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Abstract: Quality control and predictive maintenance are two essential pillars of Industry
4.0, aiming to optimize production, reduce operational costs, and enhance system reliability.
Real-time visual inspection ensures early detection of manufacturing defects, assembly
errors, or texture inconsistencies, preventing defective products from reaching customers.
Predictive maintenance leverages sensor data by analyzing vibrations, temperature, and
pressure signals to anticipate failures and avoid production downtime. Image-based quality
control has become critical in industries such as automotive, electronics, aerospace, and
food processing, where visual appearance is a key quality indicator. Although advances
in deep learning and computer vision have significantly improved anomaly detection,
industrial deployments remain challenged by the scarcity of labeled anomalies and the
variability of defects. These issues increasingly lead to the adoption of unsupervised meth-
ods and generative approaches, which, despite their effectiveness, introduce substantial
computational complexity. We conduct a unified comparison of ten anomaly detection
methods, categorizing them according to their reliance on synthetic anomaly generation
and their detection strategy, either reconstruction-based or feature-based. All models are
trained exclusively on normal data to mirror realistic industrial conditions. Our evaluation
framework combines performance metrics such as recall, precision, and their harmonic
mean, emphasizing the need to minimize false negatives that could lead to critical pro-
duction failures. In addition, we assess environmental impact and hardware complexity
to better guide method selection. Practical recommendations are provided to balance
robustness, operational feasibility, and sustainability in industrial applications.

Keywords: anomaly detection; computer vision; Industry 4.0

1. Introduction

Industry 4.0 relies on advanced automation, artificial intelligence, and the Internet of
Things (IoT) to optimize production and industrial system maintenance. In this context,
anomaly detection plays a crucial role in identifying manufacturing defects and malfunc-
tions before they compromise product quality or operational continuity. Here, anomaly
detection is understood not merely as a classification task, but rather as the identification of
rare and critical deviations from expected patterns, emphasizing the detection of subtle
irregularities rather than broad categorical assignments. As highlighted by Lee et al. [1],
Cyber-Physical Systems (CPS) are central to this transformation, enabling real-time inter-
action between digital models and physical production systems. Smart manufacturing
frameworks, as outlined by Lu and Weng [2], incorporate intelligent algorithms to monitor,
analyze, and improve quality processes.
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Image-based quality control is a key component of this digital evolution. By detecting
and eliminating defective products before they reach the market, it helps companies avoid
reputational risks associated with non-compliant products. A missed defect can lead to
costly recalls, loss of customer trust, and potential regulatory penalties. Thanks to advances
in computer vision and deep learning, visual inspection can now be automated with greater
accuracy and speed. Unlike manual inspections, which are costly and prone to human
error, Al-based systems detect subtle defects and provide full traceability in production.
This approach is widely used in sectors such as electronics, automotive, and aerospace,
where strict quality standards apply.

However, industrial anomaly detection poses several challenges. A major limitation is
the rarity of defects, which creates severe class imbalances in datasets. Supervised deep
learning methods become ineffective when abnormal examples are scarce, making unsu-
pervised and self-supervised methods more suitable in industrial settings. As described
by Rulff et al. [3], a wide spectrum of anomaly detection strategies exists—ranging from
shallow statistical methods to deep neural networks—each offering different trade-offs
between interpretability and performance.

Moreover, variability in imaging conditions (e.g., lighting, viewing angles, and pro-
duction parameters) affects the appearance of normal samples, further complicating defect
detection. In addition, data confidentiality and infrastructure constraints in industry often
require local, on-premises processing, which limits access to powerful computing resources.
This necessitates the use of lightweight and efficient models to ensure real-time inference
without compromising production throughput. As Sultani et al. [4] pointed out in a differ-
ent context, anomaly detection methods must remain reliable even in environments where
anomalous events are rare and diverse.

Beyond manufacturing, similar computational and detection challenges are encoun-
tered in other critical sectors such as healthcare. In both industrial and medical applications,
the constraints on energy consumption, latency, and data privacy demand the development
of efficient and robust anomaly detection methods. In these contexts, minimizing false
negatives—i.e., the ability to detect all critical anomalies—is particularly crucial to ensure
safety, prevent severe failures, and protect human lives.

This study focuses specifically on industrial quality control through visual inspec-
tion, particularly in the context of manufacturing processes involving objects or materials.
The evaluated methods are tested on representative data drawn from the MVTec AD
dataset [5], which includes components commonly found in mechanical and material-
based production, such as metal parts, screws, bottles, or fabrics. In practical applications,
this often translates to detecting misplaced screws on printed circuit boards (PCBs), incor-
rectly aligned electronic components, or surface defects such as scratches or contaminants
that can jeopardize the functionality or reliability of manufactured products. This selection
reflects practical use cases typical of Industry 4.0 environments, where precision in defect
detection and computational efficiency are critical.

We conduct a comparative analysis of ten anomaly detection methods tailored for
image-based quality control. The evaluation focuses on their ability to detect com-
plex anomalies, their robustness to data variations, and their computational efficiency.
The selected methods encompass a diverse set of state-of-the-art approaches, including
reconstruction-based models, feature extraction methods, and techniques with or without
synthetic anomaly generation. The selection was motivated by their recognition in recent
literature, the availability of open-source implementations, and their relevance to industrial
applications. All methods were evaluated on a dataset representative of manufacturing
environments, ensuring that their performance reflects real-world industrial conditions. It
is also important to note that all selected methods are designed to be trained exclusively on
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normal (defect-free) data, aligning with the industrial reality where anomalous examples
are rare, unlabeled, or difficult to collect. The primary objective is to identify approaches
that maximize detection performance while minimizing false positives, thereby avoiding
unnecessary rejection of compliant products and reducing operational costs.

