33]. These nano-objects are characterised by a magnetic core
ranging from 1 to 100 nm in diameter organised in a crystalline reverse-spinel structure.
Among the IONPs studied in a biomedical context, maghemite (γ-Fe2O3) and magnetite
(Fe3O4) appear to be the most frequently used. Both iron oxide phases are organised in a
face-centred cubic lattice structure. They differ, however, in the organisation of iron ions
and oxygen ions in the mesh. In the case of magnetite, the lattice is made up of 32 oxygen
anions and 24 iron cations, which are distributed between 8 tetrahedral and 16 octahedral
positions. In the case of maghemite, divalent iron ions are absent in the crystalline structure.
As a result, trivalent iron ions are distributed between the tetrahedral and octahedral sites,
implying a deficiency of iron ions in the octahedral sites. These structural differences can
be reflected in X-ray diffractograms (XRDs). Maghemite has two diffraction peaks (Miller
index = (210) and (211)), which are absent from the magnetite XRD (Figure 4).
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For both systems, the structural arrangement of iron ions and oxygen within the
crystal, in combination with their size/shape give the nanomaterial unique magnetic
properties (i.e., superparamagnetism and high magnetic susceptibility) [33]. Their magnetic
properties have been widely used for biomedical applications, such as contrast agents for
MRI [128], targeted magnetic delivery [129], induction of local magnetic hyperthermia
or magnetically induced cell lysis [130], and more recently, magnetic particle imaging
(MPI) [33]. In addition, their surface can be easily modified by stable organic coatings to
allow further functionalisation [131–133], increased colloidal stability [129,134,135], exogen
material delivery [133,135], or increased in vivo circulation time [136]. The latter point is of
the utmost importance, as several studies have shown that clearance from the bloodstream
and biodegradation of IONPs occur mainly by filtration in the kidneys or by capture in the
liver and spleen, despite many variations through the physicochemical properties of IONPs.
A longer circulation time is therefore associated with a greater probability of reaching the
area of interest [137].

Another example of IONP surface modification involves multimodal imaging applica-
tions. For example, Stanicki et al. demonstrated the possibility of using IONPs for in vivo
trimodal imaging (including MRI, fluorescence imaging, and multispectral optoacoustic
tomography (MSOT)) through the grafting of ZW-800 (a near-infrared fluorophore) to the
surface of IONPs [136]. Another example of multimodal imaging related to IONPs was
given by Xie et al. who designed a platform of human serum albumin-coated IONPs dually
labelled with (64)Cu-DOTA and Cy5.5 suitable for in vivo positron emission tomography
(PET)/fluorescence and MRI tri-modality imaging [138].

In addition to the few examples given below, many other remarkable studies have
been published in the literature concerning this very particular aspect of IONPs synthesis.
However, since the parameters affecting the size, shape, and composition of nanoparticles
(Figure 5) are closely interconnected and interdependent, it remains challenging to fully
comprehend the process or accurately predict how a specific parameter impacts the final
synthesised NPs.

In addition to the few examples given below, many other remarkable studies have
been published in the literature concerning this very particular aspect of IONPs synthesis.
However, since the parameters affecting the size, shape, and composition of nanoparti-
cles (NPs) are closely interconnected and interdependent, it remains challenging to fully
comprehend the process or accurately predict how a specific parameter impacts the final
synthesised NPs.

A complete review of this topic is out of the scope of this review. Nevertheless, it is cru-
cial to explore how these technological advancements translate into practical applications,
particularly in the medical field. Among the many areas of investigation, oncology stands
out as one of the most promising, especially in the treatment and diagnosis of complex
cancers such as those of the head and neck. These conditions, marked by their hetero-
geneity and therapeutic challenges, directly benefit from innovations involving IONPs.
In this chapter, we will delve into recent research highlighting the potential of IONPs
to revolutionise current approaches in early detection, targeted drug delivery, and new
therapies for HNCs. To this end, the following section will provide an overview of recent
research on such cancers involving the use of IONPs.
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the terms of the Creative Commons Attribution (CC BY-NC) license. Since the potential applications
of an IONP platform depend on its physicochemical properties (i.e., size, surface–volume ratio,
crystallinity, and shape) (Figure 5), which can be modified through the synthesis processes employed,
numerous synthesis strategies have been developed and optimised throughout the years. Each of
them has their advantages and their disadvantages, which are briefly summarised in Table 2.

Table 2. Overview of the advantages and limitations of the main IONPs synthesis strategies.

Method Advantages Disadvantages Shape References

Coprecipitation in aqueous
media (also known as

Massart’s method)

High yield
Direct production of

water-dispersible particles

Low temperature (below 100 ◦C)
Poor size control
Low crystallinity

Amorphous [13,136,140–144]

Polyol process

High yield
Direct production of

water-dispersible particles
High temperature

Poor size control
Medium crystallinity

Spheres
Amorphous [145]

Micro-emulsion strategy High size control
High crystallinity Low yield Spheres

Cubes [146–148]

Sol–gel method High size control
High crystallinity Low yield Spheres [149,150]
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Table 2. Cont.

