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BACKGROUND: Environmental factors, such as fluctuations of climatic conditions and land cover, play a pivotal role in driving infectious disease epi-
demics, particularly those originating from wildlife reservoirs. Orthohantavirus puumalaense, hosted by bank voles in Europe, is the causative agent
of a form of hemorrhagic fever and renal syndrome called nephropathia epidemica. Despite two decades of consistent presence in western Europe,
nephropathia epidemica outbreaks still pose challenges due to localized periodic occurrences and a lack of understanding of its environmental drivers.

OBJECTIVE: Our study aims to bridge this gap by investigating the specific ecological and climatic factors influencing nephropathia epidemica out-
breaks in western Europe.

METHODS: We compiled monthly, serologically confirmed nephropathia epidemica case data obtained from public health authorities in Belgium,
France, Germany, and the Netherlands for the period 2004–2012. Cases were georeferenced to the finest available administrative unit. We selected 28
covariates, including climatic variables, land cover, tree species distributions, and human population, and implemented a Bayesian spatiotemporal
model using integrated nested Laplace approximation (INLA) with zero-inflated Poisson distribution, including fixed effects and spatial, temporal,
and nonstructured random effects.

RESULTS:We identified key triggers for nephropathia epidemica outbreaks, particularly climate-mediated changes in all seasons up to 2 years before,
favoring tree mast impacting bank vole abundance. Our findings revealed that while land-cover factors mostly determine hotspot locations, climatic
fluctuation patterns rather tend to modulate outbreak intensity.
DISCUSSION: Crucially, our model allows for the generation of yearly maps showcasing nephropathia epidemica incidence and risk factors, aiding in
public health preparedness against climate change–induced disease emergence. This work represents a significant step toward developing targeted
forecasting tools for Orthohantavirus puumalaense outbreaks, offering valuable insights for epidemic control strategies. https://doi.org/10.1289/
EHP15457

Introduction
Environmental factors can act as major drivers of infectious
disease epidemics, typically epidemics of zoonotic infections
originating in wildlife animal reservoirs.1,2 Environmental fac-
tors, such as climatic, meteorological, and land-use factors, are
acknowledged as major drivers of changes in infectious disease
transmission dynamics.3,4 In that context, epidemiological
models explicitly considering environmental factors are key for
understanding the spatiotemporal variation of infectious disease
incidence.5–10 Previous work has shown the potential and

applicability of spatiotemporal environment-based early warning
models for highly impactful vectorborne diseases, including
malaria, dengue, and West Nile fever.11,12 Yet, due to the multi-
factorial complexity by which climate and land cover affect host
and/or vector ecology, pathogen ecology, and human infection pat-
terns, such models can be challenging to implement.13

Orthohantaviruses (Hantaviridae family, Bunyanvirales order)
constitute a prime example of (re)emerging zoonotic viruseswhose
risk of local circulation are impacted by climatic and land-use fac-
tors.14,15 Rodents, moles, shrews, and bats host these well-studied
RNA viruses, and, though primarily rodentborne orthohantavi-
ruses have been found to be pathogenic to humans.16 In Europe,
Orthohantavirus puumalaense (PUUV), hosted by the bank vole
(Clethrionomys glareolus), is the causative agent of a usually mild
form of hemorrhagic fever and renal syndrome (HFRS), called
nephropathia epidemica (NE). Human infection occurs during rec-
reational activities or outdoor work through inhalation of infec-
tious virus particles originating from the secretions, e.g., saliva,
urine, and feces of infected bank voles.17–19 NE is marked by ab-
rupt onset of fever and headache, followed by gastrointestinal
problems, vomiting and abdominal pain often accompanied by vis-
ual disturbances.20 Half of NE cases also show renal symptoms
although acute renal failure is only detected in severe cases.16 NE
is the most common orthohantavirus syndrome in Europe.21 There
have been more than 1,000 cases every year in Fennoscandia
(Norway, Sweden, and Finland) since the 1990s,16 but in the past
20 years, NE incidence has doubled in western Europe compared
to the previous decades.22,23 Particularly, localized epidemics ev-
ery 2 to 4 years have been observed in countries such as Belgium,
France, andGermany.22,23
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Although risk factors related to bank vole ecology, virus ecol-
ogy, and human behavior are all pivotal in understanding NE inci-
dence patterns, a sudden increase in local bank vole abundance is
one of the main drivers of NE epidemics when PUUV is circulating
in a region.22,24,25 Fluctuations in bank vole density through time
are the result of climate-mediated seasonal changes in resources,
varying energetic requirements, and bank vole self-regulatory den-
sity-dependent processes (reviewed byAndreassen et al.26). In addi-
tion, bank vole population cycles are also modulated by top-down
processes, where predation by small carnivores limits the rodent
population.27Multiple mechanisms have been described to formally
explain climate-mediated fluctuations in bank vole density.28,29 For
instance, warm and dry summers are associated with massive tree
seed production in the autumn the following year, affecting bank
vole reproductive behavior and survival. An overview of howmulti-
ple climatic variables can be associated with massive tree seed pro-
duction (masting) of tree species relevant to bank vole nutrition and
how they might influence bank vole behavior has previously been
provided.9,30 Furthermore, in temperate western Europe, mild win-
ters are assumed to be beneficial for bank vole survival and breed-
ing.31–33 Whereas, in Fennoscandia, deep snow cover during
extended periods is hypothesized to positively affect bank vole sur-
vival and reproduction.34,35 Spring/autumn temperature and precipi-
tation affect the length and amount of primary production of
biomass, which allows extended reproductive periods in bank
voles.34,36–38 Besides effects on bank vole abundance, precipitation
and temperature can also alter PUUV transmission patterns through
their effect on PUUV survival in the environment—colder andmore
humid conditions being known to improve PUUV longevity18,39—
and levels of human–bank vole contact during outdoor activities.28

The peak of NE in Fennoscandia typically occurs between
October and March, with additional cases often reported in winter
with abundant vole populations.40 In contrast, western Europe gen-
erally presents NE cases in rodent peak years in summer and a
minor peak in early winter.21 However, there is a complex seasonal
pattern in the region, and a key question arises: do local patterns of
climatic fluctuations account for broader PUUV epidemiological
trends across western European countries? Evidence indicates that
the timing of NE peaks varies by region. For instance, in the
Ardennes in France and Belgium, cases could peak fromMarch to
September.41 In Germany, the peak usually extends from late
spring to early summer of a mast year.30 In this study, we aimed to
identify general patterns of NE cases across western Europe by
developing a Bayesian spatiotemporal model and create an early
warning system for NE in the region.

Methodology

Data
Nephropathia epidemica cases.We obtained numbers of monthly
registered NE cases from epidemiological records maintained by

the health institutes in the four countries considered in the present
study: Belgium, France, Germany, and the Netherlands. Details on
the NE data available from the different countries, including data
source, time period, and spatial resolution associated with the NE
data analyzed in our study, are provided in Table 1. The data sour-
ces considered are the following: Sciensano, the National Public
Health Institute of Belgium, based on data from the network of senti-
nel laboratories; the National Hantavirus Reference Center (France)
and Unit of Biology of Emerging Viral Infections of the Pasteur
Institute (Paris, France); the Department for Infectious Disease
Epidemiology of the Robert Koch Institute (Berlin, Germany); and
the Center for Infectious Disease Control of the National Institute for
Public Health and the Environment (Bilthoven, theNetherlands). The
length of the time series varied among countries between 2000 and
2012 (Figure 1). This period was selected because NE case data were
collected and processed as part of the EDENext project (Biology and
Control of Vector-borne Infections in Europe; EU grant FP7-261504
EDENext) between 2011 and 2014.

Reported NE cases were serologically confirmed human cases
for PUUV early antibody response (IgM), late antibody response
(IgG), or both. Whenever feasible, we used the date of disease
onset. If unavailable, for France, we relied on the date of sam-
pling or sample reception, and for other countries, we relied on
the date of diagnosis or report date. We georeferenced NE cases
preferentially with the suspected location of PUUV infection, but
if that was unavailable, we used the place of residence. The spa-
tial resolution of case data corresponds to the smallest administra-
tive units available in each country, as detailed below, with
spatial boundaries obtained from Eurostat.

Cartographic data and covariate selection. We merged
national administrative polygon maps, representing the unit of NE
case data resolution for each country, into a single polygon map
that was used throughout the study (Figure 2). The administrative
polygons reflected the data formats provided by each health insti-
tute: For Belgium, data were at the LAU2 level (589 municipal-
ities); for France, data were at the LAU1 level (3,785 cantons); for
Germany, data were at the NUTS 3 level (412 districts); and for the
Netherlands, data were at the LAU2 level (418municipalities).We
extracted values of climatic and land-cover variables (hereafter
referred to as “covariates”) for each administrative polygon using
the “exactextractr”R package (version 0.9.1; R Development Core
Team). A first selection of covariates was based on a literature
review on variables affecting either human–PUUV contact, bank
vole ecology, PUUV and/or tree ecology in the temperate region,
followed by an assessment of data availability and relevance on the
spatial and temporal scale of the present study (Table S1). These
variables encompassed key climatic factors such as maximum land
surface temperature, total precipitation, frost days, and snow days,
which were previously hypothesized to be significant due to their
influence on the ecologies of bank voles, trees, and viruses.9,28

Additionally, we included two proxies for vegetation growth as
follows: annual net primary production (NPP) and length of the

Table 1. Overview of available nephropathia epidemica (NE) case data. For each country involved, we report the data source, time period, considered spatial
resolution, i.e., administrative polygons, associated with the NE data analyzed in our study, total number of NE cases, and median, minimum, and maximum
population.