The remainder of this paper is organized as follows. Section 2 presents the catego-
rization framework used to classify the anomaly detection methods. Section 3 details the
experimental protocol, including the dataset, training procedures, and evaluation metrics.
Section 4 discusses the comparative results across different object types and analyzes the
environmental and computational impacts of the methods. Finally, Section 5 provides
a general discussion of the findings, and Section 6 concludes the paper with practical
recommendations and perspectives for future work.

2. Categorization of Anomaly Detection Methods

We operate under the assumption that no abnormal samples are accessible during
training. This constraint forces models to rely solely on normal samples, significantly influ-
encing the choice of approaches and their ability to generalize to previously unseen defects.

To better understand the differences between various anomaly detection approaches,
we propose a categorization based on two main axes. The first axis distinguishes methods
based on the use of synthetic anomalies: some approaches generate artificial anomalies
to support training, while others rely exclusively on normal samples. The second axis
focuses on the detection strategy: either based on image reconstruction or on the extraction
of discriminative features. This dual categorization provides a structured framework to
evaluate the strengths and limitations of each method with respect to the specific constraints
of industrial quality control.

The following sections present this categorization in detail and introduce the ten
evaluated methods, structured according to the two axes defined above.

2.1. Synthetic vs. Real Anomaly Generation

One of the main challenges in anomaly detection is the scarcity or even the absence of
abnormal samples during training. Given the rarity or unavailability of genuine anomalies,
some methods address this limitation by generating synthetic anomalies to enrich the
training process. However, creating realistic and diverse anomalies remains a significant
challenge, as industrial defects can vary widely, from microcracks to texture or color
variations and assembly defects. This diversity makes it difficult to produce synthetic
anomalies that accurately reflect the defects encountered in production. Moreover, overly
simplistic anomaly generation techniques often fail to capture the full variability of real-
world anomalies, which can reduce the effectiveness of these methods.

To address this issue, different anomaly generation approaches have been developed.
Some methods overlay artificial textures onto the original image using randomly gener-
ated masks to simulate surface defects. Others adopt a copy-paste approach, where a
region of the image is duplicated and repositioned, creating structural inconsistencies.
These techniques help diversify synthetic anomalies and improve models” generalization
capabilities, though the quality of the generated anomalies directly impacts real-world
detection performance.

Some methods require artificial anomaly generation for training, while others rely
solely on normal samples. Methods generating synthetic anomalies are particularly useful
when real defects are rare or difficult to collect, but their effectiveness depends on the quality
and representativeness of the synthetic data. In contrast, methods trained exclusively on
normal data exploit statistical deviations or latent space representations to detect anomalies
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without requiring abnormal samples. These approaches are often preferred in environments
where generating realistic anomalies is impractical or costly.

2.2. Reconstruction-Based vs. Feature-Based Approaches

Anomaly detection methods also differ in how they identify abnormal patterns. Some
rely on image reconstruction and analyze discrepancies between the original and recon-
structed versions, while others directly extract discriminative features to distinguish normal
and abnormal samples.

Reconstruction-based approaches rely on the observation that models trained only
on normal images reconstruct them accurately, but tend to fail in reconstructing images
containing anomalies. The difference between the input and its reconstruction indicates the
presence of a defect. This strategy is particularly effective for detecting subtle anomalies
that are difficult to characterize with fixed descriptors. However, it can struggle when
certain anomalies are reconstructed too faithfully, making them harder to detect.

Feature-based approaches, by contrast, learn feature representations where anomalies
naturally deviate from normal samples. These methods generally provide faster infer-
ence times by avoiding the need for full image reconstruction. However, they may be
sensitive to natural variations in the data that do not necessarily correspond to true anoma-
lies. The choice between these two families of approaches depends both on the types of
anomalies to detect and on the computational constraints of the target application.

2.3. Overview of Anomaly Detection Methods

This section briefly presents the ten studied methods, categorized according to the
previously defined framework, and illustrated in Figure 1.

Type
Features based Reconstruction based
4 N/ I
MSPBA RIAD
o~ Zo PatchSVDD DDAD
>
S
<§ PatchCore Dinomaly
5|\ AN /
e N/ I
=i
3 CutPaste Diffusion AD
g
Glass Dream
N N /

Figure 1. Categorization of anomaly detection methods according to anomaly generation and
detection strategy.
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2.3.1. Anomaly Generation and Feature-Based Approaches

GLASS [6] introduces synthetic anomalies by applying two complementary strategies:
local transformations mix a texture image with the original image using a random mask to
simulate surface defects, while global transformations inject Gaussian noise directly into
the feature space to disrupt latent representations. A WideResNet50 [7] architecture is used
to extract features from intermediate layers (Layer 2 and Layer 3), and an adapter network
refines these features to enhance alignment between normal and abnormal samples. Finally,
a discriminator network assigns an anomaly score that quantifies how much an image
deviates from normality. In the original implementation, the test dataset was mistakenly
used during model selection, introducing data leakage and bias. This practice can artificially
inflate performance metrics by allowing indirect adaptation to test data. To correct this
issue, our evaluation restricts model selection strictly to the training set to ensure a rigorous
and unbiased assessment.

CutPaste [8] simulates synthetic anomalies by cutting a patch from an image and
pasting it randomly elsewhere within the same image. The model is trained to classify
whether an image has undergone such transformation. Several variants exist, such as
CutPaste Scar, which generates linear cuts resembling scratches or cracks, and CutPaste
3-Way, combining multiple transformations to enhance anomaly diversity. In addition
to image classification, CutPaste incorporates a Gaussian Density Estimator (GDE) that
models the distribution of extracted features to better distinguish normal from abnormal
images. The GDE estimates the likelihood of new feature vectors belonging to the normal
distribution, strengthening anomaly detection alongside the CutPaste transformations.
Since the official CutPaste code was unavailable, an unofficial reproduction was used,
with validation indicating similar or improved performance relative to the original work.

