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Abstract. Ischemic stroke is a severe neurological condition character-
ized by the interruption of blood flow to regions of the brain due to
vessel occlusion, leading to potential cognitive and functional impair-
ments that require personalized rehabilitation strategies for optimal re-
covery outcomes. Stroke recovery trajectories exhibit significant variabil-
ity, making personalized intervention strategies crucial for optimal pa-
tient care. This study presents a systematic comparison of clustering
algorithms to identify distinct cognitive recovery patterns in stroke pa-
tients from the STROKDEM cohort N=121. We analyze longitudinal
data collected at multiple timepoints (J7, M6, M36, M60), including de-
mographic and clinical features as well as cognitive assessments such
as MoCA and MMSE. Our methodology compares five clustering al-
gorithms (K-means, GMM, Spectral, Hierarchical, BIRCH), evaluating
their performance through multiple validation metrics. K-means clus-
tering with k=2 emerged as the optimal configuration, achieving the
highest Calinski-Harabasz index (35.558) while maintaining clinically in-
terpretable cluster sizes (52/68 patients). The identified clusters reveal
distinct cognitive profiles: Cluster 0 (n=52), mean age 72.39±8.91 years)
shows lower initial cognitive scores (MoCA 22.47 ± 7.34), while Cluster
1 (n=68), mean age 58.58 ± 11.65 years) demonstrates better cognitive
performance (MoCA 25.75± 5.16). The stability of these clusters is vali-
dated across multiple timepoints (M6, M12, M36, M60), with consistent
performance metrics (sensitivity 0.67−0.75, specificity 0.69−0.75, accu-
racy 0.71-0.72). This optimization-driven clustering framework enables
evidence-based patient stratification for targeted rehabilitation. Further
validation in larger cohorts is warranted.

Keywords: Stroke Subtyping · Clustering · Optimization · Longitudinal
Data · Personalized Rehabilitation · Cognitive Trajectories.
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1 Introduction

Stroke remains a leading cause of disability worldwide, with heterogeneous out-
comes challenging accurate prognosis and personalized treatment [14], [32]. Is-
chemic stroke, characterized by the interruption of blood flow to the brain, of-
ten leads to cognitive and functional impairments that necessitate personalized
rehabilitation strategies [18]. Machine learning (ML) and deep learning (DL)
techniques has revolutionized various domains, including medicine, offering new
avenues for understanding complex diseases [21], [33]. In particular, these ap-
proaches have shown promise in analyzing longitudinal data to identify distinct
patient subgroups and predict outcomes [17], [34], [35].
The field of stroke subtyping has seen significant advancements in recent years,
with researchers employing various machine learning techniques to identify dis-
tinct patient subgroups and predict outcomes. Our study addresses these chal-
lenges through a comprehensive machine learning approach to stroke subtyping,
utilizing multiple clustering algorithms on longitudinal data from 121 ischemic
stroke patients followed over 60 months. We focus on cognitive trajectories, incor-
porating early assessments, demographic factors, and clinical variables to iden-
tify distinct patient subgroups. The longitudinal clustering of ischemic stroke
patients and analysis of clusters found, enable more accurate stratification of
post-stroke patients, potentially facilitating the personalization of therapeutic
interventions and improved long-term prognosis.
Our main goal is to develop an unsupervised clustering model to identify sub-
groups of ischemic stroke patients, based on their cognitive decline, using vali-
dated clinical scores and relevant baseline data selected from the scientific litera-
ture from INSERM’s confidential longitudinal cohort called Strokdem. The clin-
ical part of the study was carried out on data from the STROKDEM (Study of
Factors Influencing Post-stroke Dementia) cohort. STROKDEM was approved,
in France, by the local ethics committee and registered at clinicaltrials.gov [24].
The selected model should ensure optimization of the trade-off between the qual-
ity of cluster separation and the clinical interpretability of results, for effective
clinical utility and operability. Our study identifies distinct cognitive recovery
patterns despite challenges of missing comorbidity data and limited sample size.
These limitations are acknowledged as areas for future research and validation.
The paper is organized as follows: Section 4 details our methodology, includ-
ing data preprocessing and algorithm optimization. Section 5 presents results
comparing multiple clustering approaches and characterizing patient subgroups.
Section 8 discusses findings and the limitations of our work. Section 9 concludes
and provides future directions for improving stroke patient stratification.

