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ABSTRACT
Iron oxide superparamagnetic nanoparticles have been extensively studied as T2 contrast agents in magnetic resonance imaging. The theory
of nuclear magnetic relaxation induced by superparamagnetic nanoparticles has been validated by numerous experimental studies in the case
of spherical particles. Recently, several studies focused on the synthesis of cubic nanoparticles. Some of them reported significantly higher
relaxivities compared to their spherical counterpart and attributed this increase to their specific shapes. This work investigates the impact
of cube-shaped nanoparticles on nuclear magnetic relaxation through Monte Carlo methods. Transverse relaxation at high static magnetic
field is simulated by modeling the proton diffusion in the magnetic field generated by a cubic or a spherical nanoparticle. The results indicate
that, in the case of magnetite nanoparticles, there is no significant difference between both shapes for sizes above 30 nm when particles are
compared at equal volumes and magnetization. Below this size, a −40%–15% variation of the relaxation rates is predicted for the cubic case
compared to the spherical case. These results are explained using general relaxation models that incorporate the distribution of the magnetic
field generated by the nanoparticles. The simulation predictions are compared to some experimental results from the literature, revealing that,
in some cases, the magnetic field specific to the nanoparticle shape alone cannot explain the observed increase in the relaxation rate of cubic
nanoparticles.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0251512

NOMENCLATURE

Bz z-component of the magnetic field
B⃗0 external magnetic field, supposed to be parallel to

the z axis
c nanocube edge length
C NP concentration
CA contrast agents
CPMG sequence Carr–Purcell–Meiboom–Gill sequence
D proton diffusion coefficient
f volume fraction of the sample occupied by the

particles
M superparamagnetic nanoparticle saturation

magnetization

MAR motional averaging regime
MR magnetic resonance
MRI magnetic resonance imaging
NP nanoparticle
PRM partial refocusing model
R spherical nanoparticle radius
R2 transverse relaxation rate
r2 transverse relaxivity
SDM static dephasing model
SPM superparamagnetic
T2 transverse relaxation time
V NP volume
Vprotons volume occupied by the protons in the sample or

the simulation space
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γ proton gyromagnetic ratio
μ magnetic moment of the superparamagnetic

nanoparticle
μ0 vacuum magnetic permeability
τD proton diffusion correlation time
τIE CPMG inter-echo time

I. INTRODUCTION

Nuclear magnetic relaxation times T1 and T2 are known to
impact the image contrast in magnetic resonance imaging (MRI).1
To ease the diagnosis, contrast agents (CAs) are often used to high-
light regions of interest (such as tumor cells) in the MR image.
CAs are magnetic compounds that interact with nuclear spins and
shorten their relaxation times. There are two main categories of CAs:
T1 and T2 agents. T1 agents are usually gadolinium-based com-
pounds, while T2 agents mainly comprise superparamagnetic iron
oxide nanoparticles.

Superparamagnetic (SPM) nanoparticles (NP) were first stud-
ied by Néel2 who discovered the superparamagnetism phenomenon:
below a given size limit, typically at the nanoscale, these NPs present
no hysteresis and no remnant magnetization. Their magnetization
saturates at high external magnetic fields, reaching a very high
saturation value. Indeed, each SPM NP is composed of a single
magnetic Weiss domain in which all the electron spins are aligned
with each other. The most used SPM NPs in MRI are iron oxide
NPs because of their non-toxicity, ease of synthesis, and function-
alization. These properties make them suitable for a wide range
of biomedical applications, in addition to MRI, such as magnetic
hyperthermia, magnetic particle imaging, magnetic separation, and
drug delivery.3–5

Iron oxide NPs are usually synthesized as spherical NPs. How-
ever, for more than 15 years, numerous studies have focused on the
synthesis of NPs with exotic shapes, such as cubes, rods, stars, or
nanoflowers.6–8 Experimental studies have shown that NP shapes
have a crucial impact on their efficiency in applications such as
hyperthermia,9–11 photothermal therapy,11,12 or drug delivery.6 Sev-
eral experimental studies measured relaxation times for different NP
shapes13–22 and sometimes reported very high relaxivities (i.e., relax-
ation rates normalized by the iron content). Thus, exotic-shaped
NPs appear to be promising efficient MRI CAs. A fine understand-
ing of the underlying relaxation mechanisms could help define the
parameters that optimize their efficiency.

The influence of SPM NPs on water nuclear magnetic relax-
ation can be explained by the interaction between proton spins and
the large dipolar magnetic fields produced by the NPs.23 The main
relaxation mechanism comes from the bulk diffusion of water pro-
tons around the NPs (the so-called “outer-sphere mechanism”). In
most relaxation models, SPM NPs are considered as impenetra-
ble spheres: there is no quantitative prediction about the potential
influence of their shape on the relaxation times. The observed exper-
imental increase in relaxation rates for NPs with non-spherical shape
is often attributed to proton diffusion in intense magnetic field gra-
dients around sharp corners of the nanoparticles.13,15 Nevertheless,
this hypothesis has never been fully quantitatively verified from the
theoretical point of view.

In this work, the influence of the NP shape—cubic vs
spherical—on the relaxation rate will be studied using Monte Carlo

simulations. A cube is a simple shape that allows a straightfor-
ward adaptation of the original simulation designed for spherical
shapes.24–26 This shape is thus chosen as a proof of concept demon-
strating that relaxation simulations can be adapted to other NP
shapes. Moreover, nanocubes have been widely synthesized and
studied in the literature.13,14,17,20,22,27–33 They are efficient agents for
magnetic hyperthermia6 in combination with photothermal ther-
apy.34 To our knowledge, despite some semi-quantitative attempts,
there has been no study that completely simulates the proton relax-
ation induced by SPM nanocubes. Indeed, the existing studies13–15

only evaluate the magnetic field produced by such cubes without
simulating proton diffusion.

The aim of this work is to investigate the effect of NP cubic
shape on NMR relaxation (more specifcally, the effect of proton dif-
fusion in the magnetic field specific to the NP shape) and compare it
to spherical NP using Monte Carlo simulations. The proposed sim-
ulation method accounts for proton diffusion and for the magnetic
field produced by these particles. This article is organized into the
following sections: (a) A theoretical section that outlines the three
different relaxation size-dependent regimes and their associated
relaxation models. (b) A description of the Monte Carlo simulation
methodology used in this work. (c) A presentation and interpre-
tation of simulation results using established relaxation models.
(d) A comparison between the simulation predictions and some
experimental results reported in the literature.

II. THEORIES
Theories of water nuclear relaxation induced by SPM NPs will

be only briefly described in this section as they have already been
detailed in the literature (for example, see Refs. 23, 25, and 35).
Their derivation from more general models will be discussed
to allow a more quantitative interpretation of simulation results
in Sec. V.

In the case of colloidal suspensions of nanoparticles in water,
relaxation occurs due to the interaction between proton spins and
magnetic fields generated by the SPM NPs. In the classical approach,
each proton carries a vectorial magnetic moment μ⃗i(t) and their
movement is modeled by a diffusion equation or a random walk.
As this study focuses on the transverse relaxation time T2 at high
external static magnetic field B0, only the equations that satisfy this
specific condition will be presented in this section.

