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Extract from the comic book "Le concombre masqué" written by N. Mandryka. The special
album is entitled "Le Bain de minuit". This work aims at demonstrating that quarks and gluons
are warmer than announced in the strip.





Preface

Dear reader, let me begin this document by welcoming you and thanking you in advance for
the time you will spend reading this work (or so I hope). As a soft introduction, let us begin
with a brief meta-discussion about what this document is, what it is not, and the context in
which it was written. This may not be as trivial as it seems, as the following chapters were
written with several perspectives in mind. For this reason, the document can be approached
from two different angles: as the keystone of a PhD thesis or as an introduction to hadronic
physics. Both aspects are outlined in turn below.

This Document as the Keystone of a PhD Thesis

This document represents the culmination of a PhD thesis initiated at the University of
Mons (UMONS) in September 2021. The original project, funded by the F.R.S.-FNRS, was
titled Study of Two-Gluon and Three-Gluon Glueballs within Constituent Models. Glueballs are
particles theoretically predicted in the early 1970s [1]. Despite this long-standing prediction, their
experimental identification remains a topic of debate within the scientific community, primarily
for two reasons [2]. First, theoretical predictions for glueballs are inherently challenging.
Although different resolution methods exist, they generally struggle to produce consistent
predictions beyond the energy spectrum [3]. Second, the lowest-lying glueballs are so similar
to mesons that the actual physical states are most likely mixtures of glueballs and mesons.
This makes the analysis of experimental data highly intricate and difficult to disentangle.
Additional mesonic states, particularly within the f0- and η−meson families, have been observed
in experimental spectra, yet interpreting these states with clarity remains extremely difficult.
Significant efforts are underway at facilities such as PANDA, Crystal Barrel, WA102 and BESIII.
Although promising evidence has already emerged [4], the results continue to be subject to
debate within the community. The aforementioned project aims to help clarify this situation
within its scope by providing new theoretical predictions. Moreover, extending the description
to include three-gluon glueballs may open new experimental pathways for their detection, as
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these prove less similar to mesons than the two-gluon ones.
However, the path taken to reach this goal was not a straight one, as with many research

projects. Rather than a smooth journey, it involved many turns and unexpected detours. After
four dedicated years, it became more appropriate to broaden the scope of the thesis from a
narrow focus on glueballs to the wider topic of the three-body problem in quantum mechanics.
This shift allows for a more cohesive treatment of the various aspects explored during the
research, including those not ultimately applied to glueballs. That is why glueballs now feature
only in the subtitle of the present document. It also made it possible to create a comprehensive
text that can be approached with minimal prerequisites. This aspect is further detailed below
in this preface.

Despite this broadening, the original research question remained a central guideline throughout
the thesis. The goal of studying two-gluon, and especially three-gluon, glueballs motivated the
majority of the calculations. Some approaches proved less relevant or more challenging to apply
directly within a glueball context, while others succeeded in shedding light on these enigmatic
particles. Small boxed texts at the end of each chapter summarize the role of the preceding
chapter within the PhD project. These are entitled "This chapter in the context of a thesis".
Without spoiling the conclusion, I can already say that most of the project’s objectives were
at least approached. This does not imply that the present work brings the study of glueballs
within constituent approaches to a close. On the contrary, the framework developed herein
opens up new possibilities for deeper analysis and future research on these intriguing states.

The thesis also unfolded within a broader research environment. It was supervised by C.
Semay in the Nuclear and Subnuclear Physics Unit at UMONS, and by V. Mathieu in the
Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos at the
universitat de Barcelona. Many aspects of this work were, and will continue to be, used by
other members of these research teams. In particular, I would like to acknowledge L. Cimino, J.
Viseur, C. Tourbez and C.T. Willemyns who are helping to extend this research into other areas
of hadronic physics. At various points in the following discussion, I attempt to pay tribute to
their contributions by referencing their work and how it intersects with mine.

This Document as a Primer of Hadronic Physics

As mentioned earlier, beyond its purpose as a PhD dissertation, this document also aims
to be self-contained and pedagogical as it could serve as starting point for further works. It is
written with the assumption that the reader has at least a three-year undergraduate education
in physical sciences. Such a background should be sufficient for understanding the first part of
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the document, I hope this also holds true for the other two parts, despite the technical nature of
some of the topics covered. As an introduction, let us briefly review the common tread running
through each chapter.

• Chapter 1 introduces the subject by reviewing fundamental concepts from quantum
mechanics, outlining key definitions, and introducing the notations used throughout the
document. It does not aim to provide an exhaustive treatment of quantum mechanics,
as can be found in references [5, 6, 7]. Rather, it emphasises certain aspects that are
sometimes relegated to later chapters, such as the variational theorem. This chapter
illustrates the pedagogical intent of the text.

• Chapter 2 builds on the previous section by presenting a resolution method known as the
oscillator bases expansion (OBE). Consistent with the title of the document, it focuses on
three-body systems. The method is illustrated and tested on various examples.

• Chapter 3 introduces a second resolution method, the envelope theory (ET), which is
more user-friendly but also more approximate. As its computational cost is independent of
the number of particles, calculations are presented for systems of N identical particles. A
generalisation to systems containing two different kinds of particles is also proposed. This
concludes the first part of the document, devoted to non-relativistic and semi-relativistic
quantum mechanics in general.

• Chapter 4 introduces hadronic physics from several perspectives. It begins with a historical
overview of the emergence of this field, followed by discussions on hadron classification
and the quark hypothesis. The chapter concludes with a brief review of the modern theory
of the strong interaction, namely quantum chromodynamics (QCD). Rather than being
exhaustive, this chapter aims to summarize the concepts necessary for understanding the
subsequent developments.

• Chapter 5 applies the previously introduced methods and concepts to the study of hadrons,
and particularly baryons. It presents the framework of constituent approaches, which
will be used throughout the remainder of the document. The chapter frequently refers
back to concepts introduced in the previous one. Constituent models are also illustrated
through the derivation of a baryon spectrum and a discussion on the emergence of internal
diquarks. This concludes the second part of the text, which introduced hadron physics
and constituent approaches.

• Chapter 6 opens a new perspective on constituent approaches by partially reconciling them
with special relativity. It introduces the definitions and properties of the different Lorentz
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covariant complete sets of states from the helicity formalism. These are then employed to
decompose two-body bound states, including those containing massless constituents.

• Chapter 7 builds on the results of the previous chapter to develop a methodology for
deriving spectra from the aforementioned Lorentz-covariant states. These calculations are
applied to two-gluon glueballs and compared with results obtained from other resolution
methods.

• Chapter 8 generalises the helicity formalism to three-body systems. It echoes Chapter 6,
as it also introduces definitions and properties necessary for later developments. Relevant
properties are demonstrated in complementary sections.

• Finally, Chapter 9 applies the previously established methodology to three-body systems,
focusing on the study of three-gluon glueballs. The chapter concludes with a discussion
of the resulting spectrum and a comparison with results obtained using other resolution
methods.

I hope that reading this document will provide sufficient foundation for entering the intricate
field of hadronic physics. While not exhaustive, this work aims to present the main theoretical
approaches used to study hadrons in the context of effective theories. Technical resolution
methods are consistently illustrated with numerous examples. Most of the models discussed
strive to reproduce experimental data in a concise and economical manner, by identifying and
highlighting the essential physical mechanisms relevant to each system. Although the resulting
theories are phenomenological in nature, attention is given to justifying their components by
referring to more fundamental, although more complex, approaches.

Only the final two chapters depart somewhat from this editorial approach, offering a slightly
more technical discussion on three-gluon glueballs. These chapters can be seen as an introduction
to, or illustration of, more advanced topics, providing a perspective on how the tools and
descriptions developed earlier can be generalised to more complex systems.

This Document as the Conclusion of Four Years

As a final aspect beyond the academic content, this text also marks the conclusion of four
years during which I had the opportunity to meet many people and receive from many others.
I would like to take this moment to thank all of these invaluable, though sometimes indirect,
contributors. I will switch to my native language when appropriate.
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Chapter 1

Framework: Equations and Properties

This first chapter reviews the foundation principles underlying what is commonly referred to
as the three-body problem in non-relativistic quantum mechanics. A reader already acquainted
with this theory may not encounter many new concepts in this chapter, but even for such an
audience, revisiting the essential ideas and terminologies related to this topic seems worthwhile.
Conversely, for readers with only a basic understanding of the quantum domain, this chapter
aims to introduce, as precisely and concisely as possible, the indispensable concepts necessary
to approach the rest of this document. Section 1.1 summarizes the key notions of the quantum
formalism, with particular attention to systems of three particles. Following the approach found
in many textbooks [5, 6] (though not all [7]), this chapter primarily relies on the Schrödinger
equation. Section 1.2 presents a less conventional perspective on this equation, leading to a
family of results collectively known as variational theorems. The chapter concludes in Section
1.3 with a non-exhaustive list of miscellaneous properties which will be referenced at various
points throughout the document.

1.1 Schrödinger Equation and the Quantum Formalism

In 1926, Erwin Schrödinger formulated an equation that became a cornerstone of the discipline
latter known as quantum mechanics. In its modern formulation, this equation is expressed as
follows,

iℏ
∂

∂t
|Ψ(t)⟩ = H |Ψ(t)⟩ . (1.1)

The Schrödinger equation will serve here as a natural starting point to introduce and discuss the
fundamental concepts underlying the quantum formalism. The two primary objects to define in
(1.1) are |Ψ(t)⟩ and H. Both are addressed in the following section.
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1.1. SCHRÖDINGER EQUATION AND THE QUANTUM FORMALISM 4

1.1.1 Quantum States and Observables

The Schrödinger equation governs the time evolution of the system’s state, denoted in (1.1)
as |Ψ(t)⟩. For a given system of particles, the set of all possible states is formally endowed
with the structure of a Hilbert space over the field of complex numbers, C. An Hilbert space
refers to a vector space equipped with an inner product and complete under the norm induced
by that product. In the language of physicists, introducing the structure of a vector space for
quantum states is often referred to as the superposition principle in quantum mechanics. The
inner product of two states, say |Ψ1⟩ and |Ψ2⟩, is a complex number denoted ⟨Ψ1|Ψ2⟩. This
operation allows to define, for any state |Ψ1⟩, an application, denoted ⟨Ψ1|, corresponding to
taking the inner product with it,

⟨Ψ1| : H −−−→ C,

|Ψ2⟩ 7−→ ⟨Ψ1|Ψ2⟩ .
(1.2)

Above, H denotes the aforementioned Hilbert space of all the quantum states. According to the
terminology introduced by Paul Dirac, the system’s state |Ψ1⟩ is referred to as a ket, while the
corresponding operation ⟨Ψ1| is termed a bra. Combining both terminologies gives rise to the
word braket, which refers to the notation used for the inner product. Dirac’s notation is clever
in the sense it makes very natural to apply bras on kets1,

⟨Ψ1| (|Ψ2⟩) = ⟨Ψ1|Ψ2⟩ . (1.3)

Before to move on to the description of H, let us mention that, to be considered as physical, a
quantum state must satisfy a normalisation condition requiring that its modulus always equals
one. This requirement is tied to the way quantum states are interpreted, a topic addressed in a
few paragraphs.

Because equation (1.1) rules the evolution of the system’s state, it logically incorporates
at some point the nature of the system’s components and, if relevant, their interaction with
one another and with the environment. These aspects are encapsulated in a linear Hermitian
operator acting on the system’s states, known as the Hamiltonian and typically denoted by H.
A given linear operator O on H is said to be Hermitian if, in an inner product, its action on

1 However, this apparent easiness of use may lead to some mathematical misconceptions and/or inconsistencies
[8]. As soon as this danger increases, the user should rely on the true mathematical nature of ⟨Ψ| and |Ψ⟩
more than on any notation trick.
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the ket is equivalent to its action on the bra,

(⟨Ψ1| O) |Ψ2⟩ = ⟨Ψ1| (O |Ψ2⟩) . (1.4)

Above, the notation (⟨Ψ1| O) refers to the bra associated to the ket O |Ψ1⟩. Hermiticity can
also defined referring to Hermitian adjoint operators. Let O be a linear operator, its Hermitian
adjoint is denoted O† and satisfies

(⟨Ψ1| O) |Ψ2⟩ = ⟨Ψ1|
(
O† |Ψ2⟩

)
. (1.5)

Therefore, an operator O is Hermitian as soon as O = O†. Physically, observable quantities
are represented in the formalism by Hermitian operators2. For instance, the Hamiltonian is
associated with the observable that is the total energy of the system. Observables and their
associated operators are endowed with an important operation called the commutator. For two
Hermitian operators A and B corresponding to different observables, the commutator [A,B] is
defined via the usual sum and composition of operators as follows,

[A,B] = AB − BA. (1.6)

This operation can reveal important information about the relationship between observables,
sometimes unveiling underlying group structures. It also characterises the extent to which the
operators associated with two observables fail to commute. The significance of the commutator
should become even clearer in Section 1.1.3.

The fundamental objects of the quantum formalism having been introduced, it is time to
briefly discuss their interpretation. As seen in the previous paragraphs, compared to classical
mechanics, the quantum formalism assigns a fundamentally different nature to states and
observables. For that matter, interpreting quantum mechanics remains a controversial topic,
deserving its own dedicated chapter. However, the scientific community agrees on a minimal
interpretation known as Born rule. This rule explains how to deduce the outcomes of a
measurement performed on a system from the state of the system, |Ψ(t)⟩, and the Hermitian
operator associated with the measured observable, O. To start with, the rule identifies states
for which a measurement of O yields a definite value f(o) ∈ R with certainty. Such determinate

2 The relationship between classical observables and Hermitian operators is highly non-trivial. Readers
interested in an in-depth introduction to this topic are referred to [9].
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states, denoted |o;α⟩, satisfy by definition the following equation,

O |o;α⟩ = f(o) |o;α⟩ . (1.7)

Concerning terminology, |o;α⟩ is called an eigenvector or eigenstate of O, and f(o) is its
corresponding eigenvalue. The set of all the eigenvalues of an operator O is named its spectrum
and solving equation (1.7) to determine all eigenvalue-eigenvector pairs constitutes an eigenvalue
problem. The Hermitian nature of O ensures that its spectrum is real [5, 6]. A few comments
regarding eigenstates |o;α⟩ are worth noting. In the following, eigenstates are assumed to be
normalised.

• The label o in |o;α⟩ serves to indicate that this state is, by definition, an eigenvector
of O with eigenvalue f(o). Such labels are typically referred to as quantum numbers3.
Eigenstates with different eigenvalues are known to be orthogonal [5, 6].

• The label α differentiates linearly independent eigenstates that share the same eigenvalue
o. These eigenstates are described as degenerate. If two eigenstates are degenerate, then
any linear combinations of these states is also an eigenstate of O with the same eigenvalue
[5, 6]. This property can be exploited, for instance, to orthogonalise degenerate states.
The orthogonalisation process is assumed to be carried out in what follows.

• To be physical, like any state, an eigenvector must be normalised. In general, only a
countable number of eigenvalues yield normalisable eigenstates. For continuous eigenvalues,
it is impossible for the system to access a normalisable state for which any measurement of
the observable would yield that value with certainty. However, it does not imply that the
associated eigenstates should be disregarded entirely; rather, they cannot independently
describe physical systems. In such case, the notation is somewhat misleading: although
the eigenvectors are not genuine quantum states, they are still denoted as such.

• The complete definition of observable actually requires its eigenvectors span the entire
Hilbert space. As a result, for any state |Ψ⟩, there exist coefficients co;α such that4

|Ψ⟩ =
∑
o

∑
α

co;α |o;α⟩ . (1.8)

3 In some cases, the eigenvalue is directly used as the quantum number (that is, f(o) = o), but in most cases,
for notational convenience, the quantum number simply indicates the eigenvalue.

4 In some cases, all or part of these sums may turn into integrals if labels σ or α are continuous. Such situations
are not treated for now and will be encountered later.
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These coefficients are obtained as the inner product of |Ψ⟩ with the eigenvectors: co;α =

⟨o;α|Ψ⟩. This expansion is related to the concept of completeness relation for |o;α⟩,

|Ψ⟩ =
∑
o

∑
α

|o;α⟩ ⟨o;α|Ψ⟩ =⇒
∑
o

∑
α

|o;α⟩ ⟨o;α| = 1. (1.9)

Concrete examples of completeness relations are discussed in Section 1.1.3.

Let |Ψ⟩ denote a generic state, the Born rule states that the probability P(o) of obtaining a
value o upon measuring O is given by

P(o) =
∑
α

| ⟨o;α|Ψ⟩ |2. (1.10)

In cases where |o⟩ is non-normalisable, o belongs to a continuum, and P(o) represents the
probability density associated with a measurement of O. Such situations will be encountered
in Section 1.1.3. The probabilistic interpretation (1.10) leads to a compact expression for the
expectation value for the measurement of O on the state |Ψ⟩,

⟨Ψ| O |Ψ⟩ =
∑
ō,ᾱ

∑
o,α

⟨Ψ|ō;α⟩ ⟨o;α|Ψ⟩ ⟨ō;α| O |o;α⟩

=
∑
o,α

| ⟨o;α|Ψ⟩ |2o =
∑
o

P(o)o = ⟨O⟩ .
(1.11)

Evaluating the expression ⟨Ψ| O |Ψ⟩ is sometimes referred to as evaluating O on |Ψ⟩. Apart
from computing expectation values, combining equations (1.8) and (1.10) also justifies the
normalisation condition: normalisation ensures that the total probability of all the possible
outcomes sums to one.

So far, the notions introduced have remained fully general. To explore more concrete aspects,
the next section delves deeper into the description of Hamiltonian operators. Along the way,
introducing additional observables and their corresponding operators will be necessary.

1.1.2 Hamiltonians for Three-body Systems

Being related to the energy of the system, Hamiltonian operators are often expressed in terms
of more fundamental observables, such as the positions and momenta of the particles. Since this
document is devoted to three-body systems, let us illustrate this statement within that context.



1.1. SCHRÖDINGER EQUATION AND THE QUANTUM FORMALISM 8

Hamiltonian operators for three particles are typically structured as follows,

H = T (p1,p2,p3) +
3∑

i<j=1

Vij(|ri − rj |) +W (r1, r2, r3) (1.12)

Above, ri serves as a shorthand notation for (rix, riy, riz), the three Hermitian operators corre-
sponding to the components of the ith particle’s position. Similarly, pi represents (pix, piy, piz),
the components of the ith particle’s momentum. Combinations of these vectors, such as |ri−rj |,
must be understood as compact notations for the corresponding combinations of the components.
Operators ria and pjb with i, j ∈ {1, 2, 3} and a, b ∈ {x, y, z} are, by definition, related through
the following commutators5,

[ria, pjb] = iℏδijδab, [ria, rjb] = 0, [pia, pjb] = 0. (1.13)

From these commutators, most of the properties of ria and pjb can be deduced and any set of
variables satisfying similar commutation relations will exhibit analogous properties. Such sets of
variables are referred to as conjugate variables.

In expression (1.12), Ti, Vij and W are arbitrary functions of the operators on which they
depend6. These functions decompose the Hamiltonian into four distinct sets of terms. Terms
involving a V function account for the possibility of pairwise particle interactions. Due to the
requirement of translational invariance, these so-called two-body interactions depend only on
the relative position between the two particles. In this work, two-body interactions are assumed
to depend solely on the modulus of this relative position. Systems in which the orientation of
the relative position affects the interaction, such as those involving tensor forces, do exist but
are not considered here. The second contribution to the potential energy involves a function
W . This generic interaction depends simultaneously on the position of three particles and
is referred to as a three-body interaction. As with two-body interactions, they are generally
assumed to be translation invariant. Genuine three-body interactions occur in many physical
systems, such as helium clusters [10], atomic nuclei [11] or hadrons [12, 13, 14, 15, 16]. However,
these interactions are generally challenging to handle. In the following, W will be assumed to

5 An informed reader may recognise in these relations the fundamental Poisson bracket from Hamiltonian
mechanics. This resemblance reflects the foundational principles behind the introduction of position and
momentum operators in quantum mechanics.

6 The definition of functions of operators acting on an Hilbert space is beyond the scope of this discussion.
Interested readers are referred to [6] for further details.
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depend on the particle positions through a specific combination, denoted by ρ,

ρ =
√

(r1 − r2)2 + (r1 − r3)2 + (r2 − r3)2. (1.14)

This specific structure, while less common in theoretical models, may serve as an approximation
for a more complex three-body interaction. For example, such three-body forces have been
successfully used to describe physical systems like baryons [13, 14, 15, 12] and helium clusters
[10]. It is also possible to include other interaction potentials, such as one-body interactions,
defined as follows,

3∑
i=1

Ui(|ri −RCM|). (1.15)

Above, RCM = (m1r1 +m2r2 +m3r3)/M and M = m1 +m2 +m3 represent the centre-of-mass
position and the total mass of the system, respectively, in a non-relativistic framework. The
inclusion of the centre-of-mass position RCM is required by translational invariance. However, one-
body interactions are less common than two- and three-body ones and are typically employed as
approximations for more sophisticated potentials. Such interactions will not be further explored
in the following.

The term involving the function T in (1.12), which represents the relative kinetic energy of
the system, still remains to be discussed. For non-relativistic particles with respective masses
mi, it is typically expressed as follows,

T (p1,p2,p3) = m1c
2 +m2c

2 +m3c
2 +

p1
2

2m1

+
p2

2

2m2

+
p3

2

2m3

− P 2

2M
. (1.16)

Above, P = p1 + p2 + p3 is the total momentum of the system. For further applications in
particle physics, the mass energy of each particle has been incorporated into the kinetic energy,
and contribution from the centre-of-mass motion is subtracted to ensure Galilean invariance.
For light particles, a semi-relativistic version is sometimes used in phenomenological models,

T (p) =
√
m2

1c
4 + p1

2c2 +
√
m2

2c
4 + p2

2c2 +
√
m2

3c
4 + p3

2c2. (1.17)

In this case, the energy due to the centre-of-mass motion is not explicitly subtracted. To
eliminate any contamination of the energy from the global motion of the system, occurrences of
P in this expression must be manually removed, by imposing P = 0. While definition (1.17)
provides better agreement with experimental results for relativistic particles, it should not, under
any circumstances, be interpreted as an attempt to make Schrödinger’s equation covariant.

The previous description was limited to spatial components. Beyond position variables, a
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quantum particle may also be characterised by other degrees of freedom, such as spin, isospin,
or color. For the remainder of this section, we will focus on spin. Spin was first introduced to
explain the splitting of certain energy levels in atomic spectra under the influence of magnetic
fields. Wolfgang Pauli proposed that the electron possesses a new intrinsic degree of freedom
that spans a two-dimensional vector space [17]. According to Pauli, this property, later named
spin, is responsible for the observed splitting through its interaction with the external magnetic
field. This hypothesis was subsequently validated by the Stern-Gerlach experiment and through
observations of the hyperfine structure in atomic spectra. Formally, the introduction of spin
expands the set of fundamental operators available to construct a Hamiltonian. The fundamental
spin-related operators correspond to the spin components along the three spatial directions, Six,
Siy, and Siz. These operators satisfy the following commutation relations,

[Sia, Sjb] = iℏδij
∑

c∈{x,y,z}

ϵabcSic (1.18)

where i, j ∈ {1, 2, 3}, a, b ∈ {x, y, z}, and ϵabc is the fully antisymmetric Levi-Civita symbol with
ϵxyz = 1. For notational convenience, the spin operators of each particle are often represented
as three-vectors Si. Up to a factor of ℏ, commutation relations (1.18) reveal that the spin
operators of each particle obey the same structure as the algebra of the group SO(3). While no
two spin components of a given particle commute, it is possible to construct an operator for
each particle that commutes with all spin components. These operators are known as the spin
Casimirs and are denoted S2

i ,

S2
i = Si

2 = S2
ix + S2

iy + S2
iz. (1.19)

By either direct computation from (1.18) or through group-theoretical considerations, one can
verify that

[S2
i , Sja] = 0. (1.20)

The action of a spin Casimir characterises the total spin of the corresponding particle. Specifically,
a particle is said to have a total spin s if its state is an eigenstate of S2

i with eigenvalue ℏ2s(s+1).
In light of the Born rule, this definition ensures that any measurement of the particle’s spin yields
its total spin value with certainty. The total spin also determines the possible eigenvalues of the
spin component operators. For a spin-s particle, there are 2s+ 1 spin component eigenvalues,
ranging from −sℏ to sℏ in steps of ℏ. In Pauli’s theory, the electron is described as having spin
1/2 which, as noted earlier, endows the particle with a two-dimensional intrinsic vector space
spanned by the two possible spin projections, +ℏ/2 and −ℏ/2. The fundamental nature of spin
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will be explored in greater depth in Part III.
Spin operators can appear in Hamiltonians in various forms. One such form, encountered for

example in the description of the baryon spectrum, involves a two-body interaction proportional
to the inner product of the spin operators in order to form a scalar,

V SS
ij = Vij(|ri − rj|)Si · Sj (1.21)

Above, Vij is an arbitrary function of the operator associated with the relative distance between
particle i and j. More generally, spin degrees of freedom can also interact with other observables,
such as orbital angular momentum through so-called spin-orbit couplings. While such interactions
are not explored further in this document, the corresponding observable plays a fundamental
role in the following discussions and deserves a minimal introduction. For each particle, the
orbital angular momentum is again represented by three operators corresponding to its three
components. Unlike spin, orbital angular momentum operators are derived from position and
momentum operators, as per the classical definitions,

Lix = riypiz − rizpiy Liy = rizpix − rixpiz Liz = rixpiy − riypix. (1.22)

These relations, which are often summed up as Li = ri × pi, can be used to demonstrate that
the orbital angular momentum operators satisfy commutation relations analogous to those of
spin operators,

[Lia, Ljb] = iℏδij
∑

c∈{x,y,z}

ϵabcLic. (1.23)

As a result, spin and orbital angular momentum share the same SO(3) algebraic structure,
which justifies the common interpretation that they possess similar natures. As with spin, the
orbital angular momentum of each particles also has a Casimir operator that commutes with all
its components,

L2
i = L2

ix + L2
iy + L2

iz. (1.24)

Angular momentum components and their corresponding Casimirs play a crucial role in solving
the Schrödinger equation. As noted earlier, the former are sometimes included in Hamiltonians
through spin-orbit interactions (proportional to Li · Si), while the latter naturally emerge
when the equation is expressed in spherical coordinates. Before concluding this section, it is
worth mentioning that the above definitions describe orbital angular momenta for individual
particles. Equivalent definitions for any combination of particle positions can be derived by
replacing ri and pi in definitions (1.22) with the appropriate conjugate variables. For example,
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the angular momentum associated with the relative position between two particles is obtained
by substituting ri − rj and (pi − pj)/2 for ri and pi in (1.22).

Finally, other internal degrees of freedom, such as the aforementioned isospin and color, will
not be addressed in the current work. Briefly, the underlying principle is similar to that of spin:
an intrinsic vector space is introduced, on which new operators act, and interactions involving
these operators are explicitly incorporated into the Hamiltonian. For additional information,
the interested reader is referred to [18, 19].

1.1.3 Eigenstates of Observables and Complete Sets of States

During the discussion of three-body Hamiltonians, various observables have been introduced.
Exploring the associated eigenvalue equations (1.7) is particularly valuable, as the eigenstates
they define provide the fundamental building blocks for interpreting quantum states. To achieve
the most precise interpretation, one might ask whether it is possible to define a common set of
eigenstates for multiple observables simultaneously. This proves indeed possible, provided that
all the observables commute with one another. Constructing a set of common eigenstates for
the maximum number of independent observables leads to the concept of complete sets of states.
The associated completeness relations provides tools for concretely representing quantum states.
These complete sets and completeness will be introduced in this section through a few examples.

To start with, let us temporarily freeze the spatial variables and illustrate the aforementioned
concepts using spin degrees of freedom. Since spin component operators of a given particle
do not commute with one another (see equations (1.18)), it is impossible to define common
eigenstates for all these operators simultaneously. Consequently, no quantum state can be
defined where the result of measuring any spin component is certain. However, the Casimir
operators introduced in relation (1.19) have been shown to commute with all spin components,
thereby enabling the construction of common eigenstates for all the S2

i Casimirs and for one
component of each spin, such as Siz,

S2
i |s1m1; s2m2; s3m3⟩ = ℏ2si(si + 1) |s1m1; s2m2; s3m3⟩ , (1.25a)

Siz |s1m1; s2m2; s3m3⟩ = ℏmi |s1m1; s2m2; s3m3⟩ . (1.25b)

Group theory considerations show that si ∈ {0, 1/2, 1, ...} and mi ∈ {−si,−si+1, ...si}. Notably,
as long as the spatial degrees of freedom remain frozen, the states |s1m1; s2m2; s3m3⟩ are uniquely
defined by relations (1.25). In other words, introducing additional labels α, as in equation (1.7),
is unnecessary because the current set of quantum numbers already fully specifies the state.
As with any eigenstates of observables, the states (1.25) span the entire Hilbert space. These
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observations establish the set {|s1m1; s2m2; s3m3⟩} as a complete set of states, which satisfies a
completeness relation that, in the current case, is expressed as follows,∑

s1,s2,s3

∑
m1,m2,m3

|s1m1; s2m2; s3m3⟩ ⟨s1m1; s2m2; s3m3| = 1 (1.26)

This relation illustrates equation (1.9). In most practical cases, the summations over si labels
can be omitted, as the three particles are assumed to have fixed total spins. This simplification
corresponds to freezing the total spin degrees of freedom while leaving only the spin projection
quantum numbers unconstrained. Property (1.26) ensures that any spin state can be represented
as a linear combination of the spin eigenvectors (1.25). For instance, let us assume a system
of particles with respective spins s1, s2 and s3, the spin state of the system being denoted
|χ; s1s2s3⟩. This spin state can indeed be decomposed as a linear combination of the spin
eigenvectors using relation (1.26),

|χ; s1s2s3⟩ =

( ∑
m1,m2,m3

|s1m1; s2m2; s3m3⟩ ⟨s1m1; s2m2; s3m3|

)
|χ; s1s2s3⟩

=
∑

m1,m2,m3

⟨s1m1; s2m2; s3m3|χ; s1s2s3⟩ |s1m1; s2m2; s3m3⟩
(1.27)

In the expression, one may recognise the inner product that provides, according to Born rule, the
probability of observing the state with spin projections ℏm1, ℏm2 and ℏm3. Notably, providing
all these complex coefficients ⟨s1m1; s2m2; s3m3|χ; s1s2s3⟩ completely determines the spin state
of the system. This observation forms the foundation of the concept of state representation
which will be fully addressed in the next example.

Let us now turn to the description of spatial degrees of freedom, using position and momentum
operators for one spinless particle. To avoid notation ambiguities, operators will temporarily be
distinguished from their corresponding eigenvalues by placing hats over their symbols. Since all
position component operators commute with one another (see equation (1.13)), a common set
of position eigenstates exists. These eigenstates are denoted |r1; r2; r3⟩ and satisfy

r̂1 |r1; r2; r3⟩ = r1 |r1; r2; r3⟩ , (1.28a)

r̂2 |r1; r2; r3⟩ = r2 |r1; r2; r3⟩ , (1.28b)

r̂3 |r1; r2; r3⟩ = r3 |r1; r2; r3⟩ . (1.28c)

Above, eigenvalues r1, r2 and r3 range continuously over R3, representing all possible positions
accessible to each of the three particles. Position eigenstates are an example of non-normalisable
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eigenstates with continuous eigenvalues. Despite that, the precise definition of position eigenstate
is fixed by imposing the following adapted orthonormalisation condition (in the Dirac sense),

⟨r′
1; r

′
2; r

′
3|r1; r2; r3⟩ = δ3(r′

1 − r1)δ
3(r′

2 − r2)δ
3(r′

3 − r3) (1.29)

where δ3(r′ − r) = δ(r′x − rx)δ(r
′
y − ry)δ(r

′
z − rz) is the product of three Dirac deltas. Other

normalisation conventions are, of course, possible. As in the case of spin, position eigenstates
are unequivocally defined by equations (1.28). These also satisfy a completeness relation,∫

d3r1d
3r2d

3r3 |r1; r2; r3⟩ ⟨r1; r2; r3| = 1 (1.30)

This relation enables the decomposition of any state as an integral over position eigenstates.
For instance, let |Ψ⟩ be the state of a three-body system. Using relation (1.30), |Ψ⟩ can be
expressed as

|Ψ⟩ =
∫

d3r1d
3r2d

3r3 ⟨r1; r2; r3|Ψ⟩ |r1; r2; r3⟩ . (1.31)

This decomposition is referred to as the position representation of |Ψ⟩. The integration kernel
⟨r1; r2; r3|Ψ⟩ is called the position wave function of the system and is commonly denoted by
Ψ(r1, r2, r3). In most cases, when a state is labelled |Ψ⟩, the symbol Ψ implicitly represents its
position wave function. Equation (1.31) illustrates a statement made at the beginning of the
section: although |r1; r2; r3⟩ are not normalisable and therefore do not correspond to physical
states themselves, they can be used for decomposing any physical state. Regarding interpretation,
as mentioned earlier, the squared modulus | ⟨r1; r2; r3|Ψ⟩ |2 provides the probability density of
measuring the three particles at positions r1, r2 and r3. Once again, specifying the position
wave function completely defines the state of the system, meaning that any operation performed
on the state can be mapped onto its position wave function. For instance, the action of pi

corresponds to differentiation with respect to ri,

p̂i |Ψ1⟩ =⇒ −iℏ∇riΨ1(r1, r2, r3). (1.32)

This relation between p̂i and differentiation can be derived directly from property (1.13) [6].
A similar discussion applies to momentum component operators. These commuting operators
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possess a set of common eigenstates, denoted |p1;p2;p3⟩, satisfying

p̂1 |p1;p2;p3⟩ = p1 |p1;p2;p3⟩ , (1.33a)

p̂2 |p1;p2;p3⟩ = p2 |p1;p2;p3⟩ , (1.33b)

p̂3 |p1;p2;p3⟩ = p3 |p1;p2;p3⟩ . (1.33c)

The eigenvalues p1, p2, and p3 again range continuously in R3, representing all possible momenta
accessible to each of the three particles. These states are conventionally normalised as follows,

⟨p′
1;p

′
2;p

′
3|p1;p2;p3⟩ = δ3(p′

1 − p1)δ
3(p′

2 − p2)δ
3(p′

3 − p3). (1.34)

and they satisfy the following completeness relation,∫
d3r1d

3r2d
3r3 |p1;p2;p3⟩ ⟨p1;p2;p3| = 1. (1.35)

This property enables the decomposition of any physical state into the so-called momentum
representation. For a three-body system in a state |Ψ⟩, one can write

|Ψ⟩ =
∫

d3p1d
3p2d

3p3 ⟨p1;p2;p3|Ψ⟩ |p1;p2;p3⟩ . (1.36)

where ⟨p1;p2;p3|Ψ⟩ is referred to as the momentum wave-function of the state. Once again,
specifying the momentum wave function fully determines the state of the system. Since
momentum and position operators do not commute, it is impossible to define common eigenstates
for all these operators simultaneously. This limitation is directly related to the well-known
Heisenberg indeterminacy principle.

Complete sets of states for spatial degrees of freedom do not necessarily require continuous
spectra. For instance, eigenstates of confining Hamiltonians7 can always be normalised, resulting
in a discrete spectrum. Concrete examples of such Hamiltonians and spectra will be provided
in Chapter 2 but the associated representation for quantum states can already be introduced.
For the current paragraph, let us assume the existence of a discrete complete set of states.
The corresponding eigenstates are denoted |o1...oa⟩, where oi belongs to a subset of Z and is
the quantum number associated with the eigenvalue of the observable Oi. It is assumed that
specifying all the eigenvalues o1...oa uniquely determines the corresponding eigenstate without
ambiguity. As a result, these eigenstates satisfy the following othonormality and completeness

7 Hamiltonian with potentials that do not saturate at large distance.
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relations,

⟨o′1...o′a|o1...oa⟩ = δo′1o1 ...δo′aoa ,
∑
o1

...
∑
oa

|o1...oa⟩ ⟨o1...oa| = 1. (1.37)

Using completeness, any state |Ψ⟩ for the system can be expressed as follows

|Ψ⟩ =
∑
o1

...
∑
oa

⟨o1...oa|Ψ⟩ |o1...oa⟩ . (1.38)

Coefficients ⟨o1...oa|Ψ⟩ represent the state |Ψ⟩ in the discrete complete basis {|o1...oa⟩}. Decom-
posing quantum states in such a basis enables their representation as infinite column vectors. In
this formulation, linear operators acting on quantum states are expressed as infinite matrices,
which act via matrix multiplication. Let |Φ⟩ denote O |Ψ⟩. In the basis {|o1...oa⟩}, the state
|Φ⟩ is represented via its components ⟨o1...oa|Φ⟩,

⟨o1...oa|Φ⟩ = ⟨o1...oa| O |Ψ⟩ =
∑
o′1

...
∑
o′a

⟨o1...oa| O |o′1...o′a⟩ ⟨o′1...o′a|Ψ⟩ . (1.39)

To make the matrix structure of this equation more explicit, let us impose an ordering in the
complete labeling o1...oa. This ordering replaces the detailed set of quantum numbers with a
single natural number n and the expression becomes

⟨n|Φ⟩ =
∑
n′∈N

⟨n| O |n′⟩ ⟨n′|Ψ⟩ =⇒


⟨0|Φ⟩
⟨1|Φ⟩

...

 =


⟨0| O |0⟩ ⟨0| O |1⟩ · · ·
⟨1| O |0⟩ ⟨1| O |1⟩ · · ·

...
... . . .



⟨0|Ψ⟩
⟨1|Ψ⟩

...

 (1.40)

Matrices explicitly appear in the last formulation. In this representation, the coefficients
⟨n| O |n′⟩ are referred to as the matrix elements of O. Notice that the Hermitian character of O
implies that the matrix associated to O is equal to its conjugate transpose.

1.1.4 Symmetry and Identical Particles

Since two sections, the system considered includes three generic particles. Many-body
problems in quantum mechanics are intrinsically linked to the concept of symmetry in quantum
states, particularly in the presence of identical particles. Specifically, the quantum state of any
system must be either symmetric or antisymmetric under the exchange of any pair of identical
particles. The exchange of particles i and j is represented by a linear operator denoted Pij.
The exchange operators are designated as unitary operators because P†

ijPij = 1 and involutions
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because P2
ij = 1. The symmetry and antisymmetry conditions for particles i and j in a state

|Ψ⟩ are expressed as follows,

Pij |Ψ⟩ = |Ψ⟩ , Pij |Ψ⟩ = − |Ψ⟩ . (1.41)

This constraint arises from the fundamental indistinguishability of identical quantum particles.
The allowance for both symmetry and antisymmetry stems from the interpretation of quantum
states via the squared moduli of their coefficients. In particular, two quantum states that
differ only by a global phase factor are physically equivalent. Consequently, encoding the
indistinguishability of particles i and j in a system state |Ψ⟩ requires that |Ψ⟩ and Pij |Ψ⟩ differ
only by a global phase factor. In three spatial dimensions8, the only permissible phase factors
are +1 or −1, thereby leading to symmetric and antisymmetric states, respectively.

The choice between symmetry and antisymmetry is dictated by the spin of the particles.
Particles with integer spins, known as bosons, obey symmetry conditions, whereas particles with
half-integer spins, called fermions, obey antisymmetry conditions. The connection between spin
and symmetry is a consequence of the spin-statistics theorem in quantum field theory [21], a
topic beyond the scope of this work. From a non-symmetric state, symmetric or antisymmetric
states can be constructed using operators known as symmetrisers, S, and antisymmetrisers, A.
For two particles, these operators are defined in terms of Pij as follows,

S = 1+ P12, A = 1− P12. (1.42)

For three particles, the definitions extend to

S = 1+ P12 + P13 + P12P13P12 + P13P12 + P12P13, (1.43)

A = 1− P12 − P13 − P12P13P12 + P13P12 + P12P13. (1.44)

The application of these operators does not preserve the normalisation.
To illustrate the role of symmetry, let us again consider a system of three spinless particles in

a generic state |Ψ⟩. This state is decomposed in the position representation via a position wave
function Ψ(r1, r2, r3) = ⟨r1; r2; r3|Ψ⟩,

|Ψ⟩ =
∫

d3r1d
3r2d

3r3Ψ(r1, r2, r3) |r1; r2; r3⟩ . (1.45)

8 In two-dimensional systems, intermediate phases factors can occur, leading to symmetries referred to as
anyonic [20].
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This description is valid for distinguishable particles. In the presence of three identical particles,
however, the state |Ψ⟩ must be fully symmetrised. Permutation operators acting on position
eigenstates logically swap the corresponding position eigenvalues. This statement allows to
evaluate the action of the symmetriser on |Ψ⟩,

S |Ψ⟩ =
∫

d3r1d
3r2d

3r3Ψ(r1, r2, r3)
(
|r1; r2; r3⟩+ |r2; r1; r3⟩+ |r3; r2; r1⟩

+ |r1; r3; r2⟩+ |r3; r1; r2⟩+ |r2; r3; r1⟩
)
.

(1.46)

By performing appropriate changes of variables for each of the six terms, the sum over position
eigenstates can be reorganised as sum over position wave functions,

S |Ψ⟩ =
∫

d3r1d
3r2d

3r3
(
Ψ(r1, r2, r3) + Ψ(r2, r1, r3) + Ψ(r3, r2, r1)

+ Ψ(r1, r3, r2) + Ψ(r3, r1, r2) + Ψ(r2, r3, r1)
)
|r1, r2, r3⟩ .

(1.47)

The state symmetry condition translates into a symmetry condition for the position wave
function under exchanges of its variables. This justifies the common view that symmetry
acts directly on wave functions. Similar results hold for momentum representation and/or
for antisymmetry conditions. In general, for particles with spin or other intrinsic degrees of
freedom, symmetry applies to the entire system. This enables the combination of symmetries
from different components to construct a symmetric total state. For instance, an antisymmetric
spatial component can yield a symmetric total state when combined with an antisymmetric
spin component. Moreover, partially symmetric components can also be combined to achieve a
symmetric global state. For instance, partially symmetric space and spin components can be
superposed to obtain a symmetric global state.

Symmetry can be challenging to establish, but once achieved, it can significantly simplify
many calculations. Let us exemplify it with the evaluation of two-body potential matrix elements.
Let |Ψ⟩ denote the state of a system of identical particles, and let V (|ri − rj|) be a two-body
interaction acting between the particles. Due to symmetry, evaluating the corresponding matrix
element for one pair of particles is equivalent to evaluating it for any other pair,

⟨Ψ|V (|ri − rj |) |Ψ⟩ = (±⟨Ψ|Pik)V (|ri − rj|) (±Pik |Ψ⟩)

= ⟨Ψ|
(
P†
ikV (|ri − rj|)Pik

)
|Ψ⟩

= ⟨Ψ|
(
P−1
ik V (|ri − rj |)Pik

)
|Ψ⟩

= ⟨Ψ|V (|rk − rj|) |Ψ⟩ .

(1.48)
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The plus and minus signs account for bosonic and fermionic systems, respectively. The final
equality identifies the successive actions P−1

ik V (|ri−rj |)Pik with V (|rk−rj|). A similar argument
can be applied to change the label j as well. Equalities like (1.48) will be employed extensively
throughout this document.

1.1.5 Hamiltonian Eigenstates and the Time-Independent Schrödinger

Equation

Beyond the commonly referred Schrödinger equation (1.1), a central equation in many
quantum mechanical applications is the time-independent Schrödinger equation,

H |Ψ⟩ = E |Ψ⟩ . (1.49)

One may recognize this equation as the eigenvalue problem associated with the Hamiltonian
of the system. This equation holds significant importance for two main reasons. First, in
cases of time-independent interactions, such as those discussed in Section 1.1.2, solving the
time-independent equation provides the necessary information to address the time-dependent
one. If equation (1.49) is fully solved, meaning that all Hamiltonian eigenvectors |Ψi⟩ and their
corresponding eigenvalues Ei are known, the time evolution of a system with an initial state
|Ψ(0)⟩ can be expressed as,

|Ψ(t)⟩ =
∑
i

⟨Ψi|Ψ(0)⟩ e−iEit/ℏ |Ψi⟩ . (1.50)

A demonstration of this result can be found in any standard quantum mechanics textbook,
such as [5, 6]. Solving the time-dependent Schrödinger equation is perhaps the most frequently
cited motivation for solving the time-independent one. While this is undoubtedly valid, let
us broaden this perspective slightly. In many quantum mechanical problems, including those
addressed in this work, the explicit time evolution of the system is not considered. Nonetheless,
solving equation (1.49) remains essential. This equation defines a critical class of states: those
resulting from energy measurements. By solving (1.49), one determines the system’s accessible
energy levels and the corresponding eigenstates. In atomic physics, determining atomic spectra
is often an end goal in itself. Similarly, in particle physics, particle states are typically defined as
energy eigenstates. Thus, solving the time-independent equation yields key information about a
particle’s properties.

Although the full Schrödinger equation retains its elegance and generality, the applications
discussed in this work focus primarily on solving the time-independent equation for the second
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reason mentioned above. In both Parts II and III, the primary objectives will be the computation
of energy spectra for baryons and glueballs, respectively. Establishing the properties of energy
eigenstates, such as spin or parity, will also be a primary concern. Solving (1.49) is a challenging
task and various resolution methods exist, each with its advantages and limitations. Two methods
will be detailed in this work: the oscillator bases expansion and the envelope theory. The former
is rooted in a family of results known as variational theorems, which will be introduced in
the next chapter. Beyond offering a practical method for obtaining approximate solutions to
(1.49), these theorems provide a different perspective on the equation, a perspective that is often
under-emphasised.

1.2 The Variational Theorems as Powerful Tools

The previous section concluded by emphasising the importance of solving the time-independent
Schrödinger equation. Analytical resolutions of this equation exist only for very specific forms
of the Hamiltonian. For N particles, one of the few (if not the only) completely exactly solvable
Hamiltonians is the non-relativistic harmonic oscillator. For illustration, the isotropic harmonic
oscillator, Hoh, is defined as follows considering N vectorial degrees-of-freedom in three spatial
dimensions, xi,

Hoh =
1

2m

N∑
i=1

pi
2 +

mω2

2

N∑
i=1

xi
2. (1.51)

Above, pi is the variable conjugate to xi. Anisotropic versions of (1.51) where the parameters
m and ω depend on the particle labels (and therefore related to systems of different particles)
can also be solved analytically [22]. The analytical spectrum of the harmonic oscillator lays the
groundwork for the approximation methods developed in Chapters 2 and 3. However, let us
defer the discussion of the N -body harmonic oscillator spectrum to the sections dedicated to it.

At this stage, it seems that tackling equation (1.49) directly for general Hamiltonians is a
challenging task. Nevertheless, this can be overcome by changing the perspective and examining
the time-independent Schrödinger equation through the lens of variational theorems, to which
this section is devoted. This section is heavily inspired by the Chapter 3 of the comprehensive
book from Y. Suzuki and K. Varga [23].

1.2.1 The Rayleigh-Ritz Variational Theorem

Let us consider a generic system of any number of particles in any number of dimensions. This
system is subjected to a generic Hamiltonian H. In the following, the (normalised) eigenstates
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and eigenvalues of H will be denoted |ϕi⟩ and Ei, respectively,

H |ϕi⟩ = Ei |ϕi⟩ . (1.52)

The index i is assumed to start at i = 0 and to increase with energy. Only the discrete part
of the spectrum is considered. Let |Ψ⟩ be a normalised quantum state that the system may
occupy. The Rayleigh-Ritz variational theorem states that, regardless of the choice of |Ψ⟩, the
energy expectation value is smaller when evaluated with |ϕ0⟩ than with |Ψ⟩,

⟨Ψ|H |Ψ⟩ ≥ ⟨ϕ0|H |ϕ0⟩ = E0. (1.53)

Equality holds if |Ψ⟩ = |ϕ0⟩.

Proof. This proof is inspired by the one provided in reference [5] − Since H is an observable,
its spectrum spans the entire Hilbert space. Therefore, there exist coefficients ci such that

|Ψ⟩ =
∑
i

ci |ϕi⟩ . (1.54)

Using this decomposition, evaluating the Hamiltonian on |Ψ⟩ gives

⟨Ψ|H |Ψ⟩ =
∑
j

∑
i

c∗jci ⟨ϕj|H |ϕi⟩ =
∑
i

|ci|2Ei. (1.55)

In each term of this sum, one may replace Ei by the lowest eigenenergy, E0. By doing so,
each term is underestimated,

⟨Ψ|H |Ψ⟩ =
∑
i

|ci|2Ei ≥

(∑
i

|ci|2
)
E0. (1.56)

As a result, as long as |Ψ⟩ is normalised, it follows that ⟨Ψ|H |Ψ⟩ ≥ E0.

Theorem (1.53) provides the expected new perspective on the time-independent Schrödinger
equation. Essentially, this equation seeks the state that minimises the energy expectation value
and defines it as its lowest energy solution. This lowest energy solution is often referred to as the
ground-state, while higher energy solution are referred to as excited states. Theorem (1.53) can
be exploited to derive approximations for the ground-state eigenvalue. By repeatedly evaluating
H on various different states |Ψ⟩, referred to as trial states, the Rayleigh-Ritz theorem provides
various upper bounds to this energy eigenvalue. Among these upper bounds, the smallest one
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(that is, the most constraining) can be used as an approximation for E0. The approximation
becomes more accurate as the set of trial states covers a larger portion of the Hilbert space.

Most of the time, instead of evaluating the Hamiltonian state by state, parameters are added
to |Ψ⟩, and the expectation value is minimised with respect to these parameters. Two types
of parameters should be distinguished. Let us assume that, for any value of a given set of
parameters a1, ..., aq, a specific procedure provides a corresponding set of Q orthonormal states,
denoted |φi(a1...aq)⟩. This set can be used to construct a trial state that depends on 2Q+ q

real parameters,

|Ψ(a1...aq; c1...cQ)⟩ =
Q∑
i=1

ci |φi(a1...aq)⟩ . (1.57)

Each complex-valued ci parameters account for two real ones. These parameters, included
as coefficients in the linear combinations, are referred to as linear variational parameters,
while the others are called non-linear variational parameters. If the minimisation with re-
spect to non-linear variational parameters requires a true optimisation process, the optimi-
sation with respect to the linear variational parameters is easier to perform. To minimise
⟨Ψ(a1...aq; c1...cQ)|H |Ψ(a1...aq; c1...cQ)⟩ with respect to the ci, the corresponding derivates are
constrained to vanish, ∂

∂ci
⟨Ψ(a1...aq; c1...cQ)|H |Ψ(a1...aq; c1...cQ)⟩ = 0,

∂
∂c∗i

⟨Ψ(a1...aq; c1...cQ)|H |Ψ(a1...aq; c1...cQ)⟩ = 0.
(1.58)

Above, ci and c∗i are treated as independent variables to account for the fact that each ci encodes
two real parameters. It can be shown that imposing these minimisation conditions together with
the normalisation constraint

∑
i |ci|2 = 1 is equivalent to solving the following matrix eigenvalue

problem,
⟨φ1(a1...aq)|H |φ1(a1...aq)⟩ · · · ⟨φ1(a1...aq)|H |φQ(a1...aq)⟩

... . . . ...
⟨φQ(a1...aq)|H |φ1(a1...aq)⟩ · · · ⟨φQ(a1...aq)|H |φQ(a1...aq)⟩



c1
...
cQ

 = ϵ


c1
...
cQ

 . (1.59)

The many eigenvalues ϵ that solve this equation correspond to local minima. The upper bound
that serves as an approximation for the true lowest eigenenergy is the minimal eigenvalue in
(1.59). To summarise, obtaining an approximation for the ground-state eigenvalue of a given
Hamiltonian H is generally structured in the following four-step procedure.

1. Choose a set of Q orthonormal9 trial states |φi(a1...aq)⟩ that incorporates as many non-
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linear variational parameters as desired.

2. Compute all the matrix elements of H on {|φi(a1...aq)⟩} for a given set of non-linear
variational parameters.

3. Solve the eigenvalue problem (1.59) and identify the lowest eigenvalue (note that some
algorithms only compute the lowest one).

4. Repeat steps 2 and 3 for different non-linear variational parameters until a minimum is
found. This minimum serves as an approximation for the true ground-state eigenenergy.

Although the Rayleigh-Ritz variational theorem discusses only the eigenvalue, it is also frequently
used to approximate the corresponding eigenstate. The trial state that achieves the minimum is
assumed to, at least approximately, resemble the true eigenstate, especially if the eigenenergy is
accurately reproduced.

1.2.2 The MacDonald Theorem

The Rayleigh-Ritz theorem, and especially the subsequent procedure, appears to be limited
to the study of ground-states. However, this theorem can be extended to describe excited states
as well. This extension is known as the MacDonald theorem [24]. The context is analogous
to that presented in the previous section. Let us consider a general system of any number of
particles in any number of dimensions, subjected to a general Hamiltonian H, and let {|φi⟩} be
a set of Q orthonormal states that the system may occupy. The MacDonald theorem states
that ϵi, the ith eigenvalue of the Hamiltonian matrix restricted to {|φi⟩}, is an upper bound of
Ei, the ith true eigenvalue of H,

E0 ≤ ϵ0, E1 ≤ ϵ1, ..., EQ ≤ ϵQ (1.60)

where ϵ0 ≤ ϵ1 ≤ ... ≤ ϵQ and
⟨φ1|H |φ1⟩ · · · ⟨φ1|H |φQ⟩

... . . . ...
⟨φQ|H |φ1⟩ · · · ⟨φQ|H |φQ⟩



ci1
...
ciQ

 = ϵi


ci1
...
ciQ

 . (1.61)

9 In full generality, the orthonormality condition on |φi(a1...aq)⟩ is not necessary. In the presence of non-
orthogonal trial states, the eigenvalue problem (1.59) becomes a generalised eigenvalue problem, which can
also be addressed. This situation will not be encountered initially.
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Proof. This proof is inspired by the one provided in reference [23] − The result is demon-
strated iteratively. Let us define VQ as the subspace spanned by the set of orthonormal
states {|φi⟩}, and WQ as the subspace spanned by the Q first eigenstates of H. The
following lemma is first established: there always exists a state |Ψ⟩ in VQ such that
⟨Ψ|H |Ψ⟩ ≥ EQ. We begin by defining P , the projector onto the subspace WQ. Denoting
|ϕi⟩ as the eigenstates of H, one has

P =

Q∑
i=1

|ϕi⟩ ⟨ϕi| . (1.62)

Two cases are to be considered: either there exists a state |φ̄⟩ in VQ such that P |φ̄⟩ = 0,
or for any state |φ⟩ in VQ, P |φ⟩ ≠ 0.

• First case: If such a state |φ̄⟩ exists, its expansion as a linear combination of H’s
eigenstates must include only terms proportional to |ϕQ+1⟩, |ϕQ+2⟩, etc. As a result
evaluating H on |φ̄⟩ gives a value higher than EQ+1, which in turn is higher than EQ,

⟨φ̄|H |φ̄⟩ ≥ EQ+1 ≥ EQ. (1.63)

Thus, the lemma is verified for |Ψ⟩ = |φ̄⟩.

• Second case: If the second case holds, then any two states |φ̄1⟩ and |φ̄2⟩ in VQ must
be projected onto different functions in WQ (otherwise, P (|φ̄1⟩ − |φ̄2⟩) would cancel,
contradicting the assumption). In other words, the application P that relates VQ and WQ

is injective. Since both WQ and VQ have dimension Q and thanks to the Rank–nullity
theorem, the function proves immediately bijective. As a result, there must exist a state
|φ̄⟩ in VQ that P projects onto |ϕQ⟩,

P |φ̄⟩ = a |ΦQ⟩ with a ̸= 0. (1.64)

Thus, the expansion of |φ̄⟩ as a linear combination of H’s eigenstates includes a term a |ϕQ⟩,
along with other terms proportional to |ψQ+1⟩, |ψQ+2⟩, etc. These latter terms are grouped
into a state b |Φ⟩, such that |a|2 + |b|2 = 1,

|φ̄⟩ = a |ϕQ⟩+ b |Φ⟩ . (1.65)
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Evaluating H on |φ̄⟩ yields

⟨φ̄|H |φ̄⟩ = |a|2EQ + |b|2 ⟨Φ|H |Φ⟩ = EQ + |b|2(⟨Φ|H |Φ⟩ − EQ) ≥ EQ (1.66)

since ⟨Φ|H |Φ⟩ ≥ EQ due to |Φ⟩’s definition. Therefore, the lemma also holds for |Ψ⟩ = |φ̄⟩.

To complete the proof, we note that the highest eigenvalue of a finite-dimensional eigenvalue
problem corresponds to the maximum expectation value of the corresponding operator,

ϵQ ≥ ⟨Ψ|H |Ψ⟩ ≥ EQ. (1.67)

This proves the last inequality in (1.60). The other inequalities are obtained by iterating
the reasoning on the subspace VQ−1 of all the states in VQ that are orthogonal to the
eigenstate associated with ϵQ.

Theorem (1.60) reveals that, once the ground-state energy is obtained, the time-independent
Schrödinger equation defines excited eigenstates by iterating the minimisation process of the
energy expectation value over the residual vector subspace. Theorem (1.60) indicates that
the procedure developed in the previous section, beyond providing approximations for the
ground-state, also yields approximations for the excited eigenstates. Notice that, to obtain an
approximation for the ith eigenvalue, at least i trial states must be used. As before, non-linear
variational parameters can be added to optimise the obtained upper bound. Note that the
parameters optimising a given energy level are not necessarily the same as those optimising
other energy levels.

1.2.3 Convergence of the Upper Bounds

Before concluding this discussion, let us examine a third theorem that describes the behaviour
of these approximations as the number of trial states is increased. Let us denote by ϵ1 to ϵQ
the Q approximate eigenvalues obtained using Q trial states. Adding a (Q+ 1)th state to the
trial set yields Q+ 1 new eigenvalues, denoted ϵ̄1 to ϵ̄Q+1. MacDonald demonstrated that this
addition cannot worsen the approximations [24], meaning that

ϵ̄1 ≤ ϵ1 ≤ ϵ̄2 ≤ ϵ2 ≤ ... ≤ ϵ̄Q ≤ ϵQ ≤ ϵ̄Q+1. (1.68)

Since proving this result is more involved than the previous two theorems, the proof is omitted
here. Interested readers are referred to reference [24] for MacDonald’s original proof or to
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Figure 1.1: Illustration of the typical convergence behaviour obtained using variational theorems.
An expansion in oscillator bases with a single non-linear variational parameter a is used to
determine the ground-state energy of a system of three identical non-relativistic particles
interacting via two-body linear interactions. Masses and parameters are chosen to reproduce
energies from [25]. The optimisation of a is performed for seven oscillators (details on oscillator
bases expansions are provided in Chapter 2), yielding a = 1.446. The converged result is
indicated by the dashed gray line.

reference [23] for a more general and detailed derivation.
The above result illustrates the behaviour of the approximate upper bounds as the size of

the trial set increases. When a small number of trial states is used, the upper bound can be
relatively higher in energy. As more states are added, the approximation improves, gradually
converging from above toward the true eigenenergy. In the limiting case of a complete set of
trial states, diagonalisation of the infinite-dimensional Hamiltonian matrix yields the exact
eigenvalues, in agreement with the matrix representation introduced at the end of Section
1.1.3. A typical example of convergence behaviour is shown on a ground state in Figure 1.1.
This illustrative figure is taken from Chapter 2, where an approximation method based on the
MacDonald theorem, known as the oscillator bases expansion, is explicitly discussed. Of course,
the convergence rate strongly depends on the choice of the trial set and the specific Hamiltonian
being solved. Certain trial sets are particularly well suited for specific classes of Hamiltonians,
while others offer broader applicability, though potentially with some trade-off in efficiency. The
closer the trial states resemble the true eigenstate, the faster the convergence. At the extreme,
the exact eigenstate is included in the trial set, the approximation becomes exact and reduces
to one state.
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1.3 Miscellaneous Results

The final section of this introductory chapter is devoted to various theorems from non-
relativistic quantum mechanics. These results will be primarily utilised in Chapter 3, where a
second approximation method for the time-independent Schrödinger equation, known as the
envelope theory, is developed. Despite their specific purpose in later discussions, these theorems
are of a very general nature and merit inclusion in this chapter on the fundamentals of quantum
mechanics. Notably, the first two theorems are often employed to assess the accuracy of other
approximation methods, such as those based on the previously introduced variational theorems
[23]. It illustrates that their applicability extends beyond the establishment of the envelope
theory.

Hellmann-Feynman Theorem

Let us begin with the Hellmann-Feynman theorem. Consider a generic system consisting of
an arbitrary number of particles in any number of dimensions. This system is governed by a
Hamiltonian H which depends on a parameter λ. The Hellmann-Feynman theorem provides
the following expression for the derivative of the energy eigenvalues of H(λ) , denoted E(λ),
with respect to λ

d

dλ
E(λ) = ⟨ϕ(λ)| ∂

∂λ
H(λ) |ϕ(λ)⟩ . (1.69)

Above, |ϕ(λ)⟩ is the normalised eigenvector associated with the eigenvalue E(λ).

Proof. This proof is inspired by the one provided in reference [23] − Given that |ϕ(λ)⟩ is an
eigenvector of H, its energy expectation value simply equals the corresponding eigenvalue,

E(λ) = ⟨ϕ(λ)|H(λ) |ϕ(λ)⟩ . (1.70)

Differentiating both sides of this expression with respect to λ gives

d

dλ
E(λ) = ⟨ϕ(λ)| ∂

∂λ
H(λ) |ϕ(λ)⟩+ ⟨ ∂

∂λ
ϕ(λ)|H(λ) |ϕ(λ)⟩+ ⟨ϕ(λ)|H(λ) | ∂

∂λ
ϕ(λ)⟩ (1.71)

The first term on the right-hand side already matches the desired result. To complete the



1.3. MISCELLANEOUS RESULTS 28

proof, the remaining two terms must be shown to cancel,

⟨ ∂
∂λ
ϕ(λ)|H(λ) |ϕ(λ)⟩ + ⟨ϕ(λ)|H(λ) | ∂

∂λ
ϕ(λ)⟩

=E(λ)

(
⟨ ∂
∂λ
ϕ(λ)|ϕ(λ)⟩+ ⟨ϕ(λ)| ∂

∂λ
ϕ(λ)⟩

)
=E(λ)

d

dλ
⟨ϕ(λ)|ϕ(λ)⟩ = 0

(1.72)

In the second and last lines, the Hermiticity of H(λ) and the normalisation condition
⟨ϕ(λ)|ϕ(λ)⟩ = 1 have been used, respectively. This completes the demonstration.

The Hellmann-Feynman theorem stands as a versatile tool. It can serve as a consistency
check for analytical solutions, an accuracy measure for approximation methods, and even as a
tool for proving other theorems. Both next results provide examples of the latter application.

Virial Theorem

The virial theorem also provides information about expectation values of energy eigenstates.
Let us consider a N -body system in an arbitrary number of spatial dimensions, governed by a
N -body Hamiltonian H generalising the structure from (1.12),

H =
N∑
i=1

Ti(|pi|) +
N∑
i=1

Ui(|si|) +
N∑
i<j

Vij(|rij|). (1.73)

Above, the shorthand notations si = ri − RCM and rij = ri − rj have been introduced.
Compared to (1.12), the global kinetic energy has been decomposed into a sum over the kinetic
energies of individual particles. This decomposition omits the centre-of-mass motion removal,
but the theorem remains valid even when this removal is included [23]. Only one- and two-body
interactions are considered. The virial theorem states that different expectation values taken on
energy eigenstates satisfy the following relation,

N∑
i=1

⟨pi
d

dpi
Ti(pi)⟩ =

N∑
i=1

⟨si
d

dsi
Ui(si)⟩+

N∑
i<j

⟨rij
d

drij
Vij(rij)⟩ (1.74)

where pi, si and rij denotes |pi|, |si| and |rij|, respectively.

Proof. This proof is inspired by the one provided in [26] − To begin, let us introduce a
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dilatation of the position variables,

r̄i =
ri
λ
, p̄i = λpi (1.75)

with λ > 0. This rescaling keeps the new position and momentum variables conjugate to
each other. Of course, it also affects si and rij . Using the new variables, the system’s
Hamiltonian can be rewritten as

H(pi, ri) = H(p̄i/λ, λr̄i) (1.76)

This modification does not alter the spectrum of H, but it artificially introduces a parameter
into H. It allows to apply the Hellmann-Feynman Theorem,

d

dλ
E(λ) = ⟨ ∂

∂λ
H(p̄i/λ, λr̄i)⟩ (1.77)

where expectation values are computed for the eigenstate of H corresponding to E(λ).
However, since the introduction of λ is purely artificial and does not affect the spectrum,
the left-hand side of (1.77) vanishes. Evaluating the right-hand side at λ = 1 yields the
generalised virial theorem,

⟨ ∂
∂λ
H(p̄i/λ, λr̄i)⟩

∣∣∣∣
λ=1

= 0. (1.78)

Applying this result to the Hamiltonian (1.73), the expectation value is distributed on each
term. Denoting |pi| = pi, |si| = si and |rij | = rij, one obtains

∂

∂λ
T (pi/λ)

∣∣∣∣
λ=1

= −pi
d

dpi
T (pi), (1.79a)

∂

∂λ
U(λsi)

∣∣∣∣
λ=1

= si
d

dsi
U(si), (1.79b)

∂

∂λ
V (λrij)

∣∣∣∣
λ=1

= rij
d

drij
V (rij). (1.79c)

Combining equations (1.73), (1.78) and (1.79) yields the expected relation.

The virial theorem establishes relationships between expectation values of observables for
the eigenstates of an Hamiltonian. For example, it allows to show that the eigenstates of the
harmonic oscillator (1.51) satisfy

3∑
i=1

1

m
⟨pi

2⟩ =
3∑

i<j

mω2 ⟨(ri − rj)
2⟩ . (1.80)
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As already mentioned, beyond their formal significance, such relations can also serve as tools to
assess the precision of approximate eigenstates.

Comparison Theorem

A third and final theorem will prove useful in further developments. Consider a generic
many-body system in an arbitrary number of dimensions and consider two different Hamiltonians
for this system, H(1) and H(2). Suppose that each Hamiltonian decomposes into a sum of a
kinetic energy term, which depends only on momentum variables, and a potential energy term,
which depends only on position variables. That is, if H(1) = T (1) + V (1) and H(2) = T (2) + V (2),
and if the conditions T (1) ≤ T (2) for all momenta and V (1) ≤ V (2) for all positions hold, then
the comparison theorem states that their corresponding energy spectra, E(1)

{α} and E(2)
{α}, satisfy

the same ordering,
E

(1)
{α} ≤ E

(2)
{α}. (1.81)

Above, {α} denotes the quantum numbers of both spectra.

Proof. This proof is inspired by the one provided in [27] − To start with, consider two
Hamiltonians, H(1) and H(2), such that for any state |Ψ⟩ the inequality

⟨Ψ|
(
H(2) −H(1)

)
|Ψ⟩ ≥ 0. (1.82)

holds. Next, define the following interpolating Hamiltonian

H(a) = (1− a)H(1) + aH(2) (1.83)

which continuously deforms H(1) into H(2) as a varies from 0 to 1. Applying the Hellmann-
Feynman theorem to H(a), one obtains

d

da
E{α}(a) = ⟨H(2) −H(1)⟩ ≥ 0. (1.84)

Above, E{α}(a) denotes the eigenvalues of H(a) and the expectation value is taken on the
corresponding eigenstate. The right-hand side is non-negative due to the assumption (1.82).
Since E{α}(a) is an increasing function of a, it follows that

E{α}(0) = E
(1)
{α} ≤ E{α}(1) = E

(2)
{α}. (1.85)

To complete the proof, one has to verify that the Hamiltonians given in the theorem
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statement satisfy (1.82). By separating the kinetic and potential contributions, one obtains

⟨Ψ|
(
H(2) −H(1)

)
|Ψ⟩ = ⟨Ψ|

(
T (2) − T (1)

)
|Ψ⟩+ ⟨Ψ|

(
V (2) − V (1)

)
|Ψ⟩ . (1.86)

Since the potential functions satisfy V (1) ≤ V (2), expressing the second expectation value
in the position representation ensures its non-negativity. Similarly, evaluating the first
expectation value in the momentum representation guarantees its non-negativity as well.
Consequently, the conditions are sufficient to establish (1.82), completing the proof.

The comparison theorem will serve as a tool to identify bounds for approximate spectra,
particularly when using the envelope theory. This result concludes this non-exhaustive collection
of noteworthy theorems in non-relativistic quantum mechanics.

This chapter in the context of a thesis

As an introduction to the field, this chapter does not present any original research results.
Instead, it aims to establish the general framework within which the rest of the thesis is
situated. As mentioned in the preface, the text is intended to be accessible to students
beginning a Master’s program focused on fundamental interactions. This chapter revisits
key concepts that will be used throughout the document.

It also introduces a perspective less commonly found in the literature for approaching
quantum mechanics: the variational theorem, not limited to ground states as it is often the
case in introductory textbooks. Since this theorem plays a central role in the subsequent
chapters, it seemed worthwhile to recall it in details here. In my view, the variational
theorem reveals some particularly insightful aspects about how the Schrödinger equation’s
operates, and could be more widely used in both teaching and popularising physics. This
chapter provided a fitting opportunity to explore this intuition.





Chapter 2

Oscillator Bases Expansions: a Versatile
Resolution Method

Chapter 1, and more precisely Section 1.1, aimed to illustrate that solving the time-
independent Schrödinger equation stands as a standard stage across various disciplines in
physics, ranging from hadronic and nuclear to atomic physics. To achieve this task, numerous
approximation methods have been developed, each possessing distinct strengths and limitations.
A family of these, known as variational methods and based on the computation of Hamiltonian
matrix elements on different trial states, has been outlined in Section 1.2. The current chapter fo-
cuses on one such method, named the oscillator bases expansion (OBE). Although generalisations
for larger systems are possible, the discussion will focus on three-body systems. In that context,
the OBE uses harmonic oscillator eigenstates with one or two non-linear variational parameters
as trial functions [28]. This method enables to solve accurately a broad class of Hamiltonians,
encompassing two-body interactions as well as non-relativistic and semi-relativistic kinematics.
For that systems, the method, originally formulated only for two-body interactions, has recently
been generalised in [29] to encompass the class of three-body forces introduced in Section 1.1.2.
The OBE also easily manages conditions on the symmetry, the angular momentum and the
parity of the desired solution. These features make the OBE particularly effective in hadronic
physics, where semi-relativistic kinematics, well-defined angular momentum, and well-defined
parity are often required [30, 31, 32, 33, 34].

This chapter builds upon and slightly expands the text from reference [29]. The subsequent
sections are organized as follows. Section 2.1 elucidates the theoretical concepts related to the
OBE for spinless particles. Section 2.1.1 reviews the three-body harmonic oscillator eigenstates
and their essential properties. Section 2.1.2 recalls the Hamiltonian shape investigated in
the current work and introduces suitable coordinates to only account for the internal motion.

33
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Sections 2.1.3 and 2.1.4 describe the incorporation of symmetries into the bases and provide
formulas for evaluating matrix elements, respectively. Section 2.2 enlarges the discussion to
include the management of spin degrees-of-freedom. Section 2.3 examines the accuracy and
computational complexity of the OBE. Finally, Section 2.4 offers concluding remarks and the
chapter ends with some complementary sections that address subsidiary topics. Even though
Chapter 1 did not specify the unit system used, natural units (ℏ = 1 and c = 1) will be assumed
throughout this chapter and the remainder of this work.

