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1. Introduction

Fiber-reinforced polymers (FRPs) are gaining widespread 
adoption across various industrial sectors due to their excellent 
strength-to-weight ratio and mechanical properties. As a result, 
there is significant interest in studying the trimming of FRP 
components, particularly since composite molding processes 
often require subsequent finishing operations to achieve the 
precise dimensional tolerances. These finishing operations, 
which are typically performed manually, are crucial for 

ensuring the final part meets the desired specifications. To 
effectively simulate the trimming process, it is essential to 
develop an accurate and comprehensive cutting force
calculation model in all three spatial directions.

There are four categories of models for calculating cutting 
forces in milling for unidirectional fiber-reinforced polymers 
(UD-FRPs): macro-mechanical, micro-mechanical, numerical, 
and mechanistic models. Macro-mechanical models treat the 
material as homogeneous, useful for optimizing cutting 
parameters and reducing cutting forces, but they don't account 
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Abstract

Mechanistic models, established on experimental data, are recognized for their precision and simplicity in implementation. In this context of 
milling, the modeling of cutting forces, specifically radial and tangential components, has been extensively explored for unidirectional carbon 
fiber-reinforced polymer (UD-CFRP) parts. These models account for the anisotropic nature of fiber-reinforced polymers (FRPs), with cutting 
coefficients that vary based on the instantaneous cutting angle. However, due to the inherent flexibility of these materials, primarily attributed to 
their low thickness, axial cutting forces must also be incorporated to accurately represent the phenomena occurring during the machining process. 
This study develops a model for calculating cutting forces in three spatial directions for UD-GFRPs (unidirectional Glass Fiber-reinforced 
polymers). Building on an existing model from the literature for UD-CFRP, this new version introduces several modifications. First, the model 
validated for CFRPs must be extended to GFRPs. Secondly, the model must be extended from two dimensions to three dimensions. Finally, to 
ensure that the model includes only the actual contributions of the trimming operation, machining tests will be performed using only the rolling 
teeth. The cutting coefficients are modelled as a periodic function with a fundamental period of π. A first-order Fourier series was chosen for this 
purpose. Fourier series parameters are identified from the milling forces measured during a set of slotting operations at three feed rates and four
fiber orientations. While the average levels of cutting forces are accurately modelled for both slotting and shoulder milling (with 50% immersion 
in up milling), the modeling of force amplitudes still requires improvement.
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for microchip formation [1]. Micro-mechanical models detail
the composite's fibers and matrix, providing a more accurate 
cutting process representation, though they require numerous 
parameters and detailed calibration, limiting their practical 
application [1]. Numerical models, mainly based on finite 
element methods (FEM) [2], [3] and less commonly on discrete 
element models (DEM) [4], save resources and offer a precise 
description of the cutting process, but are limited by 
computational power and finite element theory constraints [1].
Mechanistic models, being semi-empirical, are intuitive for 
optimizing cutting parameters and tool geometries [1]. 
However, they require extensive and time-consuming 
experiments to ensure accuracy and applicability. Once cutting 
coefficients are determined, calculation time is minimal, 
making them suitable for industrial applications.

Most mechanistic models in literature propose identifying 
cutting coefficients as functions of the instantaneous fiber
cutting angle. These functions can be represented as a Fourier 
series [5], a sinusoidal function [6] or polynomial functions [7], 
[8]. However, some studies consider constant coefficient 
cutting while accounting for fiber distribution [9], [10]. 
Additionally, Karpat's model [6] considers instantaneous 
cutting forces and is therefore subject to issues such as runout, 
vibration, initial immersion angle, and noise. Conversely, 
Mullin [5] considers average forces to avoid these problems, 
similar to Altintas' approach for metals [11]. Finally, only the 
modelling of tangential and radial forces in the plane (2D) is 
considered in most studies.