At high B0, the relaxation rate R2 = 1/T2 reaches a plateau
whose value is given by the so-called “secular term.”36 This plateau
is reached when the B0 values satisfy the following condition:

γB0τD = γB0
R2

D
≫ 1, (1)

where γ is the proton gyromagnetic ratio, R is the spherical SPM
radius (more precisely, the minimum approach distance between the
proton and the SPM center), D is the proton diffusion coefficient
(equal to water diffusion coefficient as this study focuses on water
protons), and the diffusion correlation time τD = R2

/D. For example,
for an SPM radius of 5 nm and a water diffusion coefficient of 3
× 10−9 m2/s (value at 37 ○C), the secular term is reached for B0 ≫

0, 37T, which is the case for usual MRI magnetic fields. Thus, the
results and models presented in this work are valid for the magnetic
fields used in MRI.
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Three relaxation models exist for SPM NPs, each character-
ized by their own range of validity:25 the motional averaging regime
(MAR) model for low NP radii, the static dephasing model (SDM)
for “medium” sizes, which provides the maximum achievable relax-
ation rate, and the partial refocusing model (PRM) for larger sizes.
For magnetite nanoparticles, diameters less than around 30 nm, in
the 30–120 nm range and larger than 120 nm, respectively, corre-
spond to the MAR, static and PRM “regimes.” These three models
assume a spherical nanoparticle shape. To the best of our knowledge,
no analytical model exists for cubic particles.

A. Motional averaging regime
The MAR model assumes that each proton encounters many

different SPM NPs during relaxation. In the MAR, relaxation times
are obtained using the quantum Redfield formalism.37 In this for-
malism, relaxation times depend on the Fourier transform of the
correlation functions of the proton Hamiltonian, called the “spectral
densities.” It has been shown that, in the particular case of proton
relaxation induced by superparamagnetic nanoparticles, a classical
formalism in which proton spins are modeled as classical vectors
interacting with their local magnetic field is equivalent to the quan-
tum formalism.38,39 In the MAR model, the transverse relaxation
time is given by38,40

1
T∗2
= R∗2 = γ2

∫

∞

0
⟨Bz(0)Bz(τ)⟩dτ, (2)

where Bz is the z component of the magnetic field experienced by the
protons and the applied field B⃗0 is assumed to be parallel to the z axis.
The star indicates that the relaxation time is measured without the
use of 180○-refocusing pulses. In this study, the static magnetic field
of the NMR device is assumed to be perfectly homogeneous. The
model only considers the magnetic field inhomogeneities produced
by the particles. The brackets indicate an average over all the proton
trajectories within the sample. This general equation is valid for any
magnetic field fluctuations and is thus applicable to any arbitrary NP
shape.

In the specific case of protons diffusing in the dipolar magnetic
field of the superparamagnetic nanoparticles, Eq. (2) gives

R∗2 =
64π
135
(

μ0

4π
)

2
μ2γ2 C

RD
, (3)

where μ =MV is the magnetic moment of the SPM NP, V is the
volume of the NP, C is the NP concentration (number of NPs per
unit volume), M is the SPM saturation magnetization, and μ0 is the
vacuum magnetic permeability. In this equation, R is rigorously the
minimum distance of approach between the proton and the particle.
This quantity corresponds to the NP radius considering a permeable
coating and the water molecule bearing the proton spins is much
smaller than the NP. In the case of magnetized spheres, the equations
of the MAR are only valid when the Redfield condition is obeyed,

γμ0

3
MR2

D
≪ 1. (4)

In that regime, the 180○-echo pulses used in the spin-echo or
the Carr–Purcell–Meiboom–Gill (CPMG) sequences do not influ-
ence the relaxation rate and thus R2 = R∗2 . It can be shown41 from

Eq. (3) that R⋆2 is proportional to R2 when M is constant: Thus, the
relaxation rate increases when the NP size gets larger.

B. Static dephasing model
In the static dephasing regime, the proton movement is small

compared to the NP size and its position can be considered as fixed
during the relaxation time. In this case, the SDM predicts42

R∗2 =
2πμ0

9
√

3
Cγμ. (5)

This model is obtained by computing the statistical distribution
of the z component of the magnetic field Bz that the protons expe-
rience. In the spherical case, it is the Bz-distribution associated with
the dipolar magnetic field. The nanoparticle is considered impen-
etrable so the Bz-distribution does not include the magnetic field
inside the nanoparticle. Brown demonstrated that, in the case of
the dipolar magnetic field of an impenetrable sphere, Bz follows a
Cauchy distribution,42

p(Bz) =
K

B2
z + π2K2 , (6)

where K = 2Cμ0μ/(9
√

3). In this model, a variation of the Bz
distribution leads to a different time evolution of the spins and
thus impacts the relaxation time. For a CPMG sequence, previous
studies25,41 showed that Eq. (5) provides an upper limit of the max-
imum achievable relaxation rate R2 induced by superparamagnetic
NPs (with equal SPM magnetization and NP volume fraction).

C. Partial refocusing model
When spherical SPM NPs are very large and when a CPMG

sequence is used, R2 is given by the partial refocusing model,25

R2 = 3πx1/3CDR[1.34 +
4πCR3

3
x]

5/3

, (7)

where

x =

√
1

80
γμ0

μ
πR3 τIE, (8)

where τIE is the inter-echo time, i.e., the time duration between two
consecutive 180○-pulses. This model predicts a decrease in the relax-
ation rate when the NP size increases. At constant magnetization M
and volume fraction f [defined by Eq. (10)], it can be shown that
Eq. (7) is inversely proportional to R2 and that the relaxation rate
decreases with the NP size.

In this model, space around the nanoparticles is divided into
two spherical regions centered on the NP: the inner and the outer
regions are indicated by red and green, respectively, in Fig. 1. It has
been demonstrated that the NMR signal from the protons, which get
in the inner region is completely lost: only the protons that diffuse
in the outer region contribute to the relaxation.25 The radius of the
inner region is given by

Rinner = R[
x

1.34 + VCx
]

1
3
. (9)
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FIG. 1. Two regions of the PRM model. Any proton passing through in the red
region does not contribute to the transverse relaxation. The green region cor-
responds to the “outer-region” whose protons predominantly contribute to the
relaxation.

D. Relaxivities
The efficiency of a negative contrast agent depends on its

effect on the transverse relaxation rate R2: the higher the relax-
ation rate, the more efficient the contrast agent becomes. To
compare the efficiency between two different contrast agents,
their relaxation is usually normalized by the amount of mag-
netic compound: The corresponding quantity is called “relaxivity.”
In the case of iron oxide, relaxivities r2 are expressed in
s−1(mM[Fe])−1.

When studying different NPs composed of the same material,
working at constant iron concentration is equivalent to work-
ing at constant volume fraction f . Volume fraction f is defined
as the ratio between the volume occupied by nanoparticles and
the sample volume. This is why Eqs. (3), (5) and (7) are usually
expressed in terms of volume fraction rather than NP concen-
tration. These two quantities are related through the following
expression:

f =
Vtot SPM

Vsample
=

NSPMV
Vsample

= CV , (10)

where V is the volume of a single NP, V tot SPM is the total volume of
all sample NPs, V sample is the volume of the whole sample, and NSPM
is the total number of NPs in the sample.

III. METHODS
Methods simulating the transverse relaxation have been thor-

oughly described in previous publications (see Refs. 24–26 for exam-
ple). They were always applied to spherical nanoparticles. This work
proposes an adaptation of the simulation protocol to the case of
cubic nanoparticles.

