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Abstract: Nowadays, Artificial Intelligence (AI) has revolutionized many fields and the
medical field is no exception. Thanks to technological advancements and the emergence of
Deep Learning (DL) techniques AI has brought new possibilities and significant improve-
ments to medical practice. Despite the excellent results of DL models in terms of accuracy
and performance, they remain black boxes as they do not provide meaningful insights
into their internal functioning. This is where the field of Explainable AI (XAI) comes in,
aiming to provide insights into the underlying workings of these black box models. In this
present paper the visual explainability of deep models on chest radiography images are ad-
dressed. This research uses two datasets, the first on COVID-19, viral pneumonia, normality
(healthy patients) and the second on pulmonary opacities. Initially the pretrained CNN
models (VGG16, VGG19, ResNet50, MobileNetV2, Mixnet and EfficientNetB7) are used
to classify chest radiography images. Then, the visual explainability methods (GradCAM,
LIME, Vanilla Gradient, Gradient Integrated Gradient and SmoothGrad) are performed
to understand and explain the decisions made by these models. The obtained results
show that MobileNetV2 and VGG16 are the best models for the first and second datasets,
respectively. As for the explainability methods, the results were subjected to doctors and
were validated by calculating the mean opinion score. The doctors deemed GradCAM,
LIME and Vanilla Gradient as the most effective methods, providing understandable and
accurate explanations.

Keywords: deep learning; explainability; XAI; GradCAM; lime; visual explainability;
medical images

1. Introduction
Recently the emergence of artificial intelligence and the advances of the digital revolu-

tion have considerably transformed various sectors, including healthcare. In the medical
field, the use of deep learning, in particular convolutional neural networks (CNNs), has
opened up new perspectives in the classification of medical images, such as chest X-rays.
These technological advances have resulted in impressive classification performances, rival-
ing even those of human experts. However, one of the major challenges associated with the
use of these deep learning models is their opacity and lack of explainability. The decisions
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made by these models often remain difficult to understand, which limits their adoption in
critical fields such as medicine.

The need to understand and explain the decisions made by deep learning models
in the medical field has given rise to a new field of research called “Explainability of
Artificial Intelligence” (XAI). The main aim of XAI is to provide understandable and
interpretable explanations of the results obtained by deep learning models, enabling doctors
and healthcare professionals to understand the reasons behind these decisions. The central
problem of this research is therefore: How can the results obtained by deep learning models
applied to the classification of chest X-rays be explained in a clear and comprehensible
way? How can the decisions made by these models be made transparent and justifiable
to physicians? To address this issue, particular attention is paid to visual explainability
methods. These methods aim to identify and highlight regions of interest in an image that
have been decisive for the classification performed by deep learning models. By providing
a clear visualization of the influential areas, these methods enable physicians to understand
the underlying reasons for the model’s decision and verify its validity.

The main objective of this research is to explore visual explainability methods in the
context of chest X-ray classification using deep learning models. Other sub-objectives
include the following:

• Classify chest X-ray images using deep learning models, specifically convolutional
neural networks (CNNs).

• Apply deep learning methods to two different datasets and analyze the results obtained.
• Compare the performance of the different explainability methods used.
• Highlight the importance of explainability in the medical field.

This paper is organized as follows. Section 2 describes the related work. Section 3
defines the proposed model. Section 4 presents some results to evaluate the proposed
approach, and Section 5 is devoted to discussion. Finally, the last section concludes this
paper and highlights some improvements.