2.1 The Theory of the Oscillator Bases Expansion

As already mentioned, the OBE relies on the MacDonald theorem, introduced in Equation
(1.60). In brief, this theorem states that the ith lowest eigenvalue of the Hamiltonian matrix,
when restricted to a given set of orthonormal trial states {|φi⟩}, provides an upper bound for
the ith lowest eigenvalue of the full Hamiltonian. The corresponding eigenvectors also serve
as approximations for the true eigenvectors of H. Methods based on the MacDonald theorem
involve two main computational steps: evaluating the Hamiltonian matrix elements ⟨φi|H |φj⟩
and diagonalising the resulting matrix. The accuracy of the upper bound is often refined
by incorporating non-linear variational parameters into the trial states and by repeating the
procedure for different parameter values. The most constraining upper bound, that is the lowest
one, is then selected. In the three-body OBE, the trial states |φi⟩ are chosen as eigenstates of
the harmonic oscillator Hamiltonian and two non-linear variational parameters are included.
This section develops an efficient procedure for computing the corresponding matrix elements,
particularly for the case of three spinless particles.

2.1.1 The Harmonic Oscillator Eigenstates

Before evaluating the matrix elements, it is necessary to introduce the harmonic oscillator
eigenstates as well as some of their properties. Specifying the harmonic oscillator Hamiltonian
(1.51) for a generic pair of three-dimensional coordinates, denoted x and y, and omitting its
parameters gives

Hoh(p, q,x,y) =
p2

2
+

q2

2
+

x2

2
+

y2

2
. (2.1)

Here, p and q are the conjugate variables to x and y, respectively. These coordinates are
supposed to be dimensionless. This Hamiltonian can be solved analytically using the separation
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of variables method,

Hoh(p, q,x,y) =

(
p2

2
+

x2

2

)
+

(
q2

2
+

y2

2

)
= Hoh(p,x) +Hoh(q,y) (2.2)

Since both partial Hamiltonians have the same structure, they share the same spectrum. The
wave functions of the eigenstates can be found in any quantum mechanics textbooks [5, 6],

φnℓm(r) = Rnℓ(r)Yℓm(r̂) with Rnℓ(r) =

√
2(n!)

Γ(n+ ℓ+ 3/2)
rℓe−

r2

2 Lℓ+1/2
n (r2),

and Enℓm = 2n+ ℓ+
3

2
,

(2.3)

with n = 0, 1, ... and ℓ = 0, 1, .... Above, r and r̂ denote the modulus and angular components
of the vector r, respectively. The function Yℓm represents the standard spherical harmonics [35]
and Lℓ+1/2

n denotes the generalized Laguerre polynomials [36]. The use of spherical harmonics
ensures that φnℓm(r) is an eigenstate of both the angular momentum Casimir operator and
the third projection of the angular momentum associated with r. The corresponding quantum
numbers, ℓ and m, are often referred to as orbital quantum numbers. Notably, states with
different m values are degenerated. The remaining quantum number, n, characterises the radial
contribution to the energy and is thus known as the radial quantum number. The different φnℓm

wave functions are orthonormal.
With the separation of variables, the eigenfunctions for the full Hamiltonian, denoted

ΦL
nxℓxnyℓy

(x,y), are expressed as products of the eigenstates of the partial Hamiltonians. The
corresponding eigenvalues, denoted EL

nxℓxnyℓy
, are given by the sum of the partial eigenvalues,

ΦL
nxℓxnyℓy(x,y) =

[
φnxℓx(x)φnyℓy(y)

]
L

and EL
nxℓxnyℓy = 2nx + ℓx + 2ny + ℓy + 3. (2.4)

With this definition, the ΦL
nxℓxnyℓy

wave functions are orthogonal too. As suggested by the
notation, nx and ℓx (resp. ny and ℓy) are interpreted as the radial and orbital quantum numbers
associated with the coordinate x (resp. y). A combination of these quantum numbers that will
frequently appear in the following discussions is Q, the number of quanta associated with Φ,

Q = 2nx + ℓx + 2ny + ℓy. (2.5)

In (2.4), the square brackets [...]L indicate that different third projections of angular momentum
associated with the coordinates x and y are coupled to construct eigenstates of the total angular
momentum operators, namely L2 = (Lx +Ly)

2 and Lz = (Lx)z + (Ly)z. The corresponding
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quantum numbers are denoted L and M , respectively. This recoupling is possible because the
eigenstates (2.3) are degenerate in m. The coefficients involved in this recombination, denoted
⟨ℓxmxℓymy|LM⟩, are the well-known Clebsh-Gordan coefficients [35],

[
φnxℓx(x)φnyℓy(y)

]
L
=
∑
mxmy

⟨ℓxmxℓymy|LM⟩φnxℓxmx(x)φnyℓymy(y). (2.6)

Since Clebsh-Gordan coefficients are well-documented, their derivation and computation will not
be detailed here1. For the following discussions, it suffices to recall the standard rules for angular
momentum coupling: the quantum numbers ℓx, ℓy and L must satisfy |ℓx − ℓy| ≤ L ≤ ℓx + ℓy.
Definition (2.6) should be understood as a simple basis transformation, allowing one to switch
from the common eigenstates of Lx

2, (Lx)z, Ly
2 and (Ly)z to those of L2, Lz, Lx

2 and Ly
2.

The latter basis is preferred because total angular momentum is an observable of interest, and
because most Hamiltonians commute with both L2 and Lz. In the notation [...]L, the total
angular momentum projection M has been omitted. This is because none of the matrix elements
considered in the following sections explicitly depend on this quantum number2.

The wave functions Φ are the ones used as trial functions in the oscillator bases expansion
for three-body systems. Therefore, efficiently evaluating matrix elements such as

⟨ΦL
n′
xℓ

′
xn

′
yℓ

′
y
(x,y)| O(x,y) |ΦL

nxℓxnyℓy(x,y)⟩ and ⟨ΦL
n′
xℓ

′
xn

′
yℓ

′
y
(x,y)| O(p, q) |ΦL

nxℓxnyℓy(x,y)⟩ (2.7)

is a key objective of this method. The remainder of this section discusses properties of the
harmonic oscillator eigenstates that will provide support in this regard.

Talmi’s integral technique

In general, it is possible to reduce the aforementioned matrix elements to the evaluation of
matrix elements on one-body harmonic oscillator eigenfunctions (2.3),

⟨φn′ℓ′m′(r)| O(ar) |φnℓm(r)⟩ = δℓ′ℓδm′m

∫
r2dr Rn′ℓ(r)O(ar)Rnℓ(r). (2.8)

with a a real parameter which has been made explicit for further use. Because O only depend on
the modulus of r, angular integrals are turned into Kronecker deltas using spherical harmonics

1 Clebsh-Gordan coefficients play an important role in the theory of group representations, particularly in the
decomposition of tensor product representations into irreducible representations. For further details, the
reader is referred to [37].

2 Since the quantum numbers mx and my are summed over in the coupling, these are also naturally excluded
from the left-hand side notation.
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orthonormality, [35]. The remaining integral can be evaluated using the Talmi’s integral
technique [38],

∫
r2dr Rn′ℓ(r)O(ar)Rnℓ(r) =

n+n′+ ℓ+ℓ′
2∑

p= ℓ+ℓ′
2

B(n′ℓ, nℓ, p) Ip(O, a) (2.9)

with
Ip(O, a) =

2

Γ(p+ 3/2)

∫
dr r2p+2e−r2O(ar). (2.10)

In short, property (2.9) explicitly expresses the Laguerre polynomials from the Rnl functions,
allowing the left-hand side integral to be expanded as a sum of simpler ones, known as Talmi’s
integrals and denoted Ip(O, a). A closed formula for the B(n′ℓ;nℓ; p) coefficient is provided
in [38]. Since these coefficients depend only on the quantum numbers within the set of trial
states, they can be computed once, stored and subsequently retrieved whenever needed. For
many functions O (including cases of physical interest), the integrals Ip(O, a) admit analytical
expressions, eliminating the need for numerical integration (see Complement 2.A). In all cases,
the use of formulas (2.9) and (2.10) enables rapid and accurate evaluations of the matrix elements
(2.8).

Momentum matrix element

The O function in equation (2.8) depend solely on a position variable. Consequently, the
direct application of Talmi’s integral technique is not feasible when dealing with an operator that
depends on momentum. However, as the Fourier transform of a one-body harmonic oscillator
eigenfunctions remains a one-body harmonic oscillator eigenfunctions (up to a phase factor) [39],

1

(2π)3/2

∫
d3r e−iprφnℓm(r) = (−i)2n+ℓφnℓm(p), (2.11)

this technique can still be applied by switching to momentum representation. For quadratic
functions of momentum, which are particularly relevant as they are associated with non-
relativistic kinetic energy, the following relation can also be employed to simplify calculations
[40, relation 3.10],

⟨φn′ℓ′m′(r)|p2 |φnℓm(r)⟩ = δℓ′ℓδm′m

(
(2n+ ℓ+ 3/2)δn′n

+
√
n(n+ ℓ+ 1/2)δn′+1n +

√
n′(n′ + ℓ+ 1/2)δn′n+1

)
.

(2.12)
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Parity inversion and exchange of coordinates

Thanks to the properties of spherical harmonics [35, section 5.5.2], one can show that a parity
inversion of the x and y coordinates in the ΦL

nxℓxnyℓy
(x,y) functions simply produces additional

real phase factors,
ΦL

nxℓxnyℓy(−x,−y) = (−1)ℓx+ℓyΦL
nxℓxnyℓy(x,y). (2.13)

The x and y coordinates can also be exchanged. Using symmetry properties of Clebsh-Gordan
coefficients [35, section 8.4.3], one can show that

ΦL
nxℓxnyℓy(y,x) = (−1)L−ℓx−ℓyΦL

nyℓynxℓx(x,y). (2.14)

Rotation of the coordinates

Instead of directly solving the Hamiltonian (2.1), one may try beforehand a change of
coordinates. This Hamiltonian is symmetrical under the following coordinate transformation,x̃ = cos β x+ sin β y

ỹ = − sin β x+ cos β y
. (2.15)

As a consequence, all the functions ΦL
nxℓxnyℓy

(x̃, ỹ) are also eigenfunctions of (2.1) with 2nx +

ℓx + 2ny + ℓy + 3 as eigenvalue. This ensures that any ΦL
nxℓxnyℓy

(x̃, ỹ) can be expressed as
a linear combination of ΦL

n′
xℓ

′
xn

′
yℓ

′
y
(x,y) functions that share the same energy eigenvalue than

ΦL
nxℓxnyℓy

(x̃, ỹ),

ΦL
nxℓxnyℓy(x̃, ỹ) =

∑
n′
xℓ

′
xn

′
yℓ

′
y

⟨n′
xℓ

′
xn

′
yℓ

′
y;L|nxℓxnyℓy;L⟩β Φ

L
n′
xℓ

′
xn

′
yℓ

′
y
(x,y) (2.16)

where the summations on n′
x, ℓ′y, n′

y and ℓ′y are restricted to terms with a number of quanta
equal to 2nx + ℓx + 2ny + ℓy. This constraint ensures that the summation is finite. The coeffi-
cients denoted as ⟨n′

xℓ
′
xn

′
yℓ

′
y;L|nxℓxnyℓy;L⟩β in equation (2.16) are known as Brody-Moshinsky

coefficients with angle β. These can be computed recursively using the formula proposed in [41].

Passage to Hyperspherical coordinates

The Hamiltonian (2.1) can also be solved in hyperspherical coordinates [42]. The two
three-dimensional x and y vectors are replaced by a single six-dimensional vector for which
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hyperspherical coordinates are used [43, 42]. An hyperradius is defined

ρ2 = x2 + y2, (2.17)

as well as five hyperangles. Four among the five angles are simply chosen as the usual polar and
azimuthal angles of the x and y vectors. These will therefore respectively be denoted θx, θy, φx

and φy. The fifth angle, denoted α, is defined as follows3,

x = ρ sinα, y = ρ cosα. (2.18)

Because both x and y are positive definite, α lies in between 0 and π/2. For notation convenience,
in the following, the set of angles (θx, θy, φx, φy, α) will be denoted as Ω. Switching to this
system of coordinates, the harmonic oscillator Hamiltonian (2.1) in position representation reads

Hoh = −1

2

(
∂2

∂ρ2
+

5

ρ

∂

∂ρ
− 1

ρ2
∆Ω

)
+
ρ2

2
. (2.19)

Above ∆Ω is the hyperspherical Laplacian operator in six dimensions. The full expression of this
operator is depicted in [43, 42]. Its eigenfunctions, known as hyperspherical harmonics, reads

YℓxℓyLM
K (Ω) = N

ℓxℓy
K sinℓx α cosℓy αP

(ℓx+ 1
2
,ℓy+

1
2)

n (cos 2α)
[
Yℓx(θx, φx)Yℓy(θy, φy)

]
L

with N ℓxℓy
K =

(
2n!(K + 2)(n+ ℓx + ℓy + 1)!

Γ(n+ ℓx + 3/2)Γ(n+ ℓy + 3/2)

)1/2

and n =
K − ℓx − ℓy

2
(2.20)

with the corresponding eigenvalue K(K + 4). Above, P (a,b)
n denotes a Jacobi polynomial

[36]. The expression (2.19) is the one of a one-body harmonic oscillator Hamiltonian in a
six-dimensional space. Separating the hyperradial and hyperangular parts of the equation, the
following eigenfunctions are obtained [42],

Ψ
ℓxℓyL
NK (ρ,Ω) = RNK(ρ)YℓxℓyLM

K (Ω) with RNK(ρ) =

√
2(N !)

Γ(K +N + 3)
e−

ρ2

2 ρKLK+2
N (ρ2), (2.21)

the associated eigenvalues being Eℓxℓymxmy

NK = 2N +K + 3. By construction, states Ψ
ℓxℓyL
NK have

a total orbital angular momentum L as well as individual orbital angular momenta ℓx and ℓy.
Both sets of functions Ψ

ℓxℓyL
NK (ρ,Ω) and ΦL

nxℓxnyℓy
(x,y) are eigenstates of the harmonic

3 This definition differs from the one used in [42]. To compare our relations with the ones from this reference,
x and y have to be exchanged.
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oscillator Hamiltonian, of the total orbital angular momentum operator and of the two individual
angular momenta operators. Therefore, the ΦL

nxℓxnyℓy
(x,y) functions can be written as a linear

combination of all the Ψ
ℓxℓyL
NK (ρ,Ω) functions with energy eigenvalue EL

nxℓxnyℓy
,

ΦL
nxℓxnyℓy(x,y) =

∑
N K

⟨nxny|NK⟩ℓxℓy Ψ
ℓxℓyL
NK (ρ,Ω) (2.22)

where the summations on N and K are restricted to terms where 2N +K = 2nx + ℓx +2ny + ℓy.
The coefficients ⟨nxny|NK⟩ℓxℓy are defined by the following overlap integral,

⟨nxny|NK⟩ℓxℓy =

∫
d3x d3yΨ

ℓxℓyL
NK (ρ,Ω)∗ΦL

nxℓxnyℓy(x,y). (2.23)

In the following, these coefficients will be referred as hyperspherical coefficients. A closed formula
to compute them is demonstrated in Complement 2.B.

2.1.2 Three-body Hamiltonians and Jacobi Coordinates

The aforementioned harmonic oscillator eigenstates will be used to solve three-body Hamilto-
nians of the form (1.12), which is restated below for reference,

H = T (p1,p2,p3) + V12(r12) + V13(r13) + V23(r23) +W

(√
r212 + r213 + r223

)
with rij = |ri − rj|.

(2.24)

As a reminder, variables ri and pi denote the position and momentum of the i-th particle in
the system, respectively. Compared to (1.12), general two-body potentials Vij and a three-body
interaction W of the type announced in Section 1.1.2 are considered but one-body interactions
have been omitted, these being less common. For the kinetic part of H, both non-relativistic
(1.16) and semi-relativistic (1.17) kinematics can be considered.

To isolate the centre-of-mass motion in the Hamiltonian (2.24) requires to change of coor-
dinates. For many-body systems, Jacobi coordinates are often used. [28, 44]. In the case of
three non-relativistic particles, these replace the three individual positions by the centre-of-
mass position, the relative position between particle 1 and 2 and the relative position between
particle 3 and the centre-of-mass of particles 1 and 2. More precisely, for the current purpose,
dimensionless Jacobi coordinates scaled with two variational parameters, denoted a and b, are
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used,

ax = r1 − r2, by =
m1r1 +m2r2

m12

− r3, R =
m1r1 +m2r2 +m3r3

M
, (2.25)

where m12 stands for m1 +m2. These dimensionless Jacobi coordinates were first introduced in
nuclear physics [44], and have since been applied to hadronic physics as well [28]. Oscillator
bases with a single scale parameter have also been employed in nuclear physics for systems of 2,
3, 4, and even N particles [40]. The momenta conjugate to x, y and R are respectively given by

p

a
=
m2p1 −m1p2

m12

,
q

b
=
m3(p1 + p2)−m12p3

M
, P = p1 + p2 + p3. (2.26)

The interpretation of Jacobi coordinates in terms of centre-of-mass positions also applies for
identical relativistic particles. However, in a relativistic treatment of systems with unequal
masses, defining the centre-of-mass position requires knowing each particle’s energy, making this
task more complex. Nevertheless, although the interpretation of Jacobi coordinates no longer
strictly holds in this context, the use of x and y coordinates to describe the internal motion
remains valid. In both classical and relativistic mechanics, the condition P = 0 ensures that
eigenenergies are not affected by a possible global translational motion of the system. The only
drawbacks of using Jacobi coordinates in relativistic contexts are potentially poorer convergence
rates and inadequate resulting eigenstates4. The Hamiltonian (2.24) can explicitly be written in
these Jacobi coordinates. The non-relativistic kinetic energies becomes

Tnr(p, q) =
p2

2µp

+
q2

2µq

with µp =
a2m1m2

m12

and µq =
b2m3m12

M
, (2.27)

the semi-relativistic one becomes

Tr(p, q) =

√(
m1

m12

q

b
+

p

a

)2

+m2
1 +

√(
m2

m12

q

b
− p

a

)2

+m2
2 +

√
q2

b2
+m2

3. (2.28)

Above, the centre-of-mass motion has been manually cancelled by setting P = 0. Finally, the
arguments of both two-body and three-body interactions are modified,

V12(|ax|) + V13

(∣∣∣∣−by − m2

m12

ax

∣∣∣∣)+ V23

(∣∣∣∣by − m1

m12

ax

∣∣∣∣) , (2.29)

4 The latter issue can be mitigated by employing the point-form formalism [45]
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W

(√
a2
(
1 +

m2
1 +m2

2

m2
12

)
x2 + 2b2y2 + 2ab

(
m2 −m1

m12

)
x · y

)
. (2.30)

2.1.3 Setup of the bases

As the centre of mass motion has been removed in H, both the variables R and P do not
enter in any parts of the Hamiltonian, thereby reducing the number of degrees of freedom to
two. The remaining x and y coordinates can be used as a pair of three-dimensional coordinates
on which harmonic oscillator eigenstates from Section 2.1.1 can depend. These functions will
now be used to construct a concrete set of trial states whose features are in accordance with the
system under consideration and the expectations of the user.

Orbital angular momentum and parity

First, in most problems, a solution with a given total orbital angular momentum is expected.
To ensure that the provided approximation satisfies this requirement, the set of Φ functions is
restricted to the ones whose L quantum number is in agreement with the expected total orbital
angular momentum. Similarly, for some applications, a parity eigenstate is also expected. As
the parity transformation, denoted Π, inverts the positions of each particles, its action on Jacobi
coordinates is given by Π† xΠ = −x and Π† yΠ = −y. Therefore, the action of the parity
operator on the trial functions can directly be deduced from relation (2.13),

ΠΦL
nxℓxnyℓy(x,y) = ΦL

nxℓxnyℓy(−x,−y) = (−1)ℓx+ℓyΦL
nxℓxnyℓy(x,y). (2.31)

The Φ functions are already parity eigenstates and the corresponding eigenvalue is given by the
parity of ℓx + ℓy. Filling the set of trial states with even (resp. odd) sum of ℓx and ℓy ensure
that the provided approximation will be a positive (resp. negative) parity eigenstate.

Symmetry under exchange of particles

As introduced in Section 1.1.4, in presence of identical particles, symmetries under the
exchange of pairs of particles have to be introduced. The state of a system containing two
identical particles must be either symmetric (for bosons) or anti-symmetric (for fermions) under
their permutation. Let us choose particle 1 and 2 as the two identical particle and denote P12

the operator that encodes their permutation. Acting on the Jacobi coordinates, this operator
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reverses x and lets y unchanged,

P†
12 xP12 = −x, P†

12 y P12 = y. (2.32)

As a consequence, the action of P12 on a Φ function can directly be obtained from a property
similar to (2.13),

P12Φ
L
nxℓxnyℓy(x,y) = ΦL

nxℓxnyℓy(−x,y) = (−1)ℓxΦL
nxℓxnyℓy(x,y). (2.33)

A Φ function is already an eigenstate of P12 and the corresponding eigenvalue is given by the
parity of its ℓx quantum number. In conclusion, in presence of two identical particles, the set of
trial states must be filled with Φ functions of same ℓx parity (odd in presence of fermions and
even in presence of bosons).

In presence of three identical particles, the situation is a bit more complicated. The state of
the system must now be completely (anti)symmetric under any exchange of particles. Hopefully,
because any permutation of three particles can be expressed in terms of two transpositions, it is
sufficient to (anti)symmetrise on the exchange of particles 1 and 2 and of particles 2 and 3. For
the first one, the task has already been done in the previous paragraph: a correct P12 symmetry
is ensured by considering only states of a given ℓx parity. The rest of the calculations considers
this selection as carried out. The (anti)symmetrisation must now be performed on the exchange
of particles 2 and 3, denoted P23. The action of this operator on Jacobi coordinates is given by

P†
23 xP23 =

x

2
+
b

a
y, P†

23 y P23 =
3a

4b
x− y

2
. (2.34)

With such a coordinate transformation, the Φ functions will not be eigenstates of this operator.
To obtain (anti)symmetric functions, one has to compute the matrix elements of the P23 operator
and to subsequently diagonalise it,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|P23 |ΦL

nxℓxnyℓy(x,y)⟩ = ⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|ΦL

nxℓxnyℓy(x
′,y′)⟩

with x′ =
x

2
+
b

a
y and y′ =

3a

4b
x− y

2
.

(2.35)

It has been shown in [28] that the eigenstates of P23 contain a finite number of Φ states only if
b =

√
3a/2. Otherwise, the symmetry of the trial states can only be approximated. This leads

to a trade-off between introducing a second non-linear variational parameter and preserving
the symmetry to the trial states. Reference [28] concluded that prioritising symmetry is the
preferable choice5. Assuming b =

√
3a/2, (2.34) becomes a rotation of coordinates as in (2.15)
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and the P23 matrix elements can be evaluated combining property (2.16) and the orthonormality
of the oscillator eigenstates,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|P23 |ΦL

nxℓxnyℓy(x,y)⟩ = δL′L(−1)ℓ
′
x+ℓ′y+L ⟨n′

yℓ
′
yn

′
xℓ

′
x;L

′|nxℓxnyℓy;L⟩π/6 . (2.36)

By definition, the Brody-Moshinsky coefficient in this relation is zero if both number of quanta
differs. As announced, if b =

√
3a/2, P23 mixes together a finite number of states, the ones with

the same total orbital angular momentum, the same parity and the same number of quanta.
Therefore, to exactly get symmetrized states, it is sufficient to built the P23 matrix up to an
arbitrary number of quanta and to diagonalise it. The set of trial states can then be filled with
all the obtained eigenvectors whose eigenvalue corresponds to the expected symmetry (namely
+1 for three-boson systems and −1 for three-fermion systems). As a consequence, for three
identical particles, the set Φ functions cannot be truncated randomly: all the Φ functions until
a given number of quanta are necessarily involved in the calculations.

Convenient truncation for the bases

Except for systems of three identical particles, it seems that the set of oscillator eigenstates can
be truncated everywhere. However, because property (2.16) will be used during the evaluation
of matrix elements, a given Φ function will be decomposed as a linear combination of all the Φ

functions that have the same number of quanta. Therefore, it is more convenient to include
from the beginning all these functions in the calculations. So, even for systems of three different
particles, the recommended sets of trial states contain all the Φ functions until a given number
of quanta, denoted Qmax. The higher Qmax is, the more accurate the approximation produced
by the set is but the larger the Hamiltonian matrix is.

Examples of trial sets

To illustrate the concepts discussed in this section, let us explicitly construct a few trial sets.
First, consider a system made up three different particles for which a solution with total angular
momentum L = 1 and negative parity is expected. Only states with a number of quanta less
than three are included, setting Qmax = 3. Within this set, trial states are ordered in ascending
number of quanta,

{Φ1
0100(x,y),Φ

1
0001(x,y),Φ

1
1100(x,y),Φ

1
0110(x,y),Φ

1
1001(x,y),Φ

1
0011(x,y),

Φ1
0201(x,y),Φ

1
0102(x,y)}.

(2.37)

5 Let us also mention that the constraint b =
√
3a/2 restores the OBE to its original form [31, 30].
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States with even numbers of quanta are forbidden by the parity constraint, while states that do
not satisfy |ℓx − ℓy| ≤ 1 ≤ ℓx + ℓy are excluded due to the angular momentum constraint.

As a second example, consider a system of two identical bosons and a different one. Here, a
state with angular momentum L = 0 and positive parity is expected, and the break condition is
set to Qmax = 4. This yields the following set of trial states,

{Φ0
0000(x,y),Φ

0
1000(x,y),Φ

0
0010(x,y),Φ

0
2000(x,y),Φ

0
0020(x,y),Φ

0
1010(x,y),Φ

0
0202(x,y)}. (2.38)

States with odd numbers of quanta are excluded by the parity constraint, those with ℓx ̸= ℓy

are ruled out by the angular momentum constraint, and finally, those with odd ℓx are forbidden
by the symmetry constraint.

As a final example, consider a system of three identical bosons with expected angular
momentum L = 0 and positive parity. For such a system, the trial set consists of eigenstates of
P23. With Qmax = 4, the resulting trial set is

{Φ0
0000(x,y),

Φ0
1000(x,y) + Φ0

0010(x,y)√
2

,

√
5

4
Φ0

2000(x,y) +

√
5

4
Φ0

0020(x,y) +

√
3

8
Φ0

1010(x,y),

Φ0
2000(x,y) + Φ0

0020(x,y)

4
−
√

5

24
Φ0

1010(x,y) +

√
2

3
Φ0

0202(x,y)}. (2.39)

Since states in this trial set are combinations of those from (2.38), the conditions on angular
momentum and parity are preserved. Furthermore, all included states are symmetric under any
particle exchange.

2.1.4 Calculation of Matrix Elements

The set of trial states being chosen, the matrix elements of the Hamiltonian have now to be
evaluated. This goal will be completed thanks to the properties enumerated in section 2.1.1.
Kinetic energies, two-body interactions and three-body interactions are considered separately.

Non-relativistic kinetic energy

Non-relativistic kinetics (2.27) are considered first. The following matrix elements have to be
evaluated,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|

(
p2

2µp

+
q2

2µq

)
|ΦL

nxℓxnyℓy(x,y)⟩

=
1

2µp

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|p2 |ΦL

nxℓxnyℓy(x,y)⟩+
1

2µq

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)| q2 |ΦL

nxℓxnyℓy(x,y)⟩ .
(2.40)
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As both terms can be evaluated similarly, let us focus on the first one. To start with, Φ functions
are expressed using relations (2.4) and (2.6). Because the p2 operator only acts on the x part
of the Φ function, the orthonormalisation of the φ function can be used to get rid of the y

dependence. In addition, considering that p2 is a scalar operator6, Clebsh-Gordan coefficients
can be removed using results from [35, section 8.1.1],

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|p2 |ΦL

nxℓxnyℓy(x,y)⟩ = δL′Lδn′
ynyδℓ′yℓyδℓ′xℓx ⟨ϕn′

xℓx0(x)|p
2 |ϕnxℓx0(x)⟩ . (2.41)

Relation (2.12) can then be used to evaluate the residual matrix element. Collating with the
analogous result for the q2 term, the following analytical expression for the kinetic energy matrix
energy is obtained,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|

(
p2

2µp

+
q2

2µq

)
|ΦL

nxℓxnyℓy(x,y)⟩

= δL′Lδℓ′xℓxδℓ′yℓy

(
δn′

yny

a2
(Kp)n′

xnx
+
δn′

xnx

b2
(Kq)n′

yny

) (2.42)

with

(Kp)n′
xnx

=
m12

2m1m2

(
(2nx + ℓx + 3/2)δn′

xnx +
√
nx(nx + ℓx + 1/2)δn′

x+1nx

+
√
n′
x(n

′
x + ℓx + 1/2)δn′

xnx+1

)
,

(Kq)n′
yny

=
M

2m12m3

(
(2ny + ℓy + 3/2)δn′

yny +
√
ny(ny + ℓy + 1/2)δn′

y+1ny

+
√
n′
y(n

′
y + ℓy + 1/2)δn′

yny+1

)
.

(2.43)

The Kp and Kq matrices being independent of the a and b variational parameters, they can
be computed once for all at the beginning of the optimisation. Let us also mention that if the
three particles are identical and b =

√
3a/2, due to symmetry properties of the trial states, both

terms from (2.40) proves to be equal, thereby simplifying calculations.

Two-body potential matrix elements

The two-body potentials divide in three terms, one for each pair of particles. The one related
to particle 1 and 2 only depends on the x coordinate. Using the same arguments than for
relation (2.41) in the treatment of the non-relativistic kinetic energy, the y coordinate and the

6 An operator is called scalar if it commutes with all the angular momentum operators. Especially, when a
scalar operator acts on an angular momentum eigenstate, the resulting state retains this property.
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Clebsh-Gordan coefficients can be eliminated

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|V12(a|x|) |ΦL

nxℓxnyℓy(x,y)⟩

= δL′Lδn′
ynyδℓ′yℓy ⟨φn′

xℓ
′
x0(x)|V12(a|x|) |φnxℓx0(x)⟩ .

(2.44)

The remaining matrix element can be evaluated using the Talmi’s integral technology developed
in Section 2.1.1.

Both other two-body interactions depend explicitly on the x and y coordinates, thereby
making their evaluation less straightforward. Next developments focus on the V23 matrix
elements,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|V23

(∣∣∣∣by − m1

m12

ax

∣∣∣∣) |ΦL
nxℓxnyℓy(x,y)⟩ . (2.45)

To evaluate these matrix elements, the x and y coordinates can be rotated as in relation (2.15).
An angle β1 is defined so that

cos(β1) =
m12

γ1
b, sin(β1) =

m1

γ1
a. (2.46)

with γ1 =
√
b2m2

12 + a2m2
1. New x̃ and ỹ coordinates are obtained by rotating −x and y with

angle −β1,

x̃ =
m12

γ1

(
−bx− m1

m12

ay

)
, ỹ =

m12

γ1

(
− m1

m12

ax+ by

)
. (2.47)

The angle and the rotation have been chosen so that the argument of the V23 function is colinear
with the ỹ coordinate. The inverse change of coordinates rotates x̃ and ỹ with angle β1 to
recover −x and y. Using relations (2.13) and (2.16), the Φ functions can be rewritten in terms
of x̃ and ỹ,

ΦL
nxℓxnyℓy(x,y) = (−1)ℓx

∑
νxλxνyλy

⟨νxλxνyλy;L|nxℓxnyℓy;L⟩β1
ΦL

νxλxνyλy
(x̃, ỹ). (2.48)

When inserted in (2.45), equation (2.48) gives

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|V23

(∣∣∣∣by − m1

m12

ax

∣∣∣∣) |ΦL
nxℓxnyℓy(x,y)⟩

= (−1)ℓx+ℓ′x
∑

νxλxνyλy

∑
ν′xλ

′
xν

′
yλ

′
y

⟨ν ′xλ′xν ′yλ′y;L′|n′
xℓ

′
xn

′
yℓ

′
y;L

′⟩
β1
⟨νxλxνyλy;L|nxℓxnyℓy;L⟩β1

⟨ΦL′

ν′xλ
′
xν

′
yλ

′
y
(x̃, ỹ)|V23

(
γ1
m12

|ỹ|
)
|ΦL

νxλxνyλy
(x̃, ỹ)⟩

(2.49)
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which can be simplified using the same arguments than for V12 and for the non-relativistic
kinetic energy,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|V23

(∣∣∣∣by − m1

m12

ax

∣∣∣∣) |ΦL
nxℓxnyℓy(x,y)⟩

= δL′L(−1)ℓx+ℓ′x
∑

νxλxνyλyν′yλ
′
y

⟨νxλxν ′yλ′y;L′|n′
xℓ

′
xn

′
yℓ

′
y;L

′⟩
β1
⟨νxλxνyλy;L|nxℓxnyℓy;L⟩β1

⟨φν′yλ
′
y0(ỹ)|V23

(
γ1
m12

|ỹ|
)
|φνyλy0(ỹ)⟩ .

(2.50)

This formula, together with the Talmi’s integral technique, allows for an efficient evaluation of V23
matrix elements. However, because β1 explicitly depends on the a and b variational parameters,
Brody-Moshinsky coefficients will have to be recomputed at each step of the optimisation.

The V13 matrix element can be evaluated using the same technique than for V23. First, a β2
angle is introduced so that

cos(β2) =
m12

γ2
b, sin(β2) =

m2

γ2
a. (2.51)

with γ2 =
√
b2m2

12 + a2m2
2. New x̃ and ỹ coordinates are defined by rotating −y and x with

angle −β2. The x̃ coordinate appears to be proportional to the argument of V13 while relations
(2.13), (2.14) and (2.16) are used to rewrite the states in terms of the new coordinates. Finally,
simplifying the remaining matrix elements, a relation similar to (2.50) is obtained7,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|V13

(∣∣∣∣−by − m2

m12

ax

∣∣∣∣) |ΦL
nxℓxnyℓy(x,y)⟩

= δL′L(−1)ℓx+ℓ′x
∑

νxλxνyλyν′xλ
′
x

⟨ν ′xλ′xνyλy;L′|n′
yℓ

′
yn

′
xℓ

′
x;L

′⟩
β2
⟨νxλxνyλy;L|nyℓynxℓx;L⟩β2

⟨φν′xλ
′
x0(x̃)|V13

(
γ2
m12

|x̃|
)
|φνxλx0(x̃)⟩ .

(2.52)

Again, β2 depends on a and b, forcing to recompute Brody-Moshinsky coefficients at each
step of the optimisation. However, in presence of at least two identical particles (chosen as
1 and 2), relation (1.48) can be used to show that V23 and V13 matrix elements are equal.
Therefore, the evaluation of one of these two matrix elements and the associated calculation of

7 The formula proposed in [28] differs a bit from the one presented here. The equivalence of the two formula
can be shown using symmetry properties of Brody-Moshinsky coefficients.
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Brody-Moshinsky coefficient can be avoided,

⟨V23 + V13⟩ = 2 ⟨V23⟩ . (2.53)

The same accounts for three identical particles: the three two-body potential matrix elements
are shown to be equal and the single calculation of V12 is sufficient,

⟨V12 + V23 + V13⟩ = 3 ⟨V12⟩ . (2.54)

Semi-relativistic matrix elements

The semi-relativistic matrix elements can be computed by switching to momentum rep-
resentation. Making use of relation (2.11), the evaluation of these matrix elements reduces
to

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|Tr(p, q) |ΦL

nxℓxnyℓy(x,y)⟩

= i2n
′
x+ℓ′x+2n′

y+ℓ′y(−i)2nx+ℓx+2ny+ℓy

∫
d3p d3q

(
ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(p, q)

)∗
Tr(p, q) Φ

L
nxℓxnyℓy(p, q).

(2.55)

The integral in the right-hand side is extremely similar to the ones evaluated for two-body
matrix elements. The Tr function divides also in three terms. The third one only depends on
the q variable and can then be evaluated similarly to the V12 matrix element,

i2n
′
x+ℓ′x+2n′

y+ℓ′y(−i)2nx+ℓx+2ny+ℓy

∫
d3p d3q

(
ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(p, q)

)∗(q2

b2
+m2

3

)1/2

ΦL
nxℓxnyℓy(p, q)

= (i)2n
′
y+ℓ′y(−i)2ny+ℓyδL′Lδn′

xnxδℓ′xℓx

∫
d3q

(
ϕn′

yℓ
′
y0(q)

)∗(q2

b2
+m2

3

)1/2

ϕnyℓy0(q). (2.56)

The front phase proves real as long as a given parity is implemented. The residual integral has
the structure that Talmi’s integral technique is able to evaluate (see Complement 2.A for an
analytical formula). The two other terms can be evaluated following the same procedure than
for the V23 and V13 two-body matrix elements. Let us consider the following term at first,

∫
d3p d3q

(
ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(p, q)

)∗(( m1

m12

q

b
+

p

a

)2

+m2
1

)1/2

ΦL
nxℓxnyℓy(p, q). (2.57)

New p̃ and q̃ coordinates are defined by rotating p and −q with angle −β1. On the one hand,
the p̃ coordinate turns out to be proportional to the linear combination of p and q that occurs
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in the matrix element,

p̃ = η1

(
m1

m12

q

b
+

p

a

)
with η1 =

abm12√
b2m2

12 + a2m2
1

. (2.58)

On the other hand the Φ functions can be rewritten in terms of the new coordinates making
use of relations (2.13) and (2.16). Combining these results, eliminating the Clebsh-Gordan
coefficients and proceeding to integration on q̃, the aforementioned matrix element can be
evaluated by computing8

∫
d3p d3q

(
ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(p, q)

)∗(( m1

m12

q

b
+

p

a

)2

+m2
1

)1/2

ΦL
nxℓxnyℓy(p, q)

= (−1)ℓy+ℓ′y
∑

ν′xλ
′
xν

′
yλ

′
y

∑
νxλxνyλy

⟨ν ′xλ′xν ′yλ′y;L′|n′
xℓ

′
xn

′
yℓ

′
y;L

′⟩
β1
⟨νxλxνyλy;L|nxℓxnyℓy;L⟩β1

δν′yνyδλ′
yλy

∫
d3p̃

(
ϕν′xλ

′
x0(p̃)

)∗( p̃2

η21
+m2

1

)1/2

ϕνxλx0(p̃).

(2.59)

Once again the remaining integral can be evaluated using Talmi’s integral technology. Finally,
same tricks are used to compute the third matrix element,

∫
d3p d3q

(
ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(p, q)

)∗(( m2

m12

q

b
− p

a

)2

+m2
2

)1/2

ΦL
nxℓxnyℓy(p, q). (2.60)

New coordinates are defined by rotating p and q with angle −β2 and, using the same arguments,
the six-dimensional integral is reduced to8

∫
d3p d3q

(
ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(p, q)

)∗(( m2

m12

q

b
− p

a

)2

+m2
2

)1/2

ΦL
nxℓxnyℓy(p, q)

=
∑

ν′xλ
′
xν

′
yλ

′
y

∑
νxλxνyλy

⟨ν ′xλ′xν ′yλ′y;L′|n′
xℓ

′
xn

′
yℓ

′
y;L

′⟩
β2
⟨νxλxνyλy;L|nxℓxnyℓy;L⟩β2

δν′yνyδλ′
yλy

∫
d3p̃

(
ϕν′xλ

′
x0(p̃)

)∗( p̃2

η22
+m2

2

)1/2

ϕνxλx0(p̃)

(2.61)

with η2 = abm12/
√
b2m2

12 + a2m2
2 and where the remaining integrals can still be evaluated with

Talmi’s technique. In presence of two identical particles, thanks to symmetry properties of

8 The result in [28] slightly differs from the one presented here because, in this reference, parity conservation
has been used to simplify the phases.
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the states, this matrix element proves to be equal to the previous one, allowing to avoid its
evaluation. In presence of three identical particles, the three matrix elements proves to be equal
and only formula (2.56) is needed. Provided that a given parity is implemented, all matrix
elements of T prove real.

Three-body potential matrix elements

Due to the x ·y term in (2.30), three-body potential matrix elements seem harder to evaluate
than the two-body ones. In general, handling such an expression, which depends on the angle
between two coordinates, requires a multipole expansion. However in presence of at least two
identical particles (chosen as 1 and 2), this term disappears thanks to the vanishing m2 −m1

coefficient,√
a2
(
1 +

m2
1 +m2

2

m2
12

)
x2 + 2b2y2 + 2ab

(
m2 −m1

m12

)
x · y =

√
2b2y2 + 3/2a2x2. (2.62)

Under this assumption, the matrix elements can be evaluated naively, using directly the
expressions (2.3) and (2.4) for the Φ functions,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|W

(√
2b2y2 + 3/2a2x2

)
|ΦL

nxℓxnyℓy(x,y)⟩

= δℓ′xℓxδℓ′yℓy

∫
x2dx y2dy Rn′

xl
′
x
(x)Rn′

yℓ
′
y
(y)W

(√
2b2y2 + 3/2a2x2

)
Rnxℓx(x)Rnyℓy(y).

(2.63)

Properties of Clebsh-Gordan coefficients [35, section 8.1.1] and spherical harmonics orthonormal-
ity relation [35, sections 5.1.4] have been used to get rid of the angular dependence. Within this
approach, matrix elements are given by two-dimensional integrals, resulting in a considerably
higher numerical cost than for the evaluation of matrix elements for two-body potentials.

However, if in addition the constraint on a and b for three identical particles is imposed, the
argument of W proves to be proportional to the hyperradius defined in (2.17),

W
(√

2b2y2 + 3/2a2x2
)
= W

(√
3/2aρ

)
. (2.64)

It is worth noting that this relation requires that m1 = m2 and b =
√
3a/2 but not that m2 = m3.

Therefore, the following developments can also be used for systems of two identical particles
provided that the second non-linear variational parameter is gave up. The matrix elements of a
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function that only depends on the hyperradius can easily be evaluated using property (2.22),

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)|W

(√
3/2aρ

)
|ΦL

nxℓxnyℓy(x,y)⟩

=
∑

N ′K′NK

⟨n′
xn

′
y|N ′K ′⟩

ℓ′xℓ
′
y
⟨nxny|NK⟩ℓxℓy ⟨Ψ

ℓ′xℓ
′
yL

′

N ′K′ (ρ,Ω)|W
(√

3/2aρ
)
|ΨℓxℓyL

NK (ρ,Ω)⟩ .

(2.65)
Expressions of Ψ functions are given in (2.21). In the remaining matrix elements, five of the
six integrals are simplified using the orthogonality of hyperspherical harmonics [43, relation
(3.24)] and Clebsh-Gordan properties [35, section 8.1.1]. The remaining integrals reads (volume
element in hyperspherical coordinates is given in (2.95))

⟨Ψℓ′xℓ
′
yL

′

N ′K′ (ρ,Ω)|W
(√

3/2aρ
)
|ΨℓxℓyL

NK (ρ,Ω)⟩

= δL′Lδℓ′xℓxδℓ′yℓyδK′K

∫
dρ ρ5RN ′K(ρ)W

(√
3/2aρ

)
RNK(ρ).

(2.66)

This relation is extremely similar to relation (2.8) and can be evaluated using the same strategy,
resulting in a modified Talmi’s integral technique. The proof of the formula for B(nℓ;n′ℓ′; p)

coefficients given in [38] is based on an explicit expression of Laguerre polynomials which
encompasses both integers and half-integers indices, factorials having simply to be replaced
by gamma functions [36]. Therefore, even if the half-integer l + 1/2 index in the Laguerre
polynomial is replaced by an integer K + 2 index, this formula remains valid. It might have
required an adaptation because normalisation coefficients from (2.3) and from (2.21) are different
but these prove to cancel each other in the modified demonstration. As a consequence, the
following formula is obtained for the integral from (2.66),∫

dρ ρ5RN ′K(ρ)W
(√

3/2aρ
)
RNK(ρ)

=

N ′+N+ 2K+3
2∑

p= 2K+3
2

B(N ′K + 3/2;N K + 3/2; p)Ip(W,
√

3/2a)
(2.67)

with Ip defined in (2.10). Together, formulas (2.65), (2.66) and (2.67) allow for an efficient
evaluation of three-body potential matrix elements. It as been numerically checked with different
W that these ones provide the same results than relation (2.63).

This hyperspherical coefficient methodology has been specifically implemented to manage
three-body forces in three-body systems. Nevertheless, it can be inexpensively generalised to
systems of N identical particles. The corresponding developments are detailed in Complement
2.D.
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Evaluation of Observables

The matrix element calculation techniques introduced in this section allow for evaluations of
Hamiltonian matrix elements as well as expectation values of observables. Suppose that, using
the MacDonald theorem, an approximation for an eigenstate of an Hamiltonian H is obtained,

|ΨL
approx⟩ =

∑
nxℓxnyℓy

Cnxℓxnyℓy |ΦL
nxℓxnyℓy(x,y)⟩ (2.68)

where the summation is restricted to terms satisfying 2nx + ℓx + 2ny + ℓy ≤ Qmax, and the
coefficients Cnxℓxnyℓy result from the diagonalisation of H. The expectation value of an observable
O(|rij|) for this approximate state can be expressed in terms of matrix elements of O(|rij|)
evaluated on the trial states,

⟨ΨL
approx| O(|rij|) |ΨL

approx⟩

=
∑

n′
xℓ

′
xn

′
yℓ

′
y

∑
nxℓxnyℓy

C∗
n′
xℓ

′
xn

′
yℓ

′
y
Cnxℓxnyℓy ⟨ΦL

n′
xℓ

′
xn

′
yℓ

′
y
(x,y)| O(|rij|) |ΦL

nxℓxnyℓy(x,y)⟩ .
(2.69)

Developing efficient procedures to evaluate matrix elements like those on the right-hand side has
been one of the main focuses of this section. Consequently, once the approximate eigenstate is
determined, evaluating an observable becomes no more complex than calculating an additional
potential matrix. A similar argument applies to observables that depend on momentum variables
or the hyperradius. Recall that, for three identical particles, the trial states themselves are
linear combinations of Φ states. The situation remains analogous, but the coefficients Cnxℓxnyℓy

become combinations of those obtained during symmetrisation and the diagonalisation of the
Hamiltonian matrix.

2.2 Including Spin Management

To extend the previous discussions and incorporate spin into the description, it is necessary to
complement the spatial trial states introduced in Section 2.1.1 with spin states. Let us consider
three particles with spin s1, s2 and s3, respectively. Three-body spin states |s1m1; s2m2; s3m3⟩
were previously defined in Section 1.1.3. However, similar to the case of angular momentum,
it is often preferable to use spin trial states with well-defined total spin quantum numbers.
Individual spins can be coupled using a procedure analogous to that used for angular momentum
in equation (2.6). In this case, two successive two-body couplings are required to obtain a total
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spin for the trial states,

|
(
(s1s2)s12 s3

)
S
⟩ =

∑
m12,m3,
m2,m1

⟨s12m12s3m3|SM⟩ ⟨s1m1s2m2|s12m12⟩ |s1m1; s2m2; s3m3⟩ . (2.70)

As with angular momentum, since none of the matrix elements considered in this work depend
on the quantum number associated with the third total spin projection, Sz, it is omitted from
the notation. The above construction is only possible for s12 ∈ {|s1 − s2|, ..., s1 + s2} and
S ∈ {|s12 − s3|, ..., s12 + s3}. Consequently, by fixing the spins s1, s2, s3 and targeting a specific
total spin S, only a finite number of three-body spin states can be constructed. These are the
states for which s12 ∈ {|s1− s2|, ..., s1+ s2} and s12 ∈ {|S− s3|, ..., S+ s3}. The spin trial states
(2.70) can now complement the spatial trial states to form new trial sets,

|ΦL
nxℓxnyℓy ;χ

S
s12

⟩ = |
[
φnxℓx(x)φnyℓy(y)

]
L
⟩ ⊗ |

(
(s1s2)s12 s3

)
S
⟩ . (2.71)

Depending on the problem, one may either retain the quantum numbers of S and L separately
or combine them into quantum numbers of the total angular momentum J = (L+ S). In the
latter case, the states |ΦL

nxℓxnyℓy
;χS

s12
⟩ are further coupled using Clebsh-Gordan coefficients again.

However, in the current work, the OBE will only be used in the former case, as only spin-spin
interactions, such as those defined in (1.21), are considered.

Let us now turn to the evaluation of Hamiltonian matrix elements using the trial states (2.71).
Since none of the corresponding Hamiltonian terms affect the spin degrees of freedom, all the
formulas presented in Section 2.1.4 can be extended to the new trial state by simply adding
Kronecker deltas for the spin quantum numbers, δS′Sδs′12s12 . However, spin-spin interaction
potentials (1.21) depend on the spin part of the state. When evaluating the corresponding
matrix elements, both factors in the potential act on the respective parts of the trial state as
follows,

⟨ΦL′

n′
xℓ

′
xn

′
yℓ

′
y
;χS′

s′12
|V SS

ij |ΦL
nxℓxnyℓy ;χ

S
s12

⟩

= ⟨
[
φn′

xℓ
′
x
(x)φn′

yℓ
′
y
(y)
]
L′|Vij(|ri − rj|) |

[
φnxℓx(x)φnyℓy(y)

]
L
⟩

⟨
(
(s1s2)s′12

s3

)
S′
|Si · Sj |

(
(s1s2)s12 s3

)
S
⟩ .

(2.72)

The first factor on the right-hand side can be handled using the techniques from Section 2.1.4.
The second factor is discussed in the following paragraphs.
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Spin-Spin Interactions for Particles 1 and 2

Let us first focus on the contribution S1 · S2. By construction, the trial spin states (2.70)
are chosen as eigenstates of the Casimir operator associated with the total angular momentum
of particles 1 and 2,

S2
12 |
(
(s1s2)s12 s3

)
S
⟩ = s12(s12 + 1) |

(
(s1s2)s12 s3

)
S
⟩ where S2

12 = (S12)
2 = (S1 + S2)

2 . (2.73)

Since the spin of the three particles is definite from the outset, the trial spin states are also
eigenstates of the individual spin Casimir operators. The dot product S1 · S2 is conveniently
related to these operators,

S1 · S2 =
1

2

(
S2
12 − S2

1 − S2
2

)
. (2.74)

As a result, states |
(
(s1s2)s12 s3

)
S
⟩ turn out to be eigenstates of the operator S1 · S2, leading to

the following diagonal matrix,

⟨
(
(s1s2)s′12

s3

)
S′
|S1 · S2 |

(
(s1s2)s12 s3

)
S
⟩

=
1

2
(s12(s12 + 1)− s1(s1 + 1)− s2(s2 + 1)) δS′Sδs′12s12 .

(2.75)

This expression allows for straightforward evaluations of spin-spin matrix elements corresponding
to particles 1 and 2.

Spin-Spin interactions for particles 2 and 3

Computing spin matrix elements for interactions proportional to S2 · S3 is more challenging,
as the spin trial states (2.70) are not eigenstates of the S2

23 Casimir operator. To address this
difficulty, one can switch the coupling scheme and define states where particles 2 and 3 are
coupled at first, instead of particles 1 and 2,

|
(
s1 (s2s3)s23

)
S
⟩ =

∑
m23,m1
m2,m3

⟨s1m1s23m23|SM⟩ ⟨s2m2s3m3|s23m23⟩ |s1m1; s2m2; s3m3⟩ (2.76)

where s23 ∈ {|s2 − s3|, ..., s2 + s3} and s23 ∈ {|S − s1|, ..., S + s1}. Since these two different sets
of spin trial states span the exact same spin Hilbert space, they can be related through a change
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of basis formula,

|
(
(s1s2)s12 s3

)
S
⟩

= (−1)s1+s2+s3+S
√
2s12 + 1

∑
s23

√
2s23 + 1

{
s1 s2 s12

s3 S s23

}
|
(
s1 (s2s3)s23

)
S
⟩ .

(2.77)

The coefficients {...} above are known as 6j symbols and, like Clebsh-Gordan coefficients, are
well-documented [35]. Using the expansion (2.77) twice, matrix elements of S2 ·S3 are reported
on the spin states from (2.76),

⟨
(
(s1s2)s′12

s3

)
S′
|S2 · S3 |

(
(s1s2)s12 s3

)
S
⟩

=
√

2s′12 + 1
√
2s12 + 1

∑
s′23

∑
s23

√
2s′23 + 1

√
2s23 + 1

{
s1 s2 s′12

s3 S s′23

}{
s1 s2 s12

s3 S s23

}

⟨
(
s1 (s2s3)s′23

)
S′
|S2 · S3 |

(
s1 (s2s3)s23

)
S
⟩ .

(2.78)

The remaining matrix elements are evaluated using similar arguments as those used for S1 · S2.
Finally, one obtains

⟨
(
(s1s2)s′12

s3

)
S′
|S2 · S3 |

(
(s1s2)s12 s3

)
S
⟩

= δS′S

√
(2s′12 + 1)(2s12 + 1)

∑
s23

(
2s23 + 1

2

){
s1 s2 s′12

s3 S s23

}{
s1 s2 s12

s3 S s23

}
(s23(s23 + 1)− s2(s2 + 1)− s3(s3 + 1)) .

(2.79)

Although slightly more intricate than the corresponding formula for particles 1 and 2, this result
enables efficient evaluations of spin matrix elements.

Spin-Spin Interactions for Particles 1 and 3

The situation closely parallels the computation of matrix elements for particles 2 and 3. Once
again, this problem is solved by switching to a different coupling scheme using a third set of
spin states

|
(
(s1s3)s13 s2

)
S
⟩ =

∑
m13,m2
m1,m3

⟨s13m13s2m2|SM⟩ ⟨s1m1s3m3|s13m13⟩ |s1m1; s2m2; s3m3⟩ (2.80)
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where s13 ∈ {|s1 − s3|, ..., s1 + s3} and s13 ∈ {|S − s2|, ..., S + s2}. The corresponding change of
basis formula also involves 6j symbols,

|
(
(s1s2)s12 s3

)
S
⟩

= (−1)s2+s3+s12
√
2s12 + 1

∑
s13

(−1)s13
√
2s13 + 1

{
s2 s1 s12

s3 S s13

}
|
(
(s1s3)s13 s2

)
S
⟩ .

(2.81)

By performing the same manipulations and using arguments similar to those used for S2 · S3,
one obtains the following formula,

⟨
(
(s1s2)s′12

s3

)
S′
|S1 · S3 |

(
(s1s2)s12 s3

)
S
⟩

= δS′S(−1)s12−s′12
√
(2s′12 + 1)(2s12 + 1)

∑
s13

(
2s13 + 1

2

){
s2 s1 s′12

s3 S s13

}{
s2 s1 s12

s3 S s13

}
(s13(s13 + 1)− s1(s1 + 1)− s3(s3 + 1)) .

(2.82)

This formula enables efficient evaluation of the corresponding spin matrix elements. Notably, as
with spatial components, when two particles are identical, the matrix elements for S1 · S3 and
S2 · S3 turn out to be equal. If all three particles are identical, all three spin-spin interaction
matrix elements become equal. However, in these cases, the full trial states, including both spin
and spatial components, must be symmetrised. This symmetrisation procedure is discussed in
the remainder of this section.

Symmetrisation with Spin Degrees of Freedom

To complete the picture of spin degrees of freedom, the spin trial state must be symmetrised.
As with spin-spin interactions, permutation operators act separately on both the spatial and spin
components. Since spatial components were addressed in Section 2.1.3, only spin components
remain to be discussed. To begin, the action of P12 is examined. Using relation (2.70) and the
properties of Clebsh-Gordan coefficients, one finds that

P12 |
(
(s1s2)s12 s3

)
S
⟩ = (−1)s1+s2−s12 |

(
(s1s2)s12 s3

)
S
⟩ (2.83)

where s1 = s2, since at least particles one and two are identical. As with spatial degrees of
freedom, the spin trial states are already either symmetric of anti-symmetric under the exchange
of particles 1 and 2. Therefore, implementing symmetry into the trial set only requires selecting
s12 values such that 2s− s12 has the expected parity. Notice that (−1)2s−s12 is always a real
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number.
As with spatial components, the action of P23 is not limited to the addition of a phase factor.

For this reason, the P23 matrix is constructed and subsequently diagonalised. In the presence of
spin, the formula (2.36) must be supplemented with the following spin factor,

⟨
(
(s1s2)s′12

s3

)
S′
|P23 |

(
(s1s2)s12 s3

)
S
⟩ = ⟨

(
(s1s2)s′12

s3

)
S′
|
(
(s1s3)s12 s2

)
S
⟩ . (2.84)

where s1 = s2 = s3 for three identical particles. Using the change of basis formula (2.81) on the
bra, the following result is obtained,

⟨
(
(s1s2)s′12

s3

)
S′
|P23 |

(
(s1s2)s12 s3

)
S
⟩

= δS′S(−1)s2+s3+s′12+s12
√

(2s′12 + 1)(2s12 + 1)

{
s2 s1 s′12

s3 S s12

}
.

(2.85)

This formula provides the final ingredient necessary to handle spin degrees of freedom with the
OBE. Constructing symmetrised trial states follows the same procedure as that introduced in
Section 2.1.3, including the factor (2.85) when evaluating P23 matrix elements.

2.3 Tests of the Method

The basis states having been chosen and the formulas for the matrix elements having been
obtained, the method is ready for implementation. This section is devoted to various tests
aimed at assessing the accuracy of the method. Tests are performed on systems for which
other approximation methods, namely the hyperspherical harmonic expansion (HHE) and the
Lagrange mesh method (LMM), can supply a very accurate point of comparison. Reviews of
these two methods can be found in [46, 47] and in [48], respectively. These tests are designed to
cover a diverse range of Hamiltonians including both non- and semi-relativistic kinematics, as
well as two-body and three-body interactions. Comparisons are made with data from existing
literature. The computational complexity of the OBE is discussed in Complement 2.C.

Throughout the following, a condensed notation |σ;n;LP ⟩ is used to denote the eigenstates
of the tested Hamiltonians. The label σ denotes the symmetry of the state (+1 for a symmetric
state, −1 for an anti-symmetric state), P represents its parity (+ for an even state, − for an odd
state) and L indicates its total angular momentum. Lastly, the non-zero integer n differentiates
and orders the states according to their energy.
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2.3.1 Tests with Two-body Interactions

To start with, let us perform tests on systems bound by two-body interactions, considering
only non-relativistic kinematics at this stage. Two types of potentials are examined: power-law
and Gaussian interactions. Let us first focus on power-law interacting systems,

V12(r) = V23(r) = V13(r) =
β

|β|
rβ

2
, W (ρ) = 0. (2.86)

For simplicity, interactions are assumed identical even in presence of different particles. The
potential parameters are chosen to enable comparison with [25], which provides accurate solution
of the corresponding Hamiltonians using HHE. Parameters and energies are provided in this
reference in arbitrary units.

The first test considers three identical particles with unit masses. Seven ground state
eigenenergies are evaluated for values of β ranging from −1 to 3. Detailed results are provided
only for the linear interaction case β = 1, and special attention is also given to the Coulomb
interaction case β = −1. Figure 2.1 shows how the energy depends on the variational parameter
a for β = 1 and for various values of Qmax. As expected, one observes minima corresponding
to the most accurate upper-bounds. The curve flattens as the number of quanta increases,
suggesting that optimising a for a small basis and reusing the obtained value for larger bases
does not significantly deteriorate the accuracy of the resulting upper-bound. Figure 2.2 illustrate
the evolution of the upper-bound with increasing basis size after optimising a. As expected,
the approximate eigenenergy decreases and converges to the value reported in [25]. Table
2.1 presents results across the full range of β values. For positive β the OBE reproduces the
reference results with a relatively low number of quanta. The result is even exact for β = 2,
as in this case, the potential (2.86) consists of a harmonic oscillator. It has been verified that
the optimised eigenvector contains only a single trial state. On the other hand, for negative β
and particularly for the Coulomb case β = −1, the OBE appears less accurate. This is because,
even at Qmax = 20, full convergence has not been totally reached, as illustrated in Figure 2.3.
This behaviour highlights a general feature of the OBE: divergent potentials require more trial
states to achieve a given level of accuracy. Even the method employed in [25], the HHE, does
not achieve high precision for the Coulomb interaction, as the upper-bounds obtained using
the OBE with more than 24 quanta lie slightly below the result from this reference. This is
consistent with general observations regarding the HHE.

Energies for systems with different particles are also provided in [25]. A system of three
bosons, where two have unit masses and the third has either a higher or a lower mass, denoted
M , is considered. These particles interact via the same power-law potential given in (2.86). The
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Figure 2.1: Upper-bounds obtained using the OBE are plotted depending on the variational
parameter a. The ground state energy of three identical non-relativistic bosons interacting via
(2.86) is considered. Arbitrary units are used: m = 1 and β = 1. Calculations are shown for
various values of Qmax.

Qmax N Egs

4 4 3.863 594
6 7 3.863 424
8 11 3.863 176
10 16 3.863 138
12 23 3.863 112
14 31 3.863 101
16 41 3.863 095
18 53 3.863 091
20 67 3.863 089

Figure 2.2: Figure and table showing different approximations obtained using the OBE as
a function of the basis size. The ground state energy, Egs, of three identical non-relativistic
bosons interacting via (2.86) is considered. Arbitrary units are used: m = 1 and β = 1. The
non-linear variational parameter a is optimised at Qmax = 4, yielding a = 1.4461. In the figure,
the converged result is indicated by the dashed gray line. The eigenenergy reported in [25] is
3.863 09.



2.3. TESTS OF THE METHOD 61

Qmax N Egs

10 16 −0.263 368
12 23 −0.265 008
14 31 −0.265 300
16 41 −0.265 949
18 53 −0.266 137
20 67 −0.266 452
22 83 −0.266 586
24 102 −0.266 766
26 123 −0.266 865
28 147 −0.266 980
30 174 −0.267 056
32 204 −0.267 136

Figure 2.3: This figure and table shows different approximations obtained using the OBE as
a function of the basis size. The ground state energy, Egs, of three identical non-relativistic
bosons interacting via (2.86) is considered. Arbitrary units are used: m = 1 and β = −1. The
optimisation of the non-linear variational parameter a is performed at Qmax = 10, yielding
a = 2.8422. The eigenenergy reported in [25] is −0.266 75.

β OBE HHE [25]
−1.0 −0.266 45 −0.266 75
−0.5 −0.591 74 −0.591 73
0.1 1.880 18 1.880 19
0.5 2.916 53 2.916 54
1.0 3.863 09 3.863 09
2.0 5.196 15 5.196 15
3.0 6.155 91 6.155 91

Table 2.1: Ground state energies with L = 0, Egs, in arbitrary units for three identical non-
relativistic bosons interacting with potentials (2.86) and having unit masses are given depending
on the potential parameter β. Results from the OBE and from HHE are compared. The
maximum number of quanta used in the basis is Qmax = 20, with a computed for Qmax = 10.
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Figure 2.4: Upper-bounds obtained using the OBE are plotted depending on the variational
parameters a and b. The ground state energy, Egs, of three non-relativistic bosons interacting
via (2.86) is considered. The first two identical bosons have unit masses, while the third one
has M = 0.2. Linear interactions β = 1 are implemented. Calculation are shown for Qmax = 10.

optimisation process for non-linear variational parameters a and b is illustrated in Figure 2.4 for
M = 0.2 and β = 1. Results obtained using the OBE are compared to those from [25] in Table
2.2. Both methods show strong agreement on the ground state energy.

To illustrate the OBE with a more physical system, while still considering only two-body
interactions, one may examine a system of three identical non-relativistic bosons interacting
with Gaussian potentials,

V12(r) = V23(r) = V13(r) = −V0e−r212/R
2

, W (ρ) = 0. (2.87)

The parameters, taken from [10, 48], are given in atomic units: V0 = 1.227 K, R = 10.03 at.u.,
ρ0 = 13.85 at.u. and m = 0.0231048 (at.u.)−2K−1. In references [10, 48], this potential serves
as a first approximation for modelling Helium trimers. These references evaluate the ground
state eigenenergies by mean of a LMM and a HHE, respectively. A more refined Hamiltonian,
incorporating a three-body interaction, will be discussed later in this section. Table 2.3 presents
the ground state energy obtained using the OBE for different basis sizes. The upper-bound
converges to −0.1504 Kelvin, a value consistent with the result reported in [10, 48]. These
references also indicates the presence of a weakly bound excited state at −2.467 millikelvin.
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M = 0.2
β OBE HHE [25]
−1 −0.1398 −0.1398
0.1 1.9452 1.9452
1 4.9392 4.9392
2 7.5730 7.5730
3 9.7389 9.7389

M = 5
β OBE HHE [25]
−1 −0.3841 −0.3848
0.1 1.8486 1.8486
1 3.4379 3.4379
2 4.3729 4.3729
3 5.0166 5.0166

Table 2.2: Ground state energies, Egs, in arbitrary units for a system of three non-relativistic
bosons interacting via the potential (2.86) are given depending on β. The first two identical
bosons have unit masses, while the third has either M = 0.2 or M = 5. Results from the OBE
and HHE [25] are compared. The maximal number of quanta used in basis is Qmax = 20, with a
optimised for Qmax = 10.

Qmax N Egs

10 16 −0.1468
12 23 −0.1492
14 31 −0.1493
16 41 −0.1500
18 53 −0.1501
20 67 −0.1503
22 83 −0.1503
24 102 −0.1504

Table 2.3: Ground state energies, Egs, for a system of three identical non-relativistic bosons
interacting with potentials (2.87) are given in atomic units depending on the basis size, N . The
optimisation on the non-linear variational parameter a has been performed at Qmax = 10, yielding
a = 12.8625 at.u. The ground state energy reported in [10] is −0.1504 K and −0.1504260932952
K in [48].

However, due to its weak binding, the OBE does not detect any excited state even for Qmax = 30.

2.3.2 Tests with Three-body Interactions

Tests can now be performed on systems only bounded with three-body forces. At first, a
system of three non-relativistic bosons interacting through an attractive three-body Gaussian
potential is considered,

V12(r) = V23(r) = V13(r) = 0, W (ρ) = −34/3 e−ρ2/27. (2.88)

Unit masses are used. Parameters have been chosen to allow the comparison with results
obtained in [48, p.87] using LMM in hyperspherical coordinates. Only the ground state energy
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Qmax N a Egs

6 7 1.6695 −1.739 737 863
8 11 1.6921 −1.739 828 778
10 16 1.6868 −1.739 828 773
12 23 1.6365 −1.739 830 590
14 31 1.6365 −1.739 830 808
16 41 1.6365 −1.739 830 913
18 53 1.6365 −1.739 830 929
20 67 1.6365 −1.739 830 936
22 83 1.6365 −1.739 830 937
24 102 1.6365 −1.739 830 938

Table 2.4: Ground state energies, Egs, for a system of three identical non-relativistic bosons
interacting with potentials (2.88) are given in arbitrary units depending on the basis size, N .
For Qmax = 6, 8, 10, 12, optimisation on the non-linear parameter a has been performed for
Q = Qmax. For Qmax > 12, the a value is computed for Q = 12. The ground state energy
reported in [48] is −1.739 830 938.

OBE LMM [48]
|1; 1; 0+⟩ −1.739 830 938 −1.739 830 938
|1; 2; 0+⟩ −0.552 311 353 −0.552 311 965
|1; 1; 2+⟩ −0.373 040 428 −0.373 040 920

Table 2.5: Energies for the three lowest states for a system of three identical bosons interacting
with potentials (2.88) in arbitrary units. Results from the OBE and from LMM [48] are compared.
The maximal number of quanta used in the basis is Qmax = 24 with a computed for Qmax = 12.

is supplied in the text but equations can easily be implemented to produce excited energies too.
The ground state energies given by the OBE for this system and for different sizes of the basis
are compiled in Table 2.4. Various optimisations on a are conducted for small basis sizes to
illustrate the stability of the optimum, even in the presence of three-body forces. Energies for
the three lowest states from the OBE are compared to the ones from LMM in Table 2.5. The
OBE is able to reproduce the energy spectrum up to nine to six digits depending on the energy
level. Let us mention that the method used in [48] is particularly efficient for such a system
whose potential only depends on the hyperradius variable (2.17). Hyperspherical equations
become uncoupled and the system is entirely described by a single-variable hyperradial equation
which is solved with the LMM.

In addition to Gaussian interactions, three-body power potentials can easily be implemented
too. A system of three non-relativistic bosons interacting through a three-body Colombian
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OBE LMM
|1; 1; 0+⟩ −0.239 912 74 −0.239 999 98
|1; 2; 0+⟩ −0.121 949 51 −0.122 448 97
|1; 1; 2+⟩ −0.074 067 53 −0.074 074 07
|1; 3; 0+⟩ −0.072 931 73 −0.074 074 07
|1; 1; 1−⟩ −0.049 584 24 −0.049 586 78
|1; 1; 3−⟩ −0.049 584 24 −0.049 586 78

Table 2.6: Energies in arbitrary units of the six lowest states for a system of three identical
bosons interacting with potentials (2.89) in arbitrary units. Results from the OBE and from
LMM are compared (see text). The maximal number of quanta used in basis is Qmax = 28 with
a computed for Q = 16.

potential is considered,

V12(r) = V23(r) = V13(r) = 0, W (ρ) = −3

ρ
. (2.89)

Unit masses are also used. This system is chosen to investigate the effect of a divergent potential
rather than for its physical relevance. Nevertheless, a similar interaction was used in [13] to
model the baryon spectrum. Accurate eigenenergies can again be obtained by solving equations
from [48]. These are compared to results from the OBE in Table 2.6. Degeneracies between
|1; 3; 0+⟩ and |1; 1; 2+⟩, as well as between |1; 1; 1−⟩ and |1; 1; 3−⟩ are observed in the spectrum.
The first is inherent to the Coulombian shape and is not perfectly reproduced by the OBE due
to a lack of convergence. The second occurs for any hyperradial potential and can be explained
by the pure dependence of the system on the hyperradius. The aforementioned hyperradial
equation which rules the dynamics of the system only depends on the K quantum number of the
hyperspherical harmonic, thereby producing degeneracies in the spectrum. Concerning accuracy,
the OBE seems less efficient than in the previous test. For two-body potential, it is already
well-known than divergences deteriorate the accuracy of the OBE. This feature seems to apply
for three-body forces too. More accurate results can of course be obtained by increasing the
number of quanta.

2.3.3 Tests with Two- and Three-body Interactions

Physical systems, including both two- and three-body interactions can also be investigated.
A first test is performed on a system of three non-relativistic identical bosons interacting with
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|1; 1; 0+⟩ OBE HHE [49]
E 0.363 0.360
⟨r⟩ 1.368 1.367

|1; 2; 0+⟩ OBE HHE [49]
E 1.953 1.947
⟨r⟩ 2.220 2.216

|1; 1; 2+⟩ OBE HHE [49]
E 2.397 2.395
⟨r⟩ 2.368 2.366

Table 2.7: Energies and mean values in arbitrary units for the inter-particles distance of the
three lowest states for a system of three identical bosons interacting with potentials (2.90).
Results from the OBE and from HHE are compared. The maximal number of quanta used in
basis is Qmax = 24 with a computed for Q = 12.

two-body attractive Coulomb interactions and confined by a three-body linear potential,

V12(r) = V23(r) = V13(r) = −1

r
, W (ρ) =

1

2
ρ. (2.90)

A more sophisticated version of this potential is used for the description of baryonic bound states
in [39]. Unit masses are used. The comparison is conducted with results from an HHE [49].
This time, energies and mean-values of the inter-particle distances are investigated for the three
lowest states in Table 2.7. Symmetry properties ensure that this mean-value is independent of
the chosen pair of particles. As already mentioned, for very divergent potentials, such as the
Coulomb potential, the OBE often exhibits reduced accuracy. In the current test, the method
proved to be able to provide energies and mean-values with three significant digits.