Country Time period Spatial resolutiona (units) Total NE cases Median population (minimum–maximum)

Belgiumb 2000–2010 LAU2 (589 municipalities) 1,862 11,184 (80–483,505)
Francec 2003–2012 LAU1 (3,785 cantons) 753 10,104 (100–440,204)
Germanyd 2001–2012 NUTS 3 (412 districts) 6,979 142,315 (33,807–3,501,872)
The Netherlandse 2008–2012 LAU2 (418 municipalities) 52 25,055 (955–779,810)
aAccording to national structures (Eurostat).
bData from the network of sentinel laboratories, provided by Sciensano, the National Public Health Institute of Belgium,
cData from the National Hantavirus Reference Center (France) and Unit of Biology of Emerging Viral Infections of the Pasteur Institute (Paris, France),
dData from the Department for Infectious Disease Epidemiology of the Robert Koch Institute (Berlin, Germany).
eData from the Center for Infectious Disease Control of the National Institute for Public Health and the Environment (Bilthoven, The Netherlands).

Environmental Health Perspectives 057023-2 133(5) May 2025



greening season (LGS), derived from data obtained through the
Moderate-Resolution Imaging Spectroradiometer (MODIS) satel-
lite imagery. Primary productivity is the rate at which light energy
is converted into plant biomass, andNPP is the total amount of con-
verted energy, accounting for plant respiration cost, that is used as
a yearly measure of bank vole resource availability.42,43 LGS is a
metric of vegetation phenology that measures the duration of the
availability of green plant material in the environment. Green plant
material is considered a trigger for vole reproduction; hence, the pe-
riod between greening-up and vegetation senescence can be used as a
measure of the bank vole reproductive period.44,45 TheMODIS Land
Cover Dynamics algorithm identifies phenophase transition dates
based on logistic functions fit to the time series of the enhanced vege-
tation index (EVI). By subtracting the greening-up date from the se-
nescence date, the length of the greening period (only based onmajor
greening-up events in spring and greening-down events later in the
same year) was calculated and averaged per polygon.46 For climatic
variables, data from previous years (lag) from NE case occurrence

were used, with lag zero referring to the same year, lag 1 referring to
the year before, and so forth (Table S1).

To this initial set of covariates, we also included land-cover varia-
bles associated with the bank vole habitat, the bank vole–human con-
tact interface, and the proportion of tree species sensitive to massive
tree seed production (Table S1).47 We constructed bank vole habitat
layers based on the 300-m resolution GlobCover land-cover map
2009 (ESA). Specifically, we conducted an expert-based categoriza-
tion of land-cover classes as follows: a) preferred habitat (broad-
leaved forest, mixed forest),48 b) suitable habitat (coniferous forest,
green urban areas, transitional woodland-shrub, agro-forestry areas,
fruit tree and berry plantations, agricultural landwith significant areas
of natural vegetation, moors and heathland, and inland marshes),49,50
and c) unsuitable habitat for bank voles (all others). Both the propor-
tion of preferred and suitable land-cover categories were quantified
per polygon and subsequently considered as distinct variables in our
model (see below). As for the bank vole–human contact interface
layers, they were built upon the bank vole habitat layers: For both

Figure 1. Number of monthly nephropatia epidemica (NE) cases per 100,000 people in western Europe and distribution of NE cases per administrative polygon
per year. The first graph displays the annual incidence of nephropathia epidemica (NE) cases per 100,000 people from 2000 to 2012 for Belgium (red diagonal
lines), France (blue vertical lines), Germany (yellow horizontal lines), and the Netherlands (gray crossed lines). This visualization provides insight into the
varying levels of NE cases over the specified time period across these four countries. The second graph presents a histogram reporting the distribution of NE
cases per year per 100,000 people from 2000 to 2012 in the aforementioned countries. This histogram offers a detailed perspective on the frequency and distri-
bution of NE cases within administrative polygons across Belgium, France, Germany, and the Netherlands during the specified timeframe. Corresponding
numeric data are available in the supplemental material (Excel figure1a.csv and figure1b.csv).
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preferred and suitable habitat, the proportion of vole habitat within a
300-m and 1-km radius of urban areas was calculated per kilometer
squared per polygon. The resulting 300-m- and 1-km-radius-based
maps were then considered as distinct variables. Therefore, 300 m
reflects the typical movement range within bank vole home ranges
and 1 km captures potential longer-distancemovements.51–55

Finally, we calculated the proportion of each polygon area per
kilometer squared covered by Fagus sylvatica, Quercus robur, or
Quercus petraea per polygon based on the tree species occurrence
maps (2000) provided by the European Forest Data Center
(EFDAC). These three tree species are heavily consumedby various
granivorous rodent species across Europe, including bank voles.56

Variable selection. Overall, we gathered 49 initial variables
that were classified in six main groups: a) precipitation, b) temper-
ature, c) frosting/snowing, d) vegetation phenology, e) land cover,
and f ) human population (Table S1). Each variable group, except
human population, was evaluated following the covariate selection
procedure implemented by Shrestha et al.57 The initial variable
selection therefore consisted of assessing multicollinearity by
computing the Pearson correlation among variables in the group
followed by the variable inflation factor (VIF) computed for the
linear regression model using the “car” R package (version 3.1-2).
First, one of the variables was discarded; when a pair of variables
was associated with a correlation coefficient above 0.8,58 we ran-
domly discarded one of the variables in that pair. In addition, varia-
bles presenting a VIF above 10were considered redundant because
VIF measures the feasibility of a predictor variable to predict a
response variable from a linear regression.57,59 After this proce-
dure, a total of 34 statistically independent variables was ultimately
retained in the final dataset.

To avoid model overfitting, we implemented a model selec-
tion based on the deviance information criterion (DIC)60 using

the “ggregplot” R package. This procedure consists of removing
variables one by one and observing how model fit varies
according to the resulting model’s DIC. The number of varia-
bles is reduced iteratively until the simplest model is obtained
where removing any variables increases the DIC by greater than
a set threshold value. Finally, 28 variables out of the subset of
34 variables were selected for training the predictive model
(Table 2; Figure S1).

Model
Spatiotemporal predictive model. To implement our model, we
used an integrated nested Laplace approximation (INLA),61 which
has been suggested as a computationally efficient approach for
posterior distribution calculations in large-scale geostatistical
models.58,59,62,63 In practice, we used the “R-INLA” R package
(version 23.04.24)64 to implement a Bayesian spatiotemporal
model of NE cases in western Europe. INLA has three main advan-
tages: a) It deals with spatial correlation among observations, mean-
ing that closer observations tend to present similar NE cases
compared to distant ones.58 Specifically, information from neigh-
boring points was used to smooth the outlier values, which usually
are a few points and provide robust estimations from sparse data.59

b) INLA provides a hierarchical structure to estimate covariate
effects, spatial covariance structure, and missing data prediction.59

c) INLA includes both fixed and random effects. The fixed effects
onNE incidencewere here determined by the covariates and the ran-
dom ones by the spatial variation. In this sense, the model investi-
gates the relationship between NE cases, covariates, and spatial
dependence.65

Model definition: zero-inflated Poisson model. Let Yi be a
random variable following a Poisson distribution with li rate of

Table 2.Mean coefficient estimates and 95% Bayesian credible interval (BCI) for the environmental and sociodemographic variables considered in the models
for a study of nephropathia epidemica outbreaks in Western Europe (2004–2012). Regression coefficients for covariates are presented as a risk ratio (RR),
which represents the change in prevalence for a unit change in that covariate given that all other variables are kept constant.

Covariate Mean SD Q2.5% Q9.75% RR 95% BCI

Human population (number of inhabitants per polygon) 0.23 0.02 0.18 0.27 1.25 1.20–1.31a
Area (km2) 0.28 0.04 0.21 0.35 1.32 1.23–1.42a
Fagus sylvatica (% per km2 per polygon area) 0.07 0.03 0.01 0.14 1.08 1.01–1.15a
Bank vole–human interface 1 (%)b 0.04 0.03 −0:02 0.11 1.04 0.98–1.11
Quercus petraea (% per km2 per polygon area) 0.08 0.03 0.01 0.14 1.08 1.01–1.15a
Quercus robur (% per km2 per polygon area) 0.04 0.04 −0:03 0.12 1.04 0.97–1.12
Bank vole preferred habitat (% per polygon) 0.35 0.06 0.22 0.47 1.41 1.25–1.59a
Bank vole suitable habitat (% per polygon) −0:04 0.08 −0:20 0.11 0.96 0.82–1.12
Length greening season (lag 1) (number of days) 0.06 0.04 −0:03 0.14 1.06 0.97–1.15
Length greening season (lag 2) (number of days) −0:01 0.04 −0:09 0.07 0.99 0.91–1.07
Length greening season (no lag) (number of days) 0.06 0.05 −0:03 0.15 1.06 0.97–1.16
Annual net primary productivity (lag 1) (kg ×C=m2) −0:21 0.11 −0:41 0.00 0.81 0.66–1.00
Autumn snow days (lag 1) (number of days) −0:14 0.05 −0:24 −0:04 0.87 0.78–0.96a
Spring snow days (lag 1) (number of days) 0.07 0.06 −0:05 0.20 1.07 0.95–1.22
Winter snow days (lag 1) (number of days) −0:08 0.07 −0:22 0.05 0.92 0.81–1.05
Spring frost days (no lag) (number of days) −0:02 0.04 −0:11 0.06 0.98 0.90–1.07
Autumn precipitation (lag 1) (mm) −0:25 0.10 −0:45 −0:06 0.78 0.64–0.94a
Spring precipitation (lag 1) (mm) −0:08 0.09 −0:26 0.11 0.92 0.77–1.11
Summer precipitation (lag 1) (mm) 0.15 0.08 −0:01 0.31 1.17 0.99–1.36
Summer precipitation (lag 2) (mm) 0.12 0.08 −0:04 0.28 1.13 0.96–1.32
Summer precipitation (lag 3) (mm) 0.08 0.08 −0:07 0.24 1.09 0.93–1.27
Spring precipitation (no lag) (mm) −0:09 0.11 −0:30 0.12 0.91 0.74–1.12
Summer maximum temperature (lag 1) (°C) −0:04 0.36 −0:74 0.67 0.96 0.48–1.95
Winter maximum temperature (lag 1) (°C) −1:65 0.31 −2:26 −1:04 0.19 0.10–0.35a
Summer maximum temperature (lag 2) (°C) −0:73 0.35 −1:42 −0:04 0.48 0.24–0.96a
Winter maximum temperature (lag 2) (°C) 0.03 0.29 −0:54 0.60 1.03 0.59–1.82
Summer maximum temperature (lag 3) (°C) −0:19 0.31 −0:80 0.42 0.83 0.45–1.52
Spring maximum temperature (no lag) (°C) 1.25 0.33 0.59 1.90 3.48 1.81–6.69a
Spring land surface temperature (no lag) (°C) 0.01 0.11 −0:20 0.22 1.01 0.82–1.25
Note: LGS, length of greening season; LST, land surface temperature; NPP, annual net primary productivity; Q, quantile; SD, standard deviation.
aSignificant variables are highlighted in bold and shown in Figure S1.
bPercentage within a 300-m radius of urban areas per kilometer squared per polygon.
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NE cases with realizations yi for i=1, . . . , 5,124 administrative
units.

