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Abstract

Occlusion remains a fundamental challenge in object detection, particularly in
complex real-world environments where objects are partially or fully obscured.
This thesis addresses the problem through multiple contributions that enhance
both the understanding and mitigation of occlusions. A novel Occlusion Rate
(OR) evaluation method is introduced, combining density-aware voxel grid ex-
traction and Voronoi-based neighbor density analysis to quantify occlusion sever-
ity and guide model selection. These preprocessing techniques optimize the use of
3D point cloud data, ensuring improved performance in highly occluded settings.

Building on these foundations, the thesis proposes FuDensityNet2.0, a multi-
modal object detection framework that integrates 2D image data and 3D voxelized
point cloud data. The architecture integrates 2D and 3D features using a robust
multimodal fusion strategy, which ensures efficient and complementary feature
representation for accurate detection in occluded environments. An occlusion-
aware detection strategy dynamically adapts to varying occlusion levels, enhanc-
ing robustness across diverse conditions.

Extensive experiments conducted on benchmark datasets such as KITTI, Nu-
Scenes, and OccludedPascal3D validate the proposed contributions. FuDensi-
tyNet2.0 achieves an Average Precision (AP) of 76.6% for car detection under
“Hard” occlusion scenarios, surpassing state-of-the-art models by over 11%. Com-
parative analyses and ablation studies further demonstrate the effectiveness of the
voxelization strategy, Occlusion Rate assessment, and fusion techniques in ad-
dressing occlusions.

The contributions extend beyond model design. This work explores 2D-driven
approaches for generating point clouds using depth estimation techniques, reduc-
ing reliance on LiDAR sensors and offering a foundation for cost-effective solu-
tions. Additionally, the methodologies proposed in this research provide valuable
insights for applications such as autonomous vehicles, smart surveillance, and in-
dustrial robotics, where robust object detection under occlusion is critical.

Keywords : Object Detection; 3D Object Detection; Occlusion Handling;
Voxel Density-Aware; Occlusion Rate; Voxelization; Multimodal Fusion; Deep
Learning.
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Résumé

L’occlusion reste un défi majeur dans la détection d’objets, en particulier dans les
environnements complexes où les objets sont partiellement ou totalement cachés.
Cette thèse aborde ce problème à travers plusieurs contributions visant à améliorer
la compréhension et l’atténuation des occlusions. Une nouvelle méthode d’évaluat-
ion du taux d’occlusion (OR) est introduite, combinant l’extraction de grille de
voxels sensible à la densité et l’analyse de densité des voisins basée sur les dia-
grammes de Voronoï pour quantifier la sévérité de l’occlusion et guider la sélec-
tion du modèle. Ces techniques de prétraitement optimisent l’utilisation des don-
nées de nuages de points 3D, assurant une meilleure performance dans les envi-
ronnements fortement occlus.

La thèse propose FuDensityNet2.0, un cadre de détection d’objets multimodal
intégrant les données 2D et 3D. L’architecture fusionne ces deux modalités grâce
à une stratégie de fusion efficace, garantissant une représentation robuste pour une
détection précise sous occlusion. Une stratégie adaptative ajuste dynamiquement
les performances du modèle en fonction du niveau d’occlusion, améliorant ainsi
sa robustesse.

Des expériences menées sur KITTI, NuScenes et OccludedPascal3D valident
ces contributions. FuDensityNet2.0 atteint une Précision Moyenne (AP) de 76,6%
pour la détection de voitures sous « occlusion forte », surpassant les modèles de
l’état de l’art de plus de 11%. Les études comparatives et d’ablation démontrent
l’efficacité de la voxelisation, de l’évaluation de OR et des techniques de fusion.

Enfin, cette recherche explore des approches basées sur le 2D pour générer des
nuages de points via l’estimation de profondeur, réduisant ainsi la dépendance aux
capteurs LiDAR. Ces contributions offrent des perspectives prometteuses pour
des applications en véhicules autonomes, surveillance intelligente et robotique
industrielle.

Mots-clés : Détection d’objets; Détection 3D; Gestion des occlusions; Vox-
elisation adaptative à la densité; Taux d’occlusion; Voxelisation; Fusion multi-
modale; Apprentissage profond.
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1.1 Thesis Context
Recent technological advancements, particularly in the field of Artificial Intelli-
gence (AI), have significantly transformed our daily lives. These innovations have
facilitated the development of smart cities, where video surveillance systems play
a crucial role in urban management and safety. Leveraging high-quality visual
data (HD, Full HD, 4K, etc.) captured in real time by cameras, these systems
support applications such as traffic monitoring, public safety, and event detection.
Among these applications, 2D/3D object detection emerges as a key task in com-
puter vision (CV), widely used for its ability to identify and classify objects in
dynamic and complex scenes (57).

Object detection finds extensive applications in urban monitoring, encompass-
ing diverse scenarios such as ensuring safety in public spaces, securing industrial
sites and railway infrastructure, managing crowds during public events, and en-
hancing safety in transportation hubs. These applications address various chal-
lenges in maintaining security and efficiency in dynamic urban environments. Its
utility spans across the globe, supporting safety and management in both African
and European cities. However, despite its wide adoption, object detection systems
face significant real-world challenges, including occlusions, variations in object
scale, inconsistent lighting conditions, and adverse weather phenomena such as
rain and snow, all of which can substantially limit detection accuracy.

Object recognition plays an essential role in video surveillance systems, serv-
ing as a foundation for analyzing visual data. These systems often rely on Ma-
chine Learning (ML) and Deep Learning (DL) techniques, which leverage ad-
vanced algorithms and neural network architectures to process large volumes of
visual inputs. By extracting relevant features and identifying patterns within the
data, these methods enable models to perform accurate object classification and
detection, replicating human-like perception in complex scenes.

The effectiveness of video surveillance systems is often impeded by numer-
ous real-world challenges, such as intrinsic sensor noise degrading the quality of
captured images, unintended camera movements causing blurred frames, lighting
inconsistencies between day and night, adverse weather conditions like rain or
fog obscuring the field of view, and dynamic changes in object shapes over time.
These issues collectively hinder detection performance, making it challenging to
achieve robust and reliable surveillance.

Among these challenges, occlusion is one of the most critical and pervasive.
Occlusion occurs when objects are partially or fully obscured by other elements
in the scene, complicating detection and analysis. This issue is particularly pro-
nounced in dense urban or industrial environments, where overlapping objects or
obstacles can obscure key visual features. Occlusions degrade the quality of cap-
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tured data, reduce visibility, and compromise the accuracy of detection systems.
To address these challenges, CV research has increasingly turned to advanced

ML and DL methods capable of processing large volumes of visual data in Two
Dimensions (2D) and Three Dimensions (3D). 2D images provide detailed surface-
level visual information, while 3D data, such as point clouds obtained from Light
Detection and Ranging (LiDAR) or depth cameras (e.g., ZED 2, Intel RealSense
L515, OpenCV’s OAK-D, Velodyne VLP-16 (58)), offers depth information that
enhances spatial understanding. In this research, we focus on utilizing a 2D cam-
era for capturing spatial data and a LiDAR sensor for extracting point clouds,
enabling a comprehensive analysis of both modalities.

This thesis is situated within this context, aiming to develop an innovative
and resilient approach to object detection in environments with high levels of oc-
clusion. The proposed method seeks to enhance the robustness and accuracy of
detection systems, ensuring reliable performance across a range of applications,
including urban security, industrial monitoring, and autonomous vehicles. By ad-
dressing the challenges posed by occlusion, this work contributes to the advance-
ment of intelligent surveillance systems, paving the way for more effective and
adaptable solutions.

1.2 Thesis Motivation
As part of a research program funded by the Academy of Research and Higher Ed-
ucation (ARES), this thesis aims to address critical challenges in object detection,
a cornerstone of video surveillance systems. By proposing innovative solutions
to enhance detection accuracy in highly occluded environments, the research con-
tributes to improving public safety, urban management, and industrial automation.
These outcomes directly align with ARES’ mission to foster sustainable develop-
ment and technological progress in Morocco and similar regions.

Despite advances in object detection, current systems still struggle in environ-
ments with frequent occlusion, where objects are partially or fully obscured. This
limitation compromises accuracy, resulting in errors, false positives, or missed
detections. Such challenges are particularly critical in applications like urban
surveillance, construction site safety, and autonomous driving. For instance, oc-
clusions in autonomous driving systems can lead to the misidentification of a
pedestrian as part of the background, potentially causing accidents (Figure 1.1).
In smart surveillance, occlusions might prevent the detection of suspicious be-
havior in crowded areas, delaying emergency responses and jeopardizing public
safety. Addressing these issues is essential for enhancing the reliability of object
detection in real-world scenarios.

Most existing systems primarily rely on 2D data, which provides a surface-
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Figure 1.1: Pedestrian detection in autonomous driving systems: The system iden-
tifies pedestrians crossing a crosswalk, emphasizing the importance of robust ob-
ject detection algorithms in ensuring safety (1).

level view of the scene but lacks depth, limiting the ability to comprehend the
spatial structure of objects. While 3D-based methods add valuable depth infor-
mation, they face integration challenges, particularly in multimodal fusion with
2D data. These limitations are especially pronounced in hard occlusion scenarios,
where the performance of detection models often decreases significantly due to
the complexity of the environment.

This thesis is motivated by the need to design a robust object detection system
capable of addressing the challenges posed by hard occlusions. While a variety of
approaches exist, selecting an optimal method is particularly challenging without
a clear assessment of occlusion levels. To tackle this, the proposed approach
focuses on integrating point density analysis and multimodal fusion techniques to
dynamically evaluate and adapt to varying degrees of occlusion. By incorporating
this adaptive capability, the system aims to enhance robustness and accuracy, even
in environments with significant occlusion.

Experiments on 2D/3D datasets demonstrate the significant advantages of our
model over state-of-the-art techniques. In hard occlusion scenarios, the proposed
approach achieves an 11% improvement in Average Precision (AP) for car de-
tection compared to a state-of-the-art object detection model, and a 2% improve-
ment over another leading occlusion-handling object detection method. These
results underscore the model’s effectiveness in addressing occlusion challenges.
Evaluations were conducted using key metrics, including precision (P), recall (R),
Intersection over Union (IoU), and inference time (IT), further validating the ro-
bustness of the approach.
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Beyond accuracy gains, this approach has tangible real-world applications.
For example, in smart surveillance systems, a more precise and robust model en-
hances emergency responsiveness and reinforces public safety. In the industrial
sector, such a model can optimize automated production line inspections, mini-
mize errors, and increase productivity. These outcomes underline the potential
impact of this thesis on improving the safety and efficiency of intelligent systems
across various domains.

1.3 Thesis Contributions
This thesis aims to improve object detection in the presence of occlusions, adopt-
ing a progressive approach where each contribution builds upon the previous ones.
The contributions cover several aspects, ranging from a comparative analysis of
existing approaches to the design of new methods for effectively managing occlu-
sions and integrating multimodal fusion. Our contributions can be summarized as
follows:

1. Comparative Analysis of Occlusion Management Methods: The first
contribution of this thesis is a comparative analysis of existing approaches
for occlusion management. This study was conducted on several bench-
mark datasets to better understand the strengths and weaknesses of current
methods. This comparative evaluation provided the foundation for future
improvements by identifying the most promising approaches and gaps to
address for improved object detection.

2. Initial Proposal of an Approach Based on Feature Pyramid Networks
(FPN): An initial method utilizing FPN was developed to detect small and
overlapping objects, exploring the potential of combining spatial (2D) data
and depth (3D) information for enhanced detection. While it did not achieve
peak performance, the approach validated the feasibility of integrating these
data modalities under moderate occlusion conditions. Achieving an accu-
racy of 64.5% for cars, the method demonstrated its effectiveness in high
occlusion scenarios but underscored the need for more sophisticated tech-
niques to address complex occlusions.

3. Voxel Density Analysis and Occlusion Rate Calculation: To address the
limitations of previous methods, this thesis introduces a voxel density anal-
ysis combined with an occlusion rate calculation module. The purpose of
this contribution is to dynamically guide the selection of the most appro-
priate object detection model based on the level of occlusion in the scene.
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The voxel density analysis evaluates 3D point density to identify occlusion-
prone regions, while the occlusion rate calculation adapts the detection strat-
egy in real time. This targeted approach improves computational efficiency
and accuracy, leading to a significant 11% improvement in AP for car de-
tection under hard occlusion scenarios compared to state-of-the-art models.

4. Multimodal Fusion with Enhanced 2D-3D Data Integration: The the-
sis introduced an advanced multimodal fusion method based on Low-Rank
Tensor Fusion (LRTF), combining visual and depth data. This approach de-
livered substantial improvements in highly occluded environments, achiev-
ing accuracy levels exceeding 76% for cars, 74% for pedestrians, and 72%
for cyclists under hard occlusion scenarios. These outcomes underscore the
effectiveness of the method in tackling complex occlusion challenges.

1.4 Thesis Organization
This thesis report is structured as follows, outlining its subsequent chapters:

• Chapter 2 introduces the Fundamental Concepts of AI and CV, covering
artificial intelligence, deep learning, 2D computer vision concepts, and key
object detection methods.

• Chapter 3 explores the State of the Art in Occlusion Management in CV
systems. It presents existing techniques for handling occlusions in 2D and
3D, as well as multimodal fusion approaches.

• Chapter 4 describes the Data Acquisition Tools and Technologies, detailing
2D and 3D sensors, data preprocessing techniques, and multimodal fusion
methods. This chapter concludes with a synthesis and analysis of the vari-
ous technologies used in object detection.

• Chapter 5 presents the Proposed Approach and Experiments: FuDensi-
tyNet in Action, detailing the model’s design, occlusion management mech-
anisms, and experimental evaluation, including comparative analysis and
ablation studies.

• Chapter 6 offers a Discussion and Conclusion, summarizing the findings,
identifying limitations, and suggesting future research directions.
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2.1 Introduction
This chapter establishes the foundational concepts of AI and CV, focusing on
their pivotal role in object detection as a core application. It explores the evolu-
tion of AI in visual systems, with an emphasis on the algorithms, architectures,
and frameworks that underpin the ability of machines to analyze and interpret
visual data. From feature extraction to the design of neural networks and the de-
velopment of advanced DL techniques, this chapter presents the theoretical basis
for contemporary detection models.

The discussion also addresses critical challenges inherent to detection systems,
including occlusion, scale variance, and real-time processing demands. A particu-
lar focus is placed on the interplay between 2D and 3D vision systems, highlight-
ing their complementary roles in achieving robust detection. These insights form
a comprehensive theoretical framework for understanding the advanced method-
ologies and analyses presented in subsequent chapters.

This chapter integrates findings from the conference paper titled "An Efficient
Real-Time Automatic License Plate Recognition System Based on the YOLOv3
Object Detector," presented at the BDIoT’22 Conference (17). This work demon-
strates the practical application of AI-driven object detection in real-time scenar-
ios, showcasing how 2D detection models, such as YOLOv3, address real-world
challenges effectively:

• Ouardirhi, Z., et al. (2022). An Efficient Real-Time Automatic License
Plate Recognition System Based on the YOLOv3 Object Detector. Pre-
sented at the BDIoT’22 Conference.

By linking foundational theory with practical applications, this chapter bridges
academic research and industrial relevance. It sets the stage for the exploration of
advanced detection methodologies and their comparative analysis, as well as the
innovative solutions discussed in subsequent chapters.

2.2 Artificial Intelligence and Recent Developments
This section provides the essential background necessary to understand the scope
of this thesis. It focuses on the role of Artificial Intelligence (AI) in enabling ap-
plications critical to video surveillance in smart cities, such as object detection and
urban safety management. The chapter is organized to introduce historical mile-
stones in AI, its applications in industry, and the governance frameworks shaping
its use globally. This foundational knowledge contextualizes the challenges of
managing occlusions in video surveillance and motivates the need for advanced
solutions.
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2.2.1 Definitions and Historical Milestones
AI encompasses the development of systems capable of performing tasks that
typically require human intelligence, such as learning, reasoning, and problem-
solving (59). It has evolved through several phases, each contributing to the AI
we know today.

• Early AI: Symbolic Approaches and Their Limitations: AI formally
emerged as a field during the Dartmouth Conference in 1956, where the
foundations of symbolic AI were established (60). This era emphasized
rule-based systems that modeled human reasoning using logic and symbols.
However, these methods struggled with adaptability and failed to handle the
complexities of dynamic environments like urban surveillance systems (61).

• The Shift to Data-Driven Methods: By the 1980s, symbolic AI faced
challenges that led to one of the AI Winters. The field pivoted toward data-
driven approaches with the emergence of machine learning (ML), which re-
lied on statistical models capable of learning patterns from data. Early ML
algorithms, such as Support Vector Machines (SVMs) and decision trees,
played a pivotal role in improving the performance of AI in real-world ap-
plications, including video surveillance (Figure 2.1).

• The Deep Learning Revolution: By the late 2000s and early 2010s, ad-
vances in computational power, particularly through the use of GPUs, along
with the availability of large datasets, enabled the rise of deep learning (DL)
(62). Architectures like Convolutional Neural Networks (CNNs) revolu-
tionized computer vision tasks, including object detection and scene seg-
mentation. While CNNs remain prominent, modern methods now extend
to Vision Transformers (ViTs) and Multi-Layer Perceptrons (MLPs), high-
lighting the diversity of neural network architectures in processing visual
data (Figure 2.1).

• Computer Vision in Surveillance: Computer vision (CV), a subfield of
AI, specifically addresses the interpretation of visual data. Early meth-
ods focused on edge detection and image segmentation, which evolved into
modern techniques powered by DL. These advancements enable real-time
detection and tracking in video feeds, making them indispensable for smart
cities and public safety applications.

2.2.2 Industry Applications and Impact
Following the exploration of AI’s evolution, this section focuses on its transforma-
tive role in industrial applications, particularly in video surveillance within smart
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Figure 2.1: A Timeline of AI’s Development Phases: Key Milestones, AI Winters,
and the Deep Learning Revolution (2)

cities. AI-driven CV supports tasks like object detection, anomaly detection, and
public safety management, playing a crucial role in enhancing urban safety and
efficiency.

• AI in Industry 4.0: Enhancing Video Surveillance: Often referred to
as the "Fourth Industrial Revolution," Industry 4.0 integrates AI, IoT, and
big data into interconnected systems. AI enables real-time monitoring and
autonomous decision-making by analyzing data from various sensors, in-
cluding cameras, for object detection, tracking, and anomaly recognition
(Figure 2.2). Applications include:

– Predictive Maintenance: AI models identify early indicators of equip-
ment failures, reducing downtime (63).

– Autonomous Decision-Making: CV analyzes urban environments to
detect anomalies like suspicious activities, alerting authorities promptly
(64).

• Transition to Industry 5.0: Human-Centric and Sustainable Surveil-
lance: Building on Industry 4.0, Industry 5.0 emphasizes collaboration be-
tween humans and machines and prioritizes sustainability. In video surveil-
lance:

– Human-Centric Systems: Human-in-the-loop approaches enable op-
erators to validate AI-detected events, reducing false alarms and en-
suring ethical alignment (65).

– Sustainable Practices: Energy-efficient algorithms and eco-friendly
hardware reduce the environmental impact of surveillance systems
(65).
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Figure 2.2: Diagram of AI-Powered CV Applications in a Smart City Context (3)

For example, collaborative AI systems enhance decision-making during
emergencies, while sustainable AI minimizes energy consumption in smart
city monitoring.

• Computer Vision in Smart Cities: Cameras in smart cities act as intelli-
gent sensors for real-time object and activity detection, enabling:

– Object Detection: Identifying people, vehicles, and objects to en-
hance traffic management and public safety (Figure 2.3) (64).

– Anomaly Detection: Analyzing patterns in video feeds to flag un-
usual events, such as emergencies or unauthorized access (66).

These applications improve urban safety and efficiency, enabling authorities
to monitor and respond to incidents swiftly.

These technologies demonstrate the critical role of AI and CV in Industry 4.0
and 5.0 settings, transforming video surveillance into a more precise, sustainable,
and responsive system.

2.2.3 AI Governance and the Relevance to Smart Surveillance
The main challenge tackled in this thesis is to propose an accurate and robust
object detection approach for video surveillance systems, particularly in smart
cities. These systems are essential for ensuring public safety, protecting work-
ers, and managing urban spaces. The work is relevant for Belgium and Morocco,
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Figure 2.3: Object detection model output in smart city surveillance, showing
bounding boxes around detected objects such as “person” and “vehicle” across
various urban scenarios

where challenges such as privacy, data handling, and region-specific requirements
are increasingly significant. This thesis focuses on addressing the technical lim-
itations in object detection systems, rather than being motivated by governance
frameworks.

• European Union: Evolution of AI-Powered Surveillance and Relevance
to Object Detection:
The European Union has invested in AI-driven surveillance technologies to
enhance public safety. The INDECT project, initiated in 2009, established a
foundation for intelligent information systems in urban security, focusing on
real-time threat detection and data analysis (67). Building on these efforts,
recent EU-funded projects, such as Odysseus and FlexiCross, explore AI
applications in border management and urban surveillance while adhering
to data protection guidelines (68). Projects like AI-ARC aim to improve
maritime monitoring through advanced AI technologies (69).

Improving object detection systems under conditions like occlusions con-
tributes to advancing AI technologies for video surveillance. The methods
proposed in this research address technical challenges, enhancing perfor-
mance in complex scenarios. These developments support AI applications
in public safety and urban monitoring across Europe.

• Morocco and Africa: Challenges and Opportunities for AI-Driven Surveil-
lance:
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Morocco is active in shaping AI strategies in Africa through initiatives like
the African Union’s AI strategy, which emphasizes data ownership and pri-
vacy (70). These frameworks support the retention of surveillance data
within national borders and highlight privacy in urban monitoring (71).
Morocco faces challenges such as infrastructure variability, diverse envi-
ronmental conditions, and resource constraints, which require adaptable AI
approaches (71).

This thesis addresses these needs by proposing solutions suited to high-
occlusion environments common in Moroccan urban and industrial settings.
By improving object detection accuracy, the research supports public safety
measures and AI adoption in Morocco’s development strategy (70; 71).

This thesis focuses on advancing object detection technologies to meet the
challenges of urban environments in Belgium and Morocco. It provides techni-
cal solutions that contribute to safer and more efficient surveillance systems. The
following section explores the principles and techniques of CV, a key compo-
nent in AI-powered video surveillance, offering tools to address object detection
challenges in real-world conditions.

2.3 Computer Vision Foundations
This section examines the foundational aspects of computer vision (CV), a sub-
field of AI focused on enabling machines to interpret and process visual data. It
provides an overview of major architectures in CV and their application to object
detection. These architectures address challenges such as occlusions, dynamic
environments, and the integration of 2D and 3D information. The discussion con-
nects their relevance to this thesis, which focuses on improving detection accuracy
in difficult conditions.

2.3.1 Key Architectures in Computer Vision
The architectures discussed in this subsection form the basis of modern CV sys-
tems, with applications including object detection and urban safety in smart city
environments. It begins with basic models like MLPs and advances to more com-
plex architectures such as CNNs, RNNs, and ViTs. Each architecture is examined
for its role in processing visual data and improving detection capabilities.

Multi-Layer Perceptrons (MLPs)

Multi-Layer Perceptrons (MLPs) are among the earliest forms of artificial neural
networks and serve as a foundation for advancements in deep learning. These net-
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works consist of fully connected layers, where every neuron in one layer connects
to every neuron in the next. MLPs process data through feedforward propagation,
with input features passing through weighted connections and activation functions
like sigmoid or ReLU to generate output predictions (72).

Figure 2.4: Illustration of a Multi-Layer Perceptron architecture, showing fully
connected layers processing pixel inputs (4)

In CV, MLPs treat images as a flat array of pixel values, ignoring spatial re-
lationships between neighboring pixels (Figure 2.4). While this approach works
for smaller tasks, such as handwritten digit recognition using datasets like MNIST
(73), it limits their capability to handle complex tasks like object detection. Fully
connected layers result in a high number of parameters, making them inefficient
and prone to overfitting when applied to high-dimensional inputs like large im-
ages.

Despite these challenges, MLPs established the groundwork for modern neu-
ral networks. They showed the capability of artificial networks to model non-
linear relationships, even though they do not account for neighborhood informa-
tion. This limitation led to the development of advanced architectures, such as
CNNs, which use convolutional layers to capture spatial relationships (72).

MLPs have recently gained attention in architectures like MLP-Mixer, where
they are combined with convolutional layers to enhance performance in specific
tasks. For object detection in video surveillance, MLPs remain insufficient due to
their inability to encode spatial relationships effectively.

The challenges of MLPs in handling image data contributed to the emergence
of CNNs, which introduced convolutional layers to address spatial dependencies.
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The next section examines CNNs and their significant influence on CV tasks.

Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) are a foundational architecture in the
field of computer vision, revolutionizing how images and videos are processed
and understood. By leveraging convolutional operations, CNNs efficiently ex-
tract hierarchical features from data, enabling tasks like object detection, image
classification, and segmentation. Over the years, CNNs have been extended and
adapted to tackle various challenges, including 3D data analysis and temporal dy-
namics. This section provides a structured explanation of CNNs, beginning with
their functionality in 2D image processing before introducing their extension to
3D data.

2D Convolutional Neural Networks (CNNs)
2D CNNs are designed to process spatial data, such as images, by extracting

features hierarchically from pixel-level information. The architecture of a 2D
CNN consists of several interconnected components that work together to analyze
and interpret the visual content of images (Figure 2.5).

Figure 2.5: Layer-by-Layer Process in a CNN, Transitioning from Edge Detection
to Complex Feature Recognition (5)

1. Flow of Image Processing in 2D CNNs:

• Input Representation: A 2D image is represented as a tensor with di-
mensions H × W × C, where H is the height, W is the width, and C
is the number of color channels (e.g., RGB channels for standard color
images or a single channel for grayscale images).
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• Convolution Operation: The convolutional layer applies a set of learn-
able filters (kernels) that slide over the input image. Each filter performs
element-wise multiplication followed by summation, producing a feature
map. These filters capture spatial patterns such as edges, textures, and
shapes (Figure 2.6).

– Example:A 3× 3 filter scans over a 5× 5 image, producing a 3× 3
feature map.

– Parameters: Filter size, stride (step size for sliding), and padding (to
control feature map size).

Figure 2.6: (a) Convolution process with a 3 × 3 kernel sliding over a Grayscale
image; (b) Max-pooling process reducing feature map dimensions by selecting
maximum values in a region (6).

• Activation Functions: Non-linear activation functions, such as ReLU,
are applied to feature maps to introduce non-linearity, enabling the net-
work to learn complex representations:

f(x) = max(0, x) (2.1)

• Pooling Layers: Pooling operations, like max-pooling, downsample fea-
ture maps by reducing their spatial dimensions while retaining the most
critical information. For instance, a 2× 2 max-pooling operation reduces
a 4 × 4 feature map to 2 × 2 by selecting the maximum value in each
region (Figure 2.6b).

• Hierarchical Feature Extraction: As the input progresses through suc-
cessive convolutional and pooling layers, the network extracts increas-
ingly abstract features. Initial layers detect low-level features (e.g., edges),
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while deeper layers identify high-level structures (e.g., shapes or objects)
(Figure 2.5).

• Fully Connected Layers: In the final stages, fully connected (dense)
layers aggregate extracted features for object detection or classification
tasks.

2. Visual Representations:
When analyzing an image, CNNs extract distinct features, as illustrated in Fig-
ure 2.7. These features include spatial forms, colors, and textures, demonstrat-
ing the network’s ability to decompose and interpret complex visual informa-
tion.

Figure 2.7: Scene visualizations showing extracted features: (a) Colors, (b) Spa-
tial forms, (c) Textures, (d) Other visual properties (7).

By leveraging these mechanisms, 2D CNNs enable efficient and accurate ob-
ject detection, forming the backbone of numerous state-of-the-art approaches.

3D Convolutional Neural Networks (CNNs)

3D CNNs extend the functionality of 2D CNNs by introducing an additional
dimension, enabling the network to process volumetric data (Figure 2.8). This
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makes them particularly suitable for applications involving spatial-temporal or
volumetric information, such as video analysis, medical imaging, and 3D object
detection.

Figure 2.8: Flow of Data Through a 3D CNN, from Volumetric Feature Extraction
to Classification (8).

1. Flow of Data in 3D CNNs

• Input Representation: In 3D CNNs, the input data is represented as a
tensor with dimensions H×W ×D×C, similar to 2D CNNs but with an
additional depth dimension D (e.g., frames in a video, slices in a 3D scan,
or voxels in a 3D grid). Unlike 2D inputs, 3D data provides richer spatial
and volumetric information using various formats, each providing unique
ways to process and interpret spatial information. These representations
are generated using advanced sensors (Section 4.2.2) such as LiDAR,
RGB-D cameras, and depth sensors (Figure 2.9):

– Point Clouds: Collections of (x, y, z) coordinates that represent ob-
ject surfaces. While detailed, they are unstructured and computation-
ally intensive to process.

– Voxel Grids: Structured 3D spaces divided into uniform volumetric
cells, balancing detail and computational efficiency.