FIG. 2. Two types of simulation configurations studied in this work, with B⃗0 as the
external magnetic field. In both cases, the simulation space (blue) is cubic and
protons (yellow) diffuse within it. The NP (brown) is at the center of the simula-
tion space and is either spherical or cubic. These simulation spaces only contain
one single nanoparticle while the proton diffusion is subject to periodic boundary
conditions.

A. Monte Carlo T 2 simulations
Monte Carlo T2 simulations are composed of the following

steps: (1) initialization of the simulation space, (2) diffusion and
dephasing of proton spins, and (3) NMR signal computation.

1. Initialization of the simulation space
In this work, the simulation space in which protons diffuse is

cubic—this eases the implementation of the periodic boundary on
the proton diffusion (see the next step). The simulation space con-
tains a single NP in its center (Fig. 2). In some studies,24,25 several
NPs are introduced in the simulation space. However, a previous
study39 showed that, if the volume fraction f is small enough, a sin-
gle NP provides similar results and allows a substantial decrease in
the computation time. The simulation space size is determined from
the volume fraction f and the NP volume.

In the case of a cubic NP, the external magnetic field is cho-
sen perpendicular to two cube faces (Fig. 2). At large magnetic field
in a colloidal suspension, the NP magnetic moment is supposed
to be aligned with the magnetic field and with the anisotropy axis
of the particle. This means that for cubic nanoparticles, we con-
sider that the anisotropy axis is perpendicular to two faces of the
cubic NP while it is known to be usually along the longest diago-
nal of the cube.43 However, the configuration of Fig. 2(b) is more
easily adaptable to our simulations. The work presented in this
paper aims at providing a proof of concept about the simulation
of an NP shape different from the sphere and a semi-quantitative
comparison between these two shapes: the system that was the
easiest and the fastest to adapt was chosen. The potential influ-
ence of the orientation of the magnetic moment of the NP will be
detailed in Sec. V.

2. Diffusion and dephasing of proton spins
In this step, proton diffusion within the simulation space

and their spin dephasing are simulated. As water molecules are
at least 100 times smaller than the considered nanoparticles, the
simulated protons can be considered punctual. This work focuses
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on the contribution of the SPM NP to relaxation, proton–proton
interactions are, therefore, not considered. It greatly simplifies the
simulations: the protons can be simulated independently from
each other.

Each proton i starts at an initial position r⃗i(t = 0) randomly
generated inside the simulation space with the constraint that it can-
not penetrate the NP. The applied magnetic field B⃗0 is assumed to be
parallel to the z axis. The proton starts with a spin vector s⃗i(t = 0)
initially aligned with the x axis, which corresponds to an initial
phase ϕi(t = 0) = 0. This simulates the proton spin state immedi-
ately after a 90○-pulse excitation, at the beginning of the CPMG
sequence.

At each time increment Δt, proton diffusion is simulated by a
random walk,

Ð→ri (t + Δt) =Ð→ri (t) + Δrδ⃗(t), (11)

where δ⃗(t) is a vector randomly oriented on a unit sphere and
Δr =

√
6DΔt is the proton step size. The newly generated position

is then tested.

(1) If the new position is inside the NP then a new posi-
tion Ð→ri (t + Δt) is regenerated from r⃗(t) until it is outside
the NP.

(2) Periodic boundaries of the simulation space are applied: if the
new position is outside the simulation space, it is relocated to
the opposite face of the simulation cube.

The spin phase is also updated at each time step and its evolu-
tion is computed using the z component of the magnetic field B⃗(r⃗)
generated by the NP,

ϕi(t + Δt) = ϕi(t) + γBz(r⃗i(t))Δt. (12)

The (normalized) proton spin vector at time t is then given by39

Ð→si (t) = (cos ϕi(t), sin ϕi(t), 0). (13)

In this work, the main difference between simulations for
spheres and cubes lies in the computation of the magnetic field Bz(r⃗)
generated by the SPM NP. In both cases, as the magnetic field B0 is
assumed to be very high, the SPM magnetic moment can be assumed
to be parallel to it, i.e., to the z axis. For spherical particles, the
generated field Bz(r⃗) is given by the dipolar magnetic field,

Bz(r⃗) =
μ0

4π
μ
r3 [3 cos2 θ − 1], (14)

where r is the distance between the NP center and the proton spin
and θ is the inclination angle of the vector joining the proton spin
to the SPM particle. This expression is exact for a spherical NP but
in the case of an arbitrary NP shape, Eq. (14) is only valid for large
values of r.

For a magnetized cubic particle, if we assume that the magnetic
moment is oriented along the z axis (Fig. 3), the generated magnetic
field is given by44

Bz(r⃗) = −
μ0

4π
μ
V

2

∑
k,l,m=1

(−1)k+l+m atan
⎛
⎜
⎜
⎜
⎝

(y + (−1)k c
2)(x + (−1)m c

2)

(z + (−1)l c
2)

√

[y + (−1)k c
2 ]

2
+ [z + (−1)l c

2 ]
2
+ [x + (−1)m c

2 ]
2

⎞
⎟
⎟
⎟
⎠

, (15)

where r⃗ = (x, y, z) is the position at which the magnetic field
is computed, c is the edge length of the cubic NP, and V = c3 its
volume. The cube is supposed to be centered at(0,0,0). This field con-
verges to the magnetic field of a punctual dipole, i.e., to the dipolar
magnetic field (14) when large distances r are considered.

The CPMG sequence is simulated by including 180○-pulse
every inter-echo time τIE. The simulations assume that pulses per-
fectly refocus proton spins: if such a pulse is applied at time t, the
reversal of the spin Ð→si (t) is carried out by changing the sign of its
phase, i.e., ϕi(t)→ −ϕi(t).

3. NMR signal computation
When all the spins have been simulated, the transverse NMR

signal Mxy(t) can be computed by averaging the proton spins,

Mxy(t) =
1
N

RRRRRRRRRRR

∑
i=protons

s⃗i

RRRRRRRRRRR

=
1
N

¿
Á
Á
ÁÀ
⎛

⎝
∑

i=protons
cos ϕi(t)

⎞

⎠

2

+
⎛

⎝
∑

i=protons
sin ϕi(t)

⎞

⎠

2

, (16)

where N is the number of simulated protons. The signal is then fit-
ted to an exponential decay, which provides the relaxation rate R2.
If the first fit is bad (reduced chi-square larger than 10−4), a bi-
exponential expression is used for the fitting and the relaxation rate
corresponding to the greatest exponential amplitude is considered.

B. Physical and simulation parameters
As in a previous work,24 the volume fraction f is fixed at 3.14

× 10−6 corresponding to an iron concentration of 0.211 mM. The
edge length of the cubic simulation space is then given by Lsim =

3
√

V/ f . Considering the magnetite magnetization value (382 000
A/m), the corresponding relaxivities (expressed in s−1mM[Fe]−1)
are equal to the relaxation rates obtained by our simulations, mul-
tiplied by a factor of 4.74. D is fixed at 3 × 10−9 m2

/s, which
corresponds to water proton diffusion at normal body tempera-
ture (310 K). Echo time (time duration between the 90○-pulse and
the first 180○-pulse) of the CPMG sequence was set to 1 ms (i.e.
inter-echo time of 2 ms).