2.3.2. Approaches Without Anomaly Generation and Feature-Based Detection

PatchCore [9] extracts local features from normal images using a WideResNet50
backbone and stores a compact memory bank by selecting a representative subset of features
(e.g., 10%). During inference, a test sample is compared to the nearest memory features,
and an anomaly score is computed based on the minimum distance. This strategy minimizes
memory consumption and accelerates inference while preserving detection accuracy.

PatchSVDD [10] segments images into patches and embeds them into a compact fea-
ture space through self-supervised contrastive learning. A Support Vector Data Description
(SVDD) model then encloses normal patch embeddings within a minimum-volume hyper-
sphere. Anomalies are detected as patches that lie outside this hypersphere. Additionally,
a pretext task requiring the prediction of the relative positions of patch pairs enhances the
quality and structure of the learned features, improving anomaly localization.

MSPBA [11] extends PatchSVDD by applying multi-scale analysis. It constructs K-
Means clusters across patch features at three different resolutions rather than using a single
hypersphere. This approach captures variations across different spatial scales and improves
detection robustness in the presence of complex textures and defect patterns, as typically
encountered in industrial scenarios.

2.3.3. Approaches with Anomaly Generation and Reconstruction-Based Detection

DRAEM [12] combines an autoencoder trained for normal image reconstruction with a
segmentation network trained to detect discrepancies. Synthetic anomalies are introduced
during training by applying external textures and color perturbations using random masks.
The autoencoder reconstructs the unaltered image, while the segmentation module learns
to identify regions that differ between the original and reconstructed images, producing
detailed anomaly maps.
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DiffusionAD [13] relies on a probabilistic diffusion model, where Gaussian noise is
progressively added to normal images during training, and the model learns to reverse this
process to restore the original content. Synthetic anomalies are injected during training
through random masking and external texture overlays. At inference, the model recon-
structs a defect-free version of the input image, and a segmentation network identifies
discrepancies, highlighting anomalies even in cases where reconstruction alone would
be insufficient.

2.3.4. Approaches Without Anomaly Generation and Reconstruction-Based Detection

RIAD [14] addresses anomaly detection through inpainting-based reconstruction.
During training, random masks at three scales are applied to normal images, and the model
learns to predict and restore the missing regions using a UNet-based [15] encoder-decoder
architecture. A similarity loss ensures that reconstructed regions preserve fine structural
details. At inference, anomalies are identified by analyzing pixel-wise differences between
the input and its reconstructed version.

DDAD [16] employs a denoising diffusion model, guiding the reconstruction process
by conditioning it on the original input image. Anomalies are detected by calculating
discrepancies both at the pixel level and within an adapted feature space extracted by a
pretrained network. An unsupervised domain adaptation step refines the feature extractor
to better match the characteristics of industrial images generated during training, improving
detection precision on unseen data.

Finally, Dinomaly [17] adopts a hybrid approach based on feature consistency.
The model compares latent representations extracted by an encoder (based on DinoV2 [18])
and a decoder. For normal images, feature transformations are expected to remain consis-
tent between the two stages. Discrepancies between encoder and decoder features serve as
anomaly indicators, without requiring pixel-level reconstruction. This mechanism reduces
the risk of anomalies being reconstructed too faithfully and improves detection robustness
in complex settings.

2.4. Overview of Anomaly Detection Methods

While recent anomaly detection methods have achieved impressive performance
improvements—sometimes reaching near-saturation on standard benchmarks—it is im-
portant to note that these performances are increasingly difficult to surpass. In particular,
most existing works focus primarily on maximizing global metrics such as the AUROC.
However, in industrial quality control applications, the primary concern is to minimize
missed anomalies (false negatives), as undetected defects can have severe operational and
financial consequences. Few methods explicitly address this need, suggesting that a shift
toward evaluation strategies prioritizing anomaly recall over purely global optimization is
necessary for realistic deployments.

Furthermore, two important methodological aspects deserve particular attention. First,
methods that generate synthetic anomalies during training can enrich the diversity of defect
types encountered and potentially improve generalization. However, they risk introducing
unrealistic artifacts that do not accurately represent real-world defects, potentially biasing
the model toward detecting "artificial" anomalies. On the other hand, methods that avoid
synthetic anomalies better align with industrial constraints, where genuine anomalies are
rare and diverse, but may suffer from limited exposure to defect variability during training.

Second, reconstruction-based approaches offer the advantage of detecting subtle,
localized deviations from normality, making them effective for complex or small-scale
defects. Nevertheless, these methods can inadvertently reconstruct anomalies too faithfully,
reducing the difference between normal and abnormal images and complicating detection.
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Feature-based approaches circumvent this risk by learning directly discriminative represen-
tations but may be more sensitive to natural variations within the normal class. The choice
between these strategies must therefore be guided by the specific operational priorities,
such as defect criticality, data variability, and computational constraints.

3. Methodology
3.1. Materials

All models were trained under identical hardware conditions to ensure a fair and con-
sistent performance comparison. Experiments were conducted on an HP OMEN computer
equipped with an Intel Core i9-11900K processor (11th Gen, 3.50 GHz, 16 threads), an NVIDIA
RTX 3090 GPU with 24 GB of VRAM, 64 GB of RAM, and 64 GB of swap memory.

3.2. Data and Parameters

The evaluation of the ten anomaly detection methods was performed using the MV Tec
Anomaly Detection dataset [5], a widely recognized benchmark for industrial anomaly
detection. It comprises 15 categories, including 10 object classes (e.g., bottle, cable, capsule,
metal) and 5 texture classes (e.g., wood, fabric, leather).

The training set contains only normal samples, while the test set includes both normal
and anomalous images, as illustrated in Figure 2. However, the test set is imbalanced,
with normal images representing only 25% to 30% of the samples depending on the class.
To ensure a more balanced and fair evaluation, we restructured the test set by transferring
a portion of normal images from the training set to the test set.

