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ABSTRACT
Morphology, as a science that describes the shape and structure of fouling, is a key compo-
nent of a comprehensive evaluation of fouling. It also serves as a perspective in deepening
the understanding of fouling mechanisms. Nevertheless, a standardized morphological
evaluation system of fouling has not yet been established. This study takes exhaust gas
recirculation cooler fouling as the research object, for the first time, reviews the progress in
morphology over the past 25 years, and then proposes the evaluation system. These find-
ings show that the methods used to evaluate fouling morphology can be classified into vis-
ual inspection, optical microscope, digital microscope, surface profiler, scanning electron
microscope, and transmission electron microscope. The observation scale decreases from
macroscopic to mesoscopic, microscopic, and nanoscopic. The evaluation categories may
include attributes such as color, glossiness, wetness, softness, densification, roughness, frag-
mentation, connection method, orderliness, and more. Defining and categorizing, integrat-
ing full scale, developing quantifiable parameters, and reinforcing the full process for
fouling should be further deepened.

Introduction

Heat exchangers are one of the most important means
for exchanging and managing heat [1,2]. However, the
accompanying fouling has always been a difficult prob-
lem, which leads to the deterioration of the hydraulic-
thermal performance of the heat exchanger, which not
only undermines the accurate management of heat
and flows daily but also shortens the service life of the
heat exchanger, resulting in additional economic losses
and energy consumption [3–5].

Exhaust gas recirculation (EGR) cooler fouling is one
of the most representative scenarios among all heat
exchanger fouling. The four typical types of EGR coolers
inevitably generate a lot of fouling with many diverse
and complex components [6–9], because the engine
exhaust gas consists of a large number of solid and
liquid particulate matter as well as a mixture of organic
and inorganic vapors. In addition, as the engine operates
under different loads from time to time. So, the flow,
temperature, and pressure of the exhaust gas are con-
stantly changing. Therefore, the diverse and complex

components of the exhaust gas and the variable tempera-
ture and flow fields make the fouling more significant
and complex in the EGR cooler.

As Peter Drucker said, “You can’t manage what you
don’t measure.” Therefore, if we want to manage foul-
ing scientifically, measuring or evaluating it is one of
the prerequisites. Of all the evaluation types, morph-
ology is intuitive and covers both macro and micro
scales; it can be evaluated qualitatively as well as quan-
titatively; therefore, morphology is one of the basic
ways of evaluation. In addition, direct evidence of
fouling generation and development can be obtained
through the measurement of fouling morphology in
time and space, rather than indirect reasoning by way
of heat transfer efficiency or pressure drop, which is
more credible. More importantly, fouling morphology
is also one of the most important factors affecting the
performance of heat exchangers; for example, fouling
skeleton size affects heat exchanger effectiveness [6].
Therefore, establishing the relationship between fouling
morphology and performance can help to optimize
heat exchanger performance. Overall, fouling
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morphology plays an important role in describing
fouling, understanding fouling generation and growth
processes, and improving heat exchanger performance.

With the high rate of development and application
of measurement techniques in recent years, new dis-
coveries on the morphology of fouling have allowed a
better comprehension. However, the results of these
studies are disseminated in various publications, and
no comprehensive review has been conducted.
Therefore, to address this problem, the present work
systematically reviews the findings of EGR cooler foul-
ing morphology during the period from 1999 to 2023,
focusing on the following issues:

i. What are the evaluation methods of fouling
morphology?

ii. What are the evaluation categories of fouling
morphology?

iii. What are the advances and gaps in fouling
morphology?

Methodology of the proposed evaluation
system

To make the proposed EGR cooler fouling morphology
evaluation system as comprehensive, hierarchical and
consensual as possible. This work follows the method-
ology as shown in Figure 1. The evaluation system was

proposed through three stages: literature search, screen-
ing, and summarization. It is worth mentioning that
the evaluation system referred to in this work consists
of five parts: evaluation object, evaluation method,
evaluation scale, evaluation category, and typical
descriptive words.

Morphology determination of fouling

General methods and typical techniques for fouling
morphological characterization are given in Table 1
[10–29], along with reference cases. Roughly speaking,
the evaluation methods can be classified into probe,
visual, and other. Typical techniques in the probe type
include atomic force microscopy (AFM), scanning
tunneling microscopy (STM), and probe type surface
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Figure 1. Methodology of the proposed evaluation system.