Method Advantages Disadvantages Shape References

Thermo-decomposition High size control
High crystallinity Medium yield

Hexagons
Tetrahedrons
Octahedrons

Octapods
Concave cubes

Multiple branches

[151–154]

4.2. Application of Drug and Gene Delivery Strategies

Several studies focus on the possibility of using IONPs as vectors for drug delivery
due to their high surface–volume ratio. The major advantage of using such vectors is their
ability to potentially improve the poor pharmacokinetic properties of some drugs (poor
solubility, high systemic toxicity, non-specific delivery, and short circulating half-lives), by
binding these agents to IONPs [155] (Table 3). For example, cisplatin is one of the main
first-line treatments considered for various types of cancer, but its use is widely limited due
to numerous adverse events [156]. With a view to countering this limitation, Bejjanki et al.
studied the potential of cisplatin-loaded IONPs coated with folic acid [133]. This study
showed that such a formulation was able to induce higher ROS production compared to non-
vehicle cisplatin in a nasopharyngeal carcinoma cell line (HNE-1), with limited off-target
toxicity. Weng et al. have observed similar therapeutic outcomes following the evaluation of
IONPs modified with the transactivator of transcription-derived (TAT; GRKKRRQRRRPQ)
peptide and encapsulating cisplatin in HNE-1 and CNE-2 cell lines [157].

Table 3. Synoptic overview of the different platforms discussed in this chapter.

IONPs Structure Molecule Delivered Cancer Model Outcome References

Folic acid (FA)- and
intracellular aggregation

ability peptide-coated
IONPs

Cisplatin HNE-1 cells and HNE-1
cisplatin-resistant cells

Significant

• Reduction in half-maximal inhibitory
concentration (IC50) in both cell lines
compared to cisplatin alone;

• Increase in ROS generation;
• Increase in apoptosis rate.

[133]

TAT-PEG2000-coated IONPs Cisplatin
HNE-1 cisplatin-resistant

cells and CNE-2
cisplatin-resistant cells

Significant

• Reduction in half-maximal inhibitory
concentration (IC50) in both cell lines
compared to cisplatin alone;

• Improved cellular uptake compared
to non-peptide IONPs.

[157]

Polyacrylic-coated
mesoporous IONPs Bleomycin Cal-27 and CNE2 cell lines

Cal-27 xenograft mice

Significant

• Induction of apoptotic figures;
• Reduction in in vivo tumour

growth rate.

[158]

Polyethyleneimine-coated
IONPs

Tumour necrosis
factor-related

apoptosis-inducing
ligands

Tca83 cell line
Tca83 xenograft mice

Significant

• Induction of apoptotic
figures in vitro;

• Reduction in in vivo tumour
growth rate.

[159]

On a different note, Zhang et al. studied a new formulation of mesoporous IONPs
functionalised with bleomycin, a cytotoxic antibiotic commonly used in the context of
HNSCC treatment, on both in vitro and in vivo HNC models [158]. Their results indicated
a better accumulation of bleomycin in the pathological region when the drug is carried
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by IONPs compared to unbound bleomycin. The as-described system was also capable of
inhibiting the growth of tumours in vivo.

In addition to small drugs, IONPs have also been described as carriers for biological
molecules with therapeutic aims. For instance, Miao et al. described the use of IONPs as
gene transfer vectors for tumour necrosis factor-related apoptosis-inducing ligands in order
to induce strong apoptotic behaviour in a model of oral squamous cell carcinoma (OSCC)
in the presence of a magnetic field [159]. Alternatively, Jing et al. assessed the effect of
ribonucleic acid (miR-504)-loaded IONPs on a cell line derived from a squamous cell carci-
noma of the tongue of a 25-year-old patient (namely, the SCC-9 cell line) [160]. This study
showed that IONP-mediated transfection of miR-504 results in a loss of cyclin-dependent
kinase 6 and consequently inhibits oral cancer cell migration through modulation of the
ERK signalling pathway.

A global summary of these studies shows that IONPs can be considered as promising
nanotransporters in the fight against HNCs for various types of molecules including metal
chemotherapeutic complexes (i.e., cisplatin), cytotoxic organic molecules (i.e., bleomycin),
or apoptosis-inducing cytokine. On the one hand, numerous studies seem to show a
preferential accumulation of the active molecules in cancer cells when associated with
IONPs. This preferential accumulation has been described both in the presence and in the
absence of a guiding magnetic field.

On the other hand, the degradation products of IONPs seem in some cases to have a
synergistic effect with the action of the active molecules carried by IONPs, as described
in the work of Weng et al., in which the combined action of cisplatin and iron ions seems
to lead to a loss of resistance of cells to cisplatin [157]. It should be noted, however, that
relatively few studies to our knowledge have looked at the use of IONPs for drug delivery
in the context of HNC applications. This area could benefit from further study.

4.3. Targeting Cancer Cells with IONPs

Following the descriptions of the various strategies used by IONPs in the context of
HNCs, the effectiveness of these approaches remains linked to the accumulation of IONPs
within the pathological zone and not in healthy tissue. A simplistic view of the phenomena
leading to the accumulation of IONPs in the tumour is based on passive targeting mecha-
nisms resulting from the enhanced permeation and retention (EPR) effect [161]. This effect,
first theorised by Maeda in 1986 [162], relies on several features displayed in the tumour
zone, including highly permeable vasculature promoting the enhanced permeability of
particles and impaired lymphatic drainage promoting their enhanced retention. However,
this EPR effect has shown little relevance to human cancers in clinical studies compared
with preclinical studies on animal models [161]. Given the lack of effectiveness of the EPR
effect in clinical trials, there are little to no relevant reports on the use of IONPs in the
context of HNCs. Instead, different targeting strategies have been developed.

