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ABSTRACT
With IP Multicast, a source can efficiently send the same informa-
tion to a set of receivers attached to a multicast tree. Unfortunately,
when distributing live video or large files, some receivers might
be unable to join the multicast tree. Applications willing to use
multicast for efficiency must also support unicast to reach all their
receivers. Given the complexity of mixing unicast and multicast,
most popular applications only use unicast protocols.

The large deployment of QUIC, a secure and flexible transport
protocol that runs above UDP, allows for reconsidering multicast
at the transport layer. We design and implement Flexicast QUIC, an
extension of Multipath QUIC that enables applications to use mul-
ticast where and when it works efficiently and seamlessly fall back
on unicast otherwise. Our in-lab performance evaluation shows
that a Flexicast QUIC source can sustain up to 1000 receivers for
an aggregated traffic of more than 80 Gbps, more than 4 times
what we achieve with (unicast) QUIC in the same setup. We also
show that Flexicast QUIC can easily distribute a video stream and
recover from transient failures on the underlying multicast tree
while maintaining excellent quality of experience.

CCS CONCEPTS
• Networks → Transport protocols; Network protocol design;
Network performance analysis;
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1 INTRODUCTION
In recent years, one-to-many applications such as low latency video-
streaming and software deliveries have become omnipresent, and
the demand for such applications is expected to continue growing
in the coming years [41]. Applications use unicast protocols to
distribute this content to multiple receivers, creating per-receiver
flows and imposing strong pressure on the network and the sender.
For example, Akamai, one of the world’s largest content providers,
reached peak traffic in 2022 of 250 Tbps of data [4]. A more efficient
substitute to unicast is to distribute this content using multicast
protocols. With multicast, the source generates a single copy of
each packet, which routers replicate throughout the network to
reach all receivers. Akamai showed in 2020 that between 20 % and
50 % of its traffic could benefit from multicast [32].

Deering first proposed multicast in IP-based networks [20, 22].
This proposal attracted a lot of interest from network researchers

who designed multicast applications [45], multicast routing pro-
tocols [21] and deployed them on the MBONE [5, 26]. The experi-
ments conducted over the MBONE, including the live distribution
of events such as SIGCOMM conferences and IETF meetings, influ-
enced many techniques used today by audio and video applications.
Today, the main wide-area multicast applications are IP TV in ISP
networks [43, 46], some file distribution services in enterprises [47]
and specialized financial applications [14]. However, multicast is
still not mainstream. One of the reasons IP Multicast is not globally
available today is that it is difficult for ISPs to monetize multicast
across inter-domain boundaries [23]. Another reason is that none
of the standardized Internet transport protocols supports multicast.

Recent advancements in network-layer multicast mitigate the
deployment problems of multicast routing, such as the Bit Index
Explicit Replication [56] and Automatic Multicast Tunneling [10].
However, network support for multicast is still not widely deployed,
and applications wishing to benefit from multicast must implement
an alternative delivery if specific receivers do not support it.

This paper introduces the concept of flexible multicast, i.e., Flex-
icast. A Flexicast transport protocol benefits from efficient mul-
ticast distribution when possible and leverages unicast fall-back
when multicast is not available or under-performing. We leverage
QUIC [37], which combines the security features of TLS [50] with
the reliability and congestion control features of modern TCP [25],
in addition to stream multiplexing and connection migration fea-
tures. The QUIC protocol is already largely deployed on the Inter-
net [57, 58], and about twenty known implementations co-exist.

We build upon QUIC and its Multipath extension [42] to design
Flexicast QUIC. The high-level architecture of Flexicast QUIC is
illustrated in Figure 1. Multipath QUIC enables end-hosts to create
multiple bidirectional paths within the same connection. Flexicast
QUIC extends this design by suggesting that additional paths may
be unidirectional, similarly to [19]. In addition, we use different sets
of cryptographic keys for each additional path. A Flexicast QUIC
connection thus exposes per-receiver bidirectional unicast paths
and shared unidirectional flexicast flows within the same protocol.
While the unicast paths ensure a fall-back and secure channel, the
flexicast flows can be distributed in a multicast network for efficient
and scalable data delivery to a group of receivers. Applications can
leverage Flexicast QUIC since a flexicast flow is viewed as another
path with different cryptographic keys.

A Flexicast QUIC source primarily sends data on the flexicast
flows to improve efficiency and scalability. If one of the receivers
cannot receive the data on the flow, e.g., due to congestion or
because it is in a part of the network where multicast has not been
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Figure 1: High-level overview of Flexicast QUIC. A connec-
tion combines per-receiver (𝑅1 and 𝑅2) bidirectional unicast
paths and shared unidirectional flexicast flow(s). The uni-
cast paths are protected with individual keys (𝐾{1,2} ) while
the flexicast flow uses a common key, 𝐾𝑓 . Flexicast QUIC
leverages Multipath QUIC [42] to manage the flexicast flow
as an additional path. While a QUIC path is identified by a
Connection ID (CID), flexicast flows use a Flow ID (FID). Each
path/flow uses its own packet number space ID (SID).

(correctly) configured, the source can decide to send or retransmit
data over this receiver-specific unicast path.

Contributions.We make the following contributions:
• We design Flexicast QUIC (FCQUIC), relying on and extend-
ing Multipath QUIC [42].