2. Related Work
This section describes recent works on XAI. Authors [1] discuss the need to develop

automatic COVID-19 detection systems to ease the workload of healthcare professionals in
hospitals. COVID-19 is an epidemic that has affected almost every country in the world,
causing enormous health, financial and emotional devastation, as well as the collapse
of healthcare systems in some countries. Diagnosis of COVID-19, non-COVID-19 viral
pneumonia and other lung opacities can be difficult on radiological images. The authors
therefore use artificial intelligence to develop an automated detection system for COVID-19
from normal chest X-ray images. Using transfer learning, the authors ran three pre-trained
models (Xception, VGG19 and ResNet50) on a reference dataset of 21,165 images. They first
formulated the COVID-19 detection problem as a binary classification problem to classify
COVID-19 against normal radiographic images. The results showed an accuracy of 97.5%,
97.5% and 93.3% for Xception, VGG19 and ResNet50, respectively. Next, they developed a
multiclass classification model to differentiate COVID-19 from normal radiographic images,
lung opacities and non-COVID-19 viral pneumonia. Results showed an accuracy of 75% for
ResNet50, 92% for VGG19 and 93% for Xception. Although the performance of Xception
and VGG19 were identical, Xception proved more effective with its higher precision, recall
and F-1 scores. In addition, the authors employed GradCAM as an explainable AI on each
model used, adding interpretability to the study. The results showed that Xception is more
accurate at indicating the actual features that are responsible for a model’s predictions.
This addition of explainable AI can greatly help healthcare professionals by enabling them
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to visualize how a model makes its decision and not have to blindly trust the machine
learning models developed.

Paper [2] describes the use of machine learning for the detection of COVID-19 patients
from CT scans and chest X-ray images. Authors used several pre-trained models to achieve
this goal, including MobileNetV2, VGG16, InceptionV3, InceptionResNetV2, ResNet50,
Xception, EfficientNetB0, EfficientNetB2 and EfficientNetB4. They created a dataset of
2753 CT scan and chest X-ray images from COVID-19 and healthy patients. They used
the data augmentation technique to increase the size of the dataset and improve model
performance. The results showed that the MobileNetV2-based model performed best in
terms of precision (97.69%), recall (98.97%), F1 score (97.06%) and ROC curve (0.9926). The
VGG16-based model also performed well, with precision of 96.61%, recall of 97.67%, F1
score of 96.1% and ROC curve of 0.9874. Models based on InceptionV3, InceptionResNetV2,
ResNet50, Xception, EfficientNetB0, EfficientNetB2 and EfficientNetB4 also showed reason-
able performance, with precision, recall and F1 scores above 90%. In addition, the authors
used the LIME interpretability method to understand the most important features in the
models’ detection of COVID-19. The results showed that the areas important for COVID-19
detection were mainly the upper and lower zones of the lungs.

This paper [3] presents a deep learning (DL)-based approach for the prediction and
classification of chest X-ray images in different categories, including COVID-19, Pneumo-
nia and Tuberculosis. The proposed DL model uses public chest X-ray data comprising
7132 images. To improve understanding and interpretation of the model results, the authors
use explanatory AI techniques such as Gradient-weighted Class Activation Mapping (Grad-
CAM), Local Interpretable Model-agnostic Explanation (LIME) and SHapley Additive
exPlanation (SHAP). These techniques visualize salient features and generate explanations
for the decisions made by the DL model. The results obtained show an average accuracy of
94.31 ± 1.01% for testing and 94.54 ± 1.33% for validation, thanks to the use of the 10-fold
cross-validation method. In addition, the explanations generated by the explainable AI
techniques have been validated by medical experts. The paper’s conclusions highlight that
the combination of explainable AI and DL models can deliver convincing and consistent
results for the detection and classification of lung diseases. The proposed model features
a lightweight architecture and superior performance compared with existing methods.
However, the article also highlights some limitations of the study, including the fact that the
model was trained on a small number of datasets and its performance on larger datasets
was not tested. More sophisticated data augmentation approaches could be explored to
improve the model’s performance. In addition, the inclusion of patients’ medical histories
and other bodily symptoms in the data could contribute to better interpretation.

In this recent paper [4], authors present an explainable artificial intelligence (AI)
framework for interpreting lung diseases from chest X-rays. The main objective is to
explain the classification results obtained for different lung diseases in order to help doctors
understand the reasons that cause these diseases. The research used chest X-rays to classify
different lung diseases such as edema, tuberculosis, nodules and pneumonia, including
pneumonia caused by COVID-19. The proposed model is based on a transfer learning
approach using the ResNet50 neural network, trained on COVID-CT and COVIDNet
datasets of 800 images with two classes and 19,000 images with three classes, respectively.
The model was fine-tuned and achieved improved classification results with an accuracy of
93% and 97%, respectively. To explain the classification results, the model uses LIME (Local
Interpretable Model-agnostic Explanations) interpretability, which highlights the important
features of the radiographic image that contributed to the classification of lung disease.
Explanation results were evaluated by comparing the regions highlighted by the model
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with those identified by expert radiologists. The authors found that the model highlighted
the same regions of ground-glass opacities as those identified by radiologists.

