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Upper bounds for critical coupling constants for binding some quantum many-body

systems
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When particles interact via two-body short-range central potential wells, binding can occur for
some critical values of the coupling constants. Using the envelope theory, upper bounds for critical
coupling constants are computed for quantum nonrelativistic systems containing identical particles
and systems containing identical particles plus a different one.

I. INTRODUCTION

In nonrelativistic quantum many-body systems, binding can occur if some conditions are fulfilled. The potentials
must be sufficiently attractive and the particle masses sufficiently large [1–4]. In this paper, we consider only the case
of two-body central potential wells with the structure

Vij(|ri − rj |) = −gij vij(|ri − rj |). (1)

In this equation, gij is a coupling constant with the dimension of an energy and vij(r) a dimensionless short-range
“globally” positive function. This implies that dvij(r)/dr is a short-range “globally” negative function. At least some
coupling constants must be positive to insure the existence of bound states. If a N -body system depends only on a
single coupling constant g, its critical coupling constant gN({qα}) is defined as the value at which a bound state with
a given set of quantum numbers {qα} appears for the N particles. This bound state exists for any g ≥ gN ({qα}), the
equality corresponding to a state with a zero energy. In the following, the mention of the quantum numbers will be
omitted. The definition is similar if several coupling constants are present. The study of critical coupling constants
can be useful in nuclear and atomic physics in which systems with N particles are bound whereas systems with N − 1
particles are not bound [5]. Applications in materials science could also be considered since it is possible to modulate
the forces between atoms [6].
The computation of critical coupling constants is very challenging, specially for many-body systems. Indeed, systems

with a very low binding energy or even a vanishing energy have a wavefunction very extended in space. So it could
be difficult to guarantee the accuracy of numerical calculations that can turn out to be very long. Obtaining reliable
information about these critical coupling constants is then interesting. This is the purpose of this paper.
Two types of many-body systems are considered: a first one containing identical particles, treated in Sec. II, and a

second one containing identical particles plus a different one, treated in Sec. III. Upper bounds for the corresponding
critical coupling constants are computed with the envelope theory (ET) [7–12]. The ET is a technique to compute
approximate solutions of many-body systems with arbitrary kinematics in D dimensions. The basic idea is to replace
the Hamiltonian H considered by a many-body harmonic oscillator Hamiltonian H̃ which is solvable [13]. H̃ depends
on parameters which are optimized in such way that one of its particular eigenvalues is as close as possible to the
corresponding eigenvalue of H . The main interest of this method is that the computational cost is independent from
the number of particles. Moreover, the approximate eigenvalues can be analytical upper or lower bounds in some
favourable situations. This is used in this work to obtain upper bounds of critical coupling constants for the many-
body systems mentioned above. The case of all particles identical has already been studied elsewhere [10, 11], but it
is developed here for completeness and also because new results are presented. Especially, checks for the variational
character of the critical coupling constants are performed for two systems: N = 2 with D = 3 and 3 ≤ N ≤ 100 with
D = 1. A brief summary is given in Sec. IV.
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II. MANY IDENTICAL PARTICLES

Let us start by giving the properties of the ET for N identical particles in D dimensions with pairwise central
forces. The generic Hamiltonian is written

H =
N
∑

i=1

T (|pi|) +
N
∑

i<j=2

V (|ri − rj |), (2)

where T is the kinetic energy, V is a two-body central potential, and where the centre of mass motion is removed

(
∑N

i=1 pi = 0). An ET approximate eigenvalue E for a completely (anti)symmetrised state is given by the following
set of equations [11, 14]

E = N T (p0) + C2
N V (ρ0), (3)

N p0 T
′(p0) = C2

N ρ0 V
′(ρ0), (4)

Q(N)~ =
√

C2
N ρ0 p0, (5)

where U ′(x) = dU/dx, C2
N = N(N − 1)/2 is the number of pairs, ρ0 (linked to the mean distance between two

particles) and p0 (linked to the mean momentum of a particle) are two positive parameters to be determined with
(4)-(5), and

Q(N) =

N−1
∑

i=1

(

2ni + li +
D

2

)

(6)

is a global quantum number for D ≥ 2. For D = 1, [16]

Q(N) =
N−1
∑

i=1

(

ni +
1

2

)

. (7)

The quantum numbers {ni, li} are associated with the N−1 internal variables. The allowed values of Q(N) depend on
the bosonic/fermionic nature of the particles [15]. Its minimum value, (N − 1)D/2, is reached for the bosonic ground
state. Reliable eigenvalues can be obtained for a large variety of systems [17, 18]. In some favourable situations,
the ET has a variational character [7, 12, 19]. It is also possible to obtain relations between energies of many-body
systems with different numbers of particles or different masses [20].
For D ≥ 2, it is possible to improve the ET by breaking the strong degeneracy inherent to the method (see (6)).