• We implement of FCQUIC in Cloudflare quiche [15].
• Our benchmarks show that an FCQUIC source can sustain
more than 1000 receivers and deliver >80Gbps of traffic.

• Our evaluations show the robustness of Flexicast QUICwhen
the multicast network fails.

We release the source code of Flexicast QUIC1 to explore larger-
scale deployment as part of our future work (Section 8).

2 BACKGROUND
This section gives a brief overview of QUIC [37], Multipath QUIC
(MPQUIC) [42] and IP Multicast [30].

QUIC. QUIC [37] is a connection-oriented protocol running
above UDP. TLS 1.3 is embedded in QUIC to provide a fast and
secure session handshake. A QUIC connection starts with a hand-
shake, during which the TLS session keys are computed and con-
nection parameters negotiated. In contrast with the 4-tuple used
by TCP, a QUIC connection is identified by source and destination
Connection IDs (CID) chosen by the end-hosts. The destination
CID is part of the header of each packet. Besides a few flags, this is
the only information not encrypted in QUIC packets. Each QUIC
packet is identified with a monotonically increasing packet number
(PN). This packet number is also encrypted in each QUIC packet.
QUIC packets are frame containers, i.e., they carry control and data
frames. This architecture makes it easy to extend the protocol by
defining new frames. QUIC supports reliable, ordered stream multi-
plexing through the STREAM frame and unreliable communication
with the DATAGRAM frame. Retransmitted frames are sent in new
QUIC packets with increased packet numbers.

1https://github.com/IPNetworkingLab/flexicast-quic

Multipath QUIC. Multipath QUIC [42] extends QUIC by al-
lowing to simultaneously use multiple paths within a single QUIC
connection. Multipath QUIC associates each path with a distinct
set of CIDs, communicated using the PATH_NEW_CONNECTION_ID
frame. Multipath QUIC support is negotiated during the handshake
with the initial_max_path_id transport parameter. Each path
on a Multipath QUIC connection uses a different packet number
space [18]. Concretely, this means that packets sent on each path
are totally decoupled from the others. Some data sent over one path
can be retransmitted over another path. Furthermore, a receiver can
acknowledge packets received on one path over another path. The
IETF is finalizing the standardization of this extension [42]. Several
open-source implementations of QUIC already support multipath2.

IP Multicast. Enterprise and ISP networks supporting multicast
usually rely on Source-Specific Multicast (SSM) [30]. SSM allows a
single source to send data over multicast trees. The tree is identified
by the address of the source and a multicast destination address.
The receivers use MLD [17] or IGMP [11] to join the multicast tree
dynamically. Multicast-enabled applications use either proprietary
protocols or RTP [51].

3 FLEXIBLE MULTICAST
This paper proposes the concept of flexible multicast (Flexicast in
short). We refer to Flexicast as the ability for a source to efficiently
send encrypted and authenticated data to a set of 𝑁 receivers. For
this, the source manages 𝑁 + 1 cryptographic keys. First, it negoti-
ates key 𝐾𝑖 to securely exchange packets with receiver 𝑅𝑖 , creating
a bidirectional, secure unicast path. Second, it creates a shared key,
𝐾𝑓 , that it communicates to all receivers using this secure unicast
path. The source uses this key to encrypt packets targeting all re-
ceivers simultaneously, thus creating a shared unidirectional flow
of data that we call a flexicast flow thanks to the way packets sent
on this flow can be delivered to the receivers: either through an
underlying multicast tree or using replication with IP unicast.

Flexicast flow. If all receivers are attached to a multicast distri-
bution tree, the source can encrypt and authenticate a single packet
using 𝐾𝑓 , and rely on the network to efficiently distribute it to all
receivers. Since all receivers have received 𝐾𝑓 from the source, they
can decrypt packets sent on the flexicast flow. However, there are
situations where only a fraction of the receivers have managed to
join the multicast tree. Consider that receiver 𝑅1 could not join the
multicast tree. In addition to the packets sent on the flexicast flow,
the source will generate and encrypt a new packet for 𝑅1 using 𝐾1
with the same application data.

If𝑚 ≤ 𝑁 receivers did not manage to join the multicast tree, the
source needs to encrypt and authenticate𝑚 + 1 packets for each
data chunk it sends. When𝑚 = 𝑁 , this method would be equiva-
lent to delivering data over (unicast) QUIC, which is the current
solution QUIC servers use nowadays [32]. However, measurement
studies [38, 53] showed that the generation and encryption of QUIC
packets take substantial CPU resources on servers.

Flexicast offers a more efficient and elegant solution. Considering
the worst case, i.e.,𝑚 = 𝑁 , the source could still generate a single
packet and encrypt it using 𝐾𝑓 . Instead of relying on an underlying

2https://github.com/quicwg/multipath/wiki/QUIC-Implementations-with-multipath
-support
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Figure 2: After the QUIC handshake, the source advertises
its available flexicast flow. If the receiver joins it, the source
sends the decryption key of the flow. Once the receiver starts
receiving packets from theflexicast flow, it notifies the source
through the FC_STATE(LISTEN) frame. Packet are represented
as {𝑝𝑛}[FRAMES] with 𝑝𝑛 being the packet number.

multicast distribution tree, the source could duplicate the bytes
generated by the transport protocol and send them over IP unicast
to each receiver. The sendmmsg system call can efficiently perform
such action.