The authors of this paper [5] focused on the detection of COVID-19, pneumonia and
normal cases from chest X-ray images. They developed a deep learning algorithm based
on a convolutional neural network (CNN) called DeepCCXR, which is an architecture
based on EfficientNET-B5. The study used nine different datasets, comprising more than
3200 chest X-ray images of patients with COVID-19. The datasets used include images
from the National Institute of Health (NIH) as well as other sources. The results obtained
showed that the DeepCCXR model outperformed recent deep learning approaches for
the detection of COVID-19 on chest X-ray images. The model achieved high Area Under
Curve (AUC) scores with 0.973 for multiclass classification (COVID-19 vs. pneumonia vs.
normal) and 0.986 for the binary model (COVID-19 vs. normal). Mean sensitivity and
specificity were 0.97 and 0.98, respectively. For the COVID-19 class, sensitivity reached 0.99.
The authors also developed an explainability algorithm that uses the Gradient-weighted
Class Activation Mapping (Grad-CAM) technique to visualize the most important regions
detected by the model. This enables infected areas in the lungs to be localized on chest X-ray
images. Regions of dense, homogeneous opacity were identified as the most significant
signs of COVID-19.

These papers summarized above have discussed methods for detecting and classifying
diseases from medical images using deep learning models. Although these works have
achieved promising performances, it is important to discuss the limitations and short-
comings related to the explainability of the deep models used. In this section, we will
examine some of these limitations and discuss the points to which the papers have not paid
sufficient attention.

Lack of choice of AI explainability methods (XAI): A common limitation observed in
the abstracted articles is the lack of in-depth discussion of the various AI explainability
methods (XAI) available and their appropriate choice. Although the models have been
successfully trained and evaluated, it is not made clear how the XAI method used to explain
the classification results was chosen.

Limited emphasis on comparison of XAI methods: Another notable limitation is the
lack of comparison between different XAI methods to assess their effectiveness in explaining
classification results. It is essential to understand which XAI method provides the most
accurate and meaningful explanations for model results. A comparative evaluation of XAI
methods could have provided additional information on the relevance and quality of the
explanations provided by each method.

The complexity of deep model explainability: The summarized articles do not explicitly
mention the challenges and limitations inherent in the explainability of deep learning models.
Deep models are often regarded as black boxes, making it difficult to explain the decisions
made by these models. It is important to recognize that, despite efforts to make models more
explicable, there are still challenges to overcome when it comes to interpreting results.

Lack of error and bias analysis: Another important limitation is the lack of in-depth
analysis of classification errors and potential biases in the results obtained. It is crucial to
understand the situations in which models may fail or give erroneous results, as well as the
possible biases introduced by the datasets or learning methods used. A thorough analysis
of errors and biases would help to improve the confidence and reliability of models.

Overall, although the articles summarized have enabled significant advances in the
detection and classification of disease from medical images, there are limitations and gaps
in the explainability of the deep models used. Addressing these limitations is crucial to
improving the transparency, confidence and interpretability of deep learning models in the
medical field.
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3. Materials and Methods
This section presents the various steps in the proposed model for explaining and

classifying chest X-rays. It describes the proposed architecture based on two databases of
chest X-rays, as well as the various data pre-processing steps applied. In addition, the use
of transfer learning using pre-trained models such as VGG16 and ResNet50 is performed to
improve the performance of the proposed model. The use of visual explainability methods
in post-processing (Post-hoc) is then described.