The idea is to combine the ET with the dominantly orbital state method [21]. This results in dividing the global
quantum number Q(N) into angular and radial contributions by the introduction of a parameter φ [14, 22]:

Qφ(N) = φ ν + λ where (8)

ν =

N−1
∑

i=1

(

ni +
1

2

)

and λ =

N−1
∑

i=1

(

li +
D − 2

2

)

. (9)

This is inspired from the existence of an effective quantum number that determines with high accuracy the level
ordering of centrally symmetric 2-body systems [23]. In (8)-(9), the same assumption is extended to N > 2. Note
that the original quantum number Q(N) is recovered with φ = 2. The procedure consists of four steps:

1. Choose the values ν and λ for the chosen Q(N).

2. Find the values ρ̃0 and p̃0 by solving (4)-(5) but with Q(N) replaced by λ.

3. Compute the value of Qφ(N) with φ given by

φ =

[

2 +
p̃0 T

′′(p̃0)

T ′(p̃0)
+

ρ̃0 V
′′(ρ̃0)

V ′(ρ̃0)

]1/2

. (10)

4. Solve (3)-(5) but with Q(N) replaced by Qφ(N).
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The eigenvalues can be remarkably improved for systems with all particles identical [22]. A drawback is that the
possible variational character is no longer guaranteed. Equation (10) is the same as equation (13) in [14] after the
implementation of unnoticed simplifications giving a more elegant and symmetrical formula. In the nonrelativistic
case, (10) reduces to

φNR =

[

3 +
ρ̃0 V

′′(ρ̃0)

V ′(ρ̃0)

]1/2

. (11)

Moreover, if V (r) ∝ rq, then φNR =
√
2 + q. This yields the exact spectra for q = 2 with arbitrary values of N , and

for q = −1 with N = 2 [17]. The structure of φNR is more or less complicated depending on the structure of the
potential (see the example below).
As we focus on nonrelativistic many-body quantum systems with short-range central pairwise forces, the generic

Hamiltonian of the first type of many-body systems under study is

H =

N
∑

i=1

p
2
i

2m
−

N
∑

i<j=2

g v(|ri − rj |). (12)

With T (p) = p2/(2m) and V (r) = −g v(r), the critical coupling constant gN for N identical particles can be computed
by setting E = 0 in (3) for a fixed value of Q(N) associated with a given set of quantum numbers {ni, li} [10, 11].
This yields

gN =
1

ρ20 v(ρ0)

2

N(N − 1)2
Q(N)2~2

m
with (13)

2 v(ρ0) + ρ0 v
′(ρ0) = 0. (14)

The intermediate positive quantity ρ0 is fixed by (14) and used in (13). A solution is always possible since v(ρ0) is
expected to be positive and v′(ρ0) is expected to be negative with the short-range potentials considered. This N -body
system can only be bound if g > 0. This is in agreement with (13) which predicts a positive value for gN , since v(ρ0)
is expected to be positive. Values of g > gN correspond then to bound states with the same set {ni, li} within the
ET. Note that similar formulas exist for one-body forces [11], cyclic systems [24], and systems with a special type of
many-body forces [25]. For the bosonic ground state, (13) implies that

gN
gN−1

=
N − 1

N
, (15)

which is compatible with results found in [1, 2]. If we assume that the dimensionless potential v(r) depends only on
one inverse length µ, dimensional analysis implies that

gN ∝ µ2
~
2

m
, (16)

which is in agreement with (13). The contribution from the structure of the potential well is factorised in the quantity
(ρ20 v(ρ0))