Finally, the system of three identical non-relativistic bosons that interacts through two-body
attractive interactions (2.87) is extended, adding a three-body repulsive Gaussian interaction.
The ground and first excited state energies for such a system are also provided in [48, p.87] and
in [10]. These references use

V12(r) = V23(r) = V13(r) = −V0e−r212/R
2

, W (ρ) = W0e
−ρ2/ρ20 . (2.91)

with V0 = 1.227 K, W0 = 0.279 K, R = 10.03 at.u., ρ0 = 13.85 at.u. and with masses of
0.0231048 (at.u.)−2K.−1. In [10, 48], this potential is used to describe Helium trimers. The
energy and mean-value of the inter-particle distance provided by the OBE, by the LMM and
by the HHE are presented in Table 2.8. The ground state energy upper bound given by the
OBE is in agreement with both other results. Mean-values were not computed in [10] but both
OBE and LMM evaluations are compatible. In addition to the ground state, an excited state is
mentioned in [10, 48]. Again, this state is so weakly bound that the OBE cannot provide any
approximation for it, even up to 30 quanta.

One may continue to test the OBE with systems including spin-spin interactions or semi-
relativistic kinematics. For instance, reference [28] demonstrates the use of the OBE in repro-
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|1; 1; 0+⟩ OBE LMM [48] HHE [10]
E (K) −0.1263 −0.1264 −0.1264
⟨r⟩ (a.u.) 17.4010 17.4707 N.A.

Table 2.8: Ground state energies, E, and mean values for the inter-particle distance, ⟨r⟩, are
given in atomic units for a system of three identical bosons interacting with potentials (2.91).
Results from the OBE, from the literature (LMM [48] and HHE [10]) are compared. For HHE,
mean-value is not provided in the literature. The chosen maximal number of quanta in the basis
is Qmax = 24 with a computed for Q = 12.

ducing certain levels of the baryon spectrum by using semi-relativistic kinematics. However,
to avoid an overflow of tests and because Chapter 5 is entirely dedicated to this topic, these
additional applications are not covered in the current chapter9.

2.4 Conclusion: Why the OBE?

The OBE is a versatile and efficient approach for obtaining approximate eigenenergies and
eigenfunctions in three-body systems. One of the key advantages of the OBE is its ability to
easily handle both non- and semi-relativistic kinematics. Although not explicitly presented
here, the formulas derived in this work can be generalized to accommodate arbitrary kinematics.
Such Hamiltonians are encountered, for example, in atomic physics [50], hadronic physics [51]
in quantum mechanics with a minimal length [52] and in fractional quantum mechanics [53].
In [29], the OBE originally designed for two-body interactions is extended to handle a specific
class of three-body forces, thereby broadening its applicability. The method also allows for
easy incorporation of symmetries, angular momentum, and parity quantum numbers into the
obtained approximations.

Efficient computation of the corresponding matrix elements is achieved by decomposing the
trial states into harmonic oscillator eigenstates within rotated or hyperspherical coordinates.
The coefficients of these decompositions are evaluated through algebraic expressions. This
strategy enables matrix element evaluations at a rate two orders of magnitude faster than using
intensive numerical integrations. On the other hand, the OBE has been validated by comparing
its approximations for the lowest eigenenergies and for the mean values of interparticle distances
with results obtained using the HHE and the LMM. In short, the OBE proves to be a valuable
compromise between accuracy, computational time and technical complexity.

These strengths make the OBE a valuable method, which has been used, for example, in

9 Although not presented in this document, the corresponding tests have been successfully conducted to validate
the implementation used in the following.
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hadronic physics, as demonstrated in references [30, 31, 32, 33, 34]. Moreover, the method can
also be used to validate and assess the efficiency of other approximation strategies. For instance,
the generalisation of the OBE to handle three-body forces has been used in [54] to evaluate the
accuracy of the envelope theory, another approximation method discussed in the next chapter.
In a current research, the OBE is also employed to evaluate the efficiency of the quark-diquark
approximation in baryon spectroscopy.

Complement 2.A Analytical formulas for Talmi’s integrals

This complement provides analytical expressions of Talmi’s integrals (2.10) associated with
the few O functions that are used in this paper. For power potentials (including the linear and
Coulomb potentials used in Section 2.3), these integrals are easily expressed in terms of Gamma
functions,

Ip
(
O(x) = αxβ, a

)
= α aβ

Γ(p+ 3/2 + β/2)

Γ(p+ 3/2)
. (2.92)

Gaussian potentials (also employed in Section 2.3) admit analytical expressions as well,

Ip

(
O(x) = αe−β x2

, a
)
= α (1 + a2β)−3/2−p. (2.93)

The treatment of semi-relativistic kinetic energies in Section 2.1.4 relies on some Talmi’s integrals
that also possess analytical expressions [28],

Ip

(
O(x) =

√
x2 + α, a

)
= a

( α
a2

)p+2

U

(
p+

3

2
, p+ 3,

α

a2

)
, (2.94)

where U denotes confluent hypergeometric functions of the second kind [36].

Complement 2.B Evaluation of the Hyperspherical coeffi-

cients

The hyperspherical coefficients introduced in Section 2.1 are defined in equation (2.23) as the
overlap integral of two ΦL

nxℓxnyℓy
(x,y) and Φ

ℓxℓyL
NK (ρ,Ω) functions. This Appendix is dedicated

to development of a closed formula that allows for an efficient evaluation of these coefficients.
First, the six-dimensional volume element can be turned into hyperspherical coordinates [43],

d3x d3y = ρ5 sin θx sin θy(sinα)
2(cosα)2 dρ dθx dφx dθy dφy dα. (2.95)
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Using properties of spherical harmonics and Clebsh-Gordan coefficients [35, sections 5.1.4 and
8.1.1], this integral on Φ and Ψ functions reduces to an integral on R and R functions,

⟨nxny|NK⟩ℓxℓy =

∫∫
ρ5Rnxℓx(ρ sinα)Rnyℓy(ρ cosα)RNK(ρ)N

ℓxℓy
K

(sinα)ℓx+2(cosα)ℓy+2P
(ℓx+ 1

2
,ℓy+

1
2)

n (cos 2α) dρ dα.

(2.96)

Integrals over angular degrees of freedom yielded a value of 1. Let us remind that n is a notation
shortcut for (K − ℓx − ℓy)/2. Substituting R and R functions by their definitions (2.3) and
(2.21), the integral becomes

⟨nxny|NK⟩ℓxℓy = C

∫ ∞

0

dρ ρ5+ℓx+ℓy+Ke−ρ2LK+2
N (ρ2)

∫ π/2

0

dα (sinα)2ℓx+2(cosα)2ℓy+2

P
(ℓx+ 1

2
,ℓy+

1
2)

n (cos 2α)Lℓx+1/2
nx

(ρ2 sin2 α)Lℓy+1/2
ny

(ρ2 cos2 α)

(2.97)

where C is a factor that gathers all the normalisation coefficients,

C = N
ℓxℓy
K

(
8(nx!)(ny!)(N !)

Γ(nx + ℓx + 3/2)Γ(ny + ℓy + 3/2)Γ(K +N + 3)

)1/2

. (2.98)

To get rid of the generalized Laguerre and Jacobi polynomials, one can replace them by their
polynomial expressions [36, formulas 22.3.1 and 22.3.9],

La
n(x) =

n∑
i=0

(−1)i
(
n+ a

n− i

)
xi

i!
, (2.99)

P (a,b)
n (x) =

n∑
i=0

(
n+ b

n− i

)(
n+ a

i

)(
x+ 1

2

)i(
x− 1

2

)n−i

. (2.100)

The symbol
(
x
y

)
refers to the usual binomial coefficient defined in terms of gamma functions as(

x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
. (2.101)
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Once these replacements are performed, the hyperspherical coefficients are expressed as a the
result of four sums,

⟨nxny|NK⟩ℓxℓy = C

N∑
s=0

(−1)s

s!

(
N +K + 2

N − s

) n∑
m=0

(−1)n−m

(
n+ ℓy +

1
2

n−m

)(
n+ ℓx +

1
2

m

)
nx∑
i=0

(−1)i

i!

(
nx + ℓx +

1
2

nx − i

) ny∑
j=0

(−1)j

j!

(
ny + ℓy +

1
2

ny − j

)
(2.102)∫

dρ ρ5+ℓx+ℓy+K+2i+2j+2se−ρ2
∫

dα (sinα)2(ℓx+1+i+n−m) (cosα)2(ℓy+1+j+m) .

The integrals on ρ and α being decoupled, they can be evaluated and expressed in terms of
gamma functions [36, formulas 6.2.1, 6.2.2, 7.4.4 and 7.4.5],

2

∫ ∞

0

dρ ρie−ρ2 = Γ

(
i+ 1

2

)
, (2.103)

2

∫ π/2

0

dα (sinα)i (cosα)j =
Γ
(
i+1
2

)
Γ
(
j+1
2

)
Γ
(
i+j
2

+ 1
) . (2.104)

This leads to the final expression,

⟨nxny|NK⟩ℓxℓy = C
N∑
s=0

(−1)s

s!

(
N +K + 2

N − s

) n∑
m=0

(−1)n−m

(
n+ ℓy +

1
2

n−m

)(
n+ ℓx +

1
2

m

)
(−1)i

i!

(
nx + ℓx +

1
2

nx − i

) ny∑
j=0

(−1)j

j!

(
ny + ℓy +

1
2

ny − j

)
(2.105)

Γ
(

ℓx+ℓy+K

2
+ 3 + i+ j + s

)
Γ
(
ℓx + i+ n−m+ 3

2

)
Γ
(
ℓy + j +m+ 3

2

)
4 Γ (ℓx + ℓy + n+ j + i+ 3)

.

This formula enables to compute accurately all the hyperspherical coefficients. It is consistent
with the formula for ⟨nxny|0K⟩ℓxℓy given in [42]. As the value of 2nx + ℓx + 2ny + ℓy increases,
the number of coefficients to compute as well as the time needed to evaluate the four sums also
increase. Nevertheless, since the hyperspherical coefficients does not depend of any parameters,
they do not have to be recomputed every time. A single evaluation beforehand and the storage
of the result in a data file allows to retrieve the coefficients efficiently. Using the Mathematica
software, all the hyperspherical coefficients until 2nx + ℓx + 2ny + ℓy = 40 have been computed
in a few hours on a regular laptop computer. Both ΦL

nxℓxnyℓy
and Ψ

ℓxℓyL
NK sets of states from

relation (2.22) being orthonormalised, hyperspherical coefficients satisfy the following probability
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conservation relation, ∑
N K

⟨nxny|NK⟩2ℓxℓy = 1 (2.106)

with the constraint 2N +K = 2nx + ℓx + 2ny + ℓy in the summations. This relation provides a
useful consistency check to estimate the accuracy of the computed coefficients.

Complement 2.C Complexity Tests

One may wonder to what extend the use of Brody-Moshinsky and hyperspherical coefficients
reduces the computational time required for evaluating Hamiltonian matrix elements. To
investigate this, the management of three-body forces will be considered as an example. A
comparison in runtime is conducted between the use of hyperspherical coefficients and naive
numerical integrations of (2.63). This comparison involves a three-boson system with non-
relativistic kinematics, unit masses, and a single attractive linear three-body potential, as defined
below,

V12(r) = V23(r) = V13(r) = 0, W (ρ) =
1

2
ρ. (2.107)

Ground-state evaluations, without optimisation of the variational parameter, are executed for
different basis lengths (using Python3 for programming). The use of hyperspherical coefficients
appears to reduce the runtime by approximately two orders of magnitude compared to performing
intensive numerical integrations. The evaluation time as a function of the number of states
in the basis roughly follows a power law with an exponent of 3.2. Given the duration for a
specific basis size, this indicative fit provides an estimate of the time required for evaluations
with an increased number of quanta. However, let us remind that hyperspherical coefficients
have been precomputed and stored in advance, requiring only their retrieval during each run.
This pre-computation is possible because hyperspherical coefficients are independent of the
specific three-body interaction considered and the non-linear variational parameters a and b.
The evaluation of hyperspherical coefficients using formula (2.105) seems to roughly follow a
power law with an exponent of 2.0.

The situation differs slightly for two-body forces, where Brody-Moshinsky coefficients must
be recomputed for each set of a and b values. In fact, evaluating these coefficients using the
formulas (3.6)-(3.7) from [41] is significantly less computationally expensive than evaluating
hyperspherical coefficients. Notably, for three identical particles, the process is further simplified,
since only Brody-Moshinsky coefficients with an angle of π/2 are required. However, calculations
involving only identical particles require a time-consuming symmetrisation step, which balances
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the overall duration. To assess the evaluation time in the presence of two-body interactions,
tests are conducted on systems of three particles interacting via two-body linear potentials,

V12(r) = V23(r) = V13(r) =
1

2
r, W (ρ) = 0. (2.108)

Both a system of three identical bosons with unit masses and a system of two identical bosons
with unit masses and a third particle with M = 5 are investigated. In the former case, the
evaluation time as a function of the number of states in the basis roughly follows the same power
law with an exponent of 3.2 as observed for three-body interactions. In the latter case, the
evaluation time appears to follow a power law with an exponent of 2.3. In summary, compared
to a more naive evaluation method, the use of Brody-Moshinsky coefficients for two-body
interactions reduces the computational cost by at least the same magnitude as hyperspherical
coefficients do for three-body forces.

This section also provides an opportunity to mention that hyperspherical coefficients can be
used to handle systems containing two identical particles and one distinct particle. However,
this approach necessitates forfeiting one of the two non-linear variational parameters, thereby
reducing the accuracy of the resulting upper bounds. Despite this trade-off, the potential time
savings during evaluations may enable the exploration of larger basis sizes. Thus, it remains
unclear whether the use of hyperspherical coefficients will enhance overall accuracy. To address
this question, a test is conducted on the ground state of a system involving two bosons of
mass 1 and a third particle of mass 10, interacting through the three-body potential (2.107).
Allocating 500 seconds for both methods, their respective accuracies are compared. Because
the optimisation process duration depends on the inserted seed for a and b, in this test, the
user has been assumed to possess the first digit of the optimised values of a and b. The results
indicate that hyperspherical coefficients deliver a rapid and precise upper bound for the ground
state while two-dimensional integrals struggles to achieve a commensurate level of accuracy
even after 500 seconds. It turns out that, using the two-parameters method, the optimised value
of b aligns in magnitude with

√
3a/2 for the chosen system. This feature can explain the low

loss of accuracy upon setting from the beginning b =
√
3a/2.

Complement 2.D Possible generalisation

The OBE method, in its most general form, extends beyond systems with merely three
particles. If the management of two-body forces for bigger systems is already well established in
the literature [31], the hyperspherical coefficient method has initially been developed for systems
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of three identical particles. However, this approach readily accommodates handling three-body
forces within systems containing a greater number of identical particles. In these instances, the
harmonic oscillator eigenstates are constructed by sequentially coupling the ith Jacobi variable
to the preceding i− 1 variables,

Φℓ12ℓ123...L
n1ℓ1...nN−1ℓN−1

(x1, ...,xN−1) =
[
...
[
[ϕn1ℓ1(x1)ϕn2ℓ2(x2)]ℓ12 ϕℓ3(x3)

]
ℓ123

...
]
L

(2.109)

where xi represents the ith Jacobi coordinates within the N -body system. Consequently, any
N -particle oscillator eigenstate encompasses a three-particle oscillator eigenstate. It allows to
evaluate the matrix elements of the three-body interaction W (ρ123) (with ρ2ijk = r2ij + r2ik + r2jk)
can be evaluated using hyperspherical coefficients,

⟨Φℓ′12ℓ
′
123...L

′

n′
1ℓ

′
1...n

′
N−1ℓ

′
N−1

|W (ρ123) |Φℓ12ℓ123...L
n1ℓ1...nN−1ℓN−1

⟩ = δn′
3n3
δℓ′3ℓ3 ...δn′

N−1nN−1
δℓ′N−1ℓN−1

δℓ′123ℓ123 ...δL′L

⟨Φℓ′12
n′
1ℓ

′
1n

′
2ℓ

′
2
(x1,x2)|W (ρ123) |Φℓ12

n1ℓ1n2ℓ2
(x1,x2)⟩ .

(2.110)
Furthermore, thanks to the symmetry properties of the wave-function for N identical particles,
all matrix elements associated with other triplets of particles are equal to those associated with
particle 1, 2 and 3,

∀ i, j, k ∈ {1, ..., N}, ⟨Φℓ′12ℓ
′
123...L

′

n′
1ℓ

′
1...n

′
N−1ℓ

′
N−1

|W (ρijk) |Φℓ12ℓ123...L
n1ℓ1...nN−1ℓN−1

⟩

= ⟨Φℓ′12ℓ
′
123...L

′

n′
1ℓ

′
1...n

′
N−1ℓ

′
N−1

|W (ρ123) |Φℓ12ℓ123...L
n1ℓ1...nN−1ℓN−1

⟩ .
(2.111)

This implies that all the necessary matrix element are derived without the need for new formula.
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This chapter in the context of a thesis

This chapter covers one of the main topic I worked on during my PhD. The entire first six
months were dedicated to implementing the method. It was initially intended to be used
in conjunction with the helicity formalism to compute the three-gluon glueball spectrum.
However, difficulties encountered during the research rendered this approach ineffective.
Nevertheless, the resulting three-body code has been, and continues to be, extensively used
within the research unit. It enabled us to easily test the accuracy of the resolution method
discussed in the next chapter [54, 55], and it was used to study quark core dynamics in
hybrid baryons, as part of a study led by L. Cimino [56]. It has also been applied in the
context of two-gluon glueballs, allowing for a comparison between spectra obtained using
spin versus helicity degrees of freedom for the gluons. More recently, it is being used by
C. Tourbez to investigate the quark-diquark approximation in baryons (a topic briefly
introduced in Part II), and it will support future work by J. Viseur in extending the study
of hybrid baryons initiated by L. Cimino.

Beyond the implementation, the method was also extended to handle a specific class of
K-body forces. In a collaborative effort with S. Youcef Khodja [29], we developed an efficient
approach to compute three-body matrix elements on harmonic oscillator eigenstates, as
introduced in this chapter. This extension was, of course, thoroughly tested.



Chapter 3

The Envelope Theory: a Step Toward
Many-Body Systems

Most resolution methods for the time-independent Schrödinger equation in many-body
quantum systems, including the OBE discussed in Chapter 2, rely on numerical computations.
These methods tend to be highly accurate but require months of development and implementation.
Their computational cost also increases with the number of particles, making the treatment
of very large system highly challenging. In addition to these accurate but computationally
expensive approximation methods, simpler techniques also warrant significant interest. Among
such convenient approaches is the envelope theory (ET) [57, 58, 59, 60], also known as the
auxiliary field method [61, 62]. The ET stands out as an easy-to-use approach with several
advantages:

(i) it can handle general Hamiltonians with non-standard kinematics in arbitrary dimensions;

(ii) its computational cost is independent of the number of particles;

(iii) in favourable cases, the approximate eigenvalues obtained via the ET can proves analytical;

(iv) in favourable cases, these approximate eigenvalues can prove to be either lower or upper
bounds.

The fundamental idea behind this method is to replace the Hamiltonian H under study with
auxiliary Hamiltonians H̃ that are exactly solvable [62]. In practice, these auxiliary Hamiltonians
are chosen to be many-body harmonic oscillators Hho, which are exactly solvable for arbitrary
dimensions [22, 63]. Ultimately, obtaining an approximate spectrum requires no more than
solving a finite set of algebraic equations.
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While the ET is generally reliable, its accuracy is difficult to assess due to the absence of
convergence scheme. To address this limitation, various studies have been conducted. First, an
improvement procedure for the method has been developed in [64, 65]. This enhancement is
based on modifying the global harmonic oscillator quantum number and coupling the ET with
an independent resolution method, the dominantly orbital state method (DOSM). This approach
yields a second approximation, which is almost always more accurate than the original one. The
difference between the two approximations provides an estimate of the accuracy level. Second,
various tests of the method have been performed, comparing ET results with those obtained
from accurate resolution methods [55, 54, 66, 67, 68]. These tests provide insights into the
conditions under which the ET tends to be accurate. They demonstrated that the ET yields low
relative errors for certain favourable systems, such as those with linear or Gaussian potentials,
but exhibits lower accuracy for systems with Coulomb interactions. Although applying the
improvement procedure sometimes allows for reasonably good results [64], in atomic spectra,
both the ET and its improved version failed to reproduce binding energies accurately [65]. Two
hypotheses, tested in [55], have been proposed to explain this limitation: the presence of a
singularity in the potential, and the coexistence of attractive and repulsive components.

Regarding its applicability, the ET produces fairly accurate results for baryon spectra within
the framework of potential models with QCD-inspired interactions [66]. The method has also
been employed for hybrid mesons in [69]. The ET proves particularly useful in situations where
the number of particles can be arbitrary large, such as in the large-Nc formulation of QCD [12,
70, 71, 72, 73, 74]1. The method has also been used to explore a possible quasi Kepler’s third
law for quantum many-body systems [75, 76]. Additionally, the ET can serve to validate precise
numerical calculations, as in [77], or provide quick estimates to supplement them (see Section
3.1.7). Lastly, in [78], the method was applied to the study exciton states, emphasising on its
pedagogical value as an accessible analytical approximation technique.

This chapter builds upon and significantly expands the text from references [29]. Section 3.1
introduces the fundamental principles of the ET for systems of N identical particles. Section
3.1.1 develops the core concepts of the approximation method, while Section 3.1.2 and Section
3.1.3 present the main equations and properties essential for practical applications. Section
3.1.4 focuses on the improved version of the ET, and Section 3.1.5 explores some generalisations
of the method. Additionally, Section 3.1.6 discusses approximations for observables. Finally,
Section 3.1.7 examines tests and applications of the method. The second part of the chapter
extends the ET to systems composed of different particles, following a structure similar to that
used for identical particles. Given the increased complexity of calculations in this context, most

1 In [69, 70, 71, 72, 73, 74], an earlier version of the ET was used without being named as such
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derivations are deferred to the corresponding articles.

3.1 Envelope Theory for Systems of Identical Particles

Historically, the ET was first introduced by R.L. Hall as a geometrical technique that
approximates a given Hamiltonian by "enveloping" its potential with exactly solvable ones [57,
58, 59, 60]. Independently and as a generalization of earlier works by Y.A. Simonov [79, 80],
the method was rediscovered 20 years later by B. Silvestre-Brac, C. Semay and F. Buisseret
under the name "auxiliary field method" [81, 82, 83, 84]. The equivalence of both approaches
was demonstrated a few month later [85]. Although these two formulations complement each
other, and most recent developments have been carried on within the auxiliary field framework,
historical precedence dictates the retention of the oldest name. In this work, for pedagogical
clarity and consistency with subsequent applications, the ET is introduced following the approach
established by the auxiliary field method.

3.1.1 The envelope theory as an auxiliary field method

This section introduces the approximation underlying the ET using a simple system. Consider
two non-relativistic with mass m and identical particles interacting with a generic two-body
potential V ,

H =
p1

2

2m
+

p2
2

2m
− P 2

4m
+ V (|r1 − r2|) (3.1)

where P = p1 + p2 is the total momentum of the system. The system is expressed in relative
coordinates,

r = r1 − r2, R =
r1 + r2

2
, (3.2)

p =
p1 − p2

2
, P = p1 + p2. (3.3)

Above, p and P are conjugate to r and R, respectively. In these coordinates, the Hamiltonian
of the system simplifies to

H =
p2

m
+ V (r). (3.4)

where r = |r|. Analytical solutions for the spectrum of this Hamiltonian exist only for specific
choices of V . Let us introduce one such analytically solvable potentials, given by aV(r), where
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a ∈ R. The corresponding Hamiltonian is denoted by H(a),

H(a) =
p2

m
+ aV(r). (3.5)

Its spectrum is denoted ϵ(a). The following construction may seem artificial at first, but its
usefulness will become clear later. From V and V , the following K function is defined,

K(x) =
V ′(x)

V ′(x)
(3.6)

where V ′ is the derivative of V with respect to its argument. The inverse function of K is
denoted by J ,

J(K(x)) = x, K(J(x)) = x. (3.7)

Using J , an auxiliary potential Ṽ (r, y) is constructed. It depends on an additional variable y,

Ṽ (r, y) = yV(r) + V (J(y))− yV(J(y)). (3.8)

In the following, y is treated as a generic function of the position operator, and is referred to as
an auxiliary field. The auxiliary potential is then used to define an auxiliary Hamiltonian H̃,

H̃(y) =
p2

m
+ Ṽ (r, y) (3.9)

The key property of H̃ is that it contains the solution of the original Hamiltonian. By choosing
the auxiliary field as y(r) = K(r) and using definitions (3.7), one recovers H from H̃. This
choice of y(r) corresponds to imposing a functional extremisation condition on the auxiliary
Hamiltonian,

δ

δy(r)
H̃(y)

∣∣∣∣
y0(r)

= 0 ⇔ y0(r) = K(r). (3.10)

Thus far, the description of the problem remains exact, though somewhat indirect. The auxiliary
field method, later shown to be equivalent to the ET, suggests approximating the auxiliary
field y(r) as a simpler auxiliary real parameter y. This approximation reduces the auxiliary
Hamiltonian to the exactly solvable form H, up to additive terms depending only on y,

H̃(y) = H(y) + [V (J(y))− yV(J(y))] . (3.11)
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By assumption, the spectrum of H̃(y), denoted ϵ̃(y), is analytical,

ϵ̃(y) = ϵ(y) + (V (J(y))− yV(J(y))) . (3.12)

The spectrum ϵ̃(y) provides an approximation of the true spectrum if the auxiliary parameter
satisfies a condition analogous to the functional extremisation constraint (3.10). Since the field
has become a parameter, this constraint simplifies to an extremisation on the spectrum of H̃,

∂

∂y
ϵ̃(y)

∣∣∣∣
y0

= 0. (3.13)

As a result, choosing an exactly solvable potential V and solving the above equation yield
values ϵ(y0) that approximate the true spectrum. Additionally, the eigenvectors of the auxiliary
Hamiltonians can serve as approximations of the true eigenvectors. When both potentials V
and V are not overly complex, equation (3.13) can often be solved analytically. Otherwise,
it can be handled numerically with minimal computational effort, typically requiring only a
few hours of coding and a few seconds of runtime. A closer examination of (3.13) reveals an
interesting property of the approximation frame: the extremum y0 depends on the energy level.
Consequently, the ET approximates the original Hamiltonian using a set of analytically solvable
auxiliary Hamiltonians, where the parameter of each auxiliary Hamiltonian is tuned so that one
of its energy levels approximates the corresponding level of the original Hamiltonian.

In the previous calculations, the approximation strategy was applied to a very simple system
of two non-relativistic particles. A similar reasoning extends the ET variational equations (3.13)
to systems of N identical particles in D dimensions with generic kinematics and interactions,
provided that a suitable exactly solvable Hamiltonian is found. One such analytical Hamiltonian
for many-body systems in arbitrary dimensions, already mentioned in Chapter 1, is the harmonic
oscillator. In its most general form, this Hamiltonian enables the construction of ET for systems
with different types of particles, one-body interactions, or even with K-body forces. To introduce
the method gradually, let us focus on systems of N identical particles with two-body interactions.
The following harmonic Hamiltonian is analytically solvable,

Hoh =
N∑
i=1

pi
2

2µ
− P 2

2Nµ
+ ν

N∑
i<j

|ri − rj |2 (3.14)

where, as before, P =
∑

i pi is the total momentum of the system. The explicit resolution of the
N -body harmonic oscillator Hamiltonian is depicted in Complement 3.A. For D > 1 dimensions,
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the corresponding spectrum takes the form

ϵα(µ, ω) =

√
2Nν

µ
Q(α) with Q(α) =

N−1∑
i=1

(2ni + ℓi +D/2). (3.15)

Above, α is a compact notation for the set of quantum numbers {n1, ℓ1, ..., nN−1, ℓN−1}. The
quantum numbers ni and ℓi correspond to the radial and orbital motion associated with the ith

N -body Jacobi coordinates (3.136). The summation runs up to i = N − 1, as the last Jacobi
variable represent the centre-of-mass position, a degree-of-freedom that has been removed. The
quantity Q(α), referred to as a global quantum number, encodes both the radial and orbital
excitations of the system. For D = 1, where angular momentum is absent, Q(α) is replaced
by
∑

i(ni + 1/2), with α now only labelling the radial quantum numbers {n1, ..., nN−1}. Given
this analytical spectrum, constructing an ET based on the harmonic oscillator to approximate
N -body Hamiltonians of the form

H =
N∑
i=1

T (|pi|) +
N∑
i<j

V (|ri − rj|) (3.16)

follows the same strategy as before but applied to each term of Hoh. Although the functions
T and V are general, they must satisfy a few constraints, not overly restrictive and aligned
with the physical interpretation of T and V (such as differentiability and positiveness of T ) [86].
The centre-of-mass motion is assumed to be removed from H, either by explicit subtraction or
by setting manually P = 0. The role of auxiliary parameters is played by ν and 1/(2µ). The
following auxiliary Hamiltonian is introduced,

H̃(µ, ν) =
N∑
i=1

(
pi

2

2µ
+ T (G(µ))− G2(µ)

2µ

)
+

N∑
i<j

(
ν|ri − rj|2 + V (J(ν))− νJ2(ν)

)
. (3.17)

where

G(x) = F−1(x) with F (x) =
x

T ′(x)
, J(x) = K−1(x) with K(x) =

V ′(x)

2x
. (3.18)

Different auxiliary parameters are not assigned to each particles because, this would be in-
compatible with (anti)symmetry condition of the state [61]. The spectrum of the auxiliary
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Hamiltonians is given by

ϵ̃α(µ, ν) =

√
2Nν

µ
Q(α) +N

(
T (G(µ))− G2(µ)

2µ

)
+
N(N − 1)

2

(
V (J(ν))− νJ2(ν)

)
. (3.19)

As before, an approximation for the spectrum of H is obtained by extremising the auxiliary
spectrum with respect to the auxiliary parameters,

∂

∂µ
ϵ̃α(µ, ν)

∣∣∣∣
µ0,ν0

=
∂

∂ν
ϵ̃α(µ, ν)

∣∣∣∣
µ0,ν0

= 0. (3.20)

As expected, the extremal parameters µ0 and ν0 explicitly depend on α, meaning they vary
with the energy level being approximated.

3.1.2 Compact equations

Although the variational equations of the ET (3.20) are usable, they present a few drawbacks,
summarised as follows,

• analytical expressions for the intermediary functions G and J are required;

• computing the explicit derivatives of ϵ̃(µ, ν) can be tedious for complex G and/or J
functions;

• the auxiliary parameters µ0 and ν0, obtained during the resolution process, serve only to
define the shape of the auxiliary Hamiltonians, limiting their broader interest.

All these issues are resolved by reformulating the variational equations into a more convenient
form, known as compact equations. This reformulation yields a set of three algebraic equations
that replace the variational ones in the search for an approximation of the spectrum of the
Hamiltonian (3.16) [87, 88]2,

E = N T (p0) + C2
N V (ρ0), (3.21a)

Np0T
′(p0) = C2

Nρ0V
′(ρ0), (3.21b)

Q(α) =
√
C2

N p0 ρ0, (3.21c)

2 In previous works, the parameter r20 = N2 ⟨(ri −R)2⟩, where R denotes the centre of mass position, was
used instead of ρ0 to facilitate the treatment of one-body potentials. It can be shown that for identical
particles both parameters are equivalent up to a multiplicative constant, r20 = C2

Nρ20. Since only two-body
potential will be considered in this work, it is preferable to use ρ0.



3.1. ENVELOPE THEORY FOR SYSTEMS OF IDENTICAL PARTICLES 82

where C2
N = N(N − 1)/2 represents the number of particle pairs. The proof of the compact

equations is deferred until after their full description. Solving equations (3.21) provides an
expression for the approximated spectrum E in terms of the harmonic oscillator global quantum
number Q(α). As a reminder, the latter is related to the internal radial and orbital quantum
numbers, collectively denoted by α, through the following relationship,

Q(α) =
N−1∑
i=1

(
2ni + ℓi +

D

2

)
, (3.22)

where D represents the dimensionality of the system. The two other unknowns obtained by
solving (3.21), p0 and ρ0, provide approximations of instructive expectation values within the
system,

p20 = ⟨pi
2⟩ , ρ20 = ⟨|ri − rj|2⟩ . (3.23)

Since all particles are identical, the subscripts i and j can be arbitrarily chosen from {1, ..., N}.
Because the above expectation values are not evaluated on the true eigenstates but rather on the
eigenstates of the auxiliary Hamiltonians, they serve only as approximations of the exact values.
The variables p0 and ρ0 are also related to the auxiliary parameters through the functions G
and J ,

G(µ0) = p0, J(ρ0) = r0. (3.24)

Equations (3.21) successfully addressed each of the three shortcomings of the variational equations
(3.20). The equivalence between the compact and variational equations is demonstrated below.
This proof relies on the miscellaneous theorems from Section 1.3.

Proof. A full description of the following proof can be found in [62], with a summary in
[88] − Let us denote by |φ̃α(µ, ν)⟩ the eigenstate of the auxiliary Hamiltonian H̃(µ, ν) with
quantum numbers α. Evaluated at the extremal auxiliary parameters µ0(α) and ν0(α),
the state |φ̃α(µ0(α), ν0(α)⟩ approximates the corresponding eigenstate of H. To simplify
notation, the dependence on α of the auxiliary parameters is omitted in what follows.
Applying the Hellmann-Feynman theorem (1.70) to evaluate the derivatives in (3.20), one
obtains

∂

∂µ
ϵ̃α(µ, ν)

∣∣∣∣
µ0,ν0

= ⟨φ̃α(µ, ν)|
∂

∂µ
H̃(µ, ν) |φ̃α(µ, ν)⟩

∣∣∣∣
µ0,ν0

= 0,

∂

∂ν
ϵ̃α(µ, ν)

∣∣∣∣
µ0,ν0

= ⟨φ̃α(µ, ν)|
∂

∂ν
H̃(µ, ν) |φ̃α(µ, ν)⟩

∣∣∣∣
µ0,ν0

= 0.

(3.25)
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Expanding these equations using the definitions of H̃(µ, ν) and G(x) leads to

⟨pi
2⟩ = G2(µ0), ⟨|ri − rj|2⟩ = J2(ν0). (3.26)

Above, expectation values are taken with respect to the approximate eigenstate |φ̃α(µ0, ν0)⟩,
and they are independent of i, j ∈ {1, ...N} due to symmetry arguments (see development
(1.48) for a detailed calculation). Equations (3.26) address the third flaw mentioned earlier:
through the functions G and J , the auxiliary parameters acquire a physical interpretation.
Specifically, G2(µ0) approximates the expectation value of the squared individual momenta,
while J2(ν0) approximates the expectation value of the squared relative distance. The term
"approximate" is appropriate here, as these expectation values are computed on eigenstates
of the auxiliary Hamiltonian, |φ̃α(µ0, ν0)⟩. In the following, new variables p20 and ρ20 are
introduced to represent G2(µ0) and J2(ν0), respectively.
Despite (3.26), solving for µ0 and ν0 via (3.20) remains a necessary step. The next
developments aim to bypass their explicit computation. First, the approximate spectrum
is expressed directly in terms of p0 and ρ0,

ϵα(µ0, ν0) = ⟨φα(µ0, ν0)| H̃(µ0, ν0) |φα(µ0, ν0)⟩

= NT (p0) +
N(N − 1)

2
V (ρ0).

(3.27)

To obtain (3.27), equations (3.26) are used to cancel equal terms. Second, two inequivalent
identities are required to access p0 and ρ0. A first one is obtained by applying the virial
theorem (1.74) to H̃(µ0, ν0), yielding

N

µ0

p20 = N(N − 1)ν0ρ
2
0. (3.28)

Since the auxiliary Hamiltonian is a shifted harmonic oscillator, this result is analogous to
equation (1.36). Using the definitions of G, H, J and K, one shows that

µ0 =
p0

T ′(p0)
, ν0 =

V ′(ρ0)

2ρ0
. (3.29)

Substituting these into (3.28) yields an equation depending only on p0 and ρ0,

Np0T
′(p0) =

N(N − 1)

2
ρ0V

′(ρ0). (3.30)
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To obtain a second independent relation between p0 and ρ0, the spectrum (3.19) is revisited.
Its expression simplifies for the extremal parameters,

ϵ̃α(µ0, ν0) =

√
2Nν0
µ0

Q(α) +N

(
T (p0)−

p20
2µ0

)
+
N(N − 1)

2

(
V (ρ0)− ν0ρ

2
)

(3.31)

Equations (3.29) are again used to eliminate the residual dependencies on µ0 and ν0,

ϵ̃α(µ0, ν0) =

√
N
V ′(ρ0)

ρ0

T ′(p0)

p0
Q(α) +N

(
T (p0)−

p0T
′(p0)

2

)
+
N(N − 1)

2

(
V (ρ0)−

ρ0V
′(ρ0)

2

)
,

(3.32)

and equation (3.27) allows for the elimination of the energy ϵ̃α(µ0, ν0),

Np0T
′(p0)

2
+
N(N − 1)

2

ρ0V
′(ρ0)

2
=

√
N
V ′(ρ0)

ρ0

T ′(p0)

p0
Q(α). (3.33)

Finally, substituting equation (3.30), one obtains√
N(N − 1)

2
p0ρ0 = Q(α) (3.34)

This is a second independent equation that relates p0 and ρ0. Equations (3.27), (3.30) and
(3.34) together form the compact equations of the envelope theory. In most formulations,
the approximate energy ϵ̃α(µ0, ν0) is simply denoted E, and the factor N(N − 1)/2 is
written as C2

N .

To illustrate the application of compact equations, a system of N identical particles with
power-law kinetic energies and power-law two-body interactions is considered,

T (p) = A|p|a, V (x) =
b

|b|
B|x|b. (3.35)

where A > 0 and a > 0 are required for a well-defined kinetic energy [86], while B > 0 and b ̸= 0

ensure the existence of bound states. Solving the compact equations for this system begins by
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determining expressions for p0 and ρ0 from equations (3.21b) and (3.21c),

p0 =

 |b|BQ(α)b
(√

C2
N

)2−b

NaA


1/(a+b)

, ρ0 =

 NaAQ(α)a

|b|B
(√

C2
N

)a+2


1/(a+b)

. (3.36)

These expressions are then substituted into equation (3.21a) to obtain the approximated
eigenenergies,

E =
b

|b|
(a+ b)

(C2
NB

a

)a(
NA

|b|

)b
(
Q(α)√
C2

N

)ab
1/(a+b)

. (3.37)

Notably, if b < 0, the ET eigenenergies remain negative only if b > −a. For b ≤ −a, the
ET equations do not predict any physical bound states. By keeping the number of particles
arbitrary, the ET provides analytical approximations for the energy spectrum, mean individual
momentum, and mean relative distance with remarkably low computational cost. Accuracy
tests of these ET approximations are deferred to Section 3.1.7.

3.1.3 Variational properties

Until now, the discussion has presented the ET as an auxiliary field method, but the term
"envelope" in the original name remains to be elucidated. This can be achieved by examining
the extremal auxiliary Hamiltonians and comparing them to the true Hamiltonian. The next
discussion is structured as follows: at first, developments are framed within a proof environment,
associated properties are subsequently summarised, emphasising practical aspects, and finally,
results are illustrated on a concrete example.

Proof. A full description of the following proof can be found in [62], with a summary in
[57, 68, 78] − Let us begin by reorganising the extremal auxiliary Hamiltonians,

H̃(µ0, ν0) =
N∑
i=1

(
pi

2

2µ0

+ T (G(µ0))−
G2(µ0)

2µ0

)
+

N∑
i<j

(
ν0|ri − rj|2 + V (J(ν0))− ν0J

2(ν0)
)

=
N∑
i=1

(
T (p0) +

pi
2 − p20
2µ0

)
+

N∑
i<j

(
V (ρ0) + ν0

(
|ri − rj|2 − ρ20

))
=

N∑
i=1

T̃ (|pi|) +
N∑
i<j

Ṽ (|ri − rj|) where T̃ (p) = T (p0) +
p2 − p20
2µ0

and Ṽ (x) = V (ρ0) + ν0
(
x2 − ρ20

)
.

(3.38)
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The last line explicitly separates H̃ into individual auxiliary kinetic energies and pairwise
auxiliary two-body potentials. The following argument is first presented for the auxiliary
potentials. Let us evaluate the function Ṽ (x) and its derivative at x = ρ0,

Ṽ (ρ0) = V (ρ0), Ṽ ′(ρ0) = 2ν0ρ0 = V ′(ρ0). (3.39)

The third equality follows from equation (3.29). Equations (3.39) demonstrate that V (x)

and Ṽ (x) are tangent functions at the argument x = ρ0. However, since in the ET the true
Hamiltonian is not approximated by a single auxiliary Hamiltonian but rather by a set of
them, it is not a single tangent auxiliary potential Ṽ (x) that is constructed, but a collection
of such potentials. This set, when represented graphically, tends to "envelope" the original
potential. Figure 3.1 illustrates this envelope of auxiliary potentials for a system of three
identical bosons with V (x) = x/2 and T (p) = p2/2 (in arbitrary units). Similar reasoning
shows that T (p) and T̃ (p) are also tangent functions at p = p0 and that the T̃ (p) kinetic
energies likewise envelope the original function.
Beyond justifying the name of the method, this property has significant consequences.
Once again, let us start with the potential term. First, the variable x is replaced by x2.
This operation straightens the auxiliary potential, transforming its parabolic shape into a
straight line. For the original potential, this variable transformation defines a new function,
denoted bV , such that bV (x2) = V (x). Despite this reformulation, the auxiliary straight
line remains tangent to the function bV . It is straightforward to see that any line tangent
to a concave (convex) function always lies above (below) it. Thus,

∀x ∈ R+, b′′V (x) ≤ 0 =⇒ ∀x ∈ R+, V (x) ≤ Ṽ (x), (3.40a)

∀x ∈ R+, b′′V (x) ≥ 0 =⇒ ∀x ∈ R+, V (x) ≥ Ṽ (x). (3.40b)

A similar argument applies to the kinetic energy, leading to analogous conclusions. Defining
bT (p

2) = T (p), one obtains

∀p ∈ R+, b′′T (p) ≤ 0 =⇒ ∀p ∈ R+, T (p) ≥ T̃ (p), (3.41a)

∀p ∈ R+, b′′T (p) ≥ 0 =⇒ ∀p ∈ R+, T (p) ≤ T̃ (p). (3.41b)

These observations allow the use of the comparison theorem from Section 1.3, if the
inequalities for T and V are consistent. If both bV and bT are either convex or concave,
the approximation provided by the ET serves as either an upper or a lower bound for the
true spectrum. If the second derivative of one of these functions vanishes, then the energy
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Figure 3.1: Illustration of the auxiliary potentials for linear two-body interactions. The system
consists of three non-relativistic bosons of unit mass with V (x) = x/2 (in arbitrary units). The
true potential is represented by a black line, while auxiliary potentials for increasing energy
levels are plotted in shades of grey. The black dots indicate the contact points between the true
potential and the auxiliary ones.

contribution of that part of H is exactly treated by the ET and should be ignored when
assessing the variational character. If both second derivatives vanish, meaning that the
true Hamiltonian itself is an harmonic oscillator, the ET provides the exact result.

To summarize, for certain favourable Hamiltonians, the energies approximated by the ET are
either upper or lower bounds for the original energy spectrum [57, 58, 87]. To establish this,
one must analyse the concavity of the following functions,

bT (x) = T (
√
x), (3.42)

bV (x) = V (
√
x). (3.43)

If both bT and bV are concave (convex) over R+
0 , the ET spectrum consists entirely of upper

(lower) bounds. If the second derivative of one function vanishes, the variational character is
determined by the other. If both second derivatives vanish, meaning that H corresponds to a
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α > 2 β ≥ 2 lower bounds

α = 2
β > 2 lower bounds
β = 2 exact results
β < 2 upper bounds

α < 2 β ≤ 2 upper bounds

Table 3.1: Variational properties of the ET approximations for N identical particles with
power-law kinetic energies and power-law two-body interactions (3.35).

harmonic oscillator Hamiltonian, the ET provides the exact result. In other cases, no variational
character can be guaranteed.

Continuing the example from previous section, one may ask whether the approximation (3.37)
possesses a variational character. To analyse this, the concavity of the functions bV and bT is
examined,

b′′T (p) =
A

4
a(a− 2)p(a−4)/2, b′′V (x) =

B

4
|b|(b− 2)x(b−4)/2. (3.44)

For certain ranges of a and b, the concavity of both functions aligns, ensuring a variational
property for the ET approximations. These ranges and their corresponding interpretation are
summarised in Table 3.1. For other values, the concavities are opposed, preventing any definitive
conclusion regarding the variational character of the ET approximation.

3.1.4 Improvement of the envelope theory

The ET may lack accuracy for certain Hamiltonians. To address this limitation, a parameter
ϕ can be introduced into the global quantum number Q(α),

Qϕ(α) =
N−1∑
i=1

(
ϕni + ℓi +

D + ϕ− 2

2

)

= ϕ

[
N−1∑
i=1

(
ni +

1

2

)]
+

[
N−1∑
i=1

ℓi + (N − 1)
D − 2

2

]
.

(3.45)

Notably, Qϕ(α) generalises the previous global quantum number, as setting ϕ = 2 recovers the
original expression Q(α). The introduction of ϕ is inspired by [89], in which a universal effective
quantum number for centrally symmetric two-body problems is proposed. Specifically, this
reference suggests a well-defined separation of radial and angular contributions. Equation (3.45)
extends this construction to N -body problems in an ad-hoc manner. While there is no rigorous
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derivation justifying this generalisation, its effectiveness, particularly in improving the accuracy
of the ET, supports its consideration.

One key advantage of expression (3.45) over (3.22) is that it partially breaks the strong
degeneracy inherent to the harmonic oscillator Hamiltonian. With a well-calibrated strategy for
determining ϕ, introducing such an additional parameter into the ET should enhance its accuracy.
However, since the approximated energy is no longer an eigenvalue of an auxiliary harmonic
oscillator, this improvement comes at the cost of losing the possible variational character.

Historically, the effectiveness of introducing ϕ was first tested by fitting this parameter to
pre-existing results. For instance, ϕ was chosen to reproduce only the lowest energy eigenvalue,
and the accuracy of the rest of the ET spectrum was then analysed. These tests proved
conclusive: as expected, a value for ϕ that reproduced the ground state was found, and this
value significantly improved, sometimes spectacularly, the accuracy of the rest of the spectrum
[66]. However, since this technique requires prior knowledge of accurate energy values, one may
question the relevance of approximating an energy level for which precise results already exist.
Nonetheless, there are systems where only a few energy values are fully known, making this
improved ET useful for exploring the inaccessible parts of the spectrum. Another approach is
to fit ϕ for a particle number where numerical methods are efficient and then extend it to larger
systems, assuming that ϕ depends only weakly on N . However, despite these arguments, at this
stage, the introduction of ϕ remains a niche tool with limited practical applications.

To broaden its applicability, an ab initio procedure capable of determining ϕ without any
prior knowledge has been developed. This approach relies on coupling the improved ET with
another approximation method, the DOSM. This coupling is made possible by a semi-classical
interpretation of the ET compact equations. These topics are addressed in the following sections.

A semi-classical interpretation for the ET equations

The compact equations (3.21) were derived using a fully quantum mechanical approach.
However, they also bear a striking resemblance to classical formulations. Consider a system of
N identical classical particles. To incorporate the symmetry constraints imposed by quantum
mechanics, the system is assumed to move along a circular trajectory of radius d0, with each
particle possessing the same momentum magnitude p0 and being uniformly distributed along the
orbit. Figure 3.2 illustrates this classical configuration. A generic kinetic energy function T and
two-body interaction V are assumed, where T depends only on the magnitude of the particle
momentum, and V depends on the magnitude of the relative distance. These assumptions align
with those used to derive the compact equations (3.21).

Let us evaluate the total energy of this classical system, starting with kinetic energy. Since all
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C.M.

p0

d0

π2 −
π
iN

2πi
N

2d
0 sin (

π
iN )

i = 1

i = 2

...

i = N − 1

i = N − 2

...

Figure 3.2: Schematic representation of a classical system governed by equations analogous to
the compact equations of the ET. The left diagram defines key variables: the centre of mass
(C.M.) coincides with the centre of rotation; all particles share the same momentum p0, and
their distance from the centre is equal to d0. The right diagram illustrates the computation of
the mean relative distance.

particles share the same momentum magnitude, the total kinetic energy consists of N identical
terms, T (p0). The total potential energy, however, is more complex, since different particle pairs
may have different separations. To approximate this contribution, the mean relative distance
between particles, ρ0, is introduced. Evaluating the two-body potential at this average distance
and multiplying by the number of particle pairs provides a reasonable estimate of the total
potential energy. The total energy of the classical system is thus given by

E = NT (p0) + C2
NV (ρ0). (3.46)

Despite being derived from a classical perspective, this expression is formally identical to the
first compact equation of the ET. Next, the stability of this system can be analysed by equating
the centrifugal force Fcf with the centripetal forces Fcp. The classical centrifugal contribution
for a particle having an effective mass that depends on the momentum is discussed in [90, 91].
In the present case, it is given by

Fcf = p0T
′(p0)

1

d0
. (3.47)

The variables d0 and ρ0 can be related to each other using geometric considerations, as illustrated
on the right panel of Figure 3.2,

ρ0 =
1

N − 1

N−1∑
i=1

2d0 sin

(
iπ

N

)
=
Nd0
C2

N

cot
( π

2N

)
. (3.48)
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This intricate expression can be approximated by Nd0 ≈
√
C2

Nρ0, with an error of less than
10% for any number of particles [87]. Substituting d0 into (3.47) gives

Fcf ≈ Np0T
′(p0)√

C2
Nρ0

. (3.49)

The centripetal force can again be estimated by assuming that the contribution from each of
the N − 1 other particles can be approximated as a two-body interaction acting at the mean
distance, V ′(ρ0). However, since these contributions acts in a different directions, they must be
projected along the diagonal of the circle. Referring again to Figure 3.2, one obtains

Fcp ≈ V ′(ρ0)
N−1∑
i=1

cos

(
π

2
− iπ

N

)
= V ′(ρ0)

N−1∑
i=1

sin

(
iπ

N

)
= V ′(ρ0) cot

( π

2N

)
(3.50)

Applying the same approximation as before, this equation simplifies to

Fcp ≈
√
C2

NV
′(ρ0). (3.51)

Equating (3.49) and (3.51) yields an equation fully analogous to the second compact equation
of the ET,

Np0T
′(p0) = C2

Nρ0V
′(ρ0). (3.52)

The third equation can be derived by classically evaluating the total angular momentum of the
system, denoted L. Each particle follows a circular trajectory of radius d0 with momentum p0,
yielding an orbital angular momentum d0p0. Summing over all particles gives

L = Nd0p0 ≈
√
C2

Nρ0p0. (3.53)

This equation closely resembles the third compact equation of the ET, with one key difference:
instead of the global quantum number Q(α), which accounts for both radial and orbital motion,
the classical equation involves only the total orbital angular momentum, L. This distinction is
natural, given that the classical configuration under study does not include any radial motion.
Therefore, the initial claim must be refined: the compact equations of the ET can be interpreted
as describing a system of N classical particles orbiting on a circle, provided that any radial
contribution is excluded from Q(α), including the associated zero-point energy. A separation
between radial and orbital contributions naturally occurs in the generalised quantum number
Qϕ(α). By excluding the corresponding radial terms, the following purely orbital third compact
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equation of the ET is constructed,

λ(ℓ1, ..., ℓN−1) =
√
C2

Np0ρ0, where λ(ℓ1, ..., ℓN−1) =
N−1∑
i=1

ℓi + (N − 1)
D − 2

2
. (3.54)

The classical equation L =
√
C2

Nρ0p0 can finally be identified with the above expression. To
summarize, the classical set of equations (3.46), (3.52) and (3.53), which describes a system of
N classical particles orbiting on a circle is equivalent to the purely orbital compact equations of
the ET, where equation (3.54) replaces (3.21c). In the following, although both sets of equations
are fully analogous, it is useful to distinguish the set derived from classical mechanics from the
one obtained using the ET. The former will be referred to as the classical equations.

The DOSM for systems of N identical bodies

As its name suggests, the DOSM approximates states where orbital motion dominates over
radial motion. More precisely, it suggests treating the radial excitation as a perturbation around
a classical purely orbital motion. This method, originally formulated for two-body systems [92],
can be extended to N bodies by using the aforementioned classical equations [64],

Ẽ = NT (p̃0) + C2
NV (ρ̃0), (3.55a)

Np̃0T
′(p̃0) = C2

N ρ̃0V
′(ρ̃0), (3.55b)

λ =
√
C2

N p̃0ρ̃0. (3.55c)

These equations approximate the total energy Ẽ, the mean distance ρ̃0 and the mean momentum
p̃0 associated with the classical purely orbital motion described earlier. For convenience, in the
following, any variable referring to a purely orbital motion is denoted with a tilde. This orbital
motion can now be perturbed radially, which modifies the mean relative distances ρ0 in the
system by adding an increment ∆ρr ≪ ρ0 to it,

ρ̃0 → ρ̃0 +∆ρr. (3.56)

Note that, even though it is referred to as an increment, ∆ρr can be both positive and negative.
This radial perturbation also affects the momentum of the particles, but by construction, it
lets the total angular momentum of the system unchanged. Therefore, after perturbation, p̃0
is decomposed into two contributions: a radial one, denoted pr ≪ p̃0, and a tangential one,
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denoted p∗0. The latter is used to preserve the total angular momentum of the system, so that

λ =
√
C2

N(ρ̃0 +∆ρr)p
∗
0. (3.57)

Combining both contributions, the impact of the radial perturbation is expressed as follows,

p̃0 →
√
p2r + p∗ 20 =

√
p2r +

λ2

C2
N(ρ̃0 +∆ρr)2

. (3.58)

Figure 3.3 illustrates this radial perturbation. Since ∆ρr ≪ ρ̃0 and pr ≪ p̃0, second-order
Taylor expansions can be performed on equation (3.58). After a few calculations, the following
replacement rule that initiates the radial perturbation is obtained,

p̃0 → p̃0

(
1 +

p2r
2p̃20

− ∆ρr
ρ̃0

+
∆ρ2r
ρ̃20

)
. (3.59)

The energy after the perturbation, E, is obtained by substituting the relations (3.56) and (3.59)
into (3.55a). Again, second-order Taylor expansions are performed, yielding

E = NT

(
p̃0

(
1 +

p2r
2p̃20

− ∆ρr
ρ̃0

+
∆ρ2r
ρ̃20

))
+ C2

NV (ρ̃0 +∆ρr)

= Ẽ +

(
NT ′(p̃0)

2p̃0

)
p2r +

(
Np̃0T

′(p̃0)

ρ20
+
Np̃20T

′′(p̃0)

2ρ̃20
+
C2

NV
′′(ρ̃0)

2

)
∆ρ2r.

(3.60)

The first-order contributions cancel each other due to Equation (3.55b). This result provides
the classical energy for a dominantly orbital state. The DOSM suggests quantising the radial
motion. The energy increment due to the perturbation, ∆E = Ẽ − E, is written, emphasising
its dependence on pr and ∆ρr,

∆E =
p2r
2m̄

+
k̄∆ρ2r
2

with m̄ =
p̃0

NT ′(p̃0)

and k̄ =
2Np̃0T

′(p̃0)

ρ̃20
+
Np̃20T

′′(p̃0)

ρ̃20
+ C2

NV
′(ρ̃0).

(3.61)

Above, ∆E takes the form a one-dimensional harmonic oscillator Hamiltonian (both pr and
∆ρr can be negative). For now, let us assume that variables pr and ∆ρr are conjugate. This
assumption will be re-examined later. The DOSM suggests considering this harmonic oscillator
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Hamiltonian as a quantum operator and identifying the energy increment as its spectrum,

∆E =

√
k̄

m̄

(
n+

1

2

)
. (3.62)

Here, the quantum number n globally encodes the radial excitation of the system. It should
be distinguished from the ni quantum numbers in the ET, which separately encodes the radial
excitation associated with each Jacobi coordinate. Relating the n and the ni quantum numbers
is not straightforward. The easiest way to address this is by evaluating the N -body harmonic
oscillator spectrum with the DOSM and to comparing the result to its analytical spectrum (3.15).
After a few calculations, the DOSM provides the following approximate energy eigenvalues,

Ẽoh = Eoh +∆Eoh =

√
Nν

µ

(
λ+ 2

√
C2

N

(
n+

1

2

))
. (3.63)

Comparing with (3.15), it appears that the DOSM gives the exact result, provided that√
C2

N(n + 1/2) is identified with
∑N−1

i=1 (ni + 1/2). It is a common feature of the DOSM to
exactly reproduce the spectrum of the non-relativistic harmonic oscillator, even for purely
radially excited states [93]. One might be surprised by the factor

√
C2

N that this identification
introduces. In fact, it can be related to the assumption made regarding pr and ∆ρr. If, instead
of ∆ρr, the conjugate variable to pr is taken to be

√
C2

N∆ρr, this factor disappears from the
relation that identifies n and {ni}. Therefore, one can safely rescale the variable used to initiate
the radial perturbation, provided that the quantum numbers are correctly identified at the end
of the developments.

To summarize, the DOSM provides an approximation for the energy of dominantly orbital
eigenstates. This approximation is obtained in two steps. First, p̃0 and ρ̃0 are determined by
solving the purely orbital equations (3.55) for a given orbital excitation λ. Second, the orbital
energy Ẽ is supplemented by a radial increment ∆E. The radial excitation is indicated by a
global quantum number n and the increment is evaluated using the following formula,

∆E =

√
k̄

m̄

(
n+

1

2

)
with m̄ =

p̃0
NT ′(p̃0)

and k̄ =
2Np̃0T

′(p̃0)

ρ̃20
+
Np̃20T

′′(p̃0)

ρ̃20
+ C2

NV
′(ρ̃0).

(3.64)

The DOSM quantum numbers n and λ have been related to the quantum numbers from the ET
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prp∗0

∼ ∆ρr

Figure 3.3: Schematic representation of the radial perturbation initiated while developing the
DOSM for N -body systems. The perturbed momentum combines two contributions: a radial
one, denoted pr, and a tangential one, denoted p∗0. The perturbed mean relative distance is also
affected by an increment ∆ρr.

as follows,

√
C2

N(n+ 1/2) =
N−1∑
i=1

(ni + 1/2), λ =
N−1∑
i=1

ℓi + (N − 1)
D − 2

2
. (3.65)

Coupling the DOSM and the improved ET

The DOSM, as constructed in the previous section, is a self-sufficient method, that operates
independently of the ET. However, the equations used by both methods are very similar,
raising the possibility of coupling them. One key difference between the two methods is that
the approximation given by the ET is valid for the entire spectrum, whereas the DOSM is
specifically tuned to be particularly efficient for dominantly orbital states. Given this distinction,
the following strategy is proposed. The ϕ parameter from the improved ET is chosen so that
this method reproduces the spectrum of the DOSM for dominantly orbital states. By relying on
the versatility of the ET approximation, the resulting expression for ϕ is then extended to the
entire spectrum, including radially excited states.

To proceed with the matching of both methods, the equations of the improved ET must
first be developed for dominantly orbital states. To start, let us rework Qϕ(α) to introduce a
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parameter that characterises the relative amount of orbital excitation, denoted as ϵ,

Qϕ(α) = ϕ

[
N−1∑
i=1

(
ni +

1

2

)]
+

[
N−1∑
i=1

ℓi + (N − 1)
D − 2

2

]

= λϵ+ λ with λ =
N−1∑
i=1

ℓi + (N − 1)
D − 2

2
and ϵ =

ϕ

λ

N−1∑
i=1

(
ni +

1

2

)
.

(3.66)

For ϵ = 0, the state under investigation is purely orbital, and the equations of the ET take a
structure analogous to the classical questions,

Ẽ = N T (p̃0) + C2
N V (ρ̃0), (3.67a)

Np̃0T
′(p̃0) = C2

N ρ̃0V
′(ρ̃0), (3.67b)

λ(ℓ1, ...ℓN−1) =
√
C2

N p̃0 ρ̃0, (3.67c)

Since these are solutions to purely orbital equations, the energy, momentum and mean distance
have been denoted with tildes. For ϵ ≪ 1, the state is dominantly orbital, and the variables,
denoted E, p0 and ρ0, are close to their purely orbital equivalents,

p0 = p̃0 +∆p with ∆p≪ p0, (3.68a)

ρ0 = ρ̃0 +∆ρ with ∆ρ≪ ρ0, (3.68b)

E = Ẽ +∆E with ∆E ≪ E0, (3.68c)

Substituting p0, ρ0 and E into the ET compact equations allows to express ∆E in terms of the
purely orbital variables and the quantum numbers ϵ and λ. First, Taylor expansions of the third
compact equation provide an expression for ∆p in terms of ∆ρ,

p̃0 +∆p = p̃0

(
1 + ϵ+

∆ρ

ρ̃0

)
. (3.69)

This relation can then be substituted directly into the first compact equation. After a final
series of Taylor expansions, the following expression is obtained for ∆E,

∆E = Np̃0T
′(p̃0)ϵ+

(
C2

NV
′(ρ̃0)−

Np̃0T
′(p̃0)

ρ̃0

)
∆ρ. (3.70)

The terms in the large parentheses vanish due to equation (3.67b). Finally, an expression for
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∆E in terms of the expected quantities is obtained,

∆E = Np0T
′(p0)ϵ = Np0T

′(p0)
ϕ

λ

N−1∑
i=1

(
ni +

1

2

)
. (3.71)

This expression can now be compared to the one provided by the DOSM. Using (3.65) to relate
n to {ni}, equation (3.64) turns out very similar to (3.71),

∆E =

√
k̄

C2
Nm̄

N−1∑
i=1

(
ni +

1

2

)
. (3.72)

The expression for ϕ is chosen so that both expressions give the same energy increment for
dominantly orbital states,

ϕ =
λ

Np̃0T ′(p̃0)

√
k̄

C2
Nm̄

. (3.73)

After some algebraic manipulation, a more compact expression is obtained,

ϕ =

√
2 +

p̃0T ′′(p̃0)

T ′(p̃0)
+
ρ̃0V ′′(ρ̃0)

V ′(ρ̃0)
. (3.74)

This is the aforementioned ab initio formula that can be used in the improved ET. From now
on, the term "classical ET" will refer to the ET without the additional parameter ϕ, in contrast
to the "improved ET" which computes and includes it using the above formula. The expression
presented here is equivalent to the one in [64] but is more concise due to unnoticed simplifications
[94].

Application example

For clarity, let us summarise the entire expression for ϕ in a single equation,

ϕ =

√
2 +

p̃0T ′′(p̃0)

T ′(p̃0)
+
ρ̃0V ′′(ρ̃0)

V ′(ρ̃0)
where


Np̃0T

′(p̃0) = C2
N ρ̃0V

′(ρ̃0),√
C2

N p̃0ρ̃0 = λ(ℓ1, ..., ℓN−1) =
N−1∑
i=1

(
ℓi +

D−2
2

)
.

(3.75)

As can be seen, given an orbital excitation λ, obtaining ϕ requires first solving the above system
of two equations to find p̃0 and ρ̃0. The equations in this system are fully analogous to the
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second and third compact equations of the ET, with Q(α) replaced by λ. Consequently, if
an analytical solution exists for the ET, p̃0 and ρ̃0 can be directly deduced from this solution.
Otherwise, the system in (3.75) must be solved numerically. The computational cost of this
operation is comparable to that of the classical ET itself. Once these variables are determined,
ϕ can be computed and used in the generalised global quantum number Qϕ(α),

Qϕ(α) = ϕ

[
N−1∑
i=1

(
ni +

1

2

)]
+ λ(ℓ1, ..., ℓN−1). (3.76)

This new quantum number is then used in place of Q(α) in the compact equation of the ET. If
an analytical solution exists, simply substituting this quantum number in the final expression
is sufficient. Otherwise, compact equations must be solved numerically a second time. It is
important to note that modifying Q(α) removes the guarantee of any variational character, if
one exists.

To illustrate the calculation required by the improved ET, let us continue with the example
from previous sections. Consider a system of N identical particles with power-law kinetic
energies, T (p) = Apa, and power-law two-body interactions, V (x) = Bxb. The classical ET
provided the following expressions for E, p0 and ρ0 in Section 3.1.2,

p0 =

 NaAQ(α)

|b|B
(√

C2
N

)a+2


1/(a+b)

, ρ0 =

 |b|BQ(α)b
(√

C2
N

)2−b

NaA


1/(a+b)

,

E =
b

|b|
(a+ b)

(C2
NB

a

)a(
NA

|b|

)b
(
Q(α)√
C2

N

)ab
1/(a+b)

.

(3.77)

Determining p̃0 and ρ̃0 requires solving the same equations with λ replacing Q(α). This results
in the following analogous expressions,

p̃0 =

 NaAλ

|b|B
(√

C2
N

)a+2


1/(a+b)

, ρ̃0 =

 |b|Bλb
(√

C2
N

)2−b

NaA


1/(a+b)

. (3.78)

Substituting these expressions into the formulas for ϕ leads to significant simplifications. After
a few algebraic manipulations, the following compact expression for ϕ is obtained,

ϕ =
√
a+ b. (3.79)
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In this special case, ϕ does not truly depend on λ. The above expression allows for the calculation
of the new global quantum number Qϕ(α), which can then be substituted into the compact
equations. The following improved spectrum is obtained,

E =
b

|b|
(a+ b)

(C2
NB

a

)a(
NA

|b|

)b
(
Q√

a+b(α)√
C2

N

)ab
1/(a+b)

. (3.80)

These eigenenergies are expected to be more accurate than the previous ones. Thanks to ϕ,
the degeneracy of the ET spectrum has been partially raised. However, none of the variational
interpretations from Section 3.1.3 holds any longer, as the quantum number of the harmonic
oscillator has been modified. These statements are tested in the Section 3.1.7.

Before moving on, let us mention that, since the DOSM requires the concept of orbital angular
momentum to exist, the ab initio improvement procedure can only be validated for D > 1. For
systems in one dimension, no ab initio formula for an equivalent of ϕ has been developed.

3.1.5 Generalisations

Extensions of the ET and its improvement exist for systems of N identical particles interacting
via Hamiltonians beyond (3.16). These generalisations allow for the inclusion of one-body
potentials [62, 64] and/or a certain class of K-body forces [54, 88]. The ET has even been
expanded to describe bound cyclic systems, as explored in [95]. These extensions are based on
variations of the Hamiltonian (3.16) that remain analytically solvable. They lead to adapted
compact equations, additional conditions for determining the variational character and, if
developed, new formulas for the parameter ϕ. For detailed discussions of these modified ET, the
reader is referred to the corresponding references. However, in order to illustrate how compact
equations are affected and because the class of K-body interactions discussed in [88] generalises
the three-body forces introduced in Section 1.12, the corresponding compact equations are
presented in the present section. Detailed derivations are deferred to [54, 88].

Consider a system of N identical particles governed by the following general Hamiltonian,

H =
N∑
i=1

T (|pi|) +
N∑

{i1,...,ik}

W
(
r{i1,...ik}

)
where r2{i1,...,ik} =

{i1,...ik}∑
i<j

|ri − rj |2. (3.81)

As before, it is assumed that the centre-of-mass motion is removed from H. Above, {i1, ...ik}
denotes a specific set of K particles among the N available, and the sum

∑N
{i1,...,ik} runs over

all possible sets of K particles in the system. It can be verified that for K = 2, the K-body
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interaction terms reduce to the aforementioned two-body interactions, while for N = K = 3,
they reduces to the three-body interactions introduced in Section (1.12). The ET provides an
approximation for the spectrum of the Hamiltonian (3.81) by solving the following set of three
compact equations [54, 88],

E = N T (p0) + CK
N W

(√
C2

Kρ0

)
, (3.82a)

Np0T
′(p0) = CK

N

√
C2

Kρ0W
′
(√

C2
Kρ0

)
, (3.82b)

√
C2

N p0 ρ0 = Q(α) =
N−1∑
i=1

(
2ni + ℓi +

D − 2

2

)
. (3.82c)

Above, CB
A is the binomial coefficient A!/(B!(A−B)!). The unknowns p0 and ρ0 retain their

previous interpretation (3.23) as approximations for the expectations values of momentum and
relative distance. As expected, for K = 2, the compact equations (3.21) are recovered. Several
K-body interactions can also be incorporated by duplicating the associated terms in equations
(3.82a) and (3.82b).

Regarding the variational character of the approximation, a function bW (x) such that bW (x2) =

W (x) is introduced. The concavity of this function, together with the concavity properties of
the other b-functions, determines whether the result provides an upper bound, a lower bound or
simply an approximation to the true spectrum.

Finally, an adapted formula for ϕ has been obtained in reference [54] following similar
calculation steps as previously detailed. It results in a very analogous expression,

ϕ =

2 +
p̃0T

′′(p̃0)

T ′(p̃0)
+

√
C2

k ρ̃0V
′′
(√

C2
k ρ̃0

)
V ′
(√

C2
k ρ̃0

)
1/2

where

Np̃0T ′(p̃0) = CK
N

√
C2

K ρ̃0V
′(
√
C2

K ρ̃0),√
C2

N p̃0ρ̃0 = λ(ℓ1, ..., ℓN−1).

(3.83)

Again, for K = 2, the previous expression is recovered. This formula is again only valid for
D > 1. The obtained parameter is to be used in the same modified global quantum number as
for two-body interactions,

Qϕ(α) =
N−1∑
i=1

(
ϕni + ℓi +

D + ϕ− 2

2

)
. (3.84)
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Of course, as for two-body forces, this modification of Q(α) with ϕ disrupts the variational
character of the original ET, if it exists.

3.1.6 Approximations of eigenstates and relation with the OBE

As mentioned earlier, the ET can also be used to approximate eigenstates. However, obtaining
and using these approximations is not as straightforward as with the spectrum. In this section,
the associated calculations are illustrated for three-body systems, in line with the scope of this
work. The development can easily be generalised to more particles.

First, a notation for the different approximate eigenstates provided by the ET must be
introduced. They are specified by their symmetry σ, total angular momentum L, parity P and
global quantum number Q(α),

|σ;Q∗(α);LP ⟩ with Q∗(α) = Q(α)− 3 = 2n1 + ℓ1 + 2n2 + ℓ2. (3.85)

Above, Q∗(α) replaces Q(α) for notational convenience and because Q∗(α) is directly related to
the number of quanta defined in Section 2.1.3. As discussed while developing the basics of the
ET in Section 3.1.1, the states |σ;Q∗(α);LP ⟩ are, by construction, symmetrised eigenstates of
the auxiliary harmonic oscillators that have yet to be constructed. Since similar calculations
have already been depicted in Section 2.1.3 for the OBE, this construction is discussed only
briefly here.