Flexible multicast. The source maintains per-receiver unicast
paths during the lifetime of the connection. This path offers a
secure fall-back mechanism whenever (i) the underlying multicast
distribution tree fails or (ii) the receiver becomes a bottleneck, e.g.,
it cannot follow the pace of the flexicast flow. Such a receiver can
leave the flexicast flow and seamlessly fall back on unicast within
the same connection, thus offering flexible multicast to the end-
points: multicast for its efficiency and unicast for its robustness.

4 FLEXICAST QUIC
This section presents the design of Flexicast QUIC (FCQUIC), an
extension of Multipath QUIC [42] to support flexicast. FCQUIC
relies on Multipath QUIC (MPQUIC) for the creation, management
and scheduling of the flexicast flows.

A Flexicast QUIC connection starts as a regular Multipath QUIC
connection besides the utilization of a flexicast transport param-
eter. During the handshake, the source and the receiver establish
a first bidirectional path that is protected by one set of TLS keys.
Subsequent receivers connecting to the source will also establish
their own bidirectional paths protected by other sets of TLS keys.

We describe the mechanisms used by FCQUIC: (i) how the source
advertises a flexicast flow; (ii) how the source uses and advertises
the shared key; (iii) the extensions to MPQUIC; (iv) how FCQUIC
leverages the reliability mechanisms of QUIC; and (v) how FCQUIC
endpoints manage their membership to a flexicast flow.

4.1 Advertising a Flexicast Flow
Figure 2 illustrates the first steps of a Flexicast QUIC connection,
which starts with a standard QUIC handshake [37], creating the
bidirectional unicast path. During this handshake, both endpoints ad-
vertise their local support of flexicast with the enable_flexicast
transport parameter and the initial_max_path_id transport pa-
rameter required for Multipath QUIC.

Advertisement. After the QUIC handshake, the source an-
nounces the available flexicast flow using the FC_ANNOUNCE frame.

A flexicast flow is identified by a destination Connection ID (CID)
chosen by the source. For clarity, we call the destination CID of
the flexicast flow the Flow ID (FID). The FC_ANNOUNCE frame con-
tains the FID, the source and multicast IP addresses, and the UDP
destination port number of packets sent on the flexicast flow3.

Joining a flexicast flow. A receiver sends to the source an
FC_STATE frame with the JOIN action to request to join the adver-
tised flexicast flow. At this point, the receiver creates a state for
the new flexicast flow. The source answers by sending the FC_KEY
frame containing the shared key it uses to encrypt the packets sent
on the flexicast flow. The receiver then joins the underlying multi-
cast tree, e.g., using IGMP [11] or MLD [17]. Once the receiver starts
receiving packets on the flexicast flow, it means that the underly-
ing multicast tree is working, and the receiver sends an FC_STATE
frame with the LISTENING action. If multicast is not available, the
receiver falls back on unicast. The FC* frames are exchanged over
the unicast path and are thus secured using the (unicast) TLS keys
negotiated during connection establishment.

4.2 Changes to Multipath QUIC
The current version of MPQUIC [42] uses a single cryptographic
context for the entire connection, i.e., all paths use the same key4.
FCQUIC extends MPQUIC by providing a cryptographic context for
each path. The flexicast flow uses a key chosen by the source and
communicated to all receivers, while each unicast path is protected
using a different key for each receiver. Flexicast QUIC also requires
the flexicast flow to be unidirectional once established. Whilst this
is compliant with MPQUIC’s design [42], FCQUIC has specific
considerations: a receiver sends all its packets on the unicast path
and only uses the flexicast flow to receive packets. The server never
receives packets from the flexicast flow. It only sends on the flexicast
flow frames intended for all receivers.

Thanks to Multipath QUIC, receivers view the flexicast flow as
a second MPQUIC path with a different decryption key. Because
MPQUIC [42] uses a different packet number space per path, there
is no coupling between the packets sent on both paths. The unicast
path is mainly used for control frames, while the flexicast flow
carries the data frames. The source can also retransmit frames over
the unicast path to recover from losses. Receivers with a failing
flexicast flow can fall back on unicast to receive subsequent data.

The third change relates to the creation of a flexicast flow. In
Multipath QUIC, a host must first advertise new Connection IDs.
Then, it initiates a new path by exchanging PATH_CHALLENGE and
PATH_RESPONSE frames. This prevents attacks by verifying that the
remote endpoint can reply to packets sent on the new address [42].
In MPQUIC, each new path is bound to a set of CIDs. In FCQUIC,
since the destination address of the flexicast flow is a multicast IP
address, the receiver cannot send PATH_CHALLENGE frames from
this address. Thus, the receiver creates a state for the new path
without actually sending path-related frames. Moreover, the re-
ceiver’s source CID for this new path is the Flow ID advertised in
the FC_ANNOUNCE frame. In Flexicast QUIC, since the source for-
wards this information on the secure unicast path, the receiver
3We assume that the receiver does not already use either the FID as a source CID or
the UDP port.
4Packets are encrypted and authenticated using AEAD with a Nonce whose value
depends on the path identifier, but the encryption key remains the same.

ACM SIGCOMM Computer Communication Review Accepted for publication on March 14, 2025



trusts the advertised multicast address. Additionally, because the
flexicast flow is unidirectional, an external attacker cannot spoof
the address of the receiver to send malicious data to the source.
4.3 Reliability mechanisms
By default, a QUIC receiver should send an ACK frame after receiving
at least two ack-eliciting packets [37]. The default maximum delay
between two acknowledgments is set to 25ms [37].