Bottle | ‘ Screw ‘ ’ Pill ‘ ‘ Hazelnut ‘ ’ Cable

O/
I .~
// *

Figure 2. Illustration of the MVTec dataset.

Without anomaly

Although this adjustment reduced the amount of training data, it enabled a more
representative evaluation by restoring a better balance between normal and anomalous
samples. Importantly, this rebalancing does not introduce bias: all normal images adhere
to the same quality standards and are visually and functionally interchangeable. Thus,
the selection of normal images for reallocation has no significant impact on the results.

All models were trained exclusively on normal images, following an unsupervised
approach designed to learn the distribution of normal data and detect deviations. For meth-
ods requiring synthetic anomaly generation, the transformations described in their original
publications were faithfully applied.

Additionally, we observed that some methods originally used test images during
training, particularly for model selection based on test performance. To ensure proper
experimental rigor, we corrected these practices by excluding all test images from training



Big Data Cogn. Comput. 2025, 9, 128

8 of 21

and validation phases. Final model evaluation was conducted exclusively on unseen
test data.

Regarding hyperparameters, we adhered as closely as possible to the configurations
recommended in the original publications to maintain consistency. However, in cases
where the memory requirements exceeded the capabilities of the RTX 3090 GPU (24 GB of
VRAM), we adapted the settings by first reducing the batch size. If necessary, we further
decreased the input image resolution, maintaining a minimum of 256 x 256 pixels to
preserve evaluation fidelity.

3.3. Metrics Evaluation

To comprehensively assess the anomaly detection methods, we categorize the evalua-
tion metrics into three groups: Performance Metrics, Environmental Metrics, and Hardware
Complexity Metrics.

3.3.1. Performance Metrics

These metrics measure the accuracy and robustness of the models based on standard
classification and segmentation criteria.

*  Area Under the ROC Curve (AUC Image): This metric measures the model’s ability to
distinguish between normal and anomalous images, corresponding to the area under
the ROC (Receiver Operating Characteristic) curve, which plots the true positive
rate (TPR) against the false positive rate (FPR). A value closer to 1.0 indicates better
performance [19].

*  Recall: Recall evaluates the proportion of correctly detected anomalies among all
actual anomalies, defined as:

TP

Recall - m

)
where TP denotes true positives and FN denotes false negatives. A high recall reflects
effective anomaly detection but may also increase false positives [20].

*  Fl1-Score: The F1-Score provides a harmonic mean of precision and recall, offering a
balanced view of detection performance, particularly for imbalanced datasets. It is

defined as:

Precision x Recall
F1-Score =2 x Precision + Recall @)

Precision measures the proportion of true anomalies among detected anomalies, and re-
call measures the proportion of detected anomalies among all actual anomalies [21].

*  Average Precision (AP): Average Precision evaluates the model’s average precision
across all possible thresholds, computed as:

AP =Y (R, —Ry_1)Py (3)

n

where P, and R, are the precision and recall at threshold n. This metric is widely used
in object detection and anomaly detection tasks [22].

3.3.2. Environmental Metrics

Environmental metrics assess the ecological footprint associated with model training
and inference. Specifically, we monitor:

e Energy Consumption and CO, Emissions: Energy usage is recorded throughout
the training phase based on GPU power draw and total runtime. CO, emissions
are estimated using a standard emission factor of 0.475 kg CO, /kWh, providing an
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approximate measure of the environmental impact. Reducing energy and emissions is
critical for sustainable deployment at industrial scales.

3.3.3. Hardware Complexity Metrics

Hardware metrics quantify the computational demands of the models, focusing on
the following aspects:

e Inference Time: The time required for a model to process a single image or batch. Low
inference times are crucial for real-time applications in industrial environments.

*  GPU Memory Usage: The amount of VRAM consumed during training and inference.
Models with high memory usage may face deployment constraints, particularly on
resource-limited hardware or edge devices.

e Giga Multiply-Accumulate Operations (GMAC): GMAC quantifies the number of
billions of operations (multiplications and additions) required during a single for-
ward pass through the network. Higher GMAC values imply greater computational
demands, which can impact execution time, energy efficiency, and hardware require-
ments. Thus, reducing computational complexity while maintaining detection perfor-
mance remains a key optimization goal.

4. Results

This section presents the evaluation results of the ten anomaly detection methods
under different conditions. First, the global performance is analyzed, followed by a detailed
examination across three specific categories: fixed objects, rotating objects, and textures.
Finally, the environmental impact and hardware complexity associated with each method
are discussed.

4.1. Global Comparison of Anomaly Detection Methods

Table 1 summarizes the global performance of all evaluated methods across four key
metrics: AUC, Recall, F1-Score, and Average Precision (AP). The ranking is based on the
average results across the 15 classes of the MVTec AD dataset. A detailed breakdown of the
results per class is provided in Appendix A.

Table 1. Global ranking of anomaly detection methods based on AUC, Recall, F1-Score, and Average
Precision metrics (averaged over 15 classes).

Method AUC Recall F1-Score AP Image
Value Rank Value Rank Value Rank Value Rank
Dinomaly 99.61 1 97.56 1 98.27 1 99.65 1
PatchCore 98.89 2 96.84 2 97.10 2 99.08 2
GLASS 97.65 3 92.95 4 93.90 3 97.83 3
DDAD 96.79 4 91.84 5 89.74 6 96.79 4
DRAEM 95.88 5 94.00 3 93.63 4 95.59 6
DiffusionAD  95.29 6 90.71 6 92.16 5 95.99 5
MSPBA 92.45 7 86.20 7 87.00 7 93.24 7
CutPaste 91.72 8 83.64 8 86.83 8 92.64 8
RIAD 81.71 9 75.96 9 77.47 9 82.07 9
PatchSVDD 77.98 10 76.68 10 75.87 10 78.11 10

The results indicate that Dinomaly outperforms all other evaluated methods across
every metric, demonstrating excellent robustness and detection accuracy. PatchCore follows
closely, offering competitive performance with lower computational demands. GLASS
achieves strong precision but a slightly lower recall, suggesting a tendency to miss certain
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anomalies. Conversely, methods such as RIAD and PatchSVDD exhibit significantly lower
performance, making them less suitable for demanding industrial quality control tasks.