In this paper, three dimensional forces are modelled. To 
achieve this, a mechanistic model is developed based on an 
existing model [5]. The cutting coefficients are defined as a 
Fourier series. Average cutting forces will be used to avoid 
considering problems such as runout, vibrations, initial 
immersion angle, etc. Machining tests will be conducted on a 
machining robot. Each cutting condition will be repeated, 
mitigating issues related to fiber distribution, variable sample 
thickness, inclusions in samples, and machining defects 
(delamination, fiber pull-out, etc.). The aim is to correctly 
predict the average levels of cutting forces.

After explaining the geometrical convention in section 2, 
section 3 introduces the mechanistic cutting force model. 
Section 4 develops the method for identifying cutting 
coefficients. Section 5 details the experimental setup, and 
section 6 presents the model results.

Nomenclature

(.)+ pseudo-inverse of a matrix
()w weighted matrix
β instantaneous fiber cutting angle [rad]
θ fiber orientation angle [rad]
φex exit angle [rad] 
φst start angle [rad]
φp pitch angle between flutes [rad]
φj(t) angular immersion of the jth flute [rad]
ap axial depth of cut [mm]
ae radial depth of cut [mm]
C feed per tooth matrix [mm/th]
Ci, Si Fourier coefficients

Ciw, Siw weighted Fourier coefficients
F mean cutting forces vector for all feed per tooth [N]
F. mean force along x, y and z axis
f means cutting forces for a specific feed per tooth [N]
fz feed per tooth [mm/th]
h instantaneous uncut chip thickness
Kpc cutting coefficients [MPa]
Kpe edge coefficients [N/mm]
M order of the Fourier series
m number of fiber orientations angle
n number of feed per tooth
t, r, a tangential, radial and axial direction
vc cutting speed [m/min]
W weighting force vector
Z numbers of flutes

2. Geometrical convention

The geometrical convention used in this study follows the 
Altintas convention [11]. In Fig. 1, milling of a UD-FRP 
(Unidirectional Fiber-reinforced Polymer) composite is 
illustrated.

Fig. 1. Geometrical convention.

The XY reference frame is the frame perpendicular to the 
tool axis, with X as the feed direction and Y as the normal 
direction. The fiber direction angle, θ, is the angle between the 
X axis and the fibers, measured in the trigonometric direction. 
Tooth j is defined by its angle φj, measured from the Y axis in 
the anti-trigonometric direction. The tooth is engaged in the 
material between the start of immersion angle φst and the end 
of immersion angle φex. The cutting force components
(tangential t, radial r, and axial a) are applied at the tooth. The 
instantaneous fiber cutting angle, β, is the angle between the 
tangential direction and the fibers, measured in the 
trigonometric direction. For unidirectional cutting, β is related 
as follows (Eq. 1):

𝛽𝛽(𝑡𝑡) = 𝜑𝜑𝑗𝑗(𝑡𝑡) + 𝜃𝜃 (1)

3. Mechanistic cutting force model

Even though axial forces need to be limited in FRP 
machining to reduce the risk of delamination between plies, the 
tools designed by Seco Tools produce a reduced axial force 
[12]. These axial forces will nevertheless be modelled, along 
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with radial and tangential forces. The expression of the cutting 
force applied in radial, tangential and axial (Eq. 2) directions is 
similar to Altintas’ model [13]

𝑓𝑓𝑡𝑡(𝜙𝜙𝑗𝑗) = 𝐾𝐾𝑡𝑡𝑡𝑡(𝛽𝛽)𝑎𝑎𝑝𝑝ℎ(𝜙𝜙𝑗𝑗) + 𝐾𝐾𝑡𝑡𝑡𝑡(𝛽𝛽)𝑎𝑎𝑝𝑝
𝑓𝑓𝑟𝑟(𝜙𝜙𝑗𝑗) = 𝐾𝐾𝑟𝑟𝑡𝑡(𝛽𝛽)𝑎𝑎𝑝𝑝ℎ(𝜙𝜙𝑗𝑗) + 𝐾𝐾𝑟𝑟𝑡𝑡(𝛽𝛽)𝑎𝑎𝑝𝑝
𝑓𝑓𝑎𝑎(𝜙𝜙𝑗𝑗) = 𝐾𝐾𝑎𝑎𝑡𝑡(𝛽𝛽)𝑎𝑎𝑝𝑝ℎ(𝜙𝜙𝑗𝑗) + 𝐾𝐾𝑎𝑎𝑡𝑡(𝛽𝛽)𝑎𝑎𝑝𝑝