−1, the parameter ρ0 being defined by (14).
For nonrelativistic systems, one can define b(x) such that b(x2) = V (x). If d2b(x)/dx2 is a concave (convex) function

for all positive values of x, an approximate ET energy is an upper (lower) bound of the genuine energy [12, 19]. If it
is not the case, the variational character is not guaranteed. It is easy to show that if E is an upper (lower) bound
of the energy, gN is then an upper (lower) bound of the genuine critical coupling constant. Actually, the ET relies
on the possibility to envelop the potential V (r) with a family of well-chosen harmonic potentials. The variational
character of the method is guaranteed when all these harmonic potentials are tangent at a single point of V (r) but
do not cross V (r) [12]. In this paper, V (r) is a short-range potential well. So, crossing are avoided only for harmonic
potentials all above V (r). Only upper bounds of the energies, and of the critical coupling constants, can be obtained
in this situation.
Upper bounds for the eigenvalues and the critical coupling constants are provided by the ET for the three different

positive monotonous functions v(r) in Table I. The corresponding values of (ρ20 v(ρ0))
−1 are very similar, as expected.

Indeed, for very low binding energies, the wave function has a very large extension and it is little influenced by the
detailed structure of the short-range potential. Nevertheless, this also shows some limitations of the method since
Yukawa and Gaussian potentials yield exactly the same critical coupling constant.
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v(r)
1

ρ2
0
v(ρ0)

e−µr

µr
eµ2

e−µr e2µ2

4
e−µ2r2 eµ2

Table I: Values of the factor (ρ20 v(ρ0))
−1 in (13) for three dimensionless potential wells v(r).

The notion of critical coupling constant is not relevant for a power-law potential since there is no short-range
parameter such µ which can be defined. Nevertheless, if we write, rather artificially, V (r) = sgn(p) g (µr)p = −g v(r)
with p > −2 and p 6= 0, (13)-(14) predicts gN = 0 for −2 < p < 0 and gN = ∞ for p > 0. These limit values are the
ones expected to produce states with a vanishing energy for attractive power-law potentials.
Since the introduction of a parameter φ brings improvements for the ET eigenvalues, it is perhaps possible to take

advantage of its existence for the computation of gN . The problem is that φNR is a function of the potential by
(11). So, φNR = φNR(g) depends on g, as well as QφNR(g)(N) by (8). The idea is then to find gN by solving the
transcendental equation

gN =
1

ρ20 v(ρ0)

2

N(N − 1)2
QφNR(gN )(N)2~2

m
, (17)

with ρ0 still defined by (14). With this formula, the possible variational character of gN is not guaranteed.

A. Test with an exponential potential

In order to put some numbers in these equations, let us first consider v(r) = e−µr. The ET energy is given by [15]

E = −N(N − 1)

2
g

(

1 +
3

2
W0(−Z)

)

e3W0(−Z) with Z =
1

3

(

4

N(N − 1)2
µ2

g

Q(N)2~2

m

)1/3

, (18)

where W0 is the principal branch of the Lambert function [26]. The structure of W0 is such that only a finite number
of bound states is possible, as expected. The computation of φNR yields

φNR =

√

3(1 +W0(−Z̃)), (19)

where Z̃ is the quantity Z in (18) computed with Q(N) replaced by λ. The improved ET energy is then given by (18)
in which Q(N) is replaced by QφNR

(N). It is possible to easily test the quality of the ET approximations for D = 3
and N = 2. Without loss of generality, one can set ~ = m = µ = 1, so the Hamiltonian considered is written

H = p
2 − g e−|r|. (20)

Eigenvalues and critical coupling constants for this Hamiltonian can be computed exactly for l = 0 [27] and accurately
computed numerically for l 6= 0 with the Lagrange mesh method [28]. Table II shows that the approximate ET energies
are reasonable upper bounds and the improved ones are closer to exact values. In Table III, one can see that the
critical coupling constants given by (13)-(14) are upper bounds and that (17) gives better values. If the accuracy is
not very good, the correct order of magnitude is obtained, specially for (17).
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Table II: Eigenenergies of (20) with g = 40, for two identical particles, as a function of l (even for bosons and odd for fermions)
and n quantum numbers. For each set of {l}, first line: exact result (see text), second line: upper bounds from formula (18),
third line: approximations from formula (18) with QφNR

(N). A * indicates that a negative value is not found with the ET.