Unsymmetrical eigenstates of the harmonic oscillator are explicitly constructed for a general
number of particles in Complement 3.A. For three-body systems, these states are labelled by two
radial, two orbital and two magnetic quantum numbers, and are denoted as |ψn1ℓ1m1n2ℓ2m(x1,x2)⟩.
A given total angular momentum is assigned to these states using the usual coupling with
Clebsch-Gordan coefficients,

|ψL
n1ℓ1n2ℓ2

(x1,x2)⟩ =
∑

m1,m2

⟨ℓ1m1ℓ2m2|LM⟩ |ψn1ℓ1m1n2ℓ2m2(x1,x2)⟩ , (3.86)

where, as in Chapter 2, the quantum number M has been omitted in the left-hand side notation.
One can show that these states are already parity eigenstates, with parity given by P = (−1)ℓ1+ℓ2 .
Symmetrised eigenstates are then written as definite linear combinations of eigenstates (3.86)
sharing the same energy, parity and total angular momentum,

|σ;Q∗(α);LP ⟩ =
∑

n1,ℓ1,n2,ℓ2

CLPσ
n1ℓ1n2ℓ2

|ψL
n1ℓ1n2ℓ2

(x1,x2)⟩ , (3.87)
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where the sum is constrained to terms with 2n1 + ℓ1 + 2n2 + ℓ2 = Q∗(α) and (−1)ℓ1+ℓ2 =

(−1)Q
∗(α) = P . Procedures for explicitly determining the coefficients CLPσ

n1ℓ1n2ℓ2
are described in

Section 2.1.3 and reference [54]. These coefficients are independent of the auxiliary parameters
and need to be computed only once.

Notably, eigenstate approximations obtained from the OBE and the ET share the feature of
being symmetrised harmonic oscillator eigenstates. As a reminder, the eigenvectors obtained
using the OBE are decomposed as follows,

|ΨOBE⟩ =
Qmax∑
Q∗=0

∑
s

ds(Q
∗) |ΦL

nxℓxnyℓy(x,y)⟩ (3.88)

where the states |ΦL
nxℓxnyℓy

(x,y)⟩ are defined in equation (2.4) and where the sum over s accounts
for all degrees of freedom other than the number of quanta. The coordinates x and y are
dimensionless Jacobi coordinates, scaled by a single parameter a for three identical particles,

x =
x1

a
, y =

2x2√
3a
. (3.89)

Moreover, the parameter a is controlling the size of the harmonic oscillator used in the method.
This role is analogous to that played by the variable ρ0 in the ET. Owing to this similarity, the
two variables can be related to each other [54],

ρ0 =

√
Q(α)

2
a. (3.90)

This equality, however, should be interpreted with caution. It indicates that, if the relation
holds, the harmonic oscillator eigenstates constructed using the scale a in the OBE and those
constructed using the scale ρ0 in the ET are the same. Nevertheless, it should not be understood
as a strict identity between the optimised variational parameter a and the solution of the
ET equations ρ0. More broadly, the similarities between the OBE and the ET should not be
construed as implying the equivalence of the two methods. They are built on fundamentally
different approaches: the OBE approximates the true eigenstates using those of the harmonic
oscillator, whereas the ET directly approximates the true Hamiltonian using harmonic oscillator
ones. Although the ET variable ρ0 and the variational parameter a are related, both methods
determine these quantities using fundamentally different approaches.

Nevertheless, the similarity between the approximations from the ET and the OBE allows
for an easy comparison. In the decomposition (3.88), there typically exists a value of Q∗ for
which

∑
s |ds(Q∗)|2 approaches 1. The corresponding number of quanta determines the value of
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Q∗(α) to be used in the ET to obtain the corresponding approximation. It also quantifies the
agreement between both methods: the closer the sum

∑
s |ds(Q∗)|2 is to 1, the more accurate

the ET approximation becomes. Additionally, the more accurately equation (3.90) holds, the
more both methods use the same scale, and the closer the resulting approximations are. This
last observation leads to an interesting application of the ET. When optimizing the non-linear
variational parameters with the OBE, selecting an initial guess for a can be somewhat challenging.
Solving the ET equations can provide guidance: obtaining ρ0 gives, via equation (3.90), an
initial approximation for the optimised a value. While this equation does not generally yield the
exact value, it provides a sufficiently accurate estimate to serve as an initial guess for a. This is
particularly valuable since solving the ET equations numerically takes less than a second.

Finally, once the approximate eigenstates from the ET have been obtained in terms of
harmonic oscillator eigenstates, approximating observables reduces to evaluating a few integrals
of analytical integrands. Let us illustrate this in the case for a scalar observable O. First, the
symmetric state from the ET is decomposed using equation (3.87),

⟨σ;Q∗(α);LP | O |σ;Q∗(α);LP ⟩ =∑
n′
1,ℓ

′
1,n

′
2,ℓ

′
2

∑
n1,ℓ1,n2,ℓ2

CLPσ ∗
n′
1ℓ

′
1n

′
2ℓ

′
2
CLPσ

n1ℓ1n2ℓ2
⟨ψL

n′
1ℓ

′
1n

′
2ℓ

′
2
(x1,x2)| O |ψL

n1ℓ1n2ℓ2
(x1,x2)⟩ (3.91)

Since O does not act on angular degrees of freedom, the matrix elements on total angular
momentum eigenstates simplify using Clebsch-Gordan properties,

⟨ψL
n′
1ℓ

′
1n

′
2ℓ

′
2
(x1,x2)| O |ψL

n1ℓ1n2ℓ2
(x1,x2)⟩

= δℓ′1ℓ1δℓ′2ℓ2 ⟨ψn′
1ℓ1m1n′

2ℓ2m2
(x1,x2)| O |ψn1ℓ1m1n2ℓ2m2(x1,x2)⟩

(3.92)

where m1 and m2 can be chosen indifferently as the angular integrals from the matrix element
on the right-hand side are trivial. Finally, the following expression is obtained

⟨σ;Q∗(α);LP | O |σ;Q∗(α);LP ⟩ =∑
n′
1,n

′
2

∑
n1,n2

∑
ℓ1,ℓ2

CLPσ ∗
n′
1ℓ1n

′
2ℓ2
CLPσ

n1ℓ1n2ℓ2
⟨ψn′

1ℓ1m1n′
2ℓ2m2

(x1,x2)| O |ψn1ℓ1m1n2ℓ2m2(x1,x2)⟩ (3.93)

For simple cases, the residual matrix elements can be evaluated analytically using the properties
of the harmonic oscillator eigenstates [54]. For more complex cases, numerical routines allow for
reasonably fast evaluations.
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3.1.7 Accuracy tests

The previous sections presented the ET as an easily applicable approximation method but
whose accuracy proves difficult to predict. An improved version of the method exists and should
improve overall accuracy, but quantifying this improvement remains elusive. Acquiring insights
into the efficiency of the ET may help answer these questions. These are obtained by testing
the ET on systems for which very accurate eigenenergies are accessible. References [54, 55,
66, 67] consist in gathering and analysing such tests. The current section goes over some of
the results from these articles. The goal is to illustrate the main feature about the accuracy
of the ET more than to provide an exhaustive review of the associated works. Especially, in
accordance with the editorial policy of this document, tests are only preformed on three-body
systems in three dimensions, although formulas are written for arbitrary numbers of particles N
and dimensions D for the sake of generality. Tests involving larger systems of identical particles
are proposed in references [64, 66, 67].

In general, only bosons will be considered, which implies that only combinations of quantum
numbers {n1, ℓ1, ..., nN−1, ℓN−1} that yield a symmetric harmonic oscillator eigenstate are per-
mitted. Since the corresponding state is always symmetric, the ET approximation for the ground
state of a bosonic system is simply obtained by setting ni = ℓi = 0 for all i ∈ {1, ..., N − 1}.
For three particles, it results in a definite expression for the modified global quantum number,

QBGS
ϕ = ϕ+ 1. (3.94)

Let us remind that the initial quantum number is recovered by setting ϕ = 2. The situation
in presence of fermions is discussed in Complement 3.B. Finally, most tests are performed for
non-relativistic kinematics, T (p) = p2/2m. As arbitrary units are used, only unit masses are
considered.

Power potential and the role of divergences

This first test aims to assess the accuracy of the formulas obtained while developing the
method. Sections 3.1.2, 3.1.3 and 3.1.4 concludes by illustrating their formulas on a system of
N identical bosons with power-law kinetic energies and power-law two-body interactions,

T (p) = Apa, V (x) =
b

|b|
Bxb. (3.95)

As already mentioned, the current test will consider N = 3, A = 1/2 and a = 2. Only the
ground state will be investigated. Concerning the interaction, b values ranging from −2 to 3
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b HHE [25] OBE ET [δ] IET [δ]
−1.0 −0.266 75 −0.266 45 −0.125 00 [53%] −0.281 25 [6%]
−0.5 −0.591 73 −0.591 74 −0.491 39 [17%] −0.599 77 [1%]
0.1 1.880 19 1.880 18 1.914 06 [2%] 1.877 43 [<1%]
0.5 2.916 54 2.916 53 3.082 03 [6%] 2.902 11 [<1%]
1.0 3.863 09 3.863 09 4.088 52 [6%] 3.841 30 [<1%]
2.0 5.196 15 5.196 15 5.196 15 [0%] 5.196 15 [0%]
3.0 6.155 91 6.155 91 5.683 94 [8%] 6.224 79 [1%]

Table 3.2: Ground state energies provided by the HHE from [25], the OBE, the ET and the
improved ET (IET) for a system of three identical bosons of unit mass and interacting pairwise
with potential V (x) = b/(2|b|)xb. Arbitrary units are used. Relative differences with the OBE,
denoted δ, are indicated in % for the ET and the improved ET. For the OBE, the maximum
number of quanta used in the basis is Qmax = 20, with a computed for Qmax = 10.

and B = 1/2 are chosen to enable the comparison of the ET results with those from reference
[25] and from the OBE. Some of the corresponding data were already presented in Section 2.3.1.
Results are displayed on Table 3.2. For b positive, the accuracy of the ET is about a few percent
of relative error while that of the improved version goes below or equal to 1%. As expected,
both methods prove exact for b = 2, namely for harmonic interactions. The variational character
predicted on Table 3.1 is verified for the ET, but not for the improved version. For b negative,
the situation must be qualified. It seems that the more divergent the potential is, the less
accurate the ET is. Although also slightly affected, the improved ET proves more resilient to
this degradation. This conclusion is confirmed by the result from Figure 3.4. These tests use
increasingly divergent power-law potentials V (x) = −x−|b| with |b|, until 1.75. Ground states are
computed using the ET, the improved ET and the OBE. The ET provides reasonably accurate
results for small |b|. However, as |b| increases, the relative error also increases. When utilising
the improved ET, the behaviour with respect to b is better reproduced. For values of b close
to −2, the accuracy of the improved ET results appears to decrease. It should be noted that
for b < −1, the results obtained from the OBE should be interpreted with caution because
convergence was not completely achieved.

These conclusions are general features with the ET: the more divergent the potential is, the
less accurate proves the approximation, and turning to the improved ET can help mitigate this
inaccuracy. It can be validated by testing the ET on other potentials in which a divergence can
be controlled. For instance, a truncated Coulomb potential can be considered,

V (r) = − C√
r2 + d2

(3.96)
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Figure 3.4: Ground state energies of a three-body system with m = 1 and a negative power
potential V (r) = −r−|b| as a function of |b|. OBE results (dots), ET results (line) and improved
ET results (dashed line). ET and improved ET results have been plotted with a line to easily
distinguish them from the exact ones. For the OBE, a is computed for Qmax = 10 while the
maximum number of quanta used in the basis is Qmax = 26.

with C > 0 and d > 0. Such a potential is commonly used to model electron-hole pairs, also
known as excitons [96]. By applying equations (3.21b) and (3.21c), the following expression is
obtained

mC

N

(C2
N)

2

Qϕ(α)2
ρ40 = (ρ20 + d2)3/2. (3.97)

Since the solutions of this quartic equation are complicated to manipulate, numerical compu-
tations are preferred. It has been demonstrated that the classical ET provides upper bounds
for this potential. In a previous study [78], the ET was employed to investigate this system,
but only for two-body systems at D = 1. As the ET results are obtained through numerical
calculations, the same applies to the improved ET. The conclusions drawn for this potential
are similar to those of the previous example. As shown in Figure 3.5 for C = 1, the relative
errors decrease as the divergence is smoothed, namely as d increases. Concerning the improved
results, they better reproduce the dependence of energy on d. The loss of variational character
is also manifest on Figure 3.5 for small d. A third example of increasingly divergent potential is
depicted in reference [55].
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Figure 3.5: Ground state energy E of a three-body exciton system with m = 1 and V (r) =
−1/

√
r2 + d2 as a function of d. OBE results (dots), ET results (solid line) and improved ET

results (dashed line) are shown. ET and improved ET results have been plotted with a line to
easily distinguish them from the OBE ones. For the OBE, a is computed for Qmax = 10 while
the maximum number of quanta used in the basis is Qmax = 26.

Mixture of different variational characters

A second factor that may affect the ET accuracy is its variational character. When such a
property can be established for the solution, it provides some guarantees regarding the quality of
the approximation. Otherwise, the ET only asserts that the obtained values approach the true
eigenenergies, without further details. To gain insights into the accuracy of the ET, situations
with no variational interpretation need to be investigated. They arise, for instance, when a
system involves two different interactions whose contributions to the variational character are
opposed. Such configurations are found in physical systems, including atomic spectra. In the
helium atom, for example, the attractive Coulomb interactions between the nucleus and the
electrons coexist with the repulsive Coulomb interaction between the two electrons. These
opposing contributions tend to impose contradictory variational characters, resulting in an ET
spectrum whose accuracy is difficult to predict. Naturally, atomic systems involve two different
types of particles, which requires deferring their description within the ET framework to Section
3.2.4.

Nevertheless, this situation can be replicated with identical particles by considering a potential
consisting of two components: one providing an upper bound and the other a lower bound.
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To control the variational character, multiplicative factors C and 1 − C are introduced. By
continuously varying C from 0 to 1, one potential is switched on while the other is switched off.
In other words, transitioning from C = 0 to C = 1 corresponds to a change in the variational
character.

As an example to illustrate this approach, a potential combining cubic and linear interactions
is considered. Referring to Table 3.1, the cubic potential V (r) = α r3 contributes to a lower
bound due to its convex function bV (r) = α r3/2. Conversely, the linear potential V (r) = β r

leads to an upper bound due to its concave function bV (r) = β r1/2. As a result, a potential
combining both terms will, depending on the value of C, predominantly display one variational
character or the other,

V (r) = αC r3 + β (1− C) r. (3.98)

When C = 0, V (r) reduces to the linear potential and when C = 1, it reduces to the cubic
potential. To compute the approximate spectrum, the compact equations (3.21) must be solved
once again. It leads to a quintic equation,

N

m

Q(N)2

(C2
N)

2
− 3αCρ50 − β(1− C)ρ30 = 0, (3.99)

which does not have a general analytical solution. Therefore, numerical computations are
performed for both the ET and its improvement. The results are presented in Figure 3.6 for
α = β = 1 (in arbitrary units). As expected, when C = 0 (pure linear potential), the classical
ET provides an upper bound for the energy, while when C = 1 (pure cubic potential), it provides
a lower bound. In both cases, the improved ET yields noticeably more accurate results.

However, for intermediate values of C, the situation is more complex. The errors in evaluating
the ground state due to the two components of the potential counterbalance each other, resulting
in a more precise energy. Since the ET continuously transition from one variational character
to the other, its results even match the exact ones at a specific value of C (in this case,
approximately C = 0.2). However, due to the unpredictability of the crossover point, this
feature is impractical to exploit. Regarding the improved ET, it appears less effective in the
intermediate range of C values compared to the extremes. In general, the variational character
serves as a safeguard, preventing the ET approximations from dropping too low or rising too
high. In the absence of this variational guidance, the improved ET struggles to achieve higher
accuracy. Concerning a hypothetical crossing of the improved curve with the exact results, the
loss of the variational character implies that no general prediction can be made, although this
feature does occur in the present example. In conclusion, it is not guaranteed that the improved
ET will consistently outperform the classical ET in such situations. However, this result should
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Figure 3.6: Energy E of a three-body system with m = 1 and a mixed cubic - linear potential
V (r) = Cr3 + (1 − C)r as a function of C. OBE results (dots), ET results (solid line), and
improved ET results (dashed line) are shown. For the OBE, a is computed for Qmax = 10, while
the maximum number of quanta used in the basis is Qmax = 26.

be nuanced as the dashed curve more accurately reproduces the exact shape, and this analysis
focuses exclusively on the bosonic ground state.

This first example is supplemented in reference [55] with two other potentials exhibiting
similar variational characteristics. The conclusions are broadly consistent with those above: the
ET proves to be fairly accurate on its own, and there is no guarantee that the improved ET will
genuinely enhance accuracy. These tests also include more complex potential shapes, such as
logarithmic and Gaussian interactions.

Three-body forces and observables

To close these illustrations of the ET, let us have a look at the generalisation to K-body
forces introduced in Section 3.1.5. The associated approximation will be examined for a system
of identical particles interacting with power-law K-body interactions,

T (p) = Apa, W (ρ) = − b

|b|
Bρb. (3.100)

For now, the kinetic energy is kept arbitrary, but it will be shortly specified to the non-
relativistic one (a = 2 and A = 1/2m). The generalised compact equations for K-body forces
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being extremely similar to those for two-body interactions, the same accounts for their solutions,

p0 =

 |b|BQ(α)bCK
N

(√
C2

K

)b
NaA

(√
C2

N

)b


1/(a+b)

, ρ0 =

 NaAQ(α)a

|b|B CK
N

(√
C2

N

)a (√
C2

K

)b


1/(a+b)

,

(3.101)

E =
b

|b|
(a+ b)

(CK
NB

a

)a(
NA

|b|

)b
(√

C2
K√

C2
N

Q(α)

)ab
1/(a+b)

. (3.102)

Concerning the improved version, ϕ can be computed thanks to (3.83). Surprisingly, it results
in the same value as for two-body interactions,

ϕ =
√
a+ b. (3.103)

In the following, the accuracy of the ET approximations is investigated for three non-relativistic
bosons with unit masses interacting through linear or Coulomb three-body forces. For both
tests, ground states and excited eigenstates are examined. These examples are taken from
reference [54].

Let us start with the linear case, b = 1 and B = 1/2. Using the OBE developed in Chapter
2, accurate eigenvalues and eigenfunctions are obtained for this potential. Table 3.3 compares
the results from the ET and its improved version with those from the OBE. States from the ET
and from the OBE are identified using the methodology described in Section 3.1.6. A parameter
that indicates how well relation (3.90) holds is denoted by ν,

ν =

√
Q(α)

2

a

ρ0
. (3.104)

The ratio associated with the dominant number of quanta in the eigenstates from the OBE,
namely

∑
s |ds(Q∗)|2, is also provided and denoted D(Q∗) for short. Examining the results, the

accuracy of the ET is of the same order as for two-body interactions. As expected, there is a
strong correlation between the proximity of ν and D(Q∗) to 1 and the accuracy of the ET. The
improvement procedure using the DOSM appears to be less effective for systems with three-body
forces.

This analysis is confirmed by investigating the Coulomb case, with b = −1 and B = 3.
Eigenenergies of this potential obtained with the OBE have already been displayed in Table
2.6. Table 3.4 compares the results given by the ET and the improved ET with those from
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State OBE ET [δ] IET [δ] ν D(Q∗)

|1; 0; 0+⟩ 2.753 2.835 [3.0%] 2.663 [3.3%] 1.09 0.97
|1; 2; 0+⟩ 3.795 3.985 [5.0%] 3.695 [2.6%] 1.10 0.94
|1; 2; 2+⟩ 3.915 3.985 [1.8%] 3.841 [1.9%] 1.06 0.97
|1; 3; 1−⟩ 4.434 4.500 [1.5%] 4.228 [4.7%] 1.02 0.99
|1; 3; 3−⟩ 4.434 4.500 [1.5%] 4.365 [1.6%] 1.02 0.99

Table 3.3: Energies in arbitrary units for the lowest states of a system of three identical bosons
interacting through a linear three-body potential, W (ρ) = ρ/2. Results from the ET, the
improved ET and the OBE are compared. Relative differences with respect to the OBE, denoted
δ, are indicated in % for the ET and the improved ET. The parameters ν and D(Q∗), which
characterises the similarity between the ET and OBE approximations, are also provided. The
maximal number of quanta used for the OBE is Qmax = 16 with a computed for Q = 10.

State OBE ET [δ] IET [δ] ν D(Q∗)

|1; 0; 0+⟩ −0.240 −0.167 [30%] −0.375 [56%] 1.36 0.89
|1; 2; 0+⟩ −0.120 −0.060 [50%] −0.167 [39%] 1.92 0.72
|1; 2; 2+⟩ −0.074 −0.060 [19%] −0.094 [27%] 1.22 0.90

Table 3.4: Energies in arbitrary units for the lowest states of a system of three identical bosons
interacting through a Coulomb three-body potential, W (ρ) = −3/ρ. Results from the ET,
the improved ET and the OBE are compared. Relative differences with respect to the OBE,
denoted δ, are given in percent for the ET and the improved ET. Parameters ν and D(Q∗),
which characterise the similarity between ET and OBE approximations, are also provided. The
maximal number of quanta used for the OBE is Qmax = 16 with a computed for Q = 10.

Section 2.3.2. The ET approximation achieves a relatively low level of accuracy, similar to that
for Coulomb two-body interactions. This poor accuracy is again explained by the divergent
nature of the potential. The same correlation with ν and D(Q∗) is observed. Once more, the
improved ET struggles to achieve higher accuracy, likely for the same reasons.

Finally, let us briefly compare the approximations for a few observables obtained from the ET
and the OBE. This analysis is performed using the same linear three-body potential as before.
Table 3.5 presents results for different powers of the relative distance between particles. Due to
its low accuracy for the spectrum, the improved ET is not included in this discussion. Notably,
for ⟨|ri − rj|2⟩, obtaining an ET approximation requires no additional calculations, since ρ20
directly gives this quantity. All the ET approximations obtained using the methodology from
Section 3.1.6 prove to be quite accurate, with relative differences smaller than a few percent.
Additional results can be found in reference [54].
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State ⟨|ri − rj|⟩ ⟨|ri − rj|2⟩ ⟨|ri − rj|−1⟩
OBE ET [δ] OBE ET [δ] OBE ET [δ]

|1; 0; 0+⟩ 2.035 2.011 [1.18%] 4.932 4.762 [3.45%] 0.633 0.633 [< 0.1%]
|1; 2; 0+⟩ 2.806 2.737 [2.46%] 9.863 9.410 [4.59%] 0.526 0.533 [1.33%]
|1; 2; 2+⟩ 2.867 2.846 [0.73%] 9.614 9.410 [2.12%] 0.446 0.446 [< 0.1%]
|1; 3; 1−⟩ 3.198 3.178 [0.63%] 12.217 12.00 [1.78%] 0.437 0.437 [< 0.1%]
|1; 3; 3−⟩ 3.292 3.272 [0.61%] 12.217 12.00 [1.78%] 0.367 0.367 [< 0.1%]

Table 3.5: Mean values for different powers of the relative distance between particles and for
the lowest states of a system of three identical bosons interacting through a linear three-body
potential, W (ρ) = ρ/2. Arbitrary units are used. Results from the ET and the OBE are
compared, with relative differences from the OBE, denoted δ, given in %. The maximal number
of quanta used for the OBE is Qmax = 16 with a computed for Q = 10.

3.2 Envelope Theory for Systems of Different Particles

The previous description was restricted to systems of N identical particles. The ET can
be extended to systems with different particles, as the harmonic oscillator Hamiltonian with
varying masses and oscillator strengths remains analytically solvable [68]. The derivations
follows relatively similar approach to that for identical particles. Therefore, for brevity, detailed
calculations are omitted, and focus is placed on presenting and illustrating the resulting equations.
Additionally, for simplicity, only two distinct particle types are considered. Further details on
the ET for systems of different particles can be found in references [65, 68, 97].

3.2.1 Auxiliary fields for systems of different particles

Consider a system with Na particles of type a and Nb particles of type b. Such a system will
be referred to as a system of Na +Nb particles. The following harmonic oscillator Hamiltonian
remains analytically solvable,

Hdiff
oh (µa, µb, νaa, νbb, νab) =

Na∑
i=1

pi
2

2µa

+

Nb∑
j=1

pj
2

2µb

+
Na∑

i<i′=1

νaa|ri − ri′ |2

+

Nb∑
j<j′=1

νbb|rj − rj′ |2 +
Na∑
i=1

Nb∑
j=1

νab|ri − rj |2.

(3.105)

Here, pi and ri (pj and rj) denote the momentum and position of the ith (jth) particle of type
a (b), respectively. As before, the centre-of-mass energy is implicitly removed by setting the
total momentum of the system to zero manually, P =

∑Na

i=1 pi +
∑Nb

j=1 pj = 0. The solvability
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of Hdiff
oh becomes evident when rewritten as the sum of three separated harmonic contributions,

Hdiff
oh = Ha +Hb +HCM. (3.106)

Here, Ha describes the internal motion of the subsystem consisting of all particles of type a,

Ha =
Na∑
i=1

pi
2

2µa

− Pa

2Ma

+
Na∑

i<i′=1

(
νaa +

Nb

Na

νab

)
|ri − ri′ |2. (3.107)

Above, Pa =
∑Na

i=1 pi is the total momentum of subsystem a and Ma = Naµa is its total mass.
Similarly, Hb governs the internal motion of subsystem b,

Hb =

Nb∑
j=1

pj
2

2µb

− Pb

2Nbµb

+

Nb∑
j<j′=1

(
νbb +

Na

Nb

νab

)
|rj − rj′ |2, (3.108)

where Pb =
∑Nb

j=1 pj and Mb = Nbµb. Finally, the term HCM describes the relative dynamics
between the two subsystems,

HCM =
p2

2µ
+NaNbνabr

2. (3.109)

Here, p = (MbPa −MaPb)/(Ma +Mb) is the relative momentum between the two subsystems3,
µ = MaMb/(Ma +Mb) is the corresponding reduced mass, and r = Ra −Rb is the relative
position between their centre-of-mass, defined as Ra =

∑Na

i=1 ri/Na and Rb =
∑Nb

j=1 rj/Nb.
With this decomposition (3.106), the spectrum of the Hamiltonian (3.105) is the sum of three
well-known N -body harmonic oscillator spectra,

ϵαa,αb,n,ℓ(µa, µb, νaa, νbb, νab) = Q(αa)

√
2

µa

(Naνaa +Nbνab)

+Q(αb)

√
2

µb

(Nbνbb +Naνab) +Q(n, ℓ)

√
2

µ
(NaNbνab).

(3.110)

Above, αa (αb) denotes the set of quantum numbers associated with the internal motion in the
subsystem of particles a (b),

αa = {na
1, ℓ

a
1, ..., n

a
Na−1, ℓ

a
Na−1}, αb = {nb

1, ℓ
b
1, ..., n

b
Nb−1, ℓ

b
Nb−1}, (3.111)

while n and ℓ correspond to the relative motion of the two centres of mass. The function Q

retains its previous definition from the case of identical particles. Symmetry conditions on the

3 Note that, as P = 0, one has p = Pa = −Pb.
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wave function constraint the possible values of Q(αa) and Q(αb), but no such constraint applies
to Q(n, ℓ).

The exactly solvable Hamiltonian (3.105) enables the construction of an ET for a system of
Na +Nb particles governed by the following general Hamiltonian,

H =
Na∑
i=1

Ta(|pi|) +
Nb∑
j=1

Tb(|pj |) +
Na∑

i<i′=1

Vaa(|ri − ri′ |) +
Nb∑

j<j′=1

Vbb(|ri − ri′ |)

+
Na∑
i=1

Nb∑
j=1

Vab(|ri − rj|).

(3.112)

Following a similar procedure as for a system of N identical particles, auxiliary Hamiltonians
depending on five auxiliary parameters are constructed. Additional auxiliary parameters are
unnecessary due to the symmetry conditions imposed on particles a and b, respectively. To
simplify notation, the set of auxiliary parameters is denoted as γaux = {µa, µb, νaa, νbb, νab},
leading to the definition

H̃diff(γaux) = Hdiff
oh (γaux) +Bdiff(γaux), (3.113)

where the function B is given by

B(γaux) = Na

(
Ta(Ga(µa))−

G2
a(µa)

2µa

)
+ C2

Na

(
Vaa(Jaa(νaa))− νaaJ

2
aa(νaa)

)
+Nb

(
Tb(Gb(µb))−

G2
b(µb)

2µb

)
+ C2

Nb

(
Vbb(Jbb(νbb))− νbbJ

2
bb(νbb)

)
+NaNb

(
Vab(Jab(νab))− νabJ

2
ab(νab)

)
.

(3.114)

Here, Ga, Gb, Jaa, Jbb and Jab are defined as inverse functions of x/T ′
a(x), x/T ′

b(x), V ′
aa(x)/2x,

V ′
bb(x)/2x and V ′

ab(x)/2x, respectively. Using the same arguments and methodology as for
identical particles, an approximate spectrum of H is obtained by imposing extremisation
conditions on spectrum of the auxiliary Hamiltonians with respect to auxiliary parameters,

∂

∂µa

ϵ̃αa,αb,n,ℓ(γ
aux)

∣∣∣∣
γaux=γaux

0

= 0,
∂

∂µb

ϵ̃αa,αb,n,ℓ(γ
aux)

∣∣∣∣
γaux=γaux

0

= 0, (3.115a)

∂

∂νaa
ϵ̃αa,αb,n,ℓ(γ

aux)

∣∣∣∣
γaux=γaux

0

= 0,
∂

∂νbb
ϵ̃αa,αb,n,ℓ(γ

aux)

∣∣∣∣
γaux=γaux

0

= 0, (3.115b)

∂

∂νab
ϵ̃αa,αb,n,ℓ(γ

aux)

∣∣∣∣
γaux=γaux

0

= 0, (3.115c)
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where
ϵ̃αa,αb,n,ℓ(γaux) = ϵαa,αb,n,ℓ(γaux) +B(γaux). (3.116)

The extremal auxiliary parameters γaux
0 defines an extremal auxiliary Hamiltonian whose

eigenenergy labelled by αa, αb, n, ℓ approximates an eigenenergy of the genuine Hamiltonian. As
before, the extremisation conditions explicitly depend on the energy quantum numbers, leading
to an approximation of the original Hamiltonian by a set of extremal auxiliary Hamiltonians.

3.2.2 Compact equations for Na +Nb particles

As in the case of identical particles, the five extremisation conditions, along with the energy
formula, can be rewritten as a set of compact equations in which the functions G and J no
longer appear, and the variables acquire a clear physical interpretation. Since the detailed
derivation has already been presented for N identical particles, the final result is stated directly
here. More details can be found in reference [97]. For systems of Na+Nb particles, the following
seven compact equations hold

E = NaTa(p
′
a) +NbTb(p

′
b) + C2

Na
Vaa(ρaa) + C2

Nb
Vbb(ρbb) +NaNbVab(ρ

′
0), (3.117a)

NaT
′
a(p

′
a)
p2a
p′a

= C2
Na
V ′
aa(ρaa)ρaa +

Nb

Na

C2
Na
V ′
ab(ρ

′
0)
ρ2aa
ρ′0
, (3.117b)

NbT
′
b(p

′
b)
p2b
p′b

= C2
Nb
V ′
bb(ρbb)ρbb +

Na

Nb

C2
Nb
V ′
ab(ρ

′
0)
ρbb
ρ′0
, (3.117c)

1

Na

T ′
a(p

′
a)
P 2
0

p′a
+

1

Nb

T ′
b(p

′
b)
P 2
0

p′b
= NaNbV

′
ab(ρ

′
0)
R2

0

ρ′0
, (3.117d)

Q(αa) =
√
C2

Na
paρaa, Q(αb) =

√
C2

Nb
pbρbb, Q(n, ℓ) = P0R0. (3.117e)

where

p′ 2a = p2a +
P 2
0

N2
a

, p′ 2b = p2b +
P 2
0

N2
b

, ρ′0 =
Na − 1

2Na

ρ2aa +
Nb − 1

2Nb

ρ2bb +R2
0. (3.118)

The unknown variables are related to mean-values of observables,

p2a = ⟨pi
2 − Pa

2/N2
a ⟩ , p2b = ⟨pj

2 − Pb
2/N2

b ⟩ , P 2
0 = ⟨p2⟩ , (3.119a)

ρ2aa = ⟨|ri − ri′|2⟩ , ρ2bb = ⟨|rj − rj′|2⟩ , R2
0 = ⟨r2⟩ . (3.119b)

Here, i, i′ label any two particles of type a, and j, j′ label any two particles of type b. The
symmetry properties of the expected solution ensure that any choice of specific particle pairs



3.2. ENVELOPE THEORY FOR SYSTEMS OF DIFFERENT PARTICLES 116

results in the same expectation value. Using definitions (3.118), one also obtain expectations
values corresponding to the primed variables,

p′ 2a = ⟨pi
2⟩ , p′ 2b = ⟨p2

j⟩ , ρ′ 20 = ⟨|ri − rj|2⟩ . (3.120)

These relations hold under the condition P = 0. As verified in reference [97], the equations from
Section 3.1.2 are recovered when all particles are considered identical. Regarding the variational
properties, the situation is analogous to that described in Section 3.1.3. The two variational
conditions from that Section are now replaced by five analogous conditions, which apply on the
five arbitrary functions in the original Hamiltonian (3.112): Ta, Tb, Vaa, Vbb and Vab.

The special case Nb = 1 is considered in the following and thus deserves explicit treatment.
Under this assumption, based on their interpretation in terms of expectation values, the variables
pb and ρbb vanish, while variables P0 and p′b coincide. Consequently, the compact equations
simplify to

E = NaTa(p
′
a) + Tb(P0) + C2

Na
Vaa(ρaa) +NaVab(ρ

′
0), (3.121a)

NaT
′
a(p

′
a)
p2a
p′a

= C2
Na
V ′
aa(ρaa)ρaa +

Na − 1

2
V ′
ab(ρ

′
0)
ρ2aa
ρ′0
, (3.121b)

1

Na

T ′
a(p

′
a)
P 2
0

p′a
+ T ′

b(P0)P0 = NaV
′
ab(ρ

′
0)
R2

0

ρ′0
, (3.121c)

Q(αa) =
√
C2

Na
paρaa, (3.121d)

Q(n, ℓ) = P0R0. (3.121e)

where the definition of ρ′0 is slightly modified,

ρ′0 =
Na − 1

2Na

ρ2aa +R2
0. (3.122)

The total motion is decomposed into an internal motion of the a-type particles, governed
by equations (3.121b) and (3.121d), and a relative motion between the centre-of-mass of
the a-particles and the single b-particle, described by equations (3.121c) and (3.121e). The
interpretation of auxiliary parameters in terms of expectation values for Na+1 particles is given
explicitly by

p2a = ⟨pi
2 − Pa

2/N2
a ⟩ , P 2

0 = ⟨pb
2⟩ = ⟨Pa

2⟩ , (3.123a)

ρ2aa = ⟨|ri − ri′ |2⟩ , R2
0 = ⟨|Ra − rb|2⟩ . (3.123b)
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C.M.Na

p̃a, ρ̃aa

&
C.M.C.M.Na

bP̃0, R̃0

Figure 3.7: Illustration for the classical purely orbital motion used to develop a DOSM for
systems of Na + 1 particles. The abbreviations C.M. and C.M.Na refer to the centre-of-mass
associated with the entire system and the subsystem of particles a, respectively.

3.2.3 Improvement for Na + 1 particles

The improvement procedure based on the DOSM can also be generalised for systems with
different types of particles. However, as the complexity of the system increases, calculations,
and especially Taylor developments, become progressively more involved. Therefore, the
generalisation has only been developed explicitly for systems consisting of Na + 1 particles. As
with the compact equations, only the main calculations steps and final formulas are presented
here. A complete description can be found in reference [65].

As a first step, a DOSM must be developed for systems of Na + 1 particles. The construction
follows the motion separation observed in equations (3.121). For purely orbital motions, equations
(3.121b) and (3.121d) classically describe a system of Na identical particles moving along a
circular trajectory, uniformly distributed and possessing the same momentum. Additionally,
equations (3.121c) and (3.121e) describe the classical relative circular motion of two different
particles. One is assimilated to the centre-of-mass of the previous subsystem. This classical
configuration is illustrated in Figure 3.7. It is important to note that this separation does
not imply that both motions are uncorrelated: the interaction potential Vab appears in both
equations (3.121b) and (3.121c). As in Section 3.1.4, variables describing purely orbital motion
are denoted with a tilde,

Ẽ = NaTa(p̃
′
a) + Tb(P̃0) + C2

Na
Vaa(ρ̃aa) +NaVab(ρ̃

′
0), (3.124a)

NaT
′
a(p̃

′
a)
p̃2a
p̃′a

= C2
Na
V ′
aa(ρ̃aa)ρ̃aa +

Na − 1

2
V ′
ab(ρ̃

′
0)
ρ̃2aa
ρ̃′0
, (3.124b)

1

Na

T ′
a(p̃

′
a)
P̃ 2
0

p̃′a
+ T ′

b(P̃0)P̃0 = NaV
′
ab(ρ̃

′
0)
R̃2

0

ρ̃′0
, (3.124c)
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√
C2

Na
p̃aρ̃aa = λa(ℓ1, ..., ℓNa−1) =

Na−1∑
i=1

ℓi +
D − 2

2
, (3.124d)

P̃0R̃0 = λb(ℓ) = ℓ+
D − 2

2
. (3.124e)

Small radial excitations are then introduced for both motions. The perturbed variables pa, ρaa,
P0 and R0 are expressed in terms of increments pr, ∆ρaa, Pr and ∆R0 in a manner analogous
to that used for identical particles. After performing a series of Taylor expansions, the energy
increment is obtained as

∆E ≃ 1

2µa

π2
r +

1

2µb

p2r +
ka
2
∆ρ2 +

kb
2
∆r2 +

kc
2
∆ρ∆r (3.125)

where µa, µb, ka, kb and kc are given in terms of the purely orbital variables,

µa =
p̃′a
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The expression (3.125) for ∆E is then interpreted as a quantum Hamiltonian to be solved. The
spectrum of such a coupled harmonic oscillator can be found in reference [65, 98]. By following
the procedure developed for identical particles, the associated quantum number are related to
the ni and ℓi quantum numbers through identification with the harmonic oscillator spectrum.
Finally, the energy increment from the DOSM is given by

∆E =

√
A

C2
Na
µ

Na−1∑
i=1

(
ni +

1

2

)
+

√
B

µ

(
n+

1

2

)
(3.126)
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where µ =
√
µaµb and

A =
√

µb

µa
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B =
√
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µb
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if kc = 0,
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2
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The DOSM solution is now compared with the approximation given by the ET. A ϕ parameter
is introduced in each global quantum number Q,

Q(αa) = ϕa

Na∑
i=1

(
ni +

1

2

)
+ λa(ℓ1, ..., ℓNa), (3.127)

Q(n, ℓ) = ϕb

(
n+

1

2

)
+ λb(ℓ), (3.128)

and the ET equation are expanded near a purely orbital solution. The resulting expression for
the energy increment due to the perturbation is

∆E = Da
ϕa

λa

Na∑
i=1

(
ni +

1

2

)
+Db

ϕb

λb

(
n+

1

2

)
. (3.129)

where

Da = T ′
a(p̃

′
a)
Nap̃

2
a

p̃′a
, Db = T ′

a(p̃
′
a)

P̃ 2
0

Nap̃′a
+ T ′

b(P̃0)P̃0.

Finally, ϕa and ϕb are chosen to match expressions (3.126) and (3.129),

ϕa =
λa
Da

√
A

C2
Na
µ
, ϕb =

λb
Db

√
B

µ
. (3.130)

Both the ET compact equations and the analytical expressions for ϕa and ϕb are significantly
more intricate than those for N identical bodies. Except in very simple cases, deriving an
analytical formula for the approximate spectrum proves impossible. However, to numerical
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calculations remain feasible, with the computational cost being of the same order as for identical
particles.

3.2.4 Tests of the ET for Na + 1 particles

Finally, tests of the ET for systems of different particles are conducted. Since the case of
identical particles has already been extensively discussed, only three tests are performed. Once
again, in line with the scope of the present work, only three-particle systems, comprising two
identical particles and a third distinct one, are considered. Given that Na = 2, the internal
motion within the subsystem of particles a is characterised by a single pair of quantum numbers,
denoted na and ℓa in the following discussion. Furthermore, to emphasize the distinction, the
quantum numbers that describe the relative motion with the particle b are denoted as nb and ℓb.
The three tests are drawn from reference [65].

Ultra-relativistic kinematics

To begin with, the ET and the improved ET are applied to ultra-relativistic massless particles
interacting via harmonic potentials. Different interaction strengths are considered depending on
the nature of the particle pair,

Ta(p) = Tb(p) = p, Vaa(x) = x2, Vab(x) = kx2. (3.131)

Arbitrary units are used. Calculations similar to those presented in Section 3.1.3 demonstrates
that the ET provides upper bounds for such a system. For comparison, the eigenenergies of
this three-body system are computed using the OBE. Additionally, reference [99] allows the
eigenenergies to be inferred from those of a system of three non-relativistic particles interacting
linearly. Based on results obtained by J.M. Richard using the method from [25], reference [65]
derives very accurate eigenenergies for this Hamiltonian.

Two values of the interaction strength parameter are considered, k = 0.1 and k = 10. Energies
for the ground state and two low-lying excited states with positive parity and zero total angular
momentum are computed. Results for the ET, the improved ET, the OBE, and those from
[65] are compared in Table 3.6 and Table 3.7. Approximations from the ET and the OBE
are identified using the same methodology as for identical particles, while those from [65] and
the OBE are matched based on the similarity of their energy values. For both tests, the ET
provides energy eigenvalues with an accuracy of a few percent and, as expected, consistently
yields upper bounds. With the improved version, the relative difference decreases to around
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(na, ℓa, nb, ℓb) OBE Ref. [65] ET [δ] IET [δ]

(0, 0, 0, 0) 5.288 5.288 5.597 [5.8%] 5.307 [0.4%]
(0, 0, 1, 0) 6.570 6.570 6.970 [6.1%] 6.571 [< 0.1%]
(0, 1, 0, 1) 7.513 7.515 7.868 [4.7%] 7.625 [1.5%]

Table 3.6: Low-lying eigenenergies for states with positive parity and zero total angular
momentum for the system of three massless particles described in (3.131). The interaction
strength is fixed at k = 0.1 (in arbitrary units). Results from the OBE, reference [65], the
ET and the improved ET are compared. The relative differences from the OBE, denoted δ,
are given in percent. The maximal number of quanta used for the OBE is Qmax = 16 with a
computed for Q = 10. The values for ϕa and ϕb provided by the improved ET were 1.76 and
1.79 for the three levels.

(na, ℓa, nb, ℓb) OBE Ref. [65] ET [δ] IET [δ]

(0, 0, 0, 0) 14.505 14.506 15.353 [5.8%] 14.699 [1.3%]
(1, 0, 0, 0) 19.130 19.134 20.272 [6.0%] 19.291 [0.8%]
(0, 1, 0, 1) 20.335 20.340 21.580 [6.1%] 21.032 [3.4%]

Table 3.7: Low-lying eigenenergies for states with positive parity and zero total angular
momentum for the system of three massless particles described in (3.131). The interaction
strength is fixed at k = 10 (in arbitrary units). Results from the OBE, reference [65], the ET
and the improved ET are compared. The relative differences from the OBE, denoted δ, are given
in percent. The maximal number of quanta used for the OBE is Qmax = 16 with a computed
for Q = 10. The values of ϕa and ϕb given by the improved ET were 1.82 and 1.80 for the three
levels.

1% or even lower. Notably, the first two states are symmetric under the exchange of the two
identical particles, whereas the third state is antisymmetric.

Power potential

As a second test, systems of three non-relativistic particles interacting via power-law potentials
are considered. The third particle being distinct from the first two is assigned a different mass,

Ta(p) =
p2

2
, Tb(p) =

p2

2m
, Vaa(x) = Vab(x) =

b

|b|
xb

2
. (3.132)

As before, arbitrary units are used. For this system, accurate energies for the ground state have
already been obtained in Section 2.3.1 using the OBE. Two different masses were considered,
m = 0.2 and m = 5. Results are now compared with those obtained using the ET and its
improvement. For this system, the ET approximations exhibit varying variational properties
depending on the value of b, following the same scheme as for identical particles. Energies are
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m = 0.2
b OBE ET [δ] IET [δ] (ϕa, ϕb)

−1.0 −0.1398 −0.0645 [53.8%] −0.1316 [5.9%] (1.07, 1.14)
0.1 1.9452 1.9804 [1.8%] 1.9489 [0.2%] (1.55, 1.53)
1.0 4.9392 5.2278 [5.8%] 4.9687 [0.6%] (1.79, 1.77)
2.0 7.5730 7.5730 [0%] 7.5730 [0%] (2, 2)
3.0 9.7389 8.9925 [7.6%] 9.6703 [0.7%] (2.16, 2.20)

Table 3.8: Ground-state eigenenergies for the system of three non-relativistic particles described
in (3.132). The mass of the third particle is fixed at m = 0.2 (in arbitrary units). Results
from the OBE, the ET, and the improved ET are compared. The relative differences from the
OBE, denoted δ, are given in percent. The values of ϕa and ϕb are also provided. The maximal
number of quanta used for the OBE is Qmax = 16 with a computed for Q = 10.

m = 5
b OBE ET [δ] IET [δ] (ϕa, ϕb)

−1.0 −0.3841 −0.1797 [53.2%] −0.3029 [21.1%] (1.05, 1.64)
0.1 1.8486 1.8820 [1.8%] 1.8568 [0.4%] (1.48, 1.77)
1.0 3.4379 3.6386 [5.8%] 3.4753 [1.1%] (1.74, 1.88)
2.0 4.3729 4.3729 [0%] 4.3729 [0%] (2, 2)
3.0 5.0166 4.6320 [7.7%] 4.9693 [0.9%] (2.20, 2.15)

Table 3.9: Ground-state eigenenergies for the system of three non-relativistic particles described
in (3.132). The mass of the third particle is fixed at m = 5 (in arbitrary units). Results from
the OBE, the ET, and the improved ET are compared. The relative differences from the OBE,
denoted δ, are given in percent. The values for ϕa and ϕb are also provided. The maximal
number of quanta used for the OBE is Qmax = 16 with a computed for Q = 10.

compared in Table 3.8 (m = 0.2) and Table 3.9 (m = 5). For positive values of b, the accuracy of
the ET and its improvement aligns with that observed in the previous test. However, for Coulomb
interactions, its accuracy significantly decreases, likely due to the divergence of the interaction
potential. In the case of m = 0.2, the improvement procedure restores reasonable accuracy. For
m = 5, even this second calculation struggles to provide a truly accurate estimation.

Atomic systems

Finally, as anticipated in Section 3.1.7, atomic systems can also be investigated using the
ET. In particular, the helium spectrum provides an interesting three-body systems to test the
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accuracy of the ET. The helium Hamiltonian in atomic units4 is given by

H =
p2
1

2
+

p2
2

2
+

p2
N

2m
+

1

|r1 − r2|
− 2

|rN − r1|
− 2

|rN − r2|
(3.133)

with m = 4× 1836, the mass of the helium nucleus. In this expression, p1 and r1 (and similarly
p2 and r2) refer to the momentum and position of the first (second) electron, while pN and rN

refer to the position and momentum of the nucleus.
Using the ET, an approximation for the ground-state energy of this system can be obtained.

In this case, no variational interpretation can be ensured because the Hamiltonian (3.133) mixes
attractive and repulsive interactions. For this system, the ET approximations can be directly
compared to the experimental energy, namely 79 eV. While (3.133) is only an approximation
of the true helium atom Hamiltonian (which, for instance, includes relativistic and spin-orbit
corrections), the energy difference with this simpler version does not exceed a few percent.
Therefore, the experimental result can be reliably used to assess the accuracy of the ET.

After implementation, the following approximate eigenenergies for the ET (EET) and its
improvement (EiET) are obtained,

EET = 33 eV, EiET = 47 eV (with ϕa = 1.21 and ϕb = 1.78). (3.134)

Both approximations show particularly low accuracy. As before, the failure of the ET can be
attributed to the presence of divergent interactions in the potential. The poor performance of
the improvement procedure can be explained by the lack of variational character, as discussed
in Section 3.1.7. Under this context, improving the ET using the DOSM proved notably less
reliable, even for identical particles [55]. Another hypothesis, which has not yet been fully tested,
is the mass asymmetry within the system. This may affect the efficiency of the improvement
procedure, as already noted in Table 3.9.

3.3 Conclusion: why the ET?

The ET has proven to be a versatile, easily implementable, and reliable approximation
method. It can handle systems consisting of N identical particles with generic kinematics, as
well as one-body, two-body, and even a given type of K-body interactions. Additionally, it
has been generalised to handle systems containing different types of particles with arbitrary
kinematics and two-body interactions. For certain systems, the approximation obtained through

4 Energies in atomic units can be converted to eV by a factor of α2me = 27.21 eV.
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the ET carries a variational interpretation. When higher precision is needed, an improvement
procedure can been applied. A parameter is introduced into the ET quantum number and is
determined by comparing the spectrum with the DOSM approximation. This procedure does
not significantly increase the complexity of the original method. For systems with different
types of particles, the improved ET has been developed specifically for systems with Na + 1

particles.
Although predicting the performance of the ET remains challenging, various tests conducted

on different systems have provided valuable insights. Notably, the presence of highly divergent
potentials can reduce the accuracy of the ET. Furthermore, the improvement procedure may
lose efficiency when contributions with opposing variational properties are mixed.

While the ET may not provide the highest accuracy, it stands out due to its generality and
simplicity. In practice, its use requires solving only a set of three equations. For systems that
are not overly complex, this resolution can often be carried out analytically, making it easy
to vary system parameters or the number of particles. These advantages enable the ET to be
applied in a wide range of contexts. It can certainly be used to validate the implementation of
more precise numerical calculations [77], but it can also complement these numerical methods
by providing easily obtainable approximations, as demonstrated in Section 3.1.6. Additionally,
the method has been used to establish a quantum version of the quasi Kepler’s third law [75, 76].
More recently, it has been used to determine upper-bounds for critical coupling constants [94].
The method aligns well with large-N approaches in quantum chromodynamics, where limits for
large numbers of particles in bound states are of interest [70, 71, 72, 73, 74]. Lastly, the method
was applied in a more classical manner to study hybrid mesons [69], and proposed for hybrid
baryons in [56].

Complement 3.A The N identical body harmonic oscillator

This complement is devoted to the determination of the energy spectrum of the N identical
body harmonic oscillator,

Hoh =
N∑
i=1

pi
2

2µ
− P 2

2Nµ
+ ν

N∑
i<j

|ri − rj|2. (3.135)
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First, the centre-of-mass motion of the system can be removed by generalising the three-body
Jacobi coordinates (2.100) for N identical bodies,

xi =
i∑

j=1

rj
i
− ri+1 for i ∈ {1, ..., N − 1}, xN =

N∑
j=1

rj
N
. (3.136)

Length dimensions have been kept. One recognise xN as the centre-of-mass position. Definition
(3.136) can be rewritten into a matrix form,

xi =
N∑
j=1

Uij rj with U =



1 −1 0 · · · 0

1/2 1/2 −1 · · · 0

1/3 1/3 1/3 · · · 0
...

...
... . . . ...

1/N 1/N 1/N · · · 1/N


. (3.137)

With this formulation, obtaining the inverse transformation is a simple matter of matrix inversion.
One can also show that momenta conjugated to xi, denoted πi are obtained with the inverse
transformation,

πi =
N∑
j=1

Bji pj with B = U−1 =



1/2 1/3 1/4 · · · 1/N 1
-1/2 1/3 -1 · · · 1/N 1

0 -2/3 1/3 · · · 1/N 1
...

...
... . . . ...

...
0 0 0 · · · (1-N)/N 1


. (3.138)

Properties of the U and B matrix can be used to demonstrate the following two relations

N∑
i=1

pi
2 − P 2

N
=

N−1∑
j=1

j + 1

j
πj

2

N∑
i<j

|ri − rj |2 =
N−1∑
j=1

Nj

j + 1
xj

2. (3.139)

Thanks to these intermediary results, the harmonic oscillator Hamiltonian can be rewritten in
Jacobi coordinates,

Hoh =
N−1∑
i=1

hi(πi,xi) with hi(πi,xi) =
(i+ 1)

2iµ
πi

2 +
Niν

i+ 1
xi

2. (3.140)
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The full Hamiltonian is now separated as a sum of N − 1 one-body harmonic oscillator Hamilto-
nians hi whose spectrum is well-documented,

hi |ψnilℓimi
(xi)⟩ = ϵniℓi |φniℓimi

(xi)⟩ with ϵniℓi =

√
2Nν

µ
(2ni + ℓi +D/2) (3.141)

Above, ni and ℓi are positive integers, zero included. The |φniℓimi
(xi)⟩ states and the associated

spectrum have already been depicted in Section 2.1.1 for unit masses, unit interaction constant
and in three dimensions. With the separation of variables technique, the spectrum of the full
N -body Hamiltonian is expressed as a sum of the one-body eigenenergies,

ϵ(µ, ν) =

√
2Nν

µ

N−1∑
i=1

(2ni + ℓi +D/2), (3.142)

and the total eigenstates are products of the individual eigenstates,

|ψn1ℓ1m1...nN−1ℓN−1mN−1
(x1, ...xN−1)⟩ = |ψn1ℓ1m1(x1)⟩ ⊗ ...⊗ |ψnN−1ℓN−1mN−1

(xN−1)⟩ . (3.143)

The quantum numbers ni and ℓi indicates respectively the radial and orbital excitation associated
with the ith Jacobi coordinate. The total eigenstates |ψn1ℓ1...nN−1ℓN−1

⟩ have a good parity
P = (−1)ℓ1+ℓ2 but do not exhibit any symmetry under exchange of particles nor good angular
momentum. These properties can be provided by combining different eigenstates with the same
energy eigenvalue ϵ(µ, ν). Notice that this symmetry has to be implemented at the level of
individual positions and not on Jacobi coordinates.

Complement 3.B The fermionic ground state with the ET

As mentioned in Section 3.1.7, using the ET, the bosonic ground state can easily be obtained
by simply setting all the ni and ℓi quantum numbers to zero. The corresponding harmonic
oscillator eigenstate is naturally symmetric under any exchange of particles. Determining the
fermionic ground state energy is, however, more involved. One must identify the lowest value of
Q(α) that allows for the construction of an antisymmetric harmonic oscillator eigenstate. This
challenge can be addressed using Pauli’s exclusion principle, which states that, for Hamiltonians
separable in individual coordinates, two fermions cannot have identical quantum numbers.
However, in Complement 3.A, the independent oscillators are written in Jacobi coordinates,
which precludes a straightforward application of this principle.

This obstacle is overcome by reference [100], where the N -body Harmonic oscillator is solved
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by maintaining individual coordinates. The two-body harmonic interactions are transformed
into one-body harmonic interactions in an exact manner, making the Hamiltonian separable.
The resulting spectrum is consistent with the one obtained in Complement 3.A,

E =

√
2Nν

µ

(
N∑
k=1

(2νk + λk)− (2N + L) + (N − 1)
D

2

)
. (3.144)

Above, νk and λk are radial and orbital quantum numbers associated with individual positions,
while N and L are quantum numbers related to the centre-of-mass motion. Magnetic quantum
numbers µk and M are also present but do not affect the spectrum. The centre-of-mass
quantum numbers are constrained by the individual ones and, for a fermionic ground state,
ultimately cancel out [101, p.3-4]. Since the quantum numbers are now directly tied to individual
coordinates, Pauli’s exclusion principle can be applied and the fermionic ground state energy is
obtained by minimising equation (3.144) with each particle having distinct quantum number
triplets (νk, λk, µk). Analytical formulas for this fermionic ground state are provided in Reference
[65], where the discussion is also expanded to include the improved ET.

This chapter in the context of a thesis

This chapter covers a topic that has been a primary matter for my master thesis, but a
secondary topic in my PhD. At the end of my master, in the continuity of the generalisation
of the ET initiated by L. Cimino [68, 97], I worked on extending the improvement of the
ET for systems of N identical particles plus a different one [65]. In the future, this method
is intended to be used in a study of hybrid baryons in the large-N formalism of quantum
chromodynamics.

During my PhD, as mentioned at the end of the previous chapter, my contribution to the
ET formalism was mainly to provide accurate results with the OBE in order to assess the
ET accuracy [54, 55]. Most results of these studies have been introduced in Section 3.1.7.
These tests enabled L. Cimino and me to identified the two typical behaviours mentioned
in the main text.
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Chapter 4

Hadronic Physics: From Discovery to
Quantum Chromodynamics

This chapter introduces a special topic in which the technology presented in Part I provides
significant support. Specifically, the chapter focuses on the study of a particular class of particles
that have been observed from the early 20th century to the present day: the hadrons. Following
a brief and non-exhaustive historical overview in Section 4.1, the classification of hadrons and
the quark hypothesis are discussed in Section 4.2, following the framework established by M.
Gell-Mann. The Section continues with an overview of the modern fundamental theory of the
strong interaction, namely quantum chromodynamics, and concludes with a brief introduction
to a current research topic: the exotic hadrons.

4.1 A short historical review of early hadron detections

Disclaimer: the following section is intended to provide a general overview of the emergence
of hadron physics. The proposed summary does not claim to be exhaustive nor to present an
entirely precise account of historical developments. Throughout the text, several pioneering works
are cited for illustrative purposes, however this selection is likewise not comprehensive. For more
in-depth analyses of hadron physics and its historical context, the reader is referred to references
[102, 103].

This story of hadron physics begins in 1897 with the famous experimental discovery of
the electron by J.J. Thomson [104]. Still considered as an elementary particle today, the
electron marked the beginning of a new domain in physics: the study of elementary particles.
With this discovery, the first constituent of matter was identified. Since atoms are electrically
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neutral, the identification of the negatively charge electron suggested the existence of a positively
charged counterpart. Thomson proposed that electrons were embedded in a positively charged
medium, an idea known as the plum-pudding model [104]. Although now recognised as incorrect,
Thomson’s model was the first indication of positively charged components within atoms, later
identified as protons.

Thomson’s model was radically revised just a few years later, in 1911, by one of his students, E.
Rutherford [105]. By bombarding a thin sheet of gold with alpha particles1, Rutherford observed
that the projectiles were occasionally deflected at large angles. To explain this experimental
observation, he proposed that Thomson’s diffuse positive charge was actually concentrated in
a small central region, what came to be known as the atom nucleus2. Rutherford calculated
the expected cross-section for classical Coulomb scattering and successfully reproduced his
experimental results. Remarkably, all observed nuclear masses appeared (approximately) as
integer multiples of the lightest nucleus, that of hydrogen. In 1919, Rutherford identified this
lightest nucleus as a fundamental building block of all other nuclei, and named it the proton
[106]. The existence of multiple positively charged particles confined in a small space implied
the existence of an attractive force strong enough to overcome electromagnetic repulsion. This
was the first evidence of a new fundamental force, initially acting only between the components
of the nucleus, known as the strong interaction. Particles subject to this force were eventually
grouped (in 1962) under the name hadrons, in reference to their comparatively large mass (from
the Ancient Greek ἁδρός, meaning "stout") [107].

Time went on, and, alongside experiments, theoretical physicists worked on explaining the
dynamics that govern the behaviour of these new particles. In particular, they focused on
understanding how atoms are structured and how they interact with the electromagnetic field.
These theoretical efforts led to the development of quantum theory, whose modern formalism
is outlined in Section 1.1. To name a few essential contributors, let us mention, in alphabetic
order, N. Bohr, M. Born, L. de Broglie, P. Dirac, A. Einstein, W. Heisenberg, W. Pauli, M.
Planck and E. Schrödinger. This list is far from exhaustive, and many other contributors also
deserve recognition.

Another piece of the puzzle was revealed in 1932 by J. Chadwick, who discovered that atomic
nuclei are also composed of neutral particles with a mass roughly equivalent to that of the
proton [108]. The associated particle was called the neutron [106, 108] and became the second
hadron to be experimentally detected. At the time, proton and neutrons were thought to be
fundamental particles that, through their strong interactions, bound together to form nuclei.

1 Previously identified by Rutherford as helium atoms stripped of their electrons.
2 This hypothesis had previously been proposed by H. Nagaoka, but received little attention.
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Electrons were then attracted to this nuclear structure by electromagnetic interactions, forming
atoms on a larger scale. In addition to this trio, other particles, lighter than hadrons and
insensitive to the strong interaction, were also postulated and observed.

• Electromagnetic radiations are carried by a fourth elementary particle, earlier postulated
by M. Planck (in 1901) [109] and A. Einstein (in 1905) [110]. This particle was later
named the photon in 1926 [106].

• Dirac’s equations predicted the existence of a particle similar to the electron, but with a
positive electric charge [111]. This particle was later observed by C.D. Anderson and named
the positron [112]. The discovery of the positron introduced the concept of antiparticles:
for every particle, there exists a corresponding antiparticle with the same mass but opposite
charge.

• To explain the disintegration of certain nuclei, W. Pauli also introduced a light particle
unaffected by both the strong and the electromagnetic interactions in 1930. This elusive
particle, named the neutrino by E. Fermi3, would remain undetected until 1956 [113, 114].

The story of hadron physics takes a new turn in 1935 when H. Yukawa proposed a model
in which the strong interaction between protons and neutrons is mediated by the exchange of
massive particles [115]. These particles were predicted to have a mass intermediate between
that of protons and electrons, which would explain the short range of the interaction. For this
reason, they were named mesons (from the Greek μέσον, meaning "intermediate"). In 1937, the
search for mesons encountered a false hope with the experimental discovery of a particle in the
expected mass range [116]. However, this candidate soon turned out to resemble the electron
more than Yukawa’s meson. It was named the muon and, along with electrons, positrons and
neutrinos, formed their own family of particles: the leptons (from the Greek λεπτός meaning
"light").

The search for meson continued until 1947, when C. Powell observed two new charged particles
with masses consistent with Yukawa’s prediction [117]. These particles were named pions (as
they were labelled with the Greek letter π), and their correspondence with Yukawa’s hypothesis
was soon validated. In 1950, the duo was joined by a third particle, neutral in charge and
denoted π0 [118]. Meanwhile, other hadrons, also subject to the strong interaction but lighter
than protons and neutrons, were observed. Named kaons, they were included in the growing
family of mesons. Notably, these latter particles exhibited unusually long lifetimes. This led

3 Fermi’s model also introduced a second particle, called the anti-neutrino. Just as the positron is the
antiparticle of the electron, the anti-neutrino is the antiparticle of the neutrino.
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experimentalists to introduce a conserved quantity [119, 120] called strangeness, which will take
a deeper significance in the next section.

In 1950, it was the proton and neutron family that expanded with the discovery of a third
heavy particle, also sensitive to the strong interaction [121]. This new member was labelled
with the Greek letter Λ and joined the protons and neutrons in a group named baryons (from
the Greek βαρύς meaning "heavy") [120]. At this stage, the current classification is established:
particles subject to the strong interactions are referred to as hadrons and are divided into
two families. The baryons comprise the heavier particles, while the mesons encompass the
comparatively lighter ones.

Things began to grow more complex from 1960 onward. At this point, physicists started
discovering an increasing number of particles with hadron properties. This posed two main
challenges to theorists. First, with a hundred of new hadrons being observed, there was a need
to impose some order by classifying them into more restrictive families. Second, it became
increasingly difficult to regard all these observed states as fundamental. Could such a variety
be explained from a more ontologically parsimonious point of view? These questions were
addressed between 1961 and 1964 by M. Gell-Mann through its hadron classification scheme
and the formulation of the quark hypothesis. These concepts are discussed in the next section.

4.2 Hadron classification and the quark hypothesis

In much of the existing literature, for example in [18, 122, 123], the classification and structure
of hadrons are presented with the quark hypothesis assumed from the outset. In contrast, the
present section adopts a different perspective: it first aims to infer the existence of quarks based
on the experimental hadron spectrum, and only then employs the quark hypothesis to explain
hadronic properties. In a sense, this approach mirrors the one originally taken by M. Gell-Mann
in the early 1960s [124, 125, 126, 127].

4.2.1 Hadron classification

To begin with, the question of classifying the seemingly disordered hadron zoology is investi-
gated. Among the observed hadrons, and particularly the lightest ones, certain particles appear
to share the same spin and parity, as well as very similar masses, despite differing electric charge.
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For baryons, this is exemplified by the proton and neutron, or by the three sigma baryons [128],

mp+ = 938MeV, mn0 = 939MeV; (4.1)

mΣ+ = 1189MeV, mΣ0 = 1193MeV, mΣ− = 1197MeV. (4.2)

For mesons, a similar pattern is seen in the three pions, the two kaons and the two anti-kaons
[128],

mπ+ = 140MeV, mπ0 = 135MeV, mπ− = 140MeV; (4.3)

mK+ = 494MeV, mK0 = 498MeV, mK̄0 = 498MeV, mK− = 494MeV. (4.4)

In some cases, the width of the resonance4 makes it difficult to assign a sufficiently precise mass
to distinguish between the different particles. This is the case, for example, with the four delta
resonances, whose mass is measured at (1232± 2)MeV [128].

This observation is reminiscent of the energy spectrum of the hydrogen atom. Due to the
two possible projections of the electron spin, the hydrogen energy levels are nearly degenerated
in pairs. Theoretically, this occurs because the dominant contribution to the Hamiltonian is
invariant under transformations of the electron’s spin state, while subleading corrections break
this symmetry and lead to a splitting of these energy levels. By analogy, nearly degenerate
hadrons can be viewed as different manifestations of a single quantum particle. For example,
the proton and neutron are seen as two states of a single particle, the nucleon, distinguished
by a new intrinsic degree of freedom. The formalism is directly copied from that of spin: a
new intrinsic property, called isospin, is introduced, along with two associated operators, the
isospin Casimir and the isospin projection operator. The eigenvalue of the Casimir operator,
denoted I, determines the irreducible representation of SU(2) that the state belongs to when it
undergoes an isospin transformation. The eigenvalue of the isospin projection operator, denoted
I3, distinguishes between the nearly degenerate states within that representation (the dimension
of the corresponding invariant space is 2I + 1). For instance, the nucleon forms an isospin
doublet with I = 1/2, where the two isospin projections I3 = 1/2 and I3 = −1/2 correspond to
the proton and the neutron, respectively. Tables 4.1 and 4.2 list selected baryons and mesons
organised in different isospin multiplets, with their associated spin-parity JP , mass, isospin
I and isospin projection I3. Of course, from a dynamical perspective, isospin symmetry is
only approximate, since states with different I3 values generally differ in electric charge and

4 Experimentally, unstable particles are observed as "bump" structures in scattering cross-sections, referred to
as resonances. These are typically characterised by a mean value, interpreted as the particle’s mass, and a
width, which is related to its life-time.
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Multiplet I JP Mass Label of the projections

Nucleons 1
2

1
2

+ ∼940 p+ (I3 =
1
2
) n0 (I3 = −1

2
)

Sigma 1 1
2

+ ∼1190 Σ+ (I3 = 1) Σ0 (I3 = 0) Σ− (I3 = −1)

Xi 1
2

1
2

+ ∼1310 Ξ0 (I3 =
1
2
) Ξ− (I3 = −1

2
)

Lambda 0 1
2

+ ∼1115 Λ0 (I3 = 0)

Delta 3
2

3
2

+ ∼1230 ∆++ (I3 =
3
2
) ∆+ (I3 =

1
2
) ∆0 (I3 = −1

2
) ∆− (I3 = −3

2
)

Sigma star 1 3
2

+ ∼1385 Σ∗+ (I3 = 1) Σ∗0 (I3 = 0) Σ∗− (I3 = −1)

Xi star 1
2

3
2

+ ∼1530 Ξ∗0 (I3 =
1
2
) Ξ∗− (I3 = −1

2
)

Omega 0 3
2

+ ∼1670 Ω− (I3 = 0)

Table 4.1: Low-lying baryons grouped by isospin quantum numbers. The masses indicated are
given in MeV, accurate to within a few MeV, with detailed isospin splittings omitted. Data are
taken from reference [128].

do not have exactly the same energy. At the very least, this suggests that the electromagnetic
interaction breaks isospin symmetry.

A close examination of Table 4.1 reveals that different isospin multiplets continue to share the
same JP quantum numbers. This observation motivates the extension of the hadron classification
into larger families. In addition to their spin-parity, these multiplets also lie approximately in
the same energy range, although the correspondence is more qualitative compared to that seen
with isospin. This suggests the presence of a second, more approximate, symmetry underlying
the hadron spectrum. This symmetry is known as the flavour symmetry, and the associated
group is SU(3). A detailed overview of this group, its properties and its applications in hadronic
physics can be found in reference [123]. For the purposes of the present discussion, it suffices to
recall the characteristics of the low-dimensional irreducible representations of SU(3). They are
summarised in Figure 4.1.

One can begin identifying the SU(3) multiplets in the baryon and meson spectra by com-
paring the dimensionalities of the group representations with the number of available states.
Furthermore, since flavour symmetry extends isospin symmetry, isospin multiplets should also
be consistently embedded within the representation of SU(3) (see horizontal lines in Figure 4.1).
Based on this approach, the following structure of the spectra is suggested.

• The eight baryons with spin-parity 1/2+ correspond to an SU(3) octet. As expected, they
form an isospin singlet, two doublets and a triplet.

• The ten baryons with spin-parity 3/2+ correspond to an SU(3) decuplet. As expected,
they include an isospin singlet, a doublet, a triplet and a quadruplet.



4.2. HADRON CLASSIFICATION AND THE QUARK HYPOTHESIS 137

Multiplet I JP Mass Label of the projections

Kaons 1
2

0− ∼ 495 K+ (I3 =
1
2
) K0 (I3 = −1

2
)

Pions 1 0− ∼ 135 π+ (I3 = 1) π0 (I3 = 0) π− (I3 = −1)
Anti-Kaons 1

2
0− ∼ 495 K̄0 (I3 =

1
2
) K− (I3 = −1

2
)

Eta 0 0− ∼ 550 η0 (I3 = 0)
Eta prime 0 0− ∼ 960 η′0 (I3 = 0)

Kaons star 1
2

1− ∼ 890 K∗+ (I3 =
1
2
) K∗0 (I3 = −1

2
)

Rho 1 1− ∼ 770 ρ+ (I3 = 1) ρ0 (I3 = 0) ρ− (I3 = −1)
Anti-Kaons star 1

2
1− ∼ 890 K̄∗0 (I3 =

1
2
) K∗− (I3 = −1

2
)

Omega 0 1− ∼ 780 ω0 (I3 = 0)
Phi 0 1− ∼ 1020 ϕ0 (I3 = 0)

Table 4.2: Low-lying mesons grouped by isospin quantum numbers. The masses indicated are
given in MeV, accurate to within a few MeV, with detailed isospin splittings omitted. Data are
taken from reference [128].