2 Related Works

Traditional approaches to stroke subtyping, such as the TOAST classification
system, have been widely used but are limited by their reliance on predefined
categories [14]. Recent studies have explored data-driven approaches to capture
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the heterogeneity of stroke patients more effectively. These include the use of
both machine learning (ML) and deep learning (DL) techniques.

Machine Learning Approaches Unsupervised machine learning techniques
have gained traction in stroke subtyping due to their ability to identify patterns
without predefined categories. Clustering algorithms such as K-means, Gaus-
sian Mixture Models (GMM), and hierarchical clustering have been applied to
various stroke datasets [27]. These methods have revealed subgroups of patients
with distinct cognitive trajectories, emphasizing the heterogeneity of post-stroke
recovery. The importance of early cognitive assessment in predicting long-term
outcomes has been underscored by several studies. Studies leveraging machine
learning have shown promise in identifying key predictors. Zhu et al. explored
machine learning algorithms to predict cognitive impairment after stroke, incor-
porating a wide range of clinical and demographic features [30]. Their findings
support the notion that a combination of factors, including age, education level,
and initial cognitive scores, contribute to post-stroke cognitive outcomes. Specif-
ically, factors such as BMI and MoCA scores have been used in machine learning
models for stroke prognosis [35]. Further, studies on the Strokdem dataset also
use these factors (Age, Education, BMI, MOCA-J7, IQ Score- see source file of
this article) to enhance stroke outcome predictions: Texture Features of Magnetic
Resonance Images: an Early Marker of Post-stroke Cognitive Impairment

Deep Learning Approaches Kim et al. utilized convolutional neural networks
on neuroimaging data to identify novel stroke subtypes, demonstrating the po-
tential of deep learning in this domain [21]. This approach has shown promise in
capturing complex patterns in imaging data that may not be apparent through
traditional analysis methods. Longitudinal studies have played a crucial role in
understanding post-stroke cognitive trajectories, and, some have incorporated
deep learning. Deep learning models have also been used to fuse multimodal
data for improved stroke outcome prediction [33].

Rationale for Focusing on Machine Learning While deep learning mod-
els like DeepLifetime and K-prototype have shown promise in various medical
applications [29], our focus on traditional unsupervised clustering algorithms is
justified by their superior interpretability and robust performance in identifying
distinct patient subgroups. While advanced deep learning techniques are power-
ful, they come with significant drawbacks for clinical applications. Deep learning
models, including Deep Lifetime Clustering and K -Prototype Clustering [29],
require extensive training data and computational resources that are not always
available in clinical settings. Their complexity often leads to models that are
"black boxes," complicating clinical interpretation and trust. The decision to
focus on unsupervised clustering methods aligns with our goal of creating clin-
ically interpretable and actionable insights from the STROKDEM dataset. In
particular, traditional ML models are more adapted to Strokdem for mixed data
( categorical and numerical).
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Table 1. Comparison with existing stroke subtyping approaches

Method Temporal Cluster Clinical
Analysis Stability Interpretability

Traditional TOAST No N/A High
Deep Learning Yes Medium Low
Our Approach Yes High High

3 Methodology

This section details the methodology employed to identify distinct cognitive
recovery trajectories in post-ischemic stroke patients. Our approach comprises
three main components: (1) Population Study, describing the STROKDEM co-
hort; (2) Features Selection, outlining the selection of key predictive features;
and (3) Proposed Comparison Analysis, detailing the clustering algorithms and
comparative framework used to identify patient subgroups.