When the proton is at a distance 5 times larger than the
spherical NP radius (or than c 3

√
3/4π for the cubic NP with edge
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FIG. 3. NP cube and its coordinates. The magnetic moment is assumed to be
vertical, aligned with the z axis, and the cube center coincides with the origin of
the reference frame.

length c), the proton step size Δr is set equal to the NP radius
R in the spherical case (or to c 3

√
3/4π in the cubic case). When

the proton is closer to the NP, Δr is set to R/8 and Δt is thus
divided by 64, considering the well-known random walk relation
Δt = R2

/6D. This ensures optimal computation times while keep-
ing a sufficient accuracy of the computed proton dephasings. The
value of the duration t final of the simulated NMR signal is fixed
so that the remaining signal is less than 1% of the initial signal.
This value depends on the particle size: for example, for spherical

nanoparticles, t final is set to 0.3 s for a diameter of 10 nm, 0.04 s for
200 nm, and 1 s for 1000 nm.

The number of simulated protons is determined based on R2
and on the SPM particle sizes, ranging from 5000 protons (for NP
sizes below 14 nm) to 75 000 protons (for NPs with a diameter of
1000 nm). This range was found to be optimal for balancing the
simulation time and accuracy of the simulated NMR signal. For SPM
particle diameters (or cubic edge length) above 15 nm (12 nm), three
simulations are conducted whereas four simulations were performed
in the other cases. The R2 values shown in Fig. 4 correspond to the
mean of the performed simulations and error bars to the standard
deviation.

IV. RESULTS
The main result is shown in Fig. 4: it provides the dependence of

the simulated relaxation rates R2 on the nanoparticle volume for the
spherical and cubic cases. NP magnetization, water coefficient diffu-
sion, and volume fraction were kept constant. It is important to note
that the abscissa corresponds to the volume of the nanoparticles and
not their size: from the relaxation point of view, two different NP
shapes must be compared at equal volumes rather than equal size.
Indeed, the interaction between protons and nanoparticles occurs
mainly through the dipolar magnetic field, which depends on the
magnetic moment of the nanoparticle—a quantity directly propor-
tional to the volume of the nanoparticle. This is also equivalent to
comparing nanoparticles composed of the same amount of magnetic
compound (i.e. iron atoms in the case of magnetite or maghemite).
In Fig. 4, the volume range goes from 10−25 to 10−19 m3, which cor-
responds to spherical diameters from 5.76 to 576 nm or cubic edge
lengths from 4.64 to 464 nm. These diameter and edge length ranges
cover the three relaxation regimes as well as the NP sizes that are

FIG. 4. Relaxation rates R2 obtained
by simulations for nanocubes and
nanospheres. The different theoretical
models and regions MAR [Eq. (3)—red],
SDM [Eq. (5)—green], and PRM
[Eq. (7)— blue] are also shown for
comparison. The x axis represents the
nanoparticle volume.
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FIG. 5. Relative difference [Eq. (17)]
between the transverse relaxation rates
associated with the cube and the spher-
ical nanoparticles. The MAR, SDR, and
PRM regions are shown in red, green
and blue, respectively.

discussed in Sec. V F. These ranges were also chosen due to simula-
tion time constraints: smaller sizes require much more computation
times.

Both the simulated curves follow the well-known “bell” shape
that has already been detailed in previous studies.24,25 The theoreti-
cal models using the physical parameters of the simulations (without
any fittings) are also shown: for small NP volumes, the simulation
points follow the MAR model [Eq. (3)], and then, they reach a
plateau upper bounded by the SDR model [Eq. (5)]. Finally, at large
NP volumes, they decrease following the partial refocusing model
[Eq. (7)].

Figure 4 allows the comparison between both NP shapes: the
curves are mostly the same. For larger sizes (volumes larger than
3 × 10−23 m3 corresponding to spherical diameters larger than
40 nm and cubic edges larger than 45 nm) within the SDR and
the PRM regime, their relaxation rates are similar within the error
bars. Figure 5 shows the relative R2 difference between both shapes,
defined as

εrel = ∣
R2sphere − R2cube

R2sphere
∣. (17)

For large NP sizes, this value is below 2%, which is below the typical
T2 uncertainties when using NMR relaxometers or MRI scanners.

Figure 4 shows that below a volume of 2 × 10−23 m3 (spher-
ical diameter of 33.6 nm or cube edge of 27.1 nm), a significant
difference (larger than the error bars) between relaxation rates of
cubic and spherical NPs appears. Figure 5 quantitatively confirms
this trend: the relative difference between relaxation rates of both
shapes reaches 10%–15% below a volume of 7 × 10−24 m3 (cor-
responding to a diameter of 23.7 nm or cube edge of 19.1 nm),
while the relative error bars, due to statistical fluctuation of the
Monte Carlo simulations, are up to 4%. This difference is thus sig-
nificant and can be intrinsically attributed to the two different NP
shapes.

In summary, our main result shows the following:

(1) No difference is observed when particle sizes are large
enough, i.e., when they are in the SDR or the PRM region;

(2) In the MAR (small nanoparticle sizes), significant relative
differences (relaxation rates difference of a few tens of per-
cent) occur between cubic and spherical nanoparticles. In
Fig. 4, relaxation rates associated with cubic NPs are larger
than those with spherical NPs. However, it will be shown in
Sec. V that our model could also predict smaller relaxation
rates for cubic NPs compared to spherical NPs.

These comparisons must be made at equal nanoparticle vol-
ume, magnetization, and volume fraction. In the following discus-
sion, different general relaxation models will be used to explain these
trends.

V. DISCUSSION
In this section, the obtained results will be interpreted by sepa-

rating the “bell curve” into the three regions corresponding to the
PRM, SDM, and MAR models using their corresponding general
relaxation model. This section is intended for readers who wish
to theoretically understand the simulation results and are famil-
iar with relaxation models. Readers more interested in this work
for experimental purposes can jump to the last subsection of this
section.

A. Magnetic field in rescaled coordinates
As a preliminary remark, it should be noted that the magnetic

fields (14) and (15) can be re-expressed in coordinates normalized
by the corresponding shape size,

Bsphere z(
̃⃗r ) =

μ0

3
M

1
r̃ 3 [3 cos2 θ − 1] with ̃⃗r ≡ r⃗/R, (18)
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Bcube z (̃r⃗) = −
μ0

4π
M

2

∑
k,l,m=1

(−1)k+l+m atan
⎛
⎜
⎜
⎜
⎝

(ỹ + (−1)k 1
2)(x̃ + (−1)m 1

2)

(z̃ + (−1)l 1
2)

√

[ỹ + (−1)k 1
2 ]

2
+ [z̃ + (−1)l 1

2 ]
2
+ [x̃ + (−1)m 1

2 ]
2

⎞
⎟
⎟
⎟
⎠

with ̃⃗r =
r⃗
c
= (

x
c

,
y
c

,
z
c
).

(19)

In the following sections, the SPM NP will be assumed to be at
the center of a spherical space of radius Rspace (Fig. 6)—contrarily to
the simulations in which the space is supposed to be cubic. The cubic
simulation space was chosen to ease the periodic boundary condi-
tion of the proton diffusion. In this section, computations are carried
out to study the magnetic field distribution and do not imply proton
diffusion. The periodic boundary condition is thus no more neces-
sary and another simulation space shape can be chosen. A spherical
space will ease the analytical computation of the distribution of
the Bz values. Indeed, the integrations will be greatly simplified in
spherical coordinates. This does not affect the comparison between
spherical and cubic NPs as long as very low volume fractions are
considered. Thanks to the normalizations (18) and (19), statistics on
Bz will be independent of the nanoparticle size if the magnetization
and the ratios Rspace/R (spherical case) or Rspace/c (cubic case)—or
equivalently, the volume fraction f—are kept constant. These nor-
malizations justify that, in the following discussions, the statistics on
Bz are carried out with only one nanoparticle size R or c.