One that can be implemented to promote the accumulation of IONPs within the
tumour is based on the intratumoural injection of nanoparticles. Numerous studies
have shown that this type of injection produces greater intratumoural accumulation com-
pared to the intravenous injection of nanoparticles [163–166]. However, this strategy
can quickly be limited in its realisation, mainly by the tumour’s lack of accessibility for
intratumoural injection.

Consequently, the development of new strategies involving biological targeting has
been the subject of much interest. More specifically, targeting ligand (TL) grafting is a
strategy which is widely documented in the literature. TLs usually take the form of small
organic molecules [133], peptides [132,157,167], aptamers [168], or antibodies [130]. From a
mechanistic point of view, this strategy implies the introduction of the TL onto the surface
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of IONPs, and this TL exhibits a high affinity for molecules specifically exposed on the
surface of tumour cells. The interaction between these two molecules is then supposed to
promote the internalisation of targeted IONPs.

However, this goal can be widely limited by the heterogeneity and variations in
receptor expression across different tumour zones and at different tumour stages. To
illustrate this issue, several studies have shown that the expression of EGFR can be widely
variable over time or depending on the location of cancer cells within a tumour or whether
the tumour area is primary or metastatic [169–172]. In the light of these findings, the
future of TL-mediated delivery strategies for IONPs against cancer cells will require a more
detailed understanding of TL target expression variations in a cancer context.

In addition, ensuring stability in physiological conditions while retaining binding
affinity appears to be a critical point for efficient targeting against cancer cells. To this end,
researchers have explored various optimisation strategies including surface modifications
by organic polymers such as PEG for minimising protein corona formation and preventing
aggregation. These methods ensure that the targeting ligands retain their binding affinity
while operating in complex biological systems [173,174]. Also, optimisation of TL con-
jugation techniques, such as favouring the covalent binding of targeting ligands to the
nanoparticle surface over physical adsorption, could enhance stability, targeting speci-
ficity, and therapeutic efficacy, as well as ensure a stable attachment under physiological
conditions, reducing the risk of ligand detachment or loss of targeting functionality [174].

In addition to these considerations, the conjugation pattern (i.e., the number and the
degree of clusterisation) of a TL on a nano-object has also been shown to be a key factor in
an effective vectorisation strategy. Indeed, Fang et al. showed that 9 nm sized miniferritin
protein nanocages functionalised with 2 or 12 copies of RGD peptide showed better delivery
than similar nano-objects functionalised with 1 or 24 copies of RGD peptide [175]. This case
highlights the importance of both chemical and biological considerations when designing
an efficient vectorisation strategy.

In the light of a study proposed by Balk et al., who investigated the impact of an
external magnetic field (380 mT) on the internalisation of lauric acid- and human serum
albumin-coated IONPs in vitro in HNC cell lines, magnetic-beam-mediated vectorisation
appears as an alternative promising guidance strategy [129]. Specifically, Balk et al. showed
that the application of an external magnetic field significantly increased the quantity of
IONPs internalised in the different cell lines [129]. In the context of this study, magnetic
guidance to the pathological area could be considered a promising strategy to exploit the
magnetic properties of IONPs for targeted delivery.

4.4. Induction of Ferroptosis by IONPs and Other Nanoparticles

The previous parts of this work have already extensively described the known mech-
anisms responsible for ferroptosis phenomena. Given the close relationship between
intracellular iron accumulation and ferroptosis, numerous studies have considered the
possibility of using IONPs to induce ferroptosis in cancer cells [176–180].

As an example, the work of Fernández-Acosta et al. exposed multiple cancer cell
lines to gallic acid- and polyacrylic acid-functionalised IONPs, resulting in the induction
of cell death [179]. However, this phenomenon was reduced when cells were previously
exposed to a ferroptosis inhibitor. Similar results were revealed by Lomphithak’s team
using PEGylated IONPs [177].

By creating a hybrid nanoparticle with a biocompatible oleic acid-coated Fe3O4 core,
PSN peptide, oxaliplatin, and Prominin2siRNA, Wang et al. presented a trifunctional IONP
platform [181]. More specifically, siProminin2 acts as an inhibitor of the exosomal process
while the PSN peptide acts as a targeting vector against tumour cells. Additionally, the iron
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oxide core was able to induce both a ferroptotic process and immunogenic cell death. It
appeared that these effects were significantly modulated through the action of oxaliplatin
on a murine orthotopic breast cancer model.