I3

I8

I3

I8

I3

I8

Figure 4.1: Schematic illustration of the singlet, octet and decuplet irreducible representations
of SU(3) (from left to right). Each white circle represents a state supporting the corresponding
irreducible representation. The horizontal and vertical axes correspond to the eigenvalues
of the third and eighth generators of SU(3), respectively. Notably, the coordinate (0, 0) in
the octet diagram is occupied by two distinct states, demonstrating that specifying I3 and I8
does not uniquely identify a state within the representation. It is also worth mentioning that
horizontally aligned states form SU(2) multiplets. The guiding idea behind hadron classification
is to associate each experimentally observed hadron with the above group theory states.
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• The nine mesons with spin-parity 0− must be split into an SU(3) octet and a separate
singlet. As expected, the octet consists of one isospin singlet, two doublets and one triplet,
while the SU(3) singlet consist of a single isospin singlet. The identification of whether
the η or the η′ belongs to the octet is discussed in the next paragraph.

• The nine mesons with spin-parity 1− are arranged analogously to those with 0−. The
identification of the ω and ϕ states is also addressed below.

The question of whether η or η′ should be grouped with the SU(3) octet is a subtle one. On one
hand, these two particles share several properties: they have the same spin-parity, electric charge,
total isospin, and isospin projection. On the other hand, flavour symmetry, which predicts
two distinct states belonging to different SU(3) multiplet, is only approximate, as evidenced,
for instance, by differences in hadron masses. As a result, the physical η and η′ states belong
neither purely to the singlet nor to the octet. Instead, each is a mixture of the pure singlet and
octet states with I3 = I8 = 0. Denoting these basis states as |η1⟩ and |η8⟩, the physical states
|η⟩ and |η′⟩ can be parametrised as follows,

|η⟩ = cos θ |η1⟩+ sin θ |η8⟩ , |η′⟩ = − sin θ |η1⟩+ cos θ |η8⟩ , (4.5)

with θ ∈ [−π/2, π/2]. A similar discussion applies to the ω and ϕ particles,

|ω⟩ = cos θ̄ |ψ1⟩+ sin θ̄ |ψ8⟩ , |ϕ⟩ = − sin θ̄ |ψ1⟩+ cos θ̄ |ψ8⟩ . (4.6)

Determining the values of θ and θ̄ requires further consideration and will not be discussed here
[18, 123]. For reference, θ is observed to be in between −10◦ and −20◦ [122, 123], while θ̄ is
around 35.4◦ [122].

Continuing the analysis of the hadron classification introduced above, particles within a given
SU(3) multiplet but belonging to different isospin multiplets are systematically distinguished
by their strangeness5. More precisely, the strangeness S is found to be proportional to the
eigenvalue of the eighth SU(3) generator, I8, via the relation [122]

2√
3
I8 = B + S. (4.7)

where B = 1 for baryons, B = 0 for mesons and B = −1 for anti-baryons (the latter are not
discussed in this section). The sum B + S is commonly referred to as the hypercharge, denoted

5 Strangeness is a conserved quantum number introduced to account for experimental observations. It was
briefly introduced in Section 4.1.
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by Y . It is empirically related to the electric charge Q (in unit of the elementary charge) through

Q = I3 +
Y

2
. (4.8)

The correspondence between the hadron spectrum and the SU(3) multiplets is often illustrated
using the diagrams in Figure 4.2, which synthesize the content of Tables 4.1-4.2 and Figure
4.1. At this stage, the classification of hadrons remains largely descriptive, highlighting the
symmetries observed in experimental data. However, several important questions remain
unanswered: Where do these multiplets originate? Why are baryons structured into octets and
decuplets? Why are mesons arranged in singlets and octets? Why are the fundamental and
sextet representations of SU(3) seemingly absent from the spectrum? What is the origin of
relation (4.8)? And why do mesons always have integer spin, while baryons have half-integer
spin? All of these questions are addressed by Gell-Mann’s quark hypothesis.

4.2.2 The quark hypothesis

To address the questions posed by the classification of hadrons, Gell-Mann proposed a bold
hypothesis: hadrons are composed of more fundamental constituents. The total state |q⟩ of its
new particle, termed a quark, is assumed to include an additional contribution, denoted |F ⟩
and referred to as the flavour component, in addition to its spatial and spin parts,

|q⟩ = |ψ(r)⟩ ⊗ |sms⟩ ⊗ |F ⟩ . (4.9)

This flavour component is postulated to belong to a three-dimensional complex vector space
that transforms under SU(3) according to the fundamental representation of the group. A basis
for this vector space is provided by group theory as the set of common eigenstates of I3 and
I8. These states are referred to as up (u), down (d) and strange (s) and are represented in the
left part of Figure 4.3 using diagrams analogous to those introduced in the previous section.
In addition to quarks, antiquarks are also assumed to exist. Their introduction follows the
same logic as that of quarks, but this time employing the three-dimensional anti-fundamental
representation of SU(3). The basis flavour states for antiquarks are shown in the right side of
Figure 4.3 and are denoted with an overbar.

Quarks and antiquarks are treated as spin 1/2 fermions. Consequently, systems composed of
multiple identical (anti)quarks are subjected to antisymmetrisation constraints. It should not be
surprising that quarks of different flavours carry different electric charges as isospin symmetry,
and more broadly flavour symmetry, is broken by the electromagnetic interaction. Concretely, u
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I3

Y

η1
I3

Y

π+

η8

π0π−

K+K0

K̄0K−

(a) Mesons with spin parity 0−.

I3

Y

ψ1

I3

Y

ρ+

ψ8

ρ0ρ−

K∗+K∗0

K̄∗0K∗−

(b) Mesons with spin parity 1−.

I3

Y

Σ+

Λ

Σ0Σ−

p+n0

Ξ0Ξ−

(c) Baryons with spin parity 1
2

+.

I3

Y

∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−

(d) Baryons with spin parity 3
2

+.

Figure 4.2: Association of the hadron spectrum from Tables 4.1 and 4.2 with the SU(3) multiplets
illustrated in Figure 4.1. Diagonal dotted lines illustrate the relation (4.8) for a given value of
charge Q.



4.2. HADRON CLASSIFICATION AND THE QUARK HYPOTHESIS 141

I3

I8

s

ud

I3

I8

s̄

ū d̄

Figure 4.3: Schematic illustration of the fundamental (left) and anti-fundamental (right)
representations of SU(3). Each white circle represents a state supporting the corresponding
irreducible representation and is associated with a possible flavour for the (anti)quark (either up,
down or strange). The horizontal and vertical axes correspond to the eigenvalue of the third and
eighth generators of SU(3), respectively. The (anti)up and (anti)down states being horizontally
aligned, they form SU(2) doublet.

quarks have electric charge Q = 2/3, while d, s carry Q = −1/3. The charge of an antiquark is
opposite to that of the corresponding quark. These assignements are consistent with equations
(4.7) and (4.8).

In Gell-Mann’s theory, the various hadrons observed experimentally are interpreted as bound
states composed of specific numbers of quarks and/or antiquarks. In particular, baryons consist
of three quarks, while mesons are composed of one quark and one antiquark. Hadron multiplets
then arise from decomposing the corresponding many-body flavour space into irreducible
representations of SU(3). The procedure of decomposing a representation formed by tensor
products of smaller ones is well-established in group theory. Without delving too deeply into
mathematical details, let us illustrate the reasoning in the case of mesons. The case of baryons
will be addressed more briefly thereafter.

The meson structure

Mesons are defined in the theory as bound states of one quark and one antiquark. The flavour
component of the meson thus belongs to a nine-dimensional vector space. A naive basis for this
space is obtained by performing all the possible tensor products of the individual flavour states,

{|uū⟩ , |ud̄⟩ , |us̄⟩ , |dū⟩ , |dd̄⟩ , |ds̄⟩ , |sū⟩ , |sd̄⟩ , |ss̄⟩}. (4.10)

By definition, (anti)quarks transform using the SU(3) (anti)fundamental representation, denoted
3 (3̄) in the following. As a result, the two-body state made of a quark and an antiquark transform
with the corresponding tensor product representation, denoted 3⊗ 3̄. Group theory allows for
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reorganising the nine dimensional space into two SU(3) invariant subspaces6, one of dimension 8

and one of dimension 1, which transforms under SU(3) using the octet and singlet representations,
respectively. This sentence is often summed up by referring to the relation

3⊗ 3̄ = 8⊕ 1. (4.11)

Group theory also provides the precise combinations of flavour states (4.10) that realise the
octet and singlet decomposition and fit with the diagrams displayed on figure 4.1. This second
basis for the meson flavour component is illustrated on Figure 4.4. With this graph, one may
already foresee the relation with the meson spectra displayed on Figures 4.2a and 4.2b.

The octet and singlet basis is particularly convenient for handling flavour-invariant quark
dynamics. For simplicity, let us consider that this dynamics is modelled as in Chapter 1,
through an SU(3)-invariant Hamiltonian governing the quark system. Mesons are then defined
as two-body eigenstates of the Hamiltonian. In this framework, the eight states of the octet are
necessarily degenerate, as they are mutually connected by SU(3) transformations. In contrast,
the singlet state’s energy should differ from that of the octet, as it resides in a separate invariant
subspace. Even when the symmetry is only approximate, meaning the exact Hamiltonian includes
correction terms that lift the degeneracy, the basis shown in Figure 4.4 remains useful. For
example, in the hadronic context, flavour symmetry is evidently more approximate than isospin
symmetry. Since the states in Figure 4.4 are chosen to form SU(2) multiplets, the members of
a given multiplet remain degenerate even when flavour symmetry-breaking corrections are taken
into account (provided these corrections preserve isospin symmetry, as expected). In practice,
even this residual symmetry is slightly broken, leading to a small energy splitting between levels
with different I3 eigenvalues.

The preceding discussion has focused on the flavour component of the quark-antiquark system.
However, to construct the full mesonic states, the discussion should also consider the spin and
spatial components. For a system of two spin-1/2 particles, two distinct total spin multiplets
can be formed, one with total spin 0 and one with total spin 1,

{
|0, 0⟩ = 1√

2
(|↑↓⟩ − |↓↑⟩),


|1, 1⟩ = |↑↑⟩ ,

|1, 0⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩),

|1,−1⟩ = |↓↓⟩ ,

(4.12)

6 An invariant subspace V for a group G is a vector subspace such that if any of its states is acted upon by
any transformation from G, the resulting state stays in V .
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I3

I8

(|uū⟩+ |dd̄⟩+ |ss̄⟩)/
√
3 ⊕

I3

I8

|ud̄⟩

(|uū⟩+ |dd̄⟩ − 2 |ss̄⟩)/
√
6

(|dd̄⟩ − |uū⟩)/
√
2

|dū⟩

|us̄⟩|ds̄⟩

|sd̄⟩

|sū⟩

Figure 4.4: Flavour components for the decomposition in irreducible representation of the tensor
product representation 3⊗ 3̄. The nine above states consist of a basis for the nine-dimensional
vector space. The properties under SU(3) of these states are well-established. Especially, the
octet and singlet transform separately under SU(3) and the basis states are I2, I3 and I8
eigenstates.

where |SM⟩ denotes the total spin eigenstates, and |↑↓, ↑↓⟩ is a shorthand notation for the tensor
product of individual spin states |s1 = 1/2,m1 = ±1/2⟩ ⊗ |s2 = 1/2,m2 = ±1/2⟩. The spatial
component is obtained by solving the mesonic Hamiltonian. However, for low-lying meson
states, the detailed spatial dependence is not required, as the system is assumed to remain in
its spatial ground state. In particular, the total orbital angular momentum associated with the
bound state is taken to be zero, so that the total angular momentum is fully determined by
the spin degrees of freedom. With these considerations, Figures 4.2a and 4.2b can now be fully
interpreted.

• Each pair of meson multiplets corresponds to a different spin configuration (4.12) of the
quark-antiquark system. The total spin of the mesons reflects this distinction. The energy
splitting arise from spin-dependent interactions within the mesonic Hamiltonian.

• Within Figure 4.2a or 4.2b, the meson states are differentiated by the flavour component
of the quark-antiquark state. The specific flavour content is indicated in Figure 4.4. Each
flavour multiplet is associated with a distinct energy, as they transform independently
under the flavour symmetry group.

• The energy difference between the various states in SU(3) multiplets results from flavour
symmetry-breaking contributions to the Hamiltonian. Since these contributions preserve
isospin symmetry, the degeneracy within the SU(2) multiplets remains.

• Finally, smaller corrections to the mesonic Hamiltonian break the residual degeneracy
within the SU(2) multiplets, leading to slight energy differences among, for example, the
three pion states.
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The preceding description deliberately omitted certain aspects of the meson spectrum. In
particular, beyond their flavour, isospin, spin and space quantum numbers, meson states are
also characterised by specific parity and G-parity values. Parity is associated to the inversion
of spatial coordinates and will be discussed in more detail in Part III. The G-parity operation
combines charge conjugation C, which transforms particles into their corresponding antiparticles,
with a flavour rotation that reverses isospin projections, [123],

G = CeiπI2 . (4.13)

Above, I2 denotes the second generator of the flavour symmetry group. Since the strong
interaction is invariant under both parity and G-parity, it is natural to define meson states as
eigenstates of these symmetry operators. This work is done in reference [123].

The baryon structure

As previously mentioned, the structure of the baryon spectrum will be discussed with less
details. In Gell-Mann’s theory, baryons are described as bound states of three quarks. Since
quark’s flavours transform with under fundamental representation of SU(3), denoted by 3,
the flavour component of a three-quark system transforms according to the tensor product
representation 3⊗ 3⊗ 3. This representation decomposes into one singlet, two octets and one
decuplet,

3⊗ 3⊗ 3 = 1AS ⊕ 8MS ⊕ 8MA ⊕ 10S. (4.14)

The corresponding flavour-space basis is not explicitly listed here to avoid an unwieldy figure.
Labels have been added to each multiplet to indicate their symmetry properties under particle
exchange. A label S (AS) denotes that the states within the multiplet are (anti)symmetrical
under the exchange of any two particles. A label MS (MA) indicates that the states are
(anti)symmetrical under the exchange of the first two particles only. These are commonly
referred to as mixed-symmetric and mixed-antisymmetric states, respectively. Turning to the
spin degrees of freedom, the spin component of a system of three spin-1/2 particles decomposes
into two spin doublets and one spin quadruplet,|1

2
, 1
2
⟩
MS

= (|↑↓↑⟩+ |↓↑↑⟩ − 2 |↑↑↓⟩)/
√
6,

|1
2
,−1

2
⟩
MS

= (2 |↓↓↑⟩ − |↑↓↓⟩ − |↓↑↓⟩)/
√
6,

|1
2
, 1
2
⟩
MA

= (|↑↓↑⟩ − |↓↑↑⟩)/
√
2,

|1
2
,−1

2
⟩
MA

= (|↑↓↓⟩ − |↓↑↓⟩)/
√
2,

(4.15a)
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√
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|3
2
,−3

2
⟩
S
= |↓↓↓⟩

(4.15b)

using same notation as before. As indicated by the labels, the spin quadruplet is fully symmetrical
under the exchange of any two particles, while the two spin doublets correspond to mixed-
symmetric and mixed-antisymmetric states, respectively.

The principal difference from mesons is that baryons consist of three particles which are
treated as identical in the current description. Consequently, the total state of the three-quark
system must be antisymmetric under any quark exchange. Referring to the lowest-lying baryon
decuplet in Figure 4.2d, this symmetry requirement introduces an unexpected obstacle. Since
these baryons are spatial ground states, their spatial contributions are necessarily symmetric7.
As they possess spin 3/2, their spin components, listed in equation (4.15), are also symmetric.
Third, the flavour part of the state, as indicated in equation (4.14), is likewise symmetric. As a
result, the total three-quark states for the low-lying baryon decuplet are fully symmetric under
any quark exchange. This contradicts the spin-statistics theorem, which dictates that the total
states of a system of identical fermions must be fully antisymmetric. The apparent contradiction
implies that an additional structure, beyond space, spin, and flavour, must be present in the
three-quark system.

This observation provided the first evidence for an additional component in quark states,
known as the colour degree of freedom. Like flavour, colour is assumed to span a three-
dimensional internal space and transforms under the fundamental representation of SU(3). To
avoid confusion, the colour group will hereafter be denoted by SU(3)c, while the flavour group
will be referred to as SU(3)f . The basis colour states are conventionally labelled as red, blue
and green8. This additional degree of freedom introduces a further constraint on hadronic states:
they must be invariant under SU(3)c. This requirement, often called the colour neutrality or
whiteness condition, was historically linked to the emergence of the concept of quark confinement.
Since quarks carry colour charge, they cannot exist in isolation but are always confined within

7 In full generality, an antisymmetric ground-state may be conceivable, particularly in systems involving
fermions. The complete argument leading to the conclusion that the spatial component of baryons is
symmetric is more nuanced. It involves comparing baryon and meson masses and observing that the energy
difference is too small to account for difference in symmetry. The conclusion remains: the spatial components
of the lowest-lying baryons must be symmetric.

8 As with flavour, the colour of an antiquark transforms under the anti-fundamental representation of SU(3)c,
with the corresponding states denoted antired, antiblue and antigreen.
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hadrons. The discussion of confinement is deferred to the next section. Returning to baryons,
let us now apply the whiteness condition. Quark colour transforms under the fundamental
representation of SU(3)c, so a three-quark colour state transforms according to the same tensor
product representation introduced earlier in the context of SU(3)f ,

3⊗ 3⊗ 3 = 1AS ⊕ 8MS ⊕ 8MA ⊕ 10S. (4.16)

As expected, the only color-invariant state, namely the singlet, is antisymmetric under quark
exchange. This resolves the tension with the spin-statistics theorem: the colour part of the
baryon state is always antisymmetric, and therefore the remaining components of the three-quark
state must be symmetric, as observed for the lowest-lying baryon decuplet.

Before concluding the discussion of baryons, the octet still needs to be accounted for. This
is complicated by the fact that neither the spin-1/2 states nor the flavour octets individually
exhibit an appropriate symmetry under quark exchange. However, by combining spin and
flavour components with mixed symmetries, one can construct the following globally symmetric
state,

1√
2
(|1/2, 1/2⟩MS ⊗ |F ⟩MS + |1/2, 1/2⟩MA ⊗ |F ⟩MA) . (4.17)

Above, |F⟩MS and |F⟩MA refer to analogous basis states of the two flavour octets. This
construction yields a globally symmetric space-spin-flavour component. When combined with
the antisymmetric colour singlet, the resulting total three-quark state is fully antisymmetric, as
required. The states obtained in this manner are finally identified with the lowest baryon octet.

4.3 Colour confinement and QCD

Let us return to the concept of colour charge, along with the related ideas of colour neutrality
and quark confinement. There is much to be said about confinement, as it remains one of
the most intriguing phenomena in particle physics. Numerous approaches based on different
frameworks have been developed to deepen the understanding of its underlying mechanisms.
Even today, significant theoretical effort continues to be devoted to this fundamental property
of matter9. A commonly cited intuitive and qualitative explanation, often found in textbooks,
suggests that quarks interact so strongly that, when separated, the energy interaction quickly
surpasses the threshold for quark-antiquark pair creation. As a result, quarks effectively produce
their own confinement partners, such that each becomes part of a colour neutral (white) state,

9 The issue is notably connected to one of the Millennium Prize Problems in Mathematics.
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which interacts more weakly with its surroundings10. This intuitive picture connects the colour
of quarks with the nature of their interactions. That idea gave rise to the theory of quantum
chromodynamics (QCD). It is now regarded as the most fundamental framework for describing
the strong interaction. While a detailed treatment of QCD slightly exceeds the scope of this
work, it remains an indispensable topic in any discussion of hadronic physics.

Disclaimer: The following description aims to be as self-contained as possible, with a focus on
outlining key aspects of QCD, including both its achievements and its limitations. References
are also provided for readers who wish to explore specific topics in greater depth. For a general
overview of the theory, one may refer, for example, to reference [129]. It should be emphasised
that this is a conceptually demanding subject, which would easily warrant a dedicated treatment
spanning hundreds of pages. The author apologises in advance if the discussion appears incomplete
to some readers or challenging to others.

4.3.1 The QCD Lagrangian

The theory of QCD belongs to the broader class of quantum field theories (QFT). These
theories are formulated using a Lagrangian framework rather than an Hamiltonian one, and
place greater emphasis on field operators than on quantum states themselves. The interpretation
of quantum fields can be subtle, and such interpretation is not essential for the present purposes.
In brief, when a field operator associated with a particular configuration of a particle (for
instance, the particle in a momentum eigenstate) acts on the lowest-energy state of the system,
named as the vacuum, it produces a quantum state that is interpreted as containing the particle
in that specific configuration. The QFT framework has proven to be a remarkably powerful tool
for constructing standard theories of fundamental particles, as it enables the fully relativistic
treatment of phenomena involving particle creations and disintegrations. Returning to the main
topic, QCD is based on a Lorentz-invariant Lagrangian that is gauge invariant under the colour
group SU(3)c [21, 130],

LQCD = ψ̄i(xµ) (iγ
ν(Dν)ij −mδij)ψj(xµ)−

1

4
F a
νλF

a νλ (4.18)

10 A frequently drawn analogy is with atomic systems: although composed of electrically charged particles,
atoms are overall electrically neutral. Colour charge is neutralised in hadrons, just as electric charge is
neutralised in atoms. This analogy, however, is imperfect, since isolated electrons can be observed, whereas
isolated coloured particles cannot. This latter feature is sometimes compared to permanent magnets, whose
poles cannot be observed in isolation.
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where

(Dν)ij = δij∂ν −
ig

2
Aa

ν(xµ)(λa)ij, (4.19)

F a
νλ = ∂νA

a
λ(xµ)− ∂λA

a
ν(xµ) + gfabcAb

νA
c
λ(xµ). (4.20)

As summations over repeated indices i, j, a, b and c are implied, the position of colour indices is
arbitrary. For spacetime indices, the Einstein convention is used. For simplicity, a single quark
flavour is considered. Let us examine each component of this intricate expression in turn [21,
129], with an emphasis on physical aspects while setting aside certain mathematical subtleties.

• The symbol ψi(xµ) with i ∈ {1, 2, 3} denotes the three fields corresponding to the three
colour states of quarks. Each ψi(xµ) is a Dirac spinor field, meaning it inherently includes
the two spin projections of both quarks and antiquarks. This compact formulation allows
all four components to be treated simultaneously and facilitates the control of Lorentz
invariance in the theory. The notation ψ̄i(xµ) refers to the Dirac adjoint of ψi(xµ) [21].
A deeper exploration of the underlying construction is omitted, as it is not essential to
the present discussion. As noted, fields are functions of the four spacetime coordinates xµ
(Greek and Latin letters denote space-time and colour indices, respectively).

• The symbol Aa
ν(xµ) with a ∈ {1, ..., 8} denotes the eight vector fields associated with

the eight bosons, called gluons, that mediate the colour interaction. This is analogous
to quantum electrodynamics, where the electromagnetic interaction is mediated by the
photon. However, unlike the photon, which is electrically neutral, gluons themselves
carry colour charge, labelled by the index a, and can therefore interact with one another.
The eight linearly independent colour charges for the gluons transform under the octet
representation of SU(3)c. The fields Aa

ν(xµ) are referred to as vector fields because they
have four components, indexed by ν, corresponding to the four spacetime dimensions.

• The symbol (Dν)ij denotes the covariant derivative, a concept introduced to ensure local
invariance of the Lagrangian under colour transformations. Notably, this same constraint
leads to gluons transforming under the octet representation of SU(3)c. The second term
in the definition of (Dν)ij warrants closer inspection. It involves λa matrices, known as the
Gell-Mann matrices, which are well-documented and tabulated [122, 129]. These matrices
represent the eight generators of SU(3) written in the fundamental representation. When
inserted into the full Lagrangian, it yields a term

−ig
2
ψ̄i(xµ)γ

νAa
ν(xµ)(λa)ijψj(xµ) (4.21)
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which is interpreted as describing interactions between (anti)quarks and gluons. Here, g
is the strong coupling constant, and γµ represents the Dirac matrices. These matrices
are well-established in the literature and facilitate the combination of Dirac spinors, their
derivatives, and vector fields into Lorentz invariant quantities [21, 129].

• The symbol F a
νλ denotes the gluon field strength tensor. When inserted into the total

Lagrangian, it generates terms that encode both the gluon dynamics [21],

−1

2

(
∂νA

a
λ(xµ)∂

νAa λ(xµ)− ∂λA
a
ν(xµ)∂

λAa ν(xµ)
)
, (4.22)

and the gluon-gluon interactions [21],

−gfabc∂νAa λ(xµ)A
b
νA

c
λ(xµ) +

g2

4
fabcfadeAb

νA
c
λ(xµ)A

d νAe λ(xµ). (4.23)

In the interaction terms, the constants fabc are antisymmetric and are called the structure
constants of SU(3). As with Gell-Mann and Dirac matrices, the structure constants are
assumed to be well-documented and tabulated [122, 129].

• Above, m is a constant referred to as the bare mass of the quarks [131]. The origin of this
appellation will be discussed further. The term in the Lagrangian associated with m is
interpreted as providing mass to the quark. Notably, gluons do not have similar term and
are, therefore, massless within the framework of QCD.

4.3.2 Perturbation theory and Feynman diagrams

Accessing experimental predictions from a Lagrangian within the QFT framework is highly
intricate, even in the simplest contexts. The formalism most commonly used to tackle this task
is perturbation theory, developed by R. Feynman. For systems of particle interacting weakly
enough, this formalism provides access to observables, such as the cross-sections of scattering
processes, order by order in powers of the coupling constant. This is the well-known expansion
in Feynman diagrams [129]. It enables the computation, for example, of the transfer matrix
(from which cross-sections can be derived) for quark-antiquark elastic scattering at the first
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order in the strong coupling constant [122, 130],

T (qi(p1,ms1)q̄j(p2,ms2) → qk(q1, µs1)q̄l(q2, µs2)) =
m2

(2π)6
√

Ep1Ep2Eq1Eq2((
v̄(p2,ms2)

(
igγµλa

ji

2

)
u(p1,ms1)

)
−gµν

(p1 + p2)2

(
ū(q1, µs1)

(
igγνλa

kl

2

)
v(q2, µs2)

)

+

(
ū(q1, µs1)

(
igγµλa

ki

2

)
u(p1,ms1)

)
gµν

(p1 − q1)2

(
v̄(p2,ms2)

(
igγνλa

jl

2

)
v(q2, µs2)

))

=
g2m2

(2π)6
√
Ep1Ep2Eq1Eq2

(
1

(p1 + q2)2
λa
ji

2

λa
kl

2
ū(q1, µs1)γµv(q2, µs2)v̄(p2,ms2)γ

µu(p1,ms1)

− 1

(p1 − q1)2
λa
ki

2

λa
jl

2
ū(q1, µs1)γµu(p1,ms1)v̄(p2,ms2)γ

µv(q2, µs2)

)
.

(4.24)

Above, p and q denote the four-momenta with components (Ep =
√
m2 + p2,p) and gµν is the

Minkowski metric (this document uses the signature + − −− ). Without going into too much
detail, u(p,ms) and v(p,ms) are four-component spinors with momentum p and spin projection
ms associated with quarks and antiquarks, respectively [122, 129]. For reference, this formula is
given in the Feynman gauge. The first equality is deliberately left unsimplified to illustrate the
analogy with the Feynman diagrams in Figure 4.5. In their minimal interpretation, Feynman
diagrams are considered as notational tools used to reconstruct cumbersome formulas easily.
More ambitious interpretations of the formalism suggest that the true scattering processes
undergone by the system is a quantum superposition of the different processes represented by
each diagram in the expansion.

Going beyond first-order approximation introduces additional challenges, as naive calculations
using Feynman diagrams predict divergent higher-order corrections. This issue is addressed
through renormalisation procedures in the theory [21, 129]. In essence, counterterms are added to
the Lagrangian so that their contributions cancel each divergence. The topic of renormalisation
and its various schemes clearly extends beyond the scope of this document. However, it is worth
mentioning the modified minimal subtraction (MS) renormalisation scheme, as it reveals a key
property of QCD. In this scheme, divergences are absorbed by introducing a dependence on the
centre-of-mass energy in both the mass parameter of the Lagrangian and the coupling constant
[21]. When applying this to QCD, the resulting energy dependence leads to a decrease in the
coupling strength with increasing energy, as illustrated in Figure 4.6, reproduced from reference
[132, 133]. This behaviour, known as asymptotic freedom, implies that quarks become less
strongly bound at higher energies, thereby enabling the use of perturbation theory to study
high-energy interactions, such as those occurring in proton-proton collisions [129]. In contrast, as
the energy approaches the hadronic scale, the strong coupling constant increases and eventually
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−gµν
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kl
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(a) Quark-antiquark annihilation diagram.

u(p1,ms1)

v(p2,ms2)

u(q1, µs1)

v(q2, µs2)

igγµλa
ki

2

gµν
(p1−q1)2

igγνλa
jl

2

(b) One-gluon exchange diagram.

Figure 4.5: The two first-order Feynman diagrams for quark-antiquark scattering processes [122,
130]. These diagrams correspond to the expression given in equation (4.24). Contributions from
the different components of the diagrams are indicated in gray.
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Figure 4.6: Experimental extraction of the strong coupling constant αs = g2/4π as a function of
a relevant energy scale, denoted Q. Most often, this scale is chosen to be the centre-of-mass
energy of the scattering event. Although the coupling constant is not itself an observable,
its value can be inferred from measurements of observables that depend on it. The figure is
reproduced from references [132, 133].

exceeds unity, at which point perturbation theory breaks down. Consequently, the Feynman
diagrams shown in Figure 4.5 does not provide an accurate description of hadronic states. This
increase in the coupling constant is consistent with the phenomenon of confinement mentioned
earlier: at low momenta, and therefore at large distances due to Fourier transform relations,
quarks become so tightly bound that they can no longer separate from one another.

4.3.3 Miscellaneous QCD properties and non-perturbative approaches

Another distinctive feature of QCD concerns the mass of quarks. The mass parameter in the
Lagrangian, namely the bare mass m, indicates that quarks are inherently massive in the theory.
For example, the bare masses of the u and d quark flavours typically lies between 3 and 5MeV.
This is significantly smaller than the nucleon mass, which is approximately 940MeV. This stark
contrast suggests that the majority of the proton’s mass arises from the energy content of the
proton. As previously mentioned, in the MS renormalisation scheme, the physical quark mass
becomes decoupled from its bare mass. At low momenta, the interactions between quarks and
gluonic fields lead to an increase in the effective quark mass, also known as the constituent-quark
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Figure 4.7: Effective quark mass as a function of the quark momentum modulus p, obtained by
solving the SDE within the rainbow-ladder model [131]. At high momentum, the effective mass
approaches the bare mass: approximately 3MeV for up/down quarks and 65MeV for strange
quarks. At low momentum, the effective mass reaches its constituent value: around 500MeV for
up/down and 700MeV for strange.

mass. This mass can be computed by solving the Schwinger-Dyson equations (SDE) for QCD
[131]. These equations, sometimes referred to as the equations of motion for QFT, allow one to
calculate the effective propagation properties of particles, even in the non-perturbative regime.
The main challenge is that the SDE form an infinite tower of coupled equations, requiring a
truncation scheme to render them solvable. Nevertheless, solving approximately the quark
SDE is feasible and yields the momentum-dependent mass evolution shown in Figure 4.7. At
large momentum, the quark mass approaches its bare value, consistent with the principle of
asymptotic freedom. At low momentum, the mass increases and reaches its constituent value
due to strong interactions with the gluonic field. Analogous but more technical calculations
indicate that, despite being formally massless, gluons also acquire a dynamical mass due to
their self-interactions [134].

Notably, as shown on figure 4.7 even the bare mass of the strange quark differs from that
of the up and down quarks. This highlights the approximate nature of the SU(3)f flavour
symmetry. Although not discussed so far, heavier quark flavours also exist, namely the charm,
bottom and top quarks. Their inclusion expands the spectrum of possible hadrons, including
those containing charm and bottom quarks. The top quark, however, is so massive that it decays
almost immediately. This makes it difficult to identify its bound states. The heavier a quark is,
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the more accurate a non-relativistic description becomes, and the less sensitive its bare mass is
to dynamical mass generation effects.

Because perturbation theory fails to accurately describe the low-energy regime of QCD,
physicists have turned to various alternative methods to access predictions directly derived from
QCD. One such approach involves the Bethe-Salpeter equations which, when combined with the
DSE, provide access to hadron spectra and to quantities analogous to hadron wave functions
[131, 135]. Another widely used method is lattice QCD (LQCD), which formulates QCD on
a finite-size space-time lattice. In this framework, observables can be expanded in powers of
the inverse coupling constant, β = 6/g2, which allows predictions to be made in the strong
coupling regime. To remain consistent with continuum physics, smaller lattice spacings a require
correspondingly larger values for β. By performing simulations for different (a, β) values, results
can be extrapolated to the continuum limit, thereby enabling the inference of QCD predictions
from lattice calculations. In practice, estimating observables in LQCD depends primarily on
computational resources. One of the major achievements of LQCD has been the evaluation
of the energy of the flux tube formed between a static quark-antiquark pair as a function of
their separation [136]. This result is illustrated in Figure 4.8, where this string tension energy
is plotted against the quark-antiquark distance. The figure is reproduced from reference [136].
Results from LQCD will serve as a reference for comparison in Part III. Of course, many other
non-perturbative approaches to QCD deserve attention. However, since this topic lies somewhat
beyond the scope of the present document, the discussion is concluded here.

4.3.4 Exotic particles

Following the previous brief exploration of QCD and its modern perspective on the concept
of colour, let us return to the confinement condition introduced for baryons. While colour
invariance was initially proposed to resolve symmetry inconsistencies in baryon wave functions,
it also addresses a broader question: why do three-quark and quark-antiquark bound states
exist, whereas, for example, two-quark bound states do not? As mentioned above, the answer
lies in the condition of colour neutrality: both the tensor product representations 3̄ ⊗ 3 and
3⊗ 3⊗ 3 contain a singlet state in their decomposition, as shown in equations (4.11) and (4.16),
while that is not the case for the tensor product representation obtained with two quarks [18],

3⊗ 3 = 6⊕ 3̄. (4.25)

Since this decomposition contains no singlet, such a system cannot form a colour-neutral
state, and consequently, no observed hadron consists solely of two quarks. However, colour-
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Figure 4.8: Energy of the flux tube generated by a static quark-antiquark pair computed
using LQCD. Different point shapes correspond to different inverse coupling constants β (and
thus different lattice spacing a). A fit with a Cornell potential (see Section 5.1) is shown for
comparison. Distances are expressed in units of a given reference scale r0, defined in [136]
Energies are normalised such that V (r0) = 0. The figure is reproduced from reference [136].
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neutral combinations are not restricted to the conventional mesons and baryons. More exotic
configurations can also yield SU(3)c singlet states [18, 103]. For example, one may consider
systems comprising two quark and two antiquark, or four quark and one antiquark,

3⊗ 3̄⊗ 3⊗ 3̄ = 1⊕ . . . , 3⊗ 3⊗ 3⊗ 3⊗ 3̄ = 1⊕ . . . . (4.26)

For brevity, only the first singlet term is shown in these decompositions. The resulting bound
states are known as tetraquarks and pentaquarks, respectively. These exotic hadrons have been
sought in high-energy experiments for decades. Recently, more and more evidences support the
existence of heavy tetraquarks and pentaquarks states in experimental spectra [137]. Nonetheless,
the internal quark distribution of these states remains a matter of ongoing debate. A central
question is whether these particles form compact tetraquark/pentaquark states, or whether they
are better described as loosely bound meson-meson or meson-baryon hadronic molecules.

The previous discussion of QCD also introduced another component that can be incorporated
into the quark model: the gluon. Transforming under the octet representation of SU(3), gluons
can combine with quarks and antiquarks to form colour-neutral states. For instance, the
following systems are allowed by the whiteness condition [18, 103],

3⊗ 3̄⊗ 8 = 1⊕ . . . , 3⊗ 3⊗ 3⊗ 8 = 1 ⊕ . . . . (4.27)

These configurations correspond to hybrid mesons and hybrid baryons, respectively. Even more
remarkably, QCD permits bound states composed entirely of gluons [3, 138],

8⊗ 8 = 1S ⊕ . . . , 8⊗ 8⊗ 8 = 1S ⊕ 1AS ⊕ . . . . (4.28)

For further use, the symmetry properties of the singlet components in these decompositions
have been indicated. These purely gluonic states are referred to as glueball states, specifically
two-gluon and three-gluon glueballs. The existence of particles composed entirely of gauge
bosons is a unique and striking prediction of QCD. Despite their early theoretical prediction [1],
glueball states have remained experimentally elusive, primarily due to their potential mixing
with mesonic states. A detailed description of glueballs is presented in Part III.
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This chapter in the context of a thesis

Like Chapter 1, the above text aimed to lay the foundations of the framework used in the
chapters that follow. It provided a non-exhaustive overview of the key historical discoveries
that gave rise to hadronic physics. It also traced the origin of the quark concept and its
modern interpretation. Rather than being comprehensive, the goal was to introduce the
essential concepts that will be used in the subsequent study of baryons and glueballs.

Perhaps the most original contribution of this chapter is Figure 4.7 in Section 4.3.3, which is
not taken from any reference, but which I successfully reproduced myself during a doctoral
training program on functional methods in QCD.





Chapter 5

The Baryon Spectrum : an Example of
Three-body Bound States

This chapter builds upon the information provided in the previous one to develop a phe-
nomenological formalism for exploring the hadron spectrum. Although the approach is neither
ab initio nor Lorentz covariant, it allows access to various hadron properties with minimal
conceptual and computational effort. Dynamical aspects are first addressed in Section 5.1,
where a QCD-inspired effective Hamiltonian is constructed to describe the interaction between
coloured particles. This Hamiltonian is then used to infer a baryon spectrum, which is compared
with the experimental data in Section 5.2.

5.1 Modern constituent approaches

In this section, a phenomenological expression for the interaction between coloured particles
is developed. The potential is separated into two main contributions: a short-range component
arising from perturbative gluon exchanges, and a long-range confining component encoding the
non-perturbative interactions between two separated colour charges.

5.1.1 Short-range QCD potential

Let us start by investigating the short-range behaviour. It is primarily governed by one-
gluon-exchange processes between the two coloured particles. The corresponding potential can
be inferred from the expression of the transfer matrix Tfi. A key quantity in scattering theory is
the scattering amplitude Sfi, whose modulus squared gives the probability for a given incoming
state i to transition to a given outgoing state f . In relativistic theory, the transfer matrix and
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the scattering amplitude are related. For instance, in two-to-two scattering of coloured spinors,
the following relation holds [21],

Sfi = δ3(p1 − q1)δ
3(p2 − q2)δms1µs1

δms2µs2
δc1d1δc2d2 + i(2π)4δ4(Pf − Pi)Tfi. (5.1)

Above, pj , msj and cj (qj , µsj and dj) denote the three-momentum, spin projection and colour
of the jth incoming (outgoing) particle, respectively. In addition, Pi and Pf refer to the total
four-momenta of the incoming and outgoing states. The scattering amplitude can also be
computed from the Schrödinger equation in non-relativistic quantum mechanics. For the same
scattering process as in (5.1) and at first order in perturbation theory, the non-relativistic
scattering amplitude is given by [5]

Sfi = δ3(p1 − q1)δ
3(p2 − q2)δms1µs1

δms2µs2
δc1d1δc2d2 − 2πiδ4(Pf − Pi)V(q). (5.2)

Above, q = p1 − q1 = q2 − p2 is the momentum transferred during the process. The function
V is the Fourier transform of the interaction potential in position representation V (r),

V(q) =
∫

d3r eir·qV (r). (5.3)

The notation suggests that the potential depends only on the relative position between the
particles, denoted r. However, it may also depend on the spin and colour states, as well as on
the particle momenta pA = (p1 + q1)/2 and pB = (p2 + q2)/2. By comparing equations (5.1)
and (5.2), one easily finds

V(q) = −(2π)3Tfi. (5.4)

As a result, the non-relativistic limit of the first-order transfer matrix provides the interaction
potential in momentum space.

Equation (5.4) can be used to infer the non-relativistic interaction potential generated by a
one-gluon-exchange process. For instance, the expression (4.24) for the transfer matrix can be
used to deduce the potential between a quark and an antiquark bound within a meson. Mesonic
states are colour singlets and must therefore possess a definite colour state, namely

1√
3

(
|r⟩ ⊗ |r̄⟩+ |b⟩ ⊗ |b̄⟩+ |g⟩ ⊗ |ḡ⟩

)
=

∑
i,j∈{r,g,b}

δij√
3
|i⟩ ⊗ |j̄⟩ , (5.5)

where {|r⟩ , |b⟩ , |g⟩} and {|r̄⟩ , |b̄⟩ , |ḡ⟩} denote the individual colour and anticolour basis states,
respectively. To obtain the meson-meson transfer matrix, contributions from equation (4.24)
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with different incoming and outgoing colours must be combined,

Tmeson =
∑
ij

δij√
3

∑
kl

δkl√
3
T (qi(p1,ms1)q̄j(p2,ms2) → qk(q1, µs1)q̄l(q2, µs2))). (5.6)

Expression (4.24) splits in two terms, corresponding to the one-gluon-exchange and annihilation
Feynman diagrams, respectively. Denoting these terms by TOGE and Tannih, and using Gell-Mann
matrices properties, one finds that

∑
ij

δij√
3

∑
kl

δkl√
3
TOGE ∼

∑
ij

δij√
3

∑
kl

δkl√
3

∑
a

λaki
2

λajl
2

=
4

3
, (5.7)

∑
ij

δij√
3

∑
kl

δkl√
3
Tannih ∼

∑
ij

δij√
3

∑
kl

δkl√
3

∑
a

λaji
2

λakl
2

= 0. (5.8)

In a colour singlet configuration, the contribution from the annihilation Feynman diagram
vanishes, while that from one-gluon-exchange is multiplied by a colour factor of 4/3. Once
the expression for Tmeson is obtained, applying equation (5.4) becomes a matter of algebraic
manipulations. A detailed derivation can be found in reference [122], therefore, in the present
discussion, the main calculation steps are only briefly sketched.

• The mesonic transfer matrix T is expanded in the non-relativistic limit. Each contribution
is expressed as a series in inverse powers of the quark masses, and terms of order 1/m3 and
higher are neglected. This step primarily involves intricate Dirac spinor manipulations
and Taylor expansions.

• Applying equation (5.4) allows identification of the non-relativistic interaction potential
in momentum space. Pursuing the expansion in inverse powers of the quark masses yields
an explicit expression for the potential in terms of the transferred momentum q.

• Finally, the interaction potential as a function of the relative position r is obtained by
Fourier transforming the momentum-space potential.

The above methodology yields the quark-antiquark interaction in a mesonic state. Very similar
developments can be used to derive the quark-quark interaction in a baryonic state. The
resulting potential is similar to that obtained for mesons, with a few differences. First, the
colour factor is affected. The colour state for a baryon is given by [130]∑

i,j,k∈{r,g,b}

ϵijk√
6
|i⟩ ⊗ |j⟩ ⊗ |k⟩ , (5.9)
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where ϵijk is the fully antisymmetric Levi-Civita symbol, with ϵrgb = 1. The resulting colour
factor is ∑

ijk

ϵijk√
6

∑
lmn

ϵlmn√
6

∑
a

λali
2

λamj

2
δkn = −2

3
, (5.10)

which is notably negative. However, this negative sign is cancelled by an additional minus sign
that appears when turning the antiquark into a quark. As a result, the one-gluon-exchange
contribution in the baryon potential has the same sign as that for mesons but is simply reduced
by a factor of two.

All these calculations lead to a structure commonly referred to as the Fermi-Breit potential,
which is split into five distinct contributions,

VBreit(r) = VCoulomb + VCorr + VSpin-Spin + VTensor + VSpin-Orbit. (5.11)

These terms are detailed in turn below. The first contribution, denoted VCoulomb, dominates in
non-relativistic systems,

VCoulomb = −Cαs

r
. (5.12)

Here, C is the aforementioned colour factor, whose value depends on the investigated colour
singlet, αs = g2/4π is the strong coupling constant, and r = |r|. One will recognise in this
contribution an electrostatic potential weighted by the colour factor. Given the structural
similarities between quantum electrodynamics and QCD, it is unsurprising to observe similar
forms in the non-relativistic potentials they produce. Accounting for the term VCoulomb constitutes
the strict minimum necessary to implement a short range QCD contribution in a QCD-inspired
hadron model. The second term, VCorr, accounts for relativistic corrections to the Coulomb
potential,

VCorr = Cαs

(
π

2
δ3(r)

(
1

m2
1

+
1

m2
2

)
+

1

2m1m2

(
p1 · p2

r
+

(r · p1)(r · p2)

r3

))
. (5.13)

This term splits into a repulsive contact term and a Darwin term [139], the latter explicitly
mixing momentum and spatial operators. Managing such corrections often proves cumbersome,
particularly the Darwin term. Moreover, as these contributions usually result in small energy
splittings, their omission can generally be compensated by fine-tuning phenomenological param-
eters in other terms. For these reasons, hadron models often prefer to omit these corrections.
The third term, as its name suggests, accounts for interaction between spin components,

VSpin-Spin =
Cαs

m1m2

8π

3
δ3(r)(S1 · S2). (5.14)
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Above, Si refers to the spin operators of particle i. Unlike VCorr, spin-spin interactions are
expected to produce significant energy splittings by differentiating states according to the total
spin of particles 1 and 2. Such interactions are commonly implemented in phenomenological
models. However, VSpin-Spin also suffer from a major drawback: the contact term δ3(r) can cause
the eigenstates of the resulting Hamiltonian to collapse. This unpleasant feature might appear
to question the validity of the approach taken here. Nevertheless, since the current calculations
were performed only at first order, it is likely that higher-order corrections compensate for this
inconvenience. To mitigate the collapse issue in practice, hadron models usually replace the
Dirac delta function by finite-size functions that approach a delta in specific parameter limits.
Usual examples of such functions include Yukawa and Gaussian forms,

fYuk.(r) = λ2
e−λr

4πr
, fGauss.(r) =

(
λ√
π

)3

e−λ2r2 . (5.15)

The parameter λ is then phenomenologically tuned to best reproduce experimental data. Such
replacements can be justified by considering that QCD renders point-like relativistic quarks and
gluons delocalised through the dressing process [140, 141, 142]. The fourth term in VBreit again
involves spin operators but now couples them with the relative position, leading to a tensor
interaction,

Vtensor =
Cαs

m1m2

1

r3

(
3(S1 · r)(S2 · r)

r2
− S1 · S2

)
. (5.16)

This contribution breaks rotational invariance of the interaction. Tensor terms are sometimes
incorporated into potential models, such as in reference [39]. However, due to their generally
smaller magnitudes and complex management, they are often neglected in practice. The final
term mixes spin and orbital angular momenta r × pi,

VSpin-Orbit =
Cαs

2

1

r3

(
(r × p1) · S1

m2
1

− (r × p2) · S2

m2
2

+
2

m1m2

((r × p1) · S2 − (r × p2) · S1)

)
.

(5.17)

This contribution is expected to play an important role by differentiating states according to
their total angular momentum, orbital angular momenta, and spins. Nevertheless, it turns out
that omitting spin-orbit contributions does not significantly deteriorate the resulting spectra.
This might be explained by the existence of long-range spin-orbit contributions that compensate
short-range ones. As with tensor interactions, some models explicitly include spin-orbit terms
[39, 142] while others neglect them [45, 143, 144].

Beyond the contributions included in the Fermi-Breit potential, other short-range effects may
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also be considered, such as Thomas precession [39]. Nevertheless, the above description provides
a solid foundation for constructing QCD-inspired Hamiltonians capable of reproducing hadron
spectra.

5.1.2 Long-range QCD potential

The long-range interaction is governed by complex gluon exchanges at low energies and
therefore cannot be accessed through perturbative QCD. Historically, a widely used picture to
describe quark-quark and quark-antiquark non-perturbative interactions suggests that coloured
particles are connected by strings whose energy density increases linearly with their length.
By integrating out the motion of the string, this picture leads to a linear long-range potential
between the particles. Calculations in LQCD discussed in Section 4.3.3 permit to confirm this
picture: the potential generated by two static colour charges is shown as a function of the
particle separation in Figure 4.8. As expected, it exhibits a mixture of a short-range Coulombic
behaviour and a long-range linear behaviour. The assumption of static particles implicitly relies
on the fact that (anti)quarks evolve slowly enough to allow the gluonic field to continuously
adapt to the new configuration [39].

Phenomenology and direct QCD calculations agree on the general behaviour of the long-range
colour interaction, at least when only two particles are involved. What happens when three
particles interact, as in baryons or three-gluon glueballs? For baryons, LQCD calculations
support the picture in which each quark generates its own flux tube and the three tubes merge
at a so-called Y junction [145, 146]. The position of their meeting point depends on the shape
of the triangle formed by the quarks. Briefly, if one angle of this triangle is larger than 120◦,
the tubes meet at the corresponding apex, otherwise they meet at the point that minimises the
total length of the flux tubes, known as the Toricelli point. Such junctions are illustrated on the
left side of Figure 5.1. Mathematically, the potential can be written as

Vqqq(r1, r2, r3) ∼

|rj − ri|+ |rk − ri| if the apex ri is larger than 120◦,

minY ∈R3

∑3
i=1 |ri − Y | otherwise.

(5.18)

where ri denotes the position of the ith quark, and i, j, k ∈ {1, 2, 3} with i ≠ j ̸= k and i ̸= k.
Although this structure is well justified, it proves difficult to handle with many resolution
methods, as it represents a genuine three-body interaction with a piecewise definition. For this
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Figure 5.1: Comparison of different flux-tube configurations to model baryons. Static quarks are
represented by black dots, and flux-tubes by straight lines. The Y junction and ∆ junction are
illustrated on the left and right, respectively. For each junction, three different relative positions
of the static quarks are displayed.

A B

C

D

AC ≤ AD +DC BC ≤ BD +DC

AB ≤ AD +DB

Figure 5.2: Length comparison between the Y and ∆ junctions. In each of the three triangles,
the length of the hypotenuse is smaller than the sum of the two other sides. By assembling the
three triangles, the three hypotenuses reproduce the ∆ shape, while the other sides together
reproduce twice the Y shape.

reason, it is often approximated with a sum of two-body interactions, which are easier to handle,

min
Y ∈R3

3∑
i=1

|ri − Y | ≃ 1

2

3∑
i<j=1

|ri − rj|. (5.19)

This configuration is commonly called the ∆ junction, as it consists of three flux-tubes forming
a triangle. The corresponding junctions are illustrated on the right side of Figure 5.1. The 1/2

factor must be introduced to obtain a reasonable approximation and can be justified geometrically.
Using triangle inequalities, twice the total length of the flux tubes in the Y junction is bounded
from below by the corresponding length in the Delta junction, as illustrated in Figure 5.2.
Reference [147] demonstrates that including the 1/2 factor yields good approximations of the
energies obtained with a Y junction, and even suggests a more accurate factor of 0.54. There, the
Y junction is also approximated by replacing the Toricelli point with the three-quark centre of
mass. In that case, the three-body interaction (5.18) is replaced by three one-body interactions.
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The above discussion explains how flux tubes adapt to a three-quark configuration. However,
it did not address whether the string tension of the flux tubes is the same as in mesonic
systems. It has been observed that the string tension scales with the SU(3) quadratic Casimir
F 2 associated with the particle’s colour representation [148]. For a quark, this Casimir value is
given by

⟨F 2⟩ = 1

4

8∑
a=1

⟨λ2a⟩ =
4

3
. (5.20)

where the expectation value can be taken over any single-quark colour state. The calculation
for an antiquark yields the same factor. The case of gluons will be discussed in Part III. This
phenomenological Casimir-scaling hypothesis has been confirmed by LQCD calculations [149,
150, 151]. As a result, denoting the fundamental string tension by σ and applying Casimir
scaling, the long-range behaviour of the colour interaction reads

Vq̄q(r1, r2) =
4

3
σ|r1 − r2| (5.21)

for mesons, and

Vqqq(r1, r2, r3) =
4

3
σ

|rj − ri|+ |rk − ri| if the apex ri is larger than 120◦,

minY ∈R3

∑3
i=1 |ri − Y | otherwise.

(5.22)

for baryons. The latter is often approximated by

Vqqq(r1, r2, r3) =
2

3
σ

3∑
i<j=1

|ri − rj|. (5.23)

The long-range interaction discussed above still has a notable flaw: it rises indefinitely,
whereas it is knows that highly energetic flux tubes can break through quark-antiquark pair
creation. To account for this saturation effect, some models modify the linear potential by
introducing an exponential saturation,

V (r) = a(1− e−br), (5.24)

where ab plays the role of the string tension, a sets energy saturation threshold, and b controls
the sharpness of the transition [122]. This potential behaves linearly at short distances1 and

1 Strictly speaking, one should say "at short long-distances", since this section still discusses the long-range
colour potential.
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becomes constant as r → ∞. Nevertheless, for low-lying hadrons, implementing such saturation
does not significantly affect the spectrum.

5.1.3 Mid-range behaviour and kinematics

The two previous sections discussed the expected short-range and long-range behaviour of
the colour potential, respectively. To reproduce the hadron spectrum with a potential model, an
interaction consistent with these limiting expressions must be defined. The simplest interpolating
potential simply superposes the Coulomb and linear interactions. This is the funnel (also known
as Cornell) interaction,

V (r) = Aσr − Cαs

r
−B. (5.25)

Above, C is the colour factor introduced in Section 5.1.1, and A denotes the value of the
quadratic colour Casimir for mesons, or half of its value for baryons (only ∆ junctions are
considered for simplicity). The fundamental string tension, σ, is typically chosen around
0.15 − 0.18GeV2 [39, 152] while the strong coupling constant, αs, is fixed around 0.4 − 0.5

[142, 143, 152] (its momentum dependence discussed in Section 4.3.2 is often neglected). An
additive constant, B, is also introduced. This constant is necessary to accurately reproduce the
masses of low-energy hadrons. Its value depends on the system studied, it is typically about
0.1− 0.3GeV for mesons [39, 143] and 0.4− 0.6GeV for baryons2 [39, 144]. This constant is
consistent with LQCD calculations, since the potential obtained in Figure 4.8 is also defined up
to an additive constant. Incidentally, the fit shown on that figure illustrates the comparison
with a funnel-shaped potential. A definite explanation and ab initio calculation for this global
energy rescaling remain difficult to obtain. Vacuum effects in QCD are often invoked [39, 130].
Other interpolating shapes have also been proposed, but they generally yield similar hadron
masses [130]. In fact, a large number of potentials have been tested in the phenomenology of
QCD [153]. For most of these, either the differences from the funnel potential are relatively
small, or the potentials are tuned for specific hadronic systems. For these reasons, only the
funnel potential will be used in the present calculations. Naturally, the funnel potential can be
supplemented with any of the corrections discussed in Section 5.1.1.

Besides the interactions, one must also consider how kinetic energy is implemented in the
model. Both non-relativistic and semi-relativistic kinetic energy expressions can be used,
particularly for the heaviest quarks, but the semi-relativistic form proves more accurate [144,
154]. Furthermore, the issue of quark masses must be addressed. As discussed in Section 4.3.3,
the effective mass of quarks depends on their momentum, transitioning from the bare mass at

2 The value given here corresponds to a ∆-junction potential.
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high momentum to a constituent mass at low momentum. Since the momentum distribution
within a hadronic state is typically peaked at low momentum, the mass parameter is usually
taken as the constituent mass in hadron models. Regarding flavour, most models assume exact
isospin symmetry, and thus the up and down quarks are taken to have the same mass. By
contrast, since the SU(3)f symmetry is a more approximate one, the strange quark is generally
assigned a distinct constituent mass. Naturally, the charm and bottom quarks are also treated
as distinct particles with their own masses. The typical orders of magnitude for the constituent
masses are 0.2− 0.3GeV for up/down quarks, 0.4− 0.6GeV for strange quarks, 1.6− 1.8GeV
for charm quarks, and 5.0− 5.3GeV for bottom quarks [39, 143].

5.2 The baryon spectrum

This section applies the methodology introduced earlier to compute a baryon spectrum. The
Schrödinger-like equation is solved using the OBE described in Chapter 2. Model parameters are
taken from references [144] for nucleons-like systems, and from [143, 155] for baryons in general.
The computed results are compared with experimental data. Finally, the internal structure of
the system is analysed by evaluating selected observables. Such calculations are used in current
research to investigate the emergence of diquark substructures in certain baryons [30].

5.2.1 Nucleon-like baryons

The model proposed in reference [144] is used. In the notation introduced in Section 5.1, this
corresponds to the following three-quark Hamiltonian,

Hqqq =
3∑

i=1

√
pi

2 +m2
i +

3∑
i<j=1

(
2

3
σ|ri − rj| −

2

3

αs

|ri − rj|
−Bqq

+
4

9

αs

mimj

λ2e−λ|ri−rj |

|ri − rj|
Si · Sj

)
.

(5.26)

The parameter values are adopted from the corresponding reference: σ = 0.182GeV2, αs = 0.57,
λ = 0.533GeV, Bqq = 0.409GeV and mu = md = 0.337GeV. The eigenvalues of the Hamiltonian
(5.26) are presented in Table 5.1. First, energies obtained with the OBE are compared with
those reported in reference [144]. While the two sets of values are generally in good agreement,
some discrepancies remain. This differences likely stem from the difficulties the OBE encounters
in accurately approximating the sharp divergence introduced by the Yukawa interactions.
Interestingly, for N baryons, the discrepancies tend to diminish with increasing radial and
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orbital excitations, presumably because the spatial wave functions become less concentrated near
the origin. In some cases, particularly for all ∆ baryons, the OBE results lie below those reported
in reference [144], suggesting that the OBE may yield more accurate estimates. To mitigate
the issue of divergences, the spin-spin interaction can be softened, by replacing the Yukawa
function with a Gaussian profile, as suggested in Section 5.1.1. This approach is currently being
explored in ongoing research. When compared with experimental data, the model reproduces
the essential features of the low-lying baryon spectrum. This overall agreement is surprising,
as the lightest quarks are expected to exhibit significant relativistic effects [39]. One notable
limitation is the degeneracy in total angular momentum J for given values of orbital angular
momentum L and spin S. This is illustrated in Figure 5.3. This degeneracy would be lifted by
including spin-orbit contributions in the Hamiltonian (5.26).

The OBE also enables the evaluation of expectation values for various observables. Table 5.2
presents the mean interquark distance, x = |ri − rj|, and the mean distance between the centre
of mass of a quark pair and the third particle, y = |(ri + rj)/2 − rk|. Due to the symmetry
of the states, these distances are independent of the specific choice of indices i, j and k. The
observables x and y allow for a classical representation of the quantum three-body system as a
triangle, where the apices corresponds to the average positions of the constituent particles. An
equilateral triangle configuration corresponds to a ratio ⟨x⟩ / ⟨y⟩ ≃ 1.155. This representation is
admittedly quite reductive and does not account for the detailed internal quark distribution.
Nevertheless, it offers a simple approximate illustration of the internal structure. In the present
system, the deviations from this equilateral configuration are minimal, as expected from the
symmetry constraints. Additional observables can also be investigated. For instance, reference
[45] represents the spatial probability distributions of each baryon as functions of the moduli
of both Jacobi coordinates. It also projects the eigenstates of (5.26) onto flavour multiplet
states. These results are then used to establish a classification of physical baryon states within
the baryon multiplets from Figures 4.2c and 4.2d in Section 4.2. Another notable example is
provided in reference [144], which uses the same Hamiltonian to estimate decay widths of the
baryons. The computational details are a bit too elaborate to summarise here, but the method
involves evaluating a transition operator with the baryon wave function. While the results in
these references were not obtained using the OBE, this method is fully capable of delivering
comparable insights.

5.2.2 Broader baryon spectrum

Other quark flavours, such as strange and charm can of course also be used to construct
baryon states. Such calculations are carried out, for example, in references [143, 155]. In these



5.2. THE BARYON SPECTRUM 170

2S+1LJ IP k Particle’s name Eexp. [128] EOBE E[144]

2S 1
2

1
2

+
1 N(939) 0.939 (1) 0.959 0.939

2S 1
2

1
2

+
2 N(1440) 1.440 (30) 1.612 1.578

2S 1
2

1
2

+
3 N(1710) 1.710 (30) 1.869 1.860

4S 3
2

3
2

+
1 ∆(1232) 1.232 (2) 1.227 1.232

4S 3
2

3
2

+
2 ∆(1600) 1.570 (70) 1.850 1.855

2P 1
2

or 2P 3
2

1
2

−
1 N(1520) or N(1535) 1.515 (5) or 1.530 (15) 1.530 1.521

4P 1
2

or 4P 3
2

1
2

−
1 N(1650) or N(1675) 1.650 (15) or 1.672 (8) 1.685 1.691

or 4P 5
2

or N(1700) or 1.725 (75)

2P 1
2

or 2P 3
2

3
2

−
1 ∆(1620) or ∆(1700) 1.610 (20) or 1.710 (20) 1.616 1.621

2D 3
2

or 2D 5
2

1
2

+
1 N(1680) or N(1720) 1.685 (5) or 1.715 (35) 1.871 1.858

Table 5.1: Comparison between the experimental nucleon-like baryon spectrum Eexp. [128] and
the theoretical predictions from the model of reference [144]. Eigenenergies obtained using
the OBE and those reported in [144] are listed in the columns EOBE and E[144], respectively.
All masses are given in GeV. The maximal number of quanta used for the OBE is Qmax = 20
with the non-linear variational parameter a computed for Q = 10. Some entries correspond to
multiple particles due to degeneracies in the model spectrum with respect to the total angular
momentum J . Experimental energies are taken as the Breit-Wigner masses given in [128], with
uncertainties given in parentheses. As an exception, the energy of the N(939) corresponds to
the nucleon mass, and the uncertainty reflects the energy difference between its two isospin
projections.
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Particle’s name ⟨x⟩ ⟨y⟩ ⟨x⟩ / ⟨y⟩

N(939) 2.2002 1.9128 1.151

N(1440) 3.1437 2.7334 1.150

N(1710) 3.5246 3.0875 1.142

∆(1232) 2.6863 2.3298 1.153

∆(1600) 3.5651 3.0916 1.153

N(1520) or N(1535) 3.0206 2.6288 1.149

N(1650) or N(1675) 3.3437 2.9008 1.153

or N(1700)

∆(1620) or ∆(1700) 3.1528 2.7343 1.153

N(1680) or N(1720) 3.5128 3.0699 1.144

Table 5.2: Expectation values of two "observables" for low-lying baryons evaluated using the
OBE on the Hamiltonian (5.26). The column ⟨x⟩ gives the mean distance between any two
particles in the system. The column ⟨y⟩ gives the mean distance between centre of mass
of any quark pair and the third particle. All distances are expressed in GeV−1. The final
column shows the ratio ⟨x⟩ / ⟨y⟩. For reference, an equilateral mean configuration corresponds
to ⟨x⟩ / ⟨y⟩ ≃ 1.155. The maximal number of quanta used for the OBE is Qmax = 20 with the
non-linear variational parameter a computed for Q = 10. Some rows correspond to multiple
baryons due to degeneracies in the model with respect to the total angular momentum J .
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Figure 5.3: Graphical comparison between experimental nucleon-like baryon spectrum Eexp.

[128] and theoretical predictions from the model presented in reference [144]. The plotted data
correspond to the OBE results and experimental values listed in Table 5.1. Boxes indicate
experimental results including the uncertainties.

works, non-relativistic kinematics are used and the set of parameters employed differs slightly
from those used in [144],

Hqqq =
3∑

i=1

(
mi +

pi
2

2mi

)
+

3∑
i<j=1

(
2

3
σ|ri − rj| −

2

3

αs

|ri − rj|
−Bqq

+
8

3

αs

mimj

λ2e−λ|ri−rj |

|ri − rj|
Si · Sj

)
,

(5.27)

with parameter values σ = 0.139GeV2, αs = 0.390, λ = 0.434GeV, Bqq = 0.457GeV, mu =

md = 0.337GeV, ms = 0.6GeV and mc = 1.87GeV. In addition to the kinematics and parameter
differences, the interaction terms in Hamiltonian (5.27) are not entirely equivalent to those
of equation (5.26), as the numerical factor in front of the spin-spin interactions is six times
larger in (5.27). This choice is less consistent with the short-range behaviour expected from
one-gluon-exchange processes. Nevertheless, this discrepancy can likely be absorbed into the
potential parameters. The conventions from reference [143] are retained to facilitate comparison
of results.

The eigenenergies obtained using the OBE are compared with those reported in [143, 155]
and with experimental data from [128] in Tables 5.3. For most states, the results of [143] are less
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accurate than those obtained using the OBE. In contrast, the predictions from [155] achieve a
level of accuracy comparable to that of the OBE. As with nucleons, the simple potential model
of equation (5.27) captures the main features of the baryon spectrum, as illustrated in Figure
5.4.

For these baryons, the investigation of potential diquark substructures becomes more pertinent,
as symmetry constraints are relaxed. The last column of Table 5.3 presents the ratio ⟨x⟩ / ⟨y⟩,
where ⟨x⟩ denotes the mean distance between the two identical particles, and ⟨y⟩ the distance
between their centre of mass and the third quark. As before, a ratio close to 1.155 characterizes
an equilateral configuration, implying the absence of any diquark-like clustering. Compared
to the results from Table 5.2, the baryons analysed in Table 5.3 deviate from this equilateral
geometry, showing a relative increase in ⟨x⟩ (except for Λ). This trend is schematically depicted
in Figure 5.5. In general, increasing the ratio indicates a tendency for the third quark to lie in
between the two identical ones. Associating this third quark with one of the identical quarks
forms a subsystem that resembles a diquark structure more closely than in the equilateral
configuration. However, as seen in Figure 5.5, this effect remains modest in that particular case,
and the diquark approximation is unlikely to provide a fully accurate description of the baryon
spectrum or properties. For comparison, Table 5.4 presents results for baryons composed of two
heavy quarks and a light one. In this case, the ratio ⟨x⟩ / ⟨y⟩ is significantly smaller than 1.155,
indicating the presence of a pronounced diquark substructure, as illustrated by the schematic
diagrams in Figure 5.6. Heavy-heavy-light baryons are therefore likely to be better described by
a quark-diquark approximation than the previously discussed particles.

5.3 Conclusion: why constituent approaches ?

Chapter 4 illustrated the diverse perspectives that have shaped hadron physics over time.
From the early classification of hadron to the development of QCD via the quark hypothesis,
the effort to explain the multitude of observed hadrons has driven decades of theoretical and
experimental progress. Among the many frameworks currently employed to study hadrons,
Chapter 5 introduced the basics of constituent approaches. These phenomenological and QCD-
inspired methods are designed to retain essential physic features while requiring comparatively
modest computational resources, even for complex systems. Initially developed to model the
spectrum of conventional hadrons, constituent approaches have since been extended to more
intricate systems, including exotic states [31, 156]. They are also used to explore subtler
aspects of hadron structure, such as improving classification schemes [45] and computing decay
rates [144]. The primary advantage of this framework lies in its conceptual simplicity and
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Name & Content JP (I) Eexp. [128] EOBE E[143] E[155] ⟨x⟩ ⟨y⟩ ⟨x⟩/⟨y⟩

Λ nns 1
2

+
(0) 1 115.7± 0.0± 0.0 1 175 1 196 N.A. 3.43 3.05 1.12

Σ nns 1
2

+
(1) 1 193.4± 4.0± 0.1 1 258 1 281 N.A. 3.99 2.86 1.40

Σ(1385) nns 3
2

+
(1) 1.385.0± 2.2± 1.0 1 453 1 477 N.A. 4.24 3.28 1.29

Λc nnc 1
2

+
(0) 2 286.5± 0.0± 0.1 2 316 2 334 2 300 3.37 2.62 1.29

Σc(2455) nnc 1
2

+
(1) 2 453.5± 0.5± 0.4 2 491 2 511 2 473 4.02 2.61 1.54

Σc(2520) nnc 3
2

+
(1) 2 518.0± 0.5± 2.3 2 563 2 585 N.A. 4.13 2.75 1.50

Ωc ssc 1
2

+
(0) 2 695.2± 0.0± 1.7 2 704 2 717 2 700 3.17 2.20 1.44

Ωc(2770) ssc 3
2

+
(0) 2 765.9± 0.0± 2.0 2 761 2 776 N.A. 3.24 2.31 1.40

Table 5.3: Comparison between the experimental baryon spectrum Eexp. [128] and theoretical
predictions from the model presented in reference [143]. Eigenenergies obtained using the OBE,
as well as those reported in [143] and [155], are listed in the columns EOBE, E[143] and E[155],
respectively. All masses are given in MeV. Expectation values of two observables are also
evaluated using the OBE: ⟨x⟩ denotes the mean distance between the two identical quarks, while
⟨y⟩ represents the mean distance between their centre of mass and the third particle. These
distances are expressed in GeV−1. The final column shows the ratio ⟨x⟩ / ⟨y⟩. For reference, an
equilateral mean configuration corresponds to ⟨x⟩ / ⟨y⟩ ≃ 1.155. The maximal number of quanta
used for the OBE is Qmax = 18 with the non-linear variational parameters a and b computed for
Q = 8. Two uncertainties are indicated for the experimental results: the first reflects the energy
range covered by the isospin multiplet (0 indicates an isospin singlet), and the second represents
the largest experimental uncertainty within the multiplet (0 indicates that all reported masses
are more precise than the digits displayed).
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Figure 5.4: Graphical comparison between experimental baryon spectrum Eexp. [128] and
theoretical predictions from the model presented in reference [143]. The plotted data correspond
to the OBE results and experimental values listed in Table 5.3. Experimental uncertainties are
not shown, as they are significantly smaller than the energy range displayed.

Name Content JP (I) Eexp. [128] EOBE ⟨x⟩ ⟨y⟩ ⟨x⟩ / ⟨y⟩

Ξ ssn 1
2

+ (1
2

)
1 318.3± 3.4± 0.2 1 367 3.23 2.94 1.10

Ξ(1530) ssn 3
2

+ (1
2

)
1 533.4± 1.6± 0.6 1.571 3.43 3.41 1.01

Ξcc ccn 1
2

+ (1
2

)
3 621.6 ± ??± 0.4 3 632 2.10 2.82 0.74

Ξcc(?) ccn 3
2

+ (1
2

)
Unobserved 3.715 2.15 3.02 0.71

Table 5.4: Predictions for heavy-heavy-light baryon properties based on the model from ref-
erence [143]. When available, comparisons with experimental data Eexp. [128] are provided.
Eigenenergies and observables are obtained using the OBE. Masses are expressed in MeV, and
distances in GeV−1. The column ⟨x⟩ denotes the mean distance between the two identical
particles in the system, while ⟨y⟩ represents the mean distance between their centre of mass
and the third particle. The final column shows the ratio ⟨x⟩ / ⟨y⟩. For reference, an equilateral
configuration corresponds to ⟨x⟩ / ⟨y⟩ ≃ 1.155. The maximal number of quanta used for the
OBE is Qmax = 18 with the non-linear variational parameters a and b computed for Q = 8.
Experimental uncertainties follow the same conventions as in Table 5.3. Interrogation marks
indicate unknown quantities.
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Λ Σ Λc Σc(2455) Σc(2520) Σ(1385) Ωc Ωc(2770)

Figure 5.5: Schematic representations of the internal structures of baryons, as inferred from
the expectation values evaluated in Table 5.3. In each diagram, the two identical quarks
are positioned at the bottom. Diagrams are drawn to scale. In all cases, the presence of a
well-defined internal diquark structure appears unlikely. Admittedly, this representation is only
approximate and does not capture the detailed internal quark distribution.

Ξ Ξ(1530) Ξcc Ξcc(?)