The quantity ∇⃗r⃗Bz will also be studied in the following. Using
the rescaled coordinates, it can be shown that multiplying this
quantity by c or R also makes it independent of the nanoparticle
size. Thus, analysis using ∇⃗r⃗Bz was also carried out for only one
nanoparticle size.

It is also important to note that when a cubic NP is com-
pared to its spherical equivalent, the volumes of the particles must
be equal and the simulation space volumes in the two cases must
also be equal. This ensures that the NP magnetic moment and the
magnetic compound concentration (iron concentration for mag-
netite/maghemite) are equal in the cubic and spherical cases. Thus,
in the next discussions, when the simulation space will be varied,

FIG. 6. Configuration between spherical and cubic nanoparticles (in brown) can be
compared only when their volumes are equal (c3

= 4πR3
/3) and when the total

simulation volumes (particle volume in brown + volume in blue) are equal.

spherical and cubic cases will always be compared at equal volume
fractions. Rspace can be computed from the volume fraction f and
nanoparticle volume V ,

Rspace =
3

√
3V
4π f

. (20)

B. Motional averaging regime
The MAR corresponds to NP volumes less than ∼10−23 m3

(diameter of 26.7 nm, cube edge of 21.5 nm). In this region, the
difference of relaxation rates between cubic and spherical shapes
is the largest, with a relative difference of up to 15% (Fig. 5). This
difference may, a priori, be attributed to the difference between the
magnetic field of the sphere (14) and cube (15). Since these two mag-
netic fields converge at large distances from the NP, the relaxation
rate difference is likely due to the field variations in the region close
to the NP. The MAR is characterized by a short diffusion correla-
tion time: during relaxation, each proton travels a large distance and
encounters a great number of nanoparticles. Thus, in the MAR, a dif-
ference of relaxation rate between cubic and spherical NP indicates
that each proton spends a significant amount of time in the region
near the nanoparticles.

This hypothesis can be evaluated using the Redfield formalism
associated with the MAR region. In this formalism, relaxation rates
can be expressed as the Fourier transform of the autocorrelation
functions of the magnetic field experienced by the protons, i.e., by
Eq. (2). In this equation, the difference between the cubic and spher-
ical cases is encoded in the autocorrelation functions ⟨Bz(0)Bz(τ)⟩.
As Bz(t) is a wide sense stationary process, the autocorrelation
function is upper-bounded by its variance,45

⟨Bz(0)Bz(τ)⟩ ≤ ⟨B2
z(0)⟩. (21)

Thus, if we assume that the correlation times associated with the
cube and the spherical cases are quite similar, the difference in the
MAR region could be roughly evaluated by computing the variance
⟨B2

z(0)⟩ = ⟨B2
z⟩.

Figure 7 shows the dependence of the quantity ⟨B2
z⟩ on the

volume fraction in the spherical and cubic cases. This quantity
was computed using a Monte Carlo integration scheme (see the
supplementary material, Sec. A). Moreover, in the spherical case, it
can be easily shown that

⟨B2
z⟩ =

1
Vprotons

∫

Vprotons

B2
z dV

=
3

4π(R3
space − R3

)
∫

π

0
dϕ∫

π

0
dθ∫

Rspace

R
drr2
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FIG. 7. Variance of the z component
of the magnetic field generated by
the spherical and cubic nanoparticles.
The points correspond to the variance
obtained by using a Monte Carlo inte-
gration method. The line corresponds to
the theoretical prediction in the case of
a sphere. The inset shows the complete
data simulated including the highest vol-
ume fraction. The error bars are smaller
than the point size.

× sin θ(
μ0

4π
μ
r3 [3 cos2 θ − 1])

2

=
4

45
μ2

0M2 f , (22)

where Vprotons is the volume occupied by the protons, i.e., the entire
volume minus the nanoparticle volume. This analytical expression is
also traced in Fig. 7: The variance associated with the cube is always
slightly larger than the spherical case. The analytical curve perfectly
fits the sphere results.

The relative difference between the spherical and cubic cases
can be quantitatively evaluated using the following equation:

εrel =

RRRRRRRRRRRR

⟨B2
z⟩cube

− ⟨B2
z⟩sphere

⟨B2
z⟩sphere

RRRRRRRRRRRR

. (23)

The corresponding results are shown in Fig. 8. The relative error
seems independent of the volume fraction and reaches values around
10%–15%, which corresponds to the same values associated to the R2
results.

This confirms the hypothesis that, in this regime, the observed
difference can be attributed to the difference between the magnetic
field produced by the spherical and cubic shapes, more specifically to
the difference between their magnetic field variances. In this regime,

FIG. 8. Relative difference of the vari-
ance ⟨B2

z⟩ between the spherical and
the cubic cases. The value of the high-
est simulated volume fraction (not shown
on this graph for clarity purpose) was
f = 0.244 and was associated with a
relative difference of 19.3%.
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FIG. 9. Probability density of the z component of the magnetic field produced by a
spherical and a cubic nanoparticle in a high volume fraction case ( f = 0.2444).

the protons spend a sufficiently long time near the nanoparticle to
make the NP shape influence the relaxation rates.

C. Static dephasing region
The “static dephasing region” is defined as the region where the

transverse relaxation rate reaches a plateau. Figure 4 shows that this
region comprises an approximate volume range from 10−23 m3 (dia-
meter of 26.7 nm, edge of 22 nm) to 10−21 m3 (diameter of 124 nm or
edge of 100 nm). As recalled in Sec. II, the relaxation rate is mainly
dependent on the distribution p(Bz) of the magnetic field Bz in this
regime. Thus, a change in the relaxation rates can be observed only
if this distribution is different.

Since no difference is observed in Fig. 4 between the cubic
and spherical cases, it indicates that the magnetic field distribution
pcube(Bz) of the cubic NP is comparable with the magnetic field dis-
tribution psphere(Bz) of the sphere. This is expected for sufficiently
small volume fractions: magnetic fields of the cubic and spherical
NPs differ significantly only at distances close to the particles. They
are approximately equal at large distances as they converge to the

magnetic field of a punctual dipole. It means that, in this region, the
cubic and spherical cases are identical because the great majority of
the protons contributing to the relaxation “see” the nanoparticles as
a punctual dipole.

To validate this hypothesis, the distributions pcube(Bz) and
psphere(Bz)were computed using a Monte Carlo sampling detailed in
the supplementary material, Sec. A. These distributions were com-
puted for different volume fractions. Figures 9 and 10 show the
distributions at very high and very low values of volume fractions,
respectively (for other volume fractions, see the supplementary
material, Figs. B3–B6). In the case of very large volume fractions, the
size of the spherical space Rspace is of the same order of magnitude
as the NP size and differences between the magnetic field produced
by cubic and spherical NPs are expected to be large. Therefore, the
two magnetic field distributions significantly differ in this case. For
lower volume fractions (i.e., a space very large compared to the NP
size), differences are expected to be very small and both magnetic
field distributions coincide.