Table 1. General evaluation methods and techniques for foul-
ing morphology.
Type Topic technique References

Probe Atomic Force Microscopy (AFM) [10,11]
Scanning Tunneling Microscopy (STM) [12,13]
Probe Type Surface Profiler [14,15]

Visual Optical Microscopy (OM) [16,17]
Optical Type Surface Profiler [18,19]
X-ray Computed Tomography (X-ray CT) [20,21]
Scanning Electron Microscopy (SEM) [22,23]
Transmission Electron Microscopy (TEM) [24,25]

Other X-ray Diffraction (XRD) [26,27]
Small Angle X-ray Scattering (SAXS) [28,29]

Nomenclature

AFM Atomic force microscopy
CT Computed tomography
EGR Exhaust gas recirculation
OM Optical microscopy
SAXS Small Angle X-ray Scattering

SEM Scanning Electron Microscopy
STM Scanning tunneling microscopy
TEM Transmission electron microscopy
X-ray CT X-ray computed tomography
XRD X-ray diffraction
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profiler; while typical techniques in the visual type are
optical microscopy (OM), X-ray computed tomog-
raphy (X-ray CT), ray computed tomography (CT),
transmission electron microscopy (TEM), etc. Other
types are related to advanced optical diagnostics, such
as X-ray diffraction (XRD), and small Angle X-ray
Scattering (SAXS), both of which mainly resolve the
structural information of the fouling rather than the
formal characteristics.

It is worth stating that the shape, size, and connec-
tion of the fouling forms are central to this work, and
that structural features are beyond the scope of inves-
tigation of this work.

Evaluation method for EGR cooler fouling

The problem of EGR cooler fouling was first raised by
Girard et al. [30] in 1999. Since 2004, scientists have
begun to pay attention to the morphological charac-
teristics of fouling. Ismail et al. [31] visually observed
the fouling of the inlet header at both 45� and 60�

and found that the fouling of the inlet header at 60�

was more homogeneous, and further measured the
thickness of the fouling based on optical microscope
[32]. They were the first team to describe the fouling
morphology of EGR cooler, and due to the simplicity
and efficiency of this evaluation, the experiments
could be carried out on-site. Since then, the evaluation
of fouling morphology based on visualization and
optical microscopy has flourished, and it has received
a large number of positive comments from scientists
[33–39]. There have been some new changes in how
optical microscopy measurements are made in recent
years. Several studies have used digital microscope
[40–42] or optical surface profiler [18,19] to obtain
three-dimensional images of fouling surfaces, which,
unlike traditional two-dimensional pictures, have
resulted in a more stereoscopic and intuitive presenta-
tion of fouling morphology.

Although optical microscope can observe the mor-
phological features of fouling under a certain intensifi-
cation, they are mainly in millimeters and micrometers,
which are still macroscopic morphological features, and
it is impossible to analyze the composition of fouling
from smaller constituent units [43,44]. Therefore, some
researchers began to use equipment with higher magni-
fication to observe fouling, i.e., scanning electron
microscope. Lance et al. [45] first characterized the
microscopic morphology of fouling with scanning elec-
tron microscope in 2010 and found the mud-cracking
characteristics of fouling and nanoscale pearl-string-like
structure of particulate matter, as well as the bridging

connection mode. Since then, scanning electron micro-
scope has also begun to be widely applied to evaluate
fouling morphology [42,46–52].

With the rapid development of material character-
ization techniques, transmission electron microscope,
which can observe nanostructures more clearly, has
also started to be applied to fouling evaluation. Sluder
et al. [49] employed this technique for the first time
in 2013 to observe the smallest unit of fouling forma-
tion, i.e., the particulate matter, in its original form.
Arnal et al. [53] and Paz et al. [18] also used this
approach to observe the characteristics of fouling-
forming particulate matter to elucidate the differences
in the morphology of fouling exhibited at the macro-
scopic level at the origin.

