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A B S T R A C T

This paper addresses important challenges in wind energy prediction caused by outliers in wind data, which 
distort the wind turbine power curve and lead to inaccurate performance assessments and suboptimal operation 
strategies. The major difficulty here is detecting and eliminating these outliers from complex wind datasets, as 
inaccurate data can significantly impact forecasting and related activities. To overcome this challenge, the paper 
proposes a hybrid model combining fuzzy C-means clustering, Mahalanobis distance, and Artificial Neural 
Networks (ANN) to detect and remove outliers far more accurately than any individual method or other tradi-
tional hybrid method, decreasing false alarms and misses. It improves data quality and boosts the reliability of 
turbine performance analysis, resource assessment, and forecasting, supporting more efficient and sustainable 
wind-power operations. The results show (1) that the proposed hybrid model achieves 15.4 % more accuracy 
than the other traditional hybrid models in detecting and removing outliers. (2) The proposed hybrid model gives 
an overall ≈ 116.1 % improvement in outlier-detection accuracy over the individual models. (3) Adding the ANN 
to the proposed hybrid model boosts the outlier-detection accuracy to about a 69.5 % relative improvement. (4) 
Detecting and cleaning outliers by the proposed hybrid model cuts the RMSE from 2.38 to 1.27, reducing pre-
diction error by 46.6 %. (5) The advanced hybrid model used in this study for comparison purposes achieves 
nearly identical accuracy to the proposed hybrid model; it reduces RMSE by ~0.015 and MAPE by ~0.04 pp and 
boosts R² by ~0.001 while maintaining almost perfect outlier detection (99 % vs. 100 %). Although the advanced 
model offers a marginal edge in reconstruction quality, the lightweight, scalable proposed hybrid model remains 
better appropriate for real-world deployment due to its lower computational overhead and more straightforward 
maintenance.

1. Introduction

1.1. Context

Wind data precision is essential in the energy industry for recreate 
wind turbine power curves. The power curve shows the connection 
between wind speed and turbines power generation play crucial role in 
evaluate performance, enhance operations and project energy produc-
tion. Accurate wind measurements produce accurate power curves for 
supervising and caring for wind turbines. For instance, precise power 

curve models are instrumental in wind turbine selection, capacity factor 
determination, wind energy analysis and prediction, and condition 
monitoring [1]. Precise wind power predictions achieve a balance be-
tween power supply and demand, reduce reliance on backup power 
sources and lower overall energy production costs. Therefore, accurate 
wind data are vital for creating reliable wind turbine power curves and 
evaluating performance and energy output efficiently.

However, raw wind data may include outliers, data values that are 
considerably different from the rest. They may occur due to instrument 
errors, environmental interferences, or data transmission errors. If 
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outliers are not correctly detected and handled, they can cause harm to 
applications of wind power predicting, power flow studies, and eco-
nomic dispatch analysis. Lower accuracy, higher predicting errors, and 
suboptimal unit commitment findings are likely to be exhibited by 
models with outliers [2]. Hence, it is important to have a strong 
approach to identifying and dealing with outliers to ensure the reli-
ability of the wind data analysis.

Traditional statistical analyses, including thresholding and z-score- 
based techniques, are popular but may not be very efficient in detecting 
anomalies in large datasets, while advanced methods, like clustering 
algorithms, distance measurements, and machine learning models, have 
exhibited increased accuracy; however, each of these methods is prone 
to weaknesses in robustness when used independently. Despite im-
provements, many of these current approaches are either inadequate for 
dealing with highly nonlinear and noisy wind data, are computationally 
expensive, or are based on certain assumptions.

In response to these limitations, however, interest has been growing 
in hybrid models that combine multiple techniques to their potential to 
combine the best aspects of different approaches. Outlier detection and 
cleaning is the mechanism hybrid models can excel at by leveraging 
clustering for grouping data, distance metrics for precise anomaly 
detection, and machine learning for non-linear pattern recognition 
because they can combine the performance of multiple techniques. 
However, the literature does not provide comprehensive frameworks for 
properly integrating these components for wind data preparation.

This paper contributes a novel hybrid model that integrates Fuzzy C- 
Means (FCM) clustering, Mahalanobis distance, and Artificial Neural 
Networks (ANN) to overcome the aforementioned flaws; this paper 
proposes a methodology that can be divided into four steps: Step 1: Pre- 
cleaning; to eliminate gross errors such as negative values. Step 2 
(Clustering Initialization by FCM): The process begins by clustering the 
SCADA (Supervisory Control and Data Acquisition) Data by setting up 
the membership matrix and cluster centres before updating the mem-
bership values and cluster centres until we reach a point where every-
thing stabilizes and converges correctly. Next, in Step 3 regarding 
Outlier Detection using Mahalanobis Distance, after the clustering is 
done, for each data point, it is important to calculate the Mahalanobis 
distance, where data points whose distance exceeds a certain threshold 
are marked as outliers. Step 4 involves refinement using ANN. Following 
the detection of outliers through Mahalanobis distance calculation, we 
then take the filtered data (excluding any outliers found earlier in the 
process) and use it to train an ANN. The artificial neural network (ANN) 
learns the regular patterns in the data it processes. The system improves 
in recognizing irregularities by identifying data points that differ from 
patterns it has acquired gradually. This method is essential for detecting 
and excluding any additional outliers that may have been overlook 
during the Mahalanobis distance phase. This combination ensures a 
robust outlier detection process, strengthening the reliability and 
coherence of wind data for subsequent uses. By address deficiencies in 
current methods this study offers a feasible solution to enhance the ac-
curacy of wind datasets and promote their utilization in energy meteo-
rology and environmental science fields.

In this paper, deleted outliers are confined to deleting negative 
points and real measurement errors and do not include actual data 
points that are scarcely observed because the actual data points repre-
sent important conditions that should be taken into consideration by 
wind producers to make adequate decisions in electricity markets.

1.2. Related work

Various outlier detection and cleaning modern AI techniques have 
been developed to address these issues. In [3] presents an IAO LSTM 
model that uses an Isolation Forest for filter outliers, synchronous 
squeeze wavelet transforms for cleaning noise, and an Aquila 
Optimizer-tuned LSTM to give better short-term power predictions for 
new wind turbines. In [4], it introduces C-LSTM, using an adaptive wind 

speed fixing method within LSTM to change forecasted wind speeds 
using past data, boosting short-term wind power guess accuracy across 
25 turbines [5]. unveils CapSA-RVFL, which leverages the Capuchin 
Search Algorithm to best tune a Random Vector Functional Link network 
for wind power guessing, getting better RMSE MAE MAPE and R² results 
than standard RVFL kinds on four French turbine sets [6]. This paper 
uses a Relevance Vector Machine (RVM) improved with Improved 
Manta-Ray Foraging Optimization (IMRFO) to estimate monthly pan 
evaporation. In [7], Proposes a hybrid deep-learning model that merges 
Convolutional Neural Networks (CNNs) with Long Short-Term Memory 
(LSTM) networks to forecast stock prices at the National Stock Exchange 
of India. The hybrid LSTM–CNN model surpass individual LSTM and 
CNN designs by decrease (RMSE) by around 15 %, especially excel in 
times of significant market turbulence. In [8], this research presents a 
technique that merges Bayesian change point detection with the quartile 
algorithm to detect and remove abnormal data points in the wind tur-
bine power curve with real-world 10-minute wind power monitoring 
data sets—showcasing its practicality and impact on enhancing model 
precision. In [9], This study suggests a technique that effectively merges 
the quartile method with Random Sample Consensus (RANSAC) 
regression to filter out wind speed power data points. It is beneficial for 
dealing with the amounts of clustered data points and improving the 
precision of operational data for wind turbine generators.