The difference between pcube(Bz) and psphere(Bz) can be quanti-
fied by computing the surface difference between these distributions
(using a bin-to-bin comparison integration, see the supplementary
material—Sec. A),

ε = ∫ ∣pcube(Bz) − psphere(Bz)∣dBz. (24)

This quantity can also be interpreted as a relative difference as, by
definition,

∫ pcube(Bz)dBz = ∫ psphere(Bz)dBz = 1. (25)

Figure 11 shows the dependence of ε on the volume fraction. As
expected, it is high for large values of f (above 10−1) and rapidly
decreases for lower and more realistic ones. Below f = 10−2, the
relative difference drops to a few percent and seems to reach a
non-zero plateau for decreasing values of f . However, this differ-
ence is expected to theoretically tend to zero for very small f . This
observed plateau is explained by the error of the Monte Carlo inte-
gration method which was used (supplementary material, Sec. A)

FIG. 10. Probability density of the z com-
ponent of the magnetic field produced by
a spherical and a cubic nanoparticles in a
low volume fraction case ( f = 8 × 10−6).
The distribution is mainly composed of
magnetic fields of the order of 10−5 T.
The inset graph shows that magnetic
fields of the order of 0.1 T (which
are dominant in the high-volume frac-
tion case) negligibly contribute to the
distribution in the low-volume fraction
case.
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FIG. 11. Quantity ε given by Eq. (24) for
different volume fractions. As expected, ε
is low for “realistic experimental” volume
fraction values (i.e., values below 10−5).

and would tend to zero if the number of points used for the inte-
gration was larger. In the simulations of Figs. 4 and 5, the volume
fraction was set to 3.14 × 10−6, which is smaller than the consid-
ered f values of Fig. 11: this explains why the R2 difference between
the cubic and the spherical NPs are below a few percent in the
static region.

D. PRM region
The “PRM region” is defined as the region where the relax-

ation rate R2 decreases for increasing NP volumes. In Fig. 4, this
region approximately begins at volumes of 10−21 m3 (corresponding
to spherical diameter of 124 nm or cube edge of 100 nm).

In the PRM, relaxation arises from protons that diffuse far from
the particles, i.e., at distances larger than those given by Eq. (9). At
these distances, the magnetic field of the cubic NP is approximately
equal to that of the spherical NP, i.e., equal to the magnetic field of
a punctual dipole. Thus, protons in both cases experience the same
magnetic interactions and the induced relaxation times are equal. In
other words, protons “see” both cubic and spherical nanoparticles as
punctual dipoles, and thus, their shape is expected not to influence
the relaxation times.

This hypothesis can be quantitatively validated by computing
the gradient of Bz . Indeed, in the PRM, the transverse relaxation
rate is given by the mean gradient diffusion theory46 through the
following equation:

1
T2
=

1
12

Dγ2τ2
IE

1
Vprotons

∫

Vprotons

∣∇⃗ r⃗ Bz(r⃗)∣
2d3 r⃗ ≡

1
12

Dγ2τ2
IEσ2. (26)

In this equation, the relaxation rate is proportional to σ2, i.e., the
average of the square of the gradient of the magnetic field experi-
enced by the protons. In the specific case of SPM NP in the PRM, the
volume Vprotons corresponds to the volume occupied by the protons
at distances larger than Rinner that is given by Eq. (9). Thus, the NP-
shape effect in the PRM can be evaluated by computing the following
quantity in both cubic and spherical cases:

σ2
≡ ⟨∣∇⃗ r⃗ Bz(r⃗)∣

2
⟩

=
1

Vprotons
∫

Vprotons

∣∇⃗ r⃗ Bz(r⃗)∣
2d3 r⃗

=
1

Vprotons
∫

Rspace

Rinner

∣∇⃗ r⃗ Bz(r⃗)∣
2r2 sin θ drdθdφ, (27)

where the volume integration corresponds to the blue region in
Fig. 12. To evaluate the impact of Rinner on the relaxation times, σ2

was computed for different values of Rinner . The values of Rspace and
the NP volume were fixed. A Monte Carlo integration method (see
the supplementary material, Sec. A) was used to evaluate the integral
(27). An analytical expression for σ2 can easily be obtained (see the
supplementary material, Sec. B3) in the spherical case,

σ2
sphere =

9
20π2

μ2μ2
0

(R3
space − R3

in)
(

1
R5

in
−

1
R5

space
). (28)

The results of the evaluation of the normalized gradient σ2R2

are shown in Fig. 13 (R is the radius in the case of a spherical NP. In
the case of a cubic NP, R is proportional to the cube edge length and

FIG. 12. Definitions of Rin and Rspace for the computation of Eq. (27). The blue
region corresponds to the region in which the average/integration is computed.
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FIG. 13. Computation of the ⟨∣∇⃗Bz∣
2
⟩R2

in the spherical and cubic cases. Rspace

was kept constant and computed from a
volume fraction equal to 8 × 10−6.

FIG. 14. Relative difference of the quan-
tity ⟨∣∇⃗Bz∣

2
⟩ between the spherical and

cubic cases. The inset shows the results
for all the simulated value of Rin/R, and
the main graph shows the relevant val-
ues for the PRM model, i.e., Rin/R > 6.

is defined as the radius of a sphere with volume equal to that of the
cubic NP). The points corresponding to the Monte Carlo integra-
tion of the spherical case perfectly follow the analytical prediction.
No difference between cubic and spherical nanoparticles is visible
for large Rin. This is expected since, at these distances, the magnetic
fields of the cubic and spherical NPs are approximately equal. For
very low Rin, a slight difference appears. A more quantitative evalua-
tion is shown in Fig. 14 by the computation of the relative difference
between the cubic and the analytical spherical cases,

εrel =

RRRRRRRRRRRRRRR

⟨∣∇⃗ r⃗ Bz∣
2
⟩

cube
− ⟨∣∇⃗ r⃗ Bz∣

2
⟩

sphere

⟨∣∇⃗ r⃗ Bz∣
2
⟩

sphere

RRRRRRRRRRRRRRR

. (29)

For Rin > 5R, this quantity is lower than 1%. Using Eq. (9)
and the parameters used in the simulations, one finds that
Rinner = 6, 8R > 5R. This is consistent with the R2 simulation results
of Fig. 5, where a relative difference below a few percent between the
cubic and spherical cases was observed in the PRM.

It should be noted that the value of Rspace used for the integral
(27) corresponds to a volume fraction is larger than that used in the
R2 simulations of Fig. 4, for computational time purposes. The rel-
ative difference between the σ2 of the cubic and spherical shapes is
expected to be smaller when the volume fraction decreases, allowing
our conclusions to be extended to the volume fraction used for the
R2 simulations.

E. Orientation of the superparamagnetic magnetic
moment

As mentioned in Sec. III, the SPM magnetic moment of the
cubic nanoparticle—which is parallel to the magnetic anisotropy axis
and to the magnetic field B⃗0 when B0 is large—was supposed to be
perpendicular to two of the cubic NP faces [Fig. 15(a)]. This case
is not the most common configuration as the magnetic crystalline
anisotropy axis of magnetite NP is usually parallel to the longest
diagonal of the cube [see Fig. 15(b)]. Ideally, the dependence of
the orientation NP magnetic moment on proton relaxation should
be evaluated by a full simulation including proton diffusion and a
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FIG. 15. (a) Simulations in this work suppose that the NP magnetic moment (in
green, aligned with B⃗0) is perpendicular to two faces of the cubic NP. (b) For the
magnetite case, the magnetic moment is parallel to the longest diagonal of the
cubic NP.

suited orientation of the cube in the simulation space. Such adapta-
tion is beyond the scope of this work that aims at providing a proof
of concept of these simulations as a tool to evaluate the influence of
the NP shape on relaxation.