(2)

Where ap is the axial depth of cut, Ktc, Krc and Kac are cutting 
force coefficients in tangential, radial and axial directions, Kte,
Kre and Kae are edge force coefficients and h is the
instantaneous uncut chip thickness which is function of the feed
per tooth fz and the angular immersion of the jth flute φj (Eq 3).

ℎ(𝜑𝜑𝑗𝑗) = 𝑓𝑓𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑𝑗𝑗) (3)

The assumption adopted by Mullin et al [5] is that the cutting 
coefficients have a fundamental period of π. Given that the 
instantaneous fiber cutting angle β varies between 0 and π, and 
that the chip formation mechanism varies with β, the cutting 
coefficients have a fundamental period of π. It is therefore 
possible to express the cutting coefficients as follows (Eq 4):

𝐾𝐾𝑝𝑝𝑝𝑝(𝛽𝛽) = ∑ 𝐶𝐶𝑖𝑖
𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑠𝑠 (2𝑠𝑠𝑀𝑀

𝑖𝑖=0 𝛽𝛽) + 𝑆𝑆𝑖𝑖
𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠(2𝑠𝑠𝛽𝛽) 𝑤𝑤𝑠𝑠𝑤𝑤ℎ 𝑝𝑝 =

𝑤𝑤𝑠𝑠𝑤𝑤ℎ 𝑝𝑝 = 𝑤𝑤, 𝑟𝑟, 𝑎𝑎 ; 𝑞𝑞 = 𝑐𝑐, 𝑒𝑒 (4)

To have the simplest possible model with the least amount 
of testing, the order M of the Fourier series is set to the 
minimum possible (M=1). Moreover, this is the same order 
used by Mullin et al [5]. The use of a 2nd-order Fourier series 
would tend to give better results, thanks to the larger number 
of parameters. However, there is no physical reason for 
choosing a second order. The cutting coefficients therefore 
have the following form (Eq. 5):

𝐾𝐾𝑝𝑝𝑝𝑝(𝛽𝛽) = 𝐶𝐶0
𝑝𝑝𝑝𝑝 + 𝐶𝐶1

𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑠𝑠 (2𝛽𝛽) + 𝑆𝑆1
𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠(2𝛽𝛽) (5)

Section 4 will explain the method for identifying these 
cutting coefficients 𝐶𝐶0

𝑝𝑝𝑝𝑝, 𝐶𝐶1
𝑝𝑝𝑝𝑝 and 𝑆𝑆1

𝑝𝑝𝑝𝑝.

4. Identification method of the variable cutting coefficient

From the expression (Eq. 6) of the average cutting forces per 
tooth period expressed by Altintas [11], it is possible to 
determine the cutting coefficients.

𝐹𝐹𝑝𝑝 = 1
𝜑𝜑𝑝𝑝

∫ 𝐹𝐹𝑝𝑝,𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 𝑑𝑑𝛽𝛽𝛽𝛽𝑒𝑒𝑒𝑒
𝛽𝛽𝑠𝑠𝑠𝑠

𝑤𝑤𝑠𝑠𝑤𝑤ℎ 𝑞𝑞 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 (6)

The average cutting forces per tooth period Fx, Fy et Fz, 
depending respectively on the tool feed, normal to the feed, and 
out-of-plane, are the result of integrating the instantaneous 
forces Fx,inst, Fy,inst and Fz,inst while the tooth is in the immersion 
zone. The integral is divided by the pitch angle φp (φp = 2 π/Z).
The immersion zone of a tooth is defined as a function of the 
instantaneous fiber cutting angle (Eq. 7). This angle is the sum 
of the angular immersion of the jth flute φj and the fiber 
orientation angle θ. In the case of slotting, the start immersion 
angle φst is 0 and the exit immersion angle φex is π.