l n = 0 1 2 3

0 −17.5 −6.88 −1.87 −0.08

−15.7 −3.65 * *

−17.3 −5.94 −0.02 *

1 −10.14 −3.35 −0.42

−8.56 −0.37 *

−9.92 −2.41 *

2 −5.03 −0.93

−3.65 *

−4.84 *

3 −1.55

−0.37

−1.36

Table III: Critical coupling constant g2 for some eigenstates of Hamiltonian (20) with {n, l} quantum numbers for two identical
particles (l even for bosons and odd for fermions). For each set of {n}, first line: exact result (see text), second line: upper
bounds from formulas (13)-(14), third line: approximations from formula (17).

n l = 0 1 2

0 1.45 7.05 16.3

4.16 11.5 22.6

2.92 8.71 18.1

1 7.62 16.9 29.9

22.6 37.4 55.9

16.0 26.3 40.2

2 18.7 31.5 48.1

55.9 78.0 104.

39.8 54.7 73.1

B. Test with a Gaussian potential

Let us now consider v(x) = e−µ2x2

for D = 1. The corresponding Hamiltonian is

H =

N
∑

i=1

p2i
2m

−
N
∑

i<j=2

g e−µ2(xi−xj)
2

. (21)

The ET upper bound for the bosonic ground state is given by [16]

E = −N(N − 1)

2
g Y 2 1 + 2W0(−Y )

W0(−Y )2
with Y =

µ ~

2
√
2mgN

. (22)

Again, the presence of W0 implies that only a finite number of bound states is possible, as expected. As D = 1, no
improvement is possible by using the dominantly orbital state method. The quality of this upper bound with respect
to N can be checked thanks to the very accurate results computed in [29] for N = {3, 5, 20, 100}.
In the following, a unique set of parameters used in [29], {m = 1/43.281307, µ = ~ = 1}, is considered for

Hamiltonian (21). Results from Table IV show that the accuracy of the ET bounds improves with the number of
particles, that is to say when the binding increases. For a too small number of particles or a weak binding, no reliable
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ET upper bound can be obtained. This was already noticed for Gaussian interactions with D = 3 [17]. Upper bounds
for the critical coupling constants of the bosonic ground state are given in Table V as a function of N . We have
no accurate results to which compare these values, but it is possible to compute reliable estimations of the binding
energies for not too small coupling constants (see Sec. A). We already know from Table IV that systems with N ≥ 3
are bound for g = 10/

√
π ≈ 5.64. As gN is an upper bound of the exact critical coupling constant, it is expected that

the N -body system is still bound for g = gN . This is the case, as shown in Table V, since all energies are negative.
The energies are still negative and the systems bound for g = gN/2. These numbers give an idea of how far our upper
bounds are from the genuine values. This indicate that all values of gN are more than two times the exact critical
coupling constants. No calculation for lower coupling constants is presented because the reliability of low binding
energies cannot be guaranteed by our procedure (see Sec. A).

Table IV: Bosonic ground state of Hamiltonian (21). Accurate results from [29] are compared with upper bounds (22). A *
indicates that a negative value is not found with the ET. The parameters are taken from [29]: m = 1/43.281307, µ = ~ = 1
and g = 10/

√
π.

N 3 5 20 100

[29] −1.9325 −9.2852 −417.70 −18552

(22) * * −245 −17553

Table V: Upper bound gN of the critical coupling constant given by (13)-(14) for the bosonic ground state of Hamiltonian (21),
with binding energies computed with (A1)-(A2) for g = gN and g = gN/2. The parameters m = 1/43.281307 and µ = ~ = 1
are taken from [29].

N 3 5 20 100

gN 19.6 11.8 2.94 0.588

E(gN) −14.5 −32.2 −149 −768

E(gN/2) −4.30 −9.78 −44 −226

The ET can give reliable upper bounds for the binding energy and good approximations for some observables of
various types of many-body systems composed of identical particles [16, 17]. The two systems considered above show
that upper bounds of critical coupling constants can also be computed for this kind of many-body systems in the
framework of the ET. Our results are less accurate than the numerical ones obtained in [1–4] with Gaussian expansions
of trial states, but they are very general and can be applied to an arbitrary number of bosons or fermions in dimension
D for any state of excitation.