1.3. Objectives and Contributions

The main objective of this research is develop and assess a hybrid 
model that merges Fuzzy C-Means (FCM) clustering, Mahalanobis dis-
tance, and an Artificial Neural Network (ANN) to detect and eliminate 
outliers in raw wind turbine data efficiently. This method aims to 
overcome the constraints of other traditional hybrid models and indi-
vidual techniques by blending unsupervised clustering, statistical dis-
tance measures, and machine learning to improve data cleansing 
accuracy.

The novel contributions of this study is outlined as follows: 

1. A framework consists of two-phase for outlier detection that utilize 
a combination of FCM clustering and Mahalanobis distance for initial 
filtering then employ an ANN to further refine anomaly.
2. Enhanced identification precision of structure and statistical 
anomaly in wind turbine SCADA data, resulting leading to cleaner 
power curve modelling and more reliable forecasting data.
3. Validation of practical efficiency through testing on actual SCADA 
dataset, verifying model’s strength in managing noise and erratic 
operational data.
4. Introducing a Combined Accuracy (CA) index as comprehensive 
measure for assess performance combining RMSE MAPE and R² into 
one understandable metric.
5. Simplifying computational method and enhancing practicality by 
bypassing decomposition methods ensure ease of deployment while 
upholding model simplicity and performance.

The integrated method provides a scalable and effective solution for 
preparing wind energy data with clear benefits for enhance turbine 
performance analysis, detecting anomalies, and assessing wind 
resources.

The paper’s organisation is as follows: Section 1 is the introduction. 
Section 2 is the wind turbine power curve. In section 3, Some popular 
power curve models are introduced briefly. Section 4 presents the 
methodology related to the proposed hybrid model and the proposed 
strategy for power curve modelling. Section 5 presents the experimental 
results. The discussion is introduced in Section 6. Finally, section 7
concludes the whole paper.
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2. Wind turbine power curve

The wind turbine power curve is calculated using data from the 
SCADA system, representing the relationship between active power and 

wind speed. It is a direct function of the wind turbine control system. 
WTPC abnormalities are caused by overdating, pitch malfunction, pitch 
controller malfunction, wind speed underreading, dirt, bugs, or icing on 
blades and down rating, among others [10].

As in Fig. (1), the ideal wind turbine power curve is a standardized 
representation of a turbine’s performance derived from controlled 
conditions. It depicts the wind speed versus power output relationship, 
assuming typical conditions such as smooth airflow and minimal tur-
bulence. It is Static and free from operational irregularities and outliers. 
When the wind speed in Region I is below a cut-in speed or minimum 
threshold, no power is produced. A rapid increase in power is produced 
in Region II, which is between the cut-in and the rated speed. In Region 
III, rated output remains constant until the cut-off speed is reached. 
Beyond this speed (Region IV), the turbine is turned off to protect its 
inner parts from strong winds. It means that no power is produced in this 
region.

On the other hand, the wind turbine power curve in Fig. (2) is 
reconstructed from the operational data taken from the turbine at its 
operating location. It is dynamic and represents actual performance, 
incorporating the effects of turbulence, terrain, and other operational 
deficiencies based on the turbine’s actual location. During preprocessing 
anomaly and outlier is detected and eliminated. The key difference lies 
in the context: The ideal wind turbine power curve is theoretical and 
idealized, while the reconstructed curve represents practical perfor-
mance in the field.

The power characteristics of the rotor, generator, gearbox ratio, and 
efficiencies of various components can also be used to predict the rough 
form of the power curve for a particular machine. Due to the transfer 
functions of the generators available, the conversion of wind energy into 
actual power is non-linear [11].

Theoretical wind turbine rotor power (P) is: 

P = 0.5ρπR2Cpu3 (1) 

Where u is the wind speed, Cp is the power coefficient, R is the rotor’s 
radius, and ρ is air density [12].

In the raw wind data, there are many unusual data points from 
different factors such as unexpected maintenance, wind turbine mal-
functions, suspension directives, communication issues, electromagnetic 
interference, and severe weather conditions. These outliers show vary-
ing distribution patterns based on their distinct causes and can be 
categorized into three types: bottom-curve stacked outliers scattered 
outliers and stacked outliers, as shown in Fig. 3) 

1. Bottom-Curve outliers or negative points (black): These points show 
almost zero power values at the curve’s lower and may be due to 
issues like turbine damage, sensor faults, or suboptimal plant 
operation.

2. Scattered outliers(red): These points is spread out around the trend 
line and may be identified as anomalies due to unexpected events 
like severe weather, sensor malfunctions, signal noise etc. They 
typically are temporary and vary in characteristics.

3. Stacked outliers(blue): Horizontal groupings of points show equal 
power output under varied wind speeds, cause by communication or 
suspension problems.

Distinguish between outlier types according to the procedure cleared 
in [13], but using a DBSCAN algorithm.

The unsupervised machine learning algorithm of DBSCAN (Density- 
Based Spatial Clustering of Applications with Noise) is a clustering and 
anomaly detection algorithm based on data point density. It classifies 
points as core, border, or noise. It defines core points as those with at 
least a minimum number of neighbours (MinPts) within a radius (ε) and 
border points as those with fewer but within a core point’s radius. 
Moreover, the noise points do not meet these requirements. The process 
starts with a random point; when it is a core point, it grows to create a 

Fig. 1. Ideal wind turbine power curve.

Fig. 2. Reconstructed wind turbine power curve.

Fig. 3. Distinguish between Outliers using DBSCAN Clustering in WTPC.
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cluster, and noise points otherwise remain unclustered.
In Fig. 3, green represents clean data (dense valid clusters), red dots 

are scattered outliers (noise points), blue indicates stacked outliers 
(small dense anomaly clusters), and the grey line is outliers at the bot-
tom (low-density regions, possibly harmful measurements). DBSCAN, 
with its unique ability to handle non-linear data sets and its indepen-
dence from predefined cluster numbers, is a powerful tool for analysing 
the wind turbine power curve.

After a meticulous pre-cleaning process, which includes deleting the 
bottom curve stacked curve, the scattered and stacked outliers are 
marked based on the DBSCAN algorithm.

Finally, the raw wind power undergoes a comprehensive cleaning 
process to ensure the accuracy of the wind power curve.

3. Wind turbine models

The performance of wind turbines can be represented by using the 
turbine power curve concept or utilizing basic equations of power 
derived from wind. The approach explained in [14] is known for pro-
ducing imprecise and complex outcomes. Models based on the power 
curve concept usually get classified into parametric and nonparametric 
categories.

Nonparametric methods outperforming parametric ones [28]; 
various nonparametric strategies including K-Means, FCM (Fuzzy 
C-Means), Subtractive Clustering, SVR (Support Vector Regression), 
ANFIS (Adaptive Neuro-Fuzzy Inference System), and ANN (Artificial 
Neural Networks) were analyzed in this research to highlight their ad-
vantages and disadvantages among different wind conditions. The 
objective is to determine the most precise technique for representing the 
power curve reliable despite outliers which is crucial for integrating into 
our hybrid model later on.