However, despite all the reported examples of the use of IONPs for ferroptosis induc-
tion strategies, there is a large body of research on the use of non-iron oxide nanoparticles
for ferroptosis induction in cancer cells. A good example is reported by Zhang et al., who
studied the possibility of using nanoparticles [182] composed of human serum albumin
core onto which ferric porphyrin, celecoxib, and roscovitine were grafted. The advantage
of this platform is its ability to form a multimodal nanoparticle combining multiple roles.
Indeed, the ferric porphyrin acts as an iron carrier, the content of which is involved in
the Fenton reaction to produce ROS. Secondly, Celecoxib reduces inflammation-associated
immunosuppression by inhibiting the inflammation-related COX-2/PGE2 pathway, which
is activated by ferroptosis, whereas roscovitine suppresses the Cdk5 pathway to stop IFNγ-
dependent PD-L1 gene transcription and minimise adaptive immune resistance through
the genetic blockade effect. Finally, human serum albumin acted as a central anchor for the
formation of the nanostructure through hydrophobic interaction but was also involved in
the favoured accumulation of the nanostructure in the tumour due to the overexpression of
albumin-binding protein on the membrane of cancer cells. The as-prepared formulation
was shown to induce ferroptotic damage and immune responses that act in a synergistic
way against the survival of cancer cells. Moreover, a GPX4 pathway disruption was noticed
and led to a cascade amplification of ferroptotic cell mortality and ferroptosis-induced
immunotherapeutic effectiveness. Specifically, these nanoparticles effectively addressed the
intrinsic drawbacks of ferroptosis in immunotherapy by removing inflammation-associated
immunodeficiency and reversing interferon-γ adaptive immune resistance to maximise
the effectiveness of immunotherapy due to the combination of roscovitine and celecoxib
in the nanostructure. Another study conducted by Han et al. focussed on the synthesis
and evaluation of a pyrophosphate core nanoconstruct in order to intracellularly deliver a
cholesterol-like derivative of dihydroartemisinin and pyropheophorbide–iron [183]. This
study concluded that the intracellular delivery of these two components was able to in-
crease ROS production in tumour cells, favour the immunogenic response against the
tumour, and inhibit tumour growth in a murine model of colorectal cancer.

In another study, Li et al. showed that it was possible to induce ferroptotic behaviour
without modulations on intra- or extracellular iron but directly through modulation of the
lipid peroxidation process. They described a novel nanoplatform made of glycyrrhetinic
acid (a pentacyclic triterpenoid) able to inhibit the expression of glutathione-dependent
peroxidases 4 (GPX4) and induce a ferroptotic process in leukaemia and colorectal cancer
without modulation of the intracellular iron pool [184].

Additionally, Song et al. have developed intracellular-acid-activable dynamic nanopar-
ticles for the tumour-targeted delivery of RSL-3, a ferroptosis inducer acting as a GPX4
inhibitor [185]. The nanoparticles were engineered through an assembly of poly (ethylene
glycol)-block-poly(2-(diisopropylamino)ethyl methacrylate) diblock copolymers and acid-
liable phenylboronate esters, which can sequestrate RSL-3 inside the hydrophobic core
via π–π stacking interactions. An in vivo evaluation of this model led to the induction of
ferroptotic processes and increased immunogenicity against the tumour.

Hence, IONPs possess unique structural and functional properties, such as their high
surface–volume ratio, biocompatibility, and magnetic characteristics, making them useful
platforms for biomedical applications, particularly in oncology. Their ability to enhance
drug delivery, facilitate targeted therapies, and induce ferroptosis highlights their potential
to revolutionise treatment strategies for complex cancers like HNCs.
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5. Combining Radiotherapy and IONPs for Sensitisation
Through Ferroptosis

As seen in the previous section, IONPs hold great promises in the field of cancer
therapy. In this new section, we would like to dive into the combination of metallic
nanoparticles with radiotherapy. Indeed, such a strategy has emerged as a promising com-
bination in oncology, particularly for exploiting the radiosensitising effects of nanoparticles.
As explained in the comprehensive review of S. Penninckx et al., metallic nanoparticles
exhibit a dual mechanism for enhancing radiotherapy outcomes. Firstly, they amplify
radiation effects by increasing the deposited dose through the emission of secondary X-
rays or Auger electrons upon radiation exposure. Secondly, metallic nanoparticles exert
radiosensitising effects by modulating the ROS balance within cells. This modulation
occurs through two key mechanisms: (1) the promotion of ROS production via water
radiolysis and (2) the suppression of antioxidant defences through the inhibition of various
antioxidant enzymes [186,187].

More recently, Jordan Da Silva et al. showed another pathway by which metal-
lic nanoparticles can execute their activities [188]. An investigation of hafnium oxide-
containing nanoparticles, symbolised by NBTXR3, has unveiled novel insights into their
radiosensitising properties. Mechanistic studies have revealed that the combination of
radiotherapy and NBTXR3 caused an increase in lysosomal membrane permeabilisation
where there was none observed in radiotherapy alone (Table 4). In addition, the combina-
tion induced a significant increase in lipid peroxidation and then ferroptosis compared to
radiotherapy alone. The authors suggested that those two phenomena might explain the
immunogenic cell death observed with the combination and highlighted that radiotherapy
combined with NBTXR3 acted on multiple pathways and not only enhanced the effects of ra-
diotherapy. Clinical trials using NBTXR3 for locally advanced soft tissue sarcoma and head
and neck squamous cell carcinoma have already demonstrated their efficacy in increasing
radiotherapy outcomes and presenting a good safety profile, respectively (NCT02379845,
https://clinicaltrials.gov/, accessed on 2 September 2024). It is important to note that the
effects of combining radiotherapy and metallic nanoparticles, including IONPs, are also
partially explained by the effects on the microenvironment. Indeed, metallic nanoparticles
can switch the phenotype of M2 (protumoural) macrophages to M1 (antitumoural) as well
as promote immune cell recruitment at the tumour site [189].

Table 4. Effects of metallic nanoparticles combined with radiotherapy. This table presents a non-
exhaustive list of cancer therapies using metal-based nanoparticles (NPs) and the effects induced by
their combination with radiotherapy (RT).