III. MANY IDENTICAL PARTICLES PLUS A DIFFERENT ONE

With the ET, it is possible to treat many-body systems in dimension D with different particles, especially systems
with identical particles plus a different one. For Na particles a interacting with each other via the potential Vaa and
interacting with a single particle b via the potential Vab, the generic Hamiltonian is written

H =

Na
∑

i=1

Ta(|pi|) + Tb(|pN |) +
Na
∑

i<j=2

Vaa(|ri − rj |) +
Na
∑

i=1

Vab(|ri − rN |), (23)
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with N = Na + 1. The ET approximations for this Hamiltonian can be computed by solving the following set of
equations [30]

E = NaTa (p
′
a) + Tb (P0) + C2

Na
Vaa (raa) +NaVab (r

′
0) , (24)

NaT
′
a(p

′
a)
p2a
p′a

= C2
Na

V ′
aa(raa)raa +

Na − 1

2
V ′
ab(r

′
0)
r2aa
r′0

, (25)

1

Na
T ′
a(p

′
a)
P 2
0

p′a
+ T ′

b(P0)P0 = NaV
′
ab(r

′
0)
R2

0

r′0
, (26)

Q(Na)~ =
√

C2
Na

paraa, (27)

Q(2)~ = P0R0, (28)

where the four positive parameters to be determined in these equations are now pa, raa, P0 and R0, with p′a
2
= p2a+

P 2

0

N2
a

and r′0
2
= Na−1

2Na
r2aa +R2

0. The situation is clearly much more complex than for all the particles identical. But the ET

eigenenergies can be upper or lower bounds in some favourable situations [19]. The allowed values of Q(Na) depend
on the bosonic/fermionic nature of the particle a, but there is no restriction on the values of Q(2). It is also possible
to improve the results from (24)-(28) by introducing two parameters “φ” into the two global quantum numbers Q(Na)
and Q(2), but the procedure is complex and only brings slight improvements, while no longer guaranteeing the possible
variational character of the method [14]. So, this is not considered in this paper.
As we focus on nonrelativistic many-body quantum systems with short-range central pairwise forces, the generic

Hamiltonian of the second type of many-body systems under study is

H =

Na
∑

i=1

p
2
i

2ma
+

p
2
N

2mb
−

Na
∑

i<j=2

gaa vaa(|ri − rj |)−
Na
∑

i=1

gab vab(|ri − rN |). (29)

The values for the critical coupling constants gaaN and gabN are also determined by setting E = 0 in (24). After some
tedious calculations, they are given by

gabNv′ab(r
′
0) = − 1

Na

r′0
R4

0

Q(2)2~2

µab
, (30)

gaaNv′aa(raa) =
1

N2
a

raa
R4

0

Q(2)2~2

µab
− 4

Na(Na − 1)2
1

r3aa

Q(Na)
2
~
2

ma
, (31)

where the following reduced mass is introduced

µab =
Namamb

Nama +mb
. (32)

Taking into account that r′0
2
= Na−1

2Na
r2aa + R2

0, the intermediate positive quantities raa and R0 are linked by the
relation

vaa(raa)

[

Na − 1

2Na

raa
R4

0v
′
aa(raa)

Q(2)2

µab
− 2

Na − 1

1

r3aav
′
aa(raa)

Q(Na)
2

ma

]

− vab(r
′
0)

r′0
R4

0v
′
ab(r

′
0)

Q(2)2

µab
=

1

Na − 1

1

r2aa

Q(Na)
2

ma
+

1

2R2
0

Q(2)2

µab
.

(33)

This N -body system can only be bound if gab > 0. This is in agreement with (30) which can only yield a positive
value for gabN , since v′ab(r

′
0) is expected to be negative. One can remark that the sign of gaaN is not well defined by

(31). Indeed, binding for the N -body system can occur with gaa ≤ 0. Examples for such systems exist for long-range
forces. This is the case for atoms in which the Coulomb repulsion between electrons does not destabilise the structure.
This is also the case for the general nonrelativistic many-body harmonic oscillator Hamiltonian in which some stiffness
coefficients can be null or negative [13].
The case of a static source for the Na particles can be studied with mb → ∞, that is to say setting µab = Nama.