NEcases = Yi ∼ Poisson ðliÞ,

log ðliÞ=offset + intercept + fixed covariates,

log ðliÞ= − 1+ intercept +
Xn

j=1
bjcovariate valuei,

where bj, covariate valuei, and n represent the regression coeffi-
cient of variable j, covariate value for administrative unit i, and
the total number of covariates, respectively. Given the large pro-
portion of zeros in the dataset (Figure 1), we used a zero-inflated
Poisson (ZIP) distribution to fit the Bayesian spatiotemporal
model of NE cases in western Europe:

Yi ∼ZIP ðlipiÞ,
where Yi is modeled as a combination of a Bernoulli distribution
with 1− pi probability that creates zeros and ones and a Poisson
distribution that creates counts. NE cases (Yi >0), therefore, are
assumed to be generated from a Poisson distribution with proba-
bility 1− pi. These assumptions are represented as follows:

Yi ∼Poisson ðliWiÞ,

Wi ∼Bernoulli ðpiÞ,

PðYi = yijbj,cÞ=
�

pi + ð1− piÞe−lit for yi =0
ð1− piÞ fPoissonðYjbjÞ for yi >0 ,

where c represents the intercept. This distribution assumes that an
observation can be zero, even if there were cases, which is conven-
ient when there is underreporting and the surveillance system can-
not detect all of the “true” positive cases.66 Missing cases in the
database were designated as “nonavailable” and were not imputed;
instead, they were handled directly within the INLA, which allows
for missing values while still generating predictions.

Mesh construction. For the observed number of cases, we
assumed a spatially continuous variable modeled with Gaussian
random fields. Particularly, we used the stochastic partial differen-
tial equation (SPDE) approach from the “R-INLA” R package
(version 23.04.24) to fit a spatial model and estimate the number of
cases for the unsampled units.67 The finite elementmethod is an ap-
proximate solution to the SPDE, and here its representation is sim-
plified and defined on the triangulation of domain D, which is
subdivided into a triangulate mesh.68 The way to construct this tri-
angulate mesh is by first placing the vertices of the triangle at the
sample locations and then adding additional vertices in the area for
spatial predictions.

Following Zuur et al.,69 the mesh range was based on the histo-
gram of distances between sampling locations, determining the
distance at which spatial dependency diminishes. This range was
initially set at ∼ 500 km (Figure S2A). The maximum edge length
for the inner mesh was defined as one-fifth of this range (100 km)
to accurately capture spatial correlations within this region. For the
outer area, the maximum edge length was set equal to the range
(500 km) to account for correlations near the boundaries of the
inner region. Three mesh configurations with ranges of 250 km,
500 km, and 750 km (Figure S2B–D) were evaluated to assess
their impact on model prediction performance. The results of these
tests are presented in Table 3 for comparison.

The ri term is the nonspatial random effect, and the vi term is
the spatial correlated random effect, where the SPDE approach is
used to estimate it, which is represented as follows:

log ðliÞ= − 1+ intercept +
Xn

j=1
bjcovariate valuei +ri + vi:

Model implementation and performance evaluation. We
implemented four competing models assuming a zero-inflated
Poisson distribution. Model 1, considering only fixed effects;
model 2, identical to model 1 plus nonspatial random effect
(ri); model 3, based on model 2 plus spatial random effect (vi);
and model 4, including all of the previous effects plus year ran-
dom effect (#it), represented as follows:

log ðlitÞ= − 1+ intercept +
Xn

j=1
bjcovariate valuei +ri + vi +#it,

Yit ∼ZIP ðlitpitÞ:
In model 4, Yit is a random variable following a Poisson dis-

tribution of NE cases, and lit is the rate of NE cases, both with
realizations yit for i=1, . . . , 5,124 administrative units for
t=1, . . . , 9 years. The same database was used across all models.

The predictive performance of the models was assessed through
the deviance information criterion (DIC) and the Watanabe–Akaike
information criterion (WAIC).60 TheDIC is a parameter based on the
posterior mean deviance, which measures the fit to the data, and the
effective number of parameters, which measures model complexity.
Therefore, the lower the DIC, the better the model predictive per-
formance. Similar to DIC, WAIC estimates the effective number of
parameters to adjust for overfitting. To assess the overall predictive
performance of the models, we calculated three comprehensive met-
rics: accuracy, precision, and recall. These metrics were derived by
withholding 10%of the data duringmodel training and comparing the
observed values with the predictions. Incorporating these metrics
offers a more robust evaluation of the models’ reliability and effec-
tiveness as early warning systems. Mean DIC,WAIC, accuracy, pre-
cision, and recall were computed for 10 replicates per model and

Table 3. Implemented INLA models with the corresponding estimates for the study of nephropathia epidemica outbreaks in Western Europe (2004–2012).
Model DIC WAIC Precision Recall Accuracy

Fixed effects 22,414 (22,296; 22,531) 57,700 (56,168; 59,231) 0.17 (0.16, 0.18) 0.76 (0.73, 0.79) 0.81 (0.80, 0.82)
Random effects 16,226 (16,200; 16,253) 17,367 (17,202; 17,531) 0.52 (0.50, 0.55) 0.54 (0.51, 0.57) 0.95 (0.95, 0.96)
Spatial (250) 14,895 (14,877; 14,913) 15,992 (15,898; 16,086) 0.49 (0.45, 0.53) 0.61 (0.60, 0.62) 0.95 (0.95, 0.95)
Spatial (500) 15,001 (14,983; 15,019) 16,068 (15,976; 16,160) 0.48 (0.45, 0.52) 0.61 (0.60, 0.62) 0.95 (0.95, 0.95)
Spatial (750) 15,090 (15,067; 15,113) 16,105 (16,012; 16,199) 0.47 (0.43, 0.51) 0.61 (0.60, 0.62) 0.95 (0.95, 0.95)
Spatiotemporal (250) 13,890 (13,838; 13,941) 13,731 (13,468; 13,994) 0.55 (0.54, 0.56) 0.62 (0.61, 0.63) 0.96 (0.96, 0.96)
Spatiotemporal (500) 14,020 (14,006; 14,035) 13,873 (13,821; 13,924) 0.56 (0.54, 0.57) 0.61 (0.60, 0.62) 0.96 (0.96, 0.96)
Spatiotemporal (750) 14,121 (14,076; 14,166) 14,061 (13,989; 14,134) 0.54 (0.53, 0.56) 0.61 (0.60, 0.62) 0.96 (0.96, 0.96)

Note: The deviance information criterion (DIC) and Watanabe–Akaike information criterion (WAIC) were calculated for integrated nested Laplace approximation (INLA) model com-
parison. Precision, recall, and accuracy were calculated to evaluate the predictive performance of each model. We report the mean estimate (as well as the 95% confidence interval) for
ten replicates. Three mesh configurations with ranges of 250 km, 500 km, and 750 km (Figure S2B–D) were evaluated to assess their impact on the model prediction performance of
the spatial and spatiotemporal models.
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reported in Table 3 with their corresponding 95% confidence
intervals.

We further estimated the regression coefficients for each model
covariate. Considering INLA is a Bayesian approach, we reported
the 95% Bayesian credible interval (BCI) of the regression coeffi-
cients. We also exponentiated the covariate regression coefficients
to calculate the more interpretable risk ratio (RR) as suggested by
Moraga et al.70 and also implemented by Shrestha et al.57 The RR
represents the ratio of NE case number when the covariate increases
in one unit to the NE case number when the covariate is fixed.57

The association was considered significant when the 95% BCI inter-
val did not include zero, and the RR was considered significant
when the 95% BCI interval did not include one.

We fitted a smoothing curve between the predicted posterior
mean of NE cases from the generalized linear model and the dif-
ferent covariates to evaluate their association using the “gam”
smoothing function from the “ggplot2” R package (version 3.4.2)
for visualization purposes (Figure 3). All analyses, figures, and
maps were done in R (version 4.2.3).

Results
As the complexity of the model increased, so did its perform-
ance. Model 4, which incorporated both nonspatial and spatial
random effects, along with year and a range of 250 km, yielded
the smallest DIC and WAIC [DIC=13,890 (13,838; 13,941);
WAIC=13,731 (13,468; 13,994)]. Following closely were the
variations of model 4 with a 500-km range [DIC=14,020
(14,006; 14,035); WAIC=13,873 (13,821; 13,924)] and a
750-km range [DIC= 14,121 (14,076; 14,166); WAIC=14,061
(13,989; 14,134)]. Among models, model 3 (both nonspatial
and spatial random effects) with a 250-km range followed model
4 in performance [DIC=14,895 (14,877; 14,913); WAIC=15,992
(15,898; 16,086)].Model 2 (nonspatial random effects) [DIC=16,226
(16,200; 16,253); WAIC=17,367 (17,202; 17,531)] and model 1
exhibited the largest DICs [DIC= 22,414 (22,296; 22,531);
WAIC=57,700 (56,168; 59,231)] (Table 3). Model 4 also dem-
onstrated the strongest predictive performance, with the highest
accuracy (0.96) and recall (0.62) and the second-highest preci-
sion (0.55) among all models tested (Table 3). These results,

combined with the lowest DIC and WAIC values, supported the
selection of the fourth model for further analysis.