𝛽𝛽𝑖𝑖𝑡𝑡 < 𝛽𝛽 < 𝛽𝛽𝑡𝑡𝑒𝑒 𝑤𝑤𝑠𝑠𝑤𝑤ℎ 𝛽𝛽(𝑤𝑤) = 𝜑𝜑𝑗𝑗(𝑤𝑤) + 𝜃𝜃 (7)

The expressions for instantaneous forces are in Eq. 8 [11].

𝐹𝐹𝑒𝑒,𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(𝛽𝛽) =
𝑓𝑓𝑧𝑧𝑎𝑎𝑝𝑝

2 (−𝐾𝐾𝑡𝑡𝑡𝑡(𝛽𝛽) 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜑𝜑) −𝐾𝐾𝑟𝑟𝑡𝑡(𝛽𝛽)(1 − 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜑𝜑))
+𝑎𝑎𝑝𝑝(−𝐾𝐾𝑡𝑡𝑡𝑡(𝛽𝛽) 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜑𝜑) − 𝐾𝐾𝑟𝑟𝑡𝑡(𝛽𝛽) 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜑𝜑))

𝐹𝐹𝑦𝑦,𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(𝛽𝛽) =
𝑓𝑓𝑧𝑧𝑎𝑎𝑝𝑝

2 (𝐾𝐾𝑡𝑡𝑡𝑡(𝛽𝛽)(1 − 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜑𝜑) − 𝐾𝐾𝑟𝑟𝑡𝑡(𝛽𝛽) 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜑𝜑))
+𝑎𝑎𝑝𝑝(𝐾𝐾𝑡𝑡𝑡𝑡(𝛽𝛽) 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜑𝜑) − 𝐾𝐾𝑟𝑟𝑡𝑡(𝛽𝛽) 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜑𝜑))

𝐹𝐹𝑧𝑧,𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(𝛽𝛽) = 𝑓𝑓𝑧𝑧𝑎𝑎𝑝𝑝𝐾𝐾𝑎𝑎𝑡𝑡(𝛽𝛽) 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜑𝜑) + 𝑎𝑎𝑝𝑝𝐾𝐾𝑎𝑎𝑡𝑡(𝛽𝛽) (8)

Moreover, the average cutting forces can be expressed as a 
linear function of feed rate fz and an offset contributed by the 
edge forces [11] (Eq. 9):

𝐹𝐹𝑝𝑝 = 𝐹𝐹𝑝𝑝𝑡𝑡 𝑓𝑓𝑧𝑧 + 𝐹𝐹𝑝𝑝𝑡𝑡 𝑤𝑤𝑠𝑠𝑤𝑤ℎ 𝑞𝑞 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 (9)

On the other hand, it is possible to write the average forces 
in a vector f (Eq. 10):

𝒇𝒇 = [𝐹𝐹𝑒𝑒 , 𝐹𝐹𝑦𝑦, 𝐹𝐹𝑧𝑧 ]𝑇𝑇 (10)

The average forces (Eq. 11) can be expressed in matrix form 
using the form:

𝒇𝒇 = 𝒄𝒄𝒄𝒄(𝜃𝜃) 𝑤𝑤𝑠𝑠𝑤𝑤ℎ 𝒄𝒄 = [
𝑐𝑐 1 0 0 0 0
0 0 𝑐𝑐 1 0 0
0 0 0 0 𝑐𝑐 1

]