Within this limit, particle b has no kinetic energy and rests at its position rN , which can be chosen as the origin of the
coordinate system. It is worth mentioning that if the particle b is identical to the particles a, the set of N particles
must be completely (anti)symmetrised, which implies that p′a = P0 and raa = r′0 [30]. In these conditions, (30)-(33)
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reduces to (13)-(14), as expected. If Na = 1, all quantities associated with the interactions between two particles a
disappear and (30)-(33) reduces to

gN =
1

ρ20 v(ρ0)

Q(2)2~2

2µab
with (34)

2 v(ρ0) + ρ0 v
′(ρ0) = 0, (35)

where v(r) = vab(r) and µab = mamb/(ma +mb). This result can be directly obtained from (35)-(37) in [30], and it
is in agreement with (13)-(14) if ma = mb = m. If particle b is a static source, then µab = ma.
For nonrelativistic systems, one can define bij(x) such that bij(x

2) = Vij(x). If d
2baa(x)/dx

2 and d2bab(x)/dx
2 are

both concave (convex) functions for all positive values of x, an approximate ET energy is an upper (lower) bound of
the genuine energy. If it is not the case, the variational character is not guaranteed. Again, upper (lower) bounds
of the critical coupling constants are obtained if E is an upper (lower) bound of the energy. As in the case of
identical particles, only upper bounds of the energies can be computed with short-range potential wells if gaa ≥ 0.
No variational character can be guaranteed for E if gaa < 0.
The writing of (30)-(31) is a little bit misleading because these equations do not give an unique pair of values for

the two critical coupling constants, but instead a link between both ones. Indeed, bound states can appear for various
couples of coupling constants. So, in fixing for instance the value of gaa (gab), the solution of (30)-(33) can yield the
value of gabN (gaaN ), if any. So, the subscript N should be associated with only gaa or gab in (30)-(31).
In order to illustrate what can be learned from (30)-(33), let us consider a simple situation in which vaa(r) =

vab(r) = e−µr. Without loss of generality, one can set ~ = µ = ma = 1. In order to lighten the notation, we write
mb = m, gaa = g and gab = h to follow notations used in [1]. So, with these conventions, Hamiltonian (29) becomes

H =

Na
∑

i=1

p
2
i

2
+

p
2
N

2m
−

Na
∑

i<j=2

g e|ri−rj | −
Na
∑

i=1

h e|ri−rN |. (36)

For this system, upper bounds for the eigenvalues and the critical coupling constants are provided by the ET if g ≥ 0
(h must be positive). For the bosonic ground state of (36) with D = 3, (30)-(33) become

gN e−raa =
9

Na

1

r3aa
− 9

4

Na +m

N3
am

raa
R4

0

, (37)

hN e−r′
0 =

9

4

Na +m

N2
am

r′0
R4

0

, (38)

0 = − (Na − 1)(Na +m)

N2
am

raa
R4

0

+ 4
Na − 1

r3aa
+ 2

Na +m

Nam

r′0
R4

0

− 2
Na − 1

r2aa
− Na +m

Nam

1

R2
0

. (39)

Three examples of solutions for (37)-(39) are given in Fig. 1 to Fig. 3. In Fig. 1, the critical coupling constant hN

is computed as a function of Na for m = 2 and g = 1. This constant decreases with the number of particles a, as
expected. In Fig. 2, the critical coupling constant h11 is computed from (37)-(39) as a function of m for Na = 10 and
g = 0.756. This value of g is the critical coupling constant, computed from (13)-(14), to bind 11 identical particles
with m = 1. The graph shows that h11 = 0.756 for m = 1, as expected. In Fig. 3, a system similar to the one
presented in Fig. 1 of [1] is studied. The critical coupling constant g3 is computed as a function of h for two particles
a in a static source (m = ∞). The value of the critical coupling constant to bind one particle a in a static source
can be computed from (34)-(35) with µab = ma = 1, and it is 2.078. So, two particles a are just bind in the static
source with h = 2.078 if no repulsive interaction exist between them. The graph shows that g3 = 0 for h = 2.078, as
expected. No binding is found below h ≈ 0.26, since only solutions with negative values of raa or R0 are obtained.

