Two-photon molecular emitters enhanced with nanoantennas

UMONS University of Mons

<u>Steve Smeets¹</u>, Bjorn Maes¹, Gilles Rosolen¹, and Colin Van Dyck²

¹ Micro- and Nanophotonic Materials Group, ² Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons

Abstract Although two-photon spontaneous emission (TPSE) is the reverse process of two-photon absorption (TPA), the design of efficient emitters follows different rules. We design two-photon emitters by: 1) employing TD-DFT to compute transition moments 2) designing a hybrid nanoantenna to enhance the radiative TPSE rate. The enhancement is calculated using our framework based on the numerical calculation of one-photon Purcell factors [1]. We design a molecular emitter emitting 30 times more than a dipole in vacuum.

Design rules for two-photon emitters

Two-photon spontaneous emission (TPSE): second-order process, 8 to 10 orders of magnitude slower than one-photon emission [2], entangled photons

- **For degenerate processes** (higher TPSE rate): \bullet

- Search for molecules having an intermediate state: \bullet
 - \rightarrow Close in energy to the excited state for TPSE
 - \rightarrow Near the middle of the gap for TPA

Calculation of TPSE in molecules

Enhancement with a hybrid nanoantenna

System

- **Highly radiative in perpendicular** direction
- Emitter: NO2 OPPV (2 nm)

Method

TPSE as a function of one Purcell factors (emitter along z) [1]

- **TD–DFT:** B3LYP/6-31G*, optimization in the first excited state
 - \rightarrow Misses double excitations \rightarrow incorrect state ordering
 - \rightarrow Computes transition moments (via Gaussian)
- **PPP Theory** (semi-empirical method for π electrons systems)
 - \rightarrow Computes excited-state energies

Results $D^{eg}(0.5)$ [a.u.] $\phi_0^{(2)}(0.5)$ [s⁻¹] $E_{2A_{\sigma}}$ [eV] $E_{1B_{11}}$ [eV] Molecule 2.98 DPB 3.15 30.2 0.12 $NO_2 - OPPV$ 2.54 117 2.19 2.44

✓ Small energy gap between 1st and 2nd excited states

 \checkmark High second-order transition moments D^{eg}

Figure – Two-photon spontaneous emission rate $\phi^{(2)}$ and quantum efficiency $\eta^{(2)} \coloneqq \phi^{(2)}_{\rm ph-ph} / \phi^{(2)}_{\rm tot}$ for the $2A_g \rightarrow 1A_g$ transition of the NO2 – OPPV molecule placed in the hybrid nanoantenna

- Two-photon molecular emitter **30 times stronger** than a one-photon emitter in vacuum ($d^{eg} = 1$ a.u.)
- **TD-DFT underestimates TPSE rates** for π-conjugated molecules because it fails to account for double excitations
- For a molecule with the same vacuum TPSE rate as NO2 OPPV near the presented nanoantenna, **TPSE dominates** if the 1st excited state has a transition dipole moment < 0.01 a.u. (verified for dark states)

References

[1] Smeets et al. General framework for two-photon spontaneous emission near plasmonic nanostructures. PRA 100, 063516 (2023) [2] Rivera et al. Shrinking light to allow forbidden transitions on the atomic scale. Science, 353(6296), 263-269 (2016) [3] Pawlicki et al. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed. 48, 3244 (2009)

Acknowledgments

We acknowledge support from Action de Recherche Concertée (project ARC-21/25 UMONS2)

Contact: Steve.Smeets@umons.ac.be