Type of Metal Cancer Model Effects of the Combination of NPs and
RT Reference

Hafnium oxide

Glioblastoma
Colorectal cancer

Acute monocytic leukaemia
Breast cancer

Increase in lysosomal membrane
permeabilisation

Increase in lipid peroxidation
Increase in ferroptosis

[188]

Gadolinium Triple-negative breast cancer
Inhibition of the pathway

NRF2-GSH-GPX4 [190]

Increase in ferroptosis

Iron oxide Lung carcinoma Decrease in survival fraction
Decrease in TrxR activity [13]

Gold
Lung carcinoma Decrease in survival fraction [191,192]

Decrease in TrxR activity

Iron oxide nanocluster Lung cancer
Increase in lipid peroxidation and ROS
Increase in ferroptosis and apoptosis

Significant decrease in tumour volume
[193]

https://clinicaltrials.gov/
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Table 4. Cont.

Type of Metal Cancer Model Effects of the Combination of NPs and
RT Reference

Hyaluronic acid-based
nanoparticles

with iron

Lung carcinoma
Melanoma

Increase in DNA damage
Increase in the level of ROS

Increase in cell death
[194]

Fe(III)-polydopamine core and
platinum shell, covered with

hyaluronic acid
Breast cancer

Decrease in viability
Increase in ROS

Depletion in GSH in the presence of light
Decrease in tumour volume in vivo

[195]

Nanocomplexes (ferrous oxide or
copper oxide) Glioma stem cell Increase in ferroptosis [196]

Gadolinium nanoparticles are also being studied for their potential in sensitising
tumours to radiotherapy and inducing ferroptosis. These nanoparticles are currently in
clinical trials for phase I and/or phase II studies in combination with radiotherapy for
various cancers including brain metastases. Hao Sun and Hui Cai et al. investigated
their effects in models of triple-negative breast cancers. They showed that gadolinium-
based nanoparticles and radiotherapy were able to induce more ferroptosis than the other
group tested. These effects were characterised by alterations in mitochondrial morphology,
increased lipid peroxidation, and elevated levels of 4-hydroxynonenal (4-HNE), the peroxi-
dation product. Moreover, they highlighted an inhibition of the pathway NRF2-GSH-GPX4
after irradiation combined with nanoparticles and it could constitute the mechanism for
radiosensitisation [190].

IONPs have also exhibited radiosensitising properties in a model of lung carcinoma,
with exposure 24 and 48 h before irradiation, employing two distinct IONP coatings.
Interestingly, these effects appeared unrelated to the iron content after IONP incubation.
Ternad et al. showed a decrease in the activity of the thioredoxin reductase enzyme with
both formulations of IONPs [13]. Thioredoxin reductase plays a pivotal role in cellular redox
homeostasis by catalysing the reduction in thioredoxin, a key regulator of cellular processes
involved in oxidative stress response and cell survival. Consistent with previous findings
by Penninckx et al., which highlighted the ability of gold nanoparticles to inhibit the activity
of this enzyme and contribute to the radiosensitising effect of gold nanoparticles [191,192],
it was further elucidated that iron ions themselves can modulate the activity of thioredoxin
reductase through the oxidation of critical groups within its active site, such as thiol and
selenol groups [13].

In 2022, Yingbo Li and Jie Yang et al. investigated the effects of iron oxide nanoclusters
(i.e., nanoplatforms composed of multiple magnetic cores resulting from a controlled
aggregation), sensitive to pH for iron release, in a model of lung cancer via pulmonary
delivery. They observed an increase in apoptosis and ferroptosis induction with the
combination of nanoparticles and radiotherapy in vitro, along with a decrease in tumour
growth in vivo [193].

Furthermore, Chaewon Bae et al. developed a nanoparticle model based on iron
and hyaluronic acid, which was demonstrated to induce ferroptosis [194]. This nanopar-
ticle model was subsequently utilised in combination with radiotherapy in both in vitro
and in vivo studies by the same research group [197]. Their findings revealed that the
combination treatment enhanced cancer cell killing while simultaneously increasing lipid
droplet formation within exposed cells. This observation suggests an additional pathway
linking ferroptosis induction to radiosensitisation, with lipid droplets acting as facilitators
of ferroptosis under external stressors (such as iron or radiotherapy). This mechanism
drives cancer cell death through ferroptotic pathways. On the other hand, a recent study
found that lipid droplet formation following cell cycle arrest could contribute to resistance
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to ferroptosis [198]. Specifically, cancer cells that exhibited resistance to chemotherapy
(5-FU) or radiation and displayed a slow-cycling phenotype showed increased lipid droplet
accumulation, which correlated with ferroptosis resistance. This resistance is likely due to
the sequestration of PUFAs within lipid droplets, thereby preventing them from participat-
ing in the lipid peroxidation necessary to trigger ferroptosis. These findings highlight the
complexity of ferroptosis pathways in the context of treatment resistance and underscore
the importance of exploring ferroptosis mechanisms to inform novel therapeutic strategies
involving ferroptosis inducers. Interestingly, while numerous studies have shown that
ferroptosis inducers can enhance radiotherapy effects, the effects of radiotherapy itself often
involve cell cycle arrest, which can suppress ferroptosis. Dixon and Olzmann emphasised
that the role of lipid droplets in ferroptosis sensitivity is context-dependent, particularly
with resistance mechanisms and PUFA sequestration [43].