However, an estimate of the impact of the orientation of the
magnetic moment can be obtained using the field analysis presented
in Sec. V (i.e., computing ⟨B2

z⟩ in the MAR, the magnetic field dis-

tribution p(Bz) for the static dephasing region and ⟨∣∇⃗Bz∣
2
⟩ for the

PRM region). In this section, this analysis has been preliminary per-
formed in the case where the NP magnetic moment is parallel to
the longest diagonal of the cube [Fig. 15(b)]. The magnetic field
generated by the nanoparticle is different from Eq. (19) when the
orientation of the magnetic moment is varied and must be computed
from expressions given in the supplementary material (Sec. C).

Details of the Bz field analysis are provided in the
supplementary material (Sec. C). It shows that, when the anisotropy
axis is parallel to the longest diagonal of the cube [Fig. 15(b)],
the relaxation rates are not significantly different from their
spherical counterpart in the static dephasing and the PRM regions.
This is analogous to what was obtained with configuration (a)
of Fig. 15 and this is expected as in these regions, the protons
that contribute to relaxation are far from the particle, i.e., they
experience a magnetic field that converges to the field of a punctual
magnetic dipole.

In the MAR, the variance ⟨B2
z⟩ of configuration (b) of Fig. 15

is lower than that of its spherical counterpart. This indicates that
the relaxation rate of cubic NPs is smaller than that of spher-
ical NPs for this orientation of the magnetic moment, contrary
to the case where the magnetic moment is perpendicular to two
faces of the nanocube [Fig. 15(a)]. This is a surprising result as
cubic NPs are generally shown to be more efficient than spherical
NPs in experimental studies (see Sec. V F). However, it should be
emphasized that the predicted variation remains within a few tens
of percent (40%). The influence of NP orientation will be investi-
gated in future work by properly simulating the proton diffusion in
such configuration.

F. Comparison with previous experimental studies
Several studies have experimentally compared the relaxivity

r2 of cubic and spherical NPs. Most of the synthesized cubic

nanoparticles are in the MAR, so only NPs in the MAR will be con-
sidered in this section. Larger relaxivities for the cube are generally
observed. In light of the previous discussion, such comparison only
makes sense if the spherical NP and the cubic NP have the same
volume and magnetization, which is, of course, never rigorously the
case for real samples. In the case of different volumes and/or mag-
netizations, a normalization is necessary to make the comparison
consistent.

We, therefore, propose using a simple normalization proce-
dure that allows to check the predictions of our simulation results
and compare different sample conditions (different magnetization,
volume, and/or temperature). Let us suppose that rVs ,Ms ,D

2−s−exp and

rVc ,Mc ,D′
2−c−exp are the experimental transverse relaxivities of a spherical

(cubic) nanoparticle with volume vs (Vc) and magnetization Ms
( Mc). D and D′ are the corresponding water diffusion coefficients,
which are temperature-dependent. These values will be compared to
Eq. (3), which predicts the relaxation rate for the spherical case. This
equation can be rewritten as23

RV ,Msat ,D
2−s−th =

116
50 625

μ2
0

π
γ2VM2

satCFe

ρFe3O4 Dδ
, (30)

where CFe is the iron concentration of the sample (expressed in mM),
V is the nanoparticle volume, and δ is the minimum distance of
approach between the proton and the particle. In the case of spher-
ical shape, δ corresponds to the NP radius. In the case of a cubic
shape, it can be defined as the root of the mean square distance
between the cube center and the surface of the cube, i.e., δ = c

√
5/12.

The value of the relaxivity rV ,Msat ,D
2−s−th can be obtained using Eq. (30) and

setting CFe = 1 mM and is expressed in s-1mM[Fe]−1. The nanoparti-
cle is supposed to be composed of magnetite and ρFe3O4 = 5210kg/m3

is the bulk density of magnetite. Our previous discussion in the MAR
theoretically predicts that

rV ,Msat ,D
2−c−th

rV ,Msat ,D
2−s−th

≡ α with 0.60 ≤ α ≤ 1.15, (31)

where rV ,Msat ,D
2−c−th and rV ,Msat ,D

2−s−th are, respectively, the relaxivity obtained
by our simulations for a cubic nanoparticle of volume V and the
theoretical relaxivity corresponding to spherical nanoparticles of
volume V , with saturation magnetization Msat , and a water diffusion
coefficient D. In this equation, the particles parameters (V , Msat , D)
are the same in the numerator and the denominator. It is not the case
for experimental data. However, one can write, using Eq. (31),

rVc ,Mc ,D′

2−c−th

rVs ,Ms ,D
2−s−th

=
rVc ,Mc ,D′

2−c−th

rVc ,Mc ,D′

2−s−th

rVc ,Mc ,D′

2−s−th

rVs ,Ms ,D
2−s−th

= α
rVc ,Mc ,D′

2−s−th

rVs ,Ms ,D
2−s−th

. (32)

Thus, one way to compare our simulation predictions to experimen-
tal studies is to check that

rVc ,Mc ,D′
2−c−exp

rVs ,Ms ,D
2−s−exp

≈ α
rVc ,Mc ,D′

2−s−th

rVs ,Ms ,D
2−s−th

(33)

or, equivalently, using Eq. (30),
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α ≈
rVc ,Mc ,D′

2−c−exp

rVs ,Ms ,D
2−s−exp

.
rVs ,Ms ,D

2−s−th

rVc ,Mc ,D′

2−s−th

=
rVc ,Mc ,D′

2−c−exp

rVs ,Ms ,D
2−s−exp

VsM2
s

VcM2
c

D′

D
c
R

√
5

12
. (34)

This equation is composed of two factors: one that comes from raw
experimental data and the second one that normalizes the relaxation
rates and allows to check the theoretical predictions and compare
different particles parameters and experimental conditions. This
equation can also be rewritten to obtain the relative variation in the
relaxation rate of cubic NPs compared to spherical NPs,

β ≡ (α − 1) ≈
⎛

⎝

rVc ,Mc ,D′
2−c−exp

rVs ,Ms ,D
2−s−exp

VsM2
s

VcM2
c

D′

D
c
R

√
5

12
− 1
⎞

⎠
, (35)

where−40% ≤ β ≤ +15%.
In summary, the proposed procedure for the comparison

between theory and experiments is composed of the following
steps:

(1) Finding experimental studies that consider both nanoparticle
shapes: spherical and cubic.

(2) Collecting the relaxivities related to the cubic and spherical
nanoparticles.

(3) Identifying independent measurements of their correspond-
ing volume and saturation magnetization.

(4) Finding the temperature and computing the solvent coef-
ficient diffusion (for water, the diffusion coefficient was
interpolated using data from Ref. 47).

(5) Using Eq. (35) and verifying that the obtained value of β falls
within the theoretical prediction range of −40% to +15%.

For simplicity, we mainly focus on studies concerning pure
magnetite/maghemite nanoparticles. We also only choose studies
that synthesize both spherical and cubic shapes to ensure that their
characterization methodologies and choices of normalization are
similar for both shapes. In addition to the relaxation rates, we only
retain articles that also mention the saturation magnetization and
explicitly describe how the size of the cubic NPs was measured (edge,
longest diagonal etc.). This leads us to the studies referenced in
Table I. This certainly does not constitute an exhaustive list of the
existing experimental studies. Our goal is not to be comprehensive
but to confront a small but still significant number of studies to our
predictions and discuss the potential discrepancies.