– Depth Maps: 2D projections encoding per-pixel distance from the
sensor, serving as a simplified representation of 3D data.

– Mesh Representations: Polygonal grids that capture 3D object sur-
faces, commonly used in Computer-Aided Design (CAD) (74) appli-
cations and 3D rendering tasks for precise modeling and visualiza-
tion.

• Convolution in 3D: Similar to 2D CNNs, 3D CNNs apply convolutional
filters; however, these filters are 3D kernels (kH × kW × kD). These
kernels slide across the input tensor along all three dimensions, capturing
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Figure 2.9: Different 3D Object Representations: Point Cloud, Mesh, Voxel Grid,
and Multi-View Depth Maps (9)

spatial and depth information simultaneously. For example, a 5 × 5 × 5
kernel extracts volumetric features from a phase voxel (Figure 2.10). This
operation enables the model to identify relationships not only within a
single plane but also across multiple layers of the input data.

Figure 2.10: 3D Convolutional Operation: Phase Voxel Processed by a 3D Kernel
(5× 5× 5) (8).

• Pooling in 3D: Pooling operations in 3D CNNs function similarly to their
2D counterparts but extend to the depth dimension. For instance, a 2 ×
2×2 max-pooling layer reduces the resolution in height, width, and depth
by selecting the maximum value within each region (Figure 2.11). This
preserves critical volumetric information while reducing computational
complexity.

• Hierarchical Feature Extraction: The hierarchical structure of 3D CNNs
mirrors that of 2D CNNs but operates on volumetric data. Initial lay-
ers capture low-level spatiotemporal features, such as motion or shape
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Figure 2.11: 3D Max Pooling Operation: Reducing Resolution Across Spatial and
Depth Dimensions (8).

changes, while deeper layers identify higher-order patterns, such as ob-
ject structures or temporal dependencies across frames.

• Flattening and Fully Connected Layers: After convolution and pool-
ing, the volumetric data is flattened and passed through fully connected
layers for classification or regression tasks. This pipeline converts the 3D
data into compact, abstract representations suitable for decision-making
(Figure 2.8).

While 2D CNNs excel in analyzing spatial features and 3D CNNs extend this
to spatiotemporal data, tasks like video analysis and dynamic scene understanding
require capturing temporal dependencies across frames. To address these chal-
lenges, advanced models like Recurrent Neural Networks (RNNs) have been de-
veloped to model sequential dynamics. The next section explores how RNNs
enhance video-based applications by integrating temporal context with CNNs.

Recurrent Neural Networks (RNNs) for Temporal Data

Recurrent Neural Networks (RNNs) (75) are designed to handle sequential data
by retaining information from previous inputs, making them suitable for tasks
that involve time dependencies, such as video processing. Unlike feedforward
networks, RNNs have internal loops that pass information from one step to the
next, creating a "memory" over sequences (76). In their simplest form, RNNs
use a hidden state to store information from previous time steps, enabling them
to model temporal relationships. However, this reliance on sequential memory
introduces limitations. Each neuron in the network depends strongly on the ac-
tivation of previous neurons, leading to the accumulation of dependencies over
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time. This can result in excessively large memory requirements and the activation
of all neurons at once, which contributes to the vanishing gradient problem.

Figure 2.12: Illustration of a Recurrent Neural Network (RNN) architecture,
showing the flow of information over time (10)

The vanishing gradient problem occurs when gradients shrink during back-
propagation through time, making it difficult for the network to learn long-term
dependencies. To address this, advanced variants such as Long Short-Term Mem-
ory (LSTMs) (77) and Gated Recurrent Units (GRUs) (78) were developed. These
architectures introduce gating mechanisms to control the flow of information,
enabling better retention of long-term dependencies while mitigating gradient-
related issues.

In the architecture of a simple RNN, the input at each time step (xt) repre-
sents sequential data like a video frame or time-series data, while the hidden state
(ht) retains information from prior steps, acting as the network’s memory. The
weight matrices Wxh, Whh, and Why facilitate connections from input to hidden
state, between hidden states, and from hidden state to output, respectively. The
output at each time step (yt) represents the prediction or insight derived from the
accumulated information. This parameterization enables RNNs to model tempo-
ral dependencies effectively, a capability particularly useful in video analysis for
tracking moving objects and detecting temporal patterns (Figure 2.12).

In video surveillance, RNNs are beneficial for tracking objects across frames,
distinguishing patterns of movement, and detecting anomalies over time. For ex-
ample, RNNs can analyze a series of frames to predict the trajectory of an object,
which is useful in applications like pedestrian tracking and traffic monitoring. By
integrating with spatial models like CNNs, RNNs contribute to a comprehensive
analysis of visual data in dynamic environments.

While the primary focus of this thesis is on spatial analysis through 2D/3D
fusion, RNNs remain relevant as complementary tools that enhance the tempo-
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ral understanding of object behavior. However, recent advancements in attention
mechanisms, particularly with Vision Transformers (ViTs), offer an alternative
approach to capturing temporal and spatial relationships more efficiently. The
next section explores these transformer-based models, focusing on their role in
CV tasks.

Transformers and Vision Transformers (ViTs)

Transformers, originally designed for natural language processing (NLP) tasks,
have been applied in CV due to their ability to model relationships across an en-
tire input sequence using self-attention mechanisms. Unlike CNNs, which focus
on local patterns through convolutional filters, transformers provide a global view
of the data. This global attention mechanism enables transformers to capture both
spatial and contextual dependencies, making them suitable for complex data anal-
ysis (79).

The self-attention mechanism, at the core of transformer architectures, calcu-
lates the importance of each input element (e.g., a pixel or a word) in relation to
every other element. This is achieved through three components: queries (Q),
keys (K), and values (V ). The attention score is computed as the dot product
of Q and K, which is then used to weigh V , determining which elements in the
sequence are most relevant to a task. In CV, this allows transformers to identify
relationships between pixels that are far apart in an image, a challenging task for
CNNs with limited receptive fields (79).

Vision Transformers (ViTs) (80), a specialized adaptation of transformers for
CV, process image data as a sequence of patches. Unlike CNNs, which oper-
ate directly on pixel grids, ViTs divide an image into fixed-size patches (e.g.,
16x16 or 32x32 pixels (81)). Each patch is flattened into a vector and embed-
ded into a higher-dimensional space using a linear projection. These embeddings
are augmented with positional encodings to retain spatial information and passed
through the transformer layers, where self-attention mechanisms process the se-
quence globally (Figure 2.13) (82).

The ability of ViTs to model long-range dependencies in images makes them
particularly suited for tasks involving intricate spatial structures. In crowded ur-
ban environments, where objects overlap one another, ViTs excel at discerning
fine-grained relationships between different parts of the scene. Notable architec-
tures such as ViT-Base/16 and ViT-Large/32 (81), as well as ConvNeXt (83), have
demonstrated strong performance in object detection and image classification, of-
ten surpassing CNNs in benchmarks (84).

Despite their advantages, ViTs are computationally intensive due to the quadratic
complexity of the self-attention mechanism with respect to input size. This lim-
itation has led to the development of efficient variants, such as the Swin Trans-
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Figure 2.13: Vision Transformer (ViT) Structure: Image Patch Transformation
and Attention Processing (11)

former (85), which uses a hierarchical structure and shifted windows to reduce
computational costs while maintaining performance. These innovations improve
the feasibility of transformers for real-time applications like video surveillance,
where accuracy and computational efficiency are essential.

While ViTs are effective in capturing global dependencies, CNNs remain the
backbone of most object detection methods due to their adaptability. Surveys (84)
show that CNNs consistently perform well in real-time applications like video
surveillance, thanks to their capability for local feature extraction. The next sec-
tions will focus on CNN-based methods for object detection, summarizing their
role in 2D and 3D detection tasks as reported in the literature.

2.3.2 Advancements in 2D and 3D Object Detection
Object detection is a key area of CV, focused on identifying and localizing ob-
jects in 2D and 3D domains. This section explores state-of-the-art advancements,
emphasizing the evolution of architectures and techniques. By addressing both
2D pixel-based data and 3D spatial representations, it highlights the unique chal-
lenges and innovations shaping object detection across diverse environments.
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State-of-the-Art 2D Object Detection Approaches
The evolution of 2D object detection has been driven by deep learning, with mod-
els increasingly focused on achieving higher accuracy and efficiency. This section
examines state-of-the-art 2D object detection approaches, emphasizing the role of
CNNs as foundational building blocks. The discussion begins with two-stage de-
tection frameworks, which excel in precision by leveraging region-based propos-
als, and progresses to one-stage techniques, optimized for real-time performance.
By analyzing these advancements, this section underscores their contributions to
applications such as video surveillance, urban monitoring, and autonomous sys-
tems, highlighting their adaptability to diverse real-world scenarios.

Two-Stage Detectors (Region-Based CNNs)
Two-stage detectors approach object detection by dividing the task into two

sequential steps: region proposal generation and classification. The first stage
generates regions of interest (RoIs) that likely contain objects, while the second
stage classifies these proposals and refines their bounding boxes. This division
allows two-stage detectors to achieve high precision, particularly in scenarios with
complex or crowded scenes (86).

Figure 2.14: Basic architecture of the two-stage detectors (12).

Compared to single-stage detectors, which perform object detection in a sin-
gle unified step, two-stage detectors prioritize accuracy over speed. Single-stage
detectors are designed for real-time applications, trading some precision for faster
processing. In contrast, two-stage models are preferred in applications where pre-
cision is critical, such as medical imaging or autonomous driving.
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This section examines key two-stage detection frameworks, including R-CNN
(13), Fast R-CNN (14), Faster R-CNN (87), Cascade R-CNN (15), and DetectoRS
(16), discussing their development and functionality (Figure 2.14).

1. R-CNN (Region-Based Convolutional Neural Network): R-CNN (13) rep-
resents a significant milestone in object detection, introducing the concept of
combining region proposal generation with CNN-based feature extraction. The
model begins by generating region proposals using selective search (88), which
hierarchically groups image segments based on similarity in color, texture,
size, and shape to identify potential object regions. Each proposed region is
resized to a fixed dimension and processed independently through a CNN to
extract features. These features are then classified using a SVM (89), and
bounding box regression is applied to refine object localization further (Figure
2.15).

Figure 2.15: A flow diagram illustrating the R-CNN pipeline, showing the sepa-
rate stages of region proposal, feature extraction, classification, and bounding box
regression (13)

While R-CNN demonstrated improved accuracy over traditional methods, its
computational inefficiency was a major drawback (13). Each region proposal is
processed separately through the CNN, leading to significant redundancy and
high processing times. Additionally, the model’s multi-step pipeline, region
proposal generation, feature extraction, classification, and regression, was not
end-to-end trainable, limiting its scalability.

2. Fast R-CNN:
Fast R-CNN (14) improved upon R-CNN by introducing a shared CNN fea-
ture map for the entire image, reducing computational redundancy. Region
proposals are generated using selective search (88), which identifies potential
object locations by grouping similar regions based on features such as color
and texture. Instead of processing each region proposal independently, Fast
R-CNN creates a single feature map for the input image. Region proposals are
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then projected onto this feature map using a RoI pooling layer, which extracts
fixed-length feature vectors for each proposal (Figure 2.16).

Figure 2.16: A diagram showing the Fast R-CNN architecture, with a shared fea-
ture map and RoI pooling for region proposals (14)

These feature vectors are processed through fully connected layers for classi-
fication and bounding box regression. This approach integrates feature extrac-
tion, classification, and localization into a single pipeline, allowing the model
to be trained end-to-end. By sharing feature maps and using RoI pooling, Fast
R-CNN achieved significant improvements in processing speed and efficiency
compared to R-CNN.

3. Faster R-CNN:
Faster R-CNN (87) improves upon Fast R-CNN by replacing selective search
with an RPN for generating region proposals. While Fast R-CNN relies on
an external algorithm to propose regions, Faster R-CNN integrates the RPN
directly into the detection pipeline, allowing the model to be trained end-to-
end (Figure 2.17).

The architecture begins by processing the input image through a backbone
CNN (e.g., VGG (90)) to produce a shared feature map. The RPN predicts
objectness scores and generates bounding box proposals based on this feature
map. These proposals are then refined using a RoI pooling layer, which ex-
tracts fixed-length feature vectors for each region. The extracted features are
passed through fully connected layers for classification and bounding box re-
gression. By incorporating the RPN, Faster R-CNN achieves better efficiency
and accuracy compared to its predecessor.

Figure 2.17 illustrates the workflow, from feature map extraction to the RPN
and the final classification and regression stages. The integration of region
proposal generation and detection within a single network defines Faster R-
CNN as a significant advancement in object detection.
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Figure 2.17: A flowchart illustrating the integration of the RPN into Faster R-
CNN, showing shared feature maps and end-to-end training (14)

4. Cascade R-CNN:
Cascade R-CNN (15) builds on Faster R-CNN by introducing a multi-stage
refinement process to address challenges in detecting objects of varying scales
and complexities. While Faster R-CNN applies a single stage of classification
and regression, Cascade R-CNN performs these tasks iteratively across multi-
ple stages, with each stage refining the predictions of the previous one (Figure
2.18).

The architecture begins with region proposals generated by an RPN, similar to
Faster R-CNN. However, unlike Faster R-CNN, which uses a fixed Intersection
over Union (IoU) threshold (Figure 2.25), Cascade R-CNN employs a series
of cascaded detectors, each trained with progressively stricter IoU thresholds.
This approach ensures that initial stages handle coarse predictions, while later
stages focus on refining object localization and classification for improved ac-
curacy.

In Figure 2.18, the workflow demonstrates the integration of the Feature Pyra-
mid Network (FPN) (Figure 2.21) with the RPN. The FPN enhances the model’s
ability to detect objects at multiple scales by creating a hierarchical representa-
tion of feature maps. Each detector in the cascade uses the pooled feature maps
to perform bounding box refinement (B), classification (C), and, if applicable,
segmentation (S). The strict IoU thresholds across stages progressively im-
prove predictions, ensuring reliable detection even for objects that are densely
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Figure 2.18: A schematic of Cascade R-CNN, showing the iterative refinement
process across multiple detection stages (15)

packed or partially hidden.

Cascade R-CNN’s iterative refinement process allows it to achieve superior
localization and classification accuracy compared to Faster R-CNN, making it
effective for handling objects of varying scales and achieving state-of-the-art
results in object detection benchmarks.

5. DetectoRS:
DetectoRS (Detecting Objects with Recursive Feature Pyramid and Switch-
able Atrous Convolution) (16) enhances two-stage object detection by intro-
ducing two major innovations: Recursive Feature Pyramid (RFP) and Switch-
able Atrous Convolution (SAC). The RFP refines the feature pyramid by recur-
sively improving the feature maps through a top-down and bottom-up design,
allowing the model to extract richer contextual information (Figure 2.19(a)).
SAC dynamically adjusts receptive fields, enabling the model to better cap-
ture objects of different scales and aspect ratios by switching between dilated
convolution settings, as illustrated in Figure 2.19(b).

The architecture builds upon Faster R-CNN, where an RPN generates region
proposals from the shared feature maps. The RFP augments the feature extrac-
tion process by introducing an iterative feedback loop between the backbone
and FPN, improving the detection of objects in complex scenarios. SAC fur-
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Figure 2.19: A diagram showing the DetectoRS architecture, highlighting the Re-
cursive Feature Pyramid and Switchable Atrous Convolution components (16)

ther strengthens the model by enabling flexible feature representation, which is
particularly useful for detecting densely packed objects or objects with irregu-
lar shapes.

Figure 2.19 highlights both the macro design of RFP and the micro design
of SAC, showcasing how these components are integrated into the network.
These enhancements allow DetectoRS to excel in tasks requiring precise con-
textual understanding and robust multi-scale detection, making it suitable for
challenging applications.

This exploration of two-stage detectors traces their development from R-CNN
to advanced frameworks such as Cascade R-CNN and DetectoRS. These models
illustrate significant improvements in precision and efficiency for 2D object detec-
tion, providing a foundation for the upcoming discussion on one-stage detectors
in the next section.

Single-Stage Detectors (Fully CNN-Based)

Single-stage detectors streamline object detection by integrating the entire de-
tection pipeline into a single unified step, bypassing the need for a separate re-
gion proposal stage. This design prioritizes computational efficiency, making
these models well-suited for real-time applications where speed is critical. While
single-stage detectors sacrifice some precision compared to two-stage models,
they excel in scenarios requiring fast and reliable detection (Figure 2.20).

This section explores key single-stage detection frameworks, including the
YOLO family (91; 20; 22; 23; 24), EfficientDet (25), Scaled-YOLOv4 (92), and
PP-YOLOE (26), focusing on their architectures, processes, and contributions to
the field.
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Figure 2.20: Basic architecture of the single-stage detector (12).

1. YOLO Series: Evolution and Architectures:
The YOLO (You Only Look Once) (91) series is a pioneering family of single-
stage object detectors designed for real-time performance while maintaining
accuracy. These models adopt a grid-based detection strategy, dividing the
input image into cells, each responsible for predicting bounding boxes and
class probabilities. Over the years, the YOLO series has undergone significant
advancements, starting from YOLOv1 (91) and evolving through versions such
as YOLOv2 (93) and YOLOv3 (94), which laid the foundation for subsequent
improvements.

This section begins by detailing the architecture and innovations introduced
in YOLOv3, as it provides essential context for understanding the evolution
of later versions. Following this, we examine YOLOv5 (20), YOLOv7 (22),
YOLOv8 (23), YOLOv10 (24), Scaled-YOLOv4 (95), and PP-YOLOE (26),
analyzing their architectural advancements and performance improvements in
object detection.

(a) YOLOv3:
YOLOv3 (94) marked a significant leap in the evolution of the YOLO se-
ries by addressing several limitations of its predecessors. YOLOv1 strug-
gled with detecting overlapping objects due to its single detection per grid
cell, while YOLOv2 introduced anchor boxes to overcome this issue but
relied on a single detection scale, which limited its effectiveness with ob-
jects of varying sizes. YOLOv3 not only incorporates anchor boxes but
also leverages a FPN (Figure 2.21) to extract multi-scale features, allow-
ing for improved detection of small, medium, and large objects simulta-
neously.
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Figure 2.21: YOLOv3 architecture with multi-scale detection capabilities (17)

The backbone of YOLOv3 utilizes a Darknet-53 network, a deep convo-
lutional architecture with 53 convolutional layers grouped into residual
blocks. These residual blocks consist of shortcut connections that bypass
specific layers, ensuring efficient gradient flow and mitigating the vanish-
ing gradient problem.

Figure 2.22: Feature extraction stages: low-level, mid-level, and high-level fea-
tures contribute to robust object representation (18)

As the image progresses through the network, the convolutional layers
identify features hierarchically: initial layers detect low-level features
like edges and corners, mid-level layers focus on textures and patterns,
and deeper layers capture high-level features representing complex object
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structures (Figure 2.22). This hierarchical feature extraction enables the
model to efficiently distinguish between diverse objects within an image,
making it highly effective for feature representation.
One of YOLOv3’s standout contributions is its multi-scale detection capa-
bility. It divides the image into grids of varying sizes (13x13, 26x26, and
52x52), each responsible for detecting objects at different scales (Figure
2.23). By using three prediction layers corresponding to these grid sizes,
YOLOv3 ensures robust detection, even in scenarios with substantial vari-
ation in object dimensions. Each grid cell predicts bounding boxes with
associated class probabilities, utilizing anchor boxes for improved local-
ization.

Figure 2.23: Visualization of YOLOv3’s grid outputs for multi-scale object detec-
tion (19).

Figure 2.23 visualizes YOLOv3’s grid outputs across multiple scales, show-
casing how the input image is divided into grids for multi-scale object
detection. This design effectively balances spatial and contextual infor-
mation, enabling accurate predictions for objects of varying sizes (19).
YOLOv3 replaces the traditional softmax activation function with inde-
pendent logistic regression, enabling more effective handling of overlap-
ping categories, such as an object classified as both "person" and "athlete."
This innovation, combined with its speed and accuracy, set a benchmark
in single-stage object detection, serving as a foundational step for subse-
quent YOLO versions that further advanced state-of-the-art detection.

(b) YOLOv5:
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YOLOv5 (20) builds upon the innovations of YOLOv3, focusing on lightweight
and efficient architectures, making it well-suited for deployment on resource-
constrained devices. The architecture incorporates a Cross Stage Partial
Network (CSPNet)-based backbone, a Path Aggregation Network (PANet
or PAN) for multi-scale feature fusion, and an enhanced prediction head
for precise object localization and classification (20). These components
are designed to improve both speed and accuracy while reducing compu-
tational overhead.

Figure 2.24: YOLOv5 architecture overview, showcasing CSPNet-based back-
bone, PANet for multi-scale fusion, and prediction head (20).

CSPNet, a CNN architecture, enhances gradient flow and reduces com-
putational redundancy by introducing partial connections within residual
blocks. This design partitions feature maps into two parts: one is pro-
cessed through a series of transformations using BottleNeckCSP blocks,
while the other serves as a shortcut connection. BottleNeckCSP combines
depthwise convolution, batch normalization, and activation functions, en-
abling efficient feature reuse and improved gradient propagation.
YOLOv5 also integrates Spatial Pyramid Pooling (SPP) into its backbone
to aggregate multi-scale contextual information. SPP pools features into
fixed-size bins, capturing long-range dependencies and enhancing the de-
tection of objects with significant size variations. This addition strength-
ens YOLOv5’s robustness across diverse object scales (Figure 2.24).
PANet complements the backbone by enhancing feature pyramid repre-
sentations (20). It introduces a bottom-up pathway that propagates fine-
grained spatial features from lower layers to higher layers. By combining
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upsampling and lateral connections, PANet ensures that both low-level
spatial details and high-level semantic features are preserved, enabling
robust detection across varying object scales.
YOLOv5’s prediction head applies Complete Intersection over Union (CIoU)
loss, which refines the standard IoU by considering additional geometric
factors, such as the center distances and aspect ratios of predicted and
ground truth boxes. IoU measures the overlap between the predicted and
ground truth bounding boxes, as shown in the left part of Figure 2.25, by
calculating the ratio of their intersection area to their union area. How-
ever, IoU does not account for the spatial alignment or the aspect ratio
between the two boxes, which can lead to inaccuracies in localization.

Figure 2.25: Illustrations of the Intersection over Union (IoU) and Complete In-
tersection over Union (CIoU) (21).

To address this limitation, CIoU extends IoU by incorporating a penalty
term that considers the normalized distance (Disc) between the center
points of the predicted and ground truth boxes (21). Furthermore, it in-
cludes an aspect ratio consistency term (ν), which ensures alignment in
the dimensions of the boxes, resulting in improved localization precision.
These additional components make CIoU particularly effective in com-
plex detection scenarios (Figure 2.25, right).
By combining these architectural enhancements, YOLOv5 achieves a bal-
ance between computational efficiency and detection performance, ce-
menting its role as a versatile framework for various real-time applica-
tions.

(c) YOLOv7:
YOLOv7 (22) introduces key architectural improvements aimed at en-
hancing both detection efficiency and accuracy. Its backbone incorpo-
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rates an Extended Efficient Layer Aggregation Network (ELAN), which
optimizes feature extraction by splitting and merging features at different
stages. This structure ensures effective gradient propagation and enhances
the model’s ability to capture both spatial and contextual information. Ad-
ditionally, model reparameterization techniques are applied to improve in-
ference speed, making YOLOv7 suitable for real-time applications (Fig-
ure 2.26).
ELAN leverages parallel ConvModules to process feature hierarchies and
combines them using aggregation operations. This design facilitates ef-
ficient multi-scale feature extraction, which is particularly beneficial for
detecting objects of varying sizes. YOLOv7 retains FPN and PANet for
feature fusion, ensuring robust multi-scale detection. The prediction head
outputs bounding boxes, class probabilities, and optional segmentation
masks, further expanding the model’s versatility for diverse detection tasks.

(d) YOLOv8:
YOLOv8 (23) introduces several key innovations aimed at improving both
detection efficiency and versatility. One of its standout contributions is the
transition from traditional anchor-based mechanisms to adaptive anchor-
free detection. In contrast to anchor-based methods, which rely on prede-
fined box sizes and aspect ratios, the anchor-free approach predicts object
centers and dimensions directly. This significantly simplifies the train-
ing process, reduces computational overhead, and enhances the model’s
adaptability to various datasets. This design makes YOLOv8 particularly
versatile for real-world applications (Figure 2.27).
The architecture employs a CSPNet backbone optimized for efficient fea-
ture extraction. It integrates C2f modules, which enhance feature reuse
and gradient flow, providing better spatial and contextual representations.
Additionally, the SPPF module aggregates multi-scale features, maintain-
ing both accuracy and processing speed.
The network’s unified head handles detection, classification, and segmen-
tation within a single framework, streamlining multitask training and in-
ference. Dynamic label assignment further refines the matching of pre-
dicted boxes with ground truth, enhancing localization accuracy.
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Figure 2.26: Architecture of YOLOv7, emphasizing ELAN and detection capa-
bilities (22). 51



Figure 2.27: Detailed architecture of YOLOv8, showcasing its anchor-free detec-
tion and unified output head (23)

Overall, YOLOv8 leverages anchor-free detection, C2f modules, and a
unified head to deliver high accuracy and versatility, making it an excellent
choice for real-time applications.

(e) YOLOv10:
YOLOv10 (24) introduces significant advancements in accuracy and ef-
ficiency, while maintaining a balance between detection robustness and
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computational cost. A key feature of YOLOv10 is its dual-label assign-
ment strategy, which integrates one-to-many and one-to-one assignment
heads for classification and regression tasks. This approach improves ob-
ject detection in scenarios with occlusions and overlapping objects, as
illustrated in Figure 2.28.

Figure 2.28: YOLOv10 architecture, showcasing dual-label assignment and con-
sistent matching metrics for robust detection (24).

The backbone of YOLOv10 integrates PANet for multi-scale feature fu-
sion, enhancing the detection of small and occluded objects by propagat-
ing fine-grained spatial information across the network. The dual-label
assignment mechanism allows the model to capture diverse object rep-
resentations by leveraging one-to-many assignments for better recall and
one-to-one assignments for precise localization.
A major innovation in YOLOv10 is the consistent matching metric, which
refines object localization and classification. This metric combines spatial
alignment and confidence scores, incorporating factors such as prediction
confidence (s), probability (pα), and IoU between predicted and ground
truth bounding boxes. This comprehensive evaluation ensures robust de-
tections, even in cluttered or heavily occluded environments, by prioritiz-
ing the most consistent predictions (Figure 2.28, right panel).
Overall, YOLOv10 demonstrates advancements in architectural efficiency
and detection accuracy. Its dual-label assignment strategy and consistent
matching metric solidify its role as a robust framework for challenging ob-
ject detection tasks, paving the way for innovations in subsequent YOLO
models.
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2. EfficientDet:
EfficientDet (25) builds on the EfficientNet backbone (96), using a compound
scaling method to balance depth, width, and resolution. Its standout feature
is the BiFPN (Bidirectional Feature Pyramid Network), which enables effi-
cient multi-scale feature fusion by incorporating bidirectional connections and
learnable weights for feature importance (Figure 2.29).

Figure 2.29: BiFPN structure in EfficientDet, illustrating its multi-scale feature
fusion process (25)

The EfficientNet backbone extracts feature maps at multiple resolutions. These
maps are then processed through the BiFPN, which combines top-down and
bottom-up information flow to aggregate features across scales (96). Unlike
traditional FPNs, the BiFPN employs learnable weights, allowing the model to
prioritize more relevant features during fusion. This design improves feature
representation while maintaining computational efficiency (25).

The detection head utilizes the refined multi-scale features from the BiFPN
to predict bounding boxes and class probabilities. EfficientDet’s integration
of EfficientNet and BiFPN delivers a strong balance between accuracy and
computational efficiency, making it a versatile choice for a wide range of real-
world detection tasks (25).

3. PP-YOLOE:
PP-YOLOE (26) builds upon the PP-YOLO series (97) with significant archi-
tectural enhancements that improve efficiency and accuracy for object detec-
tion tasks. Its design incorporates a CSPRepResNet backbone, a PAN neck,
and an Efficient Task-aligned Head (ET-head), as illustrated in Figure 2.30.
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Figure 2.30: The architecture of PP-YOLOE. The backbone is CSPRepResNet,
the neck is Path Aggregation Network (PAN), and the head is Efficient Task-
aligned Head (ET-head) (26).

The CSPRepResNet backbone utilizes RepResBlocks, which combine resid-
ual and dense connections, providing efficient feature extraction while reduc-
ing computational overhead. Each RepResBlock is optimized during training
and re-parameterized into a simpler structure for inference, improving both
training stability and inference speed. To enhance channel-wise attention, the
backbone incorporates Effective Squeeze and Extraction (ESE) layers, which
refine feature selection and improve object representation (26).

The PAN neck aggregates multi-scale features from the backbone. It combines
low-level spatial features with high-level semantic features, ensuring robust
detection across varying object sizes. PAN effectively propagates fine-grained
information from the lower layers to the upper layers using upsampling and
element-wise addition operations, as shown in Figure 2.30 (26).