To sum up, morphology is a discipline that focuses
on visual evaluation, as shown in Figure 2 [30–32,45,49].
In evaluating EGR cooler fouling, six evaluation meth-
ods, namely, visual observation, optical microscope,
digital microscope, surface profiler, scanning electron
microscope, and transmission electron microscope, are
mainly used. Among them, visual observation optical
microscope, digital microscope, and surface profiler,
mainly observe the morphology of fouling at macro-
scopic and mesoscopic scales, with the size distribution
of millimeter to micrometer. Scanning electron micro-
scope mainly observes the morphology of fouling at
mesoscopic and microscopic scales, with the size distri-
bution of micrometer to nanometer; and transmission
electron microscope mainly observes the morphology of
fouling at the nanoscale, with the size of nanometer.
Thus, the six evaluation methods completely cover the
morphology of fouling at the macroscopic, mesoscopic,
microscopic, and nanoscopic scales. Furthermore, it is a
process of continuously reducing and analyzing the con-
stituent units of fouling from smaller scales, which
makes it possible to interpret the formation mechanism
and process of fouling at smaller scales.

Compared to the generally available methods for
fouling morphology evaluation, most of the techniques
have been well adopted for EGR cooler fouling char-
acterization, but three techniques, AFM, STM, and
CT, are still missing.

Evaluation system

Table 2 [6,7, 9,18, 19,40–42, 45–91] shows the pro-
posed evaluation system of morphology based on the
past descriptions of EGR cooler fouling morphology
in the literature. It is categorized into four scales,
including macroscopic, mesoscopic, microscopic, and
nanoscopic, which correspond to five characterization
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objects: fouling layer, fouling layering and clustering,
particulate matter, and primary carbon particle. The
evaluation scales become smaller and smaller and
together construct a comprehensive and three-dimen-
sional evaluation system. Each characterization object
corresponds to multiple evaluation categories. Taking
the fouling layer as an example, it can be described

from multiple categories, including color, gloss, dry-
ness, softness, hardness, denseness, roughness, and
fragmentation, and the typical terms and evaluation
methods that can be used for describing each of these
categories are also given in the Table 2.

Table 2 also contains a part of the morphology of
the fouling that is intrinsically linked to the
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Figure 2. Evaluation methods and development timeline of the morphology of EGR cooler fouling.

Table 2. The evaluation system for EGR cooler fouling morphology.

Scale Object Category Typical description words

References for the
typical description

words Evaluation method

Macroscopic Fouling layer Color Black, yellow, brown,
gold, grey, white

[6, 9, 19, 40, 54–62] Visual inspection,
optical microscope,
and digital microscopeGlossiness Shiny, high-reflectivity,

glossy, matte-varnish
[6, 19, 42, 45, 54,

63–65]
Wetness Dry and wet, oily, like

parched soil
[45, 50, 51, 54, 55,

66–69]
Softness Hard, soft, brittle [52, 69–71]
Densification Powdery, powder-lacquer,

dense, porous,
porosity, cavity
structure, flocculent,
loose

[7, 40, 41, 45, 48,
50–52,54–56, 63, 69,

71–79]

Roughness Rough, smooth, dune-like,
area ratio

[9, 18, 42, 48, 69, 74,
75, 80–85]

Visual inspection,
optical microscope,
digital microscope,
and surface profiler

Fragmentation Crack, groove, notch,
scratches, speckles

[18, 40–42, 45, 69, 77,
85–88]

Optical microscope,
digital microscope, and
scanning electron
microscope

Mesoscopic Fouling layering Layers Two layers [42, 76, 80, 89]
Top layer Dendritic, fine nanometer

structure, racemose
[47, 52, 75, 80, 83]

Bottom layer Dense [42, 80,89]
Connection method Columnar [80]

Clusters / aggregates /
large particulates

Shape Debris, fragment, flaky,
rounded agglomerates

[42, 73, 78, 87, 90]

Connection method Mechanical interlock,
bridge

[7, 45, 75, 80]

Microscopic Particulate matter Shape Spherical shape, irregular
shape

[53, 91] Scanning electron
microscope

Connection method String of pearls [42, 45]
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composition and generation process. The differences
in the foul’s color are due to their composition.
Fouling composed of dry carbon particles is usually
black in color, whereas those composed of carbon
particulates co-mingled with an organic condensate,
such as hydrocarbons, are usually brown, yellow, or
gold in color, whereas gray and white fouling have
not yet been well explained. Cracks and grooves in
the fragmentation usually imply that the fouling has
experienced condensate ingress or evaporation, trig-
gering structural collapse. In terms of constituent
units and connections, the fouling can be divided into
two layers, the top and the bottom, which are con-
nected by columns; each layer consists of many clus-
ters of agglomerates or large particles stacked in a
mechanically interlocking bridge and the clusters are
made up of particles connected by strings of pearls,
with each particle in turn consisting of primary car-
bon particles connected by a chain-like structure.