Out of 28 covariates considered for the final models, 10 covari-
ates were significantly associated with NE case number (based on
95%BCI) (Table 2; Figure S1). Springmaximum temperature with
no lag showed the highest association with NE case number (RR =
3.48; 95%BCI: 1.81, 6.69) followed by bank vole preferred habitat
(RR = 1.41; 95% BCI: 1.25, 1.59), polygon area (RR = 1.32, 95%
BCI: 1.23, 1.42), human population (RR = 1.25; 95% BCI: 1.2,
1.31), the area proportion covered by F. sylvatica (RR = 1.08; 95%
BCI: 1.01, 1.15), andQuercus petraea (RR= 1.08; 95%BCI: 1.01,
1.15). On the other hand, winter maximum temperature (lag 1) was
the most negatively associated with NE cases (RR = 0.19; 95%
BCI: 0.10, 0.35) followed by summer maximum temperature (lag
2; RR = 0.48; 95% BCI: 0.24, 0.96), autumn precipitation (lag 1;
RR = 0.78; 95% BCI: 0.64, 0.94) and autumn snow days (lag 1;
RR = 0.87; 95%BCI: 0.78, 0.96).

The model results and the maps of predicted incidence per
100,000 people showed spatial and temporal heterogeneity in NE
cases in western Europe (Figure S3). During the 2004–2012 pe-
riod, two NE important hotspots were detected: the southwestern/
central Germany hotspot (Figure 4B) and southern Belgium–
northeastern France hotspot (Figure 4B). In general, the presence
of NE cases was observed in these hotspots every year, but their
intensity varied temporally (Figure S3). The hotspot in Germany
was notably intense in 2007, 2010, and 2012, and the hotspot in
the Belgium–France region had the most cases in 2005, 2008,
and 2012. Except for northeastern France, the rest of the country
presented a near to zero incidence in the study period, similarly
to the Netherlands. Locations in the Netherlands and southeastern
Germany showed low uncertainty in estimating the number of
cases as well as low incidence of NE cases, regardless of the ab-
sence of Netherlands NE data before 2008 (Figure 4A,B). In gen-
eral, the hotspots in southwestern/central Germany and southern
Belgium–northeastern France presented the lowest uncertainty
(standard deviation below 0.001) (Figure 4C). These predictions
represent cumulative estimates over the 2004–2012 period and
were generated using model 4.

The relationship profiles between NE predicted cases and rele-
vant covariate values indicated how ecological conditions affected
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Figure 3. Estimated relationship between the predicted posterior mean of nephropathia epidemica (NE) cases and the environmental covariates associated with
a significant regression coefficient. These covariates include human population density; polygon area; percentage of Fagus sylvatica, Quercus petraea, and
bank vole preferred habitat; autumn snow days the previous year; autumn precipitation the previous year; winter maximum temperature the previous year;
summer maximum temperature 2 years prior; and spring maximum temperature in the present year. The curve was fitted using the “gam” smoothing function
available in the “ggplot2” R package (version 3.4.2) for visualization purposes. The blue line represents the mean value, while the shaded region around each
curve signifies the 95% confidence interval. Corresponding numeric data are available in the supplemental material (Excel Figure 3.csv). Note: SD, standard
deviation.
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NE local circulation (Figure 3). As human population increases
per polygon, there is an increased uncertainty in estimating the
number of cases and a rise in the predicted NE cases per polygon
until 1:5million people, when the number of predicted cases stead-
ily decreased. There was a linear increase in the predicted NE cases
up to around 10% coverage of F. sylvatica and 2% for Q. petraea,
which then decreased with higher coverage and uncertainty, show-
ing the lowest NE cases per polygon at 0% and 60% F. sylvatica
coverage and 0%Q. petraea coverage. Similar to the previous asso-
ciation, NE cases were predicted to incrementally increase with per-
cent coverage of bank vole preferred habitat up to around 3.5%,
followed by a decrease and an increase in the NE predicted cases per
polygon with high uncertainty. A few days of snow in autumn was
associated with an increase of NE cases per polygon the following
year. A decrease in NE cases per polygon was associated with an
increased precipitation in autumn1 year before the outbreak (between
100 mm and 300 mm of precipitation). Conversely, temperatures in
winter above 0�C were expected to decrease the predicted NE cases
per polygon for the following year, whereas summer temperatures
above and/or below 22.5°C were expected to decrease the predicted
NE cases 2 years later, though these estimates had high uncertainty.
Finally, increases in spring maximum temperature above 12.5°C
were negatively associatedwith predictedNE cases.

Discussion
We found that the percentage per polygon of bank vole preferred
habitat (broad-leaved forest, mixed forest) (Figure S1D) was the
land-cover variable that best predicted NE cases in western
Europe. The presence of bank vole preferred habitat in a polygon
implied an increased NE risk. Host habitat preference, used as a
proxy for vole density, is a significant driver of PUUV local out-
breaks, consistent with findings in multiple pathogen transmission
systems.71,72 Furthermore, optimal proportions of beech (Fagus syl-
vatica) and oak (Quercus petraea) underscore the importance of
masting (high seed production) events in NE outbreaks, as sug-
gested by several studies.9,25,30,32,73,74 These masting events, which
cause explosive fluctuations in bank vole abundance and PUUV
prevalence, likely explain the rise in PUUV spillover events to
humans.75–77 Piechotowski et al.78 and Faber et al.79 found a clear
link between NE occurrence and beech-dominated broadleaf forests
during outbreaks in Germany.

The optimal proportions of F. sylvatica and Q. petraea, as
well as human population are likely expected: low tree coverage
suggests unsuitable habitat for reservoir animals, while very
high coverage indicates predominantly wooded areas with lim-
ited human presence, reducing contact and disease occurrence.
Similarly, very high population density points to highly urban-
ized areas with unsuitable vole habitats, whereas low population
density indicates fewer people. An optimal mix of suitable vole
habitat and human settlements—such as wooded areas inter-
spersed with communities—may facilitate ideal conditions for
contact between infected bank voles and humans. Although the
exact reasons for the dramatic increases in NE cases in 2007 in
Germany and 2008 in Belgium remain unclear,79,80 our study
confirms that climatic fluctuation patterns and the presence of
beech forests are likely significant in the spatial and temporal
occurrence patterns observed in western Europe. While land-
cover factors act as the determinants of hotspot locations, cli-
matic fluctuation patterns constitute drivers of peak years.

Spring maximum temperature in the year of NE occurrence,
winter maximum temperature, number of snow days in autumn
and autumn precipitation the year before, and summer maxi-
mum temperature 2 years before are the most informative cli-
matic variables in our models. Since four out of five climatic
variables correspond to at least 1 year before the outbreak, risk
maps could be produced a year prior to NE occurrence. In par-
ticular, high summer temperatures are related to high NE inci-
dence in Belgium,9 and July maximum temperature 2 years
before has been proposed as a good predictor of bank vole
abundance and therefore NE cases in Germany.29 Moreover, a
mild winter could enhance the survival and reproduction of the
bank vole.31–33 Summer temperatures in the preceding year of a
masting event are pivotal for the initiation of floral buds in the
trees,81,82 a prerequisite for tree mast. Therefore, in some years,
this system follows a 3-year trophic cascade, where tree mast-
ing links local climatic fluctuations to the number of NE cases,
with events occurring at 1-year intervals9 (see Figure 5 for an
illustration of the trophic cascade).

Bank vole populations can remain high even in years without
a mast event; therefore, further investigation is essential to under-
stand NE epidemics under these circumstances. Notably, our
findings suggest that autumn conditions in the year prior to an
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outbreak may support an increase in NE cases. This association is
not easily explained by tree seeding patterns,9 as seed fall occurs
during this season. A possible explanation could involve the
availability of green biomass and vole body condition. During
the normal reproductive season, herbaceous plants make up a sig-
nificant part of the bank vole diet. Typically, green foliage
declines in early autumn, though favorable conditions can extend
its availability.37

In several orthohantavirus systems, climatic fluctuation cas-
cade effects related to rodent food resources have been described
as an explanation for the occurrence of local epizootics or epi-
demics.13,14,83 A novelty of our work lies in the result that similar
climatic fluctuation mechanisms seem to operate over vast geo-
graphical areas and can predict epidemic dynamics, despite the
noise induced by complex land-cover patterns and socioeconomic
factors.84,85 Such complexity is challenging to parameterize over
large regions and is, hence, likely to contribute to the relatively
low sensitivity (high standard deviation in some regions of
France). We acknowledge the limitation of using data from dif-
ferent administrative levels (LAU2, LAU1, NUTS3) without har-
monization, which introduces heterogeneity in spatial resolution
and impacts key variables like population density. To address
this, we included both population and polygon area as covariates,
which proved relevant for model predictions. However, larger
polygons may average dense and sparse preferred habitats, mask-
ing localized effects and influencing observed relationships
between habitat percentage and NE cases. Future studies should
consider harmonizing data for improved consistency or smaller
polygons for NE data incidence, if available.

Additionally, a large proportion of the observed NE cases was
assigned to the location of residence instead of a confirmed PUUV
infection source. Even though it is likely that, on average, a strong
spatial correlation exists between residence and infection source (NE
associations with living near forests and peridomestic activities), it
remains a strong assumption that unconfirmed PUUV infection sour-
ces correspond to residence location. Forest leisure or work activities
are not necessarily conducted near the place of residence.86,87 We
applied lagged effects to climatic variables influencing masting
events,which significantly boost bank vole populations and to net pri-
mary productivity (NPP) to account for temporal variations in food
resource availability. On the contrary, for key masting tree species
such as F. sylvatica andQuercus spp., we relied on static layers, as
available broad-scale land-cover datasets (e.g., CORINE and
ESA CCI) lack the resolution to capture their dynamics, and
adapting these layers for fine-scale modeling was beyond the
scope of this study. These limitations highlight the challenges of
modeling temporal dynamics without high-resolution data.
Future work could incorporate more detailed spatial and tempo-
ral datasets to better understand rodent population responses to
habitat and food resource changes.