Ying-Ke Hou and Zi-Jian Zhang et al. studied another very ingenious iron-containing
nanoplatform for the treatment of breast cancer. The core of the nanoplatform is composed
of Fe3+ and polydopamine, and the shell is composed of platinum, which is then covered
by hyaluronic acid. Each component has an anti-cancer effect. The ferric iron present can
deplete GSH and promote hydroxyl radical production, both of which promote ferroptosis.
The combination with X-rays induced a decrease in viability as well as an increase in ROS
levels in vitro and a significant decrease in tumour volume in vivo. The combination also
showed a significant decrease in GSH in the presence of light (photothermal therapy) [195].

Another recent study investigated metal oxide nanocomplexes (ferrous oxide or copper
oxide) coupled with diethyldithiocarbamate (DE) in models of human and mouse stem cell
glioblastoma and their radiotherapy-resistant counterparts. Ferrous oxide nanoparticles
gave the best results for growth inhibition in both sensitive and radiotherapy-resistant cells
compared to temozolomide (chemotherapy) and copper oxide nanocomplexes. The ferrous
oxide nanoplatform was also able to sensitise the different cell lines tested to temozolomide
and to radiotherapy, at different concentrations regarding the cell line tested. This is
explained by the inhibition of ALDH1A1 by DE and the induction of ferroptosis promoted
by DE and ferrous ions [196].

Lastly, Haonan Tang et al. studied a nanoplatform composed of superparamagnetic
IONPs, erastin, and polyethylene glycol in the context of nasopharyngeal cancer. This
platform aims to be a theranostic tool by helping in the monitoring of the disease through
its MRI contrast agent property and a therapeutic tool by inducing ferroptosis. Indeed, the
platform showed better antitumour activity in vitro and in vivo. Plus, the platform seems
to have increased the solubility of erastin [199]. The study did not evaluate the effects of
the combination with radiotherapy but showed an interesting model by directly coupling a
strong ferroptosis inducer to the nanoparticle model.

The induction of ferroptosis requires several factors, such as the presence of elevated
ferrous iron, ROS imbalance, and lipid peroxidation. Regarding HNCs, a study showed
an increase in ROS generation when cells were exposed to IONPs [133]. Another group
also showed the radiosensitising potential of IONPs on HNCs [134]. Moreover, in the
“Ferroptosis” section, we discussed several studies that targeted ROS production directly
or antioxidant defences to induce ferroptosis in HNC cells, and we also discussed the
pathways by which radiotherapy can induce ferroptosis.

Based on these interesting results, we hypothesise that the use of IONPs combined
with radiotherapy in HNC cells can increase radiotherapy outcomes, notably through the
elevated ROS generation and the induction of ferroptosis. To date, there is still a lack of
studies investigating this specific topic. However, the available data lead us to think that
IONPs, through their iron content, could generate elevated intracellular ferrous iron and
impact antioxidant defences such as the TrxR enzyme. This approach is specifically interest-
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ing in HNCs as targets from the ferroptotic pathways are associated with a poor prognosis,
which make them vulnerable to this treatment. The subsequent ROS imbalance, combined
with radiotherapy effects, could lead to increased cell death and increased ferroptosis.

Given the pressing need for novel radiosensitising agents in the management of
HNCs, coupled with the potential benefits of ferroptosis induction, exploring this avenue
holds significant promise. Locoregional relapse within five years post-treatment affects
approximately one-third of patients, posing substantial morbidity and mortality risks due
to potential disability and pain [200]. As described in a previous section, radioresistance
in HNCs can arise from different factors such as an increased ability of cancer cells to
repair DNA damage [200] as well as a higher density of cancer stem cells (CSCs) [201].
Interestingly, inducing ferroptosis could be a new way of targeting these CSCs and reverse
radioresistance. Indeed, CSCs seem to be more sensitive to ferroptosis than to other types
of cell death and rely on iron metabolism to support their function and proliferation [202].

Several studies have developed nanoparticle models capable of specifically targeting
CSCs and rendering them vulnerable through the induction of ferroptosis. For instance,
Zhao et al. conjugated salinomycin to gold nanoparticles coated with PEG and demon-
strated ferroptosis induction, which significantly enhanced the sensitivity of breast cancer
stem cells to this formulation [203]. Another study investigated the therapeutic effects of
superparamagnetic iron oxide nanoparticles (SPIONs) coupled with atranorin, a secondary
metabolite produced by certain lichens, on CD44+ gastric CSCs. These nanomaterials
effectively sensitised CSCs by modulating several ferroptosis-related targets, such as Xc−

transporters and GPX4. This induction of ferroptosis resulted in decreased viability and
translational activity of CSCs [204]. Recently, nanocomplexes of diethyldithiocarbamate
(DE), an inhibitor of aldehyde dehydrogenase 1A1 (ALDH1A1), conjugated with ferrous
oxide nanoparticles (FeO NPs), demonstrated remarkable efficacy by inhibiting the growth,
chemoresistance, and radioresistance of glioblastoma CSCs. These potent anti-CSC ef-
fects were primarily attributed to the downregulation of anti-ferroptosis factors, such
as ALDH1A1 activity, GSH levels, and GPX4 activity, thereby enhancing DE-FeO NP-
induced ferroptosis [196]. Additionally, Chittineedi et al. highlighted the critical role of
ferroptosis in targeting breast CSCs using gold nanoparticles conjugated with polyherbal
formulations [205]. Another innovative approach targeting CSC clusters in triple-negative
breast cancers involved EGFR receptor blockade to sensitise CSCs to ferroptosis. Re-
searchers developed ferritin-based nanoparticles loaded with lapatinib, an EGFR inhibitor,
and pseudolaric acid B (PAB), a ferroptosis inducer. This strategy significantly reduced
spheroid formation and increased ROS production via ferroptosis [206]. Consequently,
numerous emerging approaches involving customizable and versatile nano-objects have
demonstrated direct effects on ferroptosis induction. These promising anti-cancer therapies
targeting CSCs warrant further investigation to enhance their efficacy, tumour retention,
and specificity in future applications.