Research gaps and outlook

Past studies have shown fruitful progress in the
morphology of fouling in EGR coolers, moving from
the macro to the micro-scale and even the nanoscale,
from qualitative to somewhat quantitative evaluations,
and from a single morphology description to the cor-
relation with the evolution of fouling. However, there
are still some gaps, as follows:

i. Clarify the definition and classification of fouling
from the morphological perspective. Fouling is the
deposition of unwanted materials on the heat trans-
fer surface [92]. However, this definition is broad,
especially since fouling is characterized by diversity
and complexity, and there is no consensus on a
precise definition as well as a classification for EGR
cooler fouling, which hinders the comparison of
similar or dissimilar fouling. However, the advance-
ment of morphology maybe can provide the possi-
bility to deal with this issue. Therefore, to define
fouling and establish a corresponding basis for its
classification from a morphological point of view is
a sub-topic that deserves to be expanded in depth.

ii. Organic integration of full-scale morphology. Past
studies have usually analyzed morphology at only
one or two of the four scales: macroscopic, meso-
scopic, microscopic, and nanoscopic in one study,
and no study has examined the full range of all
three or four scales simultaneously. However, the
epistemological approach, whether based on reduc-
tionism or systematics, requires strictly tracing

fouling composition’s unit and hierarchical rela-
tionships. Therefore, further organic integration of
morphology at different study scales is needed to
constitute a full-scale morphological theory.

iii. Development of quantifiable morphology. Although
several parameters have been proposed to quantify
morphology, such as area ratio and roughness,
allowing precise comparisons of morphological dif-
ferences. However, most of the studies are still
based on qualitative descriptions, using words such
as porous, fluffy, dense, etc., which are not condu-
cive to quantifying the extent of these differentia-
tions and hamper comparisons between fouling. In
addition, some parts of fouling are so complex that
qualitative descriptions do not characterize them
well, e.g., fluffy or branches fouling at the gas-
fouling-interface, and clearly describing them is
difficult. Therefore, developing operational and
quantifiable morphological parameters remains a
sub-topic that requires continuous efforts.

iv. Reinforce the connection between morphology
and the full process of fouling generation mechan-
ism and evolution. Developing the morphology of
fouling is important, but more importantly,
understanding the mechanism of fouling gener-
ation and proposing strategies to mitigate or elim-
inate it is the ultimate goal. Currently, some
studies still focus on the simple comparison of the
morphological differentiation of fouling but do
not deeply analyze the root causes of these differ-
ences, which are detached from the generation
mechanism and evolution process. Therefore, the
morphology of fouling should be better used to
reveal the mechanism of fouling generation, and
the evolution of growth, aging, and removal proc-
esses should be further strengthened.

Conclusions

The present work provides a comprehensive review of
the results of morphological studies of fouling in EGR
coolers for the past 25 years, and the following conclu-
sions can be drawn:

i. The evaluation scales are macroscopic, mesoscopic,
microscopic, and nanoscopic; the evaluation meth-
ods contain visual inspection, optical microscope,
digital microscope, surface profiler, scanning elec-
tron microscope, and transmission electron micro-
scope, and the evaluation scales are reduced in
order.
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ii. A systematic evaluation system is established,
including the evaluation categories of color,
glossiness, wetness, softness, densification, rough-
ness, connection method, orderliness etc.

iii. Defining and categorizing fouling from a mor-
phological point of view, organically integrating
full-scale morphology, developing quantifiable
morphology, and reinforcing the connection
between morphology and the full process of foul-
ing generation mechanism and evolution are four
sub-topics that can be further expanded.
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