3.1. Software Architecture

Figure 1 shows the proposed model based on two chest X-ray datasets, on which
a set of data pre-processing steps is applied. These steps include normalization, data
augmentation and image resizing to ensure optimal consistency and quality. Next, models
pre-trained using the transfer learning technique are performed. These pre-trained models,
such as VGG16, VGG19 and ResNet50, are tailored to the classification of chest X-ray images.
The model is trained using these pre-trained models in order to exploit the features learned
on massive datasets. Transfer learning enables us to benefit from this prior knowledge and
improve model performance.
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Figure 1. Proposed architecture.

The objective of this research is to explain the classification of chest X-rays into
four categories: COVID-19, Normal and Viral Pneumonia and lung opacity for the first
database and the second database into three categories: COVID-19, Normal and Viral
Pneumonia. To better understand and explain the results of the proposed model, the
post-processing explainability methods, such as Grad-CAM, Vanilla Gradient, LIME and
others are performed.

3.2. Dataset

In this project, two datasets (COVID-19 Radiography, COVID CXR Image Dataset
Research) available on Kaggle [6] were used for the analysis of chest X-ray images related
to COVID-19. Kaggle is a popular online platform for scientists and researchers. It offers a
wide range of resources, including datasets, machine learning competitions, tutorials and
collaborative notebooks. It is a virtual meeting place where professionals in the field can
share, explore and collaborate on data-driven projects.
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3.2.1. COVID-19 Radiography Dataset

It was developed by a team of researchers from Qatar University, Doha, Qatar and
Dhaka University, Bangladesh, in collaboration with physicians. It includes chest X-ray
images of patients with COVID-19, as well as normal images, viral pneumonia images and
lung opacity images. The database includes a total of 3616 positive cases of COVID-19,
10,192 normal images, 6012 cases of pulmonary opacity and 1345 cases of viral pneumonia
(show Figure 2).
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3.2.2. COVID CXR Image Dataset Research

It has been created to support the research and development of artificial intelligence so-
lutions for the automated diagnosis of COVID-19. This database contains a set of 1823 chest
X-ray images, comprising 668 images of normal patients, 619 images of viral pneumonia
cases and 536 images of patients with COVID-19 (show Figure 3).
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3.3. Data Pre-Processing

Data preprocessing is an essential step in the development of deep learning models,
as it aims to prepare the input data in order to optimize model performance. In this
section, we focus on three aspects of data preprocessing: normalization, data augmentation
and resizing.

3.3.1. Normalization

Data normalization is a technique commonly used to put image pixel values on a
common scale. This reduces discrepancies between different pixel values and facilitates
model learning. In this approach, the normalized of the pixel values is performed by
dividing each value by 255, bringing the values into the range [0, 1].
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3.3.2. Data Augmentation

Data augmentation is a technique that aims to increase the size of the training dataset
by applying random transformations to existing images. This technique enriches the
dataset by generating variants of the original images, which can improve the model’s
ability to generalize and recognize new data. In this approach, the following augmentation
techniques: shear, zoom, rotate, shift and flip are performed in order to increase the
diversity of the data.

Figure 4 shows the different methods of data augmentation.
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3.3.3. Resizing

Image resizing is an important step in ensuring that all images are the same size. This
is often necessary as most machine learning models require all input data to have the same
size. In this approach, all images are resized to a specific size of [224, 224] pixels. This resizing
harmonizes the dimensions of all the images, which facilitates processing by the model.

These pre-processing techniques help to improve model performance and promote
better generalization.

3.4. CNN Models Used

In this essential step of the proposed approach, as illustrated in Figure 5, the pre-
trained CNN models for input image classification are performed which are VGG16,
VGG19, Resnet50, EfficientNetB7, MobileNetV2 and Mixnet. This step requires a great deal
of time and expertise to manually extract the relevant features from the images. However,
with the development of CNN models, this step has become automated and more efficient.

The input layer plays a crucial role in preparing the image for the classification process.
It processes the raw image, applying normalization, resizing and other transformations to
ensure a consistent representation for the proposed models. Next, the feature extraction
layer is performed which is responsible for extracting significant information and features
from the image. It can be composed of one or more convolution, pooling and activation
layers. Convolution layers filter the input image to extract visual features such as contours,
textures and patterns. Pooling layers reduce the spatial dimension of the extracted features,
thereby reducing the number of parameters and making the model more robust to variations
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in the position of objects in the image. Activation functions introduce non-linearity into the
model, enabling it to capture complex relationships between features. Finally the output
layer performs the final classification of the image. This layer assigns probabilities to each
possible class, indicating the likelihood of the image belonging to each of these classes. It is
usually composed of softmax neurons that normalize the output scores into probabilities.
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It is important to note that this architecture and the way the layers work can vary from
one CNN model to another. Each model has its own set of layers and specific operations,
which influence its ability to extract features and perform classification.