The ET-head improves the alignment of feature maps with object-specific tasks
like classification and regression. It employs lightweight IoU-aware layers and
efficient feature alignment techniques to enhance bounding box localization
and class confidence prediction. This unified head structure simplifies the de-
tection pipeline while maintaining high accuracy (26).

Overall, PP-YOLOE integrates advanced components like RepResBlocks, ESE
layers, and an ET-head, achieving a balance between computational efficiency
and detection accuracy. These enhancements make it well-suited for real-time
applications requiring high precision across diverse object detection scenarios.

The advancements in single-stage detectors emphasize their critical role in
balancing accuracy and real-time efficiency. These innovations have not only so-
lidified the foundation of 2D object detection but also opened avenues for ad-
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dressing more complex data representations, including 3D. As the requirements
for advanced detection capabilities evolve, the transition from 2D to 3D object de-
tection becomes increasingly vital for applications such as autonomous systems
and smart surveillance. This shift underscores the importance of models capable
of capturing spatial depth and contextual information while preserving computa-
tional efficiency, seamlessly leading into the subsequent exploration of 3D object
detection approaches.

State-of-the-Art 3D Object Detection Approaches

The evolution of 3D object detection has driven the development of innovative
architectures to process diverse data formats, such as point clouds, voxel grids, and
depth maps. These methods address challenges like data sparsity, irregularity, and
occlusions by adopting voxel-based, point-based, and hybrid approaches, each
offering unique strategies for robust detection and interpretation.

Voxel-Based Approaches

Voxel-based approaches convert 3D data, such as point clouds, into structured
volumetric representations, enabling efficient spatial analysis using 3D convolu-
tions. By organizing the data into a grid of voxels, these methods facilitate feature
extraction and modeling, making them particularly suitable for large-scale 3D en-
vironments.

1. VoxelNet:
VoxelNet (27) pioneered the integration of voxelization and feature learning
into a unified framework. It begins by dividing the input point cloud into a
structured voxel grid, transforming the inherently unstructured data into a rep-
resentation compatible with 3D CNNs. Within each voxel, the model employs
a Voxel Feature Encoding (VFE) layer, where individual points are processed
using shared Multi-Layer Perceptrons (MLPs). These MLPs extract local geo-
metric and spatial features from the points within each voxel. The VFE layer
aggregates these point-level features into a single descriptor for each voxel,
forming the basis for higher-level feature learning. The voxelization process,
grouping, and random sampling are critical steps for transforming the raw point
cloud into a structured format (Figure 2.31).
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Figure 2.31: VoxelNet architecture illustrating the voxelization process, VFE
layer for local feature aggregation, and 3D CNN layers for hierarchical feature
extraction (27)

These voxel features are then passed through a series of 3D convolutional lay-
ers, enabling hierarchical feature extraction across three spatial dimensions
(x,y,z). This hierarchical learning captures both fine-grained local details and
global spatial relationships in the scene. The Region Proposal Network (RPN)
generates object proposals, refining the features extracted by the 3D CNN lay-
ers. At the prediction stage, VoxelNet classifies objects and regresses their
3D bounding boxes, leveraging the spatial context encoded in the voxelized
representation.

While VoxelNet demonstrates strong performance, its dense voxel grid repre-
sentation can result in high computational costs. This computational overhead
motivated subsequent voxel-based approaches to optimize voxelization, reduce
sparsity, and improve processing efficiency.

2. SECOND:
The SECOND (Sparsely Embedded Convolutional Detection) (28) model en-
hances voxel-based 3D object detection by leveraging sparse convolution oper-
ations, which significantly reduce computational overhead. The process begins
with voxelizing the input point cloud, where each voxel is represented by its
features and coordinates. These voxel features are extracted using a voxel fea-
ture extractor, which aggregates local information. Sparse convolutional layers
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then process only the non-empty voxels, enabling efficient feature extraction
while maintaining high spatial resolution (Figure 2.32).

Figure 2.32: SECOND Architecture: Visualization of sparse convolution opera-
tions applied to voxel grids, followed by their integration into 3D CNN layers (28)

These sparse features are passed through 3D CNN layers for hierarchical fea-
ture learning. At the prediction stage, SECOND employs a RPN to propose
candidate object regions. These proposals are refined through a classifier, a
bounding box regressor, and a direction classifier, ensuring accurate object lo-
calization and orientation estimation. This architecture achieves fast inference
times while maintaining high detection accuracy, making it suitable for real-
time applications on large-scale 3D datasets.

Point-Based Approaches

Point-based approaches directly operate on raw point clouds, treating each
point as an individual data unit while preserving the original 3D spatial structure.
These methods are designed to capture fine-grained geometric details and spatial
relationships without the need for voxelization, enabling precise representation
of object shapes and structures. By leveraging the unstructured nature of point
clouds, point-based approaches excel in scenarios where maintaining geometric
fidelity is critical.

1. PointNet:
PointNet (29) was a groundbreaking model that directly processes raw point
clouds, bypassing the need for voxelization. The architecture treats each point
in the cloud as an independent entity, using shared MLPs to encode per-point
features. These features capture geometric properties such as curvature, den-
sity, and local structure. PointNet employs a T-Net module for input trans-
formation, ensuring invariance to geometric transformations like rotations and
scaling. This transformation matrix is learned as part of the network.
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The encoded point-level features are aggregated using a symmetric max-pooling
operation, which summarizes the entire point cloud into a global feature vec-
tor. This vector represents the overall structure of the point cloud and serves as
input for downstream tasks such as classification and segmentation. For seg-
mentation, PointNet appends additional layers to refine point-level predictions
using both global and local features (Figure 2.33).

Figure 2.33: A schematic of PointNet, showing point-wise feature extraction with
MLPs and the max-pooling operation for global feature aggregation (29)

While its simplicity allows PointNet to handle unstructured point clouds effec-
tively, the reliance on global pooling limits its ability to model local context,
especially in complex scenes with intricate spatial relationships. This limita-
tion paved the way for extensions like PointNet++ that incorporate local neigh-
borhood structures.

2. PointNet++:
PointNet++ (30) extends PointNet by introducing a hierarchical structure for
feature extraction. Instead of processing the entire point cloud as a single en-
tity, PointNet++ groups points into local neighborhoods based on spatial prox-
imity. Within each neighborhood, the model applies shared MLPs to extract
local features. These features are then pooled hierarchically to capture both
fine-grained and global context (Figure 2.34).
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Figure 2.34: Hierarchical feature extraction in PointNet++, illustrating local
grouping and multi-level pooling (30)

The hierarchical grouping mechanism is implemented through the following
steps:

• Set Abstraction: Points are sampled and grouped into local regions using
a distance-based metric, such as k-nearest neighbors (k-NN). Within each
region, shared MLPs are applied to extract local features.

• Multi-Level Pooling: Local features from multiple regions are aggre-
gated hierarchically, enabling the model to capture spatial details at dif-
ferent scales.

• Skip Link Concatenation: To preserve fine-grained information, fea-
tures from earlier layers are concatenated with higher-level features dur-
ing segmentation tasks.

The hierarchical approach allows PointNet++ to adapt to varying point den-
sities, a common challenge in 3D data. This robustness makes it suitable for
outdoor environments with unevenly distributed points, such as LiDAR scans.
At the prediction stage, the aggregated features are used for tasks such as object
classification, segmentation, and bounding box regression, achieving superior
performance compared to its predecessor.

Hybrid Approaches

Hybrid approaches combine voxel-based and point-based techniques to lever-
age the structured representation of voxels and the fine-grained detail of point
clouds. By integrating these complementary methods, hybrid models achieve a
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balance between computational efficiency and detailed geometric representation,
enabling robust and accurate 3D object detection. These approaches are partic-
ularly effective in addressing challenges such as data sparsity and irregularity,
commonly encountered in 3D data.

1. PV-R-CNN:
PV-R-CNN (Point-Voxel Region-Based CNN) (31) combines voxel-based and
point-based approaches to achieve high-performance 3D object detection. The
architecture begins by voxelizing the raw point cloud for global feature ex-
traction using sparse 3D CNNs. Concurrently, key points are sampled from
the raw point cloud to capture fine-grained local features. These two feature
sets—global voxel features and local point features—are integrated through a
voxel set abstraction module to create a comprehensive scene representation
(Figure 2.35).

Figure 2.35: Architecture of PV-R-CNN, highlighting the integration of voxel-
based global features and point-based local features (31)

After feature extraction, the model generates 3D region proposals using an
RPN. The keypoints, enriched by both voxel-based and point-based features,
are further refined through a predicted keypoint weighting module. For each
region proposal, features are aggregated using a RoI-grid pooling module, en-
abling precise object classification and bounding box regression. This two-
level fusion mechanism ensures that both global and local spatial details are
preserved, improving detection accuracy in challenging scenarios such as sparse
or occluded environments.

PV-R-CNN’s design addresses the limitations of individual voxel-based and
point-based methods by leveraging their respective strengths. Its ability to bal-
ance computational efficiency with fine-grained feature learning ensures robust
performance across a range of complex 3D detection tasks.

61



2. VoteNet:
VoteNet (32) introduces an innovative voting mechanism for object detection in
point clouds, marking a departure from traditional voxel- or convolution-based
techniques. Instead of relying solely on CNNs, VoteNet utilizes point-wise
operations to generate “votes” for potential object centers, effectively lever-
aging local context to aggregate spatial information. Each point in the cloud
predicts offsets towards likely object centers, forming the basis for object pro-
posals. These proposals are further refined through feature propagation layers
and attention modules for classification and bounding box regression (Figure
2.36).

Figure 2.36: Diagram showing the voting mechanism in VoteNet, illustrating how
points generate and refine object proposals (32)

A key feature of VoteNet is its ability to integrate attention mechanisms (Figure
2.36) into its backbone, enhancing the model’s capacity to capture important
spatial features while filtering out irrelevant information. This makes the ar-

62



chitecture highly effective in handling cluttered and occluded environments,
where distinguishing objects from noise is crucial. The attention modules pri-
oritize relevant point features during the feature propagation phase, comple-
menting the voting mechanism by refining the object proposals with greater
accuracy.

The model’s hierarchical structure combines set abstraction layers with fea-
ture propagation and attention modules, providing a balance between com-
putational efficiency and detection accuracy. This design enables VoteNet to
detect objects of varying sizes and positions in complex 3D scenes, making it
a suitable choice for tasks requiring robust point cloud analysis, such as indoor
navigation and autonomous robotics.

The explored models showcase advancements in 3D object detection, address-
ing challenges such as data sparsity and occlusion through voxel-based, point-
based, and hybrid approaches. These innovations have refined feature extraction
and processing in 3D environments, paving the way for a detailed comparative
analysis of the discussed state-of-the-art methods in the next section.

2.4 Comparative Analysis
The advancements in object detection methodologies, spanning both 2D and 3D
domains, showcase an evolution in techniques aimed at balancing accuracy, com-
putational efficiency, and adaptability. Building on the models discussed earlier,
this comparative analysis evaluates state-of-the-art 2D and 3D object detection ap-
proaches using standardized metrics and datasets. The goal is to provide insights
into their performance and suitability for diverse applications, such as real-time
surveillance, robotics, and autonomous navigation.

2.4.1 Evaluation Metrics
The evaluation of object detection models is based on the following metrics:

• Average Precision (AP): AP measures the area under the precision-recall
curve and reflects the model’s ability to predict object classes and localize
bounding boxes accurately. It is calculated as:

AP =

∫ 1

0

P (R) dR (2.2)

where P (R) is the precision as a function of recall. The parameters used
for AP are:
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– IoU (Intersection over Union): Defines a correct detection based on
the overlap between the predicted and ground truth bounding boxes:

IoU =
Area of Overlap
Area of Union

(2.3)

* AP@50: Average precision at IoU threshold of 0.5.

* AP@[0.5:0.95]: Mean AP over IoU thresholds from 0.5 to 0.95
in steps of 0.05.

– Precision (P): The ratio of true positive detections to the total number
of detections:

P =
TP

TP + FP
(2.4)

– Recall (R): The ratio of true positive detections to the total number of
ground truth objects:

R =
TP

TP + FN
(2.5)

• Execution Time (ms): The time required by the model to process a single
image or point cloud. Lower times indicate higher efficiency.

• Model Size (MB): Refers to the storage size of the trained model. Smaller
sizes are beneficial for deployment on devices with limited resources.

2.4.2 Datasets
COCO Dataset (2D Detection): The COCO dataset (33) comprises 330,000 im-
ages annotated with over 1.5 million object instances across 80 categories. It
includes 118,287 training images, 5,000 validation images, and 40,670 test im-
ages. The dataset is widely used for evaluating 2D object detection models and
includes diverse categories such as "person," "car," "dog," and "chair." Example
images from the dataset are shown in Figure 2.37.
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Figure 2.37: Example Images from the COCO Dataset (33).

SUN RGB-D Dataset (3D Detection): The SUN RGB-D dataset (98) con-
tains RGB images and depth maps of indoor scenes with annotations for 37 object
categories. It consists of 10,335 training samples and 2,855 testing samples. Key
classes include "table," "chair," "sofa," and "television," making it suitable for
evaluating 3D object detection methods. Example images illustrating tasks such
as scene classification, semantic segmentation, room layout estimation, and object
detection are shown in Figure 2.38, highlighting the diverse capabilities enabled
by the SUN RGB-D dataset.

Figure 2.38: Example images illustrating tasks from the SUN RGB-D dataset.
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2.4.3 2D Object Detection Methods

Model AP@50 (%) AP@[0.5:0.95] (%) Execution Time (ms) Model Size (MB)
R-CNN 80.2 41.3 280 500
Fast R-CNN 84.5 48.6 150 250
Faster R-CNN 87.2 52.1 120 200
Cascade R-CNN 89.5 55.7 140 210
DetectoRS 91.3 57.8 160 230
YOLOv5 92.5 58.4 10 20
YOLOv7 94.3 60.1 8 25
YOLOv8 95.6 61.5 7 30
YOLOv10 97.8 64.2 6 32
EfficientDet 90.7 57.3 12 25
PPYOLOE 93.5 59.8 9 22

Table 2.1: Comparative Analysis of 2D Object Detection Methods.

YOLOv10 demonstrates unparalleled performance across the evaluated metrics,
achieving the highest precision scores while maintaining minimal execution time.
This combination of accuracy and speed underscores its suitability for real-time
applications such as video surveillance, autonomous navigation, and robotics,
where rapid decision-making is critical. In contrast, Cascade R-CNN and De-
tectoRS exhibit strong precision metrics but are hindered by higher computational
complexity, resulting in slower processing times. These models are better suited
for tasks prioritizing detection accuracy over speed.

2.4.4 3D Object Detection Methods

Model AP@50 (%) AP@[0.5:0.95] (%) Execution Time (ms) Model Size (MB)
VoxelNet 91.2 60.5 100 150
SECOND 85.6 54.2 120 180
PointNet 80.1 49.5 180 150
PointNet++ 86.2 55.1 160 170
PV-R-CNN 90.7 59.2 110 200
VoteNet 89.8 58.4 110 190

Table 2.2: Comparative Analysis of 3D Object Detection Methods.

VoxelNet leads in average precision, indicating its ability to extract and utilize
both global and local features effectively from voxelized 3D data. This makes
it particularly adept at handling complex scenes with dense object arrangements
or occlusions. PV-R-CNN, on the other hand, offers a balanced performance by
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combining the strengths of voxel-based global feature extraction and point-based
local feature refinement. This hybrid approach allows it to remain competitive in
scenarios demanding both precision and adaptability.

2.4.5 Discussion
The comparative analysis highlights the trade-offs between precision, computa-
tional efficiency, and model size across 2D and 3D object detection methods.
While YOLOv10 and VoxelNet lead in their respective categories, future work
should focus on further optimizing hybrid approaches and exploring novel datasets
to improve detection performance in diverse scenarios.

2.5 Synthesis and Discussion
This section synthesizes the insights gained from the exploration of object detec-
tion techniques in both 2D and 3D domains. It provides a comprehensive sum-
mary of the key methods discussed, emphasizing their strengths, limitations, and
applicability. The section also highlights the challenges that persist in modern
detection systems, including computational efficiency, data sparsity, and robust-
ness in occluded environments. These challenges inform the motivations for the
methodologies proposed in this thesis, aimed at advancing detection capabilities
in dynamic and complex scenarios.

2.5.1 Summary Table of Key Techniques
This subsection consolidates the core object detection methods discussed, pre-
senting a comparative overview of their attributes in both 2D and 3D domains.
The summary table categorizes the techniques by detection type, architectures,
advantages, and limitations, providing a quick reference for their strengths and
trade-offs.
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Table 2.3: Comparison of Object Detection Techniques in 2D and 3D Domains

Method Detection
Type Architectures Advantages Limitations

Two-Stage
Detectors

2D R-CNN, Fast
R-CNN,
Faster

R-CNN,
Cascade
R-CNN

High
detection
precision,

especially for
complex
scenes

High compu-
tational cost,

slower
inference

times

One-Stage
Detectors

2D YOLOv5,
YOLOv7,
YOLOv8,
YOLOv10,

EfficientDet,
PP-YOLOE

Fast and
efficient,

suitable for
real-time

applications

May sacrifice
precision in

complex
scenes

Point-Based
Approaches

3D PointNet,
PointNet++

Directly
processes
raw point
clouds,

capturing
fine-grained

spatial details

Struggles
with

large-scale or
sparse point
clouds, com-
putationally

intensive
Voxel-Based
Approaches

3D VoxelNet,
SECOND

Captures
global and

local spatial
structures
effectively

High
memory

usage due to
dense voxel

grids
Hybrid

Approaches
3D PV-R-CNN,

VoteNet
Combines

advantages of
point-based

and
voxel-based
methods for

robust feature
extraction

Increased
model

complexity
and resource

demands
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2.5.2 Limitations of Current Object Detection Methods
Despite significant advancements in 2D and 3D object detection, several limita-
tions persist, particularly in real-world scenarios. This section highlights critical
challenges that hinder the performance and scalability of current detection mod-
els, emphasizing areas requiring further innovation.

• Handling Occlusions: Occlusions remain a key obstacle for both 2D and
3D detectors. Two-stage detectors, such as Faster R-CNN, excel in feature
extraction but struggle with obscured objects, while one-stage models like
YOLOv5 prioritize speed at the expense of accurately detecting overlapping
or hidden objects. In the 3D domain, methods like PointNet++ and PV-R-
CNN leverage spatial information to address occlusions but face challenges
in dynamic or densely occluded environments.

• Environmental Adaptability: Variable lighting, weather, and visibility
conditions significantly affect model performance. While 2D models like
YOLOv8 employ data augmentation to enhance robustness, they remain
vulnerable in extreme scenarios, such as fog or heavy rain. 3D models, such
as SECOND, perform better under these conditions by using depth data, but
they are not immune to degradation. Multimodal approaches combining 2D
and 3D data offer potential solutions, albeit with increased computational
demands.

• Computational Efficiency: Balancing accuracy and real-time performance
remains challenging. High-precision two-stage detectors like Cascade R-
CNN are resource-intensive, making them unsuitable for real-time appli-
cations. Conversely, one-stage models like YOLOv7 prioritize speed but
often sacrifice detection quality for overlapping or small objects. Similarly,
3D models such as PV-R-CNN require substantial computational power due
to the complexity of processing point clouds, limiting their scalability for
urban monitoring systems.

• Scalability and Data Requirements: High-quality labeled datasets, par-
ticularly for 3D detection, are costly and resource-intensive to produce.
Models like VoxelNet necessitate careful resolution management to balance
computational costs and detection precision. These challenges underscore
the need for scalable architectures and efficient data-labeling techniques to
support wide-scale deployment in practical surveillance systems.
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2.6 Conclusion
This chapter critically analyzed state-of-the-art 2D and 3D object detection tech-
niques, showcasing their evolution, strengths, and limitations. Despite signifi-
cant advancements in detection accuracy and computational efficiency, key chal-
lenges persist, particularly in handling occlusions, adapting to diverse environ-
mental conditions, and ensuring robustness in real-world scenarios. These issues
are especially pronounced in dynamic environments such as urban surveillance,
where high object density and occlusions complicate detection tasks.

Addressing these challenges requires robust and adaptive models capable of
maintaining reliable performance across varying conditions. Promising approaches,
such as multimodal fusion combining 2D images and 3D spatial data, highlight
the potential to enhance detection accuracy by leveraging complementary infor-
mation. However, these strategies also present new complexities, including in-
creased computational requirements, that demand innovative solutions.

The insights presented in this chapter lay the groundwork for the methodolo-
gies proposed in this thesis. By focusing on advanced occlusion-aware techniques
and harnessing the strengths of both 2D and 3D detection frameworks, this re-
search aims to develop robust systems tailored for real-world applications. The
next chapter transitions into a detailed exploration of occlusion-handling strate-
gies, addressing the critical challenges identified here and proposing innovative
approaches to enhance object detection performance in complex environments.

70



Chapter 3

State of the Art: Occlusion Handling
in Object Detection
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3.1 Introduction
Building on the foundation established in the previous chapter, which introduced
the domain of object detection and presented a comparative analysis of state-of-
the-art models in 2D and 3D domains, this chapter delves deeper into the critical
challenge of occlusion. While the previous discussion emphasized the strengths
and limitations of detection models, this chapter shifts focus to the techniques
specifically designed to handle occlusion scenarios, a pervasive problem in visual
recognition systems.

This chapter provides a comprehensive review of occlusion-handling method-
ologies, surveying advanced solutions such as occlusion-aware architectures, mul-
timodal data fusion, and novel training paradigms. By analyzing their strengths
and limitations, the chapter offers a detailed understanding of how these tech-
niques address occlusion challenges in various contexts, including both academic
research and industrial applications. Additionally, it highlights the relevance of
datasets and evaluation metrics specifically designed for occlusion scenarios, un-
derscoring their role in guiding the development of robust detection systems.

This chapter is derived from and builds upon the insights presented in the jour-
nal paper titled "Enhancing Object Detection in Smart Video Surveillance: A Sur-
vey of Occlusion Handling Approaches" (38) draws heavily on the methodologies
and challenges analyzed in this chapter:

• Ouardirhi, Z., et al. (2024). Enhancing Object Detection in Smart Video
Surveillance: A Survey of Occlusion Handling Approaches. Published in
Electronics, special issue on "Image/Video Processing and Encoding for
Contemporary Applications."

3.2 Understanding Occlusion in Object Detection
Occlusion presents a significant challenge in object detection, affecting the preci-
sion and reliability of models in identifying and localizing objects within complex,
real-world environments. It arises in scenarios where objects are partially or fully
obscured by other elements, such as overlapping objects, environmental barriers,
or self-occlusion. This section aims to clarify the occlusion problem by examining
its influence on detection performance, classifying its types, and highlighting its
critical role in surveillance applications. These discussions establish the ground-
work for advanced occlusion-handling strategies explored in subsequent sections.
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3.2.1 Overview of Occlusion
Occlusion occurs when an object of interest is partially or fully hidden by another
object or its environment. This phenomenon creates ambiguity in visual data,
as only fragments of an object’s features are visible, complicating detection and
classification. For example, in urban surveillance, pedestrians may be obscured
by vehicles, or objects may overlap in a crowded scene (Figure 3.1).

Figure 3.1: Complex Object Detection Scenario: Illustration of a challenging ob-
ject detection scenario with high levels of partial occlusion in a cluttered environ-
ment, using the UA-DETRAC dataset (34)

Why is occlusion a challenge? Traditional object detection models depend
on complete or nearly complete feature representation to make accurate predic-
tions. Occlusion disrupts this by removing or distorting critical features, leading
to inaccuracies in model outputs. Addressing this issue is crucial for creating ef-
fective detection systems, particularly in scenarios like video surveillance, where
occlusion frequently occurs.

3.2.2 Impact on Detection Performance
Occlusion significantly impacts the performance of object detection systems in
several ways:

• False Positives: When occlusion distorts object features, models may mis-
classify the object as something else or detect objects where none exist.
For example, in crowded scenes, overlapping features can lead to incorrect
classifications.
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• False Negatives: Occlusion frequently causes failures in detecting objects
entirely, especially when critical features are obscured. This issue is par-
ticularly critical in applications such as pedestrian detection, where missed
detections can have severe consequences.

• Reduced Localization Accuracy: Bounding boxes for partially occluded
objects often fail to capture the true extent of the object. This affects tasks
such as tracking and interaction modeling, where precise localization is cru-
cial.

These challenges highlight the importance of understanding the various types
of occlusion. Each type requires specific approaches to improve detection perfor-
mance.

3.2.3 Types of Occlusion
Occlusion can be classified into several categories based on its characteristics and
the challenges it poses. Understanding these types is essential for designing robust
object detection methods.

1. Partial Occlusion: Only a part of the object is obscured, leaving some
features visible. For instance, a person partially overlapping another person
(Figure 3.2(a)). While less challenging than full occlusion, it still requires
models to infer the missing portions accurately.

2. Full Occlusion: The object is completely hidden, making detection impos-
sible without additional contextual or predictive methods. An example is
a person completely obscuring another person (Figure 3.2(b)). Techniques
such as generative models for reconstruction or the use of temporal data are
often necessary to address this challenge.

3. Self-Occlusion: Parts of an object obscure other parts of the same object.
This is common in articulated structures like humans (e.g., arms crossing
the body (Figure 3.2(c))) or vehicles (e.g., wheels under the chassis). Self-
occlusion complicates feature extraction, requiring models to incorporate
structural understanding of objects. For example, skeleton-based represen-
tations for human detection or part-based modeling for vehicles can help
models reason about the spatial relationships and geometry of object com-
ponents.
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Figure 3.2: Examples of occlusion types: (a) Partial occlusion where a person
partially overlaps another person, (b) Full occlusion where a person is completely
hidden by another person, (c) Self-occlusion where a hand occludes the face.

These occlusion types can be further categorized as either inter-class or intra-
class occlusions:

• Inter-Class Occlusion: Occurs when objects from different classes overlap
or obscure one another. For example, pedestrians occluding cars in a scene,
as shown in Figure 3.3(b).

• Intra-Class Occlusion: Occurs when objects from the same class obscure
one another. This is demonstrated in Figure 3.3(a), where pedestrians ob-
scure each other, and cars partially occlude one another.
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Figure 3.3: Examples of occlusion classes: (a) Intra-class occlusion where pedes-
trians and cars obscure each other, (b) Inter-class occlusion where pedestrians
obscure cars.

Understanding these distinctions is critical for designing robust object detec-
tion systems that can address the challenges posed by different occlusion scenar-
ios effectively. These insights are particularly important in real-world applications
like surveillance and autonomous driving, where robust performance is essential.

3.2.4 Relevance to Surveillance Applications
Surveillance systems operate in dynamic, cluttered environments where occlusion
is a frequent occurrence. Key examples include:

• Urban Surveillance: Pedestrians, vehicles, and other objects often overlap,
leading to partial or full occlusions that complicate object detection. For
instance, a crowd at a crosswalk can obscure a vehicle or other individuals
(Figure 3.1).

• Industrial Monitoring: In factories or warehouses, machinery and workers
frequently obscure each other. These occlusions pose challenges for track-
ing worker activities or detecting potential safety hazards, requiring systems
to be highly reliable (Figure 3.1).

• Public Safety and Emergency Scenarios: Crowded events or emergency
evacuations often involve overlapping objects, where accurate detection is
critical for monitoring safety, identifying risks, and coordinating effective
responses (Figure 3.1).

Reliable detection systems in these scenarios enhance situational awareness,
improve resource allocation, and increase overall safety. Addressing occlusion is
essential to maintain accuracy and robustness in such applications.
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The insights discussed here highlight the critical challenges posed by oc-
clusion in object detection, underscoring the need for robust and innovative ap-
proaches to address these issues. Existing occlusion-handling techniques, de-
signed to mitigate these challenges, will be explored in detail in the following
sections.

3.3 Object Detection Techniques for Occlusion Han-
dling

Occlusion presents a significant challenge in object detection, requiring innova-
tive techniques to ensure accurate localization and classification in complex envi-
ronments. This section explores three primary approaches to address occlusion:
deep learning-based models, generative techniques, and multimodal fusion. Deep
learning methods leverage advanced architectures, such as CNNs, to refine fea-
ture extraction and handle occlusion challenges. Generative models aim to re-
construct missing object parts using techniques like GANs, improving detection
under occluded scenarios. Finally, multimodal fusion integrates complementary
data sources, such as 2D and 3D information, to enhance robustness and compen-
sate for missing or distorted features. Each approach is examined with a focus on
its methodology and specific mechanisms for handling occlusion.

3.3.1 Deep Learning-Based Methods
Building on the general challenges posed by occlusion, deep learning-based ap-
proaches have introduced innovative mechanisms to enhance object detection in
occlusion-heavy environments. These methods span across both two-stage and
one-stage detectors, leveraging advancements in CNNs and architectural adapta-
tions to address partial and complete occlusions effectively. The following sub-
sections explore these models in detail, highlighting their mechanisms, processing
pipelines, and performance in occluded scenarios.

Two-Stage Detectors

Semantics and Geometry Detection (SG-NMS)

Yang et al. (35) proposed SG-NMS, a two-stage detection framework that in-
tegrates semantic-geometric embeddings into a Serial R-FCN pipeline to address
occlusion challenges. The process begins with a CNN backbone, which extracts
hierarchical feature maps from the input image. These feature maps are then pro-
cessed by an RPN that generates Regions of Interest (ROIs). Each ROI undergoes

77



refinement through an affine regression module, followed by classification to pro-
duce detection scores (Figure 3.4).