3.1 Population Study

The study population consisted of 121 ischemic stroke patients data derived from
the STROKDEM (Study of Factors Influencing Post-stroke Dementia) cohort, a
longitudinal study approved by the local ethics committee in France and regis-
tered at clinicaltrials.gov (NCT01330160) [24]. Participants were recruited based
on standardized criteria and followed over a 60-month period, with cognitive as-
sessments conducted at baseline (J7), 6 months (M6), 36 months (M36), and
60 months (M60). Data collection encompassed demographic, clinical, cognitive,
and neuroimaging variables to capture the multifaceted nature of post-stroke re-
covery [32]. The longitudinal design of the STROKDEM cohort enables tracking
of cognitive trajectories over time and assessment of post-stroke patients.

3.2 Features Selection

From an initial set of 1340 features (see Table 2), a subset of key predictors
was selected based on a combination of feature ranking and relevance in the
existing literature. As shown in the Missing Data Patterns figure, the dataset
presented varying degrees of missingness across different features. For example,
categorical variables related to comorbidities, which exhibited high missingness,
were excluded from the feature set due to concerns about reliability. Therefore,
our feature selection process prioritized variables with lower rates of missing data
to ensure data integrity.

The most informative features for clustering were Age, Education Level (Nb
An Scol), IQ Code J0, Weight (Poids), Height (Taille), and MoCA J7. It is worth
nothing that, since body mass index information may influence stroke risk and
outcomes, BMI was also calculated using the standard formula ( Weight(Poids)

Height(Taille)2
).

While not all six features ranked within the top ten in our feature importance
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analysis (see Table 3), they all ranked among the top 20, demonstrating their
strong predictive validity for cognitive outcomes. Moreover, these variables align
with established knowledge about factors influencing stroke outcomes:

– Age: A well-established risk factor for stroke and cognitive decline, with
older age often associated with poorer outcomes [42].

– Education Level: Higher education is often linked to cognitive reserve,
providing resilience against the effects of stroke [43].

– MoCA J7: Early cognitive assessment using the Montreal Cognitive Assess-
ment (MoCA) provides a sensitive measure of initial cognitive impairment
post-stroke, predicting long-term cognitive trajectories [44].

– IQ Code J0: Represents premorbid cognitive abilities, serving as a baseline
for assessing cognitive decline following stroke [45].

– Weight (Poids) and Height (Taille): Indicators of overall physical health
and nutritional status, with BMI calculated as Weight(Poids)

Height(Taille)2
, impacting

stroke recovery and long-term outcomes [46], [47].

3.3 Proposed Comparative Analysis

Our study introduces a novel optimization framework for identifying distinct
cognitive recovery patterns in stroke patients, reformulating cluster analysis
as a multi−objective optimization problem. This approach combines machine
learning with mathematical programming to address clinical constraints while
maximizing separation between patient subgroups.

Problem Formulation as Constrained Optimization We define cluster
membership using decision variables zik ∈ {0, 1} for patient i in cluster k. The
multi−objective function aims to minimize the negative of cluster cohesion and
separation metrics while maximizing cluster imbalance:

min
Z

 -f1(Silhouette)
-f2(Calinski-Harabasz)
f3(ClusterImbalance)


– zik: Binary variable indicating patient i’s membership in cluster k.
– Z: Matrix of all zik values, representing the complete cluster assignment.
– f1(Silhouette): Function calculating the Silhouette score (cluster cohesion

and separation).
– f2(Calinski−Harabasz): Function calculating the Calinski-Harabasz index

(cluster density and separation).
– f3(ClusterImbalance): Function measuring cluster imbalance (difference in

cluster sizes).

Subject to constraints ensuring unique cluster assignment, minimum cluster
size, and cluster separation.
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Table 2. Description of Dataset Variables

Variable Description
SUBJID Subject identifier.
Identifiant_MR MRI identifier.
NOM_PAT, PRENOM_PAT Patient’s last and first names.
GENRE Gender of the patient.
DDN Date of birth.
AGE Age of the patient.
NB_AN_SCOL Number of years of schooling.
IQ_CODE_J0, IQ_CODE_M6,
IQ_CODE_M36,
IQ_CODE_M60

IQ scores at baseline, 6 months, 36 months, and 60 months.