Multipath QUIC extends this procedure by replacing ACK frames
with PATH_ACK frames [42]. These frames include the space identi-
fier, allowing a receiver to acknowledge on path 𝑋 data received on
path 𝑌 . MPQUIC allows a sender to retransmit data over a different
path than the initially used one. FCQUIC leverages multipath to en-
sure full reliability by retransmitting frames either on the flexicast
flow or the unicast path, depending on how many receivers have
reported a loss.

To acknowledge data received on the flexicast flow, FCQUIC
receivers send PATH_ACK frames on their unicast path with the
space identifier of the flexicast flow. To prevent ACK implosion,
an FCQUIC source advertises a minimum ack delay inside the
FC_ANNOUNCE frame. We analyze the impact of this parameter on
the scalability of FCQUIC in Section 6.1.

The source releases memory for a packet sent on the flexicast
flow once all receivers have acknowledged it, or it is considered
lost [35]. If the packet is lost, the flexicast flow retransmits its frames
on the unicast paths of the receivers who did not acknowledge the
corresponding packet. As such, the computed RTT on the flexicast
flow is a function of slowest receiver to acknowledge a given packet
number.

Congestion control. Because the flexicast flow is shared, its
throughput depends on all receivers. The FCQUIC source maintains
a per-receiver congestion state for the data sent on the flexicast
flow. These congestion states are adapted using the per-receiver
acknowledgments, leveraging existing unicast congestion control
algorithms to determine the appropriate sending rate. The current
version of FCQUIC sets the throughput on the flexicast flow as the
minimum rate among all active receivers from the flow. As such, the
source adapts its transmission rate to the slowest receiver. Thanks
to Multipath QUIC, the congestion state of the flexicast flow is
independent of the unicast path state because the source only uses
the PATH_ACK frames acknowledging packets sent on the flow. The
source can remove receivers with insufficient performance (e.g.,
those with a too-low reception bit rate) from the flexicast flow and
continue sending data through their unicast path. Managing the
flexicast flow ensures a minimum quality of experience and lets the
source deal with potentially malicious receivers.

4.4 Managing the Flexicast flow
Both the Flexicast QUIC source and receivers manage the status
of the flexicast flow using the FC_STATE frame. Receivers use the
LEAVE action to leave the flexicast flow. Upon reception, the source
falls back on unicast for this receiver, using the unicast path and
standard QUIC for data delivery. The source can also unilaterally
eject a receiver from the flexicast flow by sending an FC_STATE
frame with the LEAVE action. Once the source sends this frame, it
does not consider the receiver in the flexicast flow and falls back on
unicast. For example, this event can occur if the receiver reported

too many losses compared to the other receivers, meaning that the
flexicast flow would underperform by keeping this receiver.

There are also situations where a working flexicast flow might
stop working for some receivers. For example, a link failure might
reroute some branches of the multicast tree over routers that do
not support multicast, resulting in a black hole for some receivers.
Section 6.2 explores this scenario and shows how a Flexicast QUIC
source deals with such failures.

5 IMPLEMENTATION
We implement Flexicast QUIC inside the multipath branch [16] of
Cloudflare quiche [15] written in the Rust programming language.
Our implementation adds ∼10,000 lines of code (LoC) and 5000 LoC
of tests. Our multithread applications based on tokio [52] required
∼4500 LoC. The FCQUIC receiver application is relatively similar to
a Multipath QUIC equivalent since the flexicast flow is considered
as a unidirectional new path. When it receives a packet with the
Flexicast Flow ID as destination CID, it uses the shared decryption
key (𝐾𝑓 ). The implementation modifies the packet scheduler to
forbid receivers from sending packets using the flexicast flow.

The main challenge is to design a scalable architecture on the
Flexicast QUIC source with a shared flexicast flow where informa-
tion from each receiver impacts the state of the flexicast flow while
still ensuring scalability to large groups of receivers and avoiding
the ACK implosion problem. This Section describes how we im-
plemented the communication between the per-receiver unicast
paths and the shared flexicast flow on the source to ensure scalabil-
ity. Figure 3 presents an overview of this architecture considering
four receivers listening to the same content. This architecture is
composed of 4 elements.

I/O. The I/O module receives and sends packets. When receiving
a new packet, the module verifies the destination CID. If known,
the packet is forwarded to the associated unicast path connection;
otherwise, this is a new connection handshake that the source will
process. Upon handshake completion, a new unicast connection
instance is created.

Unicast paths. The unicast connection instances (UC) handle
the unicast paths. In Figure 3, they correspond to the packet number
space ID (SID) 0. This module reads acknowledgments from the
receivers (from the PATH_ACK frames) and forwards them to the
controller. It also handles the unicast retransmission of frames lost
on the flexicast flow. The UC module checks the liveliness of the
flexicast flow and, when relevant, notifies the controller that the
corresponding receiver should fall back on unicast; in that case, it
will continue sending new data to the receiver on the unicast path.
The unicast connections use per-receiver connection keys (e.g., 𝐾1)
for packets from the unicast path.

Flexicast flow. The flexicast flow (FC Flow) receives data from
the application, either using streams or datagrams, and generates
packets on the flexicast flow, using the shared key (𝐾𝑓 ) and a differ-
ent SID. It also forwards application data to the controller if some
receivers fall back. The module uses the aggregated acknowledg-
ments from the controller to delegate unicast retransmission.