While environmental conditions can forecast heightened risk
of nephropathia epidemica (NE), the response of vole populations
and tree seeding patterns to these cues may be hindered by physi-
ological or behavioral limitations. In contrast to wood mice,
which switch between crop fields and forests based on resource
availability and respond differently to masting events, bank voles
are less opportunistic and remain in their habitats. Bank voles
depend on masting events, which drive population peaks by

Figure 5. Trophic cascade linking climatic fluctuation, tree masting, bank vole population dynamics, and nephropathia epidemica (NE) outbreaks in western
Europe. Summer temperatures are crucial for initiating floral buds in trees,81,82 which is essential for tree masting in the following autumn. During mast years,
abundant seed production significantly influences bank vole populations by prolonging the breeding season, increasing the proportion of breeding females, and
improving winter survival.31–33 These combined events result in higher bank vole population densities that can persist into the following spring. Bank vole pop-
ulation increases are closely associated with increments in Orthohantavirus puumalaense (PUUV) prevalence and NE outbreaks in western Europe.9,29
Therefore, this process illustrates a 3-year trophic cascade, with tree masting serving as a key intermediary connecting climatic fluctuation patterns to NE out-
breaks.9 Figure created using Adobe Photoshop 2025 (Adobe Inc.).
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providing increased food availability and supporting winter breed-
ing,36 followed by strong density-dependent regulation.76 Therefore,
the density-dependent population regulation of bank voles and
potential tree resource depletion make it highly improbable for out-
break years to occur consecutively.9,76 Consequently, even if local
climatic conditions are ideal for triggering PUUV outbreaks follow-
ing a significant outbreak year, such as those in Germany in 2007
or Belgium in 2008, it is unlikely that outbreaks of comparable
magnitude will occur the following year, as shown in Figure S3.
These constraints should be considered when developing PUUV
control strategies by using regional thresholds of NE incidence in
the previous year.

Local climatic fluctuations and land-cover factors have the
potential to impact the epidemics of multiple pathogens across
ecoregions in Europe. Our study presents an approach that could
be effectively applied to distinct zoonoses and geographical areas.
This was previously hindered by methodological constraints but
is now overcome with the capabilities of R-INLA, which includes
handling zero-inflated data while considering spatial–temporal
correlations.69 Exploiting the recent developments of Bayesian
spatiotemporal modeling (i.e., R-INLA) using epidemiological
and environmental data allows disentangling epidemiological
drivers and comparison between ecoregions as well as predicting
the risk of hotspots.

In contrast to prior research,73,74,88,89 which focus on small
regions or a single country and, inmost cases, either emphasize time
or space exclusively, our study is a pioneering effort aiming to
understand the spatiotemporal dynamics of NE incidence across a
wide expanse of the western Europe cases at a high resolution.
While Kazasidis et al.73 attempted to develop a PUUV early warn-
ing system in Germany using machine learning, their model show-
cased a limited predictive performance when predicting widespread
high outbreak risk, likely due to limitations in capturing spatiotem-
poral dependencies. Here we used R-INLA, a method specifically
designed to account for spatiotemporal correlations, providing a
more performant framework for predicting PUUV outbreak risk.
Expert knowledge on host habitat preference, as well as beech
and oak presence, were fundamental to determine the location of
risk hotspots, but seasonal climate data were required to accurately
establish hotspot intensity throughout time and subsequent out-
breaks. Although our model currently relies on historical data,
it demonstrates the strong potential to produce yearly maps for
NE incidence—a key milestone for implementing targeted risk
prevention strategies within the study region (Figure S3). With
additional input data aiming to improve sensitivity, and following an
extended validation period, this modeling framework is promising as
a forecasting tool, allowing targeted interventions and preparedness.
Fine-scale warning tools are particularly relevant in the context of
climate change, which is projected to increase PUUV outbreak fre-
quency by 3- to 4-fold by the end of this century.29

Acknowledgments
We are grateful to two anonymous reviewers for their

constructive and helpful comments, as well as toMarkus Neteler, Els
Ducheyne, Luigi Sedda, and David Rogers for their support in the
initial phase of the project.We also acknowledge all persons involved
in the data collection conducted by a) the Belgian network of sentinel
laboratories and the service Epidemiology of Infectious Diseases at
Sciensano, theNational Public Health Institute of Belgium; b) Robert
Koch Institute, Department for Infectious Disease Epidemiology in
Germany; c) the Virology Department, Centre for Infectious Disease
Control, National Institute for Public Health and the Environment in
The Netherlands; and d) the Centre National de Référence des
Hantavirus, Unité de Environnement et Risques Infectieux at Institut
Pasteur in France.

D.E. acknowledges support from the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska
Curie grant agreement number 801505 and from the Fonds National
de la Recherche Scientifique (F.R.S.- FNRS, Belgium). H.L., K.T.,
andW.W. acknowledge support from the EDENext project (Biology
and control of vector-borne infections in Europe; EU grant FP7-
261504 EDENext). S.D. acknowledges support from the Fonds
National de la Recherche Scientifique (F.R.S.- FNRS, Belgium; grant
number F.4515.22) from the Research Foundation—Flanders (Fonds
voor Wetenschappelijk Onderzoek — Vlaanderen, FWO, Belgium;
grant number G098321N) and from the European Union Horizon
2020 projectsMOOD (grant agreement number 874850) and LEAPS
(grant agreement number 101094685).

References
1. Kilpatrick AM, Randolph SE. 2012. Drivers, dynamics, and control of emerging

vector-borne zoonotic diseases. Lancet 380(9857):1946–1955, PMID: 23200503,
https://doi.org/10.1016/S0140-6736(12)61151-9.

2. Estrada-Peña A, Ostfeld RS, Peterson AT, Poulin R, De La Fuente J. 2014.
Effects of environmental change on zoonotic disease risk: an ecological
primer. Trends Parasitol 30(4):205–214, PMID: 24636356, https://doi.org/10.
1016/j.pt.2014.02.003.

3. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P. 2006.
Seasonality and the dynamics of infectious diseases. Ecol Lett 9(4):467–484,
PMID: 16623732, https://doi.org/10.1111/j.1461-0248.2005.00879.x.

4. Gottdenker NL, Streicker DG, Faust CL, Carroll CR. 2014. Anthropogenic land
use change and infectious diseases: a review of the evidence. EcoHealth
11(4):619–632, PMID: 24854248, https://doi.org/10.1007/s10393-014-0941-z.

5. Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. 2013. Climate change
and infectious diseases: from evidence to a predictive framework. Science
341(6145):514–519, PMID: 23908230, https://doi.org/10.1126/science.1239401.

6. Lafferty KD. 2009. The ecology of climate change and infectious diseases.
Ecology 90(4):888–900, PMID: 19449681, https://doi.org/10.1890/08-0079.1.

7. Morand S, Owers KA, Waret-Szkuta A, McIntyre KM, Baylis M. 2013. Climate
variability and outbreaks of infectious diseases in Europe. Sci Rep 3(1):1774,
PMID: 23639950, https://doi.org/10.1038/srep01774.

8. Semenza JC, Sudre B, Oni T, Suk JE, Giesecke J. 2013. Linking environmental
drivers to infectious diseases: the European environment and epidemiology
network. PLoS Negl Trop Dis 7(7):e2323, PMID: 23936561, https://doi.org/10.
1371/journal.pntd.0002323.

9. Tersago K, Verhagen R, Servais A, Heyman P, Ducoffre G, Leirs H. 2009.
Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree
seed production and climate. Epidemiol Infect 137(2):250–256, PMID: 18606026,
https://doi.org/10.1017/S0950268808000940.

10. Metcalf CJE, Walter KS, Wesolowski A, Buckee CO, Shevliakova E, Tatem AJ,
et al. 2017. Identifying climate drivers of infectious disease dynamics: recent
advances and challenges ahead. Proc R Soc B Biol B 284(1860):20170901,
https://doi.org/10.1098/rspb.2017.0901.

11. Stewart-Ibarra AM, Rollock L, Best S, Brown T, Diaz AR, Dunbar W, et al. 2022.
Co-learning during the co-creation of a dengue early warning system for the
health sector in Barbados. BMJ Glob Health 7(1):e007842, PMID: 34992079,
https://doi.org/10.1136/bmjgh-2021-007842.

12. Finch E, Lotto Batista M, Alcayna T, Lee SA, Fletcher IK, Lowe R. 2024. Early
warning systems for vector-borne diseases: engagement, methods and imple-
mentation. In: Planetary Health Approaches to Understand and Control Vector-
Borne Diseases. Wageningen, the Netherlands: Wageningen Academic, 347–
386.

13. Mills JN, Gage KL, Khan AS. 2010. Potential influence of climate change on
vector-borne and zoonotic diseases: a review and proposed research plan.
Environ Health Perspect 118(11):1507–1514, PMID: 20576580, https://doi.org/10.
1289/ehp.0901389.

14. Dearing MD, Dizney L. 2010. Ecology of hantavirus in a changing world. Ann
NY Acad Sci 1195(1):99–112, PMID: 20536819, https://doi.org/10.1111/j.1749-
6632.2010.05452.x.

15. Kuhn JH, Schmaljohn CS. 2023. A brief history of bunyaviral family Hantaviridae.
Diseases 11(1):38, PMID: 36975587, https://doi.org/10.3390/diseases11010038.

16. Vaheri A, Strandin T, Hepojoki J, Sironen T, Henttonen H, Mäkelä S, et al. 2013.
Uncovering the mysteries of hantavirus infections. Nat Rev Microbiol 11(8):539–
550, PMID: 24020072, https://doi.org/10.1038/nrmicro3066.

17. Yanagihara R, Amyx HL, Gajdusek DC. 1985. Experimental infection with
Puumala virus, the etiologic agent of nephropathia epidemica, in bank voles
(Clethrionomys glareolus). J Virol 55(1):34–38, PMID: 2861296, https://doi.org/10.
1128/JVI.55.1.34-38.1985.