4.2. Performance on Fixed Objects

Table 2 presents the performance of the anomaly detection methods specifically on
fixed objects, evaluated using the same four metrics: AUC, Recall, F1-Score, and Average
Precision (AP).

Table 2. Performance of anomaly detection methods on fixed objects.

Method AUC Recall F1-Score AP Image
Value Rank Value Rank Value Rank Value Rank
Dinomaly 99.46 1 97.25 1 97.72 1 99.52 1
PatchCore 98.48 2 95.34 3 95.97 2 98.69 2
DDAD 96.68 3 94.73 2 86.30 6 97.06 4
GLASS 96.35 4 90.17 5 90.99 3 96.63 3
DiffusionAD  93.14 5 86.68 6 88.42 7 94.32 7
MSPBA 93.13 6 85.79 7 88.14 5 94.26 6
DRAEM 92.54 7 90.65 4 90.89 4 91.77 5
CutPaste 89.15 8 79.25 8 83.45 8 90.05 8
RIAD 83.17 9 79.93 9 79.83 9 83.77 9
PatchSVDD 83.59 10 78.66 10 79.84 10 83.49 10

Consistent with the global results, Dinomaly outperforms all other methods for fixed
objects across all evaluated metrics. PatchCore again ranks second, confirming its robust-
ness on static components. DDAD shows strong AUC and Recall values but a significant
drop in F1-Score, indicating a lower precision. GLASS remains competitive for distinguish-
ing anomalies but continues to exhibit slightly lower recall compared to Dinomaly and
PatchCore. Lower-tier methods, such as RIAD and PatchSVDD, continue to show limited
performance, suggesting poor generalization on fixed object categories.

4.3. Performance on Rotating Objects

Table 3 summarizes the performance of the evaluated methods on rotating objects,
according to AUC, Recall, F1-Score, and Average Precision (AP).

Table 3. Performance of anomaly detection methods on rotating objects.

Method AUC Recall F1-Score AP Image
Value Rank Value Rank Value Rank Value Rank
PatchCore 99.49 1 98.52 1 98.21 1 99.49 2
Dinomaly 99.38 2 96.64 2 98.09 2 99.50 1
DRAEM 99.05 3 95.56 3 95.73 3 99.10 3
GLASS 97.18 4 92.20 4 93.30 4 97.44 4
DDAD 93.96 5 84.33 8 88.34 6 94.52 5
DiffusionAD  92.93 6 86.56 5 89.55 5 93.65 6
MSPBA 90.37 7 86.49 6 85.32 7 90.97 8
CutPaste 88.86 8 78.34 9 83.41 8 91.21 7
RIAD 73.93 9 62.63 10 68.49 10 74.43 9
PatchSVDD 63.02 10 85.60 7 74.19 9 62.75 10

PatchCore achieves the best performance on rotating objects, slightly outperforming
Dinomaly in terms of recall and F1-Score. Both methods maintain excellent results across all
evaluated metrics, confirming their robustness to rotational transformations. DRAEM and
GLASS also deliver strong performance, particularly in AUC and AP. In contrast, methods
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such as RIAD and PatchSVDD exhibit significant drops in AUC and F1-Score, highlighting
their vulnerability to rotational variations.

4.4. Performance on Textures

Table 4 presents the evaluation results of the anomaly detection methods specifically
on texture categories.

Table 4. Performance of anomaly detection methods on textures.

Method AUC Recall F1-Score AP Image
Value Rank Value Rank Value Rank Value Rank
Dinomaly 99.94 1 98.56 2 99.15 1 99.94 1
GLASS 99.74 2 97.30 4 98.32 3 99.75 2
DiffusionAD  99.70 3 98.85 1 98.98 2 99.74 3
PatchCore 99.09 4 97.93 3 98.02 4 99.38 4
DRAEM 98.65 5 97.76 5 96.20 5 98.84 5
DDAD 98.65 6 92.31 7 95.41 6 98.82 6
MSPBA 92.74 7 86.58 8 86.42 8 93.18 7
CutPaste 97.04 8 92.95 6 93.62 7 97.13 8
RIAD 84.33 9 78.39 9 79.56 9 84.27 9
PatchSVDD 79.11 10 68.56 10 71.32 10 79.78 10

Dinomaly achieves the highest performance on texture data, leading in AUC, F1-Score,
and AP Image, while closely following DiffusionAD in recall. GLASS and PatchCore also
exhibit strong results, with GLASS being particularly competitive in precision-oriented
metrics. In contrast, RIAD and PatchSVDD consistently remain the least effective methods
across all evaluated metrics.

4.5. Environmental Impact

Table 5 presents the environmental impact of each anomaly detection method. The met-
rics include total CO; emissions (in kilograms), total energy consumption (in kilojoules),
and average GPU power consumption (in watts) during training.

Table 5. Environmental impact of anomaly detection methods based on CO, emissions, total energy
consumption, and GPU power usage.

Method CO; Emissions (kg)  Total Energy (kJ) GPU Power (W)
DDAD 0.822 6400.66 326.81
RIAD 0.066 501.61 304.32
Dinomaly 0.121 917.66 282.01
PatchCore 0.030 233.46 71.21
PatchSVDD 0.206 1563.66 60.81
MSPBA 0.503 3811.89 128.07
GLASS 0.280 2378.25 195.53
CutPaste 0.010 276.30 149.73
DiffusionAD 2.190 16,772.40 335.51
DRAEM 0.354 2682.33 287.28

The results show that feature extraction-based methods, such as PatchCore and Cut-
Paste, are the most energy-efficient, with the lowest CO, emissions and energy consumption.
In contrast, models incorporating generative reconstruction processes, such as DiffusionAD
and DRAEM, exhibit significantly higher environmental costs, driven by their increased
computational complexity and GPU usage during training.