Figure 5.6: Schematic representations of the internal structures of baryons, as inferred from the
expectation values in Table 5.4. In each diagram, the two identical quarks are positioned at
the bottom. Diagrams are drawn to scale. In these systems, diquark substructures are more
pronounced than in the previously considered cases. Admittedly, this representation is only
approximate and does not capture the detailed internal quark distribution.

computational efficiency, especially when compared to more involved techniques such as LQCD
or the Bethe-Salpeter equation.

Let us now highlight two current research directions pursued within the constituent quark
model. First, this approach is used to evaluate the validity of the quark-diquark approximation
across various baryon states. Preliminary results of this investigation were outlined at the
end of Section 5.2. This methodology will subsequently be applied to support and expand
upon a recent study of hybrid baryons [56]. Second, as noted, the constituent quark model
can be adapted to study more exotic systems, including two- and three-gluon glueballs. This
extension of the formalism proves non-trivial, as gluons are formally massless within QCD.
However, the spin degrees of freedom of massless particles differ fundamentally from those
of massive ones, necessitating a dedicated treatment. A suitable spin formalism for massless
constituents must therefore be introduced to properly describe glueball dynamics. In addition
to the theoretical interest and technical challenges involved, this subject also marks a first step
toward reintroducing relativity into the constituent framework. For these reasons, the remainder
of this document focuses on the study and modelling glueball systems.
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This chapter in the context of a thesis

This Chapter has two main objectives. First, it introduces and justifies the key features of
constituent approaches to QCD. Since this framework is central to the remainder of the
document, its justification warrants a dedicated chapter. Once again, particular emphasis
is placed on features that are essential for the developments that follow.

Second, the chapter present recent calculations carried out within the research unit, to which
I contributed. I was involved in supervising C. Tourbez’s Master thesis which, as mentioned
in the above section, aims to evaluate the validity of the quark-diquark approximation
in baryons. My contribution focused on obtaining accurate results for a full three-body
description of the system using the OBE. These calculations open new perspectives for
studying hybrid baryons using a quark-core plus gluon approach.
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Chapter 6

Toward Relativistic Quantum Mechanics :
the Helicity Formalism

The vast majority of prior developments have been carried out within a non-relativistic
framework: the Schrödinger equation is inherently not Lorentz covariant, calculations were
performed using Jacobi coordinates (2.25) in a naïve manner, and transformations between
reference frames were treated without sufficient rigour. For instance, the Jacobi variable x

was universally interpreted as the relative distance between particles 1 and 2, regardless of the
reference frame in which positions were defined. Additionally, the angular momentum between
particle 1 and 2 was naively coupled with that of particle 3, even though these quantities were
not necessarily defined in the same frame. While employing a semi-relativistic expression for
the kinetic energy led to better agreement with experimental data for light particles, it does not
address the underlying issues of covariance.

The remainder of this document seeks to develop a framework that partially remedies these
shortcomings. The approach is based on the construction of Lorentz-covariant quantum states
using Poincaré group (PG) transformations. In an effort to treat both massive and massless
particles within a unified framework, the helicity formalism, originally developed by Jacob and
Wick [157], is employed. As a motivation for these developments, the resulting formalism is
subsequently applied to the study of two- and three-gluon glueballs. The existence of such
hadrons was previously introduced in Section 4.3.4 and is discussed in greater detail in Chapter
7.

As a first step, this chapter introduces the helicity formalism for one- and two-body systems.
This chapter builds upon and slightly expands the text from reference [158]. It is organised as
follows. Section 6.1 introduces the PG, emphasizing the definitions and properties relevant to
the subsequent application. Section 6.2 presents the helicity formalism for one-body systems,
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detailing the basic properties of helicity states. Section 6.3 then extends the discussion to
two-body systems. The treatment is kept general to ensure applicability to a broad range of
systems. The application of the helicity technology in a constituent model framework, along
with glueball-specific considerations, is deferred to the next Chapter.

6.1 The Poincaré group

The PG is the isometry group of the Minkowski spacetime. It includes spacetime translations,
spacetime rotations, as well as parity and time-reversal operations. The well-known Lorentz
group is obtained from the PG by excluding spacetime translations. Further removing spatial
rotations, parity, and time-reversal yields the proper orthochronous Lorentz group. In the
helicity formalism, the PG plays a dual role. First, operators from the Poincaré algebra (PA)
are used to characterise particles states. Second, spacetime transformations are employed
to set rest-frame states into motion and to construct two- and three-body states. For these
reasons, it is helpful to begin with a brief review of the PA and the PG. Numerous sources offer
comprehensive overviews of these theoretical concepts. Among the standard references in the
field, the following paragraphs rely on [159] and [160].

6.1.1 The Poincaré algebra

The PA provides operators whose eigenstates serves as the building blocks for defining particle
states. It consists of 10 generators, which can be grouped into three families. Four of these,
denoted P0, P1, P2 and P3, generate spacetime translations. These commute with each other,

∀µ, ν ∈ {0, 1, 2, 3}, [Pµ, Pν ] = 0. (6.1)

Throughout this work, Greek letters denote spacetime indices. As a reminder, the metric
signature used is + − −− . In the quantum context, the generators Pµ are associated with
the four-momentum component operators. Three additional generators, denoted J1, J2 and J3,
generate spatial rotations. They obey the standard commutation relations of the SO(3) algebra,

∀ i, j ∈ {1, 2, 3}, [Ji, Jj] = i
∑
k

ϵijkJk, (6.2)

where ϵ is the fully antisymmetric Levi-Civita symbol. Roman letters are reserved for purely
spatial indices, and the Einstein summation convention is applied only to spacetime indices. The
rotation generators do not necessary commute with the Pµ generators. In quantum mechanics,
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the Ji represent the components of total angular momentum. An alternative notation, using two
indices, is sometimes employed: J1 = J23, J2 = J31, and J3 = J12, with J ij = −J ji. The final
three generators, denoted K1, K2 and K3, correspond to boosts along the three spatial directions.
Although the full commutation relations are not required in this manuscript (interested readers
may consult [159]), let us mention that [K3, J3] = 0. This implies that boosts along the z
axis commute with rotations about the same axis. This property is frequently exploited in
subsequent developments.

The 10 generators of the PA can be combined to define two Casimir operators, the squared
four-momentum, P 2, and the Pauli-Lubanski scalar, W 2,

P 2 = P 2
0 − P 2

1 − P 2
2 − P 2

3 , (6.3)

W 2 = W 2
0 −W 2

1 −W 2
2 −W 2

3 with Wµ =
1

2
ϵµνρσJ

νρP σ. (6.4)

As Casimirs, these combinations are invariant under Poincaré transformations. To ensure a
consistent definition across all observers, particle states are defined as eigenstates of these
operators. This definition formally assigns each particle to a specific irreducible representation
of the PG. The eigenvalue of P 2 is naturally interpreted as the square of the particle’s mass. For
massive states, the eigenvalue of W 2 is related to the spin of the particle. This can be seen by
transforming to the particle’s rest frame, where P0 = m and Pi = 0. In this frame, the spatial
components of the Pauli-Lubanski vector reduce to Wi = mJi, and the Casimir becomes

W 2 = −m2(J2
1 + J2

2 + J2
3 ) = −m2J2, (6.5)

where J2 denotes the squared total angular momentum operator. In the rest frame of the particle,
this angular momentum necessarily arises from the particle’s intrinsic spin. The situation is more
nuanced for massless particles. Physical massless particles, such as photons and gluons, satisfy
W 2 = 0. For these cases, a different combination of generators becomes Lorentz invariant1,

Λ =
J1P1 + J2P2 + J3P3√

P 2
1 + P 2

2 + P 2
3

=
J · P√
P 2

. (6.6)

This operator, known as the helicity operator, represents the projection of spin along the
direction of momentum. Although helicity is Lorentz invariant only for massless particles, its
eigenstates can also be used to construct a complete set of states for massive particles, as will

1 Strictly speaking, helicity is not fully Poincaré invariant, as it is reversed under parity. Since parity is a
discrete transformation, it does not manifest within the PA.
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be shown in Section 6.2.

6.1.2 Special Poincaré group transformations

In the following, specific elements of the PG will be used extensively, for instance, to set
particles in motion or to relate different reference frames. This section introduces the notations
adopted in the remainder of this work. An active viewpoint is assumed throughout.

Spatial rotations defined by Euler angles (α, β, γ) in the zyz convention are denoted R(α, β, γ).
These can be expressed in terms of the PG generators of spatial rotations via the relation,

R(α, β, γ) = e−iαJ3e−iβJ2e−iγJ3 . (6.7)

In this notation, a rotation that aligns the z axis with a direction defined by polar and azimuthal
angles (θ, ϕ) takes the form R(ϕ, θ, ξ) where ξ is arbitrary. Two choices of ξ are commonly used:
ξ = 0, named the 0 convention, and ξ = −ϕ, named the −ϕ convention. When these rotations
acts on four-vectors, such as four-momenta, their effect can be represented using matrices. For
later use, the matrix representations of rotation R(ϕ, θ, ξ) in both convention are given below,

R(ϕ, θ, 0) =


cos θ cosϕ − sinϕ sin θ cosϕ

cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ

 , (6.8)

R(ϕ, θ,−ϕ) =


cos θ cos2 ϕ+ sin2 ϕ sinϕ cosϕ (cos θ − 1) sin θ cosϕ

sinϕ cosϕ (cos θ − 1) cos θ sin2 ϕ+ cos2 ϕ sin θ sinϕ

− sin θ cosϕ − sin θ sinϕ cos θ

 . (6.9)

When acting on quantum states, rotations are implemented via a given unitary representation of
the PG, denoted U . That is, while R(α, β, γ) denotes a group element, U(R(α, β, γ)) denotes the
corresponding operator acting on physical states. These rotations form the SO(3) subgroup of the
PG. This subgroup plays an important role in the study of the PG irreducible representations2.

Lorentz boosts along the z axis, denoted Lz, will also be used extensively. Such unidirectional
Lorentz boosts depend on a single parameter, commonly chosen to be the rapidity χ. In what
follows, boosts that impart a momentum p ≥ 0 along the z axis to a particle of mass m > 0

2 This subgroup preserves the rest momentum of massive particles, namely (m, 0, 0, 0). For that reason, it is
commonly referred to as the little group for massive representations.
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initially at rest are denoted Lz(m, p). The corresponding rapidity is given by

χ(m, p) = tanh−1

(
p√

m2 + p2

)
= cosh−1

(√
m2 + p2

m

)
. (6.10)

Naturally, specifying a unidirectional boost in terms of the pair (m, p) is not unique: many such
pairs correspond to the same rapidity χ(m, p), and therefore to the same Lz transformation.
However, this redundancy poses no issue for present purposes. The action of Lz(m, p) on
four-vectors is represented by the following matrix

Lz(m, p) =



cosh(χ(m, p)) 0 0 sinh(χ(m, p))

0 1 0 0

0 0 1 0

sinh(χ(m, p)) 0 0 cosh(χ(m, p))


. (6.11)

Since massless particles cannot be brought at rest, the case m = 0 requires separate treatment.
The boost L(0, p) refers to a transformation that imparts momentum p > 0 along z to a massless
particle with an initial dimensionless four-momentum (1, 0, 0, 1). Its matrix representation,
which can be applied to four-vectors, is given by

Lz(0, p) =



p2+1
2p

0 0 p2−1
2p

0 1 0 0

0 0 1 0

p2−1
2p

0 0 p2+1
2p


. (6.12)

In line with the notation for rotations, the corresponding unitary operator acting on quantum
states is denoted U(Lz(m, p)) for both massive and massless case. These unidirectional boosts
also form a subgroup of the PG.

Rotations and boosts along the z direction can be composed to produce boosts in arbitrary
directions. Two main combinations allow imparting momentum of magnitude p along a direction
(θ, ϕ) to a massive particle initially at rest,

L(m, p, θ, ϕ) = R(ϕ, θ, 0)Lz(m, p)R(ϕ, θ, 0)
−1, (6.13)

Lh(m, p, θ, ϕ) = R(ϕ, θ, 0)Lz(m, p). (6.14)
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The first definition applies a boost without inducing a net rotation, as the two outer rotations
cancel each other. These will be referred to as canonical boosts. In contrast, the Lh boost
induces both the expected boost and a net rotation of the state. This combination will be
referred to as a helicity boost. For the massless particles, canonical boosts L(0, p, θ, ϕ) cannot
be used since a rest frame does not exist. In that case, only helicity boosts should be used to
impart a momentum of magnitude p and direction (θ, ϕ). Both definitions can be expressed in
either the 0 or −ϕ convention. For canonical boosts, the choice of convention does not affect
the resulting transformation: since rotations around and boosts along the z axis commute,
both conventions yield the exact same Lorentz transformation. However, for helicity boosts,
the convention must be specified as it alters the outcome. As before, the associated unitary
operators acting on physical states are denoted by U(L) and U(Lh), respectively.

The final subgroup of the PG relevant for the following is the set of Lorentz transformations
that leave the four-momentum (1, 0, 0, 1) invariant. This subgroup is commonly referred to as
the massless little group. It is isomorphic to ISO(2), the group of isometries of the Euclidean
plane. It is parametrised by two real numbers (α, β), representing translations, and one angle
θ, representing rotations. The action of an element S(α, β, θ) of the massless little group on
four-vectors is given by the matrix representation

S(α, β, θ) =



1 + 1
2
(α2 + β2) α cos θ − β sin θ α sin θ + β cos θ −1

2
(α2 + β2)

α cos θ sin θ −α

β − sin θ cos θ −β
1
2
(α2 + β2) α cos θ − β sin θ α sin θ + β cos θ 1− 1

2
(α2 + β2)


. (6.15)

It is straightforward to verify that for any values of (α, β, θ), applying this matrix to the column
four-vector (1, 0, 0, 1) leaves it unchanged. The massless little group plays an major role in the
classification of irreducible representations of the PG. As before, S(α, β, θ) denotes the group
element or its action on four-vectors, while U(S(α, β, θ)) denotes the corresponding operator
acting on quantum states.

Finally, parity and time-reversal are discrete transformations that also belong to the PG. As
they render the group non-simply connected, their treatment is often considered separately. In
the following, parity is denoted by P , and its unitary representation acting on quantum states
is denoted by Π. Parity commutes with rotations but reverses the direction of canonical boosts,

[P,R(α, β, γ)] = 0, P L(m, p, θ, ϕ) = L(m, p, π − θ, π + ϕ)P. (6.16)
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Time-reversal, on the other hand, will not be discussed in this work.

6.2 One-body Helicity States

To start with, let us focus on massive particles. As mentioned, these are classified according
to their eigenvalue for both Casimir operators of the PG. Any state |ψ;m; s⟩ such that

P 2 |ψ;m; s⟩ = m2 |ψ;m; s⟩ and W 2 |ψ;m; s⟩ = −m2s(s+ 1) |ψ;m; s⟩ (6.17)

is a possible state to describe a particle of mass m and spin s. To write the actual state of
the particle, one has to resort to complete sets of states in which it can be decomposed. Two
different complete sets will be introduced.

6.2.1 The one-body canonical states

The first set is filled with the common eigenstates of the third component of the Pauli-
Lubanski vector W3 and of the four Pµ operators. In the following, such common eigenstates,
referred to as one-body canonical states, will be denoted |m; pθϕ; sms⟩. The labels in the notation
provides the eigenvalues of the aforementioned operators,

P 2 |m; pθϕ; sms⟩ = m2 |m; pθϕ; sms⟩ , (6.18a)

W 2 |m; pθϕ; sms⟩ = −m2s(s+ 1) |m; pθϕ; sms⟩ , (6.18b)

P0 |m; pθϕ; sms⟩ =
√
m2 + p2 |m; pθϕ; sms⟩ , (6.18c)

P1 |m; pθϕ; sms⟩ = p cosϕ sin θ |m; pθϕ; sms⟩ , (6.18d)

P2 |m; pθϕ; sms⟩ = p sinϕ sin θ |m; pθϕ; sms⟩ , (6.18e)

P3 |m; pθϕ; sms⟩ = p cos θ |m; pθϕ; sms⟩ , (6.18f)

W3 |m; pθϕ; sms⟩ = mms |m; pθϕ; sms⟩ . (6.18g)

Physically speaking, each p-canonical state has a definite mass, spin, four-momentum and spin
projection along the z axis. The associated Lorentz-invariant orthonormality and completeness
relations are written below,

⟨m; p̄θ̄ϕ̄; sm̄s|m; pθϕ; sms⟩ = 2w δ(p− p̄)δ(ϕ− ϕ̄)δ(cos θ − cos θ̄)δmsm̄s , (6.19)
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|sms⟩ R(ϕ, θ, 0)−1

(θ, ϕ)−1

Lz(p) pe⃗z R(ϕ, θ, 0)

(θ, ϕ)

Figure 6.1: Graphic illustration for the definition (6.21) of one-body p-canonical states.

s∑
ms=−s

∫
|m; pθϕ; sms⟩

d3p

2w
⟨m; pθϕ; sms| = 1, (6.20)

where w =
√
m2 + p2. Normalisation conventions used in this document follow the ones from

[160]. In the literature, one-body canonical states are often decomposed as the application of a
so-called canonical boost on a rest state |m; sms⟩,

|m; pθϕ; sms⟩ = U(L(m, p, θ, ϕ)) |m; sms⟩

= U(R(ϕ, θ, 0)Lz(m, p)R(ϕ, θ, 0)
−1) |m; sms⟩ .

(6.21)

By construction, rest states |m; sms⟩ transform under rotations using the spin s irreducible
representation of SO(3). As a result, whenever applied on a rest state, rotations are concretely
represented by the well-known Wigner D matrices [35],

U(R(α, β, γ)) |m; sms⟩ =
s∑

m′
s=−s

Ds
m′

sms
(α, β, γ) |m; sm′

s⟩ . (6.22)

Formula (6.21) provides an intuitive graphic interpretation for one-body canonical states which
is illustrated in Figure 6.1. In the left-hand part of the diagram, the rest state is represented
with a single green arrow which stands for its spin projection. The state is then subjected
to a rotation and a boost which, notably, alter its momentum, represented by a red arrow.
After successive transformations, as expected, the state ends with a momentum direction (θ, ϕ)

and with a definite spin projection along the z axis. Apart from its visualisation use, this
expression, combined with relation (6.21), also enables easy derivations of transformation rules
under operations such as rotations, boosts and parity. The interested reader is referred to [161]
for more details.
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6.2.2 The one-body helicity states

Although one-body canonical states are abundantly used in quantum mechanics, especially
in the non-relativistic limit, this set can not encompass massless particles. For this reason, a
second set of state is introduced. The states are still chosen as the common eigenstates of the
four Pµ generators but, instead of W3, these are taken as eigenstates of the helicity operator Λ.
These states are named one-body helicity states and are denoted |m; pθϕ; sλ⟩. Relations (6.18a)
to (6.18f) remain true in terms of one-body helicity states, but (6.18g) is replaced by

Λ |m; pθϕ; sλ⟩ = λ |m; pθϕ; sλ⟩ . (6.23)

States now have a definite spin projection along their momentum direction. The completeness
and orthonormality relations for one-body helicity states are similar to that for one-body
canonical states (same conventions are used),

⟨m; p̄θ̄ϕ̄; sλ̄|m; pθϕ; sλ⟩ = 2w δ(p− p̄)δ(ϕ− ϕ̄)δ(cos θ − cos θ̄)δλλ̄, (6.24)

s∑
λ=−s

∫
|m; pθϕ; sλ⟩ d

3p

2w
⟨m; pθϕ; sλ| = 1. (6.25)

As for canonical states, helicity ones can also be expressed in terms of a rest state on which
boosts and rotations are applied,

|m; pθϕ; sλ⟩ = U(Lh(m, p, θ, ϕ)) |m; sλ⟩

= U(R(ϕ, θ, 0)Lz(m, p)) |m; sλ⟩ .
(6.26)

In comparison with relation (6.21), the canonical boost L has here been replaced by a helicity
boost Lh. The graphic interpretation set up for relation (6.21) in Figure 6.1 can be adapted
to fit with formula (6.26). The result is shown in Figure 6.2. Referring to the same graphical
conventions, one can see that the state ends with a definite projection of the spin along the
momentum direction instead of along the z axis. This feature is in agreement with the definition
of the helicity operator. Before discussing the properties of one-body helicity states, let us draw
the reader’s attention to the fact that the 0 convention has been used in relation (6.26). Some
other references consider the −ϕ convention [157, 159, 160],

|m; pθϕ; sλ⟩−ϕ = U(R(ϕ, θ,−ϕ)Lz(m, p)) |m; sλ⟩ . (6.27)
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|s λ⟩ Lz(p)

pe⃗z

R(ϕ, θ, 0)

(θ, ϕ)

Figure 6.2: Graphic illustration for the definition (6.26) of one-body p-helicity states.

A priori, such a modified relation should result in a different definition for one-body helicity
states. However, these two different definitions are shown to simply differ by a phase factor,

|m; pθϕ; sλ⟩ = e−iλϕ |m; pθϕ; sλ⟩−ϕ . (6.28)

Because physics is contained in the modulus squared of the state, this phase factor proves to be
irrelevant in assessing a physical interpretation for one-body helicity states. Nevertheless, the
user has to be conscious and consistent with the convention he employs, especially if he wants
to superpose different helicity states. The current work will always use the zero convention.

The decomposition (6.26) also allows one to prove many properties about helicity states.
Only a few of them will be recapped here. For more properties and demonstrations, the
interested reader is referred to [157, 160, 161, 162]. The first property to be investigated is the
transformation rule of helicity states under rotations. Simple algebra allows to show that

U(R(α, β, γ)) |m; pθϕ; sλ⟩ = ± e−iξλ |m; pθ′ϕ′; sλ⟩ (6.29)

where θ′, ϕ′ and ξ satisfy R(ϕ′, θ′, ξ) = R(α, β, γ)R(ϕ, θ, 0). The phase exp(−iξλ) comes out
while ensuring that the state, initially in 0 convention, ends in that same convention. Concerning
the plus or minus sign, it is added to take into account the fact that, if at some point a 2π

rotations is performed, it is to be identified to minus the identity for fermions. Property (6.29) is
sometimes referred to as helicity rotational invariance, because the quantum number λ remains
unchanged despite the rotation.

Secondly, the action of the parity transformation, Π, on one-body helicity states can be
determined by making use of the commutation relations between parity, boosts and rotations.
The following formula is obtained,

Π |m; pθϕ; sλ⟩ = η(−1)−s |m; p(π − θ)(π + ϕ); s− λ⟩ . (6.30)
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Notice that the classical intuition that parity inverts particle’s momentum and helicity is
respected. Above, η refers to the intrinsic parity of the particle. This quantity defines how
parity acts on the particle rest state,

Π |m; sλ⟩ = η |m; sλ⟩ . (6.31)

It depends on the nature of the particle. In relation (6.30), both left- and right-hand side states
are written in the zero convention. However, in many references, the right-hand side is written
in a different convention, such as the π convention

|m; p(π − θ)(π + ϕ); sλ⟩π = U(R(π + ϕ, π − θ, π))U(Lz(m, p)) |m; sλ⟩

= U(R(ϕ, θ, 0))U(R(0, π, 0))U(Lz(m, p)) |m; sλ⟩
(6.32)

or the opposite convention

|m; p(π − θ)(π + ϕ); sλ⟩− = U(R(ϕ, θ, 0))U(L−z(m, p)) |m; s− λ⟩

with L−z(m, p) = R(0, π, 0)Lz(m, p)R(0,−π, 0).
(6.33)

All these conventions being equal up to phase factors, they convey the same physical meaning,

|m; p(π − θ)(π + ϕ); sλ⟩ = (−1)λ |m; p(π − θ)(π + ϕ); sλ⟩π
= (−1)s |m; p(π − θ)(π + ϕ); sλ⟩− .

(6.34)

These various conventions are introduced to simplify calculations that mixes helicity states with
opposed directions. Such situations will for example be encountered in Section 6.3 where helicity
states for two-body systems in their centre-of-mass frame (CoMF) are introduced.

Third, we focus on the application of a general Lorentz transformation L on an helicity state
|m; pθϕ; sλ⟩. The corresponding transformation rule reads as follows,

U(L) |m; pθϕ; sλ⟩ =
s∑

λ′=−s

Ds
λ′λ(αW , βW , γW ) |m; p′θ′ϕ′; sλ′⟩ . (6.35)

Above, primed variables denote the components of the boosted momentum which are obtained
by applying L on the initial four-momentum. In addition, (αW , βW , γW ) denotes the Euler
angles of a rotation RW , named Wigner rotation, defined by the following combination of boosts,

RW = (Lh(m, p
′, θ′, ϕ′))

−1
LLh(m, p, θ, ϕ). (6.36)
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Relation (6.35) illustrates that, in general, the helicity of a massive state is not invariant under
Lorentz transformations. The invariance of helicity under rotation (6.29) can be seen as a special
case of property (6.35).

Finally, it is possible to switch from the one-body helicity basis to the one-body canonical
one. Comparing relation (6.26) for helicity state to relation (6.21) for canonical state and using
relation (6.22) provides the following transformation rule,

|m; pθϕ; sλ⟩ =
s∑

ms=−s

Ds
msλ(ϕ, θ, 0) |m; pθϕ; sms⟩ . (6.37)

This property allows the user to switch the complete set, based on its intended use.
Before closing this Section, let us insist on the fact that helicity states generalize very well

to massless particles. In a common simplification of reality, massless particles are considered
behaving as massive particles with only two spin projection, +s and −s. This rule allows to infer
the massless behaviour from the massive one. Complement 6.A goes beyond this simplification
and provides more details about the distinction between massive and massless particles.

6.3 Two-body Helicity States

One-body helicity states (6.26) can be used to build a complete set of states for two-body
systems. Because, in the following, these many-body states will be used to describe composite
particles, we will focus on obtaining helicity states in the CoMF of the entire many-body system
(the ECoMF). Properties of composite particles are most easily obtained in this frame: mass
is given by the total energy of the state while spin is given by its total angular momentum.
Before to dive into this description, let us shorten a bit notations. In the previous section,
one-body states at rest where denoted |m, sms⟩, a notation in which the mass, the spin and
the spin projection of the particle were specified. In the following, the mass of the particle will
be frequently omitted. By default, it will be assumed that the state |siλi⟩ possesses the mass
of the ith particle. Similarly, in the following Sections, boosts along the z axis will be written
without specifying any mass parameter. By default, this parameters will be supposed equal to
the mass of the state on which the boost acts.

6.3.1 Helicity bases for two-body systems

Again, our analysis starts at the level of massive particle states. Differences in presence of
massless particles will be discussed subsequently. Two particles are brought in their CoMF by
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boosting them back-to-back,

|pθϕ; s1λ1s2λ2⟩ = (−1)λ2−s2U(R(ϕ, θ, 0)) [U(Lz(p)) |s1λ1⟩ ⊗ U(R(0, π, 0)Lz(p)) |s2λ2⟩] (6.38a)

= (−1)λ2−s2 U(R(ϕ, θ, 0)Lz(p)) |s1λ1⟩ ⊗ U(R(π + ϕ, π − θ, π)Lz(p)) |s2λ2⟩. (6.38b)

Above, p, θ and ϕ respectively denotes the modulus, the polar and the azimutal angle of the
momentum of the first particle in the ECoMF. Helicities λ1 and λ2 are defined in that same
frame. The phase in front of the definition is mainly conventional [157] and results from the
choice to assign to the one-body state with opposed momentum the opposite convention (6.33).
Figure 6.3 schematically decomposes the successive transformations in definition (6.38a). By
construction, states (6.38a) are eigenstates of particle 1 and 2 momentum operators. In the
following, they will be referred to as two-body p-helicity states. Their orthonormalisation relation
is

⟨p̄θ̄ϕ̄; s1λ̄1s2λ̄2|pθϕ; s1λ1s2λ2⟩ =
4W

p
δ(W̄ −W )δ(cosθ̄ − cosθ)δ(ϕ̄− ϕ)δλ̄1λ1

δλ̄2λ2
(6.39)

=
4w1(p)w2(p)

p2
δ(p̄− p)δ(cosθ̄ − cosθ)δ(ϕ̄− ϕ)δλ̄1λ1

δλ̄2λ2
(6.40)

where wi(p) serves as a notation shortcut for
√
m2

i + p2 and where W = w1(p) + w2(p) is
the total energy of the two-body state. If expression (6.38b) is more convenient for practical
purposes, (6.38a) unveils that these states present a specific structure: they are obtained by
rotating two-body states at rest with a reference orientation, here along the z axis,

|p; s1λ1s2λ2⟩ = (−1)λ2−s2 (U(Lz(p)) |s1λ1⟩ ⊗ U(R(0, π, 0)Lz(p)) |s2λ2⟩) . (6.41)

A similar structure will reappear in the definition of helicity states for three-body systems in
Chapter 8.

|s1 λ1⟩
|s2 λ2⟩ Lz(p)

R(0, π, 0)Lz(p)

pe⃗z

−pe⃗z

R(ϕ, θ,−ϕ)

(θ, ϕ)

Figure 6.3: Schematic illustration for the definition of two-body p-helicity state (6.38a).
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As already mentioned, states with a definite total angular momentum are expected. Such a
property can be provided to two-body p-helicity states by weighting them with a Wigner D
matrix and by integrating the result on angular degrees-of-freedom,

|p; JM ; s1λ1s2λ2⟩ =
√

2J + 1

4π

∫
dcosθdϕDJ∗

M λ1−λ2
(ϕ, θ, 0) |pθϕ; s1λ1s2λ2⟩ . (6.42)

In the following, these states will be referred to as two-body J-helicity states. The prefactor is
introduced to ensure a standard normalisation,

⟨p̄; J̄M̄ ; s1λ̄1s2λ̄2|p; JM ; s1λ1s2λ2⟩ =
4W

p
δ(W̄ −W )δJ̄JδM̄Mδλ̄1λ1

δλ̄2λ2
(6.43)

=
4w1(p)w2(p)

p2
δ(p̄− p)δJ̄JδM̄Mδλ̄1λ1

δλ̄2λ2
. (6.44)

Of course, definition (6.42) is only relevant for J ≥ |λ1 − λ2|. It can be shown that, under
rotations, two-body J-helicity states follows the spin J irreducible representation of SO(3) [161,
163], meaning that this state indeed has a total angular momentum J . For further use, let us
mention that definition (6.42) can be inverted, expressing two-body p-helicity states as a linear
combination of two-body J-helicity states [162],

|pθϕ; s1λ1s2λ2⟩ =
∞∑

J=|λ1−λ2|

J∑
M=−J

√
2J + 1

4π
DJ

M λ1−λ2
(ϕ, θ, 0) |p; JM ; s1λ1s2λ2⟩ . (6.45)

Other properties of these states are abundantly described in the literature [152, 157, 160, 161,
162]. Their behaviour under parity and permutation of particles, denoted P12, will be reminded
here for further use,

Π |p; JM ; s1λ1s2λ2⟩ = η1η2(−1)J−s1−s2 |p; JM ; s1 − λ1s2 − λ2⟩ , (6.46)

P12 |p; JM ; sλ1sλ2⟩ = (−1)J+2s |p; JM ; sλ2sλ1⟩ . (6.47)

Above, ηi is the intrinsic parity of the ith particle. Symmetry having to be implemented only
for identical particles, s1 and s2 have been taken equal each-other in relation (6.47). These
two properties illustrate that two-body J-helicity states are neither parity eigenstates nor
(anti)symmetric by themselves. Parity eigenstates are obtained by superposing states with
opposed helicity signs. Non-normalised symmetric (anti-symmetric) states are obtained by
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applying the two-body symmetriser S2 (anti-symmetriser A2),

S2 = 1+ P12, A2 = 1− P12. (6.48)

As agreed, helicity states have been written in the zero convention. Switching the convention to
the "−ϕ" one results in a different phase convention for p-helicity states. Nevertheless, provided
that angles of the Wigner D matrix in definition (6.42) are adapted consequently, it can be
shown that two-body J-helicity states are not affected.

In presence of massless particles, the results presented above remains correct up to a few
adjustments. First in definition (6.38a)-(6.38b), the conventional phase has to be adapted to
remove any spin occurrence, such a quantum number being formally undefined for massless
particles. Following the usual misuse that massless particles have spin degrees-of-freedom with
forbidden intermediary projections, it seems appropriate to replace s2 by |λ2|. Secondly, relations
(6.46) and (6.47) only accounts for massive particles. It can be shown that, for massless ones,
the factor (−1)−s1−s2 has to be replaced by (−1)λ1+λ2 while the (−1)2s factor from (6.47) has
to be replaced by (−1)2|λ1|. Notice that, as long as helicities are integers, one can naively use
massive relations with λi = ±si to deal with massless particles. The case of helicity states for
two massless particles is also briefly discussed at the end of Complement 6.A.

Two-body p- and J-helicity states are not the two only complete sets able to describe two-body
systems at rest. For massive particles, one can replace in definition (6.38b) each occurences
of p-helicity states by p-canonical ones. It results in the following definition for the so-called
two-body p-canonical states [161],

|pϕθ; s1ms1s2ms2⟩ = U(R(ϕ, θ, 0)Lz(p)R
−1(ϕ, θ, 0)) |s1ms1⟩

⊗ U(R(π + ϕ, π − θ, 0)Lz(p)R
−1(π + ϕ, π − θ, 0)) |s2ms2⟩ .

(6.49)

These states are then used to define two-body J-canonical states through intermediary spin and
spatial angular momentum couplings,

|p; JM ; ℓs; s1s2⟩ =
∑

mℓ,ms,ms1 ,ms2

(ℓmℓsms|JM)(s1ms1s2ms2|sms)∫
dcosθdϕY ℓ

mℓ
(θ, ϕ) |pθϕ; s1ms1s2ms2⟩ .

(6.50)

Above, (j1m1j2m2|j3m3) refers to a Clebsh-Gordan coefficient and Y ℓ
mℓ
(θ, ϕ) to a spherical

harmonic. Because of the appearance of an orbital angular momentum quantum number ℓ,
this definition is often used for in non-relativistic treatments. The interested reader will find a
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description of properties about two-body canonical states in reference [161]. It is possible to
relate two-body J-canonical states to two-body J-helicity states,

|p; JM ; s1λ1s2λ2⟩ =
s1+s2∑

s=|s1−s2|

J+s∑
ℓ=|J−s|

√
2ℓ+ 1

2J + 1
(s1 λ1 s2 − λ2 |s λ1 − λ2)

(ℓ 0 s λ1 − λ2 |J λ1 − λ2) |p; JM ; ℓs; s1s2⟩ .

(6.51)

This relation allows to easily switch from one to the other set of states. For instance, it has
been used in [152] to describe two-gluon glueballs in constituent approaches.

6.3.2 Decomposition of a physical two-body state in J-helicity states

Two-body J-helicity states can be used to model two-body composite particles. In the
ECoMF, any two-body state with spin J and helicity quantum numbers can be decomposed
as an integral on internal momentum degree-of-freedom of two-body p-helicity states. For
two-body systems, the internal motion is ruled by the relative momentum p = (p1 − p2)/2

whose modulus and angles have already been denoted p, θ and ϕ. Let us start by decomposing
a generic two-body state in the ECoMF, denoted |Φ; s1λ1s2λ2⟩, as a combination of two-body
p-helicity states. Using the completeness relation of the latter, one gets

|Φ; s1λ1s2λ2⟩ =
∫
p2dpdcosθdϕ

4w1(p)w2(p)
Φ(p, θ, ϕ) |pθϕ; s1λ1s2λ2⟩ (6.52)

where
Φ(p, θ, ϕ) = ⟨pθϕ; s1λ1s2λ2|Φ; s1λ1s2λ2⟩ (6.53)

is the two-body helicity-momentum wave function of the state. The Jacobian factor in (6.52)
ensures consistence with the normalisation of two-body p-helicity states (6.40). Without
additional requirements, this state has not the expected definite total angular momentum J .
However, the definition of two-body J-helicity states proved that this property can be supplied
by imposing the angular dependence of Φ(p, θ, ϕ),

ΦJ
M(p, θ, ϕ) =

√
2J + 1

4π
Ψ(p)DJ∗

M λ1−λ2
(ϕ, θ, 0). (6.54)

The function Ψ(p) can be understood as a radial helicity-momentum wave function. Replacing
Φ by ΦJ

M in expression (6.52) results in the decomposition of a generic two-body helicity state
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with total angular momentum J , denoted |Ψ; JM ; s1λ1s2λ2⟩, in two-body J-helicity states,

|Ψ; JM ; s1λ1s2λ2⟩ =
∫

p2dp

4w1(p)w2(p)
Ψ(p) |p; JM ; s1λ1s2λ2⟩ . (6.55)

States |Ψ; JM ; s1λ1s2λ2⟩ can be used to model spin J two-body composite particles. If the
composite state is made of identical particles or is expected to possess a parity quantum-number,
the above discussion has to be slightly adapted. The structure (6.55) still applies but two-
body J-helicity states in the right-hand side have to be replaced by parity and/or symmetry
eigenstates which are obtained using properties (6.46) and (6.47). Concerning normalisation,
states |Ψ; JM ; s1λ1s2λ2⟩ are expected to have a unit normalisation,

⟨Ψ; JM ; s1λ1s2λ2|Ψ; JM ; s1λ1s2λ2⟩ = 1. (6.56)

Using expression (6.55) and orthonormalisation of two-body J-helicity states (6.44), one can
transfer this normalisation condition to the Ψ(p) wave function,∫

p2dp

4w1(p)w2(p)
|Ψ(p)|2 = 1. (6.57)

For convenience, it is worth introducing a modified radial helicity-momentum wave function,
denoted Ξ(p) that includes the Jacobian factors from (6.57),

Ξ(p) =
pΨ(p)

2
√
w1(p)w2(p)

. (6.58)

In terms of Ξ(p), the normalisation condition (6.57) significantly simplifies∫
dp|Ξ(p)|2 = 1, (6.59)

while (6.55) has to be slightly adapted,

|Ψ; JM ; s1λ1s2λ2⟩ =
∫

pdp

2
√
w1(p)w2(p)

Ξ(p) |p; JM ; s1λ1s2λ2⟩ . (6.60)

Notice that, Ψ having to remain finite for all p, Ξ must necessary cancel at p = 0 for massive
particles. Further tests show that this condition stays required in the massless case.
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Complement 6.A Helicity states for massless particles

In Sections 6.2 and 6.3, massive particle states were discussed. For massless ones, the
Pauli-Lubanski Casimir is identically zero and helicity proves to be Lorentz invariant. As a
result, a general massless state |ϕ; 0;λ⟩ stays by definition eigenstate of the squared-momentum
operator but with a null eigenvalue. It is also defined as eigenstate of the helicity operator,

P 2 |ψ; 0;λ⟩ = 0 |ψ; 0;λ⟩ , Λ |ψ; 0;λ⟩ = λ |ψ; 0;λ⟩ . (6.61)

If helicity is truly Lorentz invariant, it is nevertheless reversed by a parity transformation,
meaning that massless states always come by pairs, one with helicity λ and the other one with
helicity −λ. This feature justifies the aforementioned simplification of reality: although spin
is not formally defined in the massless case, these two states with same nature but opposed
helicities are often considered as the two facets of a spin λ particle whose intermediary projections
are forbidden. This is the case when someone consider left-handed and right-handed photons as
a unique spin 1 particle whose 0 projection is forbidden.

To describe the actual state of a massless particle, complete orthonormal sets are again
necessary. Since massless particles have no rest frame, the corresponding states are defined as
eigenstates of the helicity operator, and only the p-helicity states are suitable to describe them.
These are eigenstates of the exact same operators than massive ones but with zero as eigenvalue
for both Casimir operators,

P 2 |0; pθϕ; sλ⟩ = 0 |0; pθϕ; sλ⟩ , W 2 |0; pθϕ; sλ⟩ = 0 |0; pθϕ; sλ⟩ . (6.62)

Above, s rather specifies which values λ can take than is a true quantum number. Massless
p-helicity states significantly differ from massive ones in the sense that, because massless particles
cannot be taken at rest, relation (6.26) cannot remain valid for these. A similar relation can
nevertheless be obtained by turning the rest state into another reference state having a more
suitable four-momentum for massless particles. Choosing this reference four-momentum as
k = (1, 0, 0, 1) and denoting the associated reference state |0; sλ⟩, the adapted relation reads

|0; pθϕ; sλ⟩ = U(Lh(0, p, θ, ϕ)) |0; sλ⟩

= U(R(ϕ, θ, 0)Lz(0, p)) |0; sλ⟩ .
(6.63)

Notice that, because |0; sλ⟩ has a unit spatial momentum along the z axis, this state proves to
be eigenstate of both W3 and Λ, these two operators being equal in the current circumstances.
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|s λ⟩e⃗z Lz(p)

pe⃗z

R(ϕ, θ, 0)

(θ, ϕ)

Figure 6.4: Graphic illustration for the definition (6.63) of massless one-body p-helicity states.

Because of this adaptation, the graphic interpretation of massive p-helicity states must slightly
be adapted, the initial state having a non-zero spatial momentum. The new diagram is shown in
Figure 6.4. Apart from this modification in the initial state, both diagrams are to be understood
similarly.

Let us now focus on the adaptation of properties (6.31) and (6.35) to massless particles. First,
as the definition of intrinsic parity (6.31) relies on rest states, it must be adapted for a massless
reference state. Applying parity on this state reverses its non-zero spatial momentum and, as
already mentioned, opposes the helicity quantum number. It results in the following relation for
the action of parity on a reference state,

Π |0; sλ⟩ = η U(R(0, π, 0)) |0; s− λ⟩ (6.64)

where η is defined as the intrinsic parity of the massless particle. This modification considered,
one can roughly follow the same calculation steps than in the massive case to demonstrate that

Π |0; pθϕ; sλ⟩ = η(−1)λ |0; p(π − θ)(π + ϕ); s− λ⟩ . (6.65)

Formula (6.65) replaces (6.30) in presence of massless particles. The discussion of relation
(6.35) must also partially be revised. In the massive case, the Wigner rotations RW defined in
relation (6.36) is shown to belong to SO(3), namely the massive little group. Setting m = 0, the
combination (6.36) turns out to no longer belong to the massive little group but to the massless
one, ISO(2). Therefore, the transformation is no longer parameterised by Euler angles but by
three ISO(2) parameters, such as the α, β and θ parameters suggested in reference [159], and
the action of RW on physical states is no longer provided by SU(2) Wigner D matrices but
instead reduces to [164]

Ds
λ′λ(αW , βW , θW ) = eiθWλδλ′λ. (6.66)

The δλ′λ factor ensures that, as expected for massless states, the helicity quantum number
remains invariant while boosting the state. This replacement done, relation (6.35) can be freely
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used even while dealing with massless particles. Although RW is no longer a true spatial rotation,
this transformation is still called Wigner rotation through misuse of language.

As already mentioned in the main text, helicity states for two massless bodies behave quite
similarly to those of massive ones. The demonstrations are very similar to their massive
counterparts, with the main differences generally arising from the phase factor in definition
(6.38), which must be adapted by replacing s2 with |λ2|. The one-body parity transformation
rule (6.30) must also be replaced by the massless version (6.65). The rest of the demonstrations
remain analogous to the massive case since the reference helicity states for the massless particles,
|0; sλ⟩, are also J3 eigenstates.

This chapter in the context of a thesis

This chapter introduces the second major topic of my PhD thesis: the helicity formalism.
It lays the groundwork by providing a self-contained overview, and presenting a broad set
of key concepts and properties. While the results discussed are not original at this stage,
they are essential for preparing the developments that follow and the application to two-
and three-gluon glueballs.



Chapter 7

Two-gluon Glueballs: Set Up of a
Methodology

One of the earliest predictions of Quantum Chromodynamics (QCD) is the existence of
colour-singlet pure-gauge states, introduced in Section 4.3.4 as glueballs [1]. Despite this
theoretical prediction, a consensus on their properties and definitive experimental evidence
remain elusive. Two-gluon glueball states have been extensively studied both theoretically
[3, 165] and experimentally [2, 165]. Theoretical results have been obtained using various
phenomenological approaches, functional methods, and LQCD. On the experimental side,
notable experimental efforts by collaborations such as PANDA, Crystal Barrel, WA102 or
BESIII continue the search for these states. In contrast, three-gluon glueballs have received
relatively little attention due to the technical complexity involved. On the theory side, the
LQCD spectrum is expected to include three-gluon states [166, 167, 168, 169]. Experimentally,
the possible observation of odderon exchange at TOTEM is still debated [170].

This Chapter aims to describe two-gluon systems within the framework of constituent models.
Constituent gluons transform under SU(3)c with its octet (or adjoint) representation, denoted
8, leading to the following decompositions for two- and three-gluon systems [138]

8⊗ 8 = 1S ⊕ . . . 8⊗ 8⊗ 8 = 1S ⊕ 1AS ⊕ . . . (7.1)

These decompositions indicate the possibility of forming bound states of two and three constituent
gluons, so-called two- and three-gluon glueballs, in constituent approaches. The dynamics of
these bound states are implemented using a phenomenological but QCD inspired Hamiltonian.
Properties of constituent particles often differ from their QCD counterparts (for instance, as
mentioned in Section 4.3.3, constituent quarks are often treated as heavier than their QCD

201
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equivalents). For two-gluon glueballs, it has been shown in reference [152] that constituent
gluons have to be considered as massless particles with helicity degrees-of-freedom in order to
reproduce results from LQCD calculations. A more detailed description of constituent gluon
properties is deferred to later section.

Although studies of two-gluon glueballs within constituent approaches already exists in the
literature [171, 51, 152], the further extension to three-gluon glueballs necessitates introducing a
methodology better suited for three-gluons systems. This Chapter applies the helicity formalism
to compute the spectrum of two-gluon glueballs. As for the previous chapter, it builds upon the
text from reference [158]. Section 7.1 develops a general methodology to perform bound-state
calculations within the helicity formalism. Subsequently, Section 7.2 applies this methodology
to the description of two-gluon glueballs.

7.1 Calculations with physical two-body states

The following developments aims to evaluate matrix elements of observables, such as Hamil-
tonians, on composite particle states. It focuses on unsymmetrical two-body J-helicity states
(6.60) but can easily be adapted to symmetrised odd/even helicity states. States (6.60) being
written in momentum representation, observables that depends on momentum variables prove to
be easier to evaluate. Let us consider an observable O(p̂) that only depends on the modulus of
the relative momentum (only spherically symmetric variables are investigated). Let us evaluate
O(p̂) on |Ψ; JM ;λ1λ2⟩,

⟨Ψ; JM ; s1λ̄1s2λ̄2| O(p̂) |Ψ; JM ; s1λ1s2λ2⟩ =∫
p̄dp̄

2
√
w1(p̄)w2(p̄)

pdp

2
√
w1(p)w2(p)

Ξ(p̄)∗ Ξ(p) ⟨p̄; JM ; s1λ̄1s2λ̄2| O(p̂) |p; JM ; s1λ1s2λ2⟩ .
(7.2)

Two-body J-helicity states being by construction eigenstates of p, the action of O(p) reduces to
a simple scalar multiplication. Using orthonormality relation (6.44), one gets

⟨Ψ; JM ; s1λ̄1s2λ̄2|O(p̂) |Ψ; JM ; s1λ1s2λ2⟩ = δλ1λ̄1
δλ2λ̄2

∫
dp |Ξ(p)|2O(p). (7.3)

A similar expression accounts for symmetrised odd/even helicity state as long as these are
correctly orthonormalised.

The evaluation of operators that depend on position variables proves to be more difficult
to handle. Let us consider O(r̂) an operator that only depend on the modulus of the relative
position (again, the emphasis is put on spherically symmetric observables), one may require to
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evaluate it on the composite particle state,

⟨ΨJ̄M̄ ; s1λ̄1s2λ̄2| O(r̂) |Ψ; JM ; s1λ1s2λ2⟩ =∫
p̄dp̄

2
√
w1(p̄)w2(p̄)

pdp

2
√
w1(p)w2(p)

Ξ(p̄)∗ Ξ(p) ⟨p̄; J̄M̄ ; s1λ̄1s2λ̄2| O(r̂) |p; JM ; s1λ1s2λ2⟩ .
(7.4)

Above, different total angular momenta J and J̄ were considered. This modification has been
implemented for further use while studying the case of three-body systems. Two-body J-helicity
states being not position eigenstate, the evaluation of O(r̂) on |p̄; JM ; s1λ1s2λ2⟩ requires more
developments than the evaluation of O(p̂). Let us first switch of basis and develop two-body
J-helicity states into the canonical basis using relation (6.51),

⟨p̄; J̄M̄ ; s1λ̄1s2λ̄2| O(r̂) |p; JM ; s1λ1s2λ2⟩ =

s1+s2∑
s̄=|s1−s2|

J+s̄∑
ℓ̄=|J−s̄|

C J̄ ;s1s2
ℓ̄s̄;λ̄1λ̄2

s1+s2∑
s=|s1−s2|

J+s∑
ℓ=|J−s|

CJ ;s1s2
ℓs;λ1λ2

⟨p̄; J̄M̄ ; ℓ̄s̄; s1s2| O(r̂) |p; JM ; ℓs; s1s2⟩
(7.5)

with the following notation shortcut

CJ ;s1s2
ℓs;λ1λ2

=

√
2ℓ+ 1

2J + 1
(s1 λ1 s2 − λ2 |s λ1 − λ2)(ℓ 0 s λ1 − λ2 |J λ1 − λ2). (7.6)

The problem now reduces to the evaluation of O(r̂) on the more traditional canonical states.
Using the definition (6.50) of two-body J-canonical states in terms of p-ones, one obtains

⟨p̄; J̄M̄ ; ℓ̄s̄; s1s2| O(r̂) |p; JM ; ℓs; s1s2⟩

=
∑

m̄′
ℓm̄

′
sm̄

′
s1

m̄′
s2

(ℓ̄m̄′
ℓs̄m̄

′
s|J̄M̄)(s1m̄

′
s1
s2m̄

′
s2
|s̄m̄′

s)

∫
dcosθ̄′dϕ̄′ Y ℓ̄∗

m̄′
ℓ
(θ̄′, ϕ̄′)

∑
m′

ℓm
′
sm

′
s1

m′
s2

(ℓm′
ℓsm

′
s|JM)(s1m

′
s1
s2m

′
s2
|sm′

s)

∫
dcosθ′dϕ′ Y ℓ

m′
ℓ
(θ′, ϕ′)

⟨p̄θ̄′ϕ̄′; s1m̄
′
s1
s2m̄

′
s2
| O(r̂) |pθ′ϕ′; s1m

′
s1
s2m

′
s2
⟩

(7.7)

Because spin degrees-of-freedom are uncorrelated from spatial ones in canonical states and
because the observable O(r̂) does not affect them, the right-hand side residual matrix elements
are proportional to δm̄′

s1
m′

s1
δm̄′

s2
m′

s2
. Concerning spatial degrees-of-freedom, the action of the
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observable can be evaluated using a result from reference [172]1,

⟨p̄θ̄′ϕ̄′; s1m̄
′
s1
s2m̄

′
s2
| O(r̂) |pθ′ϕ′; s1m

′
s1
s2m

′
s2
⟩

= δm̄′
s1

m′
s1
δm̄′

s2
m′

s2
4
√
w1(p̄)w2(p̄)w1(p)w2(p)

∑
ℓ′′m′′

ℓ

Y ℓ′′

m′′
ℓ
(θ̄′, ϕ̄′)Y ℓ′′∗

m′′
ℓ
(θ′, ϕ′)Oℓ′′(p̄, p)

(7.8)

where
Oℓ(p̄, p) =

2

π

∫ ∞

0

jℓ(p̄r)O(r)jℓ(pr)r
2dr, (7.9)

jℓ(x) being spherical Bessel functions. Making use of spherical harmonics and Clebsh-Gordan
coefficients properties, one gets

⟨p̄; J̄M̄ ; ℓ̄s̄; s1s2| O(r̂) |p; JM ; ℓs; s1s2⟩

= 4
√
w1(p̄)w2(p̄)w1(p)w2(p)Oℓ(p̄, p)δJ̄JδM̄Mδℓ̄ℓδs̄s.

(7.10)

This expression is inserted in (7.5) and leads to the following formula for the evaluation of O(r̂)

on two-body J-helicity states,

⟨p̄; J̄M̄ ; s1λ̄1s2λ̄2| O(r̂) |p; JM ; s1λ1s2λ2⟩

= δJ̄JδM̄M

s1+s2∑
s=|s1−s2|

J+s∑
ℓ=|J−s|

CJ ;s1s2
ℓs;λ̄1λ̄2

CJ ;s1s2
ℓs;λ1λ2

4
√
w1(p̄)w2(p̄)w1(p)w2(p)Oℓ(p̄, p).

(7.11)

Finally, back to the state for the composite particle, expression (7.4) becomes

⟨Ψ; J̄M̄ ; s1λ̄1s2λ̄2| O(r̂) |Ψ; JM ; s1λ1s2λ2⟩

= δJ̄JδM̄M

s1+s2∑
s=|s1−s2|

J+s∑
ℓ=|J−s|

CJ ;s1s2
ℓs;λ̄1λ̄2

CJ ;s1s2
ℓs;λ1λ2

∫
pdp p̄dp̄ Ξ(p̄)∗ Ξ(p)Oℓ(p̄, p).

(7.12)

As expected due to angular momentum conservation, matrix elements for central potentials are
proportional to δJ̄JδM̄M . Moreover, as soon as non-zero, these are also independent of the total
angular momentum projection M . The evaluation of position matrix elements on symmetrised
odd/even helicity states only differs from the one on two-body J-helicity by the coefficients of
the expansion in canonical states. Relation (7.12) remains valid provided that the expression
(7.6) for C coefficients is correctly adapted.

1 The result from [172] must slightly be adapted in two different ways. Firstly, our normalisation conventions
being different, a kinematic factor have been added. Secondly, a property of Legendre polynomials is used to
get spherical harmonics back.
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Analytical expressions of Ol(p̄, p) for different potentials are given in [172]. For instance, in
presence of a Yukawa potential O(r) = −αe−ηr/r, one gets

Oℓ(p̄, p) = − α

πp̄p
Qℓ

(
p̄2 + p2 + η2

2p̄p

)
(7.13)

with Ql(x) a second kind Legendre function [36]. This expression can be naively plugged into
the integral from (7.12) without any extra precaution, even for η = 0. As a result, the treatment
of Coulomb interactions only require the evaluation of the following integrals,∫

pdp p̄dp̄ Ξ(p̄)∗ Ξ(p)Oℓ(p̄, p) = −α
π

∫
dp dp̄ Ξ(p̄)∗ Ξ(p)Qℓ

(
p̄2 + p2

2p̄p

)
. (7.14)

Although they present a logarithmic divergence for p = p̄, Gaussian quadrature allows for a
reasonably efficient evaluation of these integrals. This is even easier by introducing a new set of
coordinates,

v = p̄+ p, v̄ = p̄− p, dvdv̄ = 2dpdp̄. (7.15)

As a result, equation (7.14) becomes∫
pdp p̄dp̄ Ξ(p̄)∗ Ξ(p)Oℓ(p̄, p)

= − α

2π

∫ ∞

0

dv

∫ v

−v

dv̄ Ξ

(
v + v̄

2

)∗

Ξ

(
v − v̄

2

)
Qℓ

(
v2 + v̄2

v2 − v̄2

)
.

(7.16)

The situation is more delicate concerning linear potentials. The Fourier transform of these
potentials are not traditional functions but are distributions [173]. To overcome this difficulty,
the Oℓ function associated to this potential is defined by screening the linear potential with a
decreasing exponential,

O(r) = λr = lim
η→0

λre−ηr = − lim
η→0

∂2

∂η2

(
−λe

−ηr

r

)
. (7.17)

The second equality relates the linear potential to a derivative of the Yukawa potential whose
Oℓ function is provided above. Using this relation, before taking the limit for η, one gets

Oη
ℓ (p̄, p) =

λ

πp̄p

∂2

∂η2
(Qℓ (zη)) with zη =

p̄2 + p2 + η2

2p̄p

=
λ

πp̄p

∂

∂η

(
ηQ′

ℓ (zη)

pp̄

)
=
λ

π

(
Q′

ℓ (zη)

(pp̄)2
+ η2

Q′′
ℓ (zη)

(pp̄)3

) (7.18)
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where Q′
ℓ and Q′′

ℓ denotes the first and second derivatives of Qℓ with respect to its argument.
The limit on η is taken after integration and has to be considered carefully to ensure a finite
result. Reference [173] develops formulas for this matrix element with arbitrary ℓ,

lim
η→0

∫
pdp p̄dp̄ Ξ(p̄)∗ Ξ(p)Oη

ℓ (p̄, p)

=
λ

π

∫ ∞

0

dp̄ Ξ(p̄)∗ P

∫ ∞

0

(
4p̄2 Ξ(p̄)

(p̄2 − p2)2
+Q′

ℓ

(
p2 + p̄2

2pp̄

)
Ξ(p)

pp̄

)
dp

(7.19)

where P denotes the Cauchy principal value of the integral. The left-hand side of relation (7.19)
presents an apparent difference with its equivalent in [173]. This is because what is called
V ℓ
η (p, p̄) in [173] is actually equal to pp̄Oη

ℓ (p̄, p). Integrals from (7.19) are quite difficult to
handle, mainly due to the Cauchy principal value. To overcome this problem, coordinates (7.15)
are again introduced. Performing the change, (7.19) becomes

lim
η→0

∫
pdp p̄dp̄ Ξ(p̄)∗ Ξ(p)Oη

ℓ (p̄, p)

=
λ

π

∫ ∞

0

dv P

∫ v

−v

dv̄ Ξ

(
v + v̄

2

)∗
(
(v + v̄)2

2v2v̄2
Ξ

(
v + v̄

2

)
+Q′

ℓ

(
v2 + v̄2

v2 − v̄2

)
2Ξ
(
v−v̄
2

)
v2 − v̄2

)
.

(7.20)

With these coordinates, the Cauchy principal value in the integration on v̄ can naturally be
taken into account by performing a Gauss-Legendre quadrature with an even number of points
[173, 174]. Formulas (7.16) and (7.20) allows for an efficient evaluation of matrix elements
with (7.12). Complement 7.A illustrates the calculation of Hamiltonian matrix-elements using
formulas (7.3), (7.16) and (7.20).

7.2 Two-gluon Glueballs

The previous Section introduced a way to compute matrix elements on two-body helicity
states. In the current Section, this formalism is applied to the description of glueballs in the
framework of constituent approaches. Glueballs are modelled as colourless bound states of
several constituent gluons. The latter are considered as bosons with helicity degrees of freedom
λ = ±1 and negative intrinsic parity. The mass of the constituent gluon remains a controversial
subject. Although formally massless, the QCD gluon has proven to acquire a dynamical mass in
the non-perturbative regime [134, 175, 176, 177, 178, 179, 180]. This incited some studies to
consider a massive kinetic energy for constituent gluons (with a mass around 0.5 GeV) [142, 181].
On the other hand, reference [152] tends to indicate that the challenge in modelling glueballs
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consists more in the correct use of the helicity formalism than in the choice of the kinematics.
In addition, it has already been observed in other constituent approaches that a modification
in the kinematics of the system can be absorbed in modifications of the parameters from the
potential [182]. For these reasons, the current work will consider an ultra-relativistic kinetic
energy for the constituent gluon. This Section limits the discussion to two-gluon bound states
that produces the so-called two-gluon glueballs. The colourless constraint on the wave function
implies for two-gluon glueballs a positive charge conjugation and a symmetric colour part of the
state [138]. Gluons having a bosonic nature, the spin-space part of the two-body state must
also be symmetrical.

To start with, let us focus on the construction of symmetrical two-body J-helicity states
with λi = ±1 and having a definite parity. Making use of properties (6.46) and (6.47), reference
[152] constructs four sets of such symmetric parity eigenstates,

|p;S+; J
P = (2k)+⟩ = 1√

2
(|p; JM ; +1 + 1⟩+ |p; JM ;−1− 1⟩), (7.21a)

|p;S−; J
P = (2k)−⟩ = 1√

2
(|p; JM ; +1 + 1⟩ − |p; JM ;−1− 1⟩), (7.21b)

|p;D+; J
P = (2k + 2)+⟩ = 1√

2
(|p; JM ; +1− 1⟩+ |p; JM ;−1 + 1⟩), (7.21c)

|p;D−; J
P = (2k + 3)+⟩ = 1√

2
(|p; JM ; +1− 1⟩ − |p; JM ;−1 + 1⟩). (7.21d)

with k ∈ N. For readability, s1 and s2 labels have been omitted from the notation. One can show
that these states are correctly orthonormalised. In each of the four sets, parity and signature of
J had to be constrained to ensure a correct symmetry of the state. In addition, the constraint
J ≥ |λ1 − λ2| in definition (6.42) forbade the occurrence of total angular momenta smaller
than two in |D±; J

P ⟩ sets. The linear combinations of helicity states (7.21a) to (7.21d) can be
expanded in terms of two-body J-canonical states making use of (6.51). This calculation has
been performed in reference [152]. The resulting expansions are displayed in Table 7.1.

As suggested in Chapter 6, these two-gluon states |p;S±/D±; J
P ⟩ are integrated on their

momentum degree-of-freedom to produce a generic glueball state,

|Ψ;S±/D±; J
P ⟩ =

∫
dp

2
Ξ(p) |p;S±/D±; J

P ⟩ , (7.22)

where Ξ(p) satisfy the normalisation condition (6.59). Compared to (6.60), expression (7.22)
replaces

√
w1(p)w2(p) by p because both gluons are assumed to be massless. One can now go

back over the demonstration of relations (7.3) and (7.12) to generalise them for the symmetrical
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|p;S+; (2k)
+⟩ =

√
2

3
|p; 12k2k⟩ −

√
2k(2k + 1)

3(4k − 1)(4k + 3)
|p; 52k2k⟩

+

√
k(2k − 1)

(4k + 1)(4k − 1)
|p; 52k − 22k⟩+

√
(k + 1)(2k + 1)

(4k + 3)(4k + 1)
|p; 52k + 22k⟩ ,

|p;S−; (2k)
−⟩ =

√
2k

4k + 1
|p; 32k − 12k⟩ −

√
2k + 1

4k + 1
|p; 32k + 12k⟩ ,

|p;D+; (2k + 2)+⟩ =

√
(k + 2)(2k + 3)

(4k + 3)(4k + 5)
|p; 52k2k+2⟩+

√
6(k + 2)(2k + 1)

(4k + 3)(4k + 7)
|p; 52k + 22k+2⟩

+

√
(k + 1)(2k + 1)

(4k + 5)(4k + 7)
|p; 52k + 42k+2⟩ ,

|p;D−; (2k + 3)+⟩ = −
√

2k + 5

4k + 7
|p; 52k + 22k+3⟩ −

√
2(k + 1)

4k + 7
|p; 52k + 42k+3⟩ .

Table 7.1: Expansion of symmetrised parity eigenstate two-body J-helicity states in canonical
J-helicity states from [152]. A condensed notation for J-canonical states has been used,
|p; 2s+1lJ⟩ = |p; JM ; ls; s1s2⟩.

|Ψ;S±/D±; J
P ⟩ states. On the one hand, the generalisation of (7.3) is immediate. Symmetrical

states being similarly orthonormalised, the demonstration does not require any modification
and one gets,

⟨Ψ;S±/D±; J
P |O(p̂) |Ψ;S±/D±; J

P ⟩ =
∫

dp |Ξ(p)|2O(p). (7.23)

Kinetic energy matrix elements that mix states with different labels are shown to cancel. Because
states are naturally written in momentum space, angular momentum does not play any role
in the calculation. It results in a left-hand side of equation (7.23) independent of S/D and J .
This was not the case in [152] where calculations were performed in coordinate space. On the
other hand, relation (7.12) requires a slight modification. Because symmetrised states satisfies
a different expansion in canonical states, coefficients CJ ;s1s2

ℓs;λ1λ2
from relation (7.12) have to be

replaced by the expansion coefficients from Table 7.1. Denoting the latter CJ
ℓs, one gets the

following analogue to (7.12),

⟨Ψ;S±/D±; J
P | O(r̂) |Ψ;S±/D±; J

P ⟩

=
2∑

s=0

J+s∑
ℓ=|J−s|

(
CJ
ℓs

)2 ∫
pdp p̄dp̄ Ξ(p̄)∗ Ξ(p)Oℓ(p̄, p).

(7.24)
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These two formulas can now be used to concretely compute a glueball spectrum by means of
a variational approach (see Section 1.2). A Gaussian shape supplemented by a p factor that
cancels at p = 0 is suggested as a trial helicity-momentum wave function,

Ξa(p) = Ape−ap2 . (7.25)

In the following, the approximation provided by this trial state will be referred to as the single
Gaussian approximation (SGA). To enable comparison, the Hamiltonian considered is the same
as the one in [152],

HGB = 2
√
p2 +

9σm
4
r − 3

αs

r
(7.26)

where αs = 0.450 is the strong coupling constant and σm = 0.185GeV2 is the mesonic string
tension. Compared to the fundamental string tension σ introduced in Section 5.1.2, one has
σm = 4σ/3. As a reminder, the factor 9/4 comes from the Casimir scaling hypothesis [151]
(for gluons in the adjoint representation, ⟨F 2⟩ = 3) and the factor 3 corresponds to the colour
charge associated to a pair of constituent gluons in a colour singlet. This factor will be detailed
in greater depth in Complement 9.B. Instanton contributions2, added in [152] to split the
degeneracy of the lowest states, are not considered at first. Masses obtained using the SGA
for the low-lying angular momenta are displayed in the second column of Table 7.2. These
results are compared to energies from reference [152] (instanton contributions are manually
removed). At first sight, both values seem incompatible. Energies from the SGA, a variational
method supposed to provide upper bounds, lies below the ones from reference [152], where a
very accurate resolution method has been used (namely, the Lagrange mesh method [184]).
This incompatibility is left noticing that reference [152] solves the same Hamiltonian using
a fundamentally different approach. First of all, the total orbital angular momentum of the
system is evaluated on the symmetric parity eigenstates from Table 7.1. The matrix obtained in
this way turns out to be diagonal with respective diagonal elements J(J + 1) + 2 for |p;S±, J

P ⟩
states and J(J + 1)− 2 for |p;D±, J

P ⟩ states. Consequently, reference [152] suggests to replace
the |p;S±/D±, J

P ⟩ states by canonical ones with effective angular momenta ℓeff such that

ℓeff(ℓeff + 1) = J(J + 1)± 2. (7.27)

The Hamiltonian matrix is then evaluated on these effective canonical states rather than on

2 Instantons are classical solutions to the Euclidean equations of motion in non-Abelian gauge theories. In
QCD, they reflect the topologically non-trivial structure of the vacuum and contribute to non-perturbative
phenomena such as tunnelling between different vacuum sectors [183]. In most of the present work, instanton
effects are not considered.
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State Eor.SGA [δ] Emod.SGA [δ] Ref [152]

|Ψ;S+, 0
+⟩ 1.769 [19%] 2.216 [2%] 2.174

|Ψ;S−, 0
−⟩ 2.216 [2%] 2.216 [2%] 2.174

|Ψ;D+, 2
+⟩ 2.279 [12%] 2.651 [2%] 2.588

|Ψ;S+, 2
+⟩ 3.060 [1%] 3.194 [4%] 3.077

|Ψ;S−, 2
−⟩ 3.043 [1%] 3.194 [4%] 3.077

|Ψ;D−, 3
+⟩ 3.297 [1%] 3.393 [4%] 3.254

|Ψ;D+, 4
+⟩ 3.897 [3%] 3.981 [6%] 3.768

|Ψ;S+, 4
+⟩ 4.150 [5%] 4.204 [6%] 3.961

|Ψ;S−, 4
−⟩ 4.139 [4%] 4.204 [6%] 3.961

Table 7.2: Comparison of two-gluon glueball spectra. Upper bounds obtained with the original
SGA, Eor.SGA, are compared to the modified SGA, Emod.SGA, and to the spectrum from [152]
for which instanton contributions have been removed for the comparison. Energy results are
provided in GeV. Relative differences with [152], δ, are indicated in square brackets.

the true two-body helicity states. Mimicking this strategy with the SGA give rise to the fourth
column of Table 7.2. Such calculations require the evaluation of second kind Legendre functions
for non-integer ℓ values. As expected, this modified SGA provides upper bounds of the energies
from [152].

Results from the original SGA are compared with LQCD results in Table 7.3 and in Figure 7.1.
First of all, one notices that most of the masses provided by the original SGA lies below the
ones from [152]. Nevertheless, in most of the case, relative differences between both methods
lies around a few percent. The main exception to this claim occurs for the 0+ state. In reference
[152], 0+ and 0− states proves to be degenerated thereby requiring the introduction of instanton
interactions to split both levels. The original SGA naturally raises this degeneracy. It does not
mean that instanton does not contribute in the glueball spectrum but that their effects maybe
overestimated by the use of the method from [152]. All results seem in global agreement with
LQCD results [167, 166, 168, 169], no matter which methodology is used.

It can be worth considering an extension of the SGA by incorporating a second Gaussian trial
wave function (7.25) within the variational approach [23].This second Gaussian is independent
of the first and is characterized by its own variational parameter, b. The single Hamiltonian
matrix element to compute in the SGA is replaced by the evaluation of 2 by 2 Hamiltonian and



7.2. TWO-GLUON GLUEBALLS 211

State Eor.SGA LQCD [166] LQCD [168]

|Ψ;S+, 0
+⟩ 1.769 1.710± 0.050± 0.080 1.475± 0.030± 0.065

|Ψ;S−, 0
−⟩ 2.216 2.560± 0.035± 0.120 2.250± 0.060± 0.100

|Ψ;D+, 2
+⟩ 2.279 2.390± 0.030± 0.120 2.150± 0.030± 0.100

|Ψ;S+, 2
+⟩ 3.060 N.A. 2.880± 0.100± 0.130

|Ψ;S−, 2
−⟩ 3.043 3.040± 0.040± 0.150 2.780± 0.050± 0.130

|Ψ;D−, 3
+⟩ 3.297 3.670± 0.050± 0.180 3.385± 0.090± 0.150

|Ψ;D+, 4
+⟩ 3.897 N.A. 3.640± 0.090± 0.160

|Ψ;S+, 4
+⟩ 4.150 N.A. N.A.

|Ψ;S−, 4
−⟩ 4.139 N.A. N.A.

Table 7.3: Comparison of two-gluon glueball spectra. Upper bounds obtained with the original
SGA are compared to some LQCD results from [166, 168]. A supplementary LQCD calculations
[169] that predicts a |Ψ;D+, 4

+⟩ state of 3.650± 0.060± 0.180 GeV can be mentioned. Energy
results are provided in GeV.