MMSE_J7, MOCA_J7,
MMSE_M6, MOCA_M6,
MMSE_M36, MOCA_M36,
MMSE_M60, MOCA_M60

Cognitive assessments using MMSE and MOCA scales at various
time points.

PATHO_CORO, INSUF_CARD,
ARTERIOPATHIE,
SYND_APNEE_SOMM,
THROMB_VX_PROF,
EMBOL_PULM,
TB_RYTHME_CARD,
DEPRESSION, EPILEPSIE,
CANCER

Presence of various health conditions (e.g., coronary pathology,
cardiac insufficiency, etc.).

FRISQUVASC_HTA,
FRISQUVASC_DIAB,
FRISQUVASC_HYPCHOL,
FRISQUVASC_HYPTRI,
FRISQUVASC_TABAC

Vascular risk factors (e.g., hypertension, diabetes, hypercholes-
terolemia, etc.).

NB_PK_ANNE_TABAC Number of pack-years of smoking.
FACTEUR_ALCOOL Alcohol consumption factor.
POIDS Weight of the patient.
TAILLE Height of the patient.
BMI Body Mass Index.
ACT_PHYS Physical activity level.
SYND_TB_COG_M6,
SYND_TB_COG_M12,
SYND_TB_COG_M36,
SYND_TB_COG_M60

Indicators of cognitive decline at different time points, used to
split the cohort into control and experimental groups.

– Minimum Cluster Size: Each cluster must contain a minimum number of
patients to ensure statistical validity and clinical relevance.
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Table 3. Top 10 Features by Importance

Feature Importance Score
MMSE J7 0.635298
MOCA J7 0.582613
IQ code j0 0.436425
Weight 0.370074
Cancer 0.252715
Hypercholesterolemia 0.226432
Hypertriglyceridemia 0.224411
Cardiac rhythm disorders 0.208237
Sleep apnea syndrome 0.177911
Height 0.176987

– Balanced Cluster Sizes: The size of the clusters should be reasonably
balanced to avoid one cluster dominating the analysis.

– Clinical Interpretability: The clusters should be readily interpretable in
terms of known clinical factors and cognitive assessments.

Feature Selection as Combinatorial Optimization
Implement forward−stepwise selection to maximize ANOVA F−scores be-

tween clusters:

max
S⊆F

∑
f∈S

Fscore(f) subjectto |S| ≤ 5

Where F={Age,Education,BMI,MoCA-J7, IQScore}.
We implemented five clustering algorithms: K-means, Gaussian Mixture Mod-

els (GMM), spectral clustering, hierarchical clustering, and BIRCH. Each algo-
rithm underwent evaluation using multiple metrics: silhouette score for cluster
separation, Calinski-Harabasz index for cluster density, and Davies-Bouldin in-
dex for validation. Reproducibility Score assessed stability across different pre-
processing methods.

K-means clustering with k=2 consistently emerged as the optimal configu-
ration, achieving the highest Calinski-Harabasz index 35.558 while maintaining
reasonable cluster balance (52/68 patients). While spectral clustering achieved
the highest silhouette score (0.400), it produced severely imbalanced clusters
(116/4 patients), limiting its clinical utility. The two-cluster solution generally
outperformed the three-cluster solution across algorithms.

For assessing stability and utility in the clustering results, we rely on specific
metrics:

4.3.1 Stability Assessment Stability refers to the consistency of clusters
across different evaluations or runs. We assess stability based on the consistency
of cluster configurations and sizes. Stability is inferred from:
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– Cluster Sizes: Consistent cluster sizes across different runs indicate stabil-
ity. For example, K-means with k=2 consistently produces balanced clusters
(52/68 patients), suggesting stability.

– Reproducibility Score (mean ± std): This column provides insight into
the variability of performance across different evaluations. Lower variability
(e.g., smaller standard deviation) suggests more stable results.