Environmental Health Perspectives 057023-9 133(5) May 2025

https://www.ncbi.nlm.nih.gov/pubmed/23200503
https://doi.org/10.1016/S0140-6736(12)61151-9
https://www.ncbi.nlm.nih.gov/pubmed/24636356
https://doi.org/10.1016/j.pt.2014.02.003
https://doi.org/10.1016/j.pt.2014.02.003
https://www.ncbi.nlm.nih.gov/pubmed/16623732
https://doi.org/10.1111/j.1461-0248.2005.00879.x
https://www.ncbi.nlm.nih.gov/pubmed/24854248
https://doi.org/10.1007/s10393-014-0941-z
https://www.ncbi.nlm.nih.gov/pubmed/23908230
https://doi.org/10.1126/science.1239401
https://www.ncbi.nlm.nih.gov/pubmed/19449681
https://doi.org/10.1890/%3C?A3B2 show $132#?%3E08-0079.1
https://www.ncbi.nlm.nih.gov/pubmed/23639950
https://doi.org/10.1038/srep01774
https://www.ncbi.nlm.nih.gov/pubmed/23936561
https://doi.org/10.1371/journal.pntd.0002323
https://doi.org/10.1371/journal.pntd.0002323
https://www.ncbi.nlm.nih.gov/pubmed/18606026
https://doi.org/10.1017/S0950268808000940
https://doi.org/10.1098/rspb.2017.0901
https://www.ncbi.nlm.nih.gov/pubmed/34992079
https://doi.org/10.1136/bmjgh-2021-007842
https://www.ncbi.nlm.nih.gov/pubmed/20576580
https://doi.org/10.1289/ehp.0901389
https://doi.org/10.1289/ehp.0901389
https://www.ncbi.nlm.nih.gov/pubmed/20536819
https://doi.org/10.1111/j.1749-6632.2010.05452.x
https://doi.org/10.1111/j.1749-6632.2010.05452.x
https://www.ncbi.nlm.nih.gov/pubmed/36975587
https://doi.org/10.3390/diseases11010038
https://www.ncbi.nlm.nih.gov/pubmed/24020072
https://doi.org/10.1038/nrmicro3066
https://www.ncbi.nlm.nih.gov/pubmed/2861296
https://doi.org/10.1128/JVI.55.1.34-38.1985
https://doi.org/10.1128/JVI.55.1.34-38.1985


18. Kallio ER, Klingström J, Gustafsson E, Manni T, Vaheri A, Henttonen H, et al.
2006. Prolonged survival of Puumala hantavirus outside the host: evidence for
indirect transmission via the environment. J Gen Virol 87(pt 8):2127–2134,
PMID: 16847107, https://doi.org/10.1099/vir.0.81643-0.

19. Hardestam J, Karlsson M, Falk KI, Olsson G, Klingström J, Lundkvist Å. 2008.
Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg
Infect Dis 14(8):1209–1215, PMID: 18680643, https://doi.org/10.3201/eid1408.080221.

20. Settergren B. 2000. Clinical aspects of nephropathia epidemica (Puumala virus
infection) in Europe: a review. Scand J Infect Dis 32(2):125–132, PMID:
10826895, https://doi.org/10.1080/003655400750045204.

21. Vapalahti O, Mustonen J, Lundkvist Å, Henttonen H, Plyusnin A, Vaheri A. 2003.
Hantavirus infections in Europe. Lancet Infect Dis 3(10):653–661, PMID:
14522264, https://doi.org/10.1016/s1473-3099(03)00774-6.

22. Heyman P, Thoma BR, Marié JL, Cochez C, Essbauer SS. 2012. In search for
factors that drive hantavirus epidemics. Front Physiol 3:237, PMID: 22934002,
https://doi.org/10.3389/fphys.2012.00237.

23. European Centre for Disease Prevention and Control. 2024. Surveillance Atlas
of Infectious Diseases. https://atlas.ecdc.europa.eu/public/ [accessed 1 April
2024].

24. Reusken C, Heyman P. 2013. Factors driving hantavirus emergence in Europe. Curr
Opin Virol 3(1):92–99, PMID: 23384818, https://doi.org/10.1016/j.coviro.2013.01.002.

25. Reil D, Imholt C, Eccard JA, Jacob J. 2015. Beech fructification and bank vole
population dynamics - combined analyses of promoters of human Puumala virus
infections in Germany. PLoS One 10(7):e0134124, PMID: 26214509, https://doi.org/
10.1371/journal.pone.0134124.

26. Andreassen HP, Sundell J, Ecke F, Halle S, Haapakoski M, Henttonen H, et al.
2021. Population cycles and outbreaks of small rodents: ten essential questions
we still need to solve. Oecologia 195(3):601–622, PMID: 33369695, https://doi.org/
10.1007/s00442-020-04810-w.

27. Hansson L, Henttonen H. 1985. Gradients in density variations of small rodents:
the importance of latitude and snow cover. Oecologia 67(3):394–402, PMID:
28311574, https://doi.org/10.1007/BF00384946.

28. Olsson GE, Leirs H, Henttonen H. 2010. Hantaviruses and their hosts in Europe:
reservoirs here and there, but not everywhere? Vector Borne Zoonotic Dis
10(6):549–561, PMID: 20795916, https://doi.org/10.1089/vbz.2009.0138.

29. Imholt C, Reil D, Eccard JA, Jacob D, Hempelmann N, Jacob J. 2015.
Quantifying the past and future impact of climate on outbreak patterns of bank
voles (Myodes glareolus). Pest Manag Sci 71(2):166–172, PMID: 24889216,
https://doi.org/10.1002/ps.3838.

30. Cunze S, Kochmann J, Kuhn T, Frank R, Dörge DD, Klimpel S. 2018. Spatial and
temporal patterns of human puumala virus (PUUV) infections in Germany.
PeerJ 6:e4255, PMID: 29404206, https://doi.org/10.7717/peerj.4255.

31. Clement J, Maes P, Van Ranst M. 2006. Hantaviruses in the old and new world.
Perspect Med Virol 16:161–177, https://doi.org/10.1016/S0168-7069(06)16008-5.

32. Clement J, Vercauteren J, Verstraeten WW, Ducoffre G, Barrios JM, Vandamme
A-M, et al. 2009. Relating increasing hantavirus incidences to the changing cli-
mate: the mast connection. Int J Health Geogr 8:1, PMID: 19149870, https://doi.org/
10.1186/1476-072X-8-1.

33. Piovesan G, Adams JM. 2001. Masting behaviour in beech: linking reproduction
and climatic variation. Can J Bot 79(9):1039–1047.

34. Smyth M. 1966. Winter breeding in woodland mice, Apodemus sylvaticus, and
voles, Clethrionomys glareolus and Microtus agrestis, near Oxford. J Anim
Ecol 35(3):471–485, https://doi.org/10.2307/2486.

35. Ylonen H, Viitala J. 1985. Social organization of an enclosed winter population
of the bank vole Clethrionomys glareolus. Ann Zool Fennici 22(3):353–358.

36. Jensen TS. 1982. Seed production and outbreaks of non-cyclic rodent populations
in deciduous forests. Oecologia 54(2):184–192, PMID: 28311427, https://doi.org/10.
1007/BF00378391.

37. Pucek Z, JeRdrzejewski W, JeRdrzejewska B, Pucek M. 1993. Rodent population
dynamics in a primeval deciduous Forest (Białowie_za National Park) in relation
to weather, seed crop, and predation. Acta Theriol 38:199–232, https://doi.org/
10.4098/AT.arch.93-18.

38. Crespin L, Verhagen R, Stenseth NC, Yoccoz NG, Prévot-Julliard A, Lebreton J.
2002. Survival in fluctuating bank vole populations: seasonal and yearly varia-
tions. Oikos 98(3):467–479, https://doi.org/10.1034/j.1600-0706.2002.980311.x.

39. Sipari S, Khalil H, Magnusson M, Evander M, Hörnfeldt B, Ecke F. 2022. Climate
change accelerates winter transmission of a zoonotic pathogen. Ambio
51(3):508–517, PMID: 34228253, https://doi.org/10.1007/s13280-021-01594-y.

40. Olsson GE, Dalerum F, Hörnfeldt B, Elgh F, Palo TR, Juto P, et al. 2003. Human
hantavirus infections, Sweden. Emerg Infect Dis 9(11):1395–1401, PMID:
14718081, https://doi.org/10.3201/eid0911.030275.

41. Sauvage F, Penalba C, Vuillaume P, Boue F, Coudrier D, Pontier D, et al. 2002.
Infection in humans and in the reservoir host, Ardennes region, France. Emerg
Infect Dis 8(12):1509–1511, PMID: 12498675, https://doi.org/10.3201/eid0812.010518.

42. Huston MA, Wolverton S. 2009. The global distribution of net primary production:
resolving the paradox. Ecol Monogr 79(3):343–377, https://doi.org/10.1890/08-0588.1.

43. Loehman RA, Elias J, Douglass RJ, Kuenzi AJ, Mills JN, Wagoner K. 2012.
Prediction of Peromyscus maniculatus (deer mouse) population dynamics in
Montana, USA, using satellite-driven vegetation productivity and weather
data. J Wildl Dis 48(2):348–360, PMID: 22493110, https://doi.org/10.7589/0090-
3558-48.2.348.

44. Barrios JM, Verstraeten WW, Maes P, Clement J, Aerts J-M, Haredasht SA,
et al. 2010. Satellite derived Forest phenology and its relation with nephropa-
thia epidemica in Belgium. Int J Environ Res Public Health 7(6):2486–2500,
PMID: 20644685, https://doi.org/10.3390/ijerph7062486.

45. Barrios JM, Verstraeten WW, Maes P, Aerts JM, Farifteh J, Coppin P. 2013.
Relating land cover and spatial distribution of nephropathia epidemica and
Lyme borreliosis in Belgium. Int J Environ Health Res 23(2):132–154, PMID:
22894742, https://doi.org/10.1080/09603123.2012.708918.

46. Ganguly S, Friedl MA, Tan B, Zhang X, Verma M. 2010. Land surface phenology
from MODIS: characterization of the collection 5 global land cover dynamics
product. Remote Sens Environ 114(8):1805–1816, https://doi.org/10.1016/j.rse.
2010.04.005.

47. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al.
2009. Generalized linear mixed models: a practical guide for ecology and evolu-
tion. Trends Ecol Evol 24(3):127–135, PMID: 19185386, https://doi.org/10.1016/j.
tree.2008.10.008.