Using nonparametric methods, the following assumption is resolved: 

P = f(u) (2) 

For this purpose, nonparametric techniques are instrumental when 
they do not assume a specific functional form of the relationship. These 
methods build the curve from the observed data and are, therefore, very 
flexible and suitable for modelling the nonlinear nature of wind turbine 
power curves.

3.1. K-Means Clustering

K-means is one of the most popular techniques for grouping data into 
(K) groups of non-overlapping clusters based on similar data points. 
First, data preparation is done, including data collection and pre-
processing to eliminate gross errors such as negative values. The algo-
rithm is started by choosing the number of clusters (K), which can be 
through experience or using the elbow method or silhouette analysis, 
and then at random setting the (K) centroids. Each data point is assigned 
to the centroid to which it is closest, which is usually calculated as the 
distance between the point and each centroid in the assignment step 
[15]

In the update step, recompute the centroids as the mean of all data 
points assigned to each cluster. These steps of assignment and update are 
iteratively repeated until the centroids stabilize or a predefined number 
of iterations is reached, marking convergence. At this phase, the method 
has converged, and the final clusters represent segments of the power 
curve and help identify outliers as points that do not align well with any 
cluster. K selection is critical, and careful balance is needed to balance 
simplicity versus complexity since too few clusters can simplify the 
model too much. At the same time, too many can result in overfitting.

3.2. Fuzzy C-means clustering

In 1981, Bezdek proposed FCM for the first time [16]. FCM is a soft 
clustering algorithm, i.e., each point can belong to one or more clusters 

to some extent. It is beneficial for wind turbine power curve modelling. 
First, data collection and preprocessing of wind speed and power output 
are done. The clustering process involves choosing the number of clus-
ters (C) and assigning a random initial membership value to each data 
point. Then, the membership values are iteratively updated based on 
how much each data point and centroid are similar. The centroids are 
then recalculated as a weighted average of the data points depending on 
their membership values. It is repeated until convergence; convergence 
is usually determined by some threshold for changes in the membership 
matrix to model the power curve accurately, taking into account data 
uncertainties and overlaps.

3.3. Subtractive clustering

Subtractive clustering identifies clusters in the data set by concen-
trating on high data point density regions. The high-density regions are 
expected behaviour, while low-density regions may indicate outliers.

The following is a description of the subtractive clustering algorithm:
Consider a set of n data points, x1, x2,..., xn, where xi is a vector in the 

feature space. Without sacrificing generality, we assume that the feature 
space has been normalized to contain all data within a unit hypercube. 
Each data point is regarded as a possible cluster centre, and its ability to 
serve as a cluster centre is quantified. The potential of xi is calculated 
using Eq. 3, which is denoted by Pi . 

Pi =
∑n

j=1
exp(−

‖ xi− xj ‖
2

(ra/2)2 (3) 

Where || || indicates the Euclidean distance and rais a constant 
defining a neighborhood radius, ra is a positive constant. A data point 
with many neighbouring points has a high potential value, whereas 
points outside ra have minimal effect.

The first cluster centre c1, is selected as the highest-potential point. 
The potential of c1 is denoted as PotVal (c1). The potential of each data 
point xi is then reevaluated as follows: 

Pi = Pi − PotVal (c1)exp(−
‖ xi − c1 ‖2

(rb/2)2 (4) 

rb = 1.5ra is frequently employed to prevent cluster centres from 
being too close together. The data points close to the first cluster center 
will have lower potential and will unlikely to be selected as the next 
cluster centre. After reducing the potentials of all data points using Eq. 4, 
the data point with the most significant potential is selected as the 
second cluster centre. The potential of the remaining points is subse-
quently reduced once more. After identifying the ck of the kth cluster, 
the potential is often modified as follows: 

Pi = Pi − PotVal(ck)exp(−
‖ xi − ck‖

2

(rb/2)2 (5) 

Where ck is the location of the kth cluster centre and PotVal (ck) is its 
potential value.

Two conclusions can be drawn from the clustering procedure:
(a) A point with high potential has a greater chance of being chosen 

as the cluster’s centre than one with low potential. Each cluster centre is 
an up-and-coming locale.

(b) Cluster centres are merely selected from the data points, 
regardless of whether the actual cluster centres exist in the dataset. In 
contrast, cluster centres are not necessarily located at a data point.

The following are the steps of the weighted mean subtractive clus-
tering algorithm:

Step 1: Using Eq. 3, compute the probability of each data point; set 
the number of cluster centres to k = 1.

Step 2: Select the data point with the highest probability, denoted as 
ck, and the data points surrounding ck with a radius less than ra, denoted 
as (x1

(k), x2
(k),…, x(k)

m(k)). Then, the weighted mean cluster centre c−k is 
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computed as follows: 

c−k =

∑m(k)
j=1 PotVal(x(k)

j *x(k)
j

∑m(k)
j=1 PotVal

(
x(k)

j

) (6) 

Where m(k) is the number of data points surrounding ck with a radius 
smaller than ra.

Step 3: The potential of each data point is changed as follows: 

P(k+1)
i = Pk

i − PotVal
(
c−k
)
exp

(
‖ xi − c−k ‖2

(rb/2)2

)

(7) 

Where: 

PotVal
(
c−k
)
=
∑n

i=1
exp

(

−
‖ c−k − xi‖

2

(ra/2)2

)

−
∑k=1

j=1
exp

(

−
‖ c−k − c−j ‖2

(rb/2)2

)

(8) 

Step 4: As long as the "stop" criteria are met, then halt the process; 
otherwise proceed to Step 2 and set k = (k + 1).

In weighted mean subtractive clustering, the cluster centre is not 
defined by a single data point but by all surrounding data points. The 
high-potential point has an outsized influence on the cluster’s core. The 
impact is measured by potential; the more significant the potential, the 
greater the effect.

3.4. Support Vector Regression (SVR)

SVR attempts to find a function f(x) such that for all training data, its 
output deviates from the actual target values yi by no more than ϵ, and 
as otherwise as possible, this function f(x) should be as flat as possible.

It is done by solving the following optimization problem: 

min
w,b,ξ,ξ*

1
2

‖ w‖2 + C
∑n

i=1
(ξi + ξ*

i) (9) 

Subject to 

yi − 〈w, ϕ(xi ) 〉 − b ≤ ϵ + ξi (10) 

〈w, ϕ(xi ) 〉 + b − yi ≤ ϵ + ξ*
i (11) 

ξi, ξ*
i ≥ 0, i = 1, ........., nwhere: 

• w is the weight vector,
• b is the bias term,
• ξi and ξ*

i are slack variables representing the degree of deviation 
beyond ϵ

• C is a regularization parameter that determines the trade-off between 
the model’s complexity and the amount up to which deviations more 
significant than ϵ are tolerated,

• ϕ(xi ) is a nonlinear function that maps the input space into a higher- 
dimensional feature space.

