Two-photon molecular emitters
enhanced with nanoantennas

U MO N S Steve Smeets?, Bjorn Maes?, Gilles Rosolen?, and Colin Van Dyck?
Do I Micro- and Nanophotonic Materials Group, 2 Theoretical Chemical Physics Group, \ Faculty
University of Mons Research Institute for Materials Science and Engineering, University of Mons e Of Science

AbStra Ct Although two-photon spontaneous emission (TPSE) is the reverse process of two-photon absorption (TPA), the design of\

efficient emitters follows different rules. We design two-photon emitters by: 1) employing TD-DFT to compute transition moments
2) designing a hybrid nanoantenna to enhance the radiative TPSE rate. The enhancement is calculated using our framework based on the
\numerical calculation of one-photon Purcell factors [1]. We design a molecular emitter emitting 30 times more than a dipole in vacuum. Y,

Design rules for two-photon emitters

/- Two-photon spontaneous emission (TPSE): second-order process, 8 to 10 orders
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Calculation of TPSE in molecules Enhancement with a hybrid nanoantenna
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—> Misses double excitations — incorrect state ordering

> Computes transition moments (via Gaussian) 0.61
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Figure — Two-photon spontaneous emission rate ¢®and quantum

efficiency n(?) := ¢;()i)—ph/¢t(§t) for the 2A,— 1A, transition of the

K v' High second-order transition moments DY / K NO2 — OPPV molecule placed in the hybrid nanoantenna /
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e Two-photon molecular emitter 30 times stronger than a one-photon
emitter in vacuum (d®9 = 1 a.u.)

v' Small energy gap between 15t and 2"? excited states

* For a molecule with the same vacuum TPSE rate as NO2 — OPPV near
the presented nanoantenna, TPSE dominates if the 15 excited state has

* TD-DFT underestimates TPSE rates for m-conjugated molecules a transition dipole moment < 0.01 a.u. (verified for dark states)

K because it fails to account for double excitations
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