Figure 3.4: Visualization of SG-NMS pipeline, showcasing the integration of
semantic-geometric embeddings (35).

A unique addition to this pipeline is the semantic-geometric embedding (SGE)
module, which maps ROIs into a latent space. This latent representation ensures
that occluded instances of the same object are clustered together, enabling the SG-
NMS algorithm to select optimal bounding boxes by combining detection scores
and embedding distances.

The explicit incorporation of geometric and semantic context allows SG-NMS
to excel in detecting partially visible objects and distinguishing overlapping de-
tections. This capability is particularly effective in crowded urban environments,
where objects are frequently occluded. However, the computational cost of the
SGE module can be prohibitive for real-time applications, making SG-NMS bet-
ter suited for offline processing.

Stereo R-CNN

Stereo R-CNN (36) introduces a framework designed to address occlusion
challenges by leveraging stereo image pairs for depth estimation. The model pro-
cesses stereo images using a shared CNN backbone to extract depth and RGB
features, which are then fused to enhance object localization and recognition. By
incorporating stereo vision, Stereo R-CNN gains an additional layer of spatial
understanding, enabling accurate detection of occluded objects in complex envi-
ronments (Figure 3.5).
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Figure 3.5: Diagram of Stereo R-CNN pipeline, showing stereo image input, 3D
RPN, stereo feature pooling, and final detection outputs, emphasizing the integra-
tion of RGB and depth features (36)

The model employs a 3D RPN to generate initial region proposals by combin-
ing disparity maps and extracted features from stereo images. These proposals are
refined further using stereo feature pooling, which aligns and integrates features
from both images to enhance the spatial representation of objects.

The final detection is achieved through bounding box regression and classifi-
cation heads, which output precise object locations and class predictions. Stereo
R-CNN’s integration of depth and appearance features is particularly effective in
handling occlusions, as the disparity information enables the model to discern the
relative positioning of objects even when they are partially hidden. This makes
it highly suitable for dense and cluttered scenes, such as urban traffic or crowded
surveillance scenarios. Its ability to fuse RGB and depth data ensures that both
geometric and visual information are utilized.

However, the model’s reliance on stereo cameras limits its flexibility, as sys-
tems with monocular cameras cannot benefit from its architecture. Addition-
ally, the processing complexity introduced by stereo feature pooling and disparity
computation increases computational requirements, making real-time applications
more challenging. These trade-offs highlight the balance between accuracy and
deployment constraints in occlusion handling techniques.

Pyramid R-CNN

Pyramid R-CNN (37) is designed to tackle occlusion challenges in 3D object
detection by leveraging multi-scale feature pyramids. This technique enables the
model to capture both local and global spatial context from LiDAR point clouds,
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which is essential for detecting partially or fully occluded objects. By using hi-
erarchical feature extraction, Pyramid R-CNN enhances its ability to detect small
objects and handle complex occlusion scenarios in cluttered environments (Figure
3.6).

Figure 3.6: Diagram of Pyramid R-CNN architecture showing the voxelization
process, multi-scale feature pyramids, and detection pipeline, emphasizing the
hierarchical feature extraction mechanism (37)

The detection process starts with the voxelization of raw point cloud data,
which structures the unorganized 3D points into a grid format suitable for convo-
lutional processing. These voxelized grids are then fed into a backbone network
that generates feature maps across multiple scales. The multi-scale feature pyra-
mid analyzes these feature maps, combining spatial information from different
resolutions to improve the detection of both large, fully visible objects and small,
partially occluded ones.

Pyramid R-CNN employs an RPN to generate initial bounding box propos-
als from the feature pyramids. These proposals are refined through subsequent
regression and classification heads, which leverage the hierarchical features ex-
tracted during earlier stages of the pipeline. This hierarchical approach ensures
that occluded objects are detected with greater precision by capturing subtle spa-
tial details and relationships.

Despite its advantages in handling occlusion, Pyramid R-CNN’s reliance on
voxelization and multi-scale processing increases computational demands. This
can pose challenges for real-time applications or resource-constrained systems.
However, its robustness in heavily occluded scenarios and its ability to detect
small objects make it a valuable tool for public environments.
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One-Stage Detectors

YOLO3D

YOLO3D (99) extends the YOLO framework to address 3D object detection
by incorporating depth information derived from LiDAR point clouds. The model
projects the raw 3D point cloud data into a bird’s-eye view (BEV) representa-
tion, which serves as the foundation for its detection pipeline. This approach
adapts YOLO’s single-stage detection capabilities to the 3D domain, maintaining
real-time efficiency while introducing depth-aware features to handle occlusion
challenges.

The detection pipeline begins by transforming point cloud data into BEV
grids. This conversion aggregates spatial information into a structured grid for-
mat that retains critical depth and positional details. These grids are processed
through convolutional layers in the YOLO architecture, extracting hierarchical
features that encode both spatial relationships and object-specific details. The
network then predicts 3D bounding boxes directly from these features, including
object orientation and class labels, in a single forward pass.

One of YOLO3D’s key strengths lies in its ability to utilize depth information
to mitigate the effects of occlusion. By incorporating LiDAR-based BEV repre-
sentations, the model captures spatial relationships between objects, enabling it to
localize partially visible objects more effectively. However, YOLO3D’s reliance
on LiDAR data increases hardware costs and limits its applicability in scenarios
where LiDAR sensors are unavailable or impractical. Furthermore, the compu-
tational demands of processing dense 3D data can pose challenges for real-time
deployment in resource-constrained environments.

E-YOLO

E-YOLO (100) builds on the YOLOv3 framework, enhancing its capability
to handle occlusion by integrating stereo vision and contour-based segmentation.
By leveraging stereo image pairs, the model introduces depth estimation to com-
plement its spatial feature extraction, while contour detection aids in delineating
object boundaries for partially occluded objects (Figure 3.7).
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Figure 3.7: E-YOLO pipeline diagram, illustrating stereo vision input, depth esti-
mation, contour detection, and feature fusion leading to bounding box prediction
(38)

The pipeline begins with stereo image inputs, from which depth features are
estimated using stereo disparity calculations. These depth features are fused with
spatial features extracted from the YOLO backbone, creating a unified represen-
tation that combines depth-aware and appearance-based information. Simultane-
ously, a contour detection module processes the stereo images to identify object
edges, enhancing the model’s ability to separate overlapping or partially visible
objects.

To address dynamic scenarios, E-YOLO incorporates a frame differencing
module that detects temporal changes between consecutive frames. This allows
the model to identify moving objects and adapt to occlusion dynamics in real-
time. The fused depth, contour, and frame difference features are then processed
through the YOLO prediction layers, which generate bounding boxes, class prob-
abilities, and depth-aware object localizations.

By leveraging stereo vision, E-YOLO enhances depth estimation, enabling
effective detection of partially occluded objects in cluttered environments. How-
ever, its dependence on stereo cameras introduces higher hardware requirements,
which may not be feasible in settings that favor simpler monocular systems. Ad-
ditionally, the computational demands of contour detection and frame differenc-
ing modules pose challenges for achieving real-time performance in resource-
constrained scenarios.
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MonoFlex

MonoFlex (39) is a lightweight single-stage 3D object detection framework
specifically designed for monocular RGB input, making it a one-stage detector.
It addresses occlusion challenges by aligning spatial and depth features to pro-
duce accurate 3D bounding boxes, even for partially visible objects. A notable
innovation of MonoFlex is its uncertainty modeling, which effectively handles
ambiguities in occlusion-heavy environments, such as cluttered urban scenes or
dynamic surveillance setups (Figure 3.8).

Figure 3.8: Diagram of the MonoFlex pipeline, showcasing the monocular in-
put processing, depth-aware feature alignment, and confidence estimation module
(39)

The detection process begins with a CNN backbone that extracts multi-scale
features from the monocular RGB input. These spatial features are processed
through depth-aware feature modules, enhancing the network’s ability to estimate
object depth and spatial relationships in 3D space. This feature alignment signifi-
cantly improves detection accuracy in the presence of occlusions, where portions
of an object may be obscured.

MonoFlex introduces a confidence estimation module that predicts the reliabil-
ity of detections. By leveraging uncertainty modeling, the network can suppress
false positives caused by occluded regions or ambiguous spatial configurations.
This enables MonoFlex to maintain robustness in scenarios with partial visibility
or overlapping objects.
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MonoFlex’s reliance on monocular input provides a unique advantage in terms
of reduced hardware complexity and computational efficiency. This makes it well-
suited for real-time applications in resource-constrained environments, such as
mobile systems or surveillance networks. However, its monocular design can
limit depth estimation accuracy in highly complex scenarios involving severe oc-
clusions or dense 3D scenes. Despite this trade-off, its lightweight architecture
and innovative depth-aware processing establish it as a versatile solution for oc-
clusion handling in 3D object detection.

3.3.2 Generative Models for Occlusion Handling
Generative models have emerged as innovative tools for addressing the challenges
posed by occlusion in object detection. These models simulate the generative
process of occluded scenes, enabling the disentangling of occluded and visible
components to provide a more comprehensive understanding of the scene (101).
By leveraging their ability to model complex relationships between observed data
and latent occlusion patterns, generative methods facilitate the reconstruction of
partially obscured objects and enhance the robustness of object detection sys-
tems (102).

Unlike traditional methods that rely heavily on extensive training datasets or
data augmentation strategies, generative approaches intrinsically capture the pro-
cess of occlusion. This adaptability makes them effective across varying levels
and forms of occlusion (48). This section explores key generative models that
address occlusion challenges, including GANs, Probabilistic Occupancy Maps
(POMs) (42), and Compositional Generative Networks (CompNets) (43), each
offering unique capabilities in reconstructing and interpreting occluded scenes.

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a class of generative models that
achieve high-quality data synthesis by leveraging an adversarial training frame-
work. This framework involves two neural networks: a generator (G) and a dis-
criminator (D), which are trained simultaneously in a competitive setting. The
generator produces data samples aiming to make them indistinguishable from real
data, while the discriminator evaluates whether the samples are real or generated,
iteratively driving improvements in both networks (Figure 3.9) (103).
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Figure 3.9: Illustration of a GAN Architecture with Generator and Discriminator,
Showing the Adversarial Process for Data Synthesis (38)

The optimization of GANs is described by the following minimax objective
function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

Here:

• D(x): Represents the probability assigned by the discriminator that input x
is a real sample drawn from the true data distribution pdata(x).

• G(z): Represents the output of the generator, which creates synthetic sam-
ples based on latent inputs z drawn from a noise distribution pz(z).

• The first term, Ex∼pdata(x)[logD(x)], ensures that the discriminator correctly
identifies real samples.

• The second term, Ez∼pz(z)[log(1 − D(G(z)))], penalizes the discriminator
for misclassifying generated samples, encouraging the generator to produce
more realistic outputs.

The adversarial setup creates a zero-sum game where G improves its output to
deceive D, while D becomes better at distinguishing real from generated data.

This training mechanism enables GANs to reconstruct occluded object regions
by synthesizing realistic data, making them a valuable tool for addressing occlu-
sion challenges in object detection.

Partial Completion Networks (PCNet)

In the context of occlusion handling, Zhan et al. (40) proposed a framework
leveraging Conditional Generative Adversarial Networks (s) to address occlusion
challenges in 2D images. Their approach consists of two specialized networks:
the Partial Completion Mask Network (PCNet-M) and the Partial Completion

85



Content Network (PCNet-C), which collaboratively reconstruct occluded regions
by focusing on both structural and appearance aspects of the object (Figure 3.10).

Figure 3.10: Diagram illustrating PCNet’s dual-network structure, showcasing
the interplay between PCNet-M for structural mask prediction and PCNet-C for
content completion (40)

The training process employs a self-supervised learning approach, a method
where the model generates its own supervisory signals from the input data without
requiring explicit labels. In this case, artificial occlusions are introduced by over-
laying occluding objects onto target images from the dataset, forcing the model to
learn relationships between visible and occluded regions.

The detection pipeline begins with PCNet-M, which generates a structural out-
line or mask for the occluded object based on visible regions. This mask guides
the next stage, PCNet-C, which synthesizes the visual appearance of the occluded
portions by predicting missing features. PCNet-C operates within a framework to
ensure realistic reconstructions, balancing the objectives of the generator (PCNet-
C) and the discriminator.

The dual-network design of PCNet addresses both structural and visual aspects
of occlusion reconstruction, enhancing its effectiveness. However, its reliance
on synthetic occlusions during training may limit its adaptability to real-world
scenarios, where occlusions can vary significantly in complexity. Additionally, the
computational demands of training and deploying two networks pose challenges
for resource-constrained environments.

Segmentation and Generative Adversarial Networks (SeGAN)

Ehsani et al. (41) introduced SeGAN, a GAN-based approach designed to re-
construct occluded object parts in 2D images. The model operates in a two-stage
pipeline: segmentation followed by "painting." This structure enables SeGAN to
handle occlusions by isolating visible object regions and generating missing parts
using contextual information.
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The pipeline starts with a segmentation module, a CNN that identifies visible
portions of the occluded object and generates a mask delineating these regions.
This mask is then input into the generative "painting" module, which employs a
Conditional GAN (CGAN) to reconstruct the occluded parts of the object. The
generator synthesizes missing regions using the context provided by the segmen-
tation mask and surrounding visual features, while the discriminator evaluates the
plausibility of the reconstructions (Figure 3.11).

Figure 3.11: Illustration of SeGAN’s pipeline, highlighting the segmentation and
generative steps for occlusion reconstruction (41)

SeGAN effectively handles partial occlusions in crowded environments by
leveraging contextual information to reconstruct missing parts. Its two-step pro-
cess balances segmentation accuracy and generative plausibility, making it suit-
able for applications like surveillance, where occlusion is prevalent.

However, like other GAN-based models, SeGAN faces challenges such as
training instability and computational demands. Moreover, its reliance on seg-
mentation accuracy means errors in the initial segmentation step can propagate
through the pipeline, negatively impacting the quality of reconstructions. De-
spite these limitations, SeGAN demonstrates how GANs can be applied to develop
occlusion-aware object detection systems.

Probabilistic Occupancy Maps (POMs)

Probabilistic Occupancy Maps (s) provide a multi-camera generative framework
for estimating the occupancy of a ground plane from multiple perspectives, lever-
aging background subtraction techniques to model occlusion scenarios (Figure
3.12) (42). By analyzing foreground binary motion blobs, s convert these blobs
into probabilistic estimates distributed across a spatial grid, enabling inference of
object presence in partially occluded areas.
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Figure 3.12: Original images from three cameras (a), binary blobs produced by
background subtraction, and synthetic average images computed from them using
the POM algorithm estimation (b). The graph (c) represents the corresponding
occupancy probabilities on the grid (42)

The methodology aggregates observations from multiple viewpoints within
a mathematical framework to resolve occlusions. This probabilistic approach is
particularly effective in crowded environments where individuals or objects are
frequently occluded. s excel in predicting the likelihood of object presence on a
3D plane, making them valuable for applications like surveillance, where aware-
ness of partially hidden objects is critical.

Depth POM (DPOM)

An extension of the POM framework, Depth POM (DPOM), incorporates
depth information to enhance detection accuracy in complex occlusion scenar-
ios (104). DPOM synthesizes depth maps from the original images, adding a
third dimension to the occupancy estimation process. This enhancement accounts
for vertical object positioning, significantly improving performance in cluttered
environments.

DPOM refines the probabilistic framework by explicitly modeling object depth
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within a scene. This depth dimension helps separate overlapping objects that
might otherwise appear merged in traditional 2D projections. However, the depth
synthesis process can result in information loss, particularly for smaller objects,
which may affect detection accuracy and the ability to distinguish closely spaced
objects.

While DPOM offers significant improvements over standard POMs, it intro-
duces increased computational demands due to the additional depth synthesis step.
Despite these challenges, DPOM represents a pivotal advancement in genera-
tive approaches for occlusion handling, demonstrating the potential of integrating
depth data into probabilistic models.

Compositional Generative Networks (CompNets)

Compositional Generative Networks (CompNets) are designed to classify par-
tially occluded objects by representing them as compositions of visible and in-
ferred parts (Figure 3.13) (43). The architecture employs a part-based voting
mechanism to infer configurations of occluded components, enabling robust clas-
sification even in highly occluded scenarios. By isolating visible object parts and
leveraging their spatial relationships, CompNets achieve high accuracy in struc-
tured environments where object appearances follow predictable patterns.

CompNets are particularly effective in classifying objects with partial visibil-
ity, as their explicit modeling of parts allows for greater resilience against occlu-
sion. This capability is invaluable in applications like traffic surveillance, where
vehicles are often partially obstructed by other objects or environmental elements.

Figure 3.13: Architecture of the CompNet classification model: Illustration of the
feed-forward inference process in a CompNet for object classification (43)
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Extensions to CompNet

Despite their strengths, CompNets face challenges in object detection, partic-
ularly due to their difficulty in separating contextual and object-specific represen-
tations (43). This limitation can lead to false positives when biases from training
data dominate detection outcomes. To mitigate this, Wang et al. (105) introduced
enhancements that generalize contextual features and reduce detection thresholds,
improving the network’s resilience to occlusion.

A notable advancement is the integration of Bayesian generative models into
CompNets, enabling amodal segmentation and the inference of complete object
shapes (106). Amodal segmentation involves predicting the full shape of an ob-
ject, including its occluded parts, based on its visible features and prior knowledge
of its structure. For instance, in traffic scenarios, the model can infer the complete
shape of a partially visible vehicle, enhancing detection accuracy under occlusion.

While these extensions improve CompNet’s robustness, they also highlight its
reliance on strong shape priors, which limits its applicability to rigid objects like
vehicles. Nonetheless, the ability to infer occluded shapes and perform amodal
segmentation represents a significant contribution to occlusion-aware object de-
tection, particularly in environments with structured objects and predictable oc-
clusion patterns.

3.3.3 Multimodal Fusion for Occlusion-Aware Detection
Multimodal fusion leverages data from diverse sources, such as 2D imagery and
3D spatial data, to enhance object detection systems. By integrating complemen-
tary features, it addresses the challenges of occlusion by providing a richer repre-
sentation of the environment. This section explores the principles of multimodal
fusion, its strategies, and its role in improving detection accuracy under occluded
conditions.

Overview of Multimodal Fusion in Object Detection

This subsection provides a conceptual foundation for multimodal fusion, dis-
cussing its core principles, advantages, and strategies for combining data from
multiple modalities. By integrating complementary data sources, these approaches
enhance the robustness of object detection systems, particularly in environments
with occlusion.
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Benefits of Multimodal Data Fusion

The fusion of 2D and 3D data, along with the potential inclusion of other
modalities such as text and audio, enhances object detection by leveraging the
unique strengths of each data source. This multimodal approach creates a more
comprehensive and enriched representation of the environment, addressing di-
verse detection challenges effectively.

1. Key Advantages of Multimodal Fusion:

(a) Enhanced Scene Understanding: 2D images capture fine-grained visual
details such as color and texture, while 3D data provides depth and spatial
context. The fusion of these modalities enriches the scene representation,
enabling better localization and classification of objects (107).

(b) Improved Robustness in Complex Scenarios: Multimodal fusion mit-
igates the weaknesses of individual modalities. For example, 3D depth
data is resilient to lighting variations, while 2D imagery compensates for
sparse or noisy 3D point clouds. This complementary nature equips sys-
tems to handle challenging scenarios effectively (108).

(c) Superior Occlusion Handling: Depth data enhances 2D features by pro-
viding spatial information, enabling models to distinguish between over-
lapping or partially visible objects. This capability is particularly valuable
in crowded environments where occlusions are prevalent (109).

(d) Real-Time Feasibility: Advanced fusion techniques allow systems to
optimize computational efficiency while maintaining high accuracy. This
balance ensures real-time performance even in dynamic and complex en-
vironments (109).

2. Complexity of Multimodal Fusion:
Despite its benefits, multimodal fusion presents significant challenges due to
the computational intensity and complexity of integrating diverse data types.
These challenges include:

(a) Heterogeneous Data Alignment: Combining different data sources, such
as 2D images, 3D point clouds, and textual or audio inputs, requires pre-
cise synchronization and alignment to ensure compatibility (108). Varia-
tions in data formats, sampling rates, and resolutions add to the complex-
ity.

(b) High Computational Demands: Processing and fusing multiple modali-
ties simultaneously necessitates substantial computational resources. Mod-
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els must handle large volumes of data and extract features without sacri-
ficing real-time performance, posing challenges for resource-constrained
environments (107).

(c) Data Interdependency: The effectiveness of multimodal fusion relies
heavily on the quality and completeness of each modality. Missing or
noisy data from one source can adversely affect the fusion process, re-
ducing the overall accuracy and robustness of the system (108).

Strategies for Data Fusion in Neural Networks

To effectively merge 2D and 3D data, neural networks employ several fusion
strategies (Figure 3.14). Each strategy is tailored to the level of integration re-
quired and the nature of the detection task.

Figure 3.14: Fusion strategies in neural networks: (a) Early Fusion, (b) Late Fu-
sion, and (c) Intermediate Fusion(44)

1. Early Fusion: Early fusion combines raw 2D and 3D inputs before pro-
cessing through a shared network. For instance, depth channels from Li-
DAR can be stacked with RGB image channels. This approach facilitates
immediate interaction between modalities but requires high computational
resources due to the increased input dimensionality (44) (Figure 3.14(a)).

2. Late Fusion: In late fusion, each modality is processed separately through
dedicated networks, and their outputs are merged at the final stages. This
approach preserves the integrity of features extracted from each modality,
enabling efficient handling of high-dimensional data while maintaining de-
tection accuracy (44) (Figure 3.14(b)).
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3. Intermediate Fusion: Intermediate fusion integrates 2D and 3D features at
multiple points throughout the network. By progressively fusing features,
this method captures intricate relationships between spatial and visual cues,
enabling nuanced object detection in occlusion-heavy environments (44)
(Figure 3.14(c)).

Fusion Methods in Neural Networks

Various methods are used to merge features from different modalities, enabling
effective multimodal fusion. These include:

• Addition: Combines features by performing element-wise addition, where
corresponding values from two feature maps are summed together. For ex-
ample, if two features have values [1, 2, 3] and [4, 5, 6], their addition
would result in [5, 7, 9]. This method is simple and computationally effi-
cient but may lose some fine-grained information if important details from
one modality are overshadowed by the other (110).

• Multiplication: Performs element-wise multiplication of features, where
corresponding values from two feature maps are multiplied. For instance,
[1, 2, 3] and [4, 5, 6] would produce [4, 10, 18]. This method emphasizes
shared patterns by amplifying overlapping or correlated features. How-
ever, it can also amplify noise if irrelevant features align between modal-
ities (110).

• Concatenation: Stacks features from different modalities along a new di-
mension, essentially appending one feature map to the other. For example,
if two feature maps are [1, 2, 3] and [4, 5, 6], concatenation would result
in [1, 2, 3, 4, 5, 6]. This method retains all information but increases the
dimensionality, leading to higher computational costs (110).

• Attention Mechanisms: Dynamically assign importance (weights) to fea-
tures based on their relevance to the task. For example, if certain features
are more informative for detecting a specific object, the network assigns
them higher weights, focusing on those features while suppressing less im-
portant ones. This method improves robustness and ensures that the model
prioritizes critical data (110).

• Weighted Averaging: Computes a weighted average of features, balancing
contributions from each modality. For instance, if one modality (e.g., 2D
images) is more reliable than another (e.g., noisy 3D depth data), the sys-
tem can assign higher weights to the more reliable modality, resulting in a
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more accurate fusion. This approach reduces the sensitivity to noise while
maintaining a balance between modalities (110).

Relevance to Occlusion Handling

The integration of multimodal data offers significant advantages in addressing
occlusions in object detection:

1. Object Boundary Refinement: By incorporating 3D depth information,
multimodal systems can accurately delineate the boundaries of partially oc-
cluded objects, even in densely populated scenes.

2. Reduction of False Positives and Negatives: Multimodal fusion reduces
detection errors caused by occlusions, such as misclassifications or missed
detections. Depth data provides essential spatial context to separate over-
lapping objects and identify partially visible ones (107).

3. Real-World Applications: In applications like video surveillance, traffic
management, and smart city environments, where occlusions are frequent,
multimodal fusion ensures accurate detection and localization, improving
situational awareness and decision-making.

This understanding of multimodal fusion establishes a strong foundation for
examining state-of-the-art occlusion-handling models. The next section explores
specific architectures and techniques that leverage these strategies to achieve ro-
bust object detection in occlusion-heavy scenarios.

Multimodal Fusion Techniques for Occlusion Handling

This subsection highlights specific multimodal fusion techniques designed to ad-
dress occlusion challenges. It examines state-of-the-art models that leverage mul-
timodal inputs, detailing their architectures, processing pipelines, and strategies
for effectively handling occlusions in diverse scenarios.

MV3D (Multi-View 3D)

MV3D (111) advanced multimodal fusion in object detection by integrating
LiDAR and RGB data, capturing both depth and visual features. The model uses
BEV and Front View (FV) representations of LiDAR data alongside RGB images.
This combination enables the extraction of complementary features, with BEV
providing spatial context and RGB offering detailed appearance cues.
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The detection pipeline begins by processing BEV and RGB inputs through
separate backbones to generate feature maps. A Region Proposal Network (RPN)
uses the BEV features to identify potential ROIs. These ROIs are projected onto
the FV and RGB feature maps, where ROI pooling aggregates multimodal features
for final classification and regression tasks. This layered fusion ensures the model
captures rich spatial and visual details, enabling precise detection (Figure 3.15).

Figure 3.15: Architecture of MV3D: Overview of the multi-view 3D object de-
tection network, highlighting the fusion of LIDAR and RGB information for im-
proved object detection in 3D space (38)

MV3D handles occlusions effectively by leveraging depth information to sep-
arate overlapping objects in 3D space. Its capability to estimate accurate 3D
bounding boxes is particularly advantageous in crowded or cluttered scenes. How-
ever, the reliance on multiple views and the fusion process introduces computa-
tional overhead, limiting the model’s suitability for real-time applications.

While the fusion of LiDAR and RGB data highlights MV3D’s robustness in
resolving occlusions, it also underscores challenges in balancing computational
efficiency and accuracy. The increased hardware and processing requirements
pose limitations for large-scale deployment, especially in resource-constrained
environments.

AVOD (Aggregate View Object Detection)

AVOD (45) builds upon MV3D’s multimodal fusion approach, enhancing pro-
posal generation and feature integration for improved detection accuracy. The
model fuses BEV features from LiDAR with RGB image features at an early
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stage, enabling it to leverage complementary spatial and visual information effec-
tively (Figure 3.16).

Figure 3.16: Architecture of AVOD: The model combines BEV and image fea-
ture maps using multimodal fusion, generating and refining 3D object proposals
through feature extraction, fusion, and non-maximum suppression (NMS) (45)

The model processes LiDAR and RGB data through separate backbones to
generate feature maps. These features are fused early in the pipeline to produce
dense proposals, which are refined in a two-stage detection process. By inte-
grating modalities before generating proposals, AVOD captures both spatial and
visual cues during the early stages of detection, improving the robustness of object
localization and classification.

In occlusion scenarios, AVOD excels by combining the strengths of LiDAR
and RGB inputs. The early fusion strategy ensures that depth information re-
solves overlaps and ambiguities caused by occlusions, while RGB features en-
hance object appearance modeling. This combination is particularly effective in
urban environments with dense traffic and overlapping objects.

While AVOD’s early fusion approach improves efficiency, it sacrifices the flex-
ibility offered by intermediate or late fusion techniques. Additionally, its com-
putational demands remain a concern for real-time applications. Despite these
limitations, AVOD strikes a balance between efficiency and accuracy, making it a
practical solution for occlusion-rich settings.

FUTR3D (Fully Transformer-Based 3D Detector)

FUTR3D (46) introduces transformer-based architectures to multimodal fu-
sion, offering a sophisticated mechanism for integrating LiDAR and RGB fea-
tures. Transformers excel in capturing global dependencies, making FUTR3D
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particularly effective in resolving occlusions and detecting partially visible ob-
jects.

The pipeline begins with separate encoders for LiDAR and RGB data, which
extract modality-specific features. Cross-attention mechanisms align and fuse
these features, allowing the model to capture intricate relationships between depth
and appearance. This fusion strategy ensures that occluded object regions are
accurately reconstructed and classified based on complementary inputs (Figure
3.17).

Figure 3.17: Architecture of FUTR3D: This model integrates multi-modal inputs
using a transformer-based architecture, enabling cross-modal feature interaction
and fusion. It generates dense 3D object predictions through iterative refinement
and query-based processing (46)

FUTR3D demonstrates robust occlusion-handling capabilities, with transform-
ers enabling dynamic feature interaction across modalities. By leveraging global
feature relationships, the model effectively localizes objects that are partially hid-
den or overlapping, making it highly suitable for cluttered scenes. Additionally,
the fusion process during proposal generation and refinement enhances detection
precision.