Figure 7.1: Comparison of two-gluon glueball spectra. Upper bounds obtained with the SGA
(blue circles) are compared to LQCD results from [166] (orange triangles), [168] (green diamonds)
and [169] (purple hexagon).
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State Eor.SGA EDGA Ref [152] LQCD [166, 167] LQCD [168]

|Ψ1;S+, 0
+⟩ 1.769 1.668 2.174 1.710± 0.050± 0.080 1.475± 0.030± 0.065

|Ψ2;S+, 0
+⟩ N.A. 2.808 2.993 2.670± 0.180± 0.130 2.755± 0.070± 0.120

|Ψ1;S−, 0
−⟩ 2.216 2.202 2.174 2.560± 0.035± 0.120 2.250± 0.060± 0.100

|Ψ2;S−, 0
−⟩ N.A. 3.069 2.993 3.640± 0.060± 0.180 3.370± 0.150± 0.150

|Ψ1;D+, 2
+⟩ 2.279 2.241 2.588 2.390± 0.030± 0.120 2.150± 0.030± 0.100

|Ψ2;D+, 2
+⟩ N.A. 3.249 3.325 N.A. N.A.

|Ψ1;S+, 2
+⟩ 3.060 3.042 3.077 N.A. 2.880± 0.100± 0.130

|Ψ2;S+, 2
+⟩ N.A. 3.852 3.732 N.A. N.A.

|Ψ1;S−, 2
−⟩ 3.043 3.042 3.077 3.040± 0.040± 0.150 2.780± 0.050± 0.130

|Ψ2;S−, 2
−⟩ N.A. 3.845 3.732 3.890± 0.040± 0.190 3.480± 0.140± 0.160

|Ψ1;D−, 3
+⟩ 3.297 3.295 3.254 3.670± 0.050± 0.180 3.385± 0.090± 0.150

|Ψ2;D−, 3
+⟩ N.A. 4.067 3.882 N.A. N.A.

Table 7.4: Comparison of two-gluon glueball spectra. Upper bounds obtained with the original
SGA, Eor.SGA, are compared to the DGA, EDGA, and to the spectrum from [152] from which
instanton contributions have been removed for the comparison. Labels Ψ1 and Ψ2 respectively
refer to the fundamental and to the first excited state. Some LQCD results from [166, 167, 168]
are added as points of comparison. Energy results are provided in GeV.

overlap matrices, which form the core of a generalised eigenvalue problem,⟨Ψa|HGB |Ψa⟩ ⟨Ψa|HGB |Ψb⟩

⟨Ψb|HGB |Ψa⟩ ⟨Ψb|HGB |Ψb⟩

C1

C2

 = E

⟨Ψa|Ψa⟩ ⟨Ψa|Ψb⟩

⟨Ψb|Ψa⟩ ⟨Ψb|Ψb⟩

C1

C2

 (7.28)

where |Ψa⟩ serves as a shorthand for any symmetric helicity states |Ψ;S±/D±; J
P ⟩, with a

being the non-linear variational parameter considered. This double Gaussian approximation
(DGA) serves two purposes: to assess the accuracy of the SGA, and to explore first radially
excited states. The non-linear variational parameters of each Gaussian, denoted a and b above,
are treated as independent, and optimisation is performed on both. Results are presented in
Table 7.4. For all considered states, the energy difference between the SGA and DGA does
not exceed 0.1 GeV (it even decreases to below 0.01 GeV for high angular momenta). These
findings suggest that the SGA is sufficiently accurate to study low-lying two-gluon glueball
states. For radially excited states, as expected, the DGA results aligns in magnitude with those
from reference [152].
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Complement 7.A Examples of calculations in momentum

space

To simplify, evaluations will be performed on pure two-body canonical states. Three different
two-body systems will be considered,

HCoul(p, r) =
p2

2µ
− g

r
, (7.29)

Hlin(p, r) =
p2

2µ
+ λr, (7.30)

HFul(p, r) =
√
m2

1 + p2 +
√
m2

2 + p2 + Ar − κ

r
, (7.31)

with µ = m1m2/(m1 + m2) denoting the reduced mass. For convenience, in all cases, both
particles are chosen with equal non-zero masses, m1 = m2 = m and µ = m/2. Natural units
are used. Hamiltonian matrix elements will be computed for a Gaussian-like Ξ helicity wave
function with one parameter,

Ξa(p) = 2

(
(2a)3

π

)1/4

p e−ap2 . (7.32)

Above, the constant has been fixed to ensure that the condition (6.59) holds. The variational
theorem (1.53) ensures that, for any angular momentum ℓ and for all value of the parameter
a, this matrix element consist of an upper-bound for the ground state energy with angular
momentum ℓ of the corresponding Hamiltonian. This approximated eigenenergy is the one
referred as SGA in Section 7.2.

Concerning kinetic energies, the integral from relation (7.3) can be solved analytically for
both non- and semi-relativistic kinematics,

|A|2
∫

dp p2e−2ap2 p
2

2µ
=

3

8

1

aµ
, (7.33)

|A|2
∫

dp p2e−2ap22
√
m2 + p2 =

√
8a

π
m2eam

2

K1

(
am2

)
. (7.34)

Above Kn refers to a modified Bessel function of second kind. Potential matrix elements
are managed using relations (7.14) and (7.20) from previous sections. As already mentioned,
numerical integration methods based on Gauss-Legendre quadrature are used.3 Results for the

3 For both potentials, to compute matrix elements using (7.16) and (7.20), Gauss-Legendre quadratures
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ℓ Eexact ESGA aopt

0 −0.50 −0.42 0.89

1 −0.25 −0.12 3.16

2 −0.125 −0.05 6.99

Table 7.5: Spectra comparison for the Coulomb Hamiltonian (7.29). Upper bounds obtained
with the SGA, (ESGA), are compared to the analytical spectrum from [186], Eexact, for various
angular momenta ℓ. Optimised values of the variational parameter, aopt are also displayed in
the fourth column. Arbitrary units are used: m = 2 and g = 1.

potential and the kinetic energy are then gathered to compute Hamiltonian matrix-elements
and the obtained upper bounds are minimised on the variational parameter a. With a single
trial state, this method only provides approximations for the lowest state of a given angular
momentum ℓ.

Let us now focus on the results of the three tests. The Table 7.5 displays the upper bounds
obtained for the Hamiltonian HCoul. For this test, the mass m of the particles has been fixed to
2 while the constant of the Coulomb potential g has been fixed to 1, both in arbitrary units.
One will notice that the obtained upper bounds are far from accurate, especially for ℓ = 3. This
is a regular feature when using a Gaussian trial wave function to solve a divergent potential.
One can check that turning the trial wave function into the exact one for the ℓ = 0 ground state
[185],

ΞCoul(p) ∝ p

(1 + p2)2
, (7.35)

allows to exactly reproduce its eigenenergy, as expected. Concerning the pure linear Hamiltonian
Hlin, results in arbitrary units are displayed in Table 7.6 for unit masses and linear potential
constant. An analytical spectrum for ℓ = 0 is provided in [130]. For ℓ > 0, the SGA is compared
to the spectrum provided by another approximation method, the Lagrange-mesh method [184].
One can see that a single Gaussian provides a quite accurate upper bound for the ℓ = 0 ground
state. For ℓ > 0, as expected, the very accurate results provided by the Lagrange-mesh method
lies below those obtained with the SGA. Finally, the Hamiltonian HFul is investigated. This
Hamiltonian has been used in [154] to model bottomonium and charmonium systems. Table 7.7
compares the results obtained with the SGA to the spectrum provided in the reference. In both
cases and for each ℓ values, the single Gaussian upper-bound achieves an accuracy below 2%.

with 1000 points are used for integrals on v̄ while integrals on v are handled with a change of variables
v = vt/(1− vt) and only 300 points. Integrals on v turn out to be clearly less sensitive than the ones on v̄.
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ℓ Eexact ELM ESGA aopt

0 2.338 2.338 2.345 0.960

1 N.A. 3.361 3.472 0.648

2 N.A. 4.248 4.556 0.494

Table 7.6: Spectra comparison for the linear Hamiltonian (7.30). Upper bounds obtained with
the SGA, (ESGA), are compared to the analytical spectrum from [130] for ℓ = 0 (Eexact) and
to the spectrum from the Lagrange mesh method [184] for various angular momenta, (ELM).
Optimised values of the variational parameter, aopt are also displayed in the fourth column.
Arbitrary units are used : m = 1 and λ = 1.

ℓ Eexact ESGA [ε] aopt

0 9.448 9.499 [0.5%] 0.391

1 9.900 9.920 [0.2%] 0.450

2 10.150 10.204 [0.5%] 0.397

ℓ Eexact ESGA [ε] aopt

0 3.067 3.094 [0.9%] 1.383

1 3.504 3.531 [0.8%] 1.141

2 3.811 3.886 [2%] 0.903

Table 7.7: Spectra comparison for Fulcher’s Hamiltonian HFul [154] (bottomonium at left,
charmonium at right). Upper bounds obtained with the SGA, (ESGA), are compared to the
spectrum from [130] for various angular momenta ℓ. Optimised values of the variational
parameter, aopt are also displayed in the fourth column. Energy results and a values are
respectively provided in GeV and GeV−1. Relatives errors ε are indicated in square brackets.
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This chapter in the context of a thesis

This chapter revisits the two-gluon glueball spectrum through an innovative approach. As
mentioned earlier, studies applying the helicity formalism to two-gluon glueballs already
exist in the literature. However, the methodology presented here refines that description and,
incidentally, proposes a general framework for treating systems with multiple constituent
gluons. The calculations are carried out directly in momentum space, with controllable ac-
curacy through the addition of Gaussian functions in the approximation. Both eigenenergies
and eigenstates are obtained, and the comparison with LQCD results indicates agreement,
taking into account the associated uncertainties.



Chapter 8

Three-body Helicity Formalism: A
Technical Extension

Previous chapters successfully developed a relativistic framework for studying two-body
systems. Incidentally, this framework enabled reproducing the low-lying positive charge conjuga-
tion glueball spectrum. To access states with negative charge conjugation, however, a glueball
must contain at least a third gluon. This requirement motivates the extension of the previous
methodology to three-body systems, with the goal of inferring the three-gluon glueball spectrum.

This chapter introduces the helicity formalism for three-body systems, while glueball-specific
considerations are deferred to the next chapter. As in the two-body case, efforts are made to
produce complete sets of three-body helicity states possessing a total angular momentum J in
the ECoMF. These sets of three-body states will then used to decompose the state of composite
particles at rest. There are two main approaches to defining helicity states in three-body
systems, each with its own strengths and weaknesses. Accordingly, the chapter is divided into
two parts. Section 8.1 presents the first definition for helicity states, which offers convenient
parity and symmetry properties. Section 8.2 introduces a alternative definition, better suited
for computing two-body interaction matrix elements. Globally, this chapter relies more heavily
on supplementary material, as derivations of key properties are relegated to the complements.
These demonstrations are somewhat more technical than the main text, but they warrant
attention, as such developments are often missing from the literature. This chapter still builds
upon the text from reference [158].

217
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8.1 Berman’s Definition

Berman’s three-body helicity states definition is based on the observation that, in their
CoMF, any set of three particles always lies and moves in a given plane. This feature allows the
following geometrical construction for the tensorial product of three one-body helicity states in
the ECoMF [161, 187],

|αβγ;w1w2w3;λ1λ2λ3⟩ = U(R(α, β, γ))
[
U(R(ϕ1, π/2, 0)Lz(p1)) |s1λ1⟩

⊗ U(R(ϕ2, π/2, 0)Lz(p2)) |s2λ2⟩ (8.1)

⊗ U(R(ϕ3, π/2, 0)Lz(p3)) |s3λ3⟩
]

where pi and ϕi are fixed combinations of particle’s energies, w1, w2 and w3,

pi =
√
w2

i −m2
i , cosφij =

p2k − p2i − p2j
2pipj

, (8.2)

ϕ1 = φ13 − π/2, ϕ2 = φ13 + φ12 − π/2, ϕ3 = 3π/2. (8.3)

Above, φij angles are always to be taken in between 0 and π. Individual masses and spins are
not reminded in the notation for the sake of conciseness. As for two-body p-helicity states,
definition (8.1) can be decomposed in two pieces. Inside the square brackets, reference momenta
are provided to each of the three particles using helicity convention. Their modulus are defined
so that the i-th particle has an energy wi, while their direction is chosen so that it respects four
conditions.

1. Each momentum lies in the xy plane.

2. The sum of the momenta is the null vector.

3. The momentum of the third particle is along the y direction toward negatives.

4. The cross product of the momenta of particle 1 and 2 is along the z axis toward positives.

All these conditions are ensured by definitions (8.2) and (8.3). This define what will be thereafter
named Berman’s reference state and denoted as follows,

|w1w2w3;λ1λ2λ3⟩ = U(R(ϕ1, π/2, 0)Lz(p1)) |s1λ1⟩ ⊗ U(R(ϕ2, π/2, 0)Lz(p2)) |s2λ2⟩

⊗ U(R(ϕ3, π/2, 0)Lz(p3)) |s3λ3⟩ .
(8.4)
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z

y

x

|s1 λ1⟩
|s2 λ2⟩
|s3 λ3⟩

R(ϕi, π/2, 0)Lz(pi)

p⃗1 × p⃗2

p⃗3

p⃗1

p⃗2 R(α, β, γ)

(α, β)

γ

Figure 8.1: Visual interpretation for the definition of Berman’s p-helicity states (8.1).

Once the reference state is built, in a second phase, this state is rotated with Euler angles
(α, β, γ) to give its orientation to the plane in which lies the three particles. This decomposition
provides its interpretation to the angles (α, β, γ), these are the angles of the normal to particles’
plane. A visual interpretation of the aforementioned structure is proposed in Figure 8.1. States
defined in (8.1) will be thereafter referred to as Berman’s p-helicity states.1 These satisfies the
following orthonormality relation [161, 187],

⟨ᾱβ̄γ̄; w̄1w̄2w̄3; λ̄1λ̄2λ̄3|αβγ;w1w2w3;λ1λ2λ3⟩ = 8δ(w1 − w̄1)δ(w2 − w̄2)δ(w3 − w̄3)

δ(α− ᾱ)δ(cos β − cos β̄)δ(γ − γ̄)δλ1λ̄1
δλ2λ̄2

δλ3λ̄3
.

(8.5)

Normalisation announced in [161] differ from this one by a multiplicative constant. It is due to
a different choice of convention for normalisation of one-body helicity states (as a reminder, the
convention used here is the one of [160]).

The definition (8.1) introduces three-body helicity states with defined directions for the
momenta and therefore no good total angular momentum. It is as straightforward as for
two-body J-helicity states to combine these states to overcome this deficiency [161, 187],

|JMµ;w1w2w3;λ1λ2λ3⟩ =
√

2J + 1

8π2

∫
dαdcosβdγ DJ∗

Mµ(α, β, γ) |αβγ;w1w2w3;λ1λ2λ3⟩

=

√
2J + 1

8π2

∫
dαdcosβdγ DJ∗

Mµ(α, β, γ)U (R (α, β, γ)) |w1w2w3;λ1λ2λ3⟩ .
(8.6)

States defined hereinabove will be referred to as Berman’s J-helicity states and satisfy the

1 This name refers to one of the authors of a pioneer work using this definition [187]. Conventions in this work
slightly differs from the ones used here, the third particle being taken along the x-axis towards negatives. For
completeness, let us also mention the names of J.Werle and M.Jacob that abundantly contributed to this
definition too [187, 188].
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following orthonormality relation [161],

⟨J̄M̄ µ̄; w̄1w̄2w̄3; λ̄1λ̄2λ̄3|JMµ;w1w2w3;λ1λ2λ3⟩ = 8δ(w1 − w̄1)δ(w2 − w̄2)δ(w3 − w̄3)

δJJ̄δMM̄δµµ̄δλ1λ̄1
δλ2λ̄2

δλ3λ̄3
.

(8.7)

This relation can also be compared to the results in reference [188], where different orientation
conventions are used, and in reference [187], where an expression only including space degrees-
of-freedoms is provided. In addition to the total angular momentum J and its projection M , a
third quantum number µ is produced. This quantum number corresponds to the projection of
the total angular momentum along the normal to the plane [161]. Even if the direction of this
normal is not fixed due to the integration on the (α, β, γ) angles. The projection of J along the
normal to the plane is well-defined. One may wonder if the choice to set up the reference state
in the xy plane really matters, the angles of this plane being integrated in Berman’s J-helicity
states anyway. It is demonstrated in Complement 8.A that a modification of this reference plane
truly impact the definition of Berman’s J-helicity states,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
J∑

µ′=−J

DJ
µµ′(R̄−1) |JMµ′;w1w2w3;λ1λ2λ3⟩R̄ (8.8)

where the state denoted |JMµ;w1w2w3;λ1λ2λ3⟩R̄ is built from a different initial configuration,
with the rotation R̄ relating the reference planes used to define the states on either side of
equation (8.8). The change of reference plane modified the definition of the µ quantum number.

The action of parity and permutation operators on Berman’s states can be investigated. As
for one- and two-body helicity states, Berman’s J-helicity states are not parity eigenstates by
themselves [161],

Π |JMµ;w1w2w3;λ1λ2λ3⟩ = η1η2η3(−1)−s1−s2−s3−µ |JMµ;w1w2w3;−λ1 − λ2 − λ3⟩ . (8.9)

Above, ηi is still the intrinsic parity of the ith particle. To get parity eigenstates, linear
combinations of Berman’s J-helicity states that mixes helicity signs have to be considered.
Concerning permutations of particles, let Pij be the operator that represents exchange operations
between particles i and j. Berman’s J-helicity states are not eigenstates of permutations but

P12 |JMµ;w1w2w3;λ1λ2λ3⟩ = (−1)J+µ+λ1+λ2−λ3 |JM − µ;w2w1w3;λ2λ1λ3⟩ , (8.10a)

P13 |JMµ;w1w2w3;λ1λ2λ3⟩ = (−1)J−µ−λ1−λ2−λ3e−iφ13µ |JM − µ;w3w2w1;λ3λ2λ1⟩ , (8.10b)

P23 |JMµ;w1w2w3;λ1λ2λ3⟩ = (−1)J+µ+λ1−λ2−λ3eiφ23µ |JM − µ;w1w3w2;λ1λ3λ2⟩ , (8.10c)
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where expressions of φij are given in (8.2). The relation for P12 can be found in [161, 187] but
results for P13 and P23 are new. The proof of (8.10b) is given in Complement 8.A. This proof
can easily be adapted to demonstrate (8.10c). It has been checked that above relations are
consistent with S3 multiplication table,

P23 = P12P13P12. (8.11)

Non-normalised symmetric (anti-symmetric) states can be obtained by applying the three-body
symmetriser S3 (anti-symmetriser A3) on each Berman’s J-helicity state (8.6),

S3 = 1+ P12 + P13 + P12P13P12 + P13P12 + P12P13, (8.12)

A3 = 1− P12 − P13 − P12P13P12 + P13P12 + P12P13. (8.13)

Symmetric and antisymmetric parity eigenstates for three-gluon systems are built in Section 9.3.

8.1.1 Decomposition of a physical three-body state in Berman’s J-

helicity states

In the same way as for two-body systems, any three-body bound state in the ECoMF with
spin J and with helicity quantum numbers can be decomposed as an integral on the internal
momentum degrees-of-freedom of Berman’s p-helicity states. But contrary to the two-body
case, this integral can be written in many possible variables. As an example, Jacobi coordinates
have already been introduced. These coordinates, denoted x and y, complemented with the
centre-of-mass position, R, were used in the Chapters 2 and 3 to deal with many-body bound
states. For three identical bodies, in terms of individual positions, they reads

x = x1 − x2, y =
x1 + x2

2
− r3, R =

x1 + x2 + r3
3

. (8.14)

Berman’s states being momentum eigenstates, Jacobi coordinates will take part in the following
through their conjugated momenta,

px =
p1 − p2

2
, py =

p1 + p2 − 2p3

3
P = p1 + p2 + p3, (8.15)

where P is the total momentum of the system. This choice of coordinates has the advantage
that it does not bring any Jacobian compared to individual momenta,

d3p1d
3p2d

3p3 = d3Pd3pxd
3py. (8.16)
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Another possible system of coordinates that may be used consists of three angles that describe
the plane in which the momenta lies as well as the three momentum length. One will recognize
in this set of coordinates the α, β, γ, p1, p2 and p3 variables used in Berman’s definition of
p-helicity states (8.1). Equivalently, one can replace the pi variables by the wi ones, these
being related each other through relation (8.2). In the following, these coordinates will be
called pseudo-momentum perimetric coordinates (PMP-coordinates), in analogy with position
perimetric coordinates, used, for instance, in [189]. The full change of coordinates from Jacobi
to PMP is not mandatory for the sake of this discussion. Let us simply mention that, for three
massless particles, the modulus of Jacobi coordinates can be related to wi variables as follows

p2x = (2w2
1 + 2w2

2 − w2
3)/4, p2y = w2

3, (8.17)

and that, between these variables, a non-trivial Jacobian has to be taken into account,

d3pxd
3py = w1w2w3 dw1dw2dw3 dαdcosβdγ. (8.18)

This relation can be demonstrated by considering the intermediary system of coordinates that
supplements α, β, γ with the respective moduli of px and py as well as the angle between these
two vectors, denoted cos θxy [189].

Out of the two possible sets of coordinates, the momentum perimetric ones clearly fits better
with Berman’s definition of helicity states. Making use of the completeness relation of Berman’s
p-helicity states, a generic three-body helicity state in the ECoMF, |Φ;λ1λ2λ3⟩, is naturally
decomposed in coordinates w1, w2, w3, α, β and γ,

|Φ;λ1λ2λ3⟩ =
∫

dw1dw2dw3 dαdcosβdγ

8
Φ(α, β, γ, w1, w2, w3) |αβγ;w1w2w3;λ1λ2λ3⟩ (8.19)

where
Φ(α, β, γ, w1, w2, w3) = ⟨αβγ;w1w2w3;λ1λ2λ3|Φ;λ1λ2λ3⟩ (8.20)

is the three-body helicity-momentum wave function of the state. Above, w1 and w2 are integrated
along the set of positive real while w3 is bounded by |w1 − w2| and w1 + w2 so that P = 0

is possible. This relation is the three-body equivalent to the two-body decomposition (6.52).
Here again, this state has not the expected definite total angular momentum J . But reminding
Berman’s definition of J-helicity states, this property can be supplied to the state by imposing
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the angular dependence of Φ(α, β, γ, w1, w2, w3),

ΦJ
Mµ(α, β, γ, w1, w2, w3) =

√
2J + 1

8π2
Ψ(w1, w2, w3)D

J∗
Mµ(α, β, γ). (8.21)

Replacing Φ by ΦJ
Mµ in expression (8.19) results in the decomposition of a generic three-body

helicity state with total angular momentum J , denoted |Ψ; JMµ;λ1λ2λ3⟩, in Berman’s J-helicity
states,

|Ψ; JMµ;λ1λ2λ3⟩ =
∫

dw1dw2dw3

8
Ψ(w1, w2, w3) |JMµ;w1w2w3;λ1λ2λ3⟩ . (8.22)

Imposing a unit normalisation for |Ψ; JMµ;λ1λ2λ3⟩ and making use the orthonormalisation of
Berman’s J-helicity (8.7) allows to infer the normalisation condition on Ψ(w1, w2, w3),

⟨Ψ; JMµ;λ1λ2λ3|Ψ; JMµ;λ1λ2λ3⟩ =
∫

dw1dw2dw3

8
|Ψ(w1, w2, w3)|2 = 1. (8.23)

States |Ψ; JMµ;λ1λ2λ3⟩ can be used to model spin J three-body composite particles made
of three constituents. Although the aforementioned developments considered three identical
particles, they can be easily generalised to three different particles. The same commentary
than for two-body systems (cf. Section 6.3.2) about symmetry and parity applies. In presence
of identical particles and/or if a parity quantum-number is expected, Berman’s J-helicity
states have to be replaced by parity and/or symmetry eigenstates which can be obtained using
properties (8.9) to (8.10c). This construction will be performed in the special case of three-gluon
systems in Chapter 9.

8.2 Wick’s definition

Next to Berman’s proposal to define three-body helicity states, Wick suggests another scheme
based on an intermediate two-body coupling. First, following relation (6.42), particles 1 and 2

are coupled in a two-body J-helicity state at rest,

|p12; j12λ12; s1λ′1s2λ′2⟩

=

√
2j12 + 1

4π

∫
dcosθ12dϕ12D

j12∗
λ12 λ′

1−λ′
2
(ϕ12, θ12, 0) |p12θ12ϕ12; s1λ

′
1s2λ

′
2⟩ .

(8.24)

Above, p12, θ12 and ϕ12 respectively denotes the momentum modulus, polar and azimuthal angle
of particle 1 in the CoMF of particles 1 and 2 (12-CoMF). Helicities λ′1 and λ′2 are also defined
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in this frame. By construction, states defined by equation (8.24) possess a definite total angular
momentum for particles 1 and 2, denoted j12. The third particle is then taken into account. The
subsystem of particle 1 and 2 is considered as a composite particle of spin j12, of spin projection
λ12 and of mass m12(p12) with

m12(p12) =
√
p212 +m2

1 +
√
p212 +m2

2. (8.25)

This mass is necessarily non-zero. The composite particle is then coupled with the third particle
in the same way it has been done for particles 1 and 2. Because masses of the different states
are less explicit than before, these quantities are temporary brought back in the notation of
the boosts along the z axis. The composite particle and the third one are boosted in their own
CoMF, which coincide with the ECoMF,

|pθϕ; j12λ12s3λ3; p12s1λ′1s2λ′2⟩ = (−1)λ3−s3 U(R(ϕ, θ, 0)Lz(m12(p12), p)) |p12; j12λ12; s1λ′1s2λ′2⟩

⊗ U(R(π + ϕ, π − θ, π)Lz(m3, p)) |s3λ3⟩ . (8.26)

Above, p, θ and ϕ respectively denotes the modulus, the polar and the azimutal angle of the
momentum of the composite particle in the ECoMF. By construction, this momentum is opposite
to that of the third particle, both thereby having the same modulus. For this reason, in the
following, the notation p3 will supplant p. States (8.26) will be referred to as Wick’s p-helicity
states. Even if quantum numbers that describe the internal motion of the subsystem have been
included in the notations, definition (8.26) has the exact same structure than (6.38a). Therefore,
a total angular momentum can be provided to the whole system by integrating on momentum
angles as well,

|p3; JM ; j12λ12s3λ3; p12s1λ
′
1s2λ

′
2⟩

=

√
2J + 1

4π

∫
dcosθdϕDJ∗

M λ12−λ3
(ϕ, θ, 0) |p3θϕ; j12λ12s3λ3; p12s1λ′1s2λ′2⟩ .

(8.27)

These three-body helicity states will be referred as Wick’s J-helicity states. Their orthonormality
relation is the following,

⟨p̄3; J̄M̄ ; j̄12λ̄12s3λ̄3; p̄12s1λ̄
′
1s2λ̄

′
2|p3; JM ; j12λ12s3λ3; p12s1λ

′
1s2λ

′
2⟩

=
8W (p12, p3)

p3p12
δ(W̄ −W )δ(m̄12 −m12)δJ̄JδM̄Mδj̄12j12δλ̄12λ12

δλ̄′
1λ

′
1
δλ̄′

2λ
′
2
δλ̄3λ3

.
(8.28)
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Above, W is the total energy of the three-body system in its CoMF,

W (p12, p3) =
√
m12(p12)2 + p23 +

√
m2

3 + p23. (8.29)

As mentioned above, p12 is defined in the 12-CoMF, whereas p3 is a momentum in the ECoMF.
Relation (8.28) is to be compared to the one provided in reference [163]. Both are not directly
equivalent because the definition of Wick’s J-helicity states from this reference differs by an
additional (p3p12/Wm12)

1/2/4 kinematic factor from ours. For further use, this relation is
specified for the case of three massless particles. In that case, the relations between p12, p3, m12

and W simplifiesW = p3 +
√
4p 2

12 + p23,

m12 = 2p12
⇐⇒

p3 = (W 2 −m2
12)/(2W ),

p12 = m12/2
(8.30)

As a result, in the massless case, relation (8.28) is shown to become

⟨p̄3; J̄M̄ ; j̄12λ̄12s3λ̄3; p̄12s1λ̄
′
1s2λ̄

′
2|p3; JM ; j12λ12s3λ3; p12s1λ

′
1s2λ

′
2⟩

=
25W 2

(W 2 −m2
12)m12

δ(W̄ −W )δ(m̄12 −m12)δJ̄JδM̄Mδj̄12j12δλ̄12λ12
δλ̄′

1λ
′
1
δλ̄′

2λ
′
2
δλ̄3λ3

.
(8.31)

For the current purpose, this relation will prove more comfortable to use in terms of p3 and p12,
these variables being directly momenta of particles in different frames,2

⟨p̄3; J̄M̄ ; j̄12λ̄12s3λ̄3; p̄12s1λ̄
′
1s2λ̄

′
2|p3; JM ; j12λ12s3λ3; p12s1λ

′
1s2λ

′
2⟩

=
4
√
p23 + 4p 2

12

p3p12
δ(p̄3 − p3)δ(p̄12 − p12)δJ̄JδM̄Mδj̄12j12δλ̄12λ12

δλ̄′
1λ

′
1
δλ̄′

2λ
′
2
δλ̄3λ3

.
(8.32)

Whereas Berman’s J-helicity states (8.6) allows for an easy implementation of symmetry
through relations (8.9) to (8.10c), Wick’s states, thanks to the intermediary two-body coupling,
are more convenient to compute matrix elements for operators related to the internal motion.
To exploit the advantages of both definitions, a relationship between the two different sets of

2 The Jacobian determinant related to this change is dWdm12 = 2W (p12, p3)/
√
p23 + 4p212 dp3dp12.
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states can be constructed,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
∑
λ′
1,λ

′
2

Ds1
λ′
1 λ1

(R1
W )Ds2

λ′
2 λ2

(R2
W ) ei(2s2+2s3+λ′

2−λ′
1−µ)π/2

∞∑
j12=|λ′

1−λ′
2|

j12∑
λ12=−j12

eiλ12π/2

√
2j12 + 1

2
dj12λ12 λ′

1−λ′
2
(π/2− ϕ12)d

J
µλ12−λ3

(π/2)

|p3; JM ; j12λ12s3λ3; p12s1λ1s2λ2⟩.

(8.33)

A demonstration of this property is provided in Complement 8.B. Above, ϕ12 is the azimutal
angle of the first particle in the 12-CoMF where the momentum of the third particle is along
the y axis towards negatives. This quantity, as well as every other dynamical quantity in this
relation, is to be understood as depending on w1, w2 and w3. Rotations R1

W and R2
W are Wigner

rotations given by the following combinations of boosts and rotations,

R1
W = (R(ϕ12, π/2, 0)Lz(m1, p12))

−1 L3 (R(ϕ1, π/2, 0)Lz(m1, p1)),

R2
W = (R(π + ϕ12, π/2, 0)Lz(m2, p12))

−1 L3 (R(ϕ2, π/2, 0)Lz(m2, p2)).
(8.34)

where L3 = R(3π/2, π/2, 0)Lz(m12, p3)R
−1(3π/2, π/2, 0). The fact that helicities of particle

1 and 2 are summed in the formula keeps track that helicities λi and λ′i are not defined in
the same frame. The appearance of an infinite sum over j12 is also an expected feature. To
obtain a given total angular momentum J , one can always choose an arbitrarily large relative
angular momentum between particle 1 and 2 and then compensate it with the relative angular
momentum between this subsystem and the third particle. Let us mention that formula (8.33)
looks rather similar to a result obtained by Wick in [163]. In this reference, Wick rewrites its
states in a more symmetrical way, closer to Berman’s definition but where the yz plane is chosen
as reference. This rewriting introduces two Wigner rotations and a Wigner d-matrix which
depends on a dynamical angle. The formula introduced in the current work presents the same
components supplemented by a second Wigner D-matrix that rotates the reference plane, in
accordance with property (8.8). Formula (8.33) can be seen as a descendant to Wick’s rewriting.

In Chapter 9, formula (8.33) will be used to describe systems of three massless gluons. For
massless particles, both previous Wigner rotations simplify following expression (6.66). The



COMPLEMENT 8.A. PROPERTIES OF BERMAN’S STATES 227

change of basis formula reduces to

|JMµ;w1w2w3;λ1λ2λ3⟩ = ei(2s2+2s3+λ2−λ1−µ)π/2ei(θ1λ1+θ2λ2)

∞∑
j12=|λ1−λ2|

j12∑
λ12=−j12

eiπλ12/2

√
2j12 + 1

2
dj12λ12 λ1−λ2

(π/2− ϕ12)d
J
µλ12−λ3

(π/2)

|p3; JM ; j12λ12s3λ3; p12s1λ1s2λ2⟩.

(8.35)

As expected, since helicity is Lorentz invariant for massless particles, the corresponding quantum
numbers are no longer summed. Values for both θi angles are founded by applying the
methodology suggested in reference [164]. These two angles are shown to cancel and the phase
factor reduces,

ei(2s2+2s3+λ2−λ1−µ)π/2ei(θ1λ1+θ2λ2) = (−1)s3+s2 ei(π/2)(λ2−λ1−µ). (8.36)

This phase is manifestly independent of the w1, w2 or w3 energies. In the case of massless
particles, the expression of ϕ12, p12 and p3 in terms of w1, w2 and w3 also simplifies,

cos(π/2− ϕ12) = (w1 − w2)/w3, 2p12 =
√
(w1 + w2)2 − w2

3, p3 = w3. (8.37)

Inverting these relations, one gets

w1 = (
√

4p212 + w2
3 + uw3)/2, w2 = (

√
4p212 + w2

3 − uw3)/2, w3 = p3, (8.38)

where u = cos(π/2 − ϕ12) = sinϕ12. A consistency check of formula (8.35) is provided in
Complement 8.B.

Complement 8.A Properties of Berman’s States

This Appendix is devoted to the demonstration of some properties about Berman’s states
missing in the literature. Let us start with property (8.8), which is about the modification of
the reference plane in the definition of Berman’s J helicity states. For the sake of conciseness,
in the following, R(α, β, γ) will be denoted R and dαdcosβdγ will be denoted dR. First, an
arbitrary rotation R̄ is artificially introduced in (8.6). The R̄ rotation is applied on the reference
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state |w1w2w3;λ1λ2λ3⟩ while its inverse is composed with the rotation R,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
√

2J + 1

8π2

∫
dRDJ∗

Mµ(R)U
(
RR̄−1

)
U(R̄) |w1w2w3;λ1λ2λ3⟩. (8.39)

Turning the integration on R Euler angles into an integration on RR̄−1 Euler angles, one gets

|JMµ;w1w2w3;λ1λ2λ3⟩ =
J∑

µ′=−J

DJ∗
µ′µ(R̄)

√
2J + 1

8π2

∫
d(RR̄−1)DJ∗

Mµ′(RR̄−1)U
(
RR̄−1

)
(
U(R̄) |w1w2w3;λ1λ2λ3⟩

)
.

(8.40)

In the right-hand side of this equation, one recognize the definition of a Berman’s J helicity
state whose reference state would have been tilted with the rotation R̄. Denoting this state
|JMµ′;w1w2w3;λ1λ2λ3⟩R̄, one finally gets formula (8.8),

|JMµ;w1w2w3;λ1λ2λ3⟩ =
J∑

µ′=−J

DJ
µµ′(R̄−1) |JMµ′;w1w2w3;λ1λ2λ3⟩R̄ . (8.41)

This property can be used to relate different conventions for Berman’s states. In reference
[187], Berman’s reference states are defined considering the momentum of the third particle as
opposite to the x axis in [187] while it is opposite to the y axis in the current work. In light of
the previous developments, these two definitions for Berman’s J-helicity states have a chance to
differ each-other. The rotation R̄ that conveys from one convention to the other one brings the
y axis along the x one, meaning

R̄ = R(0, 0,−π/2). (8.42)

Applying the aforementioned relation to this case, one gets

|JMµ;w1w2w3;λ1λ2λ3⟩ =
J∑

µ′=−J

DJ
µµ′(0, 0, π/2) |JMµ′;w1w2w3;λ1λ2λ3⟩[187]

= i−µ |JMµ;w1w2w3;λ1λ2λ3⟩[187] ,

(8.43)

where the notation |...⟩[187] refers to an helicity state that uses conventions from [187]. Although
both states have the same physical meaning, they differ by their phase conventions.

The action of P13 on Berman’s J-helicity states also deserves a few explanations. The interest
of symmetry being limited to the study of identical particles, spins and masses of the three
particles will be supposed equal, s1 = s2 = s3 = s and m1 = m2 = m3 = m. Calculations have
first to be performed at the p-helicity states level. The permutation operator exchanges the
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states of particle 1 and 3,

P13 |αβγ;w1w2w3;λ1λ2λ3⟩ = U(R(α, β, γ))
(
U(R(ϕ3, π/2, 0)Lz(p3)) |sλ3⟩

⊗ U(R(ϕ2, π/2, 0)Lz(p2)) |sλ2⟩ (8.44)

⊗ U(R(ϕ1, π/2, 0)Lz(p1)) |sλ1⟩
)
.

It is not clear if the left-hand side of this equation fits with the structure of a Berman’s p-helicity
states because for now relations (8.2) and (8.3) are not verified. This difficulty can be overcame
by the insertion of a rotation R(φ13,−π, 0). The angles are chosen to mimic the action of P13

on the momenta, as illustrated on Fig. 8.2. Algebraically, one gets,

P13 |αβγ;w1w2w3;λ1λ2λ3⟩ = U(R(α, β, γ)R(φ13,−π, 0))(
U(R(0, π,−φ13)R(ϕ3, π/2, 0)Lz(p3)) |sλ3⟩

⊗ U(R(0, π,−φ13)R(ϕ2, π/2, 0)Lz(p2)) |sλ2⟩

⊗ U(R(0, π,−φ13)R(ϕ1, π/2, 0)Lz(p1)) |sλ1⟩
)
.

(8.45)

The SO(3) multiplication law can be used to reduce the previous expression

R(α, β, γ)R(φ13,−π, 0) = R(π + α, π − β,−(π + γ + φ13)), (8.46)

R(0, π,−φ13)R(ϕ, π/2, 0) = R(π + φ13 − ϕ, π/2, π) (∀ϕ ∈ R). (8.47)

With these relations the action of P13 on |αβγ;Ww1w2;λ1λ2λ3⟩ becomes,

P13 |αβγ;w1w2w3;λ1λ2λ3⟩

= U(R(π + α, π − β,−(π + γ + φ13)))
(
U(R(π + φ13 − ϕ3, π/2, π)Lz(p3)) |sλ3⟩

⊗ U(R(π + φ13 − ϕ2, π/2, π)Lz(p2)) |sλ2⟩

⊗ U(R(π + φ13 − ϕ1, π/2, π)Lz(p1)) |sλ1⟩
)
.

(8.48)

This relation can be even further simplified using expression (8.3) for ϕ1, ϕ2 and ϕ3,

P13 |αβγ;w1w2w3;λ1λ2λ3⟩

= U
(
R(π + α, π − β,−(π + γ + φ13))

)(
U(R(φ13 − π/2, π/2, π)Lz(p3)) |sλ3⟩

⊗ U(R(3π/2− φ12, π/2, π)Lz(p2)) |sλ2⟩

⊗ U(R(3π/2, π/2, π)Lz(p1)) |sλ1⟩
)

(8.49)
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y

x

p⃗3

p⃗1p⃗2

z

R(0,−π, 0) R(φ13, 0, 0)

p⃗1

p⃗3p⃗2

Figure 8.2: Diagram justifying the role of R(φ13,−π, 0) in the application of P13 on Berman’s
states.

= U
(
R(π + α, π − β,−(π + γ + φ13))

)(
U(R(φ13 − π/2, π/2, π)Lz(p3)) |sλ3⟩

⊗ U(R(φ13 + φ23 − π/2, π/2, π)Lz(p2)) |sλ2⟩

⊗ U(R(3π/2, π/2, π)Lz(p1)) |sλ1⟩
)
.

(8.50)

Last equality makes use of φ12 + φ23 + φ13 = 2π. The three angles in the reference state now
satisfy relations (8.2) and (8.3) with w1 and w3 exchanged. To definitely obtain a true p-helicity
state, the π rotations around the z axis have to be absorbed in the |sλi⟩. This operation
produces three (−1)−λi phase factors,

P13 |αβγ;w1w2w3;λ1λ2λ3⟩

= (−1)−λ1−λ2−λ3 |(π + α) (π − β) (−π − γ − φ13);w3w2w1;λ3λ2λ1⟩ .
(8.51)

Now that the relation has been written for Berman’s p-helicity states, the corresponding
relation for Berman’s J-helicity states can be obtained,

P13 |JMµ;w1w2w3;λ1λ2λ3⟩

=

√
2J + 1

8π2

∫
dαdcosβdγ DJ∗

Mµ(α, β, γ)P13 |αβγ;w1w2w3;λ1λ2λ3⟩

= (−1)−λ1−λ2−λ3

√
2J + 1

8π2

∫
dαdcosβdγ DJ∗

Mµ(α, β, γ)

|(π + α) (π − β) (−π − γ − φ13);w3w2w1;λ3λ2λ1⟩ .

(8.52)



COMPLEMENT 8.B. PROOF OF THE CHANGE OF BASIS FORMULA 231

The integration variables can be changed to fit with the new angles in the p-helicity state,

P13 |JMµ;w1w2w3;λ1λ2λ3⟩

= (−1)−λ1−λ2−λ3

√
2J + 1

8π2

∫
dα′dcosβ′dγ′DJ∗

Mµ(α
′ − π, π − β′,−π − γ′ − φ13)

|α′ β′ γ′;w3w2w1;λ3λ2λ1⟩.

(8.53)

Making use of Wigner D matrices properties [35], the aforementioned relation can be reduced,

P13 |JMµ;w1w2w3;λ1λ2λ3⟩

= (−1)−λ1−λ2−λ3

√
2J + 1

8π2

∫
dα′dcosβ′dγ′

(
(−1)J−µe−iφ13µDJ∗

M−µ(α
′, β′, γ′)

)
|α′ β′ γ′;w3w2w1;λ3λ2λ1⟩

= (−1)J−µ−λ1−λ2−λ3e−iφ13µ |JM − µ;w3w2w1;λ3λ2λ1⟩ .

(8.54)

This closes the demonstration of the property. The action of P23 is demonstrated in a similar
way.

Complement 8.B Proof of the change of basis formula

This Appendix is dedicated to the derivation of relation (8.33). It is divided in three parts.
First, Berman’s p-helicity states are restructured to include a state for particle 1 and 2 in their
CoMF. Then, this rewriting is used to prove the change of basis formula. Finally, a consistency
check concerning normalisation of the states is suggested.

Rewriting of p-helicity states

To fit with Wick’s structure, particle 1 and 2 in Berman’s states are to be brought in their
own CoMF. This operation is performed on the reference states (8.4) at first. The boost that
transitions between the ECoMF and the 12-CoMF is the one that imparts a momentum p3 to a
particle of mass m12 initially at rest. It writes down as follows

L3 = R(3π/2, π/2, 0)Lz(m12, p3)R
−1(3π/2, π/2, 0). (8.55)
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This L3 boost can be artificially inserted into the definition of Berman’s reference states (8.4),

|w1w2w3;λ1λ2λ3⟩

= U(L−1
3 L3)

[
U(R(ϕ1, π/2, 0)Lz(p1)) |s1λ1⟩ ⊗ U(R(ϕ2, π/2, 0)Lz(p2)) |s2λ2⟩

]
⊗U(R(ϕ3, π/2, 0)Lz(p3)) |s3λ3⟩

= U(L−1
3 )
[
U(L3)U(R(ϕ1, π/2, 0)Lz(p1)) |s1λ1⟩ ⊗ U(L3)U(R(ϕ2, π/2, 0)Lz(p2)) |s2λ2⟩

]
⊗U(R(ϕ3, π/2, 0)Lz(p3)) |s3λ3⟩.

(8.56)

Inside the brackets, both particle 1 and particle 2 are subjected to the L3 boost. The subsequent
development focuses on the first particle but the same applies to the second one. The expression
to simplify results from applying a Lorentz boost on a one-body helicity state (6.26),

U(L3)U(R(ϕ1, π/2, 0)Lz(p1)) |s1λ1⟩ = U(L3) |p1π/2ϕ1; s1λ1⟩0 . (8.57)

For further clarification, the third angle convention is written as an index. The situation is the
one handled by property (6.35),

U(L3) |p1π/2ϕ1; s1λ1⟩0 =
∑
λ′
1

Ds1
λ′
1 λ1

(R1
W ) |p12θ12ϕ12; s1λ

′
1⟩0 . (8.58)

By construction, after applying the L3 boost, the momentum ends in the 12-CoMF. Correspond-
ing coordinates have been denoted p12, θ12 and ϕ12, in agreement with notations from Wick’s
definition (8.24). Because momenta in the reference state are chosen to lie in the xy plane and
because L3 is a boost along the y axis, boosted momenta remain in that same plane. As a
consequence, the polar angle θ12 is shown to be identically equal to π/2. Concerning expressions
of p12 and ϕ12 in terms of the energies w1, w2 and w3, these are obtained by evaluating different
Lorentz invariant combinations of four-momenta3 in both the 12-CoMF and the ECoMF. This
allows to show that

2p12 =
√

(w1 + w2)2 − w2
3, cos(π/2− ϕ12) =

w1 − w2

w3

. (8.59)

The Wigner rotation R1
W is obtained by specifying expression (6.36) to the current situation,

R1
W = (R(ϕ12, π/2, 0)Lz(m1, p12))

−1 L3 (R(ϕ1, π/2, 0)Lz(m1, p1)). (8.60)

3 Namely (P1 + P2)
2, (P1 + P3)

2 and (P1 + P2 + P3)
2.
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This expression for R1
W and the knowledge of each particle masses and energies theoretically

allow to determine the parameters for the Wigner rotation and to deduce the corresponding D
matrix. The same calculation is applied to the second particle. By collecting the results, the
following intermediate expression is obtained for the three-body reference state,

|w1w2w3;λ1λ2λ3⟩ =
∑
λ′
1, λ

′
2

Ds1
λ′
1 λ1

(R1
W )Ds2

λ′
2 λ2

(R2
W )

(
U(L3)

−1
[
|p12(π/2)(ϕ12); s1λ

′
1⟩0 ⊗ |p12(π/2)(π + ϕ12); s2λ

′
2⟩0
]

⊗ |p3(π/2)ϕ3; s3λ3⟩0
)
.

(8.61)

Above, the definition of one-body helicity state (6.26) has also been used for the last particle.
By using the definition of L3, its invert can be written as

L−1
3 = R(5π/2, π/2, 0)Lz(m12, p3)R

−1(5π/2, π/2, 0). (8.62)

The boost L−1
3 proves to fit the definition of a canonical boost (6.21). An helicity boost would

be more convenient to subsequently construct helicity states. To perform the conversion, the
rotation on the right can be absorbed into both one-body helicity states, using the invariance of
helicity under rotations (6.29),

R−1(5π/2, π/2, 0) |p12(π/2)(ϕ12); s1λ
′
1⟩0 = eiξ1λ

′
1 |p12(π/2− ϕ12)(3π/2); s1λ

′
1⟩0 , (8.63)

R−1(5π/2, π/2, 0) |p12(π/2)(π + ϕ12); s2λ
′
2⟩0 = eiξ2λ

′
2 |p12(π/2 + ϕ12)(5π/2); s2λ

′
2⟩π . (8.64)

Because in definition (8.24) the second particle is considered as opposed to the first one, it is
brought in the π convention instead of the 0 one. Above, the expressions for the polar and
azimuth angles from the right-hand side state are obtained by applying R−1(5π/2, π/2, 0) on
both particle momenta. Concerning ξ1 and ξ2, their values are obtained by explicitly multiplying
both rotations that provide their angles to the one-body helicity states by R−1(5π/2, π/2, 0),

R−1(5π/2, π/2, 0)R(ϕ12, π/2, 0) = R(3π/2, π/2− ϕ12, π/2),

R−1(5π/2, π/2, 0)R(π + ϕ12, π/2, 0) = R(5π/2, π/2 + ϕ12,−π/2).
(8.65)

Noticing that ϕ12 itself lies in between −π/2 and π/2, these two formulas have been tuned so
that the second Euler angle of both combined rotations lies in between 0 and π. The combined
rotations are neither in the 0 nor in the π convention. This issue is resolved by adding the
suitable rotation around the z axis. After acting on the helicity state, this results in a simple
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phase factor,

eiλ
′
1ξ1 = e−iλ′

1π/2, eiλ
′
2ξ2 = e3iλ

′
2π/2. (8.66)

At this stage, the reference state has been restructured as follows,

|w1w2w3;λ1λ2λ3⟩

=
∑
λ′
1,λ

′
2

Ds1
λ′
1 λ1

(R1
W )Ds2

λ′
2 λ2

(R2
W ) e−i(λ′

1−3λ′
2)π/2

(
U(R(5π/2, π/2, 0)Lz(m12, p3))[

|p12(π/2− ϕ12)(3π/2); s1λ
′
1⟩0 ⊗ |p12(π/2 + ϕ12)(5π/2); s2λ

′
2⟩π
]

⊗ |p3(π/2)(3π/2); s3λ3⟩0
)
.

(8.67)

Two small modifications remain to be performed. First, the third particle is for now in the 0

convention but, because the momentum of particle 3 will be considered as opposed, its third
angle convention should be changed to the π one, thereby adding a eiλ3π phase factor. Lastly,
the state inside the brackets can be rewritten as a two-body helicity state (6.38b). This only
requires an additional phase (−1)s2−λ′

2 . The final expression for the reference state is

|w1w2w3;λ1λ2λ3⟩ =
∑
λ′
1,λ

′
2

Ds1
λ′
1 λ1

(R1
W )Ds2

λ′
2 λ2

(R2
W ) ei(2s2+λ′

2−λ′
1+2λ3)π/2

(
U(R(5π/2, π/2, 0)Lz(m12, p3)) |p12(π/2− ϕ12)(3π/2); s1λ

′
1s2λ

′
2⟩

⊗ |p3(π/2)(3π/2); s3λ3⟩π
)
.

(8.68)

This expression has the desired structure: particles 1 and 2 are coupled in their own CoMF,
and this subsystem is boosted towards the ECoMF to be coupled with the third particle.

Rewriting of J-helicity states

Now that an intermediary coupling has been added in Berman’s p-helicity states, the devel-
opment of Berman’s J-helicity states in Wick’s J-helicity states can be performed. By inserting
relation (8.68) into the definition (8.6), the following expression is obtained,
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|JMµ;w1w2w3;λ1λ2λ3⟩ =
√

2J + 1

8π2

∑
λ′
1,λ

′
2

Ds1
λ′
1 λ1

(R1
W )Ds2

λ′
2 λ2

(R2
W )ei(2s2+λ′

2−λ′
1+2λ3)π/2

∫
dα dcosβ dγ DJ∗

Mµ(α, β, γ)U (R (α, β, γ))
(
U(R(5π/2, π/2, 0)Lz(m12, p3))

|p12(π/2− ϕ12)(3π/2); s1λ
′
1s2λ

′
2⟩ ⊗ |p3(π/2)(3π/2); s3λ3⟩π

)
.

(8.69)

To fit with Wick’s definition, eigenstates of the total angular momentum relative to particle
1 and 2 would be preferable to the current |p12(π/2− ϕ12)(3π/2); s1λ

′
1s2λ

′
2⟩. Such two-body

states are related to each-other by relation (6.45). By omitting some passive coefficients for
brevity, the following expression is obtained,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
∑
λ′
1,λ

′
2

[...]

∫
dα dcosβ dγ (...)

∞∑
j12=|λ′

1−λ′
2|

j12∑
λ12=−j12

√
2j12 + 1

4π
Dj12

λ12 λ′
1−λ′

2
(3π/2, π/2− ϕ12, 0) U (R (α, β, γ))

(
U(R(5π/2, π/2, 0)Lz(m12, p3)) |p12; j12λ12;λ′1λ′2⟩ ⊗ |p3(π/2)(3π/2); s3λ3⟩π

)
.

(8.70)

The structure of the state inside the large parentheses almost follows the pattern of Wick’s
p-helicity states (8.26). The main difference lays in the rotation that acts on the two-body state.
It involves a 5π/2 rotation around the z-axis where a rotation in between 0 and 2π is expected.
For bosonic states, 2π rotations are identified to the identity and can freely be ignored. For
fermionic states, these rotations give rise to minus signs which have to be taken into account.
Both cases can be taken into account at once by adding a (−1)2λ

′
1+2λ′

2 factor. A (−1)λ3−s3 phase
factor has also to be added to truely correspond to Wick’s p-helicity state definition,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
∑
λ′
1,λ

′
2

[...]

∫
dα dcosβ dγ (...)

∞∑
j12=|λ′

1−λ′
2|

j12∑
λ12=−j12

√
2j12 + 1

4π

Dj12
λ12 λ′

1−λ′
2
(3π/2, π/2− ϕ12, 0)U (R (α, β, γ)) (−1)2λ

′
1+2λ′

2+s3−λ3

|p3(π/2)(π/2); j12λ12s3λ3; p12s1λ′1s2λ′2⟩.

(8.71)
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A second use of relation (6.45) allows to replace this state with defined momenta by a sum of
states with defined total angular momentum,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
∑
λ′
1,λ

′
2

[...]

∫
dα dcosβ dγ (...)

∞∑
j12=|λ′

1−λ′
2|

j12∑
λ12=−j12

{...}
∞∑

J̄=|λ12−λ3|

J̄∑
M̄=−J̄

√
2J̄ + 1

4π
DJ̄

M̄ λ12−λ3
(π/2, π/2, 0)

U (R (α, β, γ)) |p3; J̄M̄ ; j12λ12s3λ3; p12s1λ
′
1s2λ

′
2⟩.

(8.72)

Dots have again been used to replace passive coefficients in the expression. The relation can
still be simplified. To start with, the transformation rule of angular momentum eigenstates
under rotations [159, 160] is used to eliminate the U (R(α, β, γ)) operator,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
∑
λ′
1,λ

′
2

[...]

∫
dα dcosβ dγ (...)

∞∑
j12=|λ′

1−λ′
2|

j12∑
λ12=−j12

{...}
∞∑

J̄=|λ12−λ3|

J̄∑
M̄=−J̄

√
2J̄ + 1

4π
DJ̄

M̄ λ12−λ3
(π/2, π/2, 0)

J̄∑
M ′=−J̄

DJ̄
M ′M̄ (α, β, γ) |p3; J̄M ′; j12λ12s3λ3; p12s1λ

′
1s2λ

′
2⟩.

(8.73)

Aforementioned passive coefficients will be reintroduced one after the others. Brackets, curly
brackets and parentheses are used consistently to trace their origin. The (α, β, γ) dependence is
confined in two Wigner D matrices,

|JMµ;w1w2w3;λ1λ2λ3⟩

=
∑
λ′
1,λ

′
2

[...]
∞∑

j12=|λ′
1−λ′

2|

j12∑
λ12=−j12

{...}
∞∑

J̄=|λ12−λ3|

J̄∑
M̄=−J̄

√
2J̄ + 1

4π
DJ̄

M̄ λ12−λ3
(π/2, π/2, 0)

J̄∑
M ′=−J̄

(∫
dα dcosβ dγ

(
DJ∗

Mµ (α, β, γ)
)
DJ̄

M ′M̄ (α, β, γ)

)
|p3; J̄M ′; j12λ12s3λ3; p12s1λ

′
1s2λ

′
2⟩.

(8.74)
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The orthogonality of Wigner D matrices [35] can now be used. It produces three Kronecker
deltas that eliminate three sums among the six,

|JMµ;w1w2w3;λ1λ2λ3⟩

=

[√
2J + 1

8π2

]∑
λ′
1,λ

′
2

[...]
∞∑

j12=|λ′
1−λ′

2|

j12∑
λ12=−j12

{...}
√

2J + 1

4π
DJ

µλ12−λ3
(π/2, π/2, 0)

8π2

2J + 1
|p3; JM ; j12λ12s3λ3; p12s1λ

′
1s2λ

′
2⟩.

(8.75)

At this stage, reintroducing all the passive coefficients, the following expression has been
obtained,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
√
2π
∑
λ′
1,λ

′
2

[
Ds1

λ′
1 λ1

(R1
W )Ds2

λ′
2 λ2

(R2
W )ei(2s2+λ′

2−λ′
1+2λ3)π/2

]
∞∑

j12=|λ′
1−λ′

2|

j12∑
λ12=−j12

{
(−1)2λ

′
1+2λ′

2+s3−λ3

√
2j12 + 1

4π
Dj12

λ12 λ′
1−λ′

2
(3π/2, π/2− ϕ12, 0)

}
DJ

µλ12−λ3
(π/2, π/2, 0) |p3; JM ; j12λ12s3λ3; p12s1λ

′
1s2λ

′
2⟩.

(8.76)

Complex numbers inside the summation can be made explicit by turning complex Wigner D
matrices into real d matrices and phases [35, section 4.3],

Dj12
λ12 λ′

1−λ′
2
(3π/2, π/2− ϕ12, 0)D

J
µλ12−λ3

(π/2, π/2, 0)

= e−i(3λ12+µ)π/2dj12λ12 λ′
1−λ′

2
(π/2− ϕ12) d

J
µλ12−λ3

(π/2).
(8.77)

Compiling phase factors and noticing that λ12 and λ′1 − λ′2 have the same integer or half-integer
nature, one gets the final expression,

|JMµ;w1w2w3;λ1λ2λ3⟩ =
∑
λ′
1,λ

′
2

Ds1
λ′
1 λ1

(R1
W )Ds2

λ′
2 λ2

(R2
W )ei(2s2+2s3+λ′

2−λ′
1−µ)π/2

∞∑
j12=|λ′

1−λ′
2|

j12∑
λ12=−j12

eiλ12π/2

√
2j12 + 1

2
dj12λ12 λ′

1−λ′
2
(π/2− ϕ12)d

J
µλ12−λ3

(π/2)

|p3; JM ; j12λ12s3λ3; p12s1λ
′
1s2λ

′
2⟩.

(8.78)

Normalisation consistence

To confirm relations (8.33) and (8.35), one may try to deduce the orthonormalisation of
Berman’s J-helicity states from the one of Wick’s J-helicity states. This subsection is devoted
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to this consistency check supposing three massless particles. The scalar product of two arbitrary
Berman’s J-helicity states is evaluated by making use of relation (8.35) while Wick’s states
orthonormalisation (8.32) is assumed. After a few algebra, one gets

⟨J̄M̄ µ̄; w̄1w̄2w̄3; λ̄1λ̄2λ̄3|JMµ;w1w2w3;λ1λ2λ3⟩

=
4
√
p23 + 4p212
p3p12

δ(p̄3 − p3)δ(p̄12 − p12) δJ̄JδM̄Mδλ̄1 λ1
δλ̄2 λ2

δλ̄3 λ3
ei(µ̄−µ)π/2

∞∑
j12=|λ1−λ2|

j12∑
λ12=−j12

2j12 + 1

2
dj12λ12 λ1−λ2

(π/2− ϕ̄12) d
j12
λ12 λ1−λ2

(π/2− ϕ12)

dJµ̄ λ12−λ3
(π/2)dJµλ12−λ3

(π/2).

(8.79)

Let us remind that a dependence on the energy variable w1 (w̄1) is hidden inside the ϕ12 (ϕ̄12)
angle. Comparing with the announced orthonormalisation of Berman’s J-helicity states, the
remaining summations on j12 and λ12 are expected to produce a Kronecker delta in µ and
a Dirac delta in w1. Using properties of d matrices [35], these summations can be reduced
analytically,

∞∑
j12=|λ1−λ2|

j12∑
λ12=−j12

2j12 + 1

2
dj12λ12 λ1−λ2

(ū) dj12λ12 λ1−λ2
(u) dJµ̄ λ12−λ3

(π/2)dJµλ12−λ3
(π/2)

= δ (u− ū) δµµ̄.

(8.80)

where the shorter notation u for the variable cos(π/2− ϕ′
1) has been used. Dirac deltas on p3,

p12 and u can also be turned into Dirac deltas on w1, w2 and w3 using (8.38),

δ(ū− u)δ(p̄12 − p12)δ(p̄3 − p3) =
2p3p12√
4p212 + p23

δ(w̄1 − w1)δ(w̄2 − w2)δ(w̄3 − w3). (8.81)

As a result, one get the expected orthonormalisation of Berman’s J-helicity states,

⟨J̄M̄ µ̄; w̄1w̄2w̄3; λ̄1λ̄2λ̄3|JMµ;w1w2w3;λ1λ2λ3⟩ = 8 δ(w̄1 − w1)δ(w̄2 − w2)δ(w̄3 − w3)

δJ̄JδM̄Mδµ̄µδλ1 λ̄1
δλ2 λ̄2

δλ3 λ̄3
.

(8.82)
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This chapter in the context of a thesis

This chapter reviews and extends the state of the art in the three-body helicity formalism.
While not exhaustive, neither with respect to Berman’s nor Wick’s definitions, it offers
an innovative perspective by developing a change of basis formula that enables transitions
between both complete sets of states. As a second key contribution, the chapter presents a
detailed analysis of the symmetry properties of Berman’s state. Both results are introduced
along with their corresponding derivations.

These complex developments are motivated by the goal of the thesis: generalising the
methodology introduced in Chapter 7 to the case of three-gluon glueballs.





Chapter 9

Three-gluon Glueballs: Broadening the
Spectrum

With the framework of three-body helicity states now established, this final chapter applies
it to the case of three-gluon glueballs. Following a methodology analogous to that used in
the two-gluon case, the helicity formalism is employed to derive the spectrum of three-gluon
glueball states. However, due to the presence of two distinct bases, additional internal degrees of
freedom, and multiple relevant CoMF, the resulting calculations are considerably more technical
than those for two-body systems. In the interest of completeness and reproducibility, detailed
expressions are provided throughout. Nevertheless, the reader is encouraged to maintain focus
on the overarching methodology, which remains largely consistent with that of the two-body
case.

The developments in this chapter are organized into three main sections. In Section 9.1,
symmetry and parity are implemented in Berman’s basis, yielding a complete set of states
suitable for describing three-gluon bound states. This basis is then used to construct trial
states designed to reasonably approximate the true three-gluon glueball states. In Section 9.2, a
method is developed for computing matrix elements on these trial states. Finally, in Section 9.3,
the Hamiltonian matrix elements are evaluated on the trial states to extract the corresponding
glueball spectrum. Section 9.4 concludes the chapter with perspectives on refining the current
calculations and investigating additional properties beyond the mass spectrum.

9.1 Berman’s basis for three-gluon systems

Let us start with the acquisition of symmetric parity eigenstates from Berman’s J-helicity
states. Dealing with three spin 1 massless particles, the helicity quantum number λi can only

241
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take two values, −1 and +1. Therefore, there are only eight possible triplets of helicities
(λ1, λ2, λ3). In Berman’s definition, any consistent set of J , M , µ, w1, w2, w3 quantum numbers
can be built from each of these triplets. In other words, for any given energy and angular
momentum quantum numbers, eight three-gluon J-helicity states can be obtained :

|JMµ;w1w2w3; + + +⟩ , |JMµ;w1w2w3;−−+⟩ , |JMµ;w1w2w3;−++⟩ ,

|JMµ;w1w2w3;−+−⟩ , |JMµ;w1w2w3; +−+⟩ , |JMµ;w1w2w3; +−−⟩ ,

|JMµ;w1w2w3; + +−⟩ , |JMµ;w1w2w3;−−−⟩ .

(9.1)

For shortness, only the sign of helicities have been kept in the notation. Let us start by
implementing parity quantum numbers in these eight states. Considering that gluons have
negative intrinsic parity and using relation (8.9), the eight states (9.1) can be recombined into
eight parity eigenstates,

|JMµ;w1w2w3; + + +⟩+ |JMµ;w1w2w3;−−−⟩ ,

|JMµ;w1w2w3;−++⟩+ |JMµ;w1w2w3; +−−⟩ ,

|JMµ;w1w2w3; +−+⟩+ |JMµ;w1w2w3;−+−⟩ ,

|JMµ;w1w2w3; + +−⟩+ |JMµ;w1w2w3;−−+⟩ ,

|JMµ;w1w2w3; + + +⟩ − |JMµ;w1w2w3;−−−⟩ ,

|JMµ;w1w2w3;−++⟩ − |JMµ;w1w2w3; +−−⟩ ,

|JMµ;w1w2w3; +−+⟩ − |JMµ;w1w2w3;−+−⟩ ,

|JMµ;w1w2w3; + +−⟩ − |JMµ;w1w2w3;−−+⟩ .

(9.2)

Their parity eigenvalue is (−1)−µ for the four left states and (−1)1−µ for the four right ones.
In addition to parity, symmetry is also to be implemented. Depending on the expected
charge conjugation of the system, three-gluon states have to be symmetrised (negative charge
conjugation) or anti-symmetrised (positive charge conjugation) [138]. Applying both the
symmetriser and the anti-symmetriser on the eight states (9.2) provides states with a definite
symmetry under exchange of particles. The result of these applications is presented in Table 9.1.
Fixing respectively σ = +1 or σ = −1 provides symmetric or anti-symmetric states. Because
permutation operators change the sign of µ, (anti-)symmetric states mix different states with
opposite µ quantum numbers. To avoid any redundancy, µ must be understood as positive in
Table 9.1.
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(|JMµ;w1w2w3; + + +⟩+ |JMµ;w1w2w3;−−−⟩)
+σ(−1)J+µ+1 (|JM − µ;w2w1w3; + + +⟩+ |JM − µ;w2w1w3;−−−⟩)

+σ(−1)J+µ+1e−iφ13µ (|JM − µ;w3w2w1; + + +⟩+ |JM − µ;w3w2w1;−−−⟩)
+σ(−1)J+µ+1eiφ23µ (|JM − µ;w1w3w2; + + +⟩+ |JM − µ;w1w3w2;−−−⟩)

+e−iφ13µ (|JMµ;w2w3w1; + + +⟩+ |JMµ;w2w3w1;−−−⟩)
+eiφ23µ (|JMµ;w3w1w2; + + +⟩+ |JMµ;w3w1w2;−−−⟩)

(|JMµ;w1w2w3;−++⟩+ |JMµ;w1w2w3; +−−⟩)
+σ(−1)J+µ+1 (|JM − µ;w2w1w3; +−+⟩+ |JM − µ;w2w1w3;−+−⟩)

+σ(−1)J+µ+1e−iφ13µ (|JM − µ;w3w2w1; + +−⟩+ |JM − µ;w3w2w1;−−+⟩)
+σ(−1)J+µ+1eiφ23µ (|JM − µ;w1w3w2;−++⟩+ |JM − µ;w1w3w2; +−−⟩)

+e−iφ13µ (|JMµ;w2w3w1; + +−⟩+ |JMµ;w2w3w1;−−+⟩)
+eiφ23µ (|JMµ;w3w1w2; +−+⟩+ |JMµ;w3w1w2;−+−⟩)

(|JMµ;w1w2w3; + + +⟩ − |JMµ;w1w2w3;−−−⟩)
+σ(−1)J+µ+1 (|JM − µ;w2w1w3; + + +⟩ − |JM − µ;w2w1w3;−−−⟩)

+σ(−1)J+µ+1e−iφ13µ (|JM − µ;w3w2w1; + + +⟩ − |JM − µ;w3w2w1;−−−⟩)
+σ(−1)J+µ+1eiφ23µ (|JM − µ;w1w3w2; + + +⟩ − |JM − µ;w1w3w2;−−−⟩)

+e−iφ13µ (|JMµ;w2w3w1; + + +⟩ − |JMµ;w2w3w1;−−−⟩)
+eiφ23µ (|JMµ;w3w1w2; + + +⟩ − |JMµ;w3w1w2;−−−⟩)

(|JMµ;w1w2w3;−++⟩ − |JMµ;w1w2w3; +−−⟩)
+σ(−1)J+µ+1 (|JM − µ;w2w1w3; +−+⟩ − |JM − µ;w2w1w3;−+−⟩)

+σ(−1)J+µ+1e−iφ13µ (|JM − µ;w3w2w1; + +−⟩ − |JM − µ;w3w2w1;−−+⟩)
+σ(−1)J+µ+1eiφ23µ (|JM − µ;w1w3w2;−++⟩ − |JM − µ;w1w3w2; +−−⟩)

+e−iφ13µ (|JMµ;w2w3w1; + +−⟩ − |JMµ;w2w3w1;−−+⟩)
+eiφ23µ (|JMµ;w3w1w2; +−+⟩ − |JMµ;w3w1w2;−+−⟩)

Table 9.1: Combinaisons of Berman’s J helicity states that present a given parity and symmetry.
Depending on whether σ is chosen to be +1 or −1 the state is symmetric or anti-symmetric.
The parity eigenvalue of the two first sets of states is (−1)−µ while it is (−1)1−µ for the two last
one.
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9.1.1 Three-gluon glueball states

The eight states from Table 9.1 will now be used to construct states that model JPC three-
gluon glueballs. The procedure for this construction was outlined at the end of Section 8.1.
Specifically, this involves replacing |JMµ;w1w2w3;λ1λ2λ3⟩ in the right-hand side of equation
(8.22) with one of the states from Table 9.1. Due to their similarities, states form the first and
third lines from Table 9.1 can be treated together, as can those from the second and fourth
sets. Notably, due to symmetrization, each glueball state combines multiple Berman’s states
where the energy variables w1, w2 and w3 appear in different orders. This difference can be
transferred to the Ψ(w1, w2, w3) wave function by appropriately exchanging integration variables.
The resulting combinations are presented in Table 9.2. At this stage, the normalisation of the
symmetrised states is not guaranteed.

Table 9.2 shows that any JPC quantum numbers can, in principle, be realized by a three-gluon
system. However, it may be reasonable to assume that low-lying glueball states correspond to
symmetric helicity-momentum wave functions,

∀ i, j, k ∈ {1, 2, 3}, Ψ(wi, wj, wk) = Ψ(w1, w2, w3). (9.3)

Imposing this symmetry reduces the states in Table 9.2 to those in Table 9.3. Unlike the general
case, states with a symmetric helicity-momentum wave function exhibit a selection rule for
µ = 0. Specifically, when σ(−1)J = 1, terms involving +µ systematically cancel those with −µ.
This implies that states with µ = 0 and negative (positive) charge conjugation only exist for
odd (even) J values. Since the following discussions primarily consider states with negative
charge conjugation, µ = 0 will always imply an odd J . This feature highlights two interesting
properties of the spectrum. First, because the even value J = 0 can only be achieved by setting
µ = 0, no state with symmetric wave function, null total angular momentum and negative
charge conjugation can be constructed. Colour-singlet two-gluon states have only positive
charge conjugation, therefore a 0−− bound state of pure glue would either contradict hypothesis
(9.3) or require at least four constituent gluons, a requirement consistent with group theory
arguments [138]. Secondly, negative charge conjugation states with J = 2 must at least have
µ = 1. Qualitatively, one may suppose that higher µ projection of the total angular momentum
would result in higher energy states. If this is correct, the µ = 0 selection rule would push J = 2

states to higher masses.
This analysis is supported by glueball spectrum calculations from other approaches. For

instance, Figure 9.1, taken from reference reference [167], shows glueball masses calculated using
LQCD. In this spectrum, the first 0P− state appears above 4.5 GeV, significantly higher than the
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Figure 9.1: Glueball spectrum obtained using LQCD. The picture is taken from reference [167].

lowest JP− state, which lies below 3 GeV. This aligns with the preceding analysis. The J = 0

state may be interpreted as a first four-gluon state or a three-gluon state with a non-symmetric
helicity-momentum wave function Ψ(w1, w2, w3). Beyond J = 0, the hierarchy of even states
follows the expected pattern: the J = 1 and J = 3 states, which allow µ = 0, appear in order,
while the J = 2 state is shifted to higher energies. However, the situation for odd states remains
less clear. Further discussion is deferred until quantitative results are obtained.