It is important to note that such a comparison is always very
approximate: indeed, in the theoretical models, several important
experimental factors are neglected, such as size polydispersity, the
effect of coating, measurement errors on the iron concentration,
and the temperature dependence of the NP saturation magnetiza-
tion. Magnetization is normalized by iron concentration or the NP
mass, and the bulk density of magnetite has been used to convert it
into a volume magnetization. This supposes that the particle is fully
composed of magnetite, which is not usually the case: it is often com-
posed of a mix between magnetite and maghemite. These hypotheses
can lead to large errors bar on the evaluation of the theoretical relax-
ivity, up to a few tens of percent and, in some cases, more than
+100%.41

Table I sums up our results. For three studies (Basini et al.,30

Zhen et al.,17 and Yang et al.14), the increased ratios β are com-
prised between +20% and +50%. This is larger than our prediction

of +15%, but, given the mentioned errors, these ratios can be consid-
ered in agreement with our interpretation. The IO-cube-15 sample
of Zhou et al.48 is the only sample for which relaxation is less efficient
than the spherical sample. Its computed ratio β of −37% is in the
order of the minimum values of −40% predicted by our simulation.
Two samples show great discrepancies compared to our theoretical
prediction. The sample oxNC16 of Walter et al.22 has an increased
ratio β more than 14 times larger than our predicted ratio of +15%.
The sample IO-cube-7 of Zhou et al.48 has an increased ratio β of
+247% that is 15 times larger than our +15% prediction. Notably,
for this last sample, the normalization procedure is necessary to
properly compare the samples: looking at their relaxivities, the IO-
cube-7 is apparently less efficient than the IO-sphere-16. However,
the spherical NP is four times larger than the cubic NP. After nor-
malization, the IO-cube-7 is shown to be actually more efficient than
the IO-sphere-16.

The discrepancies observed for the oxNC16 and the IO-cube-
7 could—at least partly—be explained by experimental conditions.
In the case of the oxNC16 of Walter et al.,22 the magnetization val-
ues come from a fitting of the NMRD (nuclear magnetic relaxation
dispersion), a method known to yield less accurate magnetization
values compared to those obtained from magnetometry measure-
ment. For the IO-cube-7 of Zhou et al.,48 NMR measurements were
performed at a magnetic field of 0.5 T (whereas in the other stud-
ies listed in Table I, the magnetic field is at least 1.5 T), which
corresponds to the lower limit for the secular term hypothesis and
could lead to a greater gap between the experimental results and our
theoretical predictions.

The other samples exhibit a variation in the order of mag-
nitude of the theoretical prediction, i.e., a few tens of percent.
However, most of them are characterized by an increase in the
relaxation rate (compared to their spherical counterpart). In our
model, this increase corresponds to the case where the NP magnetic
moment is perpendicular to two faces of the cube [Fig. 15(a)], i.e.,
the most uncommon case. For the commonly expected case [mag-
netic moment along the longest diagonal of the cube, Fig. 15(b)],
the model predicts a decrease in the cubic relaxation rate. The fact
that our model reproduces the experimental results in the case of
an unusual orientation of the NP magnetic moment leads us to two
hypotheses.

The first hypothesis is that for such small nanoparticles, the
anisotropy axis is not aligned with the longest diagonal of the cube.
This is plausible as the anisotropy energy of a magnetic particle
has several contributions. At this size, the surface NP anisotropy
might be important enough to change the orientation of the overall
anisotropy axis.

The second hypothesis is that our model does not properly
include all the relaxation mechanisms involved in such samples.
This would imply that the common assumption—that relaxation is
due to the proton diffusion in the magnetic field specifically gener-
ated by cubic NPs—is not sufficient to interpret the experimental
results. In this hypothesis, an increase in the relaxation rates could
only be explained by additional relaxation mechanisms that partly
depend on the NP shape such as its surface-to-volume ratio. Indeed,
a cube has a larger surface-to-volume ratio than a sphere, which
could influence a relaxation mechanism that is primarily dependent
on the NP surface. This hypothesis might also explain the great dis-
crepancy associated with the IO-cube-7 NPs. Indeed, these NPs are
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characterized by a surface-to-volume ratio of 0.852 nm-1 while the
ratio of the spherical NP to which they are compared (IO-sphere-16)
is 0.375 nm-1. This difference in ratios is the largest observed among
the samples listed in Table I.

VI. CONCLUSIONS
This work studies the influence of the nanoparticle shape on

the proton transverse relaxation times using Monte Carlo simula-
tions. Our results emphasize that comparisons between spherical
and cubic nanoparticle shapes must be made at equal volumes (and
not size) and magnetizations. In this case, our simulations show the
following:

● In the MAR (sizes smaller than 30 nm for magnetite
nanoparticles), a cubic shape leads to a relaxivity variation
ranging from−40% to+15% compared to its spherical coun-
terpart when relaxivities of both cubic and spherical NPs are
correctly normalized.

● For larger sizes, no differences in relaxivities are expected
between cubic and spherical nanoparticles. For these larger
particles, there is no need to synthesize exotic shapes as the
effects are predicted to be similar to those obtained with
simple spheres.

These effects have been interpreted with the help of gen-
eral relaxation models and using the statistical computation of the
magnetic fields produced by both NP shapes.

We introduced a method that enables the comparison of
experimental results with our theoretical predictions. This method
allowed us to compare experimental relaxivities of particles with dif-
ferent shapes in the MAR, without requiring equal NP volumes or
magnetizations.

Most of the experimental studies showed a relax-
ivity enhancement—after volume and magnetization
renormalization—of a few tens of percent, i.e. the order of
magnitude predicted by our simulations. One study showed a
reduction in the relaxivity, which is also in the range of our theo-
retical predictions. The observed great discrepancies for the other
samples might be attributed to experimental measurements or con-
ditions (NP magnetization not precisely estimated or measurement
at a too low magnetic field).

However, this apparent general agreement with the theoret-
ical predictions should be qualified. Indeed, the model predicts a
decrease in the relaxation rate of cubic NPs when the magnetic
moment is along the longest diagonal of the cube, which is the
most commonly expected configuration at high magnetic field. As
a consequence, a decrease in relaxation should be more commonly
observed according to the model, contrary to most of the measure-
ments in the experimental studies. This leads to two hypotheses: (a)
the effective anisotropy axis may not lie along the longest diagonal of
the cube for such NP sizes and (b) the usual claim that “the magnetic
field specific to cubic NPs enhances the relaxation” cannot solely
explain the measured relaxation rates. Another relaxation mecha-
nism involving the NP surface must be invoked to interpret the
experimental results. Further simulations involving different cube
orientations and additional experimental studies focusing on the
surface-to-volume ratio of SPM NPs as well as surface relaxation

mechanisms are required to distinguish between the two proposed
hypotheses.

This work lays the foundation for a simulation methodology
that could be applied to other particles with more complicated
shapes, such as cylinders, nanostars, or nanoflowers. This will ulti-
mately allow predicting which shape would provide the optimal
generated magnetic field and would yield the highest relaxivity for
a given size and magnetization.

SUPPLEMENTARY MATERIAL

The supplementary material provides a description of the
Monte Carlo integration method and tests that validate the method.
Additional figures for magnetic field distribution are also included.
The results for the field analysis when the magnetic moment is
parallel to the longest diagonal of the cube are also detailed.
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