Moreover, as described above, strategies developed to induce ferroptosis in HNCs
showed promising outcomes in countering chemo- and radioresistance. More recently,
Yuting Chen et al. demonstrated ferroptosis induction after irradiation in models of na-
sopharyngeal carcinomas and showed the induction of protein glutathione S-transferase
mu 3 (GSTM3) expression after irradiation [207]. Interestingly, GSTM3 was found to confer
radiosensitivity to nasopharyngeal carcinoma cells in vitro by inhibiting the expression
of GPX4 and influencing the production of PUFAs by indirectly increasing polyunsatu-
rated fatty acid production via fatty acid synthase (FASN) enzyme stability. The authors
suggest that these pathways lead to ferroptosis induction and radiosensitivity in nasopha-
ryngeal carcinomas. Notably, FASN enzyme production has been implicated in inducing
radioresistance in nasopharyngeal carcinomas in previous studies, further highlighting
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the intricate interplay between ferroptosis regulation and radioresistance mechanisms in
HNCs [208,209].

Therefore, combining metallic nanoparticles like IONPs with radiotherapy represents
a promising strategy for enhancing cancer treatment by exploiting their radiosensitising ef-
fects and their ability to induce ferroptosis. This dual mechanism offers potential pathways
to overcome radioresistance, target cancer stem cells, and improve therapeutic outcomes,
warranting further investigation into their clinical application.

6. Perspectives
The development of advanced nanoparticle systems and ferroptosis-inducing strate-

gies offers promising avenues for improving cancer therapy, particularly in overcoming
treatment resistance and enhancing radiosensitivity. However, translating these findings
into clinical practice remains a challenge, requiring further validation through advanced
in vivo models such as organoids and patient-derived xenografts (PDXs).

Despite the promising advances mentioned above and the progress in nanoparticle
system design, further improvements are necessary to bridge the gap between in vitro
findings and the integration of these models into clinical practice. The increasing adoption
of organoid models and PDXs enhances the relevance of these nano-objects as anti-cancer
therapeutic tools. Indeed, using various sophisticated formulations, several studies have
successfully translated and validated their ferroptosis-inducing effects in PDX mouse
models of different cancers. Tumour tissues from treated PDX models have notably shown
reduced GPX4 expression [210,211].

Similarly, the use of patient-derived organoids and xenograft models has confirmed
the role of the SLC7A9 transporter in gastric cancer progression through its inhibitory effect
on ferroptosis. Knockdown of SLC7A9 in these in vivo models demonstrated a stronger
induction of ferroptosis by erastin compared to the control groups. Likewise, a study on
mucosal melanoma overcame resistance mechanisms to ferroptosis and showed tumour
growth inhibition by combining EZH2 inhibition with erastin, a ferroptosis inducer [212].

In the future, it will be essential to continue integrating advanced models, such as
patient-derived organoids and PDXs, to validate hypotheses through proof-of-concept stud-
ies. This approach holds great promise for accelerating the translation of these innovative
treatments into clinical trials.

Besides the progress of new experimental models, innovative nano-objects are also
being developed to improve cancer treatment. A recent study proposed a nanocomposite
combining metal–organic frameworks (MOFs) with magnetic nanoparticles to enhance drug
delivery for cancer treatment. MOFs, known for their high surface area, tuneable pore size,
and biocompatibility, are surface-modified with polymers to improve stability, solubility,
and targeting capabilities, reducing toxicity. When combined with magnetic nanoparticles
like manganese ferrite (MnFe2O4), the nanocomposite leverages ROS generation and
hyperthermia for tumour destruction, improving drug delivery in cancer therapy [213].
Also, in this context, Tiwari et al. reviewed the growing interest in single- and dual-atom
catalysts, also known as nanozymes, which exhibit superior catalytic activity compared
to conventional nanoparticles [214]. These nanozymes, mimicking natural enzymes, are
particularly valuable in cancer therapy due to their ability to generate ROS and induce
ferroptosis. Iron-based nanozymes, such as FeN3P, show promising potential in tumour
suppression, offering synergistic effects when combined with radiotherapy, along with
additional benefits in modulating immune responses and reducing inflammation.