𝒄𝒄(𝜃𝜃) = [𝐹𝐹𝑒𝑒𝑡𝑡 𝐹𝐹𝑒𝑒𝑡𝑡 𝐹𝐹𝑦𝑦𝑡𝑡 𝐹𝐹𝑦𝑦𝑡𝑡 𝐹𝐹𝑧𝑧𝑡𝑡 𝐹𝐹𝑧𝑧𝑡𝑡]𝑇𝑇
(11)

In addition, the matrix b is expressed in Eq 12:

𝒄𝒄(𝜃𝜃) = 𝒂𝒂(𝜃𝜃)𝑲𝑲
𝑲𝑲 = [𝑲𝑲𝒕𝒕𝒄𝒄 𝑲𝑲𝒕𝒕𝒕𝒕 𝑲𝑲𝒓𝒓𝒄𝒄 𝑲𝑲𝒓𝒓𝒕𝒕 𝑲𝑲𝒂𝒂𝒄𝒄 𝑲𝑲𝒂𝒂𝒕𝒕]𝑇𝑇;
𝑲𝑲𝒑𝒑𝒑𝒑 = [𝐶𝐶0

𝑝𝑝𝑝𝑝 𝐶𝐶1
𝑝𝑝𝑝𝑝 𝑆𝑆1

𝑝𝑝𝑝𝑝] (12)

The matrix a is of dimension 6 x [6 x (2M + 1)]. The matrix 
elements a can be found from the results of the integration of 
Eq. 9. These elements are provided in Appendix A for the 
slotting case.

The procedure for identifying the coefficients of the Fourier 
series of cutting coefficients is a two-step procedure.

4.1. Step 1

To create an over-determined system, it is necessary to carry 
out the tests with a number n of feed per tooth fz values greater 
than two (n>2). To create the simplest model, n has been set to 
the minimum required (n=3). It is therefore possible to 
construct an over-determined system (Eq. 13):

𝑭𝑭 = 𝑪𝑪𝒄𝒄(𝜃𝜃); 𝑪𝑪 = [
𝒄𝒄𝟏𝟏
𝒄𝒄𝟐𝟐
𝒄𝒄𝟑𝟑

] ; 𝑭𝑭 = [
𝒇𝒇𝟏𝟏
𝒇𝒇𝟐𝟐
𝒇𝒇𝟑𝟑

] (13)
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where c1, c2, and c3 are the c matrices of Eq. 11 evaluated at 
the three feed per tooth values chosen; f1, f2, and f3 are the mean 
force vectors of Eq. 10 produced by the different feed per tooth. 
Two solutions were chosen to solve this system. The first is by 
using the Moore-Penrose pseudo-inverse directly on the C
matrix (Eq. 14). The second (Eq. 15) is to apply this pseudo-
inverse to a matrix C weighted by the matrix W (Eq. 16). This 
weighting matrix W is defined as the diagonal matrix 
containing the inverse of the square of the variance of the mean 
forces at each feed per tooth tested.

𝒃𝒃(𝜃𝜃) = 𝑪𝑪+𝑭𝑭 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑪𝑪+ = (𝑪𝑪𝒕𝒕𝐶𝐶)−1𝑪𝑪𝒕𝒕 (14)

𝒃𝒃(𝜃𝜃) = 𝑪𝑪𝒘𝒘
+𝑭𝑭𝒘𝒘 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑪𝑪𝒘𝒘 = 𝑾𝑾𝑪𝑪, 𝑭𝑭𝒘𝒘 = 𝑾𝑾𝑭𝑭 (15)

𝑾𝑾 = 𝑑𝑑𝑤𝑤𝑑𝑑𝑑𝑑(1/𝜎𝜎𝑥𝑥1
2 , 1/𝜎𝜎𝑦𝑦1

2 , 1/𝜎𝜎𝑥𝑥2
2 , 1/𝜎𝜎𝑦𝑦2

2 , 1/𝜎𝜎𝑥𝑥3
2 , 1/𝜎𝜎𝑦𝑦3

2 ) (16)

4.2. Step 2

Step 1 is repeated for all m fiber orientation angles. m must 
be greater than (2M+1). To simplify the model, m has been set 
to this minimum value for M set to 1 (m=4). Thus, Eq. 12 can 
be written for each fiber orientation angle and expressed in 
matrix format (Eq. 17). This over-determined system (Eq. 17) 
is solved by the least squares method using the Moore-Penrose 
pseudo-inverse (Eq. 18).