3.5. Visual Explainability

In order to achieve the main objective, which is the explainability of the results, the
best model for each dataset is selected, as illustrated in Figure 6. Then the advanced
explanability methods “Grad-CAM, Vanilla Gradient, LIME, SmoothGrad and integrated
gradient” are performed to the results of these selected models. This approach enables to
obtain precise and intuitive explanations of the decisions made by the proposed models.
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The need to explain deep learning-based methods is increasing as the number of such
approaches grows, especially in the high-stakes decision-making field of medical image
analysis [7]. The findings of the DL system are explained and interpreted for easy compre-
hension by medical professionals, which can help them to diagnose COVID-19, tuberculosis
and pneumopathy quickly and accurately [8]. For this reason, the XAI algorithms currently
in widespread use: Vanilla Gradient, Integrated Gradient, LIME and GradCAM are used in
this work.

The basic principle of GradCAM is to calculate the gradient of a given output of
interest from the neural network (usually the class whose classification we want to explain)
and to calculate the gradient of this specific output neuron down to the last convolution
layer, as this is considered to be the layer that contains the most detailed abstraction of the
patterns that form the image and would therefore have the greatest potential to generate
the most explanatory visualization [9]. Thus, for a given class c, we have in Equation (1):

ak
c =

1
Z ∑ Vkyc (1)

where yc represents the specific output of a class c of the network, k represents an attribute
map of the last convolution layer of the CNN, Z is the total number of pixels of this attribute
map and the sum is defined on the dimensions of this map. On the other hand, ak

c is a
number that represents the influence or weight of one of the attribute maps k on the output
neuron c. The sum of all the pixels in the attribute map divided by the total number of
pixels is also known as the global average. According to Selvaraju et al. [10], the choice of
global averaging over other forms of averaging or data grouping was made empirically to
produce the best results. The heatmap is then given by the linear combination of attribute
maps, whose weights are the αk values calculated in Equation (2).

HGradCAM = Relu(∑k ak
c Ak) (2)

where LIME [11], also known as Local Interpretable Model-agnostic Explanations, is based
on a surrogate model. The surrogate model is usually a linear model built from different
samples of the main model. To do this, LIME samples points around an example and
evaluates the models at these points. LIME generally calculates the allocation on a sample
basis. It takes a sample, perturbs it several times according to random binary vectors and
calculates the output scores in the original model. It then uses the binary features (binary
vectors) to train an interpretable surrogate model to produce the same outputs. Each of
the coefficients in the trained linear substitution model serves as an allocation of the input
characteristic in the input sample [12].

Let x = h(x′) be a mapping function between “interpretable inputs” (x′) and “original
inputs” (x) Furthermore, let x′ ∈ {0, 1}, M be the number of simplified features, and ϕi ∈ R.
The local interpretable explanation model is defined as follows in Equation (3):

x′ = ∅0 + ∑M
1 ∅x′i (3)

The explanation model g can be obtained by solving the following optimization
problem in Equation (4):

ξ = argming∈G
(

f , g, π′
x
)
+ Ω(g) (4)

where (x′) and h(x′) are constrained to be equal. In other words, ( f , g, πx′)) determines
how unfaithful g is when it approximates f in the area defined by the similarity ker-
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nel πx′. Ω penalizes the complexity of g and Equation (4) can be solved using penalized
linear regression [12].

4. Results
This section shows the experiments and results obtained from the proposed model. It

begins with a presentation of the tools and the development environment. It then describes
the various validation measures used to evaluate the model’s performance. This is followed
by a presentation of the results obtained from the experiments on the two datasets. This
section also details the application of visual explainability methods in the model and
discusses the results obtained. Finally, an evaluation of the results obtained by healthcare
professionals is carried out.