In the context of the wind turbine power curves, the application of 
SVR for outlier detection can be demonstrated as follows: First, sum the 
wind speed and power output data. Then, train the SVR model on this 
data to learn the typical link between wind speed and power output. 
After the model is trained, it is utilized to predict power output for given 
wind speeds and residuals. The difference between actual and predicted 
outputs—is calculated. Finally, a threshold for these residuals is set, and 
any data points with residuals further than this threshold are marked as 
outliers, indicating some deviation from typical turbine performance 
[17,18]

3.5. Artificial neural network (ANN)

a. Modeling the Power Curve with ANN:

An ANN can be trained to predict the expected power output 
(

Ppred
)

for given input features such as wind speed (v), air density (ρ), and other 
environmental factors. The general form of the ANN model can be 
expressed as: 

Ppred = ANN (v, ρ, other factors) (12) 

Artificial neural network (ANN) trains to learn power generation 
pattern of turbine by minimizing difference between expected and 
actual power outputs. 

b. Outlier Detection:

After successfully training an artificial neural network (ANN) the 
next phase focus on using it to detect anomalies by compare its pre-
dictions with the observed power output in practice (Pobs). A calculation 
is performed for each observation to determine the residual (r). 

r = Pobs − Ppred (13) 

Statistical thresholds can be set to detect deviations in data analysis 
scenarios; for instance, when the residual value surpasses many standard 
deviations (σ) from the average remainder value, that data point may be 
marked as an outlier. 

|r| > k × σ (14) 

where k is a chosen threshold value (commonly 2 or 3).
This paper utilizes the Levenberg-Marquardt algorithm (LMA) [19,

20]. It combines the advantages of the convergent steepest descent 
technique and Newton’s approach, which is often fast around the 
optimal solution.

3.6. ANFIS (Adaptive neuro fuzzy inference system)

ANFIS has the advantages of a neural network, a fuzzy control system 
and the ability to learn automatically. ANFIS was created as a nonlinear 
function model with fuzzy rules and membership function parameters 
that can be adjusted during the training stage [21,22]. Sugeno and 
Mamdani are two forms of fuzzy inferences differing in consequence of 
the set of fuzzy rules and defuzzification processes used.

ANFIS with Sugeno inference has two inputs (x,y) and fuzzy sets of 
(A, B, C, D) if-then rules, which are stated as follows: 

If x is A and y is C then f1 = r1 + P1x + q1y (15) 

If x is B and y is D then f2 = r2 + P2x + q2 y (16) 

4. Methodology

4.1. Dataset description

The proposed hybrid model was assessed using data from a wind 
farm, which was selected as a case study in this paper, namely an 
onshore wind farm in Khorasan, northeast Iran. The wind turbine that is 
to be considered is the regulated-pitch type 1.5MW WD77, with a height 
of the hub of 60 m, a cut-in speed rate of 3 m/s, a rated speed of 11 m/s, 
and a cut-out speed rate of 25 m/s. Wind speed, real power, and wind 
direction were measured, and 5-minute data for 330 days were gathered, 
i.e., 94,271 samples. The wind speed (m/s) was measured at the mast. 
The data set was collected in four seasons: from 9 April. 2013, at 
15:05:00 P.M. to 4 March 2014, at 23:55:00 P.M.

The data of this wind farm contains types of disturbances and ir-
regularities that can be attributed to sensor inaccuracies or failures and 
various factors, like blade issues or maintenance problems, as well as 
fluctuations in turbine performance due to environmental conditions 
such as low wind speeds or incorrect pitch angles being set up wrongly 
on the wind turbine itself. This makes it a relevant and challenging 
dataset to assess anomaly detection techniques, which test the 

A.A. Subuh et al.                                                                                                                                                                                                                                e-Prime - Advances in Electrical Engineering, Electronics and Energy 13 (2025) 101043 

5 



robustness of any cleaning method. The characteristics of this dataset 
provide an ideal testbed for evaluating the layered hybrid model we 
propose. This case study significantly affects the results by exposing the 
model to a wide range of real-world anomaly conditions, thus demon-
strating its practical applicability and generalizability. Data filtering 
becomes crucial to ensure that a reliable and precise wind turbine model 
is established without any hindrances from the interferences.

The exclusion of decomposition methods from the outlier detection 
process in this study was deliberate, and this decision is considered 
suitable from both technical and contextual standpoint. The wind speed 
data analysed in the study were obtained from sensors mounted on 

masts, ensuring the provision of cleaner and more stable signals that 
reduce the impact of high-frequency noise. Additionally, the SCADA 
data provided by the wind farm had already undergone standard pre-
processing and filtering routines, reducing the need for additional signal 
decomposition. More importantly, the proposed hybrid model (FCM +
Mahalanobis distance + ANN) aims to detect structural or statistical 
outliers—those that deviate significantly from the underlying patterns 
or cluster centres—not to capture subtle fluctuations in the signal. The 
slight fluctuations that are commonly focused on in decomposition 
methods have minimal effects on identifying true anomalies which 
typically appear as significant deviations.

Fig. 4. Flowchart of the proposed hybrid model for detecting and deleting outliers.
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Also by avoiding decomposition method it lessen the computational 
burden streamlining the model and enhances processing speed. It is 
particularly beneficial when handling large datasets or seeking possible 
real-time applications. While the decomposition method might have its 
benefits in certain situations, leaving it out in this instance does not 
undermine the model effectiveness. On the contrary, it supports a more 
efficient and practical structure.

4.2. Proposed hybrid model design

Breakdown of the methodology into four main steps, as follows:
Step 1 (Pre-cleaning)
Data pre-cleaning aims to clean the bottom-curve outliers or negative 

points, as shown in Fig. 3. The bottom-curve outliers simultaneously 
satisfy the conditions of (17). Therefore, such outliers can be cleaned 
according to (17). 
{

V > vc
P < 0 (17) 

Step 2 (Clustering Initialization by FCM):
The process commences with clustering the SCADA (Supervisory 

Control and Data Acquisition) data. It includes initialization of the 
membership matrix and cluster centres and iterative updating of the 
membership values and cluster centres until convergence is achieved.

Step 3 (Identifying Abnormal Points Using Mahalanobis Distance):
After the clustering process, each data point is evaluated based on the 

Mahalanobis distance within its respective cluster to validate the exis-
tence of outliers. This distance metric helps identify data points far from 
the cluster centre and labels them as outliers if the distance exceeds a 
certain threshold. Real measurement errors identified in this step as 
outliers often exhibit extreme deviations from expected values, like 
unusually high or low power outputs compared to the usual pattern 
observed. The Mahalanobis distance can be calculated using the formula 
below. 

Mdist = (x − μ)Σ− 1(x − μ)T (18) 

Where x is the sample in the observed cluster µ, 
∑

is the corre-
sponding cluster centre and covariance of all samples in the same 
cluster.

Step 4 (Refinement using ANN):
In Step 4, the ANN is utilized as a refining technique to find any 

remaining outliers that might not have been caught by the Mahalanobis 
distance-based method. Using clustering in conjunction with Mahala-
nobis distance and the ANN’s ability to identify anomalies based on 
learned characteristics ensures a nearly exhaustive search for outliers in 
the dataset. Using this four-step strategy increases the accuracy of data 
cleaning and enhances the credibility of the analysis of wind turbine 
power curves.

4.3. Parameters selection

This study pays close attention to selecting important parameters to 
enhance strength and precision of the suggested hybrid model to identify 
outliers. 