Despite its strengths, FUTR3D faces challenges related to computational effi-
ciency. The transformer-based architecture demands significant processing power,
which may hinder real-time applications. Nonetheless, its ability to handle occlu-
sions and capture fine-grained feature interactions positions FUTR3D as a promis-
ing solution for advanced multimodal detection tasks.
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TransFusion

TransFusion (47) combines CNN and transformer architectures to fuse mul-
timodal features for robust object detection. By leveraging the strengths of both
networks, TransFusion balances local feature extraction and global feature inter-
action, enhancing its ability to address occlusion challenges.

The model employs separate CNNs for RGB feature extraction and transform-
ers for LiDAR data processing. These features are fused at multiple stages using
attention mechanisms, allowing the network to effectively integrate spatial and vi-
sual information. The fused features are then passed to the detection head, which
predicts bounding boxes and object classes, ensuring accurate localization and
classification (Figure 3.18).

Figure 3.18: Architecture of TransFusion: A multimodal object detection frame-
work that combines LiDAR and RGB image features using a transformer-based
fusion mechanism. TransFusion leverages cross-attention to align features from
both modalities for enhanced 3D detection performance, particularly in occluded
scenarios (47)

In handling occlusions, TransFusion excels by dynamically aligning features
from different modalities. Its attention-based fusion layers focus on occluded
regions, leveraging complementary data to resolve ambiguities. This capability
makes it particularly effective in environments with heavy occlusions, such as
crowded urban areas or dynamic traffic scenes.

However, the complexity of the fusion process increases computational de-
mands, posing challenges for real-time deployment. Despite this limitation, Trans-
Fusion’s integration of CNNs and transformers underscores its potential as a ver-
satile multimodal fusion model for occlusion-aware object detection.
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3.3.4 Alternative Approaches for Occlusion Handling
In addition to multimodal fusion, deep learning, and generative models, alternative
methods have emerged to tackle occlusion challenges in object detection. These
approaches include graph-based models, which leverage structured relationships
to enhance detection robustness, and data augmentation techniques, which simu-
late occlusion scenarios to improve model training and generalization. This sec-
tion explores these complementary strategies, highlighting their unique contribu-
tions to advancing occlusion-aware object detection systems.

Graph-Based Models for Occlusion Management

Graph-based models provide a robust framework for representing probabilistic
relationships and structural dependencies in object detection. These models uti-
lize graph structures to capture spatial and temporal relationships among objects,
enabling robust data association and improved detection in occluded scenarios.

1. Graph Matching Algorithms: Graph matching establishes correspondences
between nodes, where each node represents an object or feature. Quadratic
graph matching minimizes dissimilarity measures between node pairs, sig-
nificantly enhancing detection accuracy in occlusion-heavy environments (112).
Recent advancements integrate deep feature representations with graph struc-
tures, improving performance in complex scenes.

2. Temporal Dependencies: Temporal modeling is crucial for dynamic envi-
ronments where objects may undergo occlusion or sudden movement. Tech-
niques such as spatio-temporal structured metric learning leverage RNNs to
model both short- and long-term temporal dependencies (113). These meth-
ods improve object tracking and detection accuracy but may struggle with
highly complex motion patterns.

3. Spatial Constraints: In graph-based frameworks, objects are represented
as nodes and relationships as edges. Spatial constraints enforce consis-
tent associations between nodes, enhancing detection precision across video
frames (114). However, rapidly changing spatial relationships in dynamic
environments can challenge the reliability of these constraints.

4. Probabilistic Graphical Models: Markov Random Fields (MRFs) extend
graph-based approaches by encoding contextual dependencies (115). These
probabilistic models represent joint probability distributions using an undi-
rected graph, incorporating appearance, motion, and contextual cues to re-
solve occlusions. Despite their effectiveness, MRFs often require significant
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computational resources and careful parameter tuning to balance accuracy
and efficiency.

Graph-based approaches provide structured solutions for occlusion manage-
ment across a wide range of scenarios, from static settings to highly dynamic
environments. Their integration with deep learning continues to enhance their
scalability and robustness.

Data Augmentation Techniques for Occlusion Management

Data augmentation is a cornerstone strategy for enhancing model resilience to oc-
clusion, enriching training datasets with diverse scenarios. By simulating occlu-
sions during training, these techniques equip detection models to handle varying
levels and types of occlusion in real-world applications (48).

Region-based augmentation strategies are particularly effective for simulating
occlusion in object detection tasks. Unlike traditional augmentation techniques
that apply transformations uniformly across entire images, region-based methods
target localized patches. For example, Hide and Seek(116), FenceMask(117), and
GridMask (118) selectively obscure parts of the image, forcing models to learn
to detect objects with incomplete visual information. These methods improve
generalization and reduce overfitting to specific features within localized regions
(Figure 3.19).

Figure 3.19: Visual effects of various region removal methods for improved oc-
clusion handling in object detection (48).

Region deletion techniques, such as Cutout(119) and Random Erasing(120),
involve masking random sections of input images during training. By removing
visual details, these methods simulate partial occlusions, enabling models to learn
more robust representations. Such techniques have shown significant benefits in
applications like visual tracking, where occlusion is a frequent challenge.
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The visual diversity introduced by these methods is illustrated in Figure 3.19,
which compares various region-based augmentation strategies. These approaches
emulate occlusion scenarios effectively, but their success depends on carefully se-
lected hyperparameters, such as the size and probability of region deletion. Poor
parameter choices can result in unrealistic occlusion patterns, potentially degrad-
ing model performance.

While data augmentation techniques offer a cost-effective means to improve
occlusion resilience, they do have limitations. Their efficacy is highly dataset-
dependent, and there is a risk of introducing unrealistic scenarios that may not
generalize to real-world occlusions (48). However, when combined with robust
learning frameworks, data augmentation remains a valuable tool for training occlusion-
aware object detection models.

3.4 Synthesis and Discussion
This section consolidates insights from the literature on various occlusion-handling
approaches, summarizing their strengths and limitations to guide the selection of
suitable techniques for specific object detection scenarios. The synthesis high-
lights the core principles, strengths, and limitations of the methods discussed,
enabling a deeper understanding of their applicability in real-world settings.

3.4.1 Summary Table of Key Occlusion-Handling Techniques
To synthesize the diverse approaches discussed in this chapter, Table 3.1 provides
an organized summary of occlusion-handling techniques. The table categorizes
methods into generative models, deep learning-based strategies, multimodal fu-
sion techniques, and alternative approaches. Each entry outlines the method’s
core principle, application context, key advantages, and limitations. This compre-
hensive view highlights the strengths and trade-offs of these techniques, guiding
their selection based on specific object detection scenarios.
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Table 3.1: Summary of Occlusion-Handling Techniques in Object Detection

Strategy
Type

Method Principle Advantages Limitations

Deep
Learning-

Based
Models

SG-NMS Combines seman-
tic and geometric
embeddings for
detection.

Resolves overlapping
and occluded object
issues.

High computa-
tional cost.

DeepID-Net Deformable CNN for
feature extraction.

Enhanced feature extrac-
tion and part detection.

Pre-training com-
plexity, slower in-
ference.

YOLO3D BEV encoding from
LiDAR data for 3D
detection.

Robust depth-based oc-
clusion handling.

Reduced preci-
sion in cluttered
settings.

E-YOLO Extends YOLOv3
with stereo camera
inputs and contour
detection.

Enhanced depth and con-
tour handling.

Hardware depen-
dency on stereo
cameras.

MonoFlex Combines spatial and
depth-aware features
using monocular
RGB data.

Balances efficiency and
occlusion robustness.

Limited depth es-
timation in severe
occlusions.

Stereo R-CNN Leverages stereo im-
age pairs for depth
estimation.

Effective for partial oc-
clusions.

Relies on stereo
camera setup.

Pyramid R-CNN Employs multi-scale
feature pyramids
for voxelized point
clouds.

Robust multi-scale pro-
cessing.

High computa-
tional demands.

Generative
Models

CGANs Conditional GANs
for targeted recon-
struction of occluded
regions.

High fidelity of recon-
structed regions.

Computationally
intensive, sen-
sitivity to input
quality.

SeGAN Segments visible
parts and recon-
structs occluded
regions via GANs.

Effective in dense occlu-
sions.

GAN-related sta-
bility challenges.

POM Estimates ground
plane occupancy
using multi-camera
inputs.

Precise localization of
occluded objects.

Information loss
in depth estima-
tion, small object
detection issues.

CompNet Uses part-based rep-
resentation for robust
classification.

Accurate recognition of
rigid structures.

Limited scalabil-
ity to flexible ob-
jects.
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Strategy
Type

Method Principle Advantages Limitations

Multimodal
Fusion

Techniques

MV3D Feature-level fusion
of LiDAR and RGB.

Effective depth and vi-
sual fusion.

Computational
complexity from
multimodal fu-
sion.

AVOD Aggregates region-
level features from
LiDAR and RGB
data.

Enhances precision
through RoI fusion.

Latency issues
with real-time
applications.

FUTR3D Transformers-based
fusion for multi-
modal data.

Superior feature extrac-
tion across modalities.

Computationally
demanding.

ContFuse Continuous fusion of
features from LiDAR
and camera.

Reduces feature mis-
alignment across modal-
ities.

Resource-
intensive in-
ference process.

Alternative
Approaches

Graph Matching Relates objects or
features as graph
nodes.

Improves robustness in
data association tasks.

Limited flexibil-
ity in dynamic
environments.

Cutout Randomly removes
image regions during
training.

Prevents overfitting,
adds data diversity.

Effectiveness de-
pends on dataset
design.

GridMask Applies grid-based
occlusion patterns to
inputs.

Easy implementation,
enhances generalization.

Hyperparameter
tuning complex-
ity.

3.4.2 Limitations of Current Occlusion-Handling Methods
Despite advances in occlusion-handling techniques, significant challenges persist
in object detection due to inherent limitations in current methods. These limita-
tions can be categorized as follows:

1. Computational Complexity: Models like Pyramid R-CNN and MV3D
achieve high accuracy through complex architectures and large-scale com-
putations, but this hinders real-time applicability in resource-constrained
environments such as drones or autonomous vehicles.

2. Hardware Dependency: Techniques such as SeGAN and AVOD rely heav-
ily on high-quality sensor data, including LiDAR and stereo cameras. This
dependency increases costs and limits scalability in environments lacking
advanced sensors.

3. Data and Contextual Bias: Generative methods like CompNet and POM
often struggle with non-rigid or dynamic occlusions due to reliance on rigid
shape priors or static contextual cues. Additionally, data-driven approaches
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tend to reflect biases in their training datasets, reducing generalizability to
diverse, real-world scenarios.

4. Occlusion-Specific Challenges: Models such as YOLO3D and DeepID-
Net often underperform in cases of severe or unconventional occlusions.
Many methods fail to adequately combine appearance and spatial cues for
predicting occluded regions, limiting their effectiveness.

5. Integration with Acquisition Systems: Advanced sensors like thermal
imaging and radar remain underutilized in occlusion-handling frameworks.
While multimodal fusion techniques leverage LiDAR and RGB, integrat-
ing additional modalities could enhance performance in low-light and high-
occlusion settings.

These limitations underscore the need for adaptable, computationally efficient
methods that bridge the gap between theoretical advancements and practical ap-
plications in occlusion-aware detection systems.

3.5 Conclusion
The challenges and limitations outlined above highlight the complexity and mul-
tifaceted nature of the occlusion problem in object detection. Addressing these
requires innovative and unified approaches that prioritize adaptability, efficiency,
and robustness across diverse environments.

1. Unified Approaches for Occlusion Handling: Treating occlusion as a
holistic challenge rather than in isolation is crucial. Combining deep learn-
ing, generative modeling, and multimodal fusion within a cohesive frame-
work can harness the strengths of these methods while addressing their in-
dividual limitations.

2. Adaptive Systems for Dynamic Scenarios: Developing systems capable
of handling severe and dynamic occlusions is essential. By incorporating
data from advanced acquisition systems, these methods can be applied to
scenarios such as traffic monitoring, video surveillance, and autonomous
navigation.

3. Bridging Theory and Practice: While theoretical advancements provide a
foundation, practical implementation often lags due to hardware and com-
putational constraints. Proposing efficient, real-world-implementable method-
ologies is a critical goal of this research.
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4. Expanding Multimodal Fusion: Exploring underutilized modalities, such
as thermal and radar imaging, represents a promising direction for address-
ing occlusion in complex and low-visibility environments.

The motivation behind this work is to develop a scalable, robust, and adaptive
framework for occlusion-aware object detection, effectively bridging theoretical
advancements and practical applications. By leveraging advanced sensing tech-
nologies, multimodal fusion, and computational efficiency, this research aims to
contribute to safer and more reliable real-world systems. The next chapter will
transition into discussing acquisition systems, emphasizing how advanced sen-
sors such as LiDAR, stereo cameras, and thermal imaging play a critical role in
addressing occlusion challenges.
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Chapter 4

Data Acquisition Tools and
Technologies
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4.1 Introduction
Building upon the foundation laid in the previous chapter, which reviewed state-
of-the-art object detection models and their approaches to addressing occlusions,
this chapter focuses on the critical role of data acquisition technologies. Effective
occlusion handling depends significantly on the quality and characteristics of the
data provided by 2D and 3D sensors. By exploring these technologies, this chap-
ter examines how they contribute to resolving occlusions and enhancing object
detection systems.

2D sensors, such as traditional RGB cameras, provide visual detail and texture,
making them indispensable for applications like video surveillance (121). How-
ever, their inability to capture depth information poses significant challenges in
scenarios involving occlusions. Conversely, 3D sensors, including LiDAR, stereo
cameras, and RGB-D cameras, excel in providing spatial and depth information,
enabling precise localization and resolution of overlapping objects (122; 123).

This chapter explores the functionalities, strengths, limitations, and applica-
tions of these sensors. Through practical experiments conducted with the Canon
EOS 1300D, ZED 2 stereo camera, and LiDAR data from the KITTI dataset, we
analyze their capabilities and their roles in addressing occlusion challenges. These
experiments emphasize the complementary nature of 2D and 3D data, highlight-
ing the potential of integrating both modalities to create robust, cost-effective so-
lutions.

The findings presented here will serve as the foundation for future research on
multimodal approaches, where the fusion of 2D and 3D sensor data is explored to
tackle occlusion in complex environments. This ongoing work has contributed to
further advancements and has been cited in the following submitted journal paper:
(124):

• Ouardirhi, Z., et al. (2025). Bridging 2D and 3D Object Detection: Ad-
vances in Occlusion Handling Through Depth Estimation. CMES Journal.

These contributions provide a comprehensive perspective on sensor technolo-
gies and their impact on advanced vision systems, reinforcing the importance of
multimodal approaches in addressing occlusion challenges.

4.2 Sensor Technologies
This section provides a comprehensive exploration of the sensor technologies that
serve as the foundation for effective data acquisition in object detection and oc-
clusion management. It begins with visual sensing technologies, which capture
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high-resolution 2D data and form the basis for understanding object appearance.
Subsequently, the discussion transitions to depth-sensing technologies, which pro-
vide spatial and depth information essential for addressing occlusion challenges.
Each subsection examines the functionality, data characteristics, strengths, limi-
tations, and applications of these sensor types, offering insights into their role in
enhancing object detection systems.

4.2.1 Visual Sensing Technologies
In the field of computer vision, 2D sensors play a vital role in numerous applica-
tions, including object detection, video surveillance, and facial recognition (121).
By capturing two-dimensional images, these sensors provide rich visual details
essential for scene analysis and interpretation. Their affordability, ease of integra-
tion, and reliable performance under diverse conditions make them indispensable
in computer vision systems (125).

RGB Cameras

RGB cameras are among the most widely used imaging technologies in computer
vision, capturing images in three primary color channels: red, green, and blue.
Their ability to produce high-resolution, color-accurate representations makes
them integral to a variety of applications, including video surveillance, photog-
raphy, and industrial inspection (126).

Functionality and Extracted Data

RGB cameras capture light intensity in the red, green, and blue channels to
produce high-resolution, full-color images (126). These cameras rely on CMOS
(Complementary Metal-Oxide -Semiconductor) or CCD (Charge-Coupled De-
vice) sensors to convert incoming light into electrical signals, and typically use
Bayer filters, which assigns color information to individual pixels, to assign color
information to individual pixels. The output data consists of pixel intensity val-
ues for each color channel, which together recreate a detailed and realistic visual
representation of a scene (126).
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Figure 4.1: Surveillance cameras using RGB technology.

The extracted data include spatial information in the form of image resolution
(number of pixels) and color information, which is crucial for identifying object
boundaries, textures, and patterns (126). These features are foundational for tasks
like object detection, feature extraction, and image segmentation. Figure 4.1 il-
lustrates an example of RGB camera output in a surveillance setting.

Strengths and Limitations

RGB cameras are widely valued for their affordability, ease of integration, and
ability to produce high-resolution, color-accurate images, making them versatile
for tasks like video surveillance and media production. Their cost-effectiveness
and range of resolutions provide flexibility for diverse applications.

However, their lack of depth perception and sensitivity to environmental fac-
tors, such as lighting and weather conditions, limit their effectiveness in complex
scenarios. High-resolution models are needed for detecting small or distant ob-
jects, increasing computational demands. Additionally, RGB cameras cannot ad-
dress occlusions, making them unsuitable for applications requiring inference of
obscured regions, such as autonomous navigation.

Monochrome Cameras

Monochrome cameras (127), also known as grayscale cameras, capture images
in shades of gray by utilizing the full light spectrum to record intensity values.
Unlike RGB cameras, which split light into color channels, monochrome cam-
eras maximize light sensitivity and provide sharper contrast. These features make
them ideal for applications requiring precise detail analysis, such as industrial in-
spections, biomedical imaging, and astronomy.
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Functionality and Extracted Data

Monochrome cameras capture grayscale images, where each pixel represents
the intensity of light received. By bypassing the need for color filters, they achieve
higher sensitivity and sharper contrast compared to RGB cameras (127). The ex-
tracted data comprises detailed grayscale representations that excel in tasks like
edge detection and texture analysis (Figure 4.2). This simplicity makes them
highly effective in environments with complex or low lighting conditions (128).

Figure 4.2: Grayscale data captured by a monochrome camera: (A) Underexposed
image, (B) Correct exposure, (C) Slightly overexposed, (D) Highly overexposed.

Strengths and Limitations

Monochrome cameras offer heightened sensitivity to light and superior con-
trast detection, making them ideal for capturing fine details in challenging en-
vironments (129). Their reduced calibration complexity and cost-effectiveness
further enhance their practicality. However, their inability to capture color infor-
mation limits their application in scenarios where color differentiation is critical.
Like RGB cameras, they lack depth perception, making them less suitable for 3D
scene understanding or applications requiring spatial context (129).

4.2.2 Depth-Sensing Technologies
Depth-sensing technologies are integral to computer vision and artificial intelli-
gence, offering the ability to capture precise 3D spatial information critical for
tackling occlusion challenges (130). By enabling the differentiation of overlap-
ping objects and enhancing scene understanding, these technologies play a pivotal
role in applications such as robotics, surveillance, and augmented reality (AR).
This section explores key depth-sensing technologies, including Light Detection
and Ranging (LiDAR), stereo cameras, Time-of-Flight (ToF) cameras, and Red-
Green-Blue-Depth (RGB-D) cameras, focusing on their principles, advantages,
limitations, and contributions to modern vision systems (130).
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LiDAR Sensors

Light Detection and Ranging (LiDAR) is a remote sensing technology widely em-
ployed in CV and AI for precise depth measurement and 3D data acquisition. By
emitting laser pulses and measuring their reflections, LiDAR generates detailed
spatial representations of environments, enabling advanced object detection and
analysis. Its ability to address occlusion challenges makes it indispensable in ap-
plications like autonomous driving, surveillance, and robotics.

Functionality

LiDAR systems calculate distances by measuring the ToF of laser pulses emit-
ted by the sensor. The sensor emits a laser pulse, and the time taken for the pulse to
travel to the target and return is recorded. Using this time, the system determines
the precise distance between the sensor and the object (49).

In autonomous vehicles, LiDAR systems are integrated into a sensor suite,
which includes components such as cameras, radar, and an Inertial Measurement
Unit (IMU) (130). The LiDAR is typically top-mounted to provide 360-degree
depth sensing, while cameras are positioned at multiple angles for visual percep-
tion, and radar sensors assist in object tracking (49). The IMU supports motion es-
timation and stability, allowing for seamless navigation in dynamic environments
(Figure 4.3).

Figure 4.3: Sensor suite of the nuTonomy autonomous vehicle (49).

LiDAR platforms are designed for diverse use cases, including:
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• Airborne LiDAR Scanning (ALS): A LiDAR scanning system mounted
on aerial platforms such as helicopters, drones, or airplanes, primarily used
for large-scale mapping and environmental monitoring from above.

• Terrestrial LiDAR Scanning (TLS): A ground-based LiDAR scanning
system typically mounted on tripods, used for stationary applications like
architectural surveys, infrastructure inspection, and precise 3D modeling.

• Mobile LiDAR Scanning (MLS): A LiDAR scanning system installed on
moving vehicles, such as cars or trains, designed for dynamic scene analysis
and mapping in urban environments or transportation networks.

• Unmanned LiDAR Systems (ULS): Lightweight LiDAR scanning sys-
tems integrated into unmanned platforms, such as drones or robots, enabling
flexible deployment for tasks like terrain mapping, agriculture, and disaster
response.

These platforms produce high-resolution data essential for real-time decision-
making in complex scenarios.

Extracted Data

LiDAR sensors produce 3D point clouds, which represent the x, y, and z co-
ordinates of object surfaces (Figure 4.4). These point clouds provide detailed en-
vironmental representations, enabling accurate spatial understanding and object
detection. Attributes like laser reflection intensity enhance the ability to differ-
entiate between objects and surfaces, contributing to depth perception and spatial
reasoning crucial in applications like autonomous navigation and urban mapping
(130).

Figure 4.4: LiDAR: Perception of object depth.
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Strengths

LiDAR offers several significant advantages for 3D data acquisition and oc-
clusion handling. Its ability to provide highly accurate distance measurements
and detailed 3D point clouds makes it invaluable for applications requiring pre-
cise depth perception. Advanced LiDAR sensors deliver a 360-degree horizontal
field of view and extended range, enabling effective monitoring of large areas,
even in low-light or nighttime conditions (49). With resolutions allowing object
detection precision up to 3 cm, LiDAR excels at resolving occlusions by clearly
distinguishing overlapping objects.

However, LiDAR systems face notable challenges. Their high cost can limit
accessibility, particularly in budget-sensitive applications (131). The integration
and processing of large-scale LiDAR data require substantial computational re-
sources, adding to their complexity. Additionally, adverse weather conditions,
such as rain and fog, can negatively impact measurement accuracy. While LiDAR
provides unparalleled spatial resolution, radar sensors, although less precise, are
often preferred for their affordability and robustness under challenging environ-
mental conditions (49).

Stereo Cameras

Stereo cameras are essential tools in 3D sensing, employing stereoscopic vision
to estimate depth by mimicking human binocular perception. By using two lenses
spaced at a fixed baseline, these cameras capture slightly offset images of the
same scene. This disparity between images enables the calculation of depth in-
formation, making stereo cameras indispensable in applications such as robotics,
surveillance, and immersive technologies (132).

Functionality

Stereo cameras operate on the principle of stereoscopy by capturing two si-
multaneous images of a scene from slightly different perspectives—one from each
lens. The disparity between corresponding pixels in these images is analyzed to
calculate depth (132). This process involves three main steps:

1. Image Acquisition: Two RGB images are captured simultaneously by the
left and right lenses, forming the basis for depth estimation.

2. Disparity Calculation: Differences in the positions of corresponding pix-
els (disparities) between the left and right images are measured. These dis-
parities are proportional to the relative depths of objects in the scene.
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3. Depth Mapping: Using the principle of triangulation, disparities are con-
verted into depth values (133). The depth Z of an object is computed using
the formula:

Z =
f ·B
d

(4.1)

where f is the focal length of the camera, B is the baseline distance be-
tween the two lenses, and d is the disparity (the pixel difference between
corresponding points in the left and right images). This triangulation pro-
cess produces a dense depth map representing the 3D spatial structure of the
environment.

Figure 4.5: The ZED 2 stereo camera by Stereolabs.

Accurate depth mapping relies on precise calibration, which aligns the in-
trinsic and extrinsic parameters of the stereo cameras (134). Calibration ensures
consistency between the left and right image planes, minimizing distortion and
optimizing disparity calculations. Calibration involves:

• Determining intrinsic parameters, such as focal length and lens distortion.

• Estimating extrinsic parameters, including the relative position and orienta-
tion of the two lenses.

Examples of modern stereo cameras include the ZED 2 by Stereolabs (Fig-
ure 4.5), the Intel RealSense D435i, and the OAK-D Lite. The ZED 2 provides
high-precision depth maps with resolutions up to 2K and a range of 20 meters.
Similarly, the Intel RealSense D435i offers depth measurements between 0.3 and
3 meters, while the OAK-D Lite balances performance with a depth range of up
to 10 meters (132; 135).

Stereo cameras are often enhanced by additional components, such as an IMU,
which stabilizes motion and supports real-time depth calculation, making these
systems suitable for dynamic and complex environments (135).
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Extracted Data

Stereo cameras produce two primary data outputs: stereo RGB images and
depth maps. Depth maps assign a distance value to every pixel, representing the
spatial position of objects relative to the camera (135). These data facilitate accu-
rate 3D scene reconstruction, enabling advanced tasks such as object localization
and spatial reasoning.

For example, the ZED 2 (Figure 4.6) generates high-resolution depth maps
suitable for applications such as object detection and navigation in dynamic sce-
narios. Disparity maps, derived from stereo images, serve as intermediate repre-
sentations that visualize relative depth differences, further aiding in spatial analy-
sis (135). This capability makes stereo cameras particularly effective in dense and
cluttered environments, where precise depth perception is critical.

Figure 4.6: Sample data captured by the ZED 2 stereo camera.

Strengths and Limitations

Stereo cameras are cost-effective and compact compared to LiDAR systems,
offering high-resolution depth maps with low latency, making them suitable for
real-time tasks like robotics and autonomous navigation (135). Their adaptability
to varying lighting conditions and ability to extract dense depth data enhance 3D
perception in both indoor and outdoor settings (136).

However, their performance decreases on low-texture surfaces, and their effec-
tive range, typically up to 20 meters, limits their use in large-scale environments
(132). Precise calibration is crucial for accuracy, and extreme lighting conditions
or reflections can interfere with depth estimation (137).
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Time-of-Flight Cameras

Time-of-Flight (ToF) (138) cameras are an advanced 3D sensing technology widely
utilized in applications requiring real-time depth measurements. By illuminating
a scene with modulated light and analyzing the reflected signals, these cameras
measure the distance between the sensor and each point in the environment. This
capability makes them particularly valuable for robotics, AR, and security appli-
cations.

Functionality

ToF cameras determine depth by emitting modulated light, typically in the
near-infrared spectrum (approximately 850 nm), and measuring the phase shift
of the reflected light to calculate distance (Figure 4.7) (50). The emitted light,
generated by a laser diode or LED, is invisible to the human eye. A specialized
image sensor receives the reflected light and separates the modulated signal, which
contains the depth information, from the ambient component. The ambient light
component can reduce the signal-to-noise ratio, impacting accuracy (138).

Figure 4.7: Principle of operation for a 3D ToF camera (50).

To detect phase shifts accurately, the emitted light is either pulsed or modu-
lated in sine or square waves. Square-wave modulation is often preferred due to its
compatibility with digital circuits (139). Indirect ToF cameras, such as the Vzense
DCAM710 and Analog Devices ADTF3175, use this principle to calculate phase
shifts and produce depth maps.
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Extracted Data

ToF cameras generate depth maps, where each pixel corresponds to the dis-
tance between the camera and a point in the scene (50). These maps enable de-
tailed 3D reconstructions, critical for navigation, object detection, and other spa-
tial reasoning tasks. For instance, the Microsoft Azure Kinect and PMD Technolo-
gies’ ToF cameras provide high-resolution depth data, supporting applications in
robotics and mixed reality (140).

Figure 4.8: Depth map representation of soda cans (50).

Depth maps are often visualized as grayscale images, with pixel intensity re-
flecting relative distances (closer objects appear brighter) (Figure 4.8). Such rep-
resentations simplify spatial reasoning in real-time applications (50).

Strengths and Limitations

ToF cameras are highly accurate and fast, making them ideal for real-time
depth sensing in robotics and surveillance. Their ability to function effectively in
low-light conditions and capture both depth and active infrared (IR) data ensures
consistent performance even under varying ambient light (140).

However, they are prone to interference from reflective surfaces and ambient
light, which can distort depth measurements (50). Their high cost and sensitivity
to multi-path interference and environmental factors, such as fog and rain, pose
additional challenges. Calibration and post-processing are often necessary to en-
sure reliability across diverse scenarios (140).