4.1. Development Environment
4.1.1. Software Environment

Table 1 exposes the software environment used such as Python [13], TensorFlow [14]
and Keras [15] and Tf_explain [16]. . ..

Table 1. Development Tools.

Tools Description

Google Colab Pro Is a cloud-based online development and collaboration platform that
provides a working environment for running Jupyter notebooks

Python Is a versatile, user-friendly interpreted programming language, widely
used in software development and machine learning.

TensorFlow Is an open source machine learning library developed by Google
Keras Is an open source deep learning library written in Python.

OpenCV (Open Source Computer Vision) Is an open-source library used for image processing and computer vision.

Tf_explain Is an open source library based on TensorFlow, which provides
explainability tools and methods for machine learning models.

Lime (Local Interpretable
Model-Agnostic Explanations

Is a Python tool for interpreting machine learning models. It generates
local, comprehensible explanations for individual predictions, regardless

of the complexity of the model used, making the results of machine
learning models more transparent and accessible.

4.1.2. Validation Measurements

Validation metrics are used to assess the performance of a machine learning model
and measure its ability to make accurate predictions. Commonly used measures include:
Accuracy, Precision, Recall, f1-score and Loss.

Accuracy (or overall precision): is a measure that evaluates the overall performance of
a classification model by giving the fraction of the total number of samples that have been
correctly classified by the classifier. It is calculated by dividing the sum of true positives
(TP) and true negatives (TN) by the sum of true positives, true negatives, false positives
(FP) and false negatives (FN).

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fp
(5)

Precision: measures the model’s ability to correctly identify positive examples among
all examples classified as positive. It is defined as the number of true positives (Tp) over
the number of true positives plus the number of false positives (Fp).

Precision =
Tp

Tp + Fp
(6)
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Recall: measures the model’s ability to correctly identify positive examples among all
truly positive examples. It is defined as the number of true positives (Tp) over the number
of true positives plus the number of false negatives (Fn).

Recall =
Tp

Tp + Fn
(7)

F1_score: can be interpreted as a weighted average of precision and recall, where an F1 score
reaches its best value at 1 and its worst score at 0. The relative contribution of precision
and recall to the F1_score is equal. The formula for the F1_score is as follows:

F1_score = 2
P × R
P + R

(8)

Loss: also known as error, measures the amount of error between model predictions
and actual values. It is often used as a measure of model performance during training. The
aim is to minimize the loss, which means that the model makes more accurate predictions.

Mean Opinion Score (MOS): is a measure widely used in communication and information
processing systems to evaluate the subjective quality perceived by users. It is a rating scale
ranging from 1 (very poor quality) to 5 (exceptional quality), where users are asked to rate a
specific experience. The SMO is calculated by taking the average of all the scores awarded,
providing a valuable indication of the overall perceived quality of a system or service.

4.2. Experiments and Results

As mentioned in Section 3 two datasets are used for these experiments. These datasets
were carefully divided into a training dataset and a test dataset, with a proportion of 80%
for training and 20% for testing. The data were rigorously pre-processed. This crucial step
enabled to ensure the consistency and quality of the data before using them to train our
models. The proposed CNN models were trained over 50 epochs using transfer learning
an example of the implementation of this process with the VGG16 model.

As far as optimization is concerned, the Adam optimizer is used for each of our models.
Adam is widely recognized for its performance in terms of fast convergence and efficiency.
The loss function used is “categorical_crossentropy”. Indeed it is particularly well suited to
multiclass classification problems. In short the results of the experiments were obtained
following a rigorous process of data preparation, model training using transfer learning
techniques and optimization using Adam. The results demonstrate the effectiveness of the
proposed methodological and technical choices.

4.2.1. Experimentation on the First Dataset

Table 2 and Figures 7 and 8 illustrate the results of the experiments on this dataset,
which comprised four classes: normal, COVID, viral pneumonia and lung opacity. Table 2
details the accuracy and loss results for the test data, while Figure 7 graphically represents
the accuracy and loss for the training and test data.