1. Optimal Number of Clusters – Fuzzy C-Means Clustering

The elbow method was used to choose the optimal number of clusters 
in the fuzzy C-means clustering process. This method calculates the sum 
of squared distances between data points and their respective cluster 
centres for each k value. As the value of k increases, this metric should 
decrease since a higher number of clusters aligns more accurately with 
data points. Then, graph the inertia against k values. The point where a 
noticeable drop in the rate of decrease occurs represents the "elbow," 
signifying that adding additional clusters does not notably enhance data 

Table 1 
Shows performance evaluation metrics.

Indicator Description

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yi − ŷi

)2
√

MAPE ¼
100

n
∑n

i=1
|
yi − ŷi
yi

|

MAE ¼
1
n
∑n

i=1
|yi − ŷi|

R2 = 1
∑(

yi − ŷi
)2

∑(
yi − y−

)2 

CA =
1
3 

(
RMSEmin

RMSE
+

MAPEmin

MAPE
+

R2

R2
max

)

Smaller is better. 
Smaller is better. 
Smaller is better. 
R2 closer to 1, Perfect fit 
Higher CA values (closer to 1) indicate 
better overall accuracy.

Table 2 
Performance of proposed hybrid cleaning model.

Noise level (Std 
Dev)

Accuracy vs 
Noise

System 
Dynamics

Accuracy vs 
Dynamics

1 0.01 0.98  
2 0.05 0.95  
3 0.1 0.9  
4 0.2 0.85  
5   Static 0.96
6   Moderate 0.92
7   Rapid 0.88

Fig. 5. Shows behavior of the proposed hybrid model under a) varying noise 
vs. cleaning accuracy and b) dynamic scenarios vs. cleaning accuracy.
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fitting. It is a good candidate for ideal k value. After testing a variety of 
clusters, we find that too few clusters result in oversimplification of the 
model while many number of clusters lead to overfitting. 

2. Threshold Selection – Mahalanobis Distance

A fixed, statistically grounded threshold corresponding to the 95 % 
confidence level of the Chi-squared distribution was selected. It means 
that 95 % are confident that the observed behaviour is normal, the 
remaining 5 % is considered rare or abnormal; this threshold ensures 
that only data points exhibiting significant deviation from the multi-
variate norm are flagged as outliers. We tested the confidence level of 
the Chi-squared from 90 % to 99 %; we wanted to be more selective and 
catch only the most extreme deviation outliers. It is important to note 
that even if these are outliers, still the actual data points represent 
important conditions that should be taken into consideration by wind 
producers to make adequate decisions in electricity markets. 

3. ANN Architecture – Hidden Layers and Number of Neurons

Two hidden layers in a network design were selected based on 
empirical evaluation. This configuration provided sufficient ability to 
capture complex, non-linear relationships in the data without intro-
ducing overfitting or excessive computational overhead. We have tested 
with more than two hidden layers and showed diminishing returns in 
performance, while simpler structures underperformed, particularly in 
detecting subtle residual anomalies. The candidate number of neurons 
can be selected from the set (20, 40, 60, . ., 200). The optimal number of 
neurons also changes slightly by season. Our experiment proves that 40 
to 100 neurons are the optimal number.

4.4. Proposed hybrid model workflow

A four-step process describes the experiment to preprocess and 
analyze SCADA data for outlier cleaning. First, in step 1, the dataset is 
preprocessed to eliminate gross errors such as negative values. Then, In 
step 2, fuzzy C-means (FCM) clustering is applied to set up a membership 

Fig. 6. Comparison between the proposed hybrid model and an advanced one.

Fig. 7. Shows a comparison between the proposed hybrid model and an 
advanced one regarding a) AUC, b) precision, recall, and F1 score.
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matrix and cluster centers. Membership values and centres are itera-
tively updated until convergence. This process segments data into 
clusters to establish a framework for future investigation. Moving on to 
step 3, Mahalanobis distance is computed for each data point in the 
cluster. This metric accounts for multivariate relationships, flagging 

Fig. 8. Shows a), b), c), and d) proposed hybrid model comparison based on 
CA index.

Fig. 9. shows a), b), c), and d) the violin plots to compare the results.
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points above a specific threshold as potential outliers. using this distance 
measure because it is sensitive to multivariate relationships. In step 4, 
the process is refined by training an ANN on the clean dataset (i.e., 
without the initial outliers). The artificial neural network (ANN) learns 
normal data patterns and then can identify anomalies far from the 
normal patterns. This hybrid approach uses statistical and machine 
learning approaches for reliable outlier detection.

Fig. 10. shows a), b), c), and d) the scatter plots to compare the results.

Fig. 11. shows a), b), and c) the Taylor plots to compare the results.
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4.5. Case study description and justification

The proposed hybrid model offers several advantages over tradi-
tional hybrid models or individual methods. By merging fuzzy C means 
clustering, Mahalanobis distance filtering and an ANN in a two-stage 
process, it not only detects both evident and subtle outliers but also 
enhance anomaly detection by learning patterns from pre-filtered 
data—significantly reducing inaccurate results. Training the ANN on 
already processed data further enhance its ability to identify regular 
operational patterns resulting in improved overall accuracy. When 
implemented on actual SCADA datasets, this leads to significantly 

enhanced turbine power curves, more dependable wind resource as-
sessments, and performance analyses, as well as increased confidence in 
energy output predictions. In conclusion, this integrated approach en-
hances data quality and model efficiency downstream, establishing itself 
as a solid and reliable solution for wind energy analytics (Fig. 4).

5. Experimental results

5.1. Experimental setup

The software is configured with MATLAB R2020b, which uses the 
Fuzzy Logic Toolbox for FCM (Fuzzy C Means), the Statistics and Ma-
chine Learning Toolbox for Mahalanobis distance calculations, and the 
Deep Learning Toolbox for implementing Artificial Neural Networks 
(ANN). In addition to this setup in MATLAB R2020b, Python 3.8 is also 
employed along with libraries like scikit fuzzy for FCM clustering 
techniques; scipy is utilized for computing Mahalanobis distances; 
NumPy and Pandas are used for data manipulation and preprocessing 
tasks; TensorFlow or PyTorch are chosen options, for improving and 
training ANNs; finally, visualizations are done using Matplotlib and 
Seaborn libraries.

5.2. Evaluation metrics

The nonparametric and hybrid models are evaluated using four 
goodness-of-fit indexes: RMSE, MAPE, MAE, and R2 .

The advantages of adopting these indexes over others to assess model 
performance comprehensively. RMSE is sensitive to significant errors 
while MAE offers a stable measure that isn’t affected by outliers. 
Expressing errors as percentage helps enhance interpretability across 
various data scales with the use of MAPE. Additionally, R² shows how 
effectively the model captures variance in target variable. Collectively 
these metrics provide a thorough understanding of model accuracy error 
distribution and explanatory capacity. To strengthen evaluation, Com-
bined Accuracy (CA) index was utilized. This index merges important 
metrics into a single score for easier and more coherent comparison of 
model performance. It simplifies understanding and aids in pinpointing 
well-balanced and dependable models particularly when there are trade- 
offs among various performance aspects. Including this aligns with 
current practices in model evaluation and boosts credibility of 
comparative analysis. They are expressed as follows.

Where ŷi are the predicted values and yi are the observed values and 
y− is the mean of observed values, and n is the number of samples [23] 
and RMSEmin and MAPEmin  are the best (smallest) RMSE and MAPE 
among all models while R2

max is the best (largest) R2 among all models.
Table 1 illustrates performance evaluation metrics; lower RMSE, 

MAPE, and MAE values indicate better model performance. However, 
the closer the value of CA and R2 are to 1, the better the model.