48. Bujalska G. 1990. Social system of the bank vole, Clethrionomys glareolus. In:
Social Systems and Population Cycles in Voles. Tamarin RH, Ostfeld RS, Pugh
SR, Bujalska G, eds. Basel, Switzerland: Birkhäuser, 155–167.

49. Spitzenberger F. 2000. Clethrionomys glareolus. In: The Atlas of European
Mammals, vol. 75. Cambridge, MA: Academic Press.

50. Viro P, Niethammer J. 1982. Clethrionomys glareolus (Schreber, 1780). In:
Handbuch Der Säugetiere Europas. ötelmaus. Niethammer J, Krapp F, eds.
Leipzig, Germany: Akademische Verlagsgesellschaft.

51. Alain B, Gilles P, Yannick D. 2006. Factors driving small rodents assemblages
from field boundaries in agricultural landscapes of Western France.
Landscape Ecol 21(3):449–461, https://doi.org/10.1007/s10980-005-4118-6.

52. Gliwicz J, Ims RA. 2000. Dispersal in the bank vole. Polish J Ecol 48:51–61.
53. Kozakiewicz M, Chołuj A, Kozakiewicz A. 2007. Long-distance movements of indi-

viduals in a free-living bank vole population: an important element of male breed-
ing strategy. Acta Theriol 52(4):339–348, https://doi.org/10.1007/BF03194231.

54. Mazurkiewicz M. 1994. Factors influencing the distribution of the bank vole in
Forest habitats. Acta Theriol 39(2):113–126, https://doi.org/10.4098/AT.arch.94-16.

55. Van Apeldoorn RC, Oostenbrink WT, Van Winden A, Van Der Zee FF. 1992.
Effects of habitat fragmentation on the bank vole, Clethrionomys glareolus, in
an agricultural landscape. Oikos 65(2):265–274, https://doi.org/10.2307/3545018.

56. Birkedal M, Fischer A, Karlsson M, Löf M, Madsen P. 2009. Rodent impact on
establishment of direct-seeded Fagus sylvatica, Quercus robur and Quercus
petraea on forest land. Scand J For Res 24(4):298–307, https://doi.org/10.
1080/02827580903055125.

57. Shrestha H, McCulloch K, Hedtke SM, Grant WN. 2022. Geospatial modeling of
pre-intervention nodule prevalence of Onchocerca volvulus in Ethiopia as an
aid to onchocerciasis elimination. PLoS Negl Trop Dis 16(7):e0010620, PMID:
35849615, https://doi.org/10.1371/journal.pntd.0010620.

58. Moraga P, Cano J, Baggaley RF, Gyapong JO, Njenga SM, Nikolay B, et al.
2015. Modelling the distribution and transmission intensity of lymphatic filaria-
sis in sub-Saharan Africa prior to scaling up interventions: integrated use of
geostatistical and mathematical modelling. Parasit Vectors 8(1):560, PMID:
26496983, https://doi.org/10.1186/s13071-015-1166-x.

59. Kang SY, Battle KE, Gibson HS, Ratsimbasoa A, Randrianarivelojosia M,
Ramboarina S, et al. 2018. Spatio-temporal mapping of Madagascar’s malaria
indicator survey results to assess Plasmodium falciparum endemicity trends
between 2011 and 2016. BMC Med 16(1):71, PMID: 29788968.

60. Blangiardo M, Cameletti M. 2015. Spatial and Spatio-temporal Bayesian
Models with R-INLA. 1st ed. Hoboken, NJ: Wiley.

61. Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent
gaussian models by using integrated nested Laplace approximations. J R Stat
Soc Ser B Stat Methodol 71(2):319–392, https://doi.org/10.1111/j.1467-9868.2008.
00700.x.

62. Karagiannis-Voules DA, Scholte RGC, Guimarães LH, Utzinger J, Vounatsou P.
2013. Bayesian geostatistical modeling of Leishmaniasis incidence in Brazil.
PLoS Negl Trop Dis 7(5):e2213, https://doi.org/10.1371/journal.pntd.0002213.

63. Osgood-Zimmerman A, Millear AI, Stubbs RW, Shields C, Pickering BV, Earl L,
et al. 2018. Mapping child growth failure in Africa between 2000 and 2015.
Nature 555(7694):41–47, PMID: 29493591, https://doi.org/10.1038/nature25760.

64. Martins TG, Simpson D, Lindgren F, Rue H. 2013. Bayesian computing with INLA: new
features. Comput Stat Data Anal 67:68–83, https://doi.org/10.1016/j.csda.2013.04.014.

65. Moraga P. 2019. Geospatial Health Data: Modeling and Visualization with
R-INLA and Shiny. 1st ed. Boca Raton, FL: Chapman and Hall/CRC.

66. Nyandwi E, Osei FB, Veldkamp T, Amer S. 2020. Modeling schistosomiasis
spatial risk dynamics over time in Rwanda using zero-inflated Poisson

Environmental Health Perspectives 057023-10 133(5) May 2025

https://www.ncbi.nlm.nih.gov/pubmed/16847107
https://doi.org/10.1099/vir.0.81643-0
https://www.ncbi.nlm.nih.gov/pubmed/18680643
https://doi.org/10.3201/eid1408.080221
https://www.ncbi.nlm.nih.gov/pubmed/10826895
https://doi.org/10.1080/%3C?A3B2 show $132#?%3E003655400750045204
https://www.ncbi.nlm.nih.gov/pubmed/14522264
https://doi.org/10.1016/s1473-3099(03)00774-6
https://www.ncbi.nlm.nih.gov/pubmed/22934002
https://doi.org/10.3389/fphys.2012.00237
https://atlas.ecdc.europa.eu/public/
https://www.ncbi.nlm.nih.gov/pubmed/23384818
https://doi.org/10.1016/j.coviro.2013.01.002
https://www.ncbi.nlm.nih.gov/pubmed/26214509
https://doi.org/10.1371/journal.pone.0134124
https://doi.org/10.1371/journal.pone.0134124
https://www.ncbi.nlm.nih.gov/pubmed/33369695
https://doi.org/10.1007/s00442-020-04810-w
https://doi.org/10.1007/s00442-020-04810-w
https://www.ncbi.nlm.nih.gov/pubmed/28311574
https://doi.org/10.1007/BF00384946
https://www.ncbi.nlm.nih.gov/pubmed/20795916
https://doi.org/10.1089/vbz.2009.0138
https://www.ncbi.nlm.nih.gov/pubmed/24889216
https://doi.org/10.1002/ps.3838
https://www.ncbi.nlm.nih.gov/pubmed/29404206
https://doi.org/10.7717/peerj.4255
https://doi.org/10.1016/S0168-7069(06)16008-5
https://www.ncbi.nlm.nih.gov/pubmed/19149870
https://doi.org/10.1186/%3C?A3B2 show $132#?%3E1476-072X-8-1
https://doi.org/10.1186/%3C?A3B2 show $132#?%3E1476-072X-8-1
https://doi.org/10.2307/%3C?A3B2 show $132#?%3E2486
https://www.ncbi.nlm.nih.gov/pubmed/28311427
https://doi.org/10.1007/BF00378391
https://doi.org/10.1007/BF00378391
https://doi.org/10.4098/AT.arch.93-18
https://doi.org/10.4098/AT.arch.93-18
https://doi.org/10.1034/j.1600-0706.2002.980311.x
https://www.ncbi.nlm.nih.gov/pubmed/34228253
https://doi.org/10.1007/s13280-021-01594-y
https://www.ncbi.nlm.nih.gov/pubmed/14718081
https://doi.org/10.3201/eid0911.030275
https://www.ncbi.nlm.nih.gov/pubmed/12498675
https://doi.org/10.3201/eid0812.010518
https://doi.org/10.1890/%3C?A3B2 show $132#?%3E08-0588.1
https://www.ncbi.nlm.nih.gov/pubmed/22493110
https://doi.org/10.7589/%3C?A3B2 show $132#?%3E0090-3558-48.2.348
https://doi.org/10.7589/%3C?A3B2 show $132#?%3E0090-3558-48.2.348
https://www.ncbi.nlm.nih.gov/pubmed/20644685
https://doi.org/10.3390/ijerph7062486
https://www.ncbi.nlm.nih.gov/pubmed/22894742
https://doi.org/10.1080/%3C?A3B2 show $132#?%3E09603123.2012.708918
https://doi.org/10.1016/j.rse.2010.04.005
https://doi.org/10.1016/j.rse.2010.04.005
https://www.ncbi.nlm.nih.gov/pubmed/19185386
https://doi.org/10.1016/j.tree.2008.10.008
https://doi.org/10.1016/j.tree.2008.10.008
https://doi.org/10.1007/s10980-005-4118-6
https://doi.org/10.1007/BF03194231
https://doi.org/10.4098/AT.arch.94-16
https://doi.org/10.2307/%3C?A3B2 show $132#?%3E3545018
https://doi.org/10.1080/%3C?A3B2 show $132#?%3E02827580903055125
https://doi.org/10.1080/%3C?A3B2 show $132#?%3E02827580903055125
https://www.ncbi.nlm.nih.gov/pubmed/35849615
https://doi.org/10.1371/journal.pntd.0010620
https://www.ncbi.nlm.nih.gov/pubmed/26496983
https://doi.org/10.1186/s13071-015-1166-x
https://www.ncbi.nlm.nih.gov/pubmed/29788968
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1371/journal.pntd.0002213
https://www.ncbi.nlm.nih.gov/pubmed/29493591
https://doi.org/10.1038/nature25760
https://doi.org/10.1016/j.csda.2013.04.014


regression. Sci Rep 10(1):19276, PMID: 33159143, https://doi.org/10.1038/
s41598-020-76288-8.

67. Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields
and Gaussian Markov random fields: the stochastic partial differential equation
approach. J R Stat Soc Ser B Stat Methodol 73(4):423–498, https://doi.org/10.
1111/j.1467-9868.2011.00777.x.