Controller. Finally, the Controller module binds the unicast
paths and the flexicast flow. Its role is to aggregate information
(e.g., acknowledgments) from the receivers and dispatch the unicast
retransmissions to the receivers. This module provides scalability
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Figure 4: The controller aggregates acknowledgments re-
ceived on the unicast path before sending them to the flexi-
cast flow module. It delegates unicast retransmissions to the
controller, which dispatches them to the unicast path based
on the per-receiver acknowledgments.

by handling per-receiver information and only communicating
with the FC flow module with aggregated updates. If a receiver
falls back on unicast, the Controller is also responsible for buffering
application data if the unicast path instance cannot sustain it.

Multithread architecture. Our implementation leverages the
tokio [52] runtime to execute the different modules on multiple
cores on the same machine, using message passing to communi-
cate. Future work might consider running the modules on distinct
machines as fan-out servers [28] and design specific protocols to
communicate using the same control messages as this paper.

Scalable reliability.All active receivers must acknowledge each
packet sent on the flexicast flow before the source can release it
from memory. This raises a challenge regarding how to manage
the acknowledgments while ensuring scalability. The Controller
aggregates acknowledgments from each receiver and sends a single
acknowledgment for each packet to the flexicast flow module. It
then distributes the unicast retransmissions using these acknowl-
edgments. Figure 4 shows an example of acknowledgment aggrega-
tion and unicast retransmission with two receivers. In this example,
the first UC1 instance receives from the receiver acknowledgments
for packet numbers 2 to 4 and 6 to 8; the second receives from 3 to
7. They forward these acknowledgments to the Controller, which
aggregates them before sending them to the FC Flow module. The
FC Flow module delegates the frames sent in packets that are con-
sidered lost to at least a receiver (2,5,6,8). The Controller dispatches
the retransmissions to each unicast path based on the per-receiver
acknowledgments.

6 EVALUATION
We evaluate our implementation based on quiche on both Cloud-
Lab [24] and emulated networks, respectively, to benchmark its
scalability and to assess its robustness in case of failures on the
underlying multicast distribution tree. All our experiments use
the Network Performance Framework [7] and are reproducible on
CloudLab and commodity servers.

6.1 Scalability of FCQUIC
CloudLab topology. We leverage CloudLab [24] to benchmark
Flexicast QUIC. We use 6 d6515 nodes: the Source, the Network,
and four nodes connected on a LAN with the Network, emulating
receivers. All links have a capacity of 100Gbps, and the nodes
are equipped with AMD EPYC 7452 processors, 32 CPU cores, 64
threads, and 128GB of DRAM. We run up to 250 receivers per host
in distinct network namespaces for 1000 receivers.

FastClick router. We emulate the multicast tree on a single
node (the Network) using FastClick [8], an extension of the Click
modular router [40] enabling fast packet processing through op-
timizations such as packet batching and DPDK [27] support. The
FastClick router replicates packets to each receiver using multiple
cores to simulate the multicast distribution tree. This implementa-
tion sustains 95Gbps of replicated traffic. It also forwards unicast
packets between the Source and the receivers.

Measured metrics. The Source generates a constant 80Mbps
bit-rate, which is considered an upper-bound for a 4K video stream-
ing application [3]. The payload consists of packets with 1200 B of
payload. We measure three metrics while increasing the number of
simultaneous receivers:

• Recv throughput: the throughput (i.e., including protocol
overhead), aggregated on all receivers;

• Max source CPU : each second, we poll the CPU usages on
the Source and report the busiest CPU to identify a potential
bottleneck in our implementation;

• Ack rate: the throughput of the acknowledgments returned
by all receivers.

We compare thesemetrics with (i) Baseline: pure UDP trafficwithout
acknowledgments; (ii) QUIC: per-receiver unicast QUIC connec-
tions. We load-balance the receivers between 4 parallel I/O loops to
improve the scalability of QUIC; (iii) FC: Flexicast QUIC; (iv) FC-5:
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Figure 5: Benchmark results using CloudLab [24]. The source
sends 1200 B streams at 80Mbps. The Network is emulated
using our Fastclick [8] router. We run a UDP Baseline, QUIC,
and FCQUIC.

Flexicast QUIC with an ack delay of 5ms; and (v) FC-msg: Flexicast
QUIC using the sendmmsg system call to replicate packets at the
Source instead of relying on an underlying multicast distribution
tree. For unicast QUIC, we run four server instances in parallel
and evenly split the receivers among these instances to improve its
scalability. We disable the flow and congestion controllers (both for
QUIC and FCQUIC) to push the implementation to its limits.

Unicast QUIC limits. Figure 5 presents the three metrics in the
five aforementioned scenarios. The Baseline gives an ideal target
cumulated throughput of ∼80Gbps of downwards traffic for 1000
receivers. With (unicast) QUIC, the Source struggles to deliver the
content to more than 200 receivers for an aggregated throughput of
∼20Gbps. The source CPU usage reaches full utilization, explaining
the cap at ∼20Gbps. More precisely, all 64 available threads
reached 100 % utilization after 200 receivers. As reported in
other studies [39, 53], the cost of I/O, packet encryption, and con-
nection management is significant, thus becoming the bottleneck
when considering hundreds of receivers.