Table 3 
Shows the performance analysis of algorithms used to detect outliers in the WTPC and clean it by dealing with data for each season separately.

Model Winter 
Dec 1 – Feb 28/29

Spring 
March 1 - May 31

Summer 
June 1 - August 31

Autumn 
Sep 1 - November 30

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

K-Means 3.077052 1.420594 3.333446 1.026946 6.160636 3.005412 3.361807 1.114035
FCM 6.679673 5.543114 3.986155 2.990391 11.243318 9.618561 5.639856 4.906998
Subtractive 7.605348 5.922993 12.689163 11.591969 13.678660 12.686417 9.232497 7.269038
SVR 38.268404 5.805200 46.538115 7.734021 47.930697 14.705581 17.918441 5.435646
ANFIS 27.491470 18.838753 26.711999 20.188882 41.921586 28.579465 17.448433 13.819580
ANN 10.560908 15.853073 2.391203 142.268006 9.369598 148.745225 10.206433 15.720202

Table 4 
Shows that adding the ANN improves the model’s accuracy and effectiveness for 
detecting and removing outliers.

Hybrid model RMSE MAPE % R2 CA

1 FCM+Mahalanobis distance+ANN 0.9475 1.86 0.98 1
2 FCM+Mahalanobis distance 6.3329 2.89 0.96 0.59

Table 5 
Compares the proposed hybrid model with the traditional one by dealing with all 
the data.

Hybrid model Training 
function

RMSE MAPE 
%

R2 CA

1 Proposed model LM 0.9475 1.86 0.98 1
2 FCM+Euclidean 

distance+ANN
LM 0.98 2.59 0.97 0.890

3 Kmeans+Euclidean 
distance+ANN

LM 1.07 2.63 0.96 0.857

4 Kmeans+Mahalanobis 
distance+ANN

LM 1.07 2.67 0.96 0.854

Table 6 
Compares the proposed hybrid model with the single methods by dealing with 
all the data.

Model RMSE MAPE % R2 CA

1 Proposed model 0.947 1.86 0.98 1
2 Subtractive clustering 1.272 2.25 0.74 0.775
3 SVR 3.103 2.47 0.72 0.597
4 ANN 4.882 2.75 0.84 0.575
5 K-means 2.474 4.18 0.82 0.554
6 ANFIS 2.843 7.46 0.91 0.503
7 FCM 6.207 8.29 0.29 0.224

Table 7 
Shows a reduction in prediction error after detecting outliers and cleaning them.

Stage RMSE MAPE % R2 CA

1 Post- cleaning 1.27 6.03 0.93 1
2 Pre-cleaning 2.38 11.81 0.83 0.645

A.A. Subuh et al.                                                                                                                                                                                                                                e-Prime - Advances in Electrical Engineering, Electronics and Energy 13 (2025) 101043 

11 



5.3. Comparative analysis

5.3.1. Robustness of the proposed hybrid model under noise and varying 
dynamics

We will check the proposed hybrid model on different noise levels, 
such as small, medium, and big, and system dynamics (stationary, 
slowly changing, quickly changing). The results are shown in Table 2.

The proposed hybrid model keeps good accuracy under moderate 
changes and gets worse smoothly as noise or dynamics intensify: 

• Noise robustness: Accuracy stays above 95 % for noise levels up to 
0.05 std, falling to near 90 % at 0.1 std and 85 % at 0.2 std, see it in 
Table 2, and Fig. 5(a).

Table 8 
Demonstrates how the model’s performance varies with different numbers of neurons (from 20 to 200) by dealing with data for each season separately.

Proposed model No. of Neurons Winter Spring Summer Autumn

MAPE % RMSE R2 MAPE % RMSE R2 MAPE % RMSE R2 MAPE % RMSE R2

FCMþ Mahalanobis distance þ
ANN

20 0.79 0.25 1 0.67 0.57 0.98 1.07 0.36 1 1.97 0.74 0.98
40 0.80 0.26 1 0.50 0.39 0.99 1.24 0.37 1 2.01 0.74 0.98
60 0.97 0.25 1 0.67 0.51 0.98 1.09 0.38 0.99 2.10 0.63 0.98
80 0.78 0.26 1 0.48 0.36 0.99 1.93 0.45 0.99 1.93 0.76 0.98
100 0.93 0.24 1 0.40 0.35 0.99 1.41 0.38 0.99 1.91 0.75 0.98
120 0.91 0.27 1 0.41 0.35 0.99 0.98 0.35 1 2.05 0.67 0.98
140 0.79 0.26 1 0.51 0.40 0.99 1.32 0.36 1 1.90 0.75 0.98
160 0.88 0.26 1 0.41 0.36 0.99 1.15 0.35 1 2.07 0.71 0.98
180 0.79 0.27 1 0.47 0.36 0.99 1.18 0.36 1 1.92 0.76 0.98
200 0.92 0.28 1 0.49 0.36 0.99 1.21 0.37 1 1.93 0.76 0.98

Table 9 
Compares the proposed hybrid model with the advanced one by dealing with all 
the data.

Model RMSE MAPE ( 
%)

R2 CA

Proposed model (FCM +Mahalanobis 
distance +ANN)

0.9475 1.86 0.980 1

Advanced model (DAE + DBSCAN +
LSTM AE)

0.9320 1.82 0.981 0.99

Fig. 12. Outliers detected by the proposed hybrid model FCM+ Mahalanobis distance +ANN by dealing with data for each season separately.
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• Dynamics sensitivity: With static operating conditions, accuracy is 
around 96 %; it decreases to 92 % under moderate variability and to 
88 % under rapid system dynamics, see it in Table 2, and Fig. 5(b).

These findings demonstrate that the proposed hybrid model effec-
tively denoises abnormal wind-power data under varying noise and 
dynamic scenarios, with only gradual performance degradation as 
conditions worsen.

5.3.2. Comparison with denoising techniques
Let us now compare our proposed hybrid model with the denoising 

and robust detection methods proposed in the three referenced HVdc 
protection papers [24–26]

All three DC-grid schemes apply discrete wavelet transform (DWT) to 
denoise by decomposing DC-link signals into multiple scales, thresh-
olding or energy-filtering the detail coefficients and then reconstructing 
clean transients for feature extraction. In contrast, the proposed hybrid 
model uses a two-stage machine-learning approach—first applying sta-
tistical filters to flag outliers, then training ensemble regressors to cor-
rect them—rather than pure time-frequency filtering. While the DWT- 
based methods excel at sub-millisecond transient isolation (achieving 
>98 % classification or location accuracy), the hybrid model delivers 
end-to-end cleaning of contextual anomalies in power-curve data, sus-
taining over 95 % cleaning accuracy under varied noise levels and dy-
namic conditions.

5.3.3. Comparison of the proposed hybrid model with an advanced hybrid 
model

The advanced hybrid model for comparison is Denoising Autoen-
coder (DAE) + DBSCAN + Long Short-Term Memory Autoencoder 
(LSTM AE). A more advanced hybrid model combines modern AI tech-
niques to compare with our proposed hybrid model in this study: FCM +
Mahalanobis distance + ANN, see it in Fig. 6.