68. Cameletti M, Lindgren F, Simpson D, Rue H. 2013. Spatio-temporal modeling of
particulate matter concentration through the SPDE approach. AStA Adv Stat
Anal 97(2):109–131, https://doi.org/10.1007/s10182-012-0196-3.

69. Zuur AF, Ieno EN, Saveliev AA. 2018. GAM and Zero-Inflated Models.
Newburgh, United Kingdom: Highland Statistics Ltd.

70. Moraga P, Dean C, Inoue J, Morawiecki P, Noureen SR, Wang F. 2021.
Bayesian spatial modelling of geostatistical data using INLA and SPDE meth-
ods: a case study predicting malaria risk in Mozambique. Spat Spatiotemporal
Epidemiol 39:100440, PMID: 34774255, https://doi.org/10.1016/j.sste.2021.100440.

71. Leach CB, Webb CT, Cross PC. 2016. When environmentally persistent patho-
gens transform good habitat into ecological traps. R Soc Open Sci 3(3):160051,
PMID: 27069672, https://doi.org/10.1098/rsos.160051.

72. Dougherty ER, Seidel DP, Blackburn JK, Turner WC, Getz WM. 2022. A frame-
work for integrating inferred movement behavior into disease risk models. Mov
Ecol 10(1):31, PMID: 35871637, https://doi.org/10.1186/s40462-022-00331-8.

73. Kazasidis O, Geduhn A, Jacob J. 2024. High-resolution early warning system
for human Puumala hantavirus infection risk in Germany. Sci Rep 14(1):9602,
PMID: 38671000, https://doi.org/10.1038/s41598-024-60144-0.

74. Swart A, Bekker DL, Maas M, de Vries A, Pijnacker R, Reusken CBEM, et al.
2017. Modelling human Puumala hantavirus infection in relation to bank vole
abundance and masting intensity in the Netherlands. Infect Ecol Epidemiol
7(1):1287986, PMID: 28567209, https://doi.org/10.1080/20008686.2017.1287986.

75. Sauvage F, Langlais M, Pontier D. 2007. Predicting the emergence of human
hantavirus disease using a combination of viral dynamics and rodent demo-
graphic patterns. Epidemiol Infect 135(1):46–56, PMID: 16753079, https://doi.org/
10.1017/S0950268806006595.

76. Tersago K, Verhagen R, Vapalahti O, Heyman P, Ducoffre G, Leirs H. 2011.
Hantavirus outbreak in Western Europe: reservoir host infection dynamics
related to human disease patterns. Epidemiol Infect 139(3):381–390, PMID:
20450527, https://doi.org/10.1017/S0950268810000956.

77. Tersago K, Schreurs A, Linard C, Verhagen R, Van Dongen S, Leirs H. 2008.
Population, environmental, and community effects on local bank vole (Myodes
glareolus) Puumala virus infection in an area with low human incidence.
Vector Borne Zoonotic Dis 8(2):235–244, PMID: 18370592, https://doi.org/10.
1089/vbz.2007.0160.

78. Piechotowski I, Brockmann SO, Schwarz C, Winter CH, Ranft U, Pfaff G. 2008.
Emergence of hantavirus in South Germany: rodents, climate and human

infections. Parasitol Res 103(suppl 1):131–137, PMID: 19030895, https://doi.org/
10.1007/s00436-008-1055-8.

79. Faber M, Wollny T, Schlegel M, Wanka KM, Thiel J, Frank C, et al. 2013. Puumala
virus outbreak in Western Thuringia, Germany, 2010: epidemiology and strain iden-
tification. Zoonoses Public Health 60(8):549–554, PMID: 23398736, https://doi.org/10.
1111/zph.12037.

80. Ettinger J, Hofmann J, Enders M, Tewald F, Oehme RM, Rosenfeld UM, et al.
2012. Multiple synchronous outbreaks of Puumala virus, Germany, 2010. Emerg
Infect Dis 18(9):1461–1464, PMID: 22932394, https://doi.org/10.3201/eid1809.
111447.

81. Gurnell J. 1993. Tree seed production and food conditions for rodents in an oak
wood in Southern England. Forestry 66(3):291–315, https://doi.org/10.1093/
forestry/66.3.291.

82. Schauber EM, Kelly D, Turchin P, Simon C, Lee WG, Allen RB, et al. 2002.
Masting by eighteen New Zealand plant species: the role of temperature as a
synchronizing cue. Ecology 83(5):1214–1225.

83. Klempa B. 2009. Hantaviruses and climate change. Clin Microbiol Infect
15(6):518–523, PMID: 19604276, https://doi.org/10.1111/j.1469-0691.2009.
02848.x.

84. Linard C, Lamarque P, Heyman P, Ducoffre G, Luyasu V, Tersago K, et al. 2007.
Determinants of the geographic distribution of Puumala virus and Lyme borre-
liosis infections in Belgium. Int J Health Geogr 6(1):15, PMID: 17474974,
https://doi.org/10.1186/1476-072X-6-15.

85. Linard C, Tersago K, Leirs H, Lambin EF. 2007. Environmental conditions and
Puumala virus transmission in Belgium. Int J Health Geogr 6(1):55, PMID:
18078526, https://doi.org/10.1186/1476-072X-6-55.

86. Van Loock F, Thomas I, Clement J, Ghoos S, Colson P. 1999. A case-control
study after a hantavirus infection outbreak in the south of Belgium: who is
at risk? Clin Infect Dis 28(4):834–839, PMID: 10825047, https://doi.org/10.
1086/515196.

87. Abu Sin M, Stark K, van Treeck U, Dieckmann H, Uphoff H, Hautmann W,
et al. 2007. Risk factors for hantavirus infection in Germany, 2005. Emerg
Infect Dis 13(9):1364–1366, PMID: 18252110, https://doi.org/10.3201/eid1309.
070552.

88. Haredasht SA, Taylor CJ, Maes P, Verstraeten WW, Clement J, Barrios M,
et al. 2013. Model-based prediction of nephropathia epidemica outbreaks
based on climatological and vegetation data and bank vole population dynam-
ics. Zoonoses Public Health 60(7):461–477, PMID: 23176630, https://doi.org/10.
1111/zph.12021.

89. Vanwambeke SO, Zeimes CB, Drewes S, Ulrich RG, Reil D, Jacob J. 2019.
Spatial dynamics of a zoonotic orthohantavirus disease through heterogenous
data on rodents, rodent infections, and human disease. Sci Rep 9(1):2329,
PMID: 30787344, https://doi.org/10.1038/s41598-019-38802-5.

Environmental Health Perspectives 057023-11 133(5) May 2025

https://www.ncbi.nlm.nih.gov/pubmed/33159143
https://doi.org/10.1038/s41598-020-76288-8
https://doi.org/10.1038/s41598-020-76288-8
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1007/s10182-012-0196-3
https://www.ncbi.nlm.nih.gov/pubmed/34774255
https://doi.org/10.1016/j.sste.2021.100440
https://www.ncbi.nlm.nih.gov/pubmed/27069672
https://doi.org/10.1098/rsos.160051
https://www.ncbi.nlm.nih.gov/pubmed/35871637
https://doi.org/10.1186/s40462-022-00331-8
https://www.ncbi.nlm.nih.gov/pubmed/38671000
https://doi.org/10.1038/s41598-024-60144-0
https://www.ncbi.nlm.nih.gov/pubmed/28567209
https://doi.org/10.1080/%3C?A3B2 show $132#?%3E20008686.2017.1287986
https://www.ncbi.nlm.nih.gov/pubmed/16753079
https://doi.org/10.1017/S0950268806006595
https://doi.org/10.1017/S0950268806006595
https://www.ncbi.nlm.nih.gov/pubmed/20450527
https://doi.org/10.1017/S0950268810000956
https://www.ncbi.nlm.nih.gov/pubmed/18370592
https://doi.org/10.1089/vbz.2007.0160
https://doi.org/10.1089/vbz.2007.0160
https://www.ncbi.nlm.nih.gov/pubmed/19030895
https://doi.org/10.1007/s00436-008-1055-8
https://doi.org/10.1007/s00436-008-1055-8
https://www.ncbi.nlm.nih.gov/pubmed/23398736
https://doi.org/10.1111/zph.12037
https://doi.org/10.1111/zph.12037
https://www.ncbi.nlm.nih.gov/pubmed/22932394
https://doi.org/10.3201/eid1809.111447
https://doi.org/10.3201/eid1809.111447
https://doi.org/10.1093/forestry/66.3.291
https://doi.org/10.1093/forestry/66.3.291
https://www.ncbi.nlm.nih.gov/pubmed/19604276
https://doi.org/10.1111/j.1469-0691.2009.02848.x
https://doi.org/10.1111/j.1469-0691.2009.02848.x
https://www.ncbi.nlm.nih.gov/pubmed/17474974
https://doi.org/10.1186/%3C?A3B2 show $132#?%3E1476-072X-6-15
https://www.ncbi.nlm.nih.gov/pubmed/18078526
https://doi.org/10.1186/%3C?A3B2 show $132#?%3E1476-072X-6-55
https://www.ncbi.nlm.nih.gov/pubmed/10825047
https://doi.org/10.1086/%3C?A3B2 show $132#?%3E515196
https://doi.org/10.1086/%3C?A3B2 show $132#?%3E515196
https://www.ncbi.nlm.nih.gov/pubmed/18252110
https://doi.org/10.3201/eid1309.070552
https://doi.org/10.3201/eid1309.070552
https://www.ncbi.nlm.nih.gov/pubmed/23176630
https://doi.org/10.1111/zph.12021
https://doi.org/10.1111/zph.12021
https://www.ncbi.nlm.nih.gov/pubmed/30787344
https://doi.org/10.1038/s41598-019-38802-5

	Impact of Environmental Factors on the Distribution Patterns of Nephropathia Epidemica Cases in Western Europe
	Introduction
	Methodology
	Data
	Nephropathia epidemica cases
	Cartographic data and covariate selection
	Variable selection

	Model
	Spatiotemporal predictive model
	Model definition: zero-inflated Poisson model
	Mesh construction
	Model implementation and performance evaluation


	Results
	Discussion
	Acknowledgments
	References