Big Data Cogn. Comput. 2025, 9, 128

12 of 21

Another important observation is that models relying on synthetic anomaly generation
(e.g., DiffusionAD, GLASS) tend to consume more energy than models trained without it.
Although synthetic anomalies can improve accuracy in some contexts, they considerably
raise the computational load and thus the environmental impact. For example, DiffusionAD
produces 2.19 kg of CO, emissions—equivalent to the carbon footprint of a 15-20 km
car journey using a conventional vehicle or the electricity consumption of a European
household over approximately 12-15 h. While these values may seem modest in isolation,
they scale significantly when applied across large datasets or repeated training cycles in
industrial settings.

Overall, feature extraction-based methods without synthetic anomaly generation
emerge as the most sustainable and energy-efficient choice for industrial deployment.

4.6. Hardware Complexity and Computational Performance

Table 6 details the hardware requirements and computational complexity for each
anomaly detection method. The metrics include training time (in seconds), inference time
per image (in seconds), average GPU utilization during training (in %), model size (in
megabytes), and GMAC (Giga Multiply-Accumulate Operations).

Table 6. Hardware complexity and computational performance of anomaly detection methods.

GPU

Trainin Inference cre s Model
Method Time (S‘(); Time (s) Utll(lf/oa)tlon Size (MB) GMAC
DDAD 19,067 0.1271 96.83 32.95 69.87
RIAD 992 0.4372 43.14 28.80 77.20
Dinomaly 2441 0.0296 45.85 148.00 136.64
PatchCore 135 0.7760 11.27 68.88 9.24
PatchSVDD 22,791 1.0065 7.96 0.45 0.12
MSPBA 28,627 2.1366 17.27 46.62 8.32
GLASS 10,912 0.3474 20.78 70.46 7.615
CutPaste 250 0.0634 20.17 11.77 2.38
DiffusionAD 49,482 0.0974 97.28 32.95 69.87
DRAEM 9137 0.3279 53.76 97.42 198.44

Feature extraction-based methods, such as PatchCore and CutPaste, show the best
computational efficiency, with low training and inference times, minimal GPU utilization,
and low GMAC values. In contrast, generative reconstruction-based methods, such as
DiffusionAD, DDAD, and DRAEM, present significantly higher training costs and compu-
tational demands.

In several cases, the batch size had to be reduced to fit within available GPU memory,
particularly for methods exceeding 90% GPU utilization, which typically require at least
24 GB of VRAM. While such methods remain feasible for deployment on high-performance
industrial hardware, they are generally unsuitable for lightweight edge devices where
resource constraints are stricter.

Dinomaly offers a strong compromise between speed, resource usage, and detec-
tion performance, making it particularly suitable for real-time deployment on mid-range
industrial hardware.

Ultimately, model selection must balance detection performance with hardware con-
straints and energy considerations to ensure efficient and sustainable deployment in Indus-
try 4.0 environments.
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4.7. Visual Results

Figure 3 provides qualitative examples of the anomaly detection results on the bottle
class from the MVTec AD dataset. For each example, the original input image, the ground
truth mask, and the predictions from various methods are shown.

Image

Mask

DiffusionAD

Dinomaly

DDAD

DRAEM

Glass

MSPBA

PatchSVDD

PatchCore

RIAD

Figure 3. Visual examples of anomaly detection results on the bottle class.
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Visual inspection reveals that while most methods succeed in identifying anoma-
lous regions, the precision of segmentation varies significantly. Dinomaly and PatchCore
produce effective anomaly detection results but often display coarse and poorly delin-
eated predictions. DRAEM, on the other hand, provides sharper segmentation with better
localization of defects.

It is important to note that the primary objective of this study is to detect the presence
of anomalies rather than to achieve precise pixel-level segmentation. Consequently, these
visual examples are presented mainly for illustrative purposes, highlighting qualitative
differences between the evaluated methods.

4.8. Summary of Results

The overall evaluation highlights several key findings:

* Dinomaly consistently achieves the best performance across all metrics and object
categories, combining high detection rates with moderate computational cost.

e PatchCore offers an excellent balance between detection performance and efficiency,
especially suitable for resource-constrained deployments.

e GLASS and DRAEM deliver strong performances, particularly when synthetic
anomaly generation is acceptable to enhance training diversity.

*  Generative methods such as DiffusionAD and DDAD show acceptable detection rates
but incur significant computational and environmental costs.

e PatchSVDD and RIAD consistently demonstrate lower detection performance, limiting
their suitability for industrial quality control applications.

These results also emphasize that feature extraction-based methods without anomaly
generation tend to be more environmentally sustainable and computationally efficient,
making them attractive options for large-scale and real-time industrial deployments.

5. Discussion

The results presented in the previous section reveal clear differences in the behavior,
performance, and computational cost of the evaluated anomaly detection methods. This
section provides a deeper interpretation of these findings, analyzing the strengths and
limitations of each approach in the context of industrial quality control requirements,
and proposes recommendations based on specific operational constraints.

5.1. General Observations

Dinomaly and PatchCore consistently achieve the best detection performance without
relying on synthetic anomaly generation. This likely stems from their ability to learn the
normal distribution directly, without introducing biases caused by artificial defects that
may not accurately reflect real-world anomalies.

From an environmental perspective, feature-based methods without synthetic anomaly
generation demonstrate significantly lower resource consumption. This efficiency is particu-
larly evident in terms of GPU memory utilization, energy consumption, and CO, emissions.

Inference times, reported without specific code optimizations, vary considerably
across methods. Consequently, absolute values should be considered indicative rather
than definitive.