Table 2. Loss and Accuracy results for the first dataset.

Models Accuracy Loss

EfficientNetB7 88.73% 34.45%
Vgg16 91.12% 29.93%
Vgg19 91.87% 23.65%

MobileNetV2 93.08% 21.31%
Resnet50 86.56% 37.94%
Mixnet 90.89% 32.46%
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Figure 8. Precision, recall and F1_score results for the first dataset.

Figure 8 shows precision, recall and F1_score results for all models. The MobileNetV2
model performed best of all the pre-trained models tested. It achieved an accuracy of
93.08%, a loss of 21.31%, a precision of 96.14%, a recall of 91.68% and an F1_score of 93.80%.
The effectiveness of the MobileNetV2 model, in particular, suggests its ability to extract
relevant features from these complex medical images, enabling accurate classification.

4.2.2. Experimentation on the Second Dataset

Table 3 and Figures 9 and 10 show the second experiments performed on the second
dataset. This dataset consisted of three classes: Normal, COVID and Viral Pneumonia.
After applying various models to this dataset, it became clear that the VGG16 model was
the best performer. According to the results, VGG16 achieved an accuracy of 94.87%, a loss
of 17.35%, a precision of 95.12%, a recall of 92.43% and an F1_score of 93.29%. This high
level of performance confirms the effectiveness of VGG16.

Table 3. Accuracy and loss of each model on the second dataset.

Models Accuracy Loss

EfficientNetB7 87.15% 36.85%
Vgg16 94.87% 17.35%
Vgg19 90.21% 29.76%

MobileNetV2 92.95% 25.01%
Resnet50 89.42% 33.13%
Mixnet 88.06% 34.91%
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Figure 9 provides a graphical representation of the evolution of accuracy and loss for
training and test data, while Table 4 gives a detailed overview of these evaluation measures
on the first dataset. In addition, Figure 10 presents a summary of precision, recall and
F1_score results for all models tested on this second dataset.

4.3. Application of Visual Explainability Methods and Results

In this section visual explainability methods are applied to the best models, namely
MobileNetV2 and Vgg16. These methods, shown in Figure 6, have been applied to each
class in both datasets. The aim of this step was to generate visualizations to explain how
the proposed models make their predictions. These visualizations, produced for each class,
give us a better understanding of which aspects or regions of the images contributed most
to our model decisions. The implementation of these explainability methods required the
installation of certain libraries, including Lime.

Figures 11–14 illustrate the images generated by the different explainability methods
for two examples of each class in each dataset. For each example, the original image is
accompanied by images generated by GradCAM, Vanilla Gradient, Integrated Gradient,
SmoothGrad and LIME. Each method aims to identify and highlight the regions that were
decisive for classification by our models.
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As we can see from the images, each method has its own way of explaining and
localizing the target regions. GradCAM uses a heatmap-like representation to highlight
regions of interest, creating an easily interpretable visualization of the area on which the
model focuses. On the other hand, Vanilla Gradient highlights the gradients of input
versus output, indicating the pixels most influential in the model’s decision. Integrated
Gradient takes a similar approach, but calculates the full gradient path from input to
output, accounting for accumulated changes in pixels. SmoothGrad introduces noise into
the input and averages gradients over several noisy instances to attenuate the variability of
input gradients. Finally, LIME creates a simplified version of the original image, retaining
the key features that influenced the model’s decision. It is particularly noteworthy that
GradCAM and LIME seem to offer the clearest and most useful representations of the
regions important for classification. This observation will be confirmed and extended by
the doctors in the next section.
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4.4. Medical Opinion

In order to validate the results, it was crucial to obtain feedback from healthcare
professionals, in this case three doctors, who are directly involved in the interpretation of
these medical images on a daily basis. To structure this evaluation, we opted for the 5-points
Likert explanation satisfaction scale developed by Hoffman [17]. This evaluation framework
is based on five essential criteria for the explainability of AI models: comprehension,
satisfaction, sufficiency of detail, completeness and accuracy. Each criterion is rated on a
scale of 1 to 5, where 1 indicates low satisfaction and 5 indicates maximum satisfaction.