𝐵𝐵 = 𝐴𝐴 ⋅ 𝐾𝐾; 𝐵𝐵 = [
𝑏𝑏(𝜃𝜃1)

⋮
𝑏𝑏(𝜃𝜃4)

] ; 𝐴𝐴 = [
𝑑𝑑(𝜃𝜃1)

⋮
𝑑𝑑(𝜃𝜃4)

] (17)

𝐾𝐾 = 𝐴𝐴+𝐵𝐵 (18)

5. Experimental setup

The experimental setup is shown in Fig. 2. The slotting tests 
were conducted on a Stäubli TX 200 robot with a Teknomotor 
ATC 71-HSK F63 spindle, from the UMONS Machine Design 
and Production Engineering Lab. A 6 mm diameter, 4-teeth 
milling cutter from Seco Tools, designed for machining 
thermoset or thermoplastic G/C-FRP, was used. The cutter has 
a 10° helix angle. The workpieces are UD-GFRP samples from 
Sobelcomp, consisting of 14 plies of unidirectional glass fibers 
with an epoxy matrix, all aligned in the same direction. The 
sample thickness is 7.3 mm ± 0.2 mm. Cutting forces were 
measured using a Kistler 9257B piezoelectric multicomponent 
dynamometer, with a sampling frequency of 40 kHz. The raw 
signal was low-pass filtered at 1800 Hz to eliminate high-
frequency noise. The samples were clamped on the 
dynamometer. Table 1 summarizes the setup information. 

The cutting conditions were chosen within Seco’s
recommendation range. The cutting speed Vc was set at 125 
m/min. The axial depth of cut matches the sample thickness. A 
large sample thickness was chosen to limit sample flexibility
and reduce noise in measurements. The identified coefficients 
will be used in models where only the peripheral teeth are 
considered. Consequently, machining is performed without the 
teeth to eliminate the contribution of the end teeth. To simplify 
the model, the Fourier series of the cutting coefficients was 

limited to the first order (M = 1), requiring at least four fiber 
orientations (m > 2M + 1). The chosen fiber orientation angles 
were 0, π/4, π/2, 3π/4. Additionally, three feed values per tooth 
were selected to fit Seco's operating range: 0.02, 0.03, and 0.04 
mm/th. The cutting conditions are summarized in Table 2.

Fig. 2. Experimental setup.

Table 1. Setup information.

Property Value

Machining robot Stäubli TX 200

Tool 880060R020Z4.0-DURA

Number of teeth Z 4

Diameter of the tool D [mm] 6

Helix angle [deg] 10

Sample UD-GFRP

Thickness t [mm] 7.3 ± 0.2

Dynamometer 9257B Kistler

Sampling frequency [kHz] 40

Table 2. Cutting conditions.

Each slotting test was conducted over a length of 35 mm, 
but only a reduced interval equivalent to 100 rotations was used 
as input data to capture the steady-state portion of the 
machining. Tests with a machining robot are more subject to 
trajectory deviations compared to CNC tests. To overcome this 
problem, the tests were carried out in a workspace and posture 
that optimized the robot's rigidity. In addition, identification 
was carried out on the slotting operation to ensure that tool 
engagement angles (φst = 0, φext = π) did not change despite 
deviations. However, using a machining robot helps evaluate 
the method's ability to identify cutting coefficients even under 
these conditions. Each cutting condition was repeated six times 
to address issues like fiber distribution, variable sample 
thickness, inclusions, and machining defects such as 
delamination and fiber pull-out.