4.3.2 Utility Assessment Utility refers to the clinical applicability of the
clustering results. It is assessed based on:

– Cluster Balance: Well-balanced clusters are more useful for clinical appli-
cations because they provide actionable insights into distinct patient sub-
groups. For instance, K-means with k=2 offers a balanced configuration
(52/68 patients), which is highly useful.

– Performance Metrics: High silhouette scores and Calinski-Harabasz indices
indicate well-defined clusters that are clinically interpretable. However, these
metrics must be balanced with cluster balance and stability for high utility.

The columns relevant for assessing utility and stability are: Sizes (for cluster
balance and stability), Silhouette Score (for cluster cohesion and utility), CH
Index (for cluster separation and utility), and Reproducibility Score (mean ±
std) (for stability assessment).

K-means (k=2) demonstrated high utility due to balanced clusters and stable
performance across evaluations. In contrast, Spectral (k=2) had low utility due
to severely imbalanced clusters, despite high silhouette scores.

We compared five unsupervised clustering algorithms: K-means, Gaussian
Mixture Models (GMM), spectral clustering, hierarchical clustering, and BIRCH.
These algorithms were selected based on their widespread use in stroke subtyp-
ing and their ability to capture diverse cluster structures [27], [29]. K-means
clustering with k=2 consistently emerged as the optimal configuration, achiev-
ing a high Calinski-Harabasz index while maintaining balanced cluster sizes and
clinical interpretability. While spectral clustering achieved high silhouette scores,
it produced severely imbalanced clusters, limiting its clinical utility. We did not
consider three-cluster solutions due to their instability and difficulty in clini-
cal interpretation, as previously observed in [48], which found a more robust
equilibrium with two clusters in the STROKDEM dataset.

3.4 Cluster Characterization

Two distinct patient profiles emerged (Figure 1): The resulting two clusters ex-
hibited distinct cognitive profiles: (1) a "stable" cluster characterized by younger
age, higher education levels, and better initial cognitive performance; and (2) a
"declining" cluster characterized by older age, lower education levels, and poorer
baseline cognition. These characteristics significantly contributed to the discrim-
ination between clusters, providing clinically actionable insights for targeted
rehabilitation strategies. The results obtained were validated using silhouette
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score, Calinski-Harabasz index, and Davies-Bouldin index, ensuring robustness
and reliability of the findings.

– Cluster 1 (n=52): Younger age (median 60 years), higher education (me-
dian 12 years), better initial cognitive performance (MoCA J7 median 26),
maintained stable cognitive function.

– Cluster 2 (n=68): Older age (median 75 years), lower education (median 9
years), poorer baseline cognition (MoCA J7 median 20), exhibited progres-
sive decline.

Cohen’s d effect sizes indicated large effects for cognitive measures (MoCA)
across all time points (d > 0.7) and medium effects for clinical factors and lifestyle
factors. Mixed-effects models revealed significant differences in cognitive decline
trajectories between clusters.

Fig. 1. Feature distributions across different clustering algorithms and clusters. Box
plots show the distribution of key features (Age, Education level (Nb An Scol), IQ
Code J0, Weight (Poids), Height (Taille), and MoCA J7) for each cluster (0 and 1)
across three clustering algorithms (K-means, spectral, and hierarchical clustering).
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Table 4. Performance comparison of clustering algorithms on the STROKDEM
dataset. Best values for each metric are in bold. Utility ↑ indicates clinical utility,
with High being most useful and Low being least. Stability ↓ refers to cluster stability,
with Stable being most consistent and Highly Unstable being least consistent.