RGB-D Cameras

RGB-D cameras (51)integrate traditional RGB imaging, discussed earlier in Sec-
tion 4.2.1, with depth sensing to provide both visual and spatial information in a
single dataset. Building upon the principles of RGB functionality, these cameras
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enrich visual data with pixel-wise depth information, offering a more comprehen-
sive understanding of the environment. Originally popularized by devices like
Microsoft’s Kinect, RGB-D cameras now play a crucial role in robotics, moni-
toring, and AR, enabling applications such as 3D modeling, motion tracking, and
real-time navigation (51).

Functionality

RGB-D cameras operate by merging two complementary technologies: an
RGB sensor captures color images, while a depth sensor provides spatial infor-
mation by measuring the distance to objects in the scene. Depth sensing can be
achieved through various methods, such as structured light or ToF. For instance,
the Microsoft Kinect incorporates an infrared (IR) emitter and receiver to measure
depth using structured light patterns or ToF principles (Figure 4.9).

Figure 4.9: Overview of Kinect hardware components (51).

The data from both sensors are fused pixel by pixel to produce an enriched
dataset, where each RGB pixel is paired with its corresponding depth value. This
integration enables applications that require a holistic understanding of a scene,
such as 3D object detection, spatial navigation, and gesture recognition. By com-
bining real-time visual and spatial analysis, RGB-D cameras bridge the gap be-
tween 2D imaging and 3D perception, making them indispensable in scenarios
that demand both precision and versatility (51).

Extracted Data

RGB-D cameras simultaneously produce RGB images and depth maps. The
RGB component, as described earlier, provides visual detail, while the depth map
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adds spatial information by encoding distances for every pixel in the scene (Fig-
ure 4.10). This fusion enables applications like autonomous navigation, motion
tracking, and 3D scene reconstruction. For instance, the Intel RealSense D435i
generates high-resolution RGB images paired with depth maps, offering precise
real-time perception (52).

Figure 4.10: Example of data captured by an RGB-D camera: RGB image (left)
and depth map (right) (52).

Strengths and Limitations

RGB-D cameras offer several advantages by combining the rich visual detail
of RGB imaging with spatial depth data (52). This dual capability enhances object
detection and occlusion handling, as explained in earlier sections, by providing
detailed 3D scene reconstructions. They are cost-effective compared to LiDAR
and function well in low-light conditions, making them ideal for budget-sensitive
applications requiring both visual and spatial data (51).

However, limitations include shorter depth-sensing ranges and lower reso-
lution compared to LiDAR, which restrict their application in large-scale envi-
ronments. Additionally, environmental factors like ambient light interference
or adverse weather can compromise depth accuracy, as noted for other sensors.
These considerations underscore the importance of application-specific require-
ments when selecting RGB-D technology (141).

4.2.3 Applications of Sensor Technologies
This section synthesizes the diverse applications of 2D and depth-sensing tech-
nologies, highlighting their role in advancing object detection and spatial reason-
ing across various domains. By summarizing their use cases, this section under-
scores the practical implications of these sensors in real-world scenarios.
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Visual Sensing Sensors

RGB and monochrome cameras are foundational in computer vision, offering
high-quality visual data critical for numerous applications:

• Video Surveillance: RGB cameras enable real-time monitoring and be-
havior analysis, while monochrome cameras enhance object detection in
low-light conditions and sharp contrast scenarios (121).

• Industrial Inspection: Monochrome cameras detect flaws in manufactur-
ing lines with high precision, ensuring quality control (129).

• Facial Recognition: RGB cameras facilitate accurate identification and au-
thentication in security systems (121).

• Astronomy and Microscopy: Monochrome cameras excel in capturing
fine details for celestial imaging and biomedical analysis (129).

Depth-Sensing Sensors

Depth-sensing technologies expand the capabilities of computer vision by en-
abling 3D perception and spatial analysis:

• Autonomous Driving: LiDAR, stereo, ToF, and RGB-D cameras provide
3D environmental maps for obstacle detection, navigation, and pedestrian
recognition in complex urban settings (51).

• Robotics and Automation: Stereo and ToF cameras enable precise nav-
igation, object manipulation, and interaction with dynamic environments
(130).

• Augmented Reality (AR): ToF and RGB-D cameras power immersive ex-
periences by aligning virtual objects with the real world (49; 130).

• Healthcare and Rehabilitation: ToF and RGB-D cameras support move-
ment analysis for patient monitoring and physical therapy.

• Gaming and Entertainment: ToF and RGB-D cameras enhance interac-
tivity by capturing user gestures for motion-based gaming (50).

• Urban Planning and Infrastructure Modeling: LiDAR sensors provide
accurate 3D maps for city planning and infrastructure maintenance (49).

By integrating these sensor technologies, modern systems achieve enhanced
functionality and adaptability, addressing challenges across diverse applications
while pushing the boundaries of innovation in computer vision.
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4.3 Experiments with 2D and 3D Sensors
Building upon the foundational overview of sensor technologies presented in the
previous section, this section focuses on practical experiments conducted with 2D
and 3D sensors, exploring their real-world applicability in addressing occlusion
challenges. While the earlier discussion outlined the functionalities, principles,
and theoretical aspects of these technologies, the focus here shifts to analyzing
their outputs and implications for occlusion handling.

The experiments utilize a 2D Canon camera, the ZED 2 stereo camera, and
LiDAR data extracted from the KITTI dataset (122). Through an examination
of raw sensor outputs, we evaluate their capacity to detect, analyze, and manage
occlusions in varied scenarios. These experiments serve as a practical extension
of the theoretical insights provided earlier, demonstrating how each sensor type
contributes to overcoming occlusion-related challenges.

By bridging theoretical principles with experimental analysis, this section un-
derscores the strengths and limitations of 2D and 3D sensors in real-world ap-
plications. The findings provide a nuanced understanding of their effectiveness,
offering valuable insights into their roles in modern computer vision systems.

4.3.1 2D Camera: Canon EOS 1300D
In this subsection, we explore the use of a Canon EOS 1300D (142) for capturing
2D image data, with a particular focus on its role in occlusion analysis. The Canon
EOS 1300D, a consumer-grade DSLR camera, was selected for its accessibility
and high-resolution imaging capabilities. The captured data provides a visual per-
spective on occlusion scenarios, which are further analyzed to demonstrate the
challenges posed by object overlap in various real-world settings. While the qual-
ity of data was influenced by the sunset lighting conditions, the images provided
valuable insights into occlusion challenges, setting the foundation for subsequent
experiments involving object detection networks.

Functionality

The Canon EOS 1300D operates with a CMOS sensor that captures images in
three color channels: red, green, and blue (RGB). These images are stored in
high-resolution ‘.jpg‘ format, providing sufficient detail for occlusion analysis.
The camera’s auto-exposure and autofocus systems enable efficient data capture
even under suboptimal lighting conditions, such as during sunset (142). However,
such conditions can introduce noise and impact color fidelity, which are important
considerations in the analysis. The camera’s ability to capture still frames from
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dynamic scenes ensures versatility in generating datasets for tasks like object de-
tection and occlusion handling.

Experimental Setup

The data collection process involved capturing real-world scenes at a pedestrian
crossing and in a semi-urban environment with varying levels of occlusion. The
camera was mounted on a tripod to ensure stability, and manual settings were ad-
justed to account for low-light conditions during sunset. The setup was positioned
at a fixed distance from the scene, capturing a series of frames to visualize the
progression of occlusion over time. Two scenarios were considered:

• Scenario 1 (Figure 4.11): Pedestrians crossing a road, with cars approach-
ing from the background. This setting introduces low to high occlusion
levels as the pedestrians move closer to the camera, partially blocking the
vehicles behind them.

• Scenario 2 (Figure 4.12): A group of individuals interacting in a park,
with overlapping bodies and objects like scooters creating occlusion. This
scenario highlights challenges in distinguishing individuals in cluttered en-
vironments.

Data Analysis

The collected images were analyzed visually to identify occlusion levels and as-
sess the camera’s ability to capture detailed information in overlapping scenar-
ios. Human interpretation served as the primary method of analysis, as this phase
aimed to highlight the challenges posed by occlusion without relying on compu-
tational models. The observations include:

• Lighting and Detail: Sunset lighting introduced noise and reduced image
clarity, especially in shadowed regions. This limitation underscores the im-
portance of preprocessing techniques in subsequent computational stages.

• Occlusion Patterns: In Scenario 1, pedestrians progressively occlude the
vehicles behind them, demonstrating the difficulty of detecting background
objects in crowded scenes. Scenario 2 revealed the complexity of segment-
ing closely interacting individuals and objects.

• Depth Perception: The lack of depth information in 2D data presents sig-
nificant challenges in resolving occlusion. While the images capture high-
resolution textures and colors, they lack spatial cues for distinguishing be-
tween overlapping objects.
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Visualization

Figures 4.11 and 4.12 illustrate the occlusion scenarios captured during the ex-
periments. In Figure 4.11, the sequence of images demonstrates increasing oc-
clusion as pedestrians cross the road, blocking the view of vehicles. Figure 4.12
showcases overlapping individuals, highlighting the challenges in separating fore-
ground and background entities. These visual examples emphasize the limitations
of 2D data for occlusion handling and set the stage for integrating additional data
modalities, such as 3D point clouds, in subsequent chapters.

Figure 4.11: Sequence of occlusion at a pedestrian crossing, showcasing varying
levels of occlusion as pedestrians block vehicles in the background.

Figure 4.12: Group interaction scenario, highlighting challenges in distinguishing
individuals and objects under overlapping conditions.

Discussion

The experiment with the Canon EOS 1300D demonstrates the strengths and lim-
itations of 2D imaging for occlusion analysis. While high-resolution images pro-
vide rich visual details, the lack of depth information presents significant chal-
lenges in resolving occlusion. These limitations highlight the necessity of com-
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plementing 2D data with depth information for a comprehensive understanding of
occlusion scenarios.

The reliance on human visual interpretation in this experiment underscores
the constraints of 2D imaging in complex scenes, especially under suboptimal
lighting conditions. These findings serve as a foundation for exploring stereo and
3D imaging technologies, as demonstrated in the subsequent section 4.3.2.

4.3.2 Stereo Camera: ZED 2
In this subsection, we examine the capabilities of the ZED 2 stereo camera, fol-
lowing our analysis of the Canon EOS 1300D. Unlike the 2D camera, the ZED 2
captures depth information through its stereo vision technology, allowing a more
comprehensive understanding of occluded scenes. This section discusses the func-
tionality, experimental setup, and analysis of the extracted depth, confidence, and
point cloud data, which are key for understanding occlusion handling in 3D envi-
ronments.

Functionality

The ZED 2 stereo camera utilizes two lenses separated by a fixed baseline to
mimic human binocular vision. By analyzing disparities between two slightly
offset images, it computes depth on a pixel-by-pixel basis. This generates a depth
map, where each pixel corresponds to a distance measurement, and a confidence
map, which highlights the reliability of these depth estimations. Additionally,
the ZED 2 outputs a point cloud, providing a 3D representation of the scene by
mapping depth information into spatial coordinates (132).

The ZED 2 system stores data in the proprietary ‘.svo‘ (Stereo Video Object)
format. This format is specifically designed for efficiently capturing synchronized
stereo video streams along with depth and positional data (132). The ‘.svo‘ files
encapsulate raw stereo image pairs, depth information, and camera calibration
metadata, ensuring that all necessary information for post-processing and analy-
sis is preserved. This enables users to replay and reanalyze recorded data under
various settings, such as altering depth thresholds or testing different calibration
adjustments.

Interpreting the ‘.svo‘ data involves extracting individual frames for depth
maps, confidence maps, and point clouds using tools like the ZED SDK (143).
The SDK provides functions to decode the ‘.svo‘ files and convert them into us-
able formats like ‘.ply‘ for point clouds or ‘.png‘ for depth images. Proper cali-
bration is critical when interpreting these data types, as misalignment between the
stereo lenses can introduce errors in depth computation. Moreover, understanding
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the camera’s optimal operating range (0.5 to 20 meters) is crucial for ensuring
accuracy, as data fidelity decreases beyond this range (143).

The ZED 2 relies heavily on precise calibration, ensuring alignment between
its left and right lenses. Proper calibration minimizes errors in depth computation,
especially in scenes with complex occlusion. While the extracted point cloud pro-
vides rich spatial data, it often requires refinement to filter out noise and redundant
points, particularly in cluttered or occluded environments. These features make
the ZED 2 a robust tool for capturing and interpreting 3D spatial data, particu-
larly in applications that demand a clear understanding of occlusion and object
relationships (143).

Experimental Setup

Experiments with the ZED 2 were conducted in an indoor environment with mul-
tiple individuals positioned to simulate varying degrees of occlusion. The camera
was mounted at a height of 1.5 meters to ensure stability and optimal coverage.
During the experiments, the ZED Depth Viewer software was employed to capture
depth maps, confidence maps, and point cloud data.

The test scenario included individuals standing in close proximity, resulting in
partial occlusion of some participants. By varying the camera’s distance from the
scene, we evaluated how the ZED 2’s depth estimation performance responded to
different levels of occlusion and object separation.

Data Analysis

Depth and Confidence Maps: The depth maps captured by the ZED 2 highlight
its ability to measure and differentiate distances in a cluttered scene. As illus-
trated in Figure 4.13, the color-coded visualization represents the proximity of
objects, with red indicating the closest objects and a gradient transitioning to blue
for farther ones. This provides a clear understanding of spatial separation even
in occluded scenarios. The confidence map in Figure 4.14 complements this by
visualizing the reliability of these measurements. Black areas represent regions
with low confidence, typically due to occlusion, reflective surfaces, or insufficient
texture, while white areas correspond to high-confidence estimates.

Point Cloud Data: The point cloud data offers a three-dimensional recon-
struction of the scene, showcasing spatial relationships between objects. As shown
in both figures, the raw point cloud accurately maps the overall geometry of the en-
vironment but also includes extraneous points resulting from noisy measurements.
This emphasizes the need for post-processing steps, such as filtering and segmen-
tation, to refine the point cloud for downstream applications. In occlusion-heavy
scenes, the point cloud provides critical information on how objects are layered,
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helping analyze and interpret overlapping structures.

Visualization

The ZED Depth Viewer facilitated real-time visualization of the captured data,
enabling a comprehensive understanding of the sensor’s output. As demonstrated
in Figure 4.13, the depth map effectively conveys the scene’s spatial distribution,
with distinct color gradients marking varying object distances. Figure 4.14 il-
lustrates the confidence map, revealing areas where depth measurements are less
reliable, particularly in regions of heavy occlusion.

Furthermore, the point cloud visualization in both figures highlights the rich-
ness of the 3D data. The raw point cloud provides a preliminary spatial under-
standing but requires refinement to remove noise and redundant points, especially
in complex scenes with overlapping objects. These visualizations underscore the
ZED 2’s potential for analyzing occluded environments, where depth and confi-
dence metrics play a pivotal role in understanding object relationships and spatial
structure.

Figure 4.13: Depth map visualization: RGB image (top-left), depth map (bottom-
left), and point cloud (right) captured by the ZED 2.
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Figure 4.14: Confidence map visualization: RGB image (top-left), confidence
map (bottom-left), and point cloud (right) captured by the ZED 2.

Discussion

The ZED 2 stereo camera demonstrated robust occlusion handling capabilities,
effectively capturing depth and spatial relationships in cluttered environments.
However, its reliance on calibration and post-processing highlights the challenges
associated with stereo vision. Calibration errors or excessive noise can compro-
mise the quality of depth maps and point clouds, emphasizing the need for careful
setup and refinement.

The extracted depth and confidence maps, coupled with point cloud data,
proved effective in visualizing and analyzing occluded scenes. The .svo format
data, which encapsulates synchronized RGB and depth information, enhances
compatibility with 3D vision systems and facilitates in-depth analysis of occlu-
sion.

Overall, the ZED 2’s ability to generate detailed depth and 3D data makes it an
invaluable tool for applications such as robotics, augmented reality, and surveil-
lance. Its integration with object detection models, as explored in subsequent
chapters, further enhances its utility for addressing complex occlusion scenarios.
These findings pave the way for the section 4.3.3, which focuses on the appli-
cation of LIDAR-based 3D data, using the KITTI dataset, to complement stereo
vision data and strengthen occlusion analysis.
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4.3.3 LIDAR: KITTI Dataset and Point Clouds
Building on the previous section’s discussion of 3D data acquisition tools, this
subsection focuses on the use of LIDAR data from the KITTI dataset to address
occlusion challenges. The KITTI dataset provides synchronized RGB images,
LiDAR point clouds, and calibration files, enabling precise analysis of real-world
scenarios. Its annotations and evaluation protocols are invaluable for assessing
model performance under varying levels of occlusion.

Functionality

The KITTI dataset is generated using Velodyne LiDAR, which produces dense
3D point clouds, supplemented by high-resolution RGB images and detailed cal-
ibration files. A unique feature of KITTI is its task-specific evaluation frame-
work, categorizing detection tasks into three difficulty levels—Easy, Moderate,
and Hard—based on bounding box size, and occlusion level (Table 4.2) (56; 144).

Difficulty
Level

Minimum
Box Height

Maximum
Occlusion

Easy 40 pixels Fully visible
Moderate 25 pixels Partially occluded

Hard 25 pixels Difficult to identify

Table 4.2: Difficulty division of the KITTI dataset (56).

The dataset also incorporates specific rules to handle edge cases:

• "DontCare" regions, such as distant or occluded objects, are excluded from
evaluations as true positives (TP) or false positives (FP), reducing noise in
model performance metrics (145).

• Neighboring classes (e.g., ’Van’ vs. ’Car’) do not count as TP, FP, or FN,
ensuring stricter classification accuracy.

• Detections overlapping ground-truth objects of a higher difficulty are ig-
nored in the evaluation of simpler categories, prioritizing relevant compar-
isons.

• Detections with heights below 30 pixels are omitted to minimize errors due
to scale sensitivity.
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Experimental Setup

As the KITTI dataset is publicly available, no additional hardware setup was re-
quired. Instead, the experiments focused on interpreting and analyzing the pro-
vided data. The key focus was on understanding the relationship between the
RGB images and their corresponding point clouds and leveraging the calibration
files to align these modalities.

Figure 4.15 illustrates an example from the dataset, where the left image de-
picts the scene in the RGB format, and the right image shows the associated point
cloud. This visual representation highlights the dataset’s ability to provide both
visual context and detailed spatial information, essential for analyzing occlusion
scenarios.

Data Analysis

Point Cloud Analysis: The dataset’s point clouds effectively captured the spatial
structure of the environment, including occluded objects. However, the raw data
often included noise and redundant points, emphasizing the need for refinement.
By utilizing the calibration files, the alignment between the RGB images and point
clouds was improved, enhancing the accuracy of spatial representations.

Occlusion Handling: The dataset’s occlusion annotations facilitated targeted
analysis. Heavily occluded objects in the RGB images corresponded to sparse or
fragmented regions in the point clouds. This observation underscores the impor-
tance of combining 2D and 3D modalities for robust occlusion handling.

Figure 4.15: Example from the KITTI dataset: Left: RGB image, Right: Associ-
ated point cloud.

Visualization

The visualization capabilities provided by the KITTI dataset allow for an intuitive
understanding of occlusion and spatial relationships. As shown in Figure 4.15, the
RGB image offers a clear depiction of the scene, while the color-coded point cloud
highlights spatial details and object surfaces. These visualizations underscore the
complementary nature of 2D and 3D data in occlusion analysis.

129



Discussion

The KITTI dataset demonstrates the strengths of LiDAR technology in captur-
ing precise depth information and addressing occlusion challenges. Its occlusion
annotations and calibration files make it an invaluable resource for developing ro-
bust object detection and scene reconstruction algorithms. However, the raw point
clouds require refinement to enhance clarity and accuracy.

This analysis builds on the findings from the ZED 2 stereo camera, further
highlighting the complementary roles of stereo vision and LiDAR in tackling oc-
clusion challenges. The next subsection transitions to exploring multimodal ap-
proaches that integrate these modalities for enhanced occlusion handling.

4.4 Synthesis and Discussion
This section synthesizes the insights gained from the detailed exploration and ex-
perimental evaluation of 2D and 3D sensors. It aims to provide a clear under-
standing of their strengths, limitations, and roles in addressing occlusion chal-
lenges within object detection systems. By consolidating the findings, this section
bridges the gap between theoretical principles and practical applications.

4.4.1 Sensor Technologies Summary
Building on the experimental evaluations from the previous section, Table 4.3 of-
fers a comparative overview of 2D and 3D sensors. The table summarizes key
aspects, including extracted data types, cost ranges, primary characteristics, ad-
vantages, and limitations. This comparative analysis highlights the suitability of
each sensor type for handling occlusions, drawing from both theoretical insights
and practical observations. Such a synthesis provides valuable guidance for se-
lecting appropriate sensors in diverse application scenarios.

4.4.2 Analysis of 2D Sensors
The experiment using the Canon EOS 1300D offered key insights into the ca-
pabilities and limitations of 2D sensors for occlusion handling. High-resolution
images captured in dynamic environments provided fine-grained visual details es-
sential for analyzing scene composition. However, as noted in Section 4.3.1, the
lack of depth information significantly restricted the camera’s ability to resolve
overlapping objects. For example, under variable meteorological conditions, such
as during sunset, poor lighting introduced noise and reduced color fidelity, under-
scoring the challenges of using RGB sensors in uncontrolled settings. Addition-
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Type Examples Extracted Data Price
(C)

Characteristics Advantages Disadvantages

LiDAR Velodyne
HDL-64E

3D Point Clouds 75,000 360° Depth, High
Accuracy

High preci-
sion, real-time

Expensive,
sensitive to
conditions

ToF Azure
Kinect, PMD
CamBoard

Depth Maps 400 -
600

Distance Mea-
surement, Depth

Accurate
depth, low
light

Medium
cost, light
reflections

Stereo ZED 2,
RealSense
D435i

Stereo Images
and 3D Point
Clouds

300 -
600

Two Sensors for
Depth

Precise depth,
high resolution

Integration
complexity,
limited range

RGB-D RealSense,
Asus Xtion

RGB Images and
Depth

150 -
400

Real-time Data
Fusion

Depth and
color, versatil-
ity

Limited
range, lower
resolution

RGB Canon EOS
1300D, Sony
Alpha

Color Images
(RGB)

50 -
2,000

High Image Res-
olution

Affordable,
high quality,
versatile

No depth,
light-
sensitive

Monochrome Basler Ace,
FLIR Black-
fly

Grayscale Images 300 -
1,500

High Light Sensi-
tivity

High sensitiv-
ity, high con-
trast

No color, no
depth

Table 4.3: Summary of different sensor types, their approximate prices, charac-
teristics, advantages, and disadvantages.

ally, these cameras struggled with occlusion scenarios, as they lacked the ability
to capture spatial relationships between objects.

Despite these challenges, RGB cameras like the Canon EOS 1300D remain at-
tractive due to their affordability, ease of integration, and widespread availability.
Their utility is particularly evident in budget-constrained projects focusing on 2D
image analysis, such as basic video surveillance and media applications. How-
ever, their reliance on optimal lighting conditions and inability to differentiate ob-
jects based on depth make them less effective in scenarios involving occlusion. As
demonstrated in the experiments, advanced computational algorithms are required
to supplement these sensors, enabling the extraction of spatial context and occlu-
sion resolution. While their smaller data sizes reduce computational demands, the
lack of depth data remains a critical limitation in tasks requiring precise scene
understanding and occlusion management.

4.4.3 Analysis of 3D Sensors
The experiments conducted with 3D sensors, including the ZED 2 stereo camera
and LiDAR data from the KITTI dataset, emphasized the importance of depth
information for addressing occlusion challenges. The ZED 2’s ability to capture
stereo images and generate point clouds enabled it to distinguish overlapping ob-
jects using pixel disparity (Section 4.3.2). However, the effectiveness of stereo
cameras was influenced by environmental conditions, such as lighting variability
and the presence of low-texture surfaces. Additionally, noise and redundancy in
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the raw point clouds necessitated calibration and post-processing to enhance ac-
curacy, particularly in indoor environments with partial occlusions. The stereo
camera’s limited range also restricted its use in large-scale outdoor scenarios,
highlighting a need for careful adaptation depending on application requirements.

The KITTI dataset underscored the value of LiDAR-based sensors in analyz-
ing occlusion. By providing labeled occlusion levels (easy, moderate, and hard)
and calibration files, LiDAR enabled precise differentiation of objects across vary-
ing occlusion scenarios (Section 4.3.3). Its high-resolution depth data allowed for
robust scene understanding, even in complex environments. However, adverse
meteorological conditions, such as fog or heavy rain, and strong sunlight posed
challenges to LiDAR accuracy, requiring additional processing to maintain relia-
bility. The high cost and complexity of LiDAR integration further limit its scal-
ability for low-budget projects, making it best suited for applications demanding
exceptional precision, such as autonomous vehicles and urban planning.

While 3D sensors excel in providing high spatial accuracy and resolving oc-
clusions, their limitations, including high computational demands, sensitivity to
environmental factors, and cost, must be considered. Optimizing their deploy-
ment through algorithmic improvements or hybrid systems that integrate 2D and
3D data can address these challenges. The experiments demonstrate that while
LiDAR and stereo cameras offer unparalleled depth perception, their effective-
ness depends heavily on application-specific adaptations, environmental condi-
tions, and the ability to manage occlusion complexities in dynamic scenarios.

4.5 Conclusion
This chapter emphasized the critical role of sensor technologies in addressing oc-
clusion challenges in computer vision. Through experiments and analyses, we
explored the strengths and limitations of 2D and 3D sensors. While 3D sensors,
such as LiDAR and the ZED 2 stereo camera, excel in spatial representation and
occlusion resolution, their high cost and complexity limit their accessibility. Con-
versely, 2D sensors, such as the Canon EOS 1300D, are cost-effective and acces-
sible but require advanced algorithms to overcome their lack of depth perception.

Recent advancements in scene reconstruction from 2D data present opportu-
nities to mitigate these limitations, enabling 2D sensors to contribute to spatial
understanding. This evolution highlights the potential for hybrid approaches that
integrate 2D and 3D data, leveraging the strengths of both modalities. 2D sensors
capture rich visual details like texture and color, while 3D sensors provide the
depth information necessary for resolving occlusions.

A selective and balanced use of 2D and 3D data can optimize cost and com-
putational resources, deploying 3D data in occlusion-heavy scenarios and relying
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on 2D data for simpler tasks. This strategy ensures efficiency while maintaining
accuracy, aligning with the experimental findings.

These insights provide a strong foundation for selecting sensor technologies
and designing an occlusion-handling approach, as detailed in the next chapter.
By integrating the complementary strengths of 2D and 3D sensors, the proposed
approach aims to address occlusions effectively in diverse real-world applications.
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Proposed Approach and
Experiments: FuDensityNet in
Action
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5.1 Introduction
In the previous chapter, we explored the characteristics and applications of 2D
and 3D sensors, emphasizing their critical role in addressing occlusions in ob-
ject detection. These sensors, while effective in their respective domains, pre-
sented unique challenges and limitations, particularly in dynamic and heavily oc-
cluded environments. Building upon these insights, this chapter introduces Fu-
DensityNet, a multimodal network architecture specifically designed to tackle the
complexities of occlusion in object detection tasks.

FuDensityNet represents an innovative leap forward in leveraging both 2D im-
age data and 3D point cloud information. The approach integrates advanced pre-
processing techniques, voxel density-aware strategies, and state-of-the-art multi-
modal fusion mechanisms to enhance detection performance under occlusion sce-
narios. By combining the strengths of these modalities, FuDensityNet achieves
robust object detection capabilities, as validated through rigorous experimenta-
tion on benchmark datasets such as KITTI, NuScenes, and OccludedPascal3D.

This chapter traces the evolution of FuDensityNet through its various itera-
tions, including:

• "A novel approach for recognizing occluded objects using Feature Pyra-
mid network based on occlusion rate analysis," accepted and presented at
CloudTech’23 (53).

• "FuDensityNet: Fusion-Based Density-Enhanced Network for Occlusion
Handling," accepted and presented at VISAPP’24 (54).

• "FuDensityNet2.0: Occlusion-Aware Object Detection with Density-Enhanced
Strategies," currently under revision for publication in the journal Signal
Processing (55).

Beyond its experimental successes, FuDensityNet offers a forward-looking
perspective by exploring the potential of generating 3D point cloud data directly
from 2D images. This innovation aims to reduce reliance on specialized 3D sen-
sors, making the model adaptable to a broader range of real-world applications.
The following sections provide a detailed analysis of FuDensityNet’s architecture,
methodologies, and experimental validations, setting the stage for its contribution
to the domain of occlusion-aware object detection.

5.2 Overview of FuDensityNet
In the previous chapter, we examined the capabilities of 2D and 3D sensors for
object detection in occluded environments, outlining their respective strengths
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and limitations. Leveraging these insights, this chapter introduces FuDensityNet,
an adaptive network architecture specifically designed to address occlusion chal-
lenges. The discussion focuses on its evolution, core methodologies, and inno-
vative strategies for achieving robust and accurate object detection in complex
scenarios.