States from Table 9.2 and 9.3 are also consistent with results from references [190] and [191].
In Reference [190], it is argued that no general selection rules govern the decay of a particle into
three massless spin-1 particles. This is consistent with the absence of selection rules in Table 9.2.
Reference [191] refines this discussion for symmetric decays into three photons, concluding that
such a decay is not possible for J = 0 particles. This agrees with the analysis of states from
Table 9.3. Moreover, the helicity triplets combinations constructed in [191] closely resemble
those in the current work. For this reason, the labels A′

2 and A′′
2 from reference [191] have been

adopted in Table 9.2 and 9.3 to distinguish these states.

9.1.2 Low-lying three-gluon Glueballs with negative charge conjuga-

tion

The current description of the glueball spectrum has remained qualitative. To move toward
quantitative analysis, the methodology based on the variational theorem, applied to two-gluon
glueballs in Chapter 7, will be extended to three-gluon glueballs. This approach involves,
on one hand, constructing a set of trial states designed to approximate three-gluon glueballs
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|Ψ;A′
2; JM ;C = −σ;P = ±(−1)µ⟩

=

∫
dw1dw2dw3

8

(
Ψ(w1, w2, w3) + e−iφ23µΨ(w3, w1, w2) + eiφ13µΨ(w2, w3, w1)

)
(|JMµ;w1w2w3; + + +⟩ ± |JMµ;w1w2w3;−−−⟩)

−σ(−1)J+µ

∫
dw1dw2dw3

8

(
Ψ(w2, w1, w3) + e−iφ13µΨ(w3, w2, w1) + eiφ23µΨ(w1, w3, w2)

)
(|JM − µ;w1w2w3; + + +⟩ ± |JM − µ;w1w2w3;−−−⟩)

|Ψ;A′′
2; JM ;C = −σ;P = ±(−1)µ⟩

=

∫
dw1dw2dw3

8

(
Ψ(w1, w2, w3) (|JMµ;w1w2w3;−++⟩ ± |JMµ;w1w2w3; +−−⟩)

+e−iφ23µΨ(w3, w1, w2) (|JMµ;w1w2w3; + +−⟩ ± |JMµ;w1w2w3;−−+⟩)

+eiφ13µΨ(w2, w3, w1) (|JMµ;w1w2w3; +−+⟩ ± |JMµ;w1w2w3;−+−⟩)
)

−σ(−1)J+µ

∫
dw1dw2dw3

8(
Ψ(w2, w1, w3) (|JM − µ;w1w2w3; +−+⟩ ± |JM − µ;w1w2w3;−+−⟩)

+e−iφ13µΨ(w3, w2, w1) (|JM − µ;w1w2w3; + +−⟩ ± |JM − µ;w1w2w3;−−+⟩)

+eiφ23µΨ(w1, w3, w2) (|JM − µ;w1w2w3;−++⟩ ± |JM − µ;w1w2w3; +−−⟩)
)

Table 9.2: Total angular momentum, parity and charge conjugation eigenstates for three-gluon
systems. A generic helicity-momentum wave function Ψ(w1, w2, w3) is considered. Labels A′

2

and A′′
2 differentiate the two symmetrical combinations of helicity triplets possible. These labels

are inspired by the notations in reference [191] and originate from crystallography [192].
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|Ψ;A′
2; JM ;C = −σ;P = ±(−1)µ⟩

=

∫
dw1dw2dw3

8
Ψ(w1, w2, w3)

(
1 + e−iφ23µ + eiφ13µ

)
(|JMµ;w1w2w3; + + +⟩ ± |JMµ;w1w2w3;−−−⟩)

−σ(−1)J+µ

∫
dw1dw2dw3

8
Ψ(w1, w2, w3)

(
1 + e−iφ13µ + eiφ23µ

)
(|JM − µ;w1w2w3; + + +⟩ ± |JM − µ;w1w2w3;−−−⟩)

|Ψ;A′′
2; JM ;C = −σ;P = ±(−1)µ⟩

=

∫
dw1dw2dw3

8
Ψ(w1, w2, w3)

(
(|JMµ;w1w2w3;−++⟩ ± |JMµ;w1w2w3; +−−⟩)

+e−iφ23µ (|JMµ;w1w2w3; + +−⟩ ± |JMµ;w1w2w3;−−+⟩)

+eiφ13µ (|JMµ;w1w2w3; +−+⟩ ± |JMµ;w1w2w3;−+−⟩)
)

−σ(−1)J+µ

∫
dw1dw2dw3

8

Ψ(w1, w2, w3)
(
(|JM − µ;w1w2w3; +−+⟩ ± |JM − µ;w1w2w3;−+−⟩)

+e−iφ13µ (|JM − µ;w1w2w3; + +−⟩ ± |JM − µ;w1w2w3;−−+⟩)

+eiφ23µ (|JM − µ;w1w2w3;−++⟩ ± |JM − µ;w1w2w3; +−−⟩)
)

Table 9.3: Total angular momentum, parity and charge conjugation eigenstates for three-gluon
systems. A symmetric helicity-momentum wave function Ψ(w1, w2, w3) is considered. Labels A′

2

and A′′
2 differentiate the two possible symmetrical combinations of helicity triplets. These labels

are inspired by the notations in reference [191] and originate from crystallography [192].
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accurately and, on the other, evaluating Hamiltonian matrix elements on this set. For the
former, appropriate trial helicity-momentum wave functions Ψ must be chosen. For the latter,
formulas to compute matrix elements on three-body helicity states are required. This subsection
addresses both these tasks for the low-lying three-gluon glueball states with negative charge
conjugation and with a symmetric Ψ function. Angular momenta up to J = 3 and µ projections
up to µ = 1 are considered. To keep equations concise, reduced notations are introduced for
Berman’s J-helicity states and for the three-body helicity states defined in (8.22),

|λ1λ2λ3⟩Jµ = |JMµ;w1w2w3;λ1λ2λ3⟩ , |Ψ;λ1λ2λ3⟩Jµ = |Ψ; JMµ;λ1λ2λ3⟩ . (9.4)

In |λ1λ2λ3⟩Jµ, the order of energy labels is tacitly assumed to be always w1w2w3. For clarity in
plain text, three-body states defined in equation (8.22) will be referred to as unsymmetrical
states, while those from Table 9.3 will be referred to as symmetrical states. Symmetrical states
corresponding to the above-named low-lying three-gluon glueballs can be made explicit using
these notations. Considering µ = 0, the following states are obtained,

|Ψ;A′
2;µ = 0; JPC = (2k + 1)±−⟩ = 1√

2

(
|Ψ;+ + +⟩2k+1

0 ± |Ψ;−−−⟩2k+1
0

)
, (9.5)

|Ψ;A′′
2;µ = 0; JPC = (2k + 1)±−⟩ = 1√

6

(
|Ψ;−++⟩2k+1

0 ± |Ψ;+−−⟩2k+1
0

+ |Ψ;+ +−⟩2k+1
0 ± |Ψ;−−+⟩2k+1

0

+ |Ψ;+−+⟩2k+1
0 ± |Ψ;−+−⟩2k+1

0

) (9.6)

where k ∈ N (even angular momenta are forbidden for µ = 0). Notations of the states have
slightly been adapted in comparison with those from Table 9.3. Considering µ = ±1, the
following states are obtained,

|Ψ;A′
2; |µ| = 1; JPC = J∓−⟩ =

(
|Ψ
(
1 + e−iφ23 + eiφ13

)
; + + +⟩J

1

± |Ψ
(
1 + e−iφ23 + eiφ13

)
;−−−⟩J

1

+ (−1)J |Ψ
(
1 + e−iφ13 + eiφ23

)
; + + +⟩J−1

± (−1)J |Ψ
(
1 + e−iφ13 + eiφ23

)
;−−−⟩J−1

)
,

(9.7)
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|Ψ;A′′
2; |µ| = 1; JPC = J∓−⟩ = 1√

12

(
|Ψ;−++⟩J1 ± |Ψ;+−−⟩J1 + |Ψeiφ13 ; +−+⟩J1

± |Ψeiφ13 ;−+−⟩J1 + |Ψe−iφ23 ; + +−⟩J1 ± |Ψe−iφ23 ;−−+⟩J1

+ (−1)J
(
|Ψ;+−+⟩J−1 ± |Ψ;−+−⟩J−1 + |Ψeiφ23 ;−++⟩J−1

± |Ψeiφ23 ; +−−⟩J−1 + |Ψe−iφ13 ; + +−⟩J−1 ± |Ψe−iφ13 ;−−+⟩J−1

))
.

(9.8)

In general, symmetrical states are linear combinations of unsymmetrical ones whose helicity-
momentum wave function is potentially modified by an additional kinematic factor introduced
during the symmetrisation process. In (9.5), (9.6) and (9.8), square root factors have been
added to ensure that symmetric states are normalised as long as unsymmetrical ones are. The
question of the normalisation of equation (9.7) is deferred to Section 9.3.

9.1.3 Selection of trial helicity-momentum wave functions

Let us start by selecting a suitable structure to use for trial helicity-momentum wave functions
Ψ(w1, w2, w3). The most convenient choice is probably a Gaussian shaped wave function for
which calculations are reasonably simple and which often offers great convergence properties.
Symmetrical states (9.5) to (9.8) being linear combinations of unsymmetrical ones, this discussion
takes place at the level of the latter. Gaussians may be constructed using different sets of
coordinates, thereby leading to non-equivalent structures. The most straightforward choice is
probably to consider a Gaussian shaped helicity-momentum wave function in PMP-coordinates,

ΨPMP(w1, w2, w3) = Ae−a((w1−b)2+(w2−b)2+(w3−b)2). (9.9)

Above, A is a normalisation constant used to ensure that (8.23) is respected. If an expansion with
more than one trial state is to be used, for instance adapting equation (7.28), the normalisation
condition is replaced by the evaluation of an overlap matrix [23]. In that case, the constant A
can be omitted. The structure (9.9) incorporates two non-linear variational parameters, a and b.
The former encodes the spreading in energy and has dimensions of inverse energy squared. The
latter encodes the position of the energy peak and has energy dimension. Different constant
for each terms in the exponential cannot be used to keep the trial wave function symmetrical.
The choice of wave function is, of course, arbitrary, and many modifications can be proposed.
After several tests, adding a square root factor

√
8w1w2w3 in front of the Gaussian was found

to improve convergence. As a result, the following trial wave function is suggested,

Ψa,b(w1, w2, w3) = A
√
8w1w2w3 e

−a((w1−b)2+(w2−b)2+(w3−b)2), (9.10)



9.2. EVALUATION OF MATRIX ELEMENTS 250

and the corresponding unsymmetrical state reads

|ΨPMP;λ1λ2λ3⟩Jµ = A

∫
dw1dw2dw3

8

√
8w1w2w3 e

−a((w1−b)2+(w2−b)2+(w3−b)2) |λ1λ2λ3⟩Jµ . (9.11)

Further calculations will require to switch for the system of coordinates depicted in relation
(8.38), namely u = sin(ϕ12), p12 and p3. In these new coordinates, Ψa,b(w1, w2, w3) becomes

Ψa,b(u, p12, p3) = A
√
p3 (8p212 + 2p23 (1− u2)) e

−a
2

(
6b2−4b

(√
4p212+p23+p3

)
+4p212+3p23

)
e−

a
2
u2p23 . (9.12)

One can already anticipate why this system of coordinates will be helpful: the variable u is
by definition the cosine of the angle that occurs in the change of basis formula (8.35), while the
variable p12 is the relative momentum between particle 1 and 2 in their CoMF, a variable of
great interest for the evaluation of two-body potential matrix elements. Symmetric states from
equations (9.7) and (9.8) supplement the helicity-momentum wave function with kinematics
factors that depend on the angles φij defined in (8.2). To complete the picture of the wave
function, these additional kinematic factors should be made explicit in u, p12, p3 coordinates,

cosφ12 =
(1− u2) p23 − 4p212
(1− u2) p23 + 4p212

, cosφ13 = −u
√

4p212 + p23 + p3√
4p212 + p23 + up3

,

cosφ23 =
u
√

4p212 + p23 − p3√
4p212 + p23 − up3

.

(9.13)

On one hand, in states (9.7), the following combinations of φij appear,

1 + e±iφ13 + e∓iφ23 =
(1− u2)(p23 − 2

√
(4p212 + p23)p

2
3) + 4p212

(1− u2)p23 + 4p212
∓ i

4p12u
√

(1− u2)p23
(1− u2)p23 + 4p212

. (9.14)

On the other hand, in states (9.8), φij angles are taken in complex exponential,

eiφ13 = −u
√

4p212 + p23 + p3√
4p212 + p23 + up3

+ i
2p12

√
1− u2√

4p212 + p23 + up3
,

eiφ23 =
u
√

4p212 + p23 − p3√
4p212 + p23 − up3

+ i
2p12

√
1− u2√

4p212 + p23 − up3
.

(9.15)

9.2 Evaluation of matrix elements

To acquire an approximate energy spectrum by using the variational theorem (1.53) requires
the evaluation of Hamiltonian matrix elements on trial states. Therefore, it requires deriving
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formulas for performing such calculations on symmetrical states. Since symmetrical states de-
compose as linear combinations of unsymmetrical ones (see equations (9.5) to (9.8)), establishing
formulas for the latter will give support to the evaluation of matrix elements for the former.
The extension to symmetrical states will be discussed further in the next subsection.

9.2.1 Evaluation on unsymmetrical states

Because helicity states are momentum eigenstates, the evaluation of kinetic energy operators
is the most straightforward to perform. To encompass many different kinematics at once, a
generic T (w1, w2, w3) kinetic energy is considered for now. This function is only supposed to
depend on the three w energies and not on the angles α, β, γ. First, definition (8.22) can be
used for both the bra and the ket,

J

µ̄⟨Ψ̄; λ̄1λ̄2λ̄3|T |Ψ;λ1λ2λ3⟩Jµ =

∫
dw̄1dw̄2dw̄3

8

dw1dw2dw3

8
Ψ̄∗(w̄1, w̄2, w̄3)Ψ(w1, w2, w3)

J

µ̄⟨λ̄1λ̄2λ̄3|T |λ1λ2λ3⟩Jµ.
(9.16)

Berman’s J-helicity states being eigenstates of the three w energies, the evaluation of T (w1, w2, w3)

on these comes down to a simple scalar multiplication,

J

µ̄⟨Ψ̄; λ̄1λ̄2λ̄3|T |Ψ;λ1λ2λ3⟩Jµ =

∫
dw̄1dw̄2dw̄3

8

dw1dw2dw3

8
Ψ̄∗(w̄1, w̄2, w̄3)Ψ(w1, w2, w3)

T (w1, w2, w3)
J

µ̄⟨λ̄1λ̄2λ̄3|λ1λ2λ3⟩
J

µ.

(9.17)

Finally, using the orthonormalisation relation of Berman’s J-helicity states, three Dirac deltas
are produced and removes the integrations on bar variables,

J

µ̄⟨Ψ̄; λ̄1λ̄2λ̄3|T |Ψ;λ1λ2λ3⟩Jµ

= δµ̄µ δλ̄1λ1
δλ̄2λ2

δλ̄3λ3

∫
dw1dw2dw3

8
Ψ̄∗(w1, w2, w3)Ψ(w1, w2, w3)T (w1, w2, w3).

(9.18)

As a reminder, both w1 and w2 vary from 0 to +∞ while w3 varies between |w1 − w2| and
w1 + w2. This formula allows for reasonably easy evaluations of kinetic energy matrix elements
on unsymmetrical states.

Let us turn to the two-body potential. For symmetric states, matrix elements of the three
two-body interactions are shown to be equal each-other. As a result, computing a single two-body
interaction matrix elements, and multiplying it by three, is sufficient to evaluate the entire
potential energy of the system. Because the current goal is to perform evaluations on such
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symmetric states, calculations will only be developed for the interaction between particles 1

and 2. One may expect to re-use the method set up to compute potential matrix elements
for two-body systems. To do so, the trial states have to be developed in Wick’s helicity basis
in order introduce two-body sub-couplings. From definition (8.22), one can use the expansion
(8.35) to develop the state in Wick’s helicity basis,

|Ψ;λ1λ2λ3⟩Jµ = ei(π/2)(λ2−λ1−µ)

∞∑
j12=|λ1−λ2|

j12∑
λ12=−j12

iλ12

√
2j12 + 1

2
dJµλ12−λ3

(π/2)∫
dw1dw2dw3

8
Ψ(w1, w2, w3) d

j12
λ12 λ1−λ2

(π/2− ϕ12) |p3; JM ; j12λ12λ3; p12λ1λ2⟩ .

(9.19)

For the sake of readability, summation ranges are omitted in the next expressions. For further
convenience, variables u, p12 and p3 are introduced in the integral (see relations (8.38) and
(8.81)),

|Ψ;λ1λ2λ3⟩Jµ = ei(π/2)(λ2−λ1−µ)
∑
j12

∑
λ12

iλ12

√
2j12 + 1

2
dJµλ12−λ3

(π/2)∫
p3p12 dudp12dp3

4
√

4p212 + p23
Ψ(u, p12, p3) d

j12
λ12 λ1−λ2

(arccos u) |p3; JM ; j12λ12λ3; p12λ1λ2⟩ .
(9.20)

As a reminder, integration ranges are −1 to 1 for u while it is 0 to ∞ for both p3 and p12.
Because this important result is relatively cumbersome, the following notation shortcuts are
introduced,

Cj12λ12

Jµ;λ1λ2λ3
= ei(π/2)(λ2−λ1−µ+λ12)

√
2j12 + 1

2
dJµλ12−λ3

(π/2), (9.21)

Ψj12
λ12 λ1−λ2

(u, p12, p3) = Ψ(u, p12, p3) d
j12
λ12 λ1−λ2

(arccos u). (9.22)

The above C coefficients should not be confused with those for two-body systems, defined in
relation (7.6). The difference should be clear depending on the context and looking at the index
structure. With these notations, equation (9.20) shortens,

|Ψ;λ1λ2λ3⟩Jµ

=
∑
j12

∑
λ12

Cj12λ12

Jµ;λ1λ2λ3

∫
p3p12 dudp12dp3

4
√

4p212 + p23
Ψj12

λ12 λ1−λ2
(u, p12, p3) |p3; JM ; j12λ12λ3; p12λ1λ2⟩ .

(9.23)

This formula will be very helpful to evaluate two-body potential matrix elements associated
with particle 1 and 2. This interaction, denoted O, is supposed to solely depend on the relative
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distance between these two particles, r12 = |r1 − r2|. This distance is assumed to be defined in
the (12)-CoMF. First, equation (9.23) is used on both the bra and the ket,

J

µ̄⟨Ψ̄; λ̄1λ̄2λ̄3| O(r12) |Ψ;λ1λ2λ3⟩Jµ =
∑
j̄12

∑
λ̄12

∑
j12

∑
λ12

(
C j̄12λ̄12

Jµ̄;λ̄1λ̄2λ̄3

)∗
Cj12λ12

Jµ;λ1λ2λ3∫
p̄3p̄12 dūdp̄12dp̄3

4
√

4p̄212 + p̄23

(
Ψ̄j̄12

λ̄12 λ̄1−λ̄2
(ū, p̄12, p̄3)

)∗ ∫ p3p12 dudp12dp3

4
√

4p212 + p23
Ψj12

λ12 λ1−λ2
(u, p12, p3)

⟨p̄3; JM ; j̄12λ̄12λ̄3; p̄12λ̄1λ̄2| O(r12) |p3; JM ; j12λ12λ3; p12λ1λ2⟩ .

(9.24)

By doing so, the evaluation of O(r12) on Berman’s J-helicity states comes down to its evaluation
on Wick’s J-helicity states. The latter, thanks to the intermediary coupling in Wick’s definition,
consists of evaluating on O(r12) on two-body J-helicity states. Dividing up the normalisation
factor from (8.32) between both state and ensuring a normalisation for two-body states consistent
with Chapter 6, one gets

⟨p̄3; JM ; j̄12λ̄12λ̄3; p̄12λ̄1λ̄2| O(r12) |p3; JM ; j12λ12λ3; p12λ1λ2⟩

=
4
√
p̄23 + 4p̄ 2

12
4
√
p23 + 4p 2

12√
p̄3p̄12

√
p12p3

δ(p̄3 − p3)δλ̄3λ3
⟨p̄12; j̄12λ̄12; λ̄1λ̄2| O(r12) |p12; j12λ12;λ1λ2⟩ .

(9.25)

Because r12 is defined in the (12)-CoMF, the residual matrix elements on two-body states can
be computed by using formulas developed in Section 7.1. For central potentials, it has proven
to cancel for j̄12 ̸= j12 or λ̄12 ̸= λ12 in equation (7.11). It has also been enhanced in this section
that these matrix elements, as soon as non-zero, does not truly dependent on the total angular
momentum projection λ12. Equation (9.25) can be plugged into equation (9.24),

J

µ̄⟨Ψ̄; λ̄1λ̄2λ̄3| O(r12) |Ψ;λ1λ2λ3⟩Jµ = δλ̄3λ3

∑
j12

∑
λ12

(
Cj12λ12

Jµ̄;λ̄1λ̄2λ3

)∗
Cj12λ12

Jµ;λ1λ2λ3∫
p3
√
p̄12p12 dūdp̄12 dudp12 dp3

4 4
√
p23 + 4p̄ 2

124
4
√
p23 + 4p 2

12

(
Ψ̄j12

λ12 λ̄1−λ̄2
(ū, p̄12, p3)

)∗
Ψj12

λ12λ1−λ2
(u, p12, p3)

⟨p̄12; j12λ12; λ̄1λ̄2| O(r12) |p12; j12λ12;λ1λ2⟩ .

(9.26)

The lower boundary in the summation on j12 must now fulfill both the constraints j12 ≥ |λ1−λ2|
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and j12 ≥ |λ̄1 − λ̄2|. This integral can be reorganised as follows,

J

µ̄⟨Ψ̄; λ̄1λ̄2λ̄3| O(r12) |Ψ;λ1λ2λ3⟩Jµ = δλ̄3λ3

∑
j12

∑
λ12

(
Cj12λ12

Jµ̄;λ̄1λ̄2λ3

)∗
Cj12λ12

Jµ;λ1λ2λ3∫
p3dp3

∫
dp̄12
2

dp12
2

Ψ̃(p̄12, p3; j12, λ12, λ̄1 − λ̄2; Ψ̄
∗)Ψ̃(p12, p3; j12, λ12, λ1 − λ2; Ψ)

⟨p̄12; j12λ12; λ̄1λ̄2| O(r12) |p12; j12λ12;λ1λ2⟩

(9.27)

where
Ψ̃(p12, p3; j12, λ12,∆λ; Ψ) =

√
p12

2 4
√
4p212 + p23

∫
duΨj12

λ12 ∆λ(u, p12, p3) (9.28)

and where the product of three-body C coefficients can be made a bit more explicit,(
Cj12λ12

Jµ̄;λ̄1λ̄2λ3

)∗
Cj12λ12

Jµ;λ1λ2λ3
= ei

π
2 ((λ2−λ̄2)+(λ̄1−λ1)+(µ̄−µ)) 2j12 + 1

2
dJµ̄ λ12−λ3

(π/2)dJµλ12−λ3
(π/2)

= (−1)(λ2−λ̄2)/2+(λ̄1−λ1)/2+(µ̄−µ)/2 2j12 + 1

2
dJµ̄ λ12−λ3

(π/2)dJµλ12−λ3
(π/2).

(9.29)

In equation (9.27), the function Ψ̃ acts like an unnormalised two-body helicity-momentum wave
function that would depend on three parameters (a, b and p3). Therefore, the evaluation of the
integrals on p12 and p̄12 is fully analogous to what has been done to compute potential matrix
elements for two-body systems.

Equations (9.27) to (9.29) are key formulas for the current work as they allow computation
of two-body potential matrix elements on three-body helicity states. However, these formulas
involves the evaluation of an infinite series of four dimensional integrals. Even when trun-
cating this series, calculating such a large number of integrals remains a significant challenge.
Gaining deeper insight into the components of this formula may help mitigate this complexity.
Complement 9.A is dedicated to this analysis.

9.2.2 Evaluation on symmetrical states

The previous subsection worked at obtaining formulas to compute Hamiltonian matrix
elements on unsymmetrical states. In the current one, this technology is used to generalise
calculations to symmetric states. Starting with kinetics, a formula for both symmetric states
having µ = 0 can easily be obtained thanks to the absence of mixing between helicities in (9.18).
The situation is even simpler because non-zero terms prove to be independent of the actual
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value of λ1, λ2 or λ3. Only a single integral has to be evaluated,

⟨Ψ̄;A′
2; 0; (2k + 1)±−|T |Ψ;A′

2; 0; (2k + 1)±−⟩ = ⟨Ψ̄;A′′
2; 0; (2k + 1)±−|T |Ψ;A′′

2; 0; (2k + 1)±−⟩

=

∫
dw1dw2dw3

8
Ψ̄∗(w1, w2, w3)Ψ(w1, w2, w3)T (w1, w2, w3). (9.30)

Concerning states based on µ = ±1, the presence of Kronecker deltas in (9.18) still simplifies
the evaluation of kinetic energy. For the A′

2 states, see equation (9.7), due to the additional
kinematic factors arising from the symmetrisation, the result requires the evaluation of a slightly
different integral,

⟨Ψ̄;A′
2; 1; J

∓−|T |Ψ;A′
2; 1; J

∓−⟩

=

∫
dw1dw2dw3

2
Ψ̄∗(w1, w2, w3)Ψ(w1, w2, w3)|1 + e−iφ13 + eiφ23|2 T (w1, w2, w3).

(9.31)

For the A′′
2 states, see equation (9.8), the kinetic energy matrix elements are again provided by

the previous integral,

⟨Ψ̄;A′′
2; 1; J

∓−|T |Ψ;A′′
2; 1; J

∓−⟩

=

∫
dw1dw2dw3

8
Ψ̄∗(w1, w2, w3)Ψ(w1, w2, w3)T (w1, w2, w3).

(9.32)

For each symmetric state, kinetic energy matrix elements can be evaluated in a single integral.
Notice that equations (9.30) to (9.32) allows to infer formulas for the overlap between symmetrical
states by plugging T (w1, w2, w3) = 1.

Let us move on to the case of two-body potential. Due to the δλ̄3λ3
factor in (9.27), some

matrix elements on unsymmetrical states are directly shown to cancel. For state (9.5), the
resulting expression only requires to evaluate two matrix elements,

⟨Ψ̄;A′
2; 0; (2k + 1)±−| O(r12) |Ψ;A′

2; 0; (2k + 1)±−⟩

=
1

2

( 2k+1

0⟨Ψ̄; + + +| O(r12) |Ψ;+ + +⟩2k+1
0 +

2k+1

0⟨Ψ̄;−−−|O(r12) |Ψ;−−−⟩2k+1
0

)
.

(9.33)

One can immediately observe that potential matrix elements for these states are parity de-
generated. Concerning state (9.6), this sum is composed of twelve matrix elements including
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non-diagonal ones,

⟨Ψ̄;A′′
2; 0; (2k + 1)±−| O(r12) |Ψ;A′′

2; 0; (2k + 1)±−⟩

=
1

6

( 2k+1

0⟨Ψ̄;−++| O(r12) |Ψ;−++⟩2k+1
0 +

2k+1

0⟨Ψ̄; +−+| O(r12) |Ψ;+−+⟩2k+1
0

+
2k+1

0⟨Ψ̄;−−+| O(r12) |Ψ;−−+⟩2k+1
0 +

2k+1

0⟨Ψ̄;−+−|O(r12) |Ψ;−+−⟩2k+1
0

+
2k+1

0⟨Ψ̄; +−−|O(r12) |Ψ;+−−⟩2k+1
0 +

2k+1

0⟨Ψ̄; + +−|O(r12) |Ψ;+ +−⟩2k+1
0

)
+
1

3

( 2k+1

0⟨Ψ̄; +−+| O(r12) |Ψ;−++⟩2k+1
0 +

2k+1

0⟨Ψ̄; +−−|O(r12) |Ψ;−+−⟩2k+1
0

± 2k+1

0⟨Ψ̄;−−+| O(r12) |Ψ;−++⟩2k+1
0 ± 2k+1

0⟨Ψ̄;−−+| O(r12) |Ψ;+−+⟩2k+1
0

± 2k+1

0⟨Ψ̄;−+−|O(r12) |Ψ;+ +−⟩2k+1
0 ± 2k+1

0⟨Ψ̄; + +−|O(r12) |Ψ;+−−⟩2k+1
0

)
.

(9.34)

Finally, concerning states with µ = ±1, calculations will only be illustrated with |Ψ;A′
2; 1; J

−±⟩
because it is less cumbersome to decompose than |Ψ;A′′

2; 1; J
−±⟩,

⟨Ψ̄;A′
2; 1; J

∓−| O(r12) |Ψ;A′
2; 1; J

∓−⟩

=
( J

1
⟨
(
1 + eiφ13 + e−iφ23

)
Ψ̄| ; + + +O(r12) |

(
1 + eiφ13 + e−iφ23

)
Ψ;+ + +⟩J

1

+
J

1
⟨
(
1 + eiφ13 + e−iφ23

)
Ψ̄| ;−−−O(r12) |

(
1 + eiφ13 + e−iφ23

)
Ψ;−−−⟩J

1

+
J

−1
⟨
(
1 + e−iφ13 + eiφ23

)
Ψ̄; + + +| O(r12) |

(
1 + e−iφ13 + eiφ23

)
Ψ;+ + +⟩J−1

+
J

−1
⟨
(
1 + e−iφ13 + eiφ23

)
Ψ̄;−−−|O(r12) |

(
1 + e−iφ13 + eiφ23

)
Ψ;−−−⟩J−1

+ 2(−1)J
J

1
⟨
(
1 + eiφ13 + e−iφ23

)
Ψ̄; + + +| O(r12) |

(
1 + e−iφ13 + eiφ23

)
Ψ;+ + +⟩J−1

+ 2(−1)J
J

1
⟨
(
1 + eiφ13 + e−iφ23

)
Ψ̄| ;−−−O(r12) |

(
1 + e−iφ13 + eiφ23

)
Ψ;−−−⟩J−1

)
.

(9.35)

In general, the symmetry properties depicted in Complement 9.A facilitate in evaluating these
matrix elements. They show that part of those on unsymmetrical states are strictly equal,
while some others involve the same integrals but combine them differently (see equation (9.27)).
This significantly reduces the overall computational cost. This is especially true if the helicity-
momentum wave function Ψ is even in u. Apart from diagonal matrix elements, symmetric
states are also shown to mix with each other. For instance, mixtures between |Ψ;A′

2; 0; (2k)
±−⟩
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and |Ψ;A′′
2; 0; (2k)

±−⟩ are given by

⟨Ψ̄;A′
2; 0; (2k + 1)±−| O(r12) |Ψ;A′′

2; 0; (2k + 1)±−⟩ = 1√
12( 2k+1

0⟨Ψ̄; + + +| O(r12) |Ψ;−++⟩2k+1
0 +

2k+1

0⟨Ψ̄; + + +| O(r12) |Ψ;+−+⟩2k+1
0

± 2k+1

0⟨Ψ̄; + + +| O(r12) |Ψ;−−+⟩2k+1
0 +

2k+1

0⟨Ψ̄;−−−|O(r12) |Ψ;+−−⟩2k+1
0

± 2k+1

0⟨Ψ̄;−−−|O(r12) |Ψ;+ +−⟩2k+1
0 +

2k+1

0⟨Ψ̄;−−−|O(r12) |Ψ;−+−⟩2k+1
0

)
.

(9.36)

However, it will be shown in the next section that this mixing is quite small for three-gluon
glueballs and only affects masses very slightly.

9.3 Determination of the low-lying Glueball Spectrum

Trial states and formulas set up all along the previous sections will now be used to compute
a true mass spectrum for 1±− three-gluon glueballs. It will require to evaluate matrix elements
of a Hamiltonian that should model three-gluon glueballs. This work considers the following
structure for the latter,

H = T (w1, w2, w3) + V (r12) + V (r13) + V (r23). (9.37)

with rij = |ri−rj|. Different kinematics T can be envisaged for gluons. Although these particles
are formally massless, they acquire a constituent mass in some potential models. In the following,
calculations will be performed considering ultra-relativistic kinematics,

T (w1, w2, w3) = w1 + w2 + w3. (9.38)

Concerning potential, funnel interactions will be assumed,

V (r) = σmr −
3αs

2r
. (9.39)

Above, σm is the meson string tension, generally set around 0.185GeV2, and αs is the strong
coupling constant. In the following, the latter is fixed at 0.450 (as in Chapter 7 and reference
[152]). The mesonic string tension is used as confinement constant because each gluon is
supposed to provide both a 3 and a 3̄ flux tube. The six flux tubes join two by two in a ∆ shape,
as illustrated in Figure 9.2. Because each junction connects 3 and 3̄ flux tubes, the meson string
tension has not to be rescaled. The factor 3/2 is the colour factor corresponding with three
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3 3̄

Figure 9.2: Schematic representation of the ∆ junction modelling three-gluon glueballs in the
current work. Gluons bounds two by two by pooling 3 and 3̄ flux tubes.

gluons in a colour singlet. The use of this potential and its comparison with a Y junction is
explained in Complement 9.B. To avoid reproducing many evaluations for different mesonic
string tensions σm, dimensionless variables are introduced by rescaling the current ones with
the square-root of the string tension,

wi = wi/
√
σm, rij =

√
σm rij. (9.40)

Dimensionless equivalent for p3 and p12 are also defined

p3 = p3/
√
σm, p12 = p12/

√
σm. (9.41)

Because u is already dimensionless, it remains unchanged. Relation (8.38) still relates variables
w1,w2,w3 and u,p12,p3. Using these new coordinates, a dimensionless version H of the
Hamiltonian (9.37) is introduced,

H = H/
√
σm,= T(w1,w2,w3) + V(r12) + V(r13) + V(r23) (9.42)

where

T(w1,w2,w3) = w1 +w2 +w3, V(r) = r − 3αs

2r
. (9.43)

This Hamiltonian will be evaluated on different symmetric trial states. To start with, a single
trial state is considered. As a reminder, the reasonable trial wave function that had been chosen
is

Ψa,b(w1, w2, w3) = A
√
8w1w2w3e

−a((w1−b)2+(w2−b)2+(w3−b)2). (9.44)

For states (9.5) and (9.6), this trial wave function remains unmodified. For states (9.7) and (9.8),
it has to be multiplied by different kinematic factors to ensure the right symmetry properties.
In the following, calculations will be made explicit for a generic kinematic factor, denoted
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Γ(w1, w2, w3). These trial wave functions are to be turned into the new dimensionless coordinate
system. The change simply rescales the a parameter by a factor σm and modify the value of the
normalisation constant A,

a = σma, b = b/
√
σm, A = σ

3
2
mA. (9.45)

The rescaling factor for the normalisation constant has been chosen to eliminate the dimensions
of the wave function. The use of a dimensionless wave function also suggests to rescale Berman’s
and Wick’s bases to make them dimensionless,

|JMµ;w1w2w3;λ1λ2λ3⟩ = σ
3
4 |JMµ;w1w2w3;λ1λ2λ3⟩ , (9.46)

|p3; JM ; j12λ12λ3;p12λ1λ2⟩ = σ
3
4 |p3; JM ; j12λ12λ3; p12λ1λ2⟩ . (9.47)

All the formulas set up to evaluate matrix elements can now be switched to the new coordinates.
Taking every change into account, all the rescaling factors cancels each others. As a result, each
formula can be naively turned into dimensionless coordinates by replacing A, a, wi, p3 and/or
p12 by their dimensionless counterpart.

At first, let us investigate the normalisation of the symmetric trial states. For states (9.5),
(9.6) and (9.8), the normalisation constant A is fixed by imposing the normalisation of the
unsymmetrical trial states, implying that Ψa,b must satisfy (8.23). Switching to dimensionless
coordinates, one has to evaluate the following integral,

|A|2 =
(∫

dw1dw2dw3w1w2w3 e
−2a((w1−b)2+(w2−b)2+(w3−b)2)

)−1

, (9.48)

where both w1 and w2 are integrated between 0 and ∞ while w3 is integrated between |w1−w2|
and w1 + w2. Generic multidimensional integration techniques provide fast and accurate
evaluations of A. As inferred from (9.31), the situation is slightly more complicated for state
(9.7) due to the additional kinematic factor. For the A′

2 state, the normalization involves the
integral

|A|2 =
(
4

∫
dw1dw2dw3w1w2w3 e

−2a((w1−b)2+(w2−b)2+(w3−b)2)|1 + e−iφ13 + eiφ23|2
)−1

. (9.49)

It is possible to evaluate these two integrals numerically, with any desired accuracy.
The evaluation of kinetic energy matrix elements is analogous to the normalisation. States

(9.5), (9.6) and (9.8) requires to evaluate a single three-dimensional integral, as demonstrated
in relations (9.30) and (9.32). For the current trial wave function, it equates to compute the
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following integral

⟨T⟩ = |A|2
∫

dw1dw2dw3w1w2w3 e
−2a((w1−b)2+(w2−b)2+(w3−b)2)(w1 +w2 +w3). (9.50)

On the other hand, kinetic energy matrix elements for state (9.7) are provided by relation (9.31),
which complements the integrand with a kinematic factor,

⟨Ψa,b;A
′
2;±; 1±−|T |Ψa,b;A

′
2;±; 1±−⟩ =

4|A|2
∫

dw1dw2dw3w1w2w3 e
−2a((w1−b)2+(w2−b)2+(w3−b)2)

|1 + e−iφ13 + eiφ23|2 (w1 +w2 +w3).

(9.51)

It remains to evaluate potential matrix elements. As already mentioned, thanks to the
symmetry of the state, the evaluation for the interaction between particles 1 and 2 is sufficient
to infer the full potential energy of the ∆ junction,

⟨V(r12) + V(r13) + V(r23)⟩ = 3 ⟨V(r12)⟩ . (9.52)

Relations (9.33), (9.34) and (9.35) reduce evaluations on symmetric states to several evaluations
on unsymmetrical states, eventually with additional kinematic factors. The latter evaluations
can be performed using formula (9.27). Specifying for the current trial wave function and using
variables u, p12 and p3 defined in equation (8.37), one gets

J

µ⟨Ψa,bΓ̄; λ̄1λ̄2λ̄3|V(r12) |Ψa,bΓ;λ1λ2λ3⟩Jµ = δλ̄3λ3

∑
j12

∑
λ12

(
Cj12λ12

Jµ;λ̄1λ̄2λ3

)∗
Cj12λ12

Jµ;λ1λ2λ3∫
p3dp3

∫
dp̄12

2

dp12

2
Ψ̃∗
a,b(p̄12,p3; j12, λ12, λ̄1 − λ̄2; Γ̄)Ψ̃a,b(p12,p3; j12, λ12, λ1 − λ2; Γ)

⟨p̄12; j12λ12; λ̄1λ̄2|V(r12) |p12; j12λ12;λ1λ2⟩

(9.53)

where

Ψ̃a,b(p12,p3; j12, λ12,∆λ; Γ) = A

√
p12p3

2 4
√

4p2
12 + p2

3

e
− a

2

(
6b2−4b

(√
4p2

12+p
2
3+p3

)
+4p2

12+3p2
3

)
∫ 1

−1

du
√

8p2
12 + 2p2

3 (1− u2) dj12λ12 ∆λ(arccos u) e
−a

2
p2
3u

2

Γ(u,p12,p3).

(9.54)

These integrals must be evaluated. Performing efficient numerical integrations requires to
slightly modify the variables and to refine the definition of Ψ̃. First, because the integral on p3

will be performed using a generalised Gauss-Laguerre quadrature, the variable p3 is modified as
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follows

x = 3ap2
3, p3 =

√
x

3a
, p3dp3 =

dx

6a
. (9.55)

After replacement and a bit of reorganisation, the integrals to evaluate become

|A|2
√

2

(6a)3

∫ √
x e−xdx

∫
dp̄12

2

dp12

2
Θa,b(p̄12, x; j12, λ12, λ̄1 − λ̄2; Γ̄

∗)

Θa,b(p12, x; j12, λ12, λ1 − λ2; Γ) ⟨p̄12; j12λ12; λ̄1λ̄2|V(r12) |p12; j12λ12;λ1λ2⟩

(9.56)

with a function Θ that replaces Ψ̃,

Θa,b(p12, x; j12, λ12,∆λ; Γ) = Fa,b(p12, x)

∫
du Ka(u,p12, x; j12, λ12,∆λ; Γ) (9.57)

where
Fa,b(p12, x) =

√
p12

2 4

√
4p2

12 +
x
3a

e
− a

2

(
6b2−4b

(√
4p2

12+x/(3a)+
√

x/(3a)
)
+4p2

12

)
(9.58)

and where

Ka(u,p12, x; j12, λ12,∆λ; Γ)

=

√
8p2

12 +
2x

3a
(1− u2) dj12λ12 ∆λ(arccos u) e

−x
6
u2

Γ
(
u,p12,

√
x/(3a)

)
.

(9.59)

Symmetry properties of Θ under modifications of indices λ12 and ∆λ are the same as the
ones of Ψ̃. They are compiled in Complement 9.A. Integrals (9.56) and (9.57) can be computed
using a series of Gauss quadratures. The following procedure is applied.

• Choose a definite number of points to use in each of the integrals on x, p12, p̄12 and u.
Notice that the integrals on p12 and p̄12 will be turned into integrals on v = p12 + p̄12 and
v̄ = p12 − p̄12, as suggested in Section 7.1. Because the integral on v̄ is the most sensitive,
it is recommended to assign the greatest number of points to it.

• Accuracies being chosen, identify the different x values and p12 values at which an
evaluation of the function Θ will be required and perform all the necessary evaluations.
Gauss-Legendre quadrature works very well for the integral on u. The result is stored for
further use.

• For each x value, compute the two-body matrix elements in the same way it has been
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done in Chapter 7. Thanks to the previous step, two-body wave functions Θ have already
been tabulated. Again, the result is stored for further use.

• At this stage, only the integral on x remains. Perform this last integral by using the
evaluations of two-body matrix elements stored during the last step. As already mentioned,
a Gauss-Laguerre quadrature is the most adapted.

For each value of j12 and λ12, that is for each term in the sum in equation (9.53), four integrals
are evaluated numerically. Since the sum extends to j12 → ∞, the number of necessary integrals
would be infinite. In practice, the sum on j12 is truncated at a given level, denoted jmax. Plugging
the computed integrals into equation (9.53) allows for an approximate evaluation of two-body
potential matrix elements on unsymmetrical trial states. Because of the multiple quadratures
and because of this truncation, the exactness of the evaluation cannot be guaranteed. The
matrix elements on unsymmetrical states can be combined following expressions (9.33) to (9.36)
in order to compute those on symmetrical trial states. To get the full potential energy, the factor
3 from equation (9.52) is not to be forgotten. Once potential matrix elements on symmetrical
states have been computed, the contribution from kinetic energy is added, and the Hamiltonian
matrix elements are obtained. This calculation is repeated for many different couples (a,b) and
only the minimum value is retained as an approximation for the true spectrum.

Since these states are the simplest to handle, convergence properties are illustrated using
|Ψa,b;A

′
2; 0; 1

±−⟩ and |Ψa,b;A
′′
2; 0; 1

±−⟩. All the following evaluations will be performed with
αs = 0.450 [152]. To start with, calculations are performed for various numbers of points used in
the different quadratures. All these computations employs for now the same cut-off at j12 = 20.
The minimisation process is executed for each configurations. The results are summarized in
Table 9.4. As expected, the integrals over u and x converge with as few as 30 points. While
slightly more sensitive, the integral on v does not require more than 50 points for sufficient
accuracy in the current context. The key parameter for ensuring precision is the number of
points used in the integral over v. Using 100 points, the energy stabilizes to two significant digits.
The search for a minimum in the variational parameters can also be illustrated. Figure 9.3
shows energy evaluations over a range of (a,b) pairs. Clear minima are observed for each state.
Lastly, the convergence of the sum over j12 can be examined by repeating evaluations with
various cut-off values. The result is displayed in Figure 9.4. Although the convergence behaviour
differs slightly between states, a reasonable convergence is achieved in all cases. Notice that the
j12 convergence can also be assessed by calculating normalisation by means of equation (9.53),
substituting V(r12) with the identity operator.

Before to move on to the determination of a complete spectrum, the mixing between different
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Figure 9.3: Plot of Hamiltonian matrix element for a single trial state depending on the non-
linear variational parameters a and b. Left : a symmetric state |Ψa,b;A

′
2; 0; 1

±−⟩ is considered.
Right : symmetric states |Ψa,b;A

′′
2; 0; 1

±−⟩ are considered (even with orange triangles and odd
with blue squares). Quadrature with 30 points have always been used except for v̄ where 100
points have been used. A cut-off jmax = 20 has been chosen.

symmetric states is to be investigated. This issue will be illustrated using |Ψa,b;A
′
2; 0; 1

+−⟩ and
|Ψa,b;A

′′
2; 0; 1

+−⟩. Without allowing for mixing, approximate energies are simply obtained by
evaluating the Hamiltonian on each state separately,

EA′
2;0

= 10.020, EA′′
2 ;0

= 10.269. (9.60)

Introducing mixing between these state requires the evaluation of off-diagonal Hamiltonian
matrix elements and solving the corresponding eigenvalue problem. The off-diagonal matrix
elements of the kinetic energy cancel, while those for the potential are calculated using formula
(9.36). The splitting is found to be maximal when both states share the same variational
parameters. The resulting optimal eigenvalues of the Hamiltonian matrix are

E1 = 9.9902, E2 = 10.3319. (9.61)

As shown, the mixing slightly affects the energies, but this effect does not exceed 1% of the
original value. Mixing with states of higher mass is expected to have an even smaller impact
due to the increasing energy gap. Consequently, the following calculations will be performed
using pure symmetric states.

A concrete three-gluon glueball spectrum can now be computed. Again, αs = 0.450 is
used. Calculations are performed with a cut-off at j12 = 20 for the summation and with 30

points for each quadrature, except for v̄ where 100 points are used. Full optimisations of the
variational parameters a and b are performed. The states |Ψa,b;A

′
2; 0; J

±−⟩, |Ψa,b;A
′′
2; 0; J

±−⟩
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For |Ψ;A′
2; 0; 1

±−⟩:

(Nu, Nv, Nv̄, Nx) Energy

(30, 30, 30, 30) 9.9499

(50, 30, 30, 30) 9.9499

(100, 30, 30, 30) 9.9499

(30, 50, 30, 30) 9.9536

(30, 100, 30, 30) 9.9536

(30, 30, 50, 30) 9.9895

(30, 30, 100, 30) 10.0202

(30, 30, 30, 50) 9.9499

(30, 30, 30, 100) 9.9499

For |Ψ;A′′
2; 0; 1

+−⟩:

(Nu, Nv, Nv̄, Nx) Energy

(30, 30, 30, 30) 10.1793

(50, 30, 30, 30) 10.1793

(100, 30, 30, 30) 10.1793

(30, 50, 30, 30) 10.1817

(30, 100, 30, 30) 10.1817

(30, 30, 50, 30) 10.2297

(30, 30, 100, 30) 10.2689

(30, 30, 30, 50) 10.1793

(30, 30, 30, 100) 10.1793

For |Ψ;A′′
2; 0; 1

−−⟩:

(Nu, Nv, Nv̄, Nx) Energy

(30, 30, 30, 30) 10.0566

(50, 30, 30, 30) 10.0566

(100, 30, 30, 30) 10.0566

(30, 50, 30, 30) 10.0616

(30, 100, 30, 30) 10.0616

(30, 30, 50, 30) 10.1097

(30, 30, 100, 30) 10.1512

(30, 30, 30, 50) 10.0566

(30, 30, 30, 100) 10.0566

Table 9.4: Evaluations of the glueball masses in unit of
√
σ for different numbers of points for the

quadratures. For |Ψ;A′
2; 0; 1

±−⟩, energies are given for (a,b) = (0.35, 1.8). For |Ψ;A′
2; 0; 1

+−⟩,
energies are given for (a,b) = (0.45, 1.95). For |Ψ;A′

2; 0; 1
−−⟩, energies are given for (a,b) =

(0.35, 1.9). A cut-off at j12 = 20 has been used.
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Figure 9.4: Evolution of the lowest three-gluon glueball masses depending on the cut-off for
the sum in j12. Results for |Ψa,b;A

′
2; 0; 1

±−⟩ use (a,b) = (0.35, 1.8) and are displayed with
green circles. Results for|Ψa,b;A

′′
2; 0; 1

+−⟩ use (a,b) = (0.45, 1.95) and are displayed with orange
triangles. Results for |Ψa,b;A

′′
2; 0; 1

−−⟩ use (a,b) = (0.35, 1.9) and are displayed with blue
squares.
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and |Ψa,b;A
′
2; 1; J

±−⟩ are investigated up to J = 3. However, states |Ψa,b;A
′′
2; 1; J

±−⟩ are not
considered, as they involve significantly more computations of matrix elements on unsymmetrical
states, leading to a substantial increase in computational cost. The resulting three-gluon glueball
masses, expressed in unit of

√
σ, are presented in Table 9.5. For comparison, Figure 9.6 displays

these masses alongside results from LQCD. Masses are normalized to the lowest state, 1+−.
Several observations support a relatively good agreement between the current calculation and
LQCD results [166, 167].

• The lowest 1+− and 3+− three-gluon glueballs obtained using the helicity formalism appear
at the correct energy. However, the helicity formalism predicts a pair of states, whereas
LQCD predicts only a single state [166, 167].

• The lowest 2+− glueball is found with the same hierarchy in both approaches. However,
its energy is 10% lower using the helicity formalism. Unlike the lowest 1+− and 3+−,
the 2+− does not exhibit a nearby secondary state, but this is an artifact resulting from
the omission of |Ψa,b;A

′′
2; 1; J

±−⟩ states in the analysis. The 10% discrepancy may be
explained by this omission : including |Ψa,b;A

′′
2; 1; 2

+−⟩ could slightly shift the 2+− average
energy. It may also stem from the simplicity of the Hamiltonian used, which does not
account for spin interactions.

• For negative parity, the first excited 1−− state predicted by the helicity formalism appears
similar to the lowest 1−− observed in LQCD. As for 2+−, the relative energy is around 5%

too low. This discrepancy can likely be explained with the same arguments as for the 2+−

state.

• Finally, a 3−− state analogous to the one observed in LQCD is also predicted. In this case,
energies from the helicity formalism and LQCD are in good agreement.

On the other hand, the spectrum depicted by the helicity formalism does not fully align with
the LQCD results. In particular, the helicity formalism predicts states that are not observed in
LQCD. Overall, the helicity spectrum appears to exhibit near- parity degeneracy, whereas the
LQCD spectrum clearly separates into two distinct columns.

• Low-lying 1−− and 3−− three-gluon glueballs are predicted by the helicity formalism.
These states appear, roughly speaking, at the same energy than their positive parity
counterparts. According to [166, 167], in LQCD, the lowest 1−− and 3−− lie well above
the lowest 1+− and 3+−.
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• On the positive parity side, the helicity formalism predicts 1+− and 3+− states in the
vicinity of the lowest 2+− glueball. Again, such states are absent in references [166, 167].

Several explanations can be proposed for this discrepancy. On the one hand, constituent
approaches are known to sometimes overestimate the number of resonances. However, this effect
typically impacts excited states rather than low-lying ones. On the other hand, it is possible
that LQCD methods have missed a few states due to the challenges in interpreting the signal
and in performing the continuum limit. For example, it seems that a more recent study of
LQCD results observes an excited 1+− glueball state whose energy is consistent with the one
obtained using the helicity formalism [193].

For two-gluon glueballs, which lies in the C = + part of the spectrum, it is already know that
helicity degrees of freedom are necessary to reproduce the lattice spectrum [152]. It would be
interesting to compare the C = − glueball spectrum obtained with helicity degrees of freedom
in the present model to the C = − spectrum obtained when longitudinal spin components
for the gluon are included. Fortunately, such results have already been published [194, 142].
However, the Hamiltonian considered in these studies includes spin interactions. To ensure a fair
comparison, eigenenergies from the dimensionless Hamiltonian (9.42) are computed considering
three spin-1 particles and using the OBE developed in Chapter 2 [28, 29]. Figure 9.5 illustrates
the comparison. Energies are again given in units of the lowest 1+− state. LQCD results from
reference [193] are also included. It is immediately apparent that the spectrum computed with
spin degrees of freedom exhibits several flaws.

• Positive parity states are all degenerate, whereas LQCD predicts a definite hierarchy for
the lowest J+− glueball states. In particular, spin degrees of freedom predict a low-lying
0+− glueball, which LQCD calculations place at a higher energy.

• On the negative parity side, the 1−− and 3−− spin eigenstates share the same energy,
while the 2−− state lies significantly higher. In contrast, LQCD calculations predict nearly
degenerated states with a soft ordering in ascending total angular momentum.

On the other hand, using helicity degrees of freedom better reproduces the overall spectrum,
apart from the aforementioned inaccuracies and extra states. As with two-gluon glueballs [152],
it appears that constituent gluons should be treated as particles endowed with massless helicity
quantum numbers.

The previous analysis focused on the relative spectrum. To obtain a genuine energy spectrum
requires to fix the mesonic string tension σm. The best agreement with LQCD results is achieved
for a value of σm = 0.086GeV2, which seems a factor 2 smaller compared to the values found in
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Figure 9.5: Comparison of low-lying negative charge conjugation glueball spectra computed using
different approaches. Blue dots and squares represent the results from the LQCD calculations
from references [166, 167] and [193], respectively. Red triangles correspond to results obtained
by considering three spin-1 particles governed by the Hamiltonian (9.42). Finally, green crosses
are obtained by considering helicity degrees of freedoms for the constituent gluons. Masses are
normalized to the 1+− state.
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State Opt. b Opt. a E

|Ψ;A′
2; 0; 1

±−⟩ 1.80 0.35 10.020

|Ψ;A′′
2; 0; 1

+−⟩ 1.95 0.45 10.269

|Ψ;A′′
2; 0; 1

−−⟩ 1.90 0.35 10.151

|Ψ;A′
2; 0; 3

±−⟩ 2.25 0.55 11.990

|Ψ;A′′
2; 0; 3

+−⟩ 2.30 0.55 12.090

|Ψ;A′′
2; 0; 3

−−⟩ 2.25 0.50 11.881

|Ψ;A′
2; 1; 1

∓−⟩ 2.40 0.6 12.305

|Ψ;A′
2; 1; 2

∓−⟩ 2.40 0.6 12.742

|Ψ;A′
2; 1; 3

∓−⟩ 2.65 0.95 14.113

Table 9.5: Display of the dimensionless three-gluon glueball spectrum obtained by using the
three-body helicity formalism. Energies are given in unit of

√
σ. Only a single trial state is

considered and the optimisation on variational parameters a and b is performed. Calculations
are performed until J = 3 and |µ| = 1. Only one of the two states with |µ| = 1 is considered
(namely, A′

0). All integrals are computed with 30 point, except for those on v̄ which use 100
points. The sum in j12 is truncated at j12 = 20.

the literature (see for instance [39, 144, 152, 156]). This issue can be addressed by reasonably
modifying the Hamiltonian (9.37). In baryon studies, it is common to complement the potential
with a constant term, particularly when dealing with light quarks [39]. Replacing the potential
(9.39) with

V (r) = σr − 3αs

2r
+ C (9.62)

were σ = 0.150GeV2, αs = 0.450 and C = −0.375GeV results in the spectrum displayed in
Figure 9.7. The agreement between absolute spectra is as good as that for relative spectra,
and the parameters used are more consistent with values typically found in the literature. It
is also important to notice that the methodology employed in this work inherently provides
approximate results. This approximate character may also explain the discrepancies observed in
both spectra.
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Figure 9.6: Comparison of glueball spectra obtained using the helicity formalism (left, this
work) and LQCD (right, references [166, 167]). In both cases, spectra are provided in unit of the
lowest mass. Concerning calculations with the helicity formalism, a strong coupling constant
αs = 0.450 has been used.

Figure 9.7: Comparison of glueball spectra obtained using the helicity formalism with the
modified potential (9.62) (left, this work) and quenched LQCD (right, references [166, 167]). In
both cases, spectra are provided in GeV.
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9.4 Outlooks for the glueball spectrum

The previous chapters illustrated that the framework of constituent approaches combined
with the two- and three-body helicity formalism enables to explore the two- and three-gluon
glueball spectra. Especially, a definite methodology able to infer a spectrum for helicity states
and based on the variational theorem has been set up for both two- and three-body systems.

Concerning two-gluon glueballs, the spectrum obtained using the helicity formalism is
compatible with LQCD calculations. This agreement gives credit in the method and motivated
the generalisation to three-gluon glueballs. Although similar calculations are already present
in the literature [51, 152, 171], the perspective introduced in Chapter 7 proves different, and
enables a more straightforward generalisation to three-gluon systems.

The situation concerning three-gluon glueballs is less conclusive. In units of the meson
string tension, the helicity formalism proves able to reproduce the spectrum from LQCD with
a satisfying accuracy but predicts supplementary states whose origin remains elusive. The
comparison with calculations involving three spin-1 particles favoured the use of helicity degrees
of freedom. When comparing spectra in physical units, a mesonic string tension too low by a
factor of 2 compared to its standard value is to be used. This flaw can be overcome by adding a
constant term in the potential in agreement with the potential used in baryons [39]. Although
it allows to use parameter values in their physical range, it slightly deteriorates the agreement
with LQCD. In addition, this parameter was not necessary to describe two-gluon glueballs.

Additional research may help unveiling the origin of these discrepancies. Improvements about
the accuracy of the resolution method in the case of three-gluon glueballs may give credit to the
spectrum obtained using the helicity formalism. Including more trial states in the resolution
to test the convergence, truly implementing the possibility of mixing between the different
symmetrical states, increasing the number of points in the quadrature or increasing the cut-off
in j12 are all trails to reach this goal. Hamiltonian (9.37) may also be refined and complemented,
for instance, with spin-based interactions. A more detailed study of the role of three-body forces
could also be considered. This may help to decide whether the extra states predicted by the
current methodology are artifacts of the resolution method or not.

Setting aside the question of the extra states, the solutions obtained using the helicity
formalism may also yield additional insights into glueball properties. For instance, effort could
be directed toward evaluating observables beyond the energy, such as decay rates.
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Complement 9.A Symmetry considerations about equation

(9.27)

First of all, let us have a quick look at coefficients (9.29),(
Cj12λ12

Jµ̄;λ̄1λ̄2λ3

)∗
Cj12λ12

Jµ;λ1λ2λ3

= (−1)(λ2−λ̄2)/2+(λ̄1−λ1)/2+(µ̄−µ)/2 2j12 + 1

2
dJµ̄ λ12−λ3

(π/2)dJµλ12−λ3
(π/2).

(9.63)

These coefficients are easily shown to stay real, independently of the spin of the particles. If µ
or µ̄ is null, properties of Wigner d matrices allows to show that, as long as J − λ12 + λ3 is an
odd number, the whole coefficient cancels [35]. Because λ3 belongs to {+1,−1} and because
the total angular momentum of a symmetric state with µ = 0 must be odd, whenever µ or µ̄ is
null, all terms with odd λ12 cancel, thereby avoiding evaluating them.

The dependency on helicity quantum numbers of the Ψ̃ function (9.28) can be investigated.
The symmetry properties of Wigner d matrices allow to equate different evaluations of Ψ̃.
Following equalities immediately comes out of these symmetry properties,

Ψ̃(...; j12, λ12,∆λ; ...) = Ψ̃(...; j12,−∆λ,−λ12; ...) = (−1)λ12Ψ̃(...; j12,−λ12,−∆λ; ...)

= (−1)λ12Ψ̃(...; j12,∆λ, λ12; ...).
(9.64)

Other symmetries require Ψ to be an even function of u. In that case, performing the change of
variables u→ −u allows to show that

Ψ̃(...; j12, λ12,∆λ; ...) = (−1)j12Ψ̃(...; j12,−λ12,∆λ; ...) = (−1)j12Ψ̃(...; j12,−∆λ, λ12; ...)

= (−1)j12+λ12Ψ̃(...; j12,∆λ,−λ12; ...) = (−1)j12+λ12Ψ̃(...; j12, λ12,−∆λ; ...).
(9.65)

The assumption that requires Ψ to be even is consistent with the trial shape (9.12). However,
it may be invalidated if kinematic factors such as those from relations (9.14) and (9.15) need
to be included in order to ensure the symmetry of the state. Regardless of this precaution,
relations (9.64) and/or (9.65) allow for the recycling of most evaluations of Ψ̃, thereby reducing
computational cost. These eight symmetry relations can even show that Ψ̃ cancels for some
combinations of quantum numbers, such as for ∆λ = 0, λ12 even and j12 odd.

Finally, the matrix element on two-body J-helicity states appearing in the integrand from
equation (9.27) is also to be analysed. Its dependence on helicity quantum numbers can be
investigated by means of formula (7.11) from Section 7.1. Using properties of Clebsh-Gordan
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coefficients, it can be shown that

Cj12;11
l12s12;λ1λ2

= (−1)s12 Cj12;11
l12s12;−λ2−λ1

= (−1)l12−j12 Cj12;11
l12s12;−λ1−λ2

(9.66)

where C coefficients are those defined in Section 7.1. Applying this result to equation (7.11)
reveals that certain helicity quadruplets (λ1, λ2, λ̄1, λ̄2) yield identical values. Specifically, these
quadruplets can be grouped into five families, within which matrix elements on two-body
J-helicity states are equal each-other. These families are displayed in Table 9.6. Let us also
mention that, again in view of (7.11), these matrix elements are real-valued. This allows to
freely exchange the bra and the ket,

⟨p̄12; j12λ12; λ̄1λ̄2| O(r12) |p12; j12λ12;λ1λ2⟩ = ⟨p12; j12λ12;λ1λ2| O(r12) |p̄12; j12λ12; λ̄1λ̄2⟩. (9.67)

Observations about Ψ̃ and about the two-body matrix elements are to be combined to deduce
symmetry properties of the whole integral from (9.27). Simplifications occur depending on the
assumptions made on Ψ and Ψ̄.

A special case of prime importance in the following concerns Ψ and Ψ̄ being two equal real
functions which are even for u. These assumptions imply two symmetry properties at the level
of the integrals. First, the equality and reality hypothesis allows to freely exchange ∆λ and ∆λ̄

by exchanging both integration variables. On the other hand, the hypothesis about the parity
in u implies that the sign of each ∆λ can be flipped, at worst, at the cost of a phase factor
(−1)j12+λ12 . These two properties implies that integrals line up with the five families of helicity
quadruplets from Table 9.6, except for the 5th family in which quadruplets above and below the
dashed line differ by a (−1)j12+λ12 phase factor. Each evaluation of an integral from (9.27) for a
given helicity quadruplet provides a value valid for any other quadruplet in the same family,
potentially up to a minus sign.

Apart from this special case, a second simplification turns out relevant for the upcoming
developments. In the first family from Table 9.6, both ∆λ and ∆λ̄ are always zero. As a result
and without further conditions, calculations for both helicity quadruplet in this family will yield
identical values for integrals. This result will prove valuable, as the two helicity quadruplets in
question are precisely those encountered during calculations with A′′

2 states.

Complement 9.B Potential for three-gluon glueballs

The confining interactions between three gluons can be described in two main geometries.
From the perspective discussed in the main text, each gluon generates two flux tubes that
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1st family (+,+,+,+) (−,−,−,−)

2nd family (+,+,−,−) (−,−,+,+)

3rd family (−,+,−,+) (+,−,+,−)

4th family (+,−,−,+) (−,+,+,−)

5th family (+,−,+,+) (+,+,+,−) (+,−,−,−) (−,−,+,−)

(−,+,+,+) (+,+,−,+) (−,+,−,−) (−,−,−,+)

Table 9.6: Table of the different helicities quadruplets (λ1, λ2, λ̄1, λ̄2) that give rise to the same
matrix element on two-body J-helicity states ⟨p̄12; j12λ12; λ̄1λ̄2| O(r12) |p12; j12λ12;λ1λ2⟩.

8

Figure 9.8: Schematic representation of a Y junction modelling three-gluon glueballs. The three
gluons bound at once by pooling their three 8 flux tubes.

transform with the fundamental and the anti-fundamental representation of SU(3). These flux
tubes merge pairwise, in a so-called ∆ junction. Alternatively, each gluon can be viewed as
producing a single flux tube in the adjoint representation of SU(3). In that case, the three flux
tubes merge in a so-called Y junction [142], as illustrated in Figure 9.8. The Y junction consists
in a genuine three-body interaction. In contrast with baryons, for glueballs, the ∆ junction is
not necessary an approximation of the Y one as both can be obtained by combining flux tubes
in a globally colour-neutral configuration. Differences between Y and ∆ junctions are discussed
in [85, 195], with the conclusions favouring the ∆ junction.

For comparison, let us consider here a Y junction. In this configuration, the interaction
potential used in constituent approaches writes down as follows,

V (r1, r2, r3) = min
Y

3∑
i=1

σ ⟨F 2
i ⟩ |ri − Y |+

3∑
i<j

αs ⟨Fi · Fj⟩
|ri − rj|

. (9.68)

Here, σ is the fundamental string tension, and αs is the strong coupling constant. In agreement
with the notations from Section 5.1.2, the factor ⟨F 2

i ⟩ corresponds to the SU(3) Casimir operator
acting on the ith particle. Including this factor in the confining potential was referred to as the
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Casimir scaling hypothesis in this section [150, 151, 149]. For flux tubes transforming under
the fundamental or the anti-fundamental representation of SU(3), this factor is shown to equal
4/3, while for flux tubes transforming with the adjoint representation of SU(3), it is shown to
equal 3. The one-gluon exchange term includes a factor ⟨Fi · Fj⟩ which combines the SU(3)
generators of particles i and j. In Section 5.1.1, it was computed using Gell-Mann matrices, as
in equation (5.7). Its value can also be deduced from those of the Casimir,

⟨Fi · Fj⟩ =
⟨(Fi + Fj)

2⟩ − ⟨F 2
i ⟩ − ⟨F 2

j ⟩
2

, (9.69)

where (Fi + Fj)
2 is the SU(3) Casimir operator for the pair of particles i and j. Substituting

these factors for a system of three gluons leads to the following expression,

V (r1, r2, r3) = 3σmin
Y

3∑
i=1

|ri − Y | −
3∑

i<j

3αs

2|ri − rj |
. (9.70)

The Y junction introduces a genuine three-body interaction, which is incompatible with the
formalism developed in the current work. As proposed in reference [147], this three-body
interaction can be approximated by three effective two-body interactions with a rescaling
parameter close to 1/2. The interaction then becomes

V (r1, r2, r3) =
3

2
σ

3∑
i<j

|ri − rj| −
3∑

i<j

3αs

2|ri − rj|
. (9.71)

To compare this with the potential (9.39) used in the ∆ junction, one must relate the mesonic
and the fundamental string tensions. For mesons, the Casimir scaling factor is 4/3 for both the
quark and the anti-quark flux tubes,

σm =
4

3
σ. (9.72)

Expressing the interaction potential in terms of the mesonic string tension gives

V (r1, r2, r3) =
9

8
σm

3∑
i<j

|ri − rj| −
3∑

i<j

3αs

2|ri − rj |
. (9.73)

This potential differs from the ∆ junction potential (9.39) by a factor of 9/8. This factor, a little
higher than 1, slightly increases the overall energy of the glueball if Y junction is considered.
This conclusion aligns with the LQCD arguments from reference [195]. For this reason, a ∆

junction is preferred in the present work.
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This chapter in the context of a thesis

This final chapter concludes the document by reviewing the core innovative results obtained
during my PhD thesis. All results presented in this section are original and directly address
the central research question that guided the work [158]. These calculations also open the
way to exploring properties beyond the glueball spectrum, which could serve as the basis of
future research.



Conclusion and Outlooks

As a concluding section, let us briefly revisit the central thread that has run throughout this
document. The journey began within the framework of non-relativistic quantum mechanics.
After a short review of the formalism, a key tool for solving its equations, the variational theorem,
was introduced. From this technique emerged the oscillator bases expansion (OBE) [29], a
concrete and general method capable of solving the Hamiltonians encountered in the subsequent
chapters. In the present work, the method was developed explicitly for three-body systems, in
line with the scope of this document. Larger systems were addressed using the second resolution
method explored herein, the envelope theory (ET). This user-friendly technique allows for the
computation of approximate spectra in N -body systems at particularly low computational cost
[65]. With some experience and intuition, gained by applying the method to various systems,
the ET proves to be a reliable tool when fully precise energies are not required [54, 55]. This
concluded the chapters devoted to general quantum mechanics.

The next two chapters focused the physics of hadrons. Following a brief historical overview,
the classification of hadrons and their interpretation in terms of quarks were discussed. The
concepts of flavour and colour were introduced following the historical sequence of their discovery.
The chapter then offered a concise review of QCD, emphasising key features of the theory
rather than delving into the technicalities of QFT. Topics such as the gluonic field, the one-
gluon exchange transfer matrix, the running coupling constant, dynamical mass generation,
the potentials derived from lattice QCD (LQCD), and the existence of exotic states were all
briefly covered to provide a comprehensive overview of the low-energy QCD landscape. The
subsequent chapter leveraged this background to establish a framework for studying hadrons,
namely the constituent models. In these, hadrons are treated as bound states of constituent
quarks and/or gluons governed by a phenomenological QCD-inspired Hamiltonian. After a
detailed justification of this Hamiltonian, the framework was applied to baryons, illustrating its
use by reproducing the experimental spectrum and examining the baryon internal structure.

In the third and final part, constituent approaches were applied to the study of glueballs.
The framework was adapted to better accommodate special relativity and extended to handle
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massless particles. This was done by employing the helicity formalism. Two-gluon states
with definite symmetry properties were decomposed using a Lorentz covariant helicity basis.
The variational theorem was then applied to evaluate the spectrum of the phenomenological
Hamiltonian in the two-gluon centre of mass frame (CoMF). A comparison with LQCD results
showed good agreement between the two approaches [158]. The remainder of the text focused
on extending the model to three-gluon glueballs. This endeavour was more technical due to the
additional degrees of freedom, the interplay between multiple reference frames, and the presence
of two distinct helicity bases. After developing and reviewing the three-body helicity formalism,
a spectrum for three-gluon glueballs was obtained. In this case, the agreement with LQCD
was less definitive than for two-gluon systems. The global energy correspondence was more
qualitative, and some states predicted by the model were not observed in LQCD. Nevertheless,
the use of helicity formalism clearly improved the overall spectrum compared to traditional
spin-based models [158]. It is also hoped that enhancing the resolution methods and refining
the phenomenological Hamiltonian could improve this agreement. Beyond energy spectra, both
two- and three-gluon calculations also offer access to eigenstates, which can be used to infer
additional glueball properties.

Echoing to the introduction, I hope the reader is convinced that the initial objective, studying
of two-gluon and three-gluon glueballs within constituent models, has been successfully addressed
during this thesis. Of course, many open questions remain, and several future directions can be
envisaged in the short- and medium-term to deepen the understanding of glueball properties.
Although only briefly mentioned here, experimental efforts are currently underway to detect
glueballs in particle accelerators. Achieving theoretical consensus across models and frameworks
would provide a robust foundation for experimentalists in interpreting their data. This work
contributes to that broader scientific effort. More generally, the tools developed herein can
be applied to a range of other problems in hadronic physics. In the short term, the OBE will
be used to investigate the internal structure of baryons, particularly in testing the validity of
the diquark hypothesis. In the medium term, the OBE combined with the helicity formalism
will be used to study hybrid baryons. These prospects, along with continued investigation into
glueballs, suggest a promising future for constituent approaches in hadronic physics.
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