Algorithm k Silhouette CH Index DB Index Reproducibility Score Sizes Utility ↑ / Stability ↓
K-means 2 0.214 35.558 1.825 0.193 ± 0.024 52/68 High ↑ / Stable ↓

3 0.198 24.374 1.575 0.155 ± 0.020 23/48/49 Medium ↑ / Less Stable ↓
Spectral 2 0.400 12.142 1.032 0.290 ± 0.016 116/4 Low ↑ / Unstable ↓

3 0.300 8.830 0.893 0.238 ± 0.018 116/2/2 Low ↑ / Highly Unstable ↓
Hierarchical 2 0.178 27.165 1.898 0.267 ± 0.025 72/48 Medium ↑ / Less Stable ↓

3 0.181 23.847 1.603 0.247 ± 0.014 48/43/29 Medium ↑ / Stable ↓
GMM 2 0.202 18.422 2.187 0.132 ± 0.014 46/74 Medium ↑ / Less Stable ↓

3 0.160 16.105 2.027 0.098 ± 0.018 33/69/18 Low ↑ / Highly Unstable ↓
BIRCH 2 0.178 27.064 1.897 0.113 ± 0.026 58/62 Medium ↑ / Stable ↓

3 0.177 23.516 1.576 0.081 ± 0.022 62/54/4 Low ↑ / Highly Unstable ↓

3.5 Stability of the results

Validation and Interpretation of Results The syndrome of cognitive decline
served as a crucial reference point for evaluating cognitive recovery trajectories
in this study. Although not included in the clustering algorithms, it provided a
context for understanding the implications of the identified clusters (see Figure
5).

This comprehensive methodology enabled the identification of distinct cogni-
tive recovery trajectories in post-ischemic stroke patients, highlighting the con-
tributions of key demographic and clinical features. The proposed comparative
analysis provided a robust framework for understanding patient heterogeneity
and informing personalized rehabilitation strategies.

Time Point Sensitivity Specificity Accuracy
M6 0.7586 0.6901 0.71
M12 0.7059 0.7286 0.7212
M36 0.7222 0.7123 0.7165
M60 0.6765 0.75 0.7264

Table 5. Performance comparison of clustering model across multiple time points
(M6, M12, M36, and M60). The table demonstrates the stability of the model’s per-
formance metrics (sensitivity, specificity, and accuracy) over time, with M12 providing
additional validation through cognitive decline syndrome scores. All metrics main-
tain values around 0.70-0.75, indicating consistent model performance throughout the
follow-up period.
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Fig. 2. Longitudinal cognitive trajectories identified through K-means clustering ( k =
2 ). Performance metrics include Silhouette score ( 0.214 ), which measures cluster
cohesion and separation, and Calinski-Harabasz (CH) index (35.558), which evaluates
cluster density and separation. The blue trajectory (Cluster 0,n = 68 ) demonstrates
stable cognitive function above the clinical threshold (red dashed line), while the orange
trajectory (Cluster 1, n = 52 ) shows progressive cognitive decline, particularly between
J7 and M6, remaining below the clinical threshold of 26 points on the MoCA scale.
Shaded areas represent 95% confidence intervals for each trajectory.

3.6 Discussion

Our study builds upon these developments, exploring the application of multiple
clustering algorithms to improve stroke subtyping and characterize longitudi-
nal recovery patterns. Using the STROKDEM dataset, we develop and validate
models for identifying patient subtypes and tracking progression over 7 days, 6,
36, and 60 months post-stroke. Our analysis reveals two differentiable clusters
of stroke subtypes, characterized by distinct cognitive profiles and progression
patterns.

We compare the performance of various unsupervised clustering algorithms
for predicting cognitive outcomes, utilizing clinical, demographic, and cognitive
assessment features. Our findings suggest that initial cognitive performance, es-
pecially MoCA scores at 7 days post-stroke, is a key distinguishing factor between
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subtypes. The significant difference in cognitive decline trajectories indicates that
our clusters may represent different risk groups for cognitive deterioration, with
important implications for personalized care and rehabilitation strategies.

Our study demonstrates the potential of multi-algorithm clustering approaches
for improving stroke subtyping and understanding patient heterogeneity. By in-
tegrating clinical scores with longitudinal data and employing multiple clustering
algorithms, we provide a more comprehensive approach to stroke subtyping that
could inform personalized treatment strategies [33].

The consistent identification of two distinct clusters across different algo-
rithms enhances the reliability of our findings. These clusters, characterized by
different cognitive recovery trajectories (see figure 2), offer valuable insights into
the diverse patterns of post-stroke recovery [34].