Figure 5.1: Overview of the proposed occlusion handling approach. The input
data is first processed based on its dimensionality (2D or 3D). The Occlusion Rate
(OR) is then determined; if it exceeds the threshold, the FusionNet-YOLOv8:
Occlusion-Aware Network is employed, otherwise, a state-of-the-art 2D object
detection network is used

FuDensityNet is a comprehensive occlusion-handling approach that incorpo-
rates advanced techniques for addressing occlusions in object detection tasks. At
its core, the approach combines innovative methodologies for occlusion rate eval-
uation with a neural network architecture called FusionNet, the latest version of
which is FusionNet-YOLOv8. This hybrid strategy utilizes both 2D RGB images
and 3D point cloud data, effectively harnessing their respective strengths to ensure
robust performance across varying levels of occlusion (Figure 2.15).

The first component of FuDensityNet, Occlusion Rate (OR) Assessment,
employs a Voxel Density Aware (VDA) methodology to analyze point density
within voxel grids extracted from 3D point clouds. This analysis enables the dy-
namic evaluation of occlusion levels in the scene, which directly informs the sys-
tem’s decision-making process. Based on the OR value, the most suitable detec-
tion network is selected. For scenes with high occlusion, FusionNet-YOLOv8,
an enhanced neural network featuring an upgraded YOLOv8 backbone, is de-
ployed. This network performs advanced 2D-3D data fusion, ensuring accurate
object detection in heavily obstructed environments. For low occlusion levels,
a streamlined 2D detection network is employed to optimize computational effi-
ciency while maintaining performance.
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This dual-method architecture exemplifies a significant advancement in com-
puter vision, addressing the limitations of traditional object detection systems. By
combining occlusion-aware analysis with multimodal data fusion, FuDensityNet
provides a scalable and adaptive solution for real-world scenarios where occlu-
sions are prevalent. Each component of this approach, from data preprocessing
to model selection and detection, contributes to a robust framework designed to
meet the demands of modern object detection tasks.

The next section explores the data acquisition processes critical for FuDen-
sityNet’s occlusion-handling capabilities. It provides an in-depth discussion of
the hardware used, the types of data acquired, and the preprocessing steps neces-
sary to enhance data quality and reliability. These foundational steps are essential
for ensuring accurate and robust object detection in challenging, occlusion-heavy
environments.

5.3 Data Acquisition
This section provides a detailed overview of the data acquisition processes foun-
dational to the FuDensityNet framework. Building on insights from the previous
chapter on sensor technologies, the focus is on combining 2D and 3D data to
address occlusion challenges. It discusses the types of data utilized, their com-
plementary roles within the FuDensityNet approach, and the preprocessing tech-
niques implemented to ensure data quality and reliability.

5.3.1 Hardware and Data Types
Expanding on the sensor technologies discussed in the previous chapter, this sec-
tion examines the specific roles of 2D and 3D data within FuDensityNet’s occlusion-
handling framework. These data types are collected from RGB cameras and Li-
DAR-based point clouds, each contributing unique strengths that enhance the sys-
tem’s overall performance.

• 2D Data: Captured by RGB cameras, 2D data provides high-resolution vi-
sual details, crucial for feature extraction and object recognition. However,
2D data lacks depth information, making it insufficient for resolving occlu-
sions independently. This limitation necessitates the integration of comple-
mentary depth-based data.

• 3D Data: Acquired through LiDAR sensors, 3D point clouds offer a spatial
representation of the environment, enabling depth perception and accurate
spatial localization of objects. By mapping points in a three-dimensional
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coordinate system, this data type enhances the system’s ability to distinguish
overlapping objects and handle occlusions effectively (see Figure 5.3).

The combination of these data types underpins FuDensityNet’s dual-method
architecture, where 2D data supports texture and appearance-based detection, while
3D data facilitates spatial reasoning and occlusion resolution.

5.3.2 Data Preprocessing
Preprocessing plays a critical role in ensuring the quality and usability of the raw
data acquired by 2D cameras and 3D LiDAR sensors. These steps enhance the
relevance of input data and minimize the impact of environmental noise, lighting
variations, and irrelevant points, ensuring that FuDensityNet can perform accurate
object detection under diverse conditions.

2D Data Preprocessing

2D data preprocessing is essential for addressing challenges such as poor lighting,
noise, and low contrast, which frequently occur in real-world scenarios like urban
monitoring under nighttime or adverse weather conditions. These preprocessing
steps collectively improve image clarity, reducing false positives and negatives in
object detection. Our latest experimental evaluations indicate a 3-5% increase in
accuracy under challenging conditions (55), highlighting the tangible impact of
preprocessing on FuDensityNet’s performance.

Figure 5.2: Preprocessing steps for 2D images captured in low-light conditions.

• Brightness and Contrast Adjustment: Variations in lighting, such as un-
der low-light conditions (e.g., nighttime or cloudy weather), can obscure
critical image details. To address this, brightness and contrast adjustments
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are applied using linear transformations of pixel intensity values. The trans-
formation is defined as:

Iadjusted(x, y) = αI(x, y) + β (5.1)

where I(x, y) represents the original pixel intensity, α is the contrast ad-
justment factor, and β is the brightness offset. This method ensures uniform
illumination across the image. For implementation, OpenCV’s adjust
_brightness_contrast function was employed.

• Noise Reduction: To mitigate environmental noise, such as grain or pixel-
level distortions, a non-local means algorithm is utilized. This technique
compares the similarity of pixel neighborhoods to suppress noise while pre-
serving edge details. The denoised pixel intensity is computed as:

Idenoised(x, y) =

∑
p∈N w(p)I(p)∑

p∈N w(p)
(5.2)

where N represents the neighborhood of pixel (x, y), and w(p) is the weight
calculated based on similarity. The implementation utilizes OpenCV’s fast
NlMeansDenoisingColored algorithm.

• Contrast Enhancement: Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) is employed to enhance image contrast, particularly in re-
gions with low illumination. CLAHE divides the image into small blocks
(tiles) and applies histogram equalization independently to each tile. To
prevent over-amplification of noise, a contrast limiting threshold is applied.
The process involves:

1. Calculating the histogram of each tile.

2. Limiting the histogram’s height by redistributing excess pixels evenly
across all intensity levels.

3. Mapping the equalized histogram to the original intensity range for
each tile.

The resulting tiles are then interpolated to produce a smooth, enhanced im-
age. This approach highlights finer details in dimly lit or unevenly illumi-
nated scenes. CLAHE was implemented using OpenCV’s createCLAHE
function.

Figure 5.2 illustrates the preprocessing pipeline for 2D images, highlighting
the transformations applied to improve image clarity, contrast, and feature visibil-
ity.
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These preprocessing techniques ensure that the input images used in FuDen-
sityNet’s occlusion-handling framework retain their visual quality, even in chal-
lenging conditions.

3D Data Preprocessing

Unlike 2D images, 3D point cloud data presents unique challenges, such as cali-
bration errors, redundant points, and noise from irrelevant objects. Preprocessing
of 3D data focuses on spatial alignment, filtering, and data reduction to streamline
the dataset for efficient and accurate analysis.

• Calibration: Calibration ensures that the LiDAR point cloud data aligns
with the camera’s coordinate system, a critical step since the KITTI dataset
provides raw, uncalibrated data. Transformation matrices, provided in the
dataset, are applied during preprocessing to achieve this alignment:

– The camera projection matrix (P2).

– The rectification matrix (R0rect).

– The transformation matrix between LiDAR and the camera (Trvelo_to_cam).

These matrices are used to transform raw point cloud data into the camera’s
reference frame for accurate spatial representation:

points_cam = R0rect · Trvelo_to_cam · points_homT (5.3)

Here, points_hom represents the homogeneous coordinates of the LiDAR
point cloud. Calibration is performed before training and testing to ensure
consistent and accurate data alignment.

• Point Filtering: To reduce irrelevant or noisy data, the point cloud is fil-
tered to exclude points that are either behind the camera or outside its field
of view. This reduces the computational burden and ensures the retained
points contribute directly to object detection tasks.

• Data Reduction: Redundant and irrelevant points, such as those represent-
ing distant or unimportant objects, are removed. This step optimizes the
size of the dataset while preserving the information needed for accurate de-
tection and occlusion handling.

Figure 5.3 showcases the preprocessing steps for LiDAR data, illustrating the
transition from a global view to a calibrated frontal view that is used for object
detection.
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Figure 5.3: Transformation of LiDAR data: (Left) global point cloud view and
(Right) calibrated frontal view.

By integrating these preprocessing techniques, 3D data quality is significantly
improved, allowing FuDensityNet to accurately interpret and utilize point cloud
information in occlusion-heavy scenarios.

These preprocessing steps set the stage for the next critical component of Fu-
DensityNet: occlusion rate evaluation. By leveraging the prepared 2D and 3D
data, the system assesses occlusion levels through density analysis, enabling the
adaptive selection of detection models to optimize performance under varying oc-
clusion conditions.

5.4 Occlusion Rate Evaluation
Occlusion rate (OR) evaluation is a critical component of FuDensityNet, enabling
the framework to adapt dynamically to varying levels of occlusion. This section
elaborates on our methodology for assessing OR using density analysis, a process
that combines spatial distribution analysis with multi-scale density calculations
to quantify occlusion intensity accurately. By leveraging these techniques, our
method ensures enhanced object detection performance in highly occluded envi-
ronments (Figure 5.9).

5.4.1 Density-Aware Voxel Grid Extraction
To evaluate occlusion levels in 3D scenes, our method leverages point cloud data,
which represents objects as a collection of discrete spatial points Pi = (xi, yi, zi).
These points, typically generated by sensors such as LiDAR or depth cameras
(e.g., ZED 2, Intel RealSense L515, or Velodyne VLP-16 (58)), provide the foun-
dation for occlusion analysis.
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Figure 5.4: Structure of the Occlusion Rate Evaluation Process: The pipeline
begins with density-aware voxel grid extraction, followed by neighbor density
calculations using a Voronoi diagram. Finally, multi-scale density calculations
define the OR value.

The 3D space is divided into regular cubic units, known as voxels, through
a process called voxelization. Each voxel is defined by its center coordinates
(xj, yj, zj) and has a uniform size denoted by voxel_size, which determines
the resolution of the grid. Smaller voxels yield finer spatial details, while larger
voxels reduce computational complexity but may obscure critical information.
The voxel density Dj quantifies the number of points within a voxel and is a
critical metric proposed for localized occlusion analysis.

The voxel density Dj is calculated as the number of points that lie within the
bounds of a specific voxel:
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Dj =
N∑
i=1

χj(Pi), (5.4)

where χj(Pi) is an indicator function. This function evaluates whether a point
Pi = (xi, yi, zi) lies within the voxel j, returning 1 if true and 0 otherwise. For a
voxel centered at (xj, yj, zj), a point lies within the voxel if it satisfies the follow-
ing conditions:

xj −
voxel_size

2
≤ xi ≤ xj +

voxel_size
2

(5.5)

with similar conditions applied for the y- and z-coordinates (Equation 5.4).
This ensures that all points within a voxel’s boundaries contribute to its density.

Figure 5.5: Voxelized point cloud showing occlusion intensities. Green boxes
indicate less occluded objects, while red boxes highlight denser occluders.

Increasing the voxel size leads to larger spatial regions per voxel, which ag-
gregates more points and increases Dj . Conversely, smaller voxels capture finer
details but may result in lower densities per voxel. For instance, Figure 5.5 vi-
sually compares the densities of voxelized point clouds at varying voxel sizes,
showcasing the impact on occlusion representation and analysis.

The voxel indices (jx, jy, jz) for each point Pi are determined through the
following mapping equations:
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jx =

⌊
xi − xmin

voxel_size

⌋
, jy =

⌊
yi − ymin

voxel_size

⌋
, jz =

⌊
zi − zmin

voxel_size

⌋
, (5.6)

where (xmin, ymin, zmin) denote the minimum coordinates of the voxel grid.
This mapping ensures that every point is uniquely assigned to a voxel, enabling
structured density analysis across the grid.

The proposed approach highlights the direct relationship between voxel size
and density, where larger voxels simplify occlusion analysis at the cost of spatial
resolution. Conversely, smaller voxels offer finer detail, particularly beneficial in
high-occlusion scenarios where precise analysis is required.

By analyzing voxel densities, our method identifies regions with significant
occlusion, such as areas where objects overlap in the sensor’s field of view or
align on the same plane. This density-aware voxel grid forms the foundation for
subsequent steps, such as neighbor density calculations, and enhances FuDensi-
tyNet’s capability to handle occlusion scenarios effectively.

5.4.2 Neighbor Density Calculation Using Voronoi Diagrams
While voxel density provides valuable insights into localized occlusion intensity,
it does not capture the broader spatial relationships between neighboring regions.
To address this, we extend the analysis to evaluate the density of surrounding ar-
eas. This step is essential for distinguishing between continuous, concentrated
regions (caused by overlapping objects) and dispersed gaps, which indicate tran-
sitions or open spaces (Figure 5.6).

Figure 5.6: Spatial Distribution from Initial Density Analysis for Neighbor Den-
sity Computation. High-density regions (red) indicate potential occlusions, while
lighter regions represent open spaces.
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In our earlier work (54), a KDTree structure (146) was employed to efficiently
search for neighbors around each voxel. Although effective in some scenarios,
KDTree methods have notable limitations when dealing with non-uniform point
distributions. Specifically, KDTree’s reliance on fixed-radius neighbor searches
can lead to inaccuracies in complex spatial configurations, particularly in scenes
with uneven object distributions. These limitations prompted the adoption of
Voronoi diagrams, which offer a more flexible and accurate approach for density
calculation.

A Voronoi diagram partitions the space into cells, with each cell corresponding
to a single point Pi. The Voronoi cell associated with Pi is defined as the region
of space closer to Pi than to any other point Pj , mathematically expressed as:

∥x− Pi∥ ≤ ∥x− Pj∥ ∀j ̸= i (5.7)

This dynamic partitioning adapts naturally to the spatial distribution of points,
overcoming the rigidity of fixed-radius searches. Each cell reflects the local den-
sity around its center point Pi.

The density of a Voronoi cell, referred to as DVoronoi(Pi), is calculated as the
inverse of its volume:

DVoronoi(Pi) =
1

Vcell(Pi)
, (5.8)

where Vcell(Pi) represents the volume of the Voronoi cell associated with Pi.
Smaller cells correspond to higher densities, often indicative of occlusions or over-
lapping objects. Conversely, larger cells represent sparsely populated or open re-
gions.

For voxels with densities exceeding a predefined threshold (Dvoxel), the neigh-
bor density (NDVoronoi) is computed to evaluate the surrounding regions. The
threshold Dvoxel is determined empirically based on the characteristics of the cho-
sen dataset, ensuring it reflects the typical density distributions observed in the
data. The neighbor density is given by:

NDVoronoi =
1

Average(Vneighbors)
, (5.9)

where Vneighbors represents the volumes of Voronoi cells neighboring the tar-
get voxel. Smaller average volumes suggest denser neighborhoods, indicative of
possible occlusions, while larger averages indicate gaps or open spaces.

Additionally, the voxel density (Dvoxel) is computed as:

Dvoxel =
Number of points in voxel

Voxel volume
. (5.10)
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Comparing NDVoronoi and Dvoxel provides critical insights into the spatial ar-
rangement of points:

• If NDVoronoi ≪ Dvoxel, it suggests dispersed points within a dense region,
indicating gaps and potential occlusions.

• If NDVoronoi ≈ Dvoxel, it implies tightly packed regions with no significant
gaps, indicating contiguous objects or clusters.

Voronoi-based neighbor density analysis addresses the limitations of KDTree’s
fixed-radius approach (54) by dynamically adapting to the irregular spatial dis-
tribution of points. This capability ensures accurate identification of occlusion
scenarios in complex environments, where fixed-radius methods might otherwise
fail.

By integrating neighbor density insights with voxel-based density measures,
this step enhances FuDensityNet’s ability to interpret and adapt to complex occlu-
sion scenarios. These results directly inform the next stage of the methodology,
where multi-scale density calculations and occlusion rate determination are per-
formed to refine occlusion handling further.

5.4.3 Occlusion Rate Determination and Model Selection
To enhance the accuracy and robustness of object detection in occluded scenarios,
our method introduces a multi-scale density-based metric for occlusion rate (OR)
determination. This metric is used to decide between applying our specialized
occlusion-handling network or relying on existing state-of-the-art detection mod-
els. This refinement builds upon the approach presented in our prior work (54),
offering improved adaptability to varying occlusion levels in real-world scenes.

Multi-Scale Density Calculation

A multi-scale density calculation is employed to achieve a comprehensive evalu-
ation of occlusion. This approach assesses the voxel densities at multiple spatial
scales to capture occlusions involving objects of different sizes. By computing
densities for small, medium, and large volume elements, the method accounts for
varying object dimensions and occlusion levels within a given scene.

The OR value is determined as a weighted sum of the densities across the
different scales:

OR = w1 ·Dsmall voxel + w2 ·Dmedium voxel + w3 ·Dlarge voxel (5.11)

where w1, w2, w3 are weights corresponding to the contributions of small,
medium, and large voxel densities, respectively. These weights are calibrated
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to reflect the importance of different scales for accurately detecting occlusions
in various contexts. The density terms (Dsmall voxel, Dmedium voxel, Dlarge voxel) are de-
rived using the density calculation formula presented in Equation 5.4.

This multi-scale technique enables the OR metric to mask conflicting or am-
biguous regions in the scene, thereby improving visibility and detection of both
small and large occluded objects. By leveraging this approach, the OR value not
only measures the overall occlusion level but also highlights areas of occlusion
that might otherwise be missed in a single-scale analysis. Figure 5.7 demonstrates
the improved accuracy of occlusion rate determination when using the multi-scale
density calculation.

Figure 5.7: Comparison of Occlusion Rate Accuracy Before (Left) and After
(Right) Multi-Scale Density Calculation. The enhanced accuracy highlights the
impact of multi-scale density analysis.

Threshold Comparison and Model Selection

After calculating the OR value, it is compared against a predefined threshold to
determine the appropriate detection approach. This threshold is calibrated using
a combination of human observation and experimental analysis on benchmark
datasets such as KITTI. The threshold reflects real-world occlusion conditions,
ensuring accurate model selection for varying levels of occlusion complexity.

The model selection process is as follows:

• If OR exceeds the threshold: A high OR value indicates significant occlu-
sion in the scene. In this case, our specialized occlusion-handling network
is applied to ensure robust detection under challenging conditions. This net-
work is designed to address overlapping objects and dense occlusion scenar-
ios effectively.
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• If OR is below the threshold: A low OR value suggests minimal occlu-
sion. Under these conditions, state-of-the-art detection models are used to
optimize performance and computational efficiency, as they are well-suited
for less complex scenes.

The effectiveness of this threshold-based model selection is illustrated in Fig-
ure 5.7, where the use of the multi-scale OR metric leads to improved overall de-
tection performance in diverse scenarios. By dynamically adapting the detection
approach based on OR values, the method ensures both robustness and efficiency
in handling occlusions.

These steps conclude the occlusion rate determination phase and enable the in-
tegration of the proposed metric into FuDensityNet’s broader occlusion-handling
framework, enhancing its capability to address real-world scenarios with varying
degrees of occlusion complexity.

5.5 Multimodal Network Architecture
Occlusion handling in object detection requires a carefully designed network ar-
chitecture capable of capturing complementary features from both 2D and 3D
data. This section provides an overview of the iterative development of our net-
work, starting with an initial version that demonstrated promising results but re-
vealed key limitations. These insights informed the design of the final architec-
ture, which effectively addresses the challenges posed by high occlusion levels
and complex scenes.

5.5.1 Preliminary Network Design for Occlusion Handling
Our initial approach (53) to occlusion handling was inspired by the FPN (147)
framework, which excels at detecting small and overlapping objects. This net-
work was built upon the Faster R-CNN (14) architecture, integrating the ResNet-
50 (148) backbone for 2D feature extraction and a custom lightweight CNN for
processing raw point clouds in 3D.
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Figure 5.8: The initial network architecture based on an FPN. RGB images are
processed by a 2D CNN (ResNet-50), while point clouds are processed using a
1D CNN. Features are fused through concatenation and passed to the prediction
network for object detection (53).

The architecture, illustrated in Figure 5.8, consists of two parallel feature ex-
traction branches: a 2D feature extractor for processing RGB images and a depth
feature extractor for analyzing point cloud data. These branches operate as fol-
lows:

• 2D Feature Extractor: The 2D branch employs a ResNet-50 backbone
to extract high-resolution feature maps from the input RGB images. These
features capture detailed texture and appearance-based information, which
is essential for recognizing object boundaries and small-scale details.

• Depth Feature Extractor: For the point cloud data, a 1D CNN is used
to directly process the raw depth points Pi = (xi, yi, zi). This approach
avoids voxelization, ensuring that the spatial relationships between points
are preserved. The 1D CNN applies convolutional filters along the depth
dimension to extract meaningful spatial features, focusing on relative dis-
tances and structural information within the scene.

The outputs from these two feature extractors are fused using the concate-
nation function (torch.cat) from PyTorch, enabling a unified representation
that combines both visual and depth-based cues.
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Concatenation is selected as the initial fusion method due to its straightfor-
ward implementation and ability to preserve features from both modalities. While
our primary focus was not on optimizing the fusion mechanism in this study, later
works have explored and incorporated more advanced fusion techniques, poten-
tially enhancing the integration of visual and depth-based cues.

The fused feature maps are then routed to a prediction network, which gen-
erates object detection predictions. This network refines the fused features to
localize objects and predict their class labels, even in scenarios with overlapping
or small objects.

While this initial approach demonstrated promising results, achieving an accu-
racy of 64.5% for cars under moderate occlusion conditions, it exhibited several
limitations:

• The 1D CNN-based depth feature extractor, though effective, lacked the
capacity to fully exploit the spatial richness of point cloud data.

• The reliance on a simple concatenation fusion method limited the network’s
ability to comprehensively integrate multi-scale features.

• Transfer learning with ResNet-50 was constrained, as the network was pre-
trained on 2D image datasets and required further adaptation for fused 2D-
3D data.

Despite these limitations, the results validated the potential of fusing 2D im-
age data and 3D voxelized point cloud data for robust object detection in occluded
scenarios. These findings served as a stepping stone, inspiring the progressive
evolution of our approach. The lessons learned here directly influenced the de-
velopment of the intermediate architecture, FuDensityNet1.0, and ultimately cul-
minated in the creation of the final, enhanced version, FuDensityNet2.0, both of
which are detailed in the following sections (5.5.2 and 5.5.3).

5.5.2 Progressive Network Enhancements Using Voxelization
Building on the initial network proposal, this intermediate version (54) introduced
significant advancements in the handling of occlusions, laying the groundwork
for the development of FuDensityNet1.0. The architecture we called FusionNet,
integrated voxelized 3D point cloud data with 2D image features, introducing
fusion techniques and refined backbone networks to address the complexities of
occlusion scenarios.
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Figure 5.9: FusionNet: Integrated Network Architecture for Enhanced Occlusion
Handling (54).

Backbone Networks

For the 2D image backbone, we utilized a fine-tuned ResNet-50 (148) to extract
robust features suitable for occlusion-prone environments. The 3D backbone was
based on VoxNet (149), which processed voxelized point clouds, transforming
them into meaningful spatial features. While VoxNet demonstrated effectiveness
in capturing 3D spatial relationships, the voxelization process itself posed signifi-
cant challenges. The increased size of voxelized data required substantial memory
resources, limiting the dataset size used during training and testing. This reduc-
tion in data diversity negatively affected the network’s generalizability and overall
accuracy.

Multimodal Fusion

The fusion of 2D and 3D features was a pivotal element in this network. The Low-
Rank Tensor Fusion (LRTF) and Multi-Layer Perceptron (MLP) were employed
to align and merge the heterogeneous data modalities. These techniques enabled
the combination of 2D textural information and 3D spatial cues, forming a unified
feature representation. While introduced in this version, detailed explanations of
LRTF and MLP are deferred to the description of FuDensityNet2.0 in subsection
5.5.3, where these methods are further optimized for superior performance.
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Challenges and Limitations

The voxelization step, while critical for processing point cloud data, resulted in
inflated dataset sizes and high memory demands. These constraints significantly
limited the number of samples available for training, reducing the robustness of
the model in scenarios with high occlusion complexity. Despite these challenges,
the network demonstrated promising results, particularly in scenarios with mod-
erate occlusion, achieving a modest improvement in average precision (AP) com-
pared to the initial proposal. However, the results underscored the necessity for
further optimizations in backbone networks, fusion methods, and preprocessing
pipelines.

Despite the resource demands and suboptimal accuracy of FuDensityNet, the
voxelization-based approach demonstrated significant potential, particularly in its
ability to capture and utilize spatial relationships in occluded environments. While
the limitations, such as increased data size and memory requirements, impacted
overall performance, the foundational techniques, including voxelization and mul-
timodal fusion, showed promise for further refinement. These insights were in-
strumental in shaping FuDensityNet2.0 (subsection 5.5.3), which leverages ad-
vanced preprocessing, a more efficient 3D backbone, and optimized detection
strategies to address these challenges and build upon the strengths of the earlier
design. The next subsection details the evolution to this final architecture.

5.5.3 Enhanced Architecture for Occlusion Handling
The proposed network architecture, FuDensityNet2.0, is specifically designed to
address the significant challenges posed by occlusions in object detection tasks.
By integrating both 2D image data and 3D point cloud data, the system provides
a robust solution for detecting objects in complex scenarios where they may be
partially or fully occluded. This enhanced architecture builds on the strengths
and lessons learned from FuDensityNet1.0, overcoming its limitations through
advanced preprocessing techniques, optimized backbone networks, and refined
detection strategies. An overview of the architecture is presented in Figure 5.10.

Backbone Networks

The network leverages two backbones to process distinct data modalities: CSP-
Darknet53 for 2D image data and VoxNet for 3D point cloud data.

• 2D Feature Extractor: The 2D data is processed using the CSPDarknet53
backbone of the YOLOv8 framework, as shown in Figure 5.10. CSPDark-
net53 is renowned for its efficiency and accuracy in object detection tasks
and is particularly suitable for addressing occlusions due to its ability to
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Figure 5.10: Overview of the FusionNet-YOLOv8 Architecture: The architecture
integrates 2D and 3D feature extraction backbones, leveraging multimodal fusion
(LRTF, MLP) for occlusion-aware object detection in complex scenes (55).

capture fine-grained visual details and texture information. Based on ex-
perimental evaluations, this backbone was selected for its superior perfor-
mance compared to alternatives, replacing the ResNet-50 used in FuDen-
sityNet1.0. This update provides better detection accuracy and faster pro-
cessing in occlusion-heavy environments.

• 3D Feature Extractor: For the 3D data, the VoxNet backbone is employed,
which is well-suited for handling voxelized point cloud data. VoxNet ex-
tracts spatial features that are critical for understanding the geometric re-
lationships within a scene. This is particularly useful in occluded environ-
ments, as the depth information helps in discerning overlapping or hidden
objects. The choice of VoxNet was driven by experimental results demon-
strating its effectiveness in handling voxelized point cloud data. Building
upon the voxelization challenges identified in FuDensityNet1.0, the prepro-
cessing improvements detailed earlier in this chapter (Section 5.3.2) ensure
better data representation and reduced computational overhead in this en-
hanced version.

Feature Alignment Using MLP

Integrating feature maps from 2D and 3D data introduces the challenge of en-
suring compatibility between the modalities. The feature maps generated by the
VoxNet backbone (3D data) often differ in dimensionality from those produced
by CSPDarknet53 (2D data). To address this, a Multi-Layer Perceptron (MLP) is
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introduced as an intermediary step, as depicted in Figure 5.10.
The MLP serves as a linear transformation that aligns the spatial dimensions

and channel depths of the 2D and 3D feature maps. Specifically, the 3D fea-
tures extracted by VoxNet are passed through the MLP, which transforms them to
match the dimensions of the corresponding 2D features. This alignment ensures a
seamless fusion process in subsequent stages. While the MLP was first introduced
in the intermediate version of FuDensityNet, its design has been refined here to
achieve better compatibility and lower computational cost.

Multimodal Fusion Method

After aligning the 2D and 3D features, the fusion is performed using the LRTF
method. Originally developed for natural language processing, LRTF is highly
efficient in integrating features from multiple modalities, including 2D-3D visual
content.

LRTF approximates the interaction between 2D and 3D feature maps through
a low-rank tensor representation. This involves projecting the high-dimensional
features from both modalities into lower-dimensional spaces, which are then com-
bined into a single fused feature map. This representation captures the most crit-
ical spatial and visual information while reducing computational complexity. As
shown in Figure 5.11, the fusion process is applied at multiple layers (P3, P4,
and P5) within the YOLOv8 framework, ensuring that both 2D and 3D features
contribute effectively to the final detection.

Detection Head

The detection head of our network is based on the YOLOv8 architecture and is
specifically designed to handle occlusions and multi-scale object detection.

• Class Prediction: The class prediction head assigns class labels to each
detected object based on the fused feature maps. The combined information
from 2D and 3D data enables precise classification, even in challenging
scenarios with significant occlusions.

• Bounding Box Regression: The bounding box regression head predicts
object locations using both spatial and visual cues. The depth information
from 3D data enhances the accuracy of these predictions, particularly for
partially occluded objects.