Property Value

Axial depth of cut ap [mm] 7.3

Radial depth of cut ae [mm] 6

Cutting speed vc [m/min] 125

Feed per tooth fz [mm/th] 0.02 - 0.03 - 0.04

Orientation fiber angle θ [rad] 0 - π/4 - π/2 - 3π/4
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6. Results

The method described in section 4 was applied to the data 
from the slotting operations using the setup detailed in section 
5. The Fourier coefficients C0, C1, S1 and C0w, C1w, S1w for the 
different cutting coefficients Kpq (p = t, r, a; q = c, e) are 
summarized in Table 3. The Fourier coefficients C0w, C1w, S1w

were calculated from the expression of b in Eq. 15.

Table 3. Fourier coefficient of Kpq(β).

Cutting coefficient C0 C1 S1 C0w C1w S1W

Ktc(β) [MPa]  255.9 15.8 18.4 255.7 7.6 16.4

Krc(β) [MPa]  358.8 -18.4 17.3 353.4 -16.4 7.6

Kac(β) [MPa]  48.2 -25.4 12 48 -30.7 6.6

Kte(β) [N/mm]  6 -1 17.3 6.2 -1.2 11.1

Kre(β) [N/mm]  1.5 11.5 1.4 1.6 7 2.1

Kae(β) [N/mm]  0.1 0 0 0.1 0 0

The shapes of the Kpq (Eq. 4) were plotted (Fig. 3) using the 
Fourier coefficients in Table 3. The contribution of the axial 
edge coefficient is almost zero. In addition, the tangential and 
radial edge coefficients have a negative part. This is a 
mathematical artefact that makes no physical sense.

Fig. 3. Variable cutting and edge force coefficients identified.

Fig.4 shows the cutting forces (Fx, Fy and Fz) for the 
different values of θ tested for a feed per tooth fz of 0.03 mm/th. 
The blue curve represents the measured forces, while the red
and orange curves represent the forces modelled by Eq.15 and 
Eq.16 (with the weighting matrix) respectively. 

The average forces of Fx, Fy and Fz coincide between the 
measurements and the modelling. However, it should be noted 
that the amplitude of the signal is mostly overestimated for Fx

and Fy. The amplitude is underestimated for Fz. The lack of 
rigidity in robots compared to traditional CNC machines 
justifies this. Additionally, axial forces Fz are typically less 
significant and not prioritized over in-plane forces Fx and Fy, 
an assumption that doesn't hold in robotic machining. 
Furthermore, the measured forces may not be periodic 
throughout the entire period, likely due to the dynamic effects 
of robotic machining. The forces calculated using the 
weighting matrix (Eq. 16) are more consistent with the 
measurements.

Fig. 4. Cutting forces for (a) θ = 0, (b) θ = π/4, (c) θ = π/2, (d) θ = 3π/4
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Thus, cutting forces can also be modelled for shoulder
milling (50% immersion in up milling). Fig. 5 displays the 
measured and modelled forces (using the weighting matrix). In 
general, the modelling of forces Fx and Fy is satisfactory in 
terms of mean value and amplitude. However, while the 
average level of forces Fz is correct, the amplitude is 
significantly underestimated. The objective of accurately 
modelling the average cutting forces has been achieved, but the 
modelling of effort amplitudes still needs improvement.

Fig. 5. Cutting forces in shoulder milling for θ = 0, fz = 0.03 mm/th.

7. Conclusion

A mechanistic model has been developed to calculate 
cutting forces in all three spatial directions during the 
machining of unidirectional glass fiber-reinforced polymers 
(UD-GFRP). This model incorporates the adjustment of cutting 
coefficients based on the instantaneous fiber cutting angle, 
capturing variations in the chip formation process. The cutting 
coefficients are modeled as periodic functions to reflect the 
cyclical nature of the cutting phenomena associated with fiber 
orientation. The chosen function is a first-order Fourier series.