FCQUIC supports 1000 receivers and delivers more than
78 Gbps of traffic. Using Flexicast QUIC (the FC curve), the Source
must only generate, encrypt, and send a single copy of each packet
on the flexicast flow. As such, this process is independent of the
number of receivers, and the Source can send data to numerous
recipients as long as the Network can sustain it. The maximum CPU
usage of the FCQUIC source remains acceptable (between 50 % and
75%). We also noted that the median CPU usage remained under
20 % even for 1000 receivers.

Acknowledgment rate. A famous problem regarding reliable
multicast is the ack implosion problem [49]. The ack implosion
problem occurs when the Source becomes the bottleneck when

dealing with all the acknowledgments returned by the receivers.
Because our Controller aggregates acknowledgments before they
are sent to the FC Flow, sending new packets on the flexicast flow
scales to numerous receivers.

Figure 5 reports the ack rate of the receivers towards the Source
on the unicast path. Theoretically, this ack rate should linearly in-
crease with the number of receivers. We see that after 200 receivers,
both QUIC and FCQUIC ack rates saturate at ∼1.4Gbps. Multiple
factors related to the experimental setup explain this limit.

Limits of the experimental setup.We run all receivers on four
distinct 64-thread nodes. For ≥ 400 receivers, we simultaneously
run ≥ 100 receivers on the same machine. As a consequence, we
notice contention between receivers sharing the same CPU. We
noticed that receivers started processing packets per batch when
resources became limited, hence decreasing the ack rate because a
single PATH_ACK was sent for multiple received packets.

We identified a second limit in the FastClick router emulating
the Network. We had to add a token bucket using tc to pace the
source at 100Mbps to avoid overloading the FastClick router. Since
the Flexicast QUIC Source also has to send control information
for each receiver (e.g., to acknowledge packets from the receivers),
these packets compete with the data packets on the flexicast flow.
This limit explains the gap between the Baseline and FC curve for
≥ 600 receivers at the top of Figure 5. However, even without these
limits, we expect FCQUIC to scale to 1000 receivers thanks to the
aggregation of the Controller.

Adding an ack delay. We run the same benchmark with an
ack delay [36] of 5ms. The Source advertises this ack delay in the
FC_ANNOUNCE frame. For 1000 receivers, the cumulated ack rate re-
mains below 200Mbps, far below the value without any ack delay.
Because the ack delay reduces the packets that the receivers gener-
ate, the Source must also generate fewer packets on the flexicast
flow. As such, the cumulated throughput follows the baseline ex-
pectations and allows FCQUIC to reach the ∼80Gbps of our UDP
Baseline. We even notice that the throughput with FC-5 is higher
than the Baseline, which is expected due to the byte overhead of
QUIC.

Using sendmmsg in non-multicast networks. As explained
in Section 3, one could still benefit from FCQUIC even in a non-
multicast capable network. Instead of generating, encrypting, and
sending 𝑁 QUIC packets to 𝑁 receivers, an FCQUIC source can
generate and encrypt a single packet on the flexicast flow. To dis-
tribute these packets, the Source can replicate and forward them as
unicast packets. Doing so reduces CPU usage of the Source since
replicating packets is much cheaper than generating new ones. We
use the sendmmsg system call to replicate the packets inside the
kernel with low overhead. These sendmmsg calls are performed by
dedicated threads. The FC-msg curve on Figure 5 shows that by
using sendmmsg our FCQUIC Source supports much more receivers
than QUIC, with a much-reduced CPU load. The maximum CPU us-
age oscillates between 50 % and 90 %, while the median CPU usage
remains below 50% even for 1000 receivers. We cannot reach the
same throughput as FCQUIC inside a multicast-capable network
since replicating packets at the Source still costs more than using a
real multicast tree.
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Figure 6: Topology used to assess the robustness of Flexicast
QUIC. We emulate 20 receivers. UC and MC are two routers
connecting in a full mesh to the receivers.

6.2 Robustness of Flexicast QUIC
Emulated topology. We now evaluate the robustness of Flexi-
cast QUIC when sending a video stream in an unstable multicast
network. We emulate the network topology illustrated in Figure 6
on an Ampere(R) Altra(R) Processor Q80-30 CPU at 2.8GHz. Each
node lies in its dedicated network namespace, and we use tc to
set a bandwidth limit of 10Gbps and 10ms latency on each link
connected to the 20 receivers, i.e., the RTT between each receiver
and the Source is ∼20ms. Endpoints use the CUBIC congestion
controller on the unicast path and the flexicast flow.

5 Mbps video stream.We use FFmpeg [1] and GStreamer [2]
to generate the video stream and display the video to the user. The
video stream is a 180 s replay of drone remote piloting videos gen-
erated by Baltaci et al. [6]. The video is encoded using the H.264
codec [55] with a constant rate of 5Mbps and low-latency param-
eters. The Source uses FFmpeg to send the video as an RTP [51]
stream. The receivers run GStreamer to consume the video stream.
We compute the Structured Similarity (SSIM) [54]. This state-of-
the-art metric measures the similarity between each video frame
received by the receiver and the frame generated by the Source. A
value of 1 indicates that both frames are exactly the same. We also
report the frame latency, i.e, the time it takes for each frame from
the GStreamer source to the FFmpeg sinks.