5.2. Impact of Architecture on GPU Memory Consumption

An important technical observation concerns the substantial GPU memory consump-
tion observed in diffusion-based models, notably DiffusionAD and DDAD. This high
resource requirement can be attributed to specific architectural choices:

¢  Storage of intermediate noise states during the forward and reverse diffusion processes.
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¢ Unrolling of sequential denoising operations, each of which must retain activation
maps for gradient computation.

¢ Use of U-Net-based backbones with extensive skip connections, increasing memory
usage by storing high-resolution feature maps.

Similarly, methods like DRAEM exhibit elevated memory usage, primarily due to
their dual-branch architecture combining an autoencoder for image reconstruction and a
segmentation network operating in parallel.

Thus, the combination of sequential operations (in diffusion models) and dual-branch
architectures (in DRAEM) inherently leads to higher VRAM usage, making these models
less suitable for deployment in constrained environments without further optimization.

5.3. Challenges in Data and Evaluation

A critical observation concerns the presence of subtle or unlabeled defects in some
images labeled as "normal" in the MVTec AD dataset. As shown in Figure 4, models such
as Dinomaly correctly identify these hidden defects, leading to apparent false positives
during evaluation. This highlights the need for more rigorous dataset annotation or robust
methods capable of handling label noise.

(b)

() (d)
Figure 4. Examples of normal images misclassified as anomalies due to subtle or unlabeled visual

artifacts: (a) Bottle. (b) Capsule. (c) Screw. (d) Transistor. Defects are highlighted in red.

Another major limitation observed is the reliance on post-hoc threshold selection
based on test set performance. Most methods optimize thresholds after observing the
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evaluation results, introducing what we term the “detection bias curse”. This practice
artificially inflates model performance and undermines the true generalization ability.
Developing threshold calibration methods independent of test data is essential for real-
world deployment.

5.4. Recommendations and Future Directions

Several avenues for improvement emerge:

e Threshold Calibration: Future methods should integrate threshold selection mechanisms
independent of the evaluation set to eliminate bias and improve deployment reliability.

*  Segmentation Precision: Although detection remains the primary objective, enhancing
anomaly localization would greatly benefit quality control applications requiring
fine-grained defect analysis.

*  Dataset Refinement: Improved annotation quality and the development of new bench-
mark datasets with fewer labeling inconsistencies are crucial for fairer evaluations.

*  Synthetic Anomaly Generation: Current synthetic defect generation techniques often
produce overly simplistic artifacts. Exploring advanced generative models, such as
multimodal diffusion architectures or augmented reality-based defect simulation,
could offer more realistic and diverse training data, thereby improving generalization.

Addressing these challenges is key to advancing the robustness, sustainability, and in-
dustrial applicability of anomaly detection systems.

6. Conclusions

This study presented a comprehensive benchmarking of ten anomaly detection meth-
ods applied to the MVTec Anomaly Detection dataset, with a focus on their application to
quality control in Industry 4.0 environments. The methods were categorized along two axes:
the use (or not) of synthetic anomaly generation, and the reliance on reconstruction-based
versus feature-based detection strategies.

Dinomaly and PatchCore consistently achieved top performance without the need
for synthetic anomaly generation, confirming their robustness and adaptability across
diverse settings. PatchCore, in particular, stands out for its computational efficiency, while
Dinomaly combines high detection accuracy with low inference latency, making both
approaches highly suitable for real-world industrial deployment.

Diffusion-based models, although promising in detection accuracy, remain compu-
tationally intensive, particularly in terms of memory consumption. As highlighted in
Section 5, their iterative reconstruction processes contribute to high resource demands,
posing challenges for deployment in constrained industrial environments.

The comparison of environmental and hardware performance revealed that feature-
based methods without synthetic anomaly generation are generally more energy-efficient,
offering significant advantages in sustainable industrial applications.

A critical limitation identified is the reliance on post-hoc threshold calibration based
on test set performance, which introduces evaluation bias. Future work must focus on
developing autonomous, test-independent threshold selection strategies to ensure more
realistic and deployable solutions.

Moreover, while anomaly detection performance is high, segmentation precision remains
insufficient for applications requiring fine-grained defect localization. Improving segmenta-
tion capabilities is a key avenue for enhancing model usability in quality-critical industries.

Ongoing research directions include the lightweight optimization of diffusion-based
models, autonomous threshold calibration without test data, and improving the realism
of synthetic anomalies. In particular, leveraging advanced generative architectures or
augmented reality simulation could provide more diverse and representative training sce-
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narios, ultimately strengthening the robustness and generalizability of industrial anomaly
detection systems.
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Appendix A. Detailed Results

Table Al. Synthesis of Overall AUC Performance per Object Class.
Methods Bottle Cable Hazelnut Pill Screw  Capsule Carpet Grid Leather Metal Nut Tile Toothbrush  Transistor Wood  Zipper Average
Dinomaly 100 99.82 100 98.19 98.14 98.46 99.96 100 99.99 100 99.94 99.89 99.94 99.81 99.95 99.61
PatchCore 100 99.35 100 95.92 98.68 96.80 99.55 98.00 100 99.80 98.60 97.56 100 99.31 99.73 98.89
GLASS 100 96.15 100 87.60 91.87 96.18 99.04 100 100 99.66 99.99 96.67 98.19 99.69 99.68 97.65
DDAD 100 95.46 87.73 86.78 95.75 97.42 99.02 100 100 98.40 99.97 99.78 99.50 94.25 97.80 96.79
DRAEM 98.90 93.20 100 73.11 97.73 89.02 95.58 100 99.98 99.42 99.91 99.78 93.81 97.78 99.96 95.88
DiffusionAD 99.10 94.16 99.94 80.10 78.94 89.08 99.43 100 100 99.92 99.43 100 89.56 99.64 100 95.29
MSPBA 99.95 86.62 98.39 87.84 76.10 89.43 88.61 97.11 95.17 96.61 88.73 92.44 97.12 94.06 98.50 92.45
Cutpaste 99.82 86.91 96.98 81.78 73.43 68.72 92.82 98.15 99.73 96.16 95.39 94.11 93.37 99.11 99.36 91.72
RIAD 98.92 61.02 81.06 69.67 68.32 79.59 69.26 98.21 97.84 72.41 80.40 89.00 88.87 75.92 95.14 81.71
PatchSVDD 97.67 82.58 67.92 75.10 32.82 74.92 59.40 70.82 94.32 88.32 88.45 87.78 90.19 82.58 76.88 77.98