IV. SUMMARY

Within the framework of the envelope theory [11, 19], we have computed upper bounds for critical coupling constants
which allow the binding of some nonrelativistic quantum many-body systems in which particles interact only via two-
body short-range central potential wells. In Sec. II, a simple formula is obtained for N identical particles. It is valid
for bosons or fermions in dimension D for any state of excitation. Two checks are performed for N = 2 with D = 3
and for 3 ≤ N ≤ 100 with D = 1. It could be interesting to investigate numerically other systems with N ≥ 2 to
produce accurate values of critical coupling constants and test how far our upper bounds are from the exact ones.
In Sec. III, relations between upper bounds for critical coupling constants have also been obtained for quantum

systems with many identical particles plus a different one, for bosons or fermions in dimension D for any state of

csema
Texte inséré 
-

csema
Texte inséré 
-
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Figure 1: Upper bounds of the critical coupling constant hN for the bosonic ground state computed from (37)-(39) as a function
of Na = N − 1 for m = 2 and g = 1.

0.1 0.5 1 5
m

0.5

1

2

h11

Figure 2: Upper bounds of the critical coupling constant h11 for the bosonic ground state computed from (37)-(39) as a function
of m for Na = 10 and g = 0.756.

excitation, although the situation is much more complex than for all identical particles. It is then possible to obtain
information about the binding of the systems by solving a simple numerical set of three transcendental equations.
Again, comparison with accurate numerical solutions of the many-body systems could be interesting. In principle, a
similar analysis could be performed with the envelop theory for systems composed of two different sets of identical
particles [30], but the calculations should be much more involved.
The upper bounds obtained in this paper can yield information about the possible binding of complicated many-body

systems. They can also be used to test numerical procedures. Only the nonrelativistic kinematics is considered here

0.5 1.0 1.5 2.0
h

1

2

3

4

g3

Figure 3: Upper bounds of the critical coupling constant g3 for the bosonic ground state computed from (37)-(39) as a function
of h for two particles a in a static source (m = ∞).



10

because it is the most interesting case and also because it leads to analytic formulas. Nevertheless, approximations for
critical coupling constants could also be computed with the envelope theory for other Hamiltonians since this method

can handle a general form of the kinetic energy. The semirelativistic form T (p) =
√

p2c2 +m2c4 is an obvious
possibility. But more exotic forms exist, for instance in atomic physics with a nonparabolic dispersion relation [31],
in hadronic physics with particle masses depending on the relative momentum [32], in quantum mechanics with a
minimal length [33, 34], or in fractional quantum mechanics [35]. Moreover, problems in D dimensions can appear in
various physical situations. In particular, D = 2 systems can be used as toy models for D = 3 systems [36] or are the
natural framework for the physics of anyons [37]. So, the possible domains of interest for the method developed here
are numerous. Even if it is not possible to obtain analytical equations, numerical calculations can still easily be done
whatever the number of particles.

Appendix A: Hyperradial approximation

The bosonic ground state of Hamiltonian (21) (D = 1) is accurately computed using a sophisticated hyperspherical
harmonic expansion on Lagrange meshes in [29]. At its lowest level, named as the K = 0 limit in the paper, a quite
reasonable approximation can be obtained by solving the following equation

(

− d2

dρ2
+

L0(L0 + 1)

ρ2
− 2m(E − V00(ρ))

)

φ(ρ) = 0, (A1)

with L0 = (N − 4)/2 and

V00(ρ) = −N(N − 1)

2
g 1F1

(

1

2
,
N − 1

2
,−2µ2 ρ2

)

. (A2)

This is illustrated in Table VI. One can remark that the quality of the approximation is deteriorating when the binding
decreases in the system. It is tempting to use the procedure presented in [38] to compute an approximation of the
critical coupling constant for the ground state of (21) from (A1)-(A2). But it is not clear that good results can be
obtained since the K = 0 limit does not seem reliable for situations in which the binding is vanishing. Nevertheless,
(A1)-(A2) should give good approximations of the ground state for coupling constants yielding an energy not close to
zero. It is used in this spirit in Table V.

Table VI: Bosonic ground state for Hamiltonian (21). Accurate results from [29] are compared with the “K = 0” approximation
given by (A1)-(A2). The parameters are taken from [29]: m = 1/43.281307, µ = ~ = 1 and g = 10/

√
π.

N 3 5 20 100

[29] −1.9325 −9.2852 −417.70 −18552

(A1)-(A2) −1.52 −9.07 −415.07 −18539
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