Another promising way of radiosensitising cancer cells specifically is by using targeted
radionuclide therapy (TRT). Unlike external beam radiotherapy, TRT offers the advantage
of specifically targeting affected organs and delivering radiation directly from within the
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body. TRT employs a vector designed to selectively bind to cancerous cells. This vector is
coupled with a radionuclide molecule, which emits radiation through its decay, utilising
α particles, β particles, or Auger electrons [215]. While TRT shows significant potential,
the integration of nanomaterials introduces challenges, such as increased uptake by the
liver and spleen, except when using the intratumoural route. Although studies have
successfully achieved high radionuclide coupling efficiencies, the comprehensive review
by Reilly et al. highlights a research gap: most studies emphasise imaging properties
rather than the radiosensitising effects of such nanocomplexes [216]. However, there are
still some examples cited. It appears that 1.85 MBq 90Y-IONPs (>97% labelling efficiency)
injected intratumourally successfully inhibited tumour growth; it was also observed when
combined with hyperthermia in models of colon carcinoma and mammary carcinoma [216].
Future research should then focus on how IONPs coupled with targeted radionuclide could
synergise for radiosensitising cancer cells. Such efforts would provide deeper insights into
the intersection of ferroptosis, nanotechnology, and TRT, ultimately paving the way for
more effective and targeted therapies.

Consequently, despite the promising advances and potential of metal-based nanopar-
ticles and ferroptosis-inducing strategies, further research is required to bridge the gap
between in vitro findings and clinical application. The integration of advanced models
such as organoids and PDXs is proving pivotal in validating these innovative approaches,
with encouraging evidence supporting their role in targeting ferroptosis pathways and
enhancing radiosensitivity.

7. Concluding Remarks
The integration of nanotechnology has demonstrated significant advancements, no-

tably through the application of metallic nanoparticles, including IONPs. These nanoparti-
cles exhibit several properties, such as superparamagnetism, biocompatibility, and modifi-
able surfaces, making them well suited for various biomedical applications, including MRI
contrast enhancement, drug and gene delivery, and techniques like magnetic hyperthermia
and magnetic particle imaging.

One of the main applications of IONPs is drug delivery. Their unique properties
enhance drug bioavailability, improve targeting precision, and reduce systemic toxicity,
thus providing a substantial therapeutic advantage over traditional treatments like cisplatin
alone. The functionalisation of IONPs with specific ligands facilitates targeted delivery
and improves their accumulation in tumour tissues, leading to more effective treatment
outcomes with minimised adverse events.

Moreover, the induction of ferroptosis via IONPs offers a novel therapeutic strategy for
overcoming radio- and chemoresistance. Ferroptosis, an iron-dependent form of regulated
cell death, has shown potential in selectively targeting CSCs, which often evades conven-
tional therapies. By inducing ferroptosis, IONPs may render cancer cells more susceptible
to radiotherapy, thus enhancing overall treatment efficacy.

The combination of IONPs with radiotherapy has also shown promise as a means of
improving therapeutic effects. Research indicates that IONPs can act as radiosensitisers by
amplifying radiation effects through increased production of reactive oxygen species (ROS),
lipid peroxidation, and modulation of the immune response. This latter capability may
shift the tumour microenvironment toward a more pro-immunogenic state, contributing
to improved treatment outcomes. Also, their ability to address critical challenges, such
as radiotherapy resistance, underscores their potential in developing future therapeutic
strategies. However, ongoing research and clinical trials are essential for further validating
these approaches and refining their application in personalised medicine.
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Despite the potential of ferroptosis, challenges remain in its characterisation, particu-
larly concerning the role of iron in lipid peroxidation and the involvement of organelles like
mitochondria. Comprehensive preclinical models are needed to elucidate the biochemical
pathways and cellular responses associated with ferroptosis, especially in conjunction
with radiotherapy. Key areas of ongoing research include understanding mitochondrial
contributions to ferroptosis and identifying reliable biomarkers and optimal conditions for
inducing this form of cell death in resistant cancers.

HNCs share many similarities with other types of cancer, yet they also possess distinct
features that set them apart. Like all cancers, HNCs are influenced by the 14 specific
hallmarks of cancer. The first six, described in 2000 and the most well known, include a
lack of responsiveness to suppressive signals and sustained proliferative signalling, ability
to evade apoptosis and replicative immortality, as well as angiogenesis, invasion, and
metastasis. HNCs, like many other malignancies, arise due to common carcinogens, notably
alcohol and tobacco consumption, which also contribute to cancers of the oesophagus,
lungs, breast, and liver. Treatment approaches including surgery, chemotherapy, and
radiotherapy are similar across HNCs and different other cancer types. Various signalling
pathways play a role in cancer progression, and ferroptosis has recently emerged as a
potential vulnerability. This unique form of cell death offers a novel therapeutic target that
may help overcome treatment resistance.

However, what makes HNCs particularly challenging is their anatomical complexity.
The affected regions encompass critical structures of the respiratory and digestive systems,
as well as the vocal cords, making surgical interventions highly delicate and often leading
to severe comorbidities, such as impaired speech, swallowing, or breathing. Furthermore,
HNC patients frequently face high recurrence rates due to the continuous exposure of
these areas to carcinogens. These unique challenges underscore the need for specialised
treatment strategies that balance oncologic control with preserving function and quality
of life.

While IONPs represent a promising avenue for radiosensitisation through ferropto-
sis induction in several cancer types, additional work remains to optimise their clinical
applications, particularly for HNCs. Issues such as nanoparticle retention, circulation
time, and biodistribution must be addressed. Nevertheless, nowadays, the synergistic
approach of combining IONPs with radiotherapy through the induction of ferroptosis
presents an exciting opportunity to enhance treatment outcomes for HNCs, potentially
reducing toxicity while effectively targeting resistant cancer cells.
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