Failure scenarios. From an operational viewpoint, IP Multi-
cast is more fragile than IP unicast. To enable IP Multicast in a
network, the operator needs to enable it on each network interface
on each router. If they forget one of these commands, multicast tree
establishment will fail when the shortest path to the Source passes
through this link. Furthermore, some routers have limitations on
the amount of multicast state they can store. Such routers can dis-
card a request to join a multicast tree from a downstream router.
In a multicast network, unicast may work perfectly, while some
branches of a multicast tree may not. To model this scenario, we
disable links of the multicast tree. Every 5 seconds, we randomly
select one of the 20 links between the MC router and the receivers
and disable it for 15 seconds with a probability of 50%. Multiple
links may be disabled at the same time. We use a seed to reproduce
the failure pattern across experiments.

Aliveness of the flexicast flow.We implement a packet sched-
uler on the Source to detect the failure of the flexicast flow for
each receiver. Whenever there are bytes in flight on the flexicast
flow, the scheduler verifies that it gets new acknowledgments from
the receiver for data sent on the flow within the fall-back delay
(𝐷 𝑓 𝑏 ). If the receiver does not send new acknowledgments within
𝐷 𝑓 𝑏 , or if the acknowledgments concern older data, the scheduler
considers that the flexicast flow is failing, and the Source falls back
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Figure 7: Evolution of the throughput,minimum SSIMamong
all receivers for each frame, and the number of failing mul-
ticast links for 𝐺𝑝𝑏 = 100 ms and 𝐷 𝑓 𝑏 = 150 ms. Each vertical
bar represents a failure or recovery event.

on unicast delivery for this receiver. Unacknowledged data is re-
transmitted on the unicast path, and subsequent data packets are
sent on that path. Once the receiver starts sending again PATH_ACK
frames concerning (new) data received on the flexicast flow, the
scheduler considers it back alive, and the receiver comes back in the
flexicast flow. The objective of our packet scheduler is to provide
seamless transition between unicast and multicast whenever some
link is failing. We evaluate values of the fall-back delay (𝐷 𝑓 𝑏 ) and
the GStreamer playback buffer (𝐺𝑝𝑏 ) in {50, 100, 150} ms.

Figure 7 shows the source rates with 𝐺𝑝𝑏 = 100 ms and 𝐷 𝑓 𝑏 =

{50, 150} ms. We measure the cumulated bit-rate (i) on the flexicast
flow (FC down); (ii) from the source to the receivers (UC down)
and (iii) from the receivers to the source (UC up) on the unicast
paths. The vertical lines mark events of failure/recovery of the
multicast links. The middle graph shows theminimum SSIM among
all receivers for each video frame. The bottom graph shows the
number of failing links at any moment during the experiment.

The Flexicast QUIC Source correctly falls back when it
detects that the multicast tree is failing for some receivers
without impacting other receivers. Since impacted receivers
cannot benefit from efficient multicast delivery, the Source must
transmit data using unicast. When the Source detects the failure
of such a receiver, it no longer considers this receiver in the flexi-
cast flow. As such, this receiver cannot be selected as the slowest
member when computing the congestion window of the flexicast
flow. This results in a steady bit rate on the flexicast flow for other
receivers despite the failure of this receiver. We notice no significant
difference in the throughput with 𝐷 𝑓 𝑏 = 50 ms.

The fall-back mechanism keeps video stream quality even
if the multicast tree is failing. Figure 8 shows the Structured
Similarity (SSIM) for each video frame on each receiver in the
nine combinations of 𝐷 𝑓 𝑏 and 𝐺𝑝𝑏 . Results show that the SSIM
remains perfect in ∼99.4% of the time, showing that multicast-
failing receivers do not significantly impact the others. As expected,
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Figure 9: Frame latency aggregated on all receivers for 𝐺𝑝𝑏 =

{50, 100, 150} ms and 𝐷 𝑓 𝑏 = {50, 100, 150} ms.

the difference between the fall-back delay (𝐷 𝑓 𝑏 ) and the GStreamer
playback buffer (𝐺𝑝𝑏 ) has an impact on the SSIM. Whenever 𝐷 𝑓 𝑏 <

𝐺𝑝𝑏 , the Flexicast QUIC scheduler can quickly detect a multicast
failure, fall-back, and retransmit lost frames on the unicast path
before the expiration of the GStreamer playback buffer, thus keeping
a higher video quality. If 𝐷 𝑓 𝑏 ≥ 𝐺𝑝𝑏 , the failure may be detected
too late to retransmit lost frames on the unicast path.

Figure 9 reports the frame latency for the same experiments,
aggregated on all receivers. The inner Figure shows the main cu-
mulative distribution, while the outer highlights the tail latency.
While the median latency remains close to the 10ms one-way delay,
we notice that it increases up to 50ms for 0.2 % of the frames. This
increase results from the time required to detect the link failure
and retransmit in-flight frames on the unicast path. However, only
a small fraction of frames (>0.01%) have a latency above 150ms
when 𝐷 𝑓 𝑏 =150ms. For smaller values of 𝐷 𝑓 𝑏 , the tail latency is
always under 150ms, which is below common values of playback
buffers used today [59].