Each doctor independently assessed the results on the basis of these criteria, enabling
us to gather their qualified opinions. The scores awarded by each doctor for each criterion
were then used to calculate the “Average Opinion Score”, which represents the doctors’
average satisfaction with our results.

Table 4 shows the mean Opinion Score results for the 5 different methods. Details
of these evaluations, including individual scores for each criterion and each doctor, are
available in the appendix to this brief.

Table 4. SMO of different explainability methods.

Method Metric GradCAM
(1–5)

Vanilla
Gradient

(1–5)

Integrated
Gradient

(1–5)

Smooth
Grad
(1–5)

Lime
(1–5)

Understanding 3.83 2.83 1.33 1.83 4
Satisfaction 4 3.33 1 1.5 3.67

Sufficient details 4.17 3.17 1.17 1.67 3.5
Exhaustiveness 4.17 2.83 1.67 2 3.67

Accuracy 4 3.17 1 1.67 3.33

From the mean Opinion Score presented in the Table 4, it is clear that the GradCAM,
LIME and, to some extent, Vanilla Gradient explainability methods were preferred by
doctors, as evidenced by the higher scores they received. Specifically, for comprehension,
LIME scored 4, GradCAM 3.83 and Vanilla Gradient 2.83. For satisfaction, GradCAM
scored 4, LIME 3.67 and Vanilla Gradient 3.33. For sufficient detail and completeness
(Exhaustiveness), GradCAM scored the highest with 4.17, Vanilla Gradient 3.17 and 2.83,
respectively, while LIME 3.5 and 3.67, respectively. Finally, for accuracy, GradCAM also
scored highest with 4, Vanilla Gradient 3.17 and LIME 3.33. In contrast, the SmoothGrad
and Integrated Gradient methods received generally lower scores on all evaluation
measures. This indicates that these methods may be perceived as less intuitive or useful
to physicians.

5. Discussion
These results highlight that, in the present study, GradCAM stands out as the

most effective visual explanation method, closely followed by LIME, while Vanilla
Gradient also demonstrated some usefulness. The satisfactory results expressed by
the GradCam method are undoubtedly the fruit of its internal principle where it uses
a heatmap-like representation to highlight regions of interest, thus creating an easily
interpretable visualization of the area on which the model focuses. Doctors rated these
methods as more understandable, satisfying, detailed, complete and accurate, underlin-
ing their relevance and potential usefulness in medical practice. These methods offer
an in-depth understanding of the decisions made by deep learning models, which can
boost doctors’ confidence and facilitate the adoption of these technologies in critical
medical applications.
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6. Conclusions
This research work is part of the explainability of deep learning results on chest X-ray

images. In this context, we used pre-trained deep learning models such as MobileNetV2,
VGG16 and others, as well as two separate datasets, to evaluate the performance of these
models. The results revealed that MobileNetV2 was the best model for the first dataset,
while VGG16 was the best for the second dataset. These models demonstrated significant
classification performance, highlighting the effectiveness of convolutional neural networks
(CNNs) in classifying chest X-ray images.

Then the visual explainability methods are applied such as GradCAM and LIME to
better understand the decisions made by these models. The results showed that GradCAM
was the most effective visual explainability method, closely followed by LIME, while
Vanilla Gradient also demonstrated some usefulness. Doctors rated these methods as more
understandable, satisfying, detailed, Exhaustiveness and accurate. These findings are of
great importance in the healthcare field, as they provide clear, interpretable explanations of
the results obtained by deep learning models. Explainability boosts doctors’ confidence in
the use of these models and facilitates their adoption in critical medical applications.

This study opens up vast scientific prospects in the short and long term. Below are the
main perspectives that deserve to be explored as a result of this study:

Identifying and correcting biases in deep learning models to ensure more accurate
and fair results.

Exploring alternative methods of explainability such as text-based explanation through
examples and others. Investigation of these alternative methods can provide additional in-
formation on the decisions made by deep learning models, offering an even more complete
and interpretable picture.

Using larger datasets enables the performance of deep learning models and explain-
ability methods to be evaluated on a larger scale, offering more robust validation of the
results obtained.
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