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Design rules for two-photon emitters

Calculation of TPSE in molecules
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Although two-photon spontaneous emission (TPSE) is the reverse process of two-photon absorption (TPA), the design of
efficient emitters follows different rules. We design two-photon emitters by: 1) employing TD-DFT to compute transition moments
2) designing a hybrid nanoantenna to enhance the radiative TPSE rate. The enhancement is calculated using our framework based on the
numerical calculation of one-photon Purcell factors [1]. We design a molecular emitter emitting 30 times more than a dipole in vacuum.

• Two-photon molecular emitter 30 times stronger than a one-photon
emitter in vacuum (𝑑𝑒𝑔 = 1 a.u.)

• TD-DFT underestimates TPSE rates for π-conjugated molecules
because it fails to account for double excitations
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Conclusion

• Two-photon spontaneous emission (TPSE): second-order process, 8 to 10 orders 
of magnitude slower than one-photon emission [2], entangled photons

• For degenerate processes (higher TPSE rate):

• Search for molecules having an intermediate state:

→ Close in energy to the excited state for TPSE

→ Near the middle of the gap for TPA

Enhancement with a hybrid nanoantenna
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Method

• TD–DFT: B3LYP/6-31G*, optimization in the first excited state

→ Misses double excitations → incorrect state ordering

→ Computes transition moments (via Gaussian)

• PPP Theory (semi-empirical method for π − electrons systems)

→ Computes excited-state energies

Results

✓ Small energy gap between 1st and 2nd excited states

✓ High second-order transition moments 𝐷𝑒𝑔

𝑧

Molecule 𝐸2Ag [eV] 𝐸1Bu [eV] 𝐷𝑒𝑔(0.5) [a.u.] 𝜙0
2
0.5 [s-1]

DPB 2.98 3.15 30.2 0.12

NO2 – OPPV 2.44 2.54 117 2.19
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Method

• TPSE as a function of one Purcell 
factors (emitter along 𝑧) [1]

• Classical computation of Purcell 
factors with Comsol
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Results

System

• Highly radiative in perpendicular 
direction

• Emitter: NO2 – OPPV (2 nm)

• For a molecule with the same vacuum TPSE rate as NO2 – OPPV near
the presented nanoantenna, TPSE dominates if the 1st excited state has
a transition dipole moment < 0.01 a.u. (verified for dark states)
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