The model's validity was established through experimental 
validation in robotically milled UD-GFRP. First, the accuracy 
of the identification method was assessed using slotting 
experiments, providing a baseline for calibration. The slotting 
operation was chosen because, despite deviations due to low 
robot rigidity, the tool engagement angles remain unchanged. 
Second, the model’s performance was demonstrated by 
predicting cutting forces during shoulder milling (50% 
immersion in up milling). The objective of accurately modeling 
the average level of cutting forces has been achieved, but the 
modeling of effort amplitudes still requires improvement.

This approach enables the straightforward calibration of a 
mechanistic model by utilizing milling force data to adjust the 
model parameters. However, the current version of the model 
does not account for factors such as tool wear, fiber pull-out, or 
delamination, which may influence the cutting forces and the 
quality of the finished part. Future work will focus on 
extending the model’s applicability to multidirectional glass 
fiber-reinforced polymers (MD-GFRP), with the aim of further 
validating and refining the model to better reflect the complex 
behaviors observed in these composite materials. Using a 2nd-
order Fourier series could be a potential solution, even if it 
removes some of the physical meaning from the model.
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Appendix A. Matrix a(θ)

The non-zero entries of the matrix a(θ) of Eq. 12 are shown 
in Table 4 for the slotting case (φst = 0, φext = π). with N the 
number of teeth, ap the axial depth of cut and θ the fiber 
orientation angle.

Table 4. Non-zero entries of the 6x18 matrix a(θ).

Value

𝑎𝑎1,2 = 𝑎𝑎1,9 = 𝑎𝑎3,8 = 𝑍𝑍 𝑎𝑎𝑝𝑝 sin(2𝜃𝜃)/ 8 𝑎𝑎2,10 = −𝑎𝑎4,4 = −𝑎𝑎5,13 = −𝑍𝑍 𝑎𝑎𝑝𝑝/𝜋𝜋
𝑎𝑎1,3 = 𝑎𝑎3,2 = 𝑎𝑎3,9 = −𝑍𝑍 𝑎𝑎𝑝𝑝 cos(2𝜃𝜃) /8 𝑎𝑎2,11 = 𝑍𝑍 𝑎𝑎𝑝𝑝 cos(2𝜃𝜃) /(3𝜋𝜋)
𝑎𝑎1,7 = −𝑎𝑎3,1 = −𝑎𝑎6,16 = −𝑍𝑍 𝑎𝑎𝑝𝑝/4 𝑎𝑎2,12 = 𝑍𝑍 𝑎𝑎𝑝𝑝 sin(2𝜃𝜃) /(3𝜋𝜋)
𝑎𝑎1,8 = 𝑍𝑍 𝑎𝑎𝑝𝑝 cos(2𝜃𝜃) /8 𝑎𝑎3,3 = −𝑍𝑍 𝑎𝑎𝑝𝑝 sin(2𝜃𝜃) /8
𝑎𝑎2,5 = 𝑎𝑎4,11 = 2 𝑍𝑍 𝑎𝑎𝑝𝑝 sin(2𝜃𝜃) /(3𝜋𝜋) 𝑎𝑎4,5 = 𝑎𝑎5,14 = −𝑍𝑍 𝑎𝑎𝑝𝑝 cos(2𝜃𝜃) /(3𝜋𝜋)
𝑎𝑎2,6 = 𝑎𝑎4,12 = −2 𝑍𝑍 𝑎𝑎𝑝𝑝 cos(2𝜃𝜃) /(3𝜋𝜋) 𝑎𝑎4,6 = 𝑎𝑎5,15 = −𝑍𝑍 𝑎𝑎𝑝𝑝 sin(2𝜃𝜃) /(3𝜋𝜋)
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