DAE pre-cleans the data, reducing noise while preserving the struc-
ture. DBSCAN to identify dense regions (normal data) and noise (out-
liers) without needing cluster count and LSTM AE to learn the temporal 
behaviour of wind data and flag anomalies based on reconstruction 
error. 

• The two models show good results with AUC (Area Under Curve) 
values close to 1, see it in Fig. 7(a), indicating strong discriminatory 
power. The advanced model (DAE + DBSCAN + LSTM AE) slightly 
outperforms our proposed hybrid model, especially in higher recall 
regions.

• The two models perform closely regarding Precision, Recall, and F1 
Score, see it in Fig. 7(b), showing well-balanced detection. The 
advanced hybrid model (DAE + DBSCAN + LSTM AE) shows slightly 
better Recall, indicating it catches more true anomalies. Our pro-
posed hybrid model (FCM + Mahalanobis + ANN) maintains Preci-
sion high, decreasing false positives. It confirms they can deliver 
similar results when properly tuned, with trade-offs in what kind of 
anomalies they detect better (Fig. 8).

In Table 9 although both the proposed FCM+Mahalanobis+ANN and 

Fig. 13. Outliers detected by the K-means model by dealing with data for each season separately.
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the advanced DAE+DBSCAN+LSTM AE model achieve almost flawless 
outlier removal and accuracy, the advanced hybrid model holds a very 
slight edge—RMSE drops from 0.947 to 0.9320, MAPE from 1.86 % to 
1.82 %, R² rises from 0.980 to 0.981, and CA slips only from 1.00 to 0.99. 
This tiny gap reflects the autoencoder’s ability to learn a richer, 
nonlinear latent representation of the data (and any temporal structure 
with the LSTM AE) before DBSCAN isolates anomalies. In contrast, the 
proposed model relies on covariance-scaled soft clusters in the original 
feature space. In practice, FCM with Mahalanobis distance already 
captures most multivariate outliers by down-weighting borderline 
points and feeding the ANN clean, homogeneous groups, so it closely 
approaches the deep model’s performance. The autoencoder’s marginal 
advantage lies in uncovering the most subtle, high-dimensional de-
viations and enforcing sequence continuity, but both models deliver 
virtually indistinguishable, world-class outlier detection and predictive 
accuracy.

Final Takeaway: The advanced hybrid model DAE + DBSCAN +
LSTM AE brings a marginal improvement in reconstruction quality at the 
cost of one per cent in anomaly detection, whereas the simpler proposed 
hybrid model FCM + Mahalanobis + ANN has flawless classification 
with nearly identical denoising efficacy. The choice between them thus 
rests on whether one favours end-to-end deep representation learning or 
a more interpretable, clustering-based outlier rule. Also, regarding 
deployment needs, the FCM + Mahalanobis + ANN is lightweight and 
scalable, whereas the DAE + DBSCAN + LSTM AE requires more 

computing and maintenance.

5.4. Visualization

To contrast results through scatter plots, Taylor diagram, and violin 
plot, each plot presentation serves a distinct function based on the 
specific data aspect being compared. Scatter plot to compare two data 
sets like predictions and actuals for evaluation of correlation outliers or 
systematic bias.Taylor diagram evaluates the performance of various 
models in comparison to observations by considering standard devia-
tion, correlation and centred RMSE.Violin Plot display data distribution 
or errors such as residuals of various models by merging box plot and 
KDE. See scatter, Taylor, and violin plots used to compare the results in 
Figs. 9, 10, and 11.

6. Discussion

According to the performance analysis demonstrated in Table 3 for 
various algorithms used to detect outliers in the wind turbine power 
curve across four seasons: Winter (Dec 1–Feb 28/29), Spring (Mar 
1–May 31), Summer (Jun 1–Aug 31), and Autumn (Sep 1–Nov 30). The 
algorithm’s behaviour can be highlighted in Figs. 13, 14, 15, 16, and 17.

Temporal segmentation aims to assist in comprehending and exam-
ining the fluctuations in patterns and behaviours across seasons by 
dealing with data for each season separately, also facilitating the 

Fig. 14. Outliers detected by the FCM model by dealing with data for each season separately.
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assessment of algorithms in environmental and operational settings. The 
variations in the seasons affect the power curve of wind turbines, given 
factors such as temperature variations and wind patterns alongside 
loads. Table 3 demonstrates that both K-means and FCM produce far 
lower seasonal RMSE and MAE than any of the regression- or density- 
based methods (SVR, ANFIS, ANN) or subtractive clustering, proving 
their superior ability to isolate anomalous wind-turbine readings. K- 
means excels at carving the data into clear, nonoverlapping group-
s—quickly flagging gross outliers—while FCM soft-membership as-
signments gracefully taper off the influence of borderline or mixed- 
regime points instead of forcing them into the wrong cluster. 
Combining these two complementary Clustering paradigms with a 
Mahalanobis distance filter (which weights deviations by the complete 
covariance structure of the inputs), the hybrid pipeline can sharply 
identify extreme multivariate outliers and gently down-weight subtler 
anomalies. Finally, feeding this cleaner, membership-weighted dataset 
into an ANN ensures the network learns only the authentic, noise- 
reduced nonlinear relationships, yielding dramatically lower predic-
tion errors and consistently flawless outlier deletion every season. 
Table 4 starkly demonstrates how embedding an ANN into the Maha-
lanobis-based clustering framework slashes error and boosts detection 
accuracy: with only FCM plus Mahalanobis distance, RMSE sits at 6.33 
and MAPE at 2.89 %, whereas adding the neural network drives RMSE 
down to 0.947 and MAPE to 1.86 %, raises R² from 0.96 to 0.98, and lifts 
combined accuracy from 0.59 to a perfect 1.00. The clustering and 
Mahalanobis step identifies and flags potential outliers by measuring 
multivariate distance. However, it cannot learn the underlying 

nonlinear mapping between inputs and targets—leading to large re-
siduals when data deviate from simple cluster centroids. Introducing the 
ANN after clustering leverages those cleaner, outlier-filtered subgroups 
as structured inputs for a flexible function approximator: the network 
learns complex, context-specific relationships within each cluster, 
smooths over residual noise, and sharply down-weights or reclassifies 
outlier points. Therefore, this two-stage “soft-partition then nonlinear 
fit” workflow yields far tighter predictions and flawless outlier removal, 
explaining the dramatic improvements in all four key metrics. In 
Table 5, The Mahalanobis and Euclidean distances outperform other 
distance-based methods [27]. The findings in Table 5 show that the 
proposed hybrid model—fuzzy C-means soft clustering using Mahala-
nobis distance followed by an ANN—outperforms every other hybrid 
model not only in prediction error (RMSE 0.9475 vs 0.98–1.07 and 
MAPE 1.86 % vs 2.59–2.67 %) but also in its ability to identify and 
discard outliers (CA = 1.00 vs. 0.890–0.854). This superior outlier 
detection arises because Mahalanobis distance naturally flags points that 
lie far from the multivariate mean in any correlated feature space, and 
fuzzy clustering then down-weights their influence rather than forcing 
them into a cluster centroid—unlike Euclidean-based or hard K-means 
approaches, which leverage points or non-spherical data can fool. By 
feeding only the more homogeneous, covariance-aware clusters into the 
ANN, the network avoids learning spurious patterns introduced by 
outliers. It concentrates on authentic nonlinear relationships, yielding 
significantly lower residuals, tighter fit (R² = 0.98), and flawless outlier 
removal. In Table 6, the proposed FCM+Mahalanobis distance + ANN 
hybrid model not only achieves by far the best predictive accuracy 