Our study faced three primary limitations that influenced the analysis and
interpretation of results. The most significant challenge was the substantial miss-
ing data in some critical comorbidities, which limited our ability to fully under-
stand the relationship between conditions like cardiac insufficiency and cognitive
outcomes. Even though we tried many types of imputation based on deletion
and completion (MICE, KNN, forward-fill, etc). Additionally, the reliance on
static baseline MRI features prevented us from capturing the dynamic nature
of post-stroke brain reorganization, potentially missing important neuroplastic
changes that could influence recovery trajectories. The longitudinal design, while
extensive at 60 months, was constrained by only four assessment timepoints, po-
tentially overlooking important transitional periods in cognitive decline. These
limitations point to several promising directions for future research. The integra-
tion of acute and chronic phase biomarkers could provide a more comprehensive
patient profile, while sophisticated modeling approaches could better capture
the complex interplay between recovery and disease progression. External vali-
dation with larger cohorts remains crucial, as does the development of dynamic
prediction models capable of incorporating new data during patient follow-up.

4 Conclusion

Our study introduces an innovative, optimization-driven framework for identi-
fying distinct cognitive recovery trajectories in stroke patients. By formulating
cluster identification as a multi-objective optimization problem, we maximized
cluster cohesion and minimized inter-cluster separation. This ensures balanced
and clinically relevant subgroups, addressing key limitations in existing stroke
subtyping methodologies by providing a robust and interpretable method for
patient stratification.

The comparative analysis of multiple clustering algorithms revealed that K-
means clustering with k=2 offers the optimal configuration. It achieves the high-
est Calinski-Harabasz index (35.558) and maintaining a consistent balance be-
tween clusters across multiple evaluations. As detailed in Table 4, K-means also
demonstrated high utility and stability in the findings.
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Moreover, our analysis establishes the predictive power of early cognitive
assessment over traditional measures of stroke severity in predicting long-term
outcomes. Feature importance analysis highlights that MoCA scores at J7 and
initial cognitive status are more powerful predictors than NIHSS scores for dif-
ferentiating between trajectories. This challenges current clinical practices and
supports the integration of early cognitive evaluations into stroke management
protocols.

This study advances stroke patient stratification through a comprehensive
machine learning approach, demonstrating the utility of combining multiple clus-
tering algorithms with longitudinal cognitive assessments. Our findings reveal
two distinct cognitive recovery trajectories, characterized by significant differ-
ences in age, education, and physical characteristics. K-means clustering with
two clusters emerged as the optimal configuration, providing both statistical
validity (silhouette score: 0.214, Calinski-Harabasz index: 35.558) and clinical
interpretability through balanced cluster sizes (52/68 patients).

The identification of distinct cognitive trajectories carries significant clinical
implications. Early cognitive assessment at 7 days post-stroke emerged as a cru-
cial predictor of long-term outcomes. This finding underscores the importance
of implementing systematic early cognitive screening protocols in stroke units
to identify patients at risk of cognitive decline. Future research should priori-
tize external validation of these trajectories in larger, more diverse cohorts. This
should incorporate more frequent assessment timepoints to capture subtle cogni-
tive changes. Investigation of biological mechanisms underlying different recovery
trajectories, and the development of dynamic prediction models that incorpo-
rate time-varying features will also further enhance our understanding. These
approaches should also strengthen the evidence base for personalized stroke re-
habilitation, but further validation and refinement of clustering methodologies
in clinical applications remain essential. This work represents a significant step
toward more individualized and effective stroke care, while acknowledging the
need for continued methodological advancement in patient stratification.

In conclusion, our study demonstrates the potential of optimization-driven
machine learning techniques to improve stroke subtyping and patient stratifi-
cation. By leveraging longitudinal data and multiple clustering algorithms, we
have provided new insights into the diverse patterns of cognitive recovery fol-
lowing stroke, and to inform more personalized and effective stroke management
strategies, to ultimately improve outcomes for patients.
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