Table A2. Synthesis of Average Recall Performance per Object Class.
Methods Bottle Cable Hazelnut Pill Screw  Capsule Carpet Grid Leather Metal Nut Tile Toothbrush Transistor Wood  Zipper Average
Dinomaly 100 100 100 9291 89.92 94.50 98.88 100 98.91 100 100 96.67 97.50 95.00 99.16 97.56
PatchCore 100 93.48 100 91.49 96.64 89.91 96.63 98.25 100 98.92 96.43 93.33 100 98.33 99.16 96.84
GLASS 100 90.22 100 87.94 79.83 88.07 91.01 100 100 96.77 98.81 76.67 92.50 96.67 95.80 92.95
DDAD 100 90.22 7143 95.04 89.08 86.24 89.89 100 100 92.47 100 96.67 100 71.67 94.96 91.84
DRAEM 98.41 80.43 100 93.62 89.92 86.24 89.89 100 98.91 96.77 100 96.67 80.00 100 99.16 94.00
DiffusionAD 96.83 90.22 98.57 47.52 62.18 87.16 96.63 100 100 98.92 97.62 100 85.00 100 100 90.71
MSPBA 98.41 7391 98.57 83.69 70.59 77.06 85.39 96.49 89.13 90.32 78.57 83.33 87.50 83.33 96.64 86.20
Cutpaste 95.24 75.00 97.14 58.16 52.94 60.55 79.78 94.74 100 84.95 95.24 86.67 82.50 95.00 96.64 83.64
RIAD 96.83 60.87 58.57 7447 60.50 71.56 53.93 92.98 94.57 68.82 73.81 80.00 80.00 76.67 95.80 75.96
PatchSVDD 93.65 84.78 80.00 80.14 98.32 68.81 32.58 61.40 92.39 78.49 7143 66.67 70.00 85.00 86.55 76.68
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Table A3. Synthesis of Average F1-Score Performance per Object Class.
Methods Bottle Cable Hazelnut Pill Screw  Capsule Carpet Grid Leather Metal Nut Tile Toothbrush Transistor Wood Zipper Average
Dinomaly 100 99.46 100 93.91 94.27 94.50 99.44 100 99.45 100 99.41 98.31 98.73 97.44 99.16 98.27
PatchCore 100 95.56 100 90.53 96.23 92.45 97.73 98.25 100 98.40 98.18 94.92 100 95.93 98.33 97.10
GLASS 100 90.22 100 80.26 82.61 89.72 94.74 100 100 97.30 99.40 86.79 92.50 97.48 97.44 93.90
DDAD 100 91.71 80.00 31.88 89.45 90.82 94.12 100 100 95.56 99.41 98.31 96.39 83.50 94.96 89.74
DRAEM 98.41 86.55 100 82.50 91.45 83.19 90.40 100 99.45 95.74 98.82 98.31 87.67 92.31 99.58 93.63
DiffusionAD 97.60 89.25 98.57 64.11 71.15 81.90 97.73 100 100 98.92 98.80 100 86.08 98.36 100 92.16
MSPBA 99.20 79.53 93.88 82.23 70.29 80.77 83.52 91.67 87.70 91.80 81.48 89.29 90.91 87.72 95.04 87.00
Cutpaste 97.56 79.31 93.79 68.62 66.67 64.39 84.52 97.30 99.46 89.77 89.39 89.66 88.00 97.44 96.64 86.83
RIAD 94.57 61.54 71.93 68.40 65.45 74.29 61.54 94.64 94.05 68.09 73.37 84.21 84.21 74.19 91.57 77.47
PatchSVDD 95.93 80.00 72.73 73.86 67.83 71.09 44.62 66.04 87.18 82.02 78.43 80.00 81.16 80.31 76.87 75.87
Table A4. Synthesis of Average AP Image Performance per Object Class.
Methods Bottle Cable Hazelnut Pill Screw  Capsule Carpet Grid Leather Metal Nut Tile Toothbrush Transistor Wood Zipper Average
Dinomaly 100 99.81 100 98.43 98.49 98.59 99.96 100 99.99 100 99.94 99.89 99.94 99.81 99.95 99.65
PatchCore 100 99.37 100 96.53 98.65 96.96 99.59 98.80 100 99.82 99.18 98.20 100 99.32 99.75 99.08
GLASS 100 96.62 100 88.71 92.64 96.04 99.07 100 100 99.68 99.99 96.92 98.44 99.71 99.70 97.83
DDAD 100 96.48 88.73 87.64 96.16 97.63 99.04 100 100 98.68 99.97 99.78 99.51 95.08 98.39 97.14
DRAEM 98.35 94.04 100 64.53 97.85 90.44 96.48 100 99.98 99.44 99.92 99.79 95.29 97.84 99.96 95.59
DiffusionAD 99.33 94.60 99.94 83.32 81.08 90.61 99.50 100 100 99.92 99.59 100 92.40 99.62 100 95.99
MSPBA 99.95 89.31 98.39 90.10 77.47 89.94 87.45 97.11 95.25 97.06 90.74 94.75 97.34 95.35 98.41 93.24
Cutpaste 99.83 88.58 96.70 83.65 80.27 70.81 92.66 98.74 99.69 96.65 95.32 95.44 92.64 99.25 99.38 92.64
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