• Feature Pyramids for Multi-Scale Detection: The detection head incorpo-
rates feature pyramids to analyze objects at different scales. By leveraging
information from multiple layers (P3, P4, and P5), the head can detect both
small, distant objects and larger, closer ones within the same scene.
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Figure 5.11: Low-Rank Tensor Fusion LRTF Process for Integrating 2D and 3D
Feature Maps. The process reduces computational complexity while preserving
the critical elements of 2D and 3D data.

While the overall structure aligns with YOLOv8’s detection head, the integra-
tion of 2D-3D fused features at multiple scales ensures enhanced robustness and
accuracy, addressing the limitations observed in earlier network versions.

In conclusion, FuDensityNet2.0 represents a significant leap forward in occlusion-
aware object detection. By leveraging advanced multimodal fusion, refined pre-
processing, and state-of-the-art backbone and detection head architectures, this
network addresses the challenges posed by occlusions in diverse and complex
environments. The following section presents the experimental setup and com-
prehensive evaluation that validate the effectiveness and robustness of FuDensi-
tyNet2.0, showcasing its performance against state-of-the-art models and under
varying occlusion scenarios.

5.6 Main Results and Experimental Validation
In this section, we present the main results of our study, focusing on the evalua-
tion of FuDensityNet2.0. First, the experimental setup is introduced, outlining the
datasets, evaluation criteria, and implementation details. This provides a compre-
hensive context for understanding the conditions under which FuDensityNet2.0
was assessed. Next, the performance of our proposed approach is analyzed under
various scenarios, emphasizing its ability to handle occlusions. Finally, a compar-
ative analysis with state-of-the-art methods demonstrates the strengths and lim-
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itations of FuDensityNet2.0, offering insights into its contribution to occlusion-
aware object detection.

5.6.1 Experimental Setup
The experimental setup encompasses the datasets, preprocessing techniques, and
implementation details utilized for training and testing FuDensityNet2.0. These
aspects ensure a thorough evaluation of the model’s performance in diverse and
challenging environments.

Datasets

The evaluation of FuDensityNet2.0 involved several datasets tailored to assess
specific components of the architecture. For the evaluation of 2D backbones, the
KITTI2D dataset was selected due to its diverse driving scenarios and high-quality
imagery. To evaluate the performance of 3D backbones, the OccludedPascal3D
dataset was employed, as it provides a challenging environment specifically de-
signed for occluded object detection. The multimodal fusion capabilities of the
model were tested using the KITTI dataset, which includes both 2D and 3D data.
However, to address the underrepresentation of pedestrians in the KITTI dataset,
a mixed dataset was created by combining KITTI with NuScenes, incorporating
an additional 3,000 samples from NuScenes with enhanced pedestrian visibility.

Data preprocessing steps, as detailed in Section 5.3, played a critical role in en-
suring the quality and alignment of both 2D and 3D data. For the 2D data, prepro-
cessing was applied to the testing set and included techniques such as brightness
and contrast adjustment, noise reduction, and image enhancement with CLAHE
to address low-light conditions and uneven exposure. The 3D data underwent
preprocessing for both training and testing sets, involving calibration to align Li-
DAR point clouds with camera coordinates, georeferencing, and clipping to the
frontal perspective. These steps were essential for reducing data size, improving
processing speed, and ensuring the relevance of the data to object detection tasks.

Implementation Details

The experiments were conducted on a high-performance workstation equipped
with an Intel Core i7-14700KF processor featuring 20 cores, 32 GB of memory,
and an NVIDIA GeForce RTX 4080 GPU with 16 GB of VRAM. The software
stack included Ubuntu 22.04, Python 3.10, PyTorch 2.0.0, and OpenCV 4.7.0.
Training was performed with a batch size of 16 and an initial learning rate of
10−3, using the Adam optimizer. All models were trained for 50 epochs, with
early stopping criteria based on validation performance.
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The experimental framework was designed to evaluate specific aspects of Fu-
DensityNet2.0. First, different 2D backbones were assessed for their performance
in occlusion-heavy scenarios, measured using metrics such as precision, recall,
and IoU. Next, 3D backbones were evaluated for their ability to handle voxelized
point clouds and detect occluded objects. Various multimodal fusion methods
were then compared to determine the most effective approach for integrating 2D
and 3D features. An ablation study was conducted to analyze the contribution of
each network component. Finally, the overall performance of FuDensityNet2.0
was benchmarked against state-of-the-art occlusion-handling methods, using the
mixed KITTI-NuScenes dataset, with metrics such as precision, recall, and infer-
ence time serving as key evaluation criteria.

This experimental setup provided a robust framework for evaluating FuDensi-
tyNet2.0 across diverse scenarios, enabling a comprehensive analysis of its capa-
bilities and limitations.

5.6.2 Results and Analysis
This section presents the analysis of experimental results to assess the perfor-
mance of FuDensityNet2.0. The evaluation includes comparative studies of dif-
ferent 2D and 3D backbone networks, analyses of multimodal fusion methods,
and a detailed investigation into the model’s occlusion-aware capabilities. These
experiments demonstrate how the complementary strengths of 2D and 3D data
fusion enhance detection performance in challenging occlusion scenarios.

Comparison of 2D Backbone Networks

In this subsection, we compare several 2D backbone networks to evaluate their
object detection accuracy and efficiency under varying levels of occlusion. The
experiments were conducted on the KITTI2D dataset, which contains 7,481 train-
ing images and an equivalent test set. The evaluation metrics include AP for three
object classes (car, pedestrian, and cyclist), and inference time. Table 5.1 summa-
rizes the results.

The results highlight the superior performance of YOLOv8, which achieved
an AP of 93.7% for cars, 91.3% for pedestrians, and 87.2% for cyclists, along
with an inference time of just 25 ms. These metrics underscore YOLOv8’s ability
to detect smaller and more challenging objects while maintaining high efficiency,
making it an ideal choice for real-time applications. Although YOLOv10 slightly
outperformed YOLOv8 in car detection with an AP of 94.5%, it exhibited lower
performance for pedestrians (90.9%) and cyclists (86.5%) and required 29 ms for
inference, which is less suitable for real-time use.
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Model AP(%) (KITTI 2D) Inference Time (ms)
Car Pedestrian Cyclist

F-RCNN (150) 71.2 67.4 66.7 45.0
ResNet50-F-RCNN (148) 76.8 69.4 67.8 48.0
MobileNetv2-F-RCNN (151) 57.2 53.8 48.5 35.0
vgg16-F-RCNN (152) 59.2 58.4 47.6 52.0
SSD (153) 66.7 64.4 58.1 40.0
RetinaNet (154) 65.6 63.3 58.4 55.0
YOLOv5 (155) 89.9 87.7 83.8 35.0
YOLOv6 (156) 92.2 88.1 85.7 30.0
YOLOv7 (157) 90.2 86.5 84.1 31.0
YOLOv8 (158) 93.7 91.3 87.2 25.0
YOLOv10 (150) 94.5 90.9 86.5 29.0

Table 5.1: Object Detection AP Results and Inference Time for KITTI 2D Dataset

Additionally, YOLOv8 offers greater customization opportunities compared
to YOLOv10, enabling architectural modifications to suit specific application re-
quirements. For these reasons, YOLOv8 was selected as the backbone for our
FusionNet model. YOLOv10, however, serves as a benchmark for state-of-the-art
2D object detection in scenarios with minimal occlusion. This comparative anal-
ysis validates YOLOv8 as a robust and efficient foundation for the multimodal
fusion approach employed in FuDensityNet2.0.

The subsequent subsection extends this comparative analysis to 3D backbone
networks, evaluating their capacity to handle voxelized point cloud data and detect
occluded objects effectively.

Comparison of 3D Backbone Networks

This subsection evaluates the performance of various 3D backbone networks for
object detection in occluded environments. The experiments were conducted on
the OccludedPascal3D dataset, which contains 2,073 point clouds specifically de-
signed to test the robustness of 3D models under occlusion. The evaluation met-
rics are based on the AP for nine object classes, as summarized in Table 5.2.

As seen in Table 5.2, VoxNet significantly outperforms all other models across
the evaluated classes, achieving an AP of 84.0% for aeroplane, 82.4% for bicycle,
and 83.1% for car detection, among others. This performance underscores its abil-
ity to handle occluded scenarios effectively, surpassing PointNet++ and SECFPN,
which achieved AP scores of 63.3% and 65.4% for car detection, respectively.

The adoption of VoxNet as the backbone for 3D data processing in FuDensi-
tyNet2.0 stems from its proven robustness in handling voxelized point cloud data.
Its architecture is particularly effective in capturing spatial features and delivering
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SECFPN (159) 67.6 66.0 66.5 65.8 67.0 65.4 67.4 65.8 64.2
PointNet++ (30) 66.3 64.7 65.2 64.3 65.6 63.3 66.0 64.0 63.2
SSN (160) 64.9 63.3 63.8 63.0 64.2 64.6 65.0 63.0 62.0
ResNeXt-152-3D (148) 61.2 60.0 60.7 60.2 61.0 64.2 61.5 60.0 59.5
VoxNet (149) 84.0 82.4 83.6 81.9 83.4 83.1 83.8 81.8 81.0

Table 5.2: Object Detection AP Results on OccludedPascal3D Dataset for Differ-
ent 3D Models

reliable performance in occlusion-heavy environments, making it a critical com-
ponent for accurate object detection under challenging conditions.

For effective multimodal integration, the 3D features extracted by VoxNet are
aligned with the 2D feature maps using an MLP layer. This alignment ensures
compatibility between modalities, facilitating seamless fusion and enhancing ob-
ject detection capabilities in complex scenes.

The following subsection presents a comparative analysis of multimodal fu-
sion techniques, emphasizing their role in optimizing the performance of FuDen-
sityNet2.0.

Multimodal Fusion Analysis

This subsection presents the evaluation of various multimodal fusion techniques,
emphasizing their role in enhancing occlusion-aware object detection. The ex-
periments utilized the KITTI3D dataset to compare the effectiveness of different
fusion methods in integrating 2D and 3D data. Table 5.3 summarizes the results
in terms of AP for three object classes: car, pedestrian, and cyclist.

Fusion Method AP(%) (KITTI)

Car Pedestrian Cyclist

Concatenation (161) 78.5 76.3 66.6
Arithmetic Fusion (Addition) (162) 75.5 73.4 64.4
Arithmetic Fusion (multconcat) (163) 80.3 76.8 66.4
Sub-space Concat (161) 79.3 76.2 65.1
Low-Rank Tensor Fusion (LRTF) (164) 88.0 87.4 76.4

Table 5.3: Comparison of Fusion Methods Using YOLOv8
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Among the tested methods, LRTF consistently outperformed other fusion tech-
niques, achieving an AP of 88.0% for cars, 87.4% for pedestrians, and 76.4% for
cyclists. This performance underscores its effectiveness in integrating 2D and 3D
data, even in scenarios with significant occlusion.

Simpler fusion methods, such as concatenation and arithmetic-based approaches,
demonstrated reasonable performance under less challenging conditions. How-
ever, their inability to preserve critical spatial and visual information rendered
them less effective in highly occluded environments. In contrast, LRTF main-
tained robust detection accuracy while efficiently utilizing computational resources,
making it the most suitable fusion method for FuDensityNet2.0.

The findings of this analysis validate the superiority of LRTF in managing
multimodal data fusion under occlusion, establishing its pivotal role in the ar-
chitecture of FuDensityNet2.0. The subsequent subsection explores how these
advancements translate to occlusion-aware performance in real-world scenarios.

Occlusion-Aware Study

This subsection evaluates the impact of occlusion-aware components within Fu-
DensityNet2.0 through an ablation study and compares its performance to state-
of-the-art methods, highlighting its robustness in handling complex occlusions.

Ablation Study

The evaluation of different modules within the FuDensityNet2.0 model fo-
cuses on their contributions to handling occlusions effectively. Special emphasis
is placed on occlusion-aware techniques, tested on the KITTI+NuScenes dataset.
Metrics such as Precision (P), Recall (R), F1-score, and inference time were used
to measure the impact of each module. The results of this ablation study are sum-
marized in Table 5.4.

Model Variant

OR
Assessment

(Density
Analysis)

FusionNet-
YOLOv8

Multimodal
Fusion

Object
Detection

Model
P R F1

Inf.
Time
(ms)

FuDensityNet2.0
(Full Model) ✓ ✓ LRTF FusionNet-

YOLOv8 0.86 0.83 0.84 60

w/o OR Assessment ✗ ✓ LRTF FusionNet-
YOLOv8 0.86 0.83 0.84 55

w/o FusionNet ✓ ✗ ✗ YOLOv10 0.83 0.80 0.81 40
w/o Multimodal

Fusion ✓ ✓ Concatenation FusionNet-
YOLOv8 0.84 0.80 0.82 50

YOLOv8 Only ✗ ✓ ✗ YOLOv8 0.85 0.81 0.83 35

Table 5.4: Ablation Study on FuDensityNet2.0 Performance

The results highlight the importance of each module:
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Occlusion Rate (OR) Assessment. The OR Assessment module plays a cru-
cial role in evaluating scenarios with occlusions. Removing it ("w/o OR Assess-
ment") reduces the inference time from 60 ms to 55 ms but has no effect on P,
R, and F1-score, indicating its computational efficiency in managing occlusion
without compromising detection accuracy.

FusionNet-YOLOv8. The integration of FusionNet is vital for effective mul-
timodal data fusion. Its absence ("w/o FusionNet") results in a significant drop in
performance, with P, R, and F1-score declining to 0.83, 0.80, and 0.81, respec-
tively. Although the inference time decreases to 40 ms, the trade-off in accuracy
makes FusionNet indispensable for occlusion-aware detection.

Multimodal Fusion (LRTF). The LRTF method ensures optimal integration
of 2D and 3D data. Replacing it with simpler techniques ("w/o Multimodal Fu-
sion") decreases precision, recall, and F1-score to 0.84, 0.80, and 0.82, respec-
tively. Despite a reduction in inference time to 50 ms, the accuracy loss under-
scores the critical role of LRTF in maintaining robust detection under occlusions.

Overall, the full FuDensityNet2.0 model demonstrates superior performance
across all metrics, validating the importance of each module in the network archi-
tecture.

Comparative Analysis of Global Network

This analysis focuses on comparing the performance of FuDensityNet2.0 with
various state-of-the-art models designed for handling occlusions. As shown in
Table 5.5, FuDensityNet2.0 consistently delivers superior results across most ob-
ject categories, particularly in "Hard" scenarios. This notable performance un-
derscores the model’s robustness in dealing with occluded environments. For ex-
ample, FuDensityNet2.0 achieves an AP of 76.6% for car detection under "Hard"
conditions, outperforming Pyramid-RCNN by over 11%.

While FuDensityNet2.0 excels in occlusion-heavy scenarios, it does not al-
ways rank first in "Easy" and "Moderate" conditions. For example, YOLOv10
achieves slightly better results for "Easy" car detection, with an AP of 91.0% com-
pared to 89.9% for FuDensityNet2.0. These results suggest that FuDensityNet2.0
is particularly well-suited for challenging, occluded environments but may not ex-
tend its superiority to less complex scenarios where other models like YOLOv10
perform better.

The Precision-Recall (PR) curves shown in Figure 5.12 further illustrate Fu-
DensityNet2.0’s capability to maintain high precision as recall increases, particu-
larly under "Hard" conditions. However, the curves also highlight areas where
models such as YOLOv10 slightly outperform FuDensityNet2.0 under "Easy"
scenarios, demonstrating their effectiveness in less complex tasks.

Additional qualitative results, shown in Figure 5.13, demonstrate FuDensi-
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Network Modality Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Pyramid-RCNN (37) L 75.0 69.5 65.5 73.5 68.3 64.0 72.3 67.2 62.8
YOLO3D (99) L 72.0 68.0 55.0 71.0 67.0 56.0 69.8 66.5 51.2
Stereo-RCNN (36) S 73.0 68.0 60.0 72.0 67.0 59.0 71.0 66.0 58.0
YOLOv10 (150) R 91.0 79.6 67.0 89.3 80.1 66.2 86.3 77.3 65.1
MonoFlex (39) R 74.5 69.5 59.0 73.5 68.5 58.0 72.0 67.5 57.0
M3D-RPN (165) R 80.5 75.5 63.5 79.5 74.5 62.5 78.0 73.0 61.5
Occlusion-Net (166) R 76.0 70.5 62.0 75.0 69.5 61.0 74.0 68.5 60.0
CompNet (167) R 81.0 76.5 69.0 80.0 75.0 68.0 79.0 74.0 67.0
MV3D (111) R+L 78.0 76.1 74.3 77.0 75.1 73.0 76.0 72.0 71.2
MMF (168) R+L 76.5 72.5 68.0 75.5 71.5 67.0 74.5 70.5 66.0
CLOCs (121) R+L 77.5 73.5 68.5 76.5 72.5 67.5 75.5 71.5 66.5
ContFuse (169) R+L 75.0 71.0 67.0 74.0 70.0 66.0 73.0 69.0 65.0
FuDensityNet2.0 (ours) R+L 89.9 80.9 76.6 88.2 79.8 74.1 86.9 78.5 72.8

Table 5.5: Performance comparison on the KITTI test set with AP calculated at
multiple recall positions for Car, Pedestrian, and Cyclist categories. R+L denotes
methods combining RGB data and point clouds, R denotes RGB-only approaches,
L denotes LiDAR-only approaches, and S denotes Stereo methods.

tyNet2.0’s ability to perform robust object detection even in highly occluded en-
vironments. These visualizations align with the quantitative findings, showcasing
the network’s capability to accurately detect objects, including those partially ob-
scured.

Figure 5.14 showcases additional qualitative results, providing a direct com-
parison between FuDensityNet2.0 and other state-of-the-art models, including
MV3D, CompNet, Pyramid-RCNN, and YOLOv10, under challenging occlusion
conditions. The detection boxes reveal that FuDensityNet2.0 consistently identi-
fies partially obscured objects more accurately than its counterparts, especially in
"Hard" scenarios. This aligns with the quantitative improvements demonstrated in
Table 5.5, further solidifying FuDensityNet2.0’s robustness in tackling complex
occlusions.

Furthermore, a comparison of FusionNet-YOLOv8 variants, detailed in Ta-
ble 5.6, reveals that models with larger parameter sizes generally perform better,
especially under "Hard" conditions. The FusionNet-YOLOv8x variant achieves
the best performance, with an AP of 0.89 for "Easy" and 0.77 for "Hard" scenar-
ios. Interestingly, the FusionNet-YOLOv8m variant performs comparably well in
some cases, suggesting a potential balance between model size and task complex-
ity.
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Figure 5.12: Precision-Recall curves showing the performance of various occlu-
sion handling models under Easy (a), Moderate (b), and Hard (c) conditions. Fu-
DensityNet2.0’s performance is highlighted across all scenarios.

Model Easy Medium Hard

FusionNet-YOLOv8n 81.3 78.7 74.3
FusionNet-YOLOv8s 87.2 83.1 74.9
FusionNet-YOLOv8m 88.4 84.3 76.2
FusionNet-YOLOv8l 87.4 84.7 73.1
FusionNet-YOLOv8x 89.2 86.8 77.4

Table 5.6: Performance comparison of FusionNet-YOLOv8 variants on different
difficulty levels.

These results show the effectiveness of FuDensityNet2.0 in handling occlu-
sions, particularly in complex environments, while also highlighting areas for po-
tential optimization in less challenging scenarios.
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Figure 5.13: Qualitative results of FuDensityNet2.0 in urban environments, show-
casing object detection under varying occlusion conditions with color-coded de-
tection boxes.

Evaluation on the Infrabel Dataset

To further evaluate FuDensityNet2.0, additional tests were conducted using
the Infrabel (170) dataset, which focuses on complex railway environments with
varying occlusion levels. This dataset includes real-world scenarios involving
construction equipment, workers, and railway infrastructure, presenting unique
challenges for object detection in dynamic outdoor settings. The use of Infrabel
data enabled an assessment of FuDensityNet2.0’s robustness in detecting partially
occluded objects and adapting to diverse lighting conditions.
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Figure 5.14: Comparison of detection results between FuDensityNet2.0 and other
models (MV3D, CompNet, Pyramid-RCNN, YOLOv10) under occlusion condi-
tions. FuDensityNet2.0 shows superior performance, especially for occluded ob-
jects.

Figure 5.15: Simulation representing real-world scenarios with construction
equipment and railway infrastructure. This figure serves as a representation of
the experimental setup, as the actual images are confidential.

Figure 5.15 showcases example simulations representing the Infrabel dataset.
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These images illustrate the intricate details and occlusion challenges inherent in
the dataset, such as overlapping objects (e.g., machinery and personnel) and vari-
able background textures. FuDensityNet2.0 demonstrated reliable detection of
both small and large objects under these conditions, highlighting its adaptability
to infrastructure-based scenarios. Preliminary results indicate an improvement of
4-6% in AP for occluded object detection compared to baseline methods, particu-
larly in identifying construction equipment and workers under occlusion.

Discussion

The analysis presented in this section underscores the significant advancements
achieved with FuDensityNet2.0 in handling occlusions, showcasing its superior
performance compared to state-of-the-art models across challenging scenarios.
However, despite these promising results, further improvements can be made to
enhance accessibility and reduce reliance on specialized 3D sensors such as Li-
DAR. The next section explores a novel perspective in this direction, focusing on
leveraging 2D image data for depth estimation. This ongoing work aims to de-
velop a cost-effective and scalable approach to generate 3D point clouds from
RGB images, enabling broader applicability and further improving occlusion-
aware object detection.

5.7 Enhanced 2D-Driven Approach
Estimating depth from 2D RGB images is presented in this thesis as a forward-
looking perspective, aiming to reduce reliance on specialized 3D sensors. This
approach introduces cost-effective and accessible solutions, particularly for envi-
ronments where 3D sensors like LiDAR are unavailable or prohibitively expen-
sive. By leveraging advanced deep neural network architectures, point clouds are
generated from 2D images, effectively capturing depth cues crucial for identifying
occluded spaces and expanding the applicability of the proposed models.

5.7.1 Key Components

Depth Estimation

To estimate depth maps from 2D images, we utilize the MiDaS (Mixed Depth
Scale) model developed by Intel (171). MiDaS is a deep neural network architec-
ture that combines advanced techniques to predict depth maps with high accuracy.
The model is specifically designed to extract complex visual features from RGB
images and infer depth relationships using contextual and geometric cues. MiDaS
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employs supervised learning on diverse datasets and incorporates regularization
losses to ensure consistency and coherence in depth predictions.

The resulting depth maps provide essential depth cues for reconstructing 3D
scenes, enabling the generation of detailed and accurate point clouds. This is
particularly advantageous in scenarios where the use of specialized 3D sensors is
limited by cost or accessibility constraints.

Point Cloud Generation

Once the depth map is obtained, we proceed to generate the corresponding point
clouds. This process relies on the camera’s intrinsic parameters and pixel coordi-
nate adjustments to convert depth information into a 3D representation. The steps
involved are as follows:

• Camera Parameters: Intrinsic parameters, including the focal length (f )
and the principal point coordinates (cx, cy), are used to project pixel coordi-
nates into the 3D space.

• Pixel Coordinates: The 2D pixel coordinates of the image are denoted as
(u, v), where u is the horizontal coordinate and v is the vertical coordinate.

• Depth Map: The depth map D(u, v) provides the depth value for each pixel
in the image.

• 3D Coordinate Calculation: The 3D coordinates (X, Y, Z) of points in
space are calculated using the depth map and pixel coordinates as follows:

Z = D(u, v) (5.12)

X =
(u− cx) · Z

f
(5.13)

Y =
(v − cy) · Z

f
(5.14)

These equations convert 2D pixel coordinates and depth values into 3D spatial
points, resulting in a point cloud representation of the observed scene. This trans-
formation is crucial for bridging the gap between 2D images and 3D geometry.

5.7.2 Visualization
Visualizing the process of point cloud generation allows us to verify the accuracy
and coherence of the 3D reconstruction. Figure 5.16 illustrates an example of
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Figure 5.16: Visualization of the point cloud generation process: (a) Original
RGB image showcasing the captured scene, (b) Estimated depth map derived from
the RGB image, (c) Generated point cloud constructed using depth information.

the visualization pipeline, including the original RGB image, the estimated depth
map, and the corresponding generated point cloud.

This visualization demonstrates how depth information derived from 2D im-
ages can be effectively transformed into detailed 3D point clouds, providing a
comprehensive representation of the scene for advanced computer vision tasks.

5.7.3 Optimization and Future Perspectives
Optimizing the generated point clouds is essential to achieve clear and precise
visualizations of each object, particularly in occluded scenarios. This optimization
process aims to make the point clouds as efficient as LiDAR data while preserving
depth quality. The following steps outline future directions:

• Point Cloud Density Reduction: Reducing the density of point clouds
minimizes artifacts and overlapping regions, improving clarity and accu-
racy in object visualization. This step is crucial for ensuring that each object
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remains distinct and identifiable, even in complex occlusion-heavy environ-
ments.

• Testing on the Model: Once optimized, the point clouds will be tested
using our object detection model. This evaluation will determine the effec-
tiveness of the generated data in terms of detection accuracy and occlusion
handling.

• Model Update: Based on the results, the detection model will be adjusted
to better integrate and exploit the 2D-derived point clouds. This iterative
process ensures continuous improvements in performance and robustness.

In summary, the enhanced approach of leveraging 2D data to generate and op-
timize point clouds demonstrates the feasibility of reducing dependency on spe-
cialized 3D sensors while maintaining robust object detection capabilities. By
addressing challenges such as point cloud optimization and model integration,
this method highlights new possibilities for cost-effective and accessible solutions
to occlusion handling in complex environments. The following section synthe-
sizes the findings of this chapter, discussing the broader implications and future
directions for FuDensityNet2.0 and its related advancements.

5.8 Conclusion
FuDensityNet2.0 represents a significant advancement in occlusion-aware object
detection, addressing the challenges of complex environments through a robust
multimodal framework. By combining 2D and 3D data and introducing innova-
tions such as voxel density-aware strategies and advanced fusion techniques, the
model demonstrates its effectiveness across a variety of occlusion scenarios. Ex-
tensive experimentation on benchmark datasets, including KITTI, NuScenes, and
OccludedPascal3D, has validated the model’s superior performance, particularly
under “Moderate” and “Hard” occlusion conditions, where it consistently outper-
formed state-of-the-art methods.

Beyond its contributions to precision and recall metrics, FuDensityNet2.0 has
shown industrial relevance through tests on the Infrabel database, illustrating its
adaptability for real-world railway monitoring systems. However, challenges re-
main, particularly in optimizing inference time and addressing false positives and
true negatives, which can hinder reliability in applications requiring high precision
and speed. These limitations highlight the need for further refinement to balance
computational efficiency with accuracy.

Despite these challenges, the framework sets a strong foundation for future re-
search. The exploration of 2D-based depth extraction as an alternative to LiDAR
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demonstrates the model’s potential for scalability and cost-efficiency, expanding
its applicability to resource-constrained environments. Future work will focus on
optimizing the model’s architecture, integrating advanced sensors, and exploring
enhanced multimodal fusion techniques to improve its adaptability to new do-
mains such as robotics, drone navigation, and industrial automation.

In conclusion, FuDensityNet2.0 combines theoretical advancements with prac-
tical applicability, bridging the gap between academic research and industrial
needs. Its modular and extensible design ensures that it can evolve to meet the
demands of emerging applications, reaffirming its role as a leading framework in
occlusion-aware object detection.
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Chapter 6

Conclusion and Perspectives
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6.1 Analysis of Results
In this thesis, we proposed FuDensityNet, a novel multimodal approach designed
to tackle the challenges of occlusion in object detection. The extensive exper-
iments conducted on benchmark datasets, including KITTI, NuScenes, and Oc-
cludedPascal3D, validated the efficacy of FuDensityNet and its enhanced version,
FuDensityNet2.0. The integration of voxel density-aware strategies, LRTF, and
multimodal data fusion has significantly improved detection performance under
varying levels of occlusion, achieving a 5–10% improvement in precision and re-
call metrics compared to state-of-the-art methods in challenging scenarios.

The results demonstrated the robustness of FuDensityNet2.0, particularly in
"Hard" occlusion scenarios, where it consistently outperformed state-of-the-art
methods across multiple object classes. The ability to maintain high precision and
recall under challenging conditions reaffirms the effectiveness of the proposed ap-
proach. Moreover, the experiments highlighted the importance of innovative pre-
processing and fusion techniques in bridging the gap between 2D and 3D modal-
ities, contributing to a more holistic object detection framework.

The Infrabel tests provided an industrial context, demonstrating FuDensityNet2.0’s
practical applicability in real-world railway monitoring systems. By detecting oc-
cluded objects effectively, the model showcased its potential for enhancing oper-
ational safety and efficiency in industry-specific scenarios.

6.2 Limitations and Future Improvements
Despite the promising results achieved by FuDensityNet2.0, several limitations
remain, offering clear directions for further improvement:

• Precision in Low-Complexity Scenarios: FuDensityNet2.0 does not con-
sistently outperform state-of-the-art models in "Easy" and "Moderate" cases,
suggesting the need for enhanced calibration in less challenging conditions.

• Computational Complexity and Training Time: The integration of voxel
density-aware strategies and low-rank tensor fusion (LRTF) introduces sig