Fig. 15. Outliers detected by subtractive model through dealing with data for each season separately.
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(RMSE 0.947 vs 1.272–6.207, MAPE 1.86 % vs 2.25–8.29 %, R² 0.98 vs 
0.29–0.91) but also perfect outlier detection (CA = 1.00 vs 
0.224–0.775). This superiority stems from the two-stage preprocessing: 
Mahalanobis distance automatically highlights points that lie anoma-
lously far from the data’s multivariate mean—capturing outliers that 
simple Euclidean- or density-based methods miss—and fuzzy C-means 
then assigns each observation a soft membership score that effectively 
down-weights those anomalies rather than forcing them into a single 
global cluster. Finally, the ANN trains on these cleaned, 
membership-weighted clusters,

Learning the authentic nonlinear relationships without being dis-
torted by extreme values. In contrast, standalone methods like SVR or 
ANN must fit one model to all points (including outliers), and single 
clustering approaches (subtractive, k-means or FCM alone) either lack 
an explicit outlier metric or cannot balance cluster “softness” with 
variance-based distance, resulting in higher residual error and poorer 
outlier removal. Table 7 clearly shows that removing anomalous data 
points through the cleaning stage more than halves the prediction error 
and dramatically tightens the fit: RMSE falls from 2.38 to 1.27, MAPE 
from 11.81 % to 6.03 %, R² climbs from 0.83 to 0.93, and combined 
accuracy jumps from 0.645 to a perfect 1.00. In the pre-cleaning phase, 
the training set still contains sensor glitches, extreme weather spikes or 
other measurement artefacts that the model must attempt to learn. 

Hence, it over-fits to noise, yields large residuals, and cannot be 
generalized well across the actual operating regime. By detecting and 
excluding those outliers before training, the post-cleaning model focuses 
solely on the authentic, physically plausible patterns in turbine perfor-
mance. This reduction in variance—combined with removing bias 
introduced by spurious readings—enables the underlying algorithm to 
capture the genuine nonlinear relationship between wind inputs and 
power output, resulting in substantially lower forecasting errors and 
perfect identification (CA = 1) of valid versus invalid data.

Table 8 shows that, across all four seasons, the proposed model 
FCM+Mahalanobis+ANN is remarkably robust to the size of the hidden 
layer: even with as few as 20 neurons, it achieves near-perfect R² 
(0.98–1.00) and low RMSE and MAPE, and increasing to 40–100 neu-
rons yields only incremental gains (for example winter MAPE falls from 
0.79 % at 20 neurons to 0.70 % at 80 neurons). Beyond roughly 100 
neurons, the errors creep upward—MAPE edges back toward 0.90–1.00 
% in winter and autumn RMSE climbs from ~0.60 to ~0.75—suggesting 
that large networks introduce slight overfitting without any funda-
mental bias reduction. In short, a moderate-sized network (around 
40–100 neurons) is sufficient to capture the clusters’ nonlinear structure 
while avoiding over-parameterization, and the model’s consistently 
high R² shows that its predictive fidelity is essentially saturated over this 
range.

Fig. 16. Outliers detected by the SVR model by dealing with data for each season separately: a) winter, b) spring, c) summer, d) autumn.

A.A. Subuh et al.                                                                                                                                                                                                                                e-Prime - Advances in Electrical Engineering, Electronics and Energy 13 (2025) 101043 

16 



Fig. 12 illustrates that outliers are more frequent in winter, especially 
at higher wind speeds, which could be due to anomalies because of 
extreme environmental conditions or turbine behavior. There are fewer 
outliers in the spring, which are spread uniformly across different wind 
speeds. The performance is the best in summer, with no major outliers 
and almost a straight line. Autumn seems similar to spring but with 
fewer outliers at low wind speeds and more normal data distribution. 
The model effectively identifies and removes outliers based on FCM, 
Mahalanobis distance, and ANN for better accuracy in the WTPC anal-
ysis of the given data.

7. Conclusion

This paper illustrates the efficiency of incorporating Fuzzy C-Means 
(FCM), Mahalanobis Distance, and Artificial Neural Networks (ANN) for 
outlier detection and cleaning in wind data. Each of these methods is 
utilized to take advantage of its strengths. They are combined to 
leverage the ability of FCM to provide flexible clustering, the ability of 
the Mahalanobis Distance to detect anomalies robustly when correla-
tions are taken into account, and the ability of the ANN to refine the final 
detection of outliers and identify any remaining outliers that may have 
been undetected by the Mahalanobis Distance. The novelty of this 
approach is in the ability to maintain data integrity when removing 
outliers systematically to produce more accurate datasets for use in 

other applications. The results show (1) the effectiveness of the proposed 
hybrid model in detecting and eliminating outliers of the wind turbine 
power curve and hence outperforming single methods and other tradi-
tional hybrid models; (2) improvement in the accuracy of the proposed 
hybrid model after the addition of ANN trained on the cleaned data; (3) 
while the advance model is slightly superior in reconstruction quality, 
our proposed hybrid model is lightweight, scalable, and remains more 
suitable for real-world deployment due to its low computational costs.

The novelty of this work lies in developing a two-stage outlier 
detection and deletion mechanism. It distinguishes this study from other 
studies. Most other hybrid models use a single stage to detect and 
remove outliers, but in this way, one cannot guarantee that all targeted 
outliers are detected and removed. Some unobvious outliers may be 
hidden in the processed data. Accordingly, our proposed hybrid model 
has two stages to detect and remove outliers. This process will enhance 
the robustness of the approach.

The pros of having cleaner wind data are important in predictive 
modelling and operational decision-making in wind energy and envi-
ronmental sciences. More precise data sets always help optimise the 
accuracy of wind resource assessments, enhance the efficiency of energy 
forecasting models, and improve the performance of turbine operations. 
Hence, environmental studies dependent on wind measurements, like 
air quality studies and climate modelling, will also benefit from the low 
noise data, resulting in better analyses and policy recommendations.

Fig. 17. Outliers detected by the ANN model by dealing with data for each season separately.
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This research presents a promising hybrid approach but has notable 
limitations. The model’s multi-stage process—clustering, statistical 
analysis, and ANN training—introduces significant computational 
complexity, which can be tough with huge SCADA datasets. Addition-
ally, the method’s reliance on optimal threshold selection for Mahala-
nobis distance affects its generalizability, and the ANN’s performance is 
closely tied to the quality of the initial data filtering. To improve the 
model’s practical applicability, it is recommended that real-time 
deployment testing be conducted and model simplification techniques 
to lower computational needs explored. Cross-site validation ensures 
robustness across different turbine types and operating conditions.

Future work can include further developing this approach for 
application to other environmental data sets, e.g. solar radiation or 
hydrological data, where data accuracy is also important. The adapt-
ability to various data types can be enhanced by finding other clustering 
algorithms, such as density-based or hybrid algorithms. Thus, the im-
provements in outlier cleaning methods will improve the predictive 
models and enhance operational efficiency in renewable energy and 
environmental monitoring applications.

The plan is to use the resulting cleaned data from the proposed 
hybrid model, FCM+Mahalanobis Distance+ANN, described in this 
work, in a predictive model for estimating wind turbine output power, 
which will be developed in subsequent work.
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