Fall-back and recovery latency. Figure 10 measures the true
latency to detect multicast link failure (left) and recovery (right),
depending on 𝐷 𝑓 𝑏 . We notice that the proper time to detect that
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Figure 10: Latency ofmulticast link failure (left) and recovery
detection (right) for 𝐷 𝑓 𝑏 = {50, 100, 150} ms.

some link is failing depends on 𝐷 𝑓 𝑏 and the RTT, which is expected
since the scheduler reacts to the lack of acknowledgment from the
receiver for data sent on the flexicast flow. However, the time to con-
sider the flexicast flow back alive depends on the RTT since it takes
up to one RTT between data transmission and acknowledgment
from the receiver to consider this flow again.

7 RELATEDWORK
Content Delivery Networks (CDNs) emerged as a solution for one-
to-many communications due to the historical difficulties of deploy-
ing inter-domain multicast [23]. CDNs distribute data from the edge
using unicast protocols like TCP and QUIC. Some CDNs use multi-
cast overlays to distribute video traffic to their edge servers [41].

The IETF discussed several approaches to ease the deployment
of multicast between domains: Automatic Multicast Tunneling
(AMT) [10], AMT defines a control loop to create tunnels con-
necting multicast islands and relies on DRIAD [31] to find these
tunnel endpoints. TreeDN [29] suggests using tree-based delivery
networks leveraging AMT. FCQUIC currently targets intra-domain
deployments. Our future work will explore how to combine FC-
QUIC with these techniques and test them on the global Internet.
End SystemMulticast (ESM) [13] presents a multicast overlay archi-
tecture where endpoints can perform packet replication instead of
relying on an IP Multicast network. ESM requires the collaboration
of multiple trusted endpoints (i.e., receivers) to establish the overlay,
an assumption we do not take in Flexicast QUIC.

Two IETF drafts have proposed to extend QUIC to support mul-
ticast [33, 48]. HTTP over multicast QUIC [48] suggests using
HTTP3/QUIC over an IP multicast network. The multicast behavior
is implemented using HTTP and not QUIC. This design does not
modify the QUIC stack. To our knowledge, it has only been par-
tially implemented in nghq [9]. Multicast extensions for QUIC [33]
specify extensions to enable QUIC to use a multicast tree. These
extensions focus on the source authentication problem to avoid
spoofing from malicious clients. It suggests using the AMBI [34]
method, which forwards multicast packet hashes either using a
Merkle tree using multicast or on the per-client unicast connec-
tions. In a companion paper [28], the authors present MCQUIC, a
deployment architecture using fan-out servers to handle unicast
connections with each client and a one-to-many connection to
distribute data to the receivers. There is an open-source implemen-
tation of MCQUIC [44] currently supporting a subset of the control
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frames. Still, it does not implement the one-to-many communica-
tion nor the reliability and congestion control mechanisms. As a
result, a complete comparison with Flexicast QUIC is not possible.
The FC* frames from FCQUIC build upon the draft [33]. FCQUIC
leverages and extends Multipath QUIC, simplifying the design and
enabling seamless fallback to unicast when multicast trees fail. In
contrast, MCQUIC extends regular QUIC. We benchmark Flexicast
QUIC at high speed and show alternatives (e.g., using sendmmsg) in
case the is no underlying multicast tree. While MCQUIC explores
the source authentication problem, we leave it as a future work for
Flexicast QUIC and focus instead on scalability, robustness, and
evaluations of our implementation.

8 CONCLUSION AND FUTUREWORK
We propose Flexicast QUIC, an extension of Multipath QUIC sup-
porting flexible multicast. Flexible multicast is the ability for a
source to securely and efficiently distribute data to a set of receivers
using multicast trees where and when they are available and unicast
delivery otherwise.

Flexicast QUIC combines per-receiver unicast paths and a shared
flexicast flow, which receivers consider as another path with different
encryption keys. An FCQUIC source can distribute live streams to
multiple receivers while offering security, reliability, and scalability.
FCQUIC receivers can seamlessly fall back on unicast whenever
the flexicast flow fails without supporting another protocol.

We benchmark our multithreaded implementation and show that
an FCQUIC source can support 1000 receivers for an aggregated
throughput of >80Gbps, while QUIC saturates at ∼20Gbps. We
also demonstrate that Flexicast QUIC receivers can seamlessly fall
back to unicast when there are failures on the multicast tree.

Our future work includes leveraging Forward Erasure Correction
to improve the reliability mechanism; design more efficient conges-
tion and flow controllers; integrate source authentication methods;
exposing multiple flexicast flows in parallel, e.g., to provide multi-
ple video streams encoded at different bit-rates for heterogeneous
receivers; evaluate Flexicast QUIC in other use-cases such as large
file distribution, e.g., software updates and video game releases; de-
ploy Flexicast QUIC in inter-domain multicast scenarios, leveraging
AMT [10] and TreeDN [31]; handle dynamic groups with key rota-
tion mechanisms such as [12]. We will also consider more advanced
schedulers compared to Section 6.2, including heterogeneous re-
ceivers with varying RTT and loss conditions. Such schedulers
will also handle bottleneck receivers from impacting the remainder
of the flexicast flow and adapt to the group size and per-receiver
conditions (e.g., the ack delay and 𝐷 𝑓 𝑏 ).

ARTIFACTS
We release the source code of Flexicast QUIC based on Cloudflare
quiche and all the installation and evaluation scripts used for its
evaluation at https://github.com/IPNetworkingLab/flexicast-quic.
We encourage application developers to explore how to integrate
FCQUIC and hope this will encourage more multicast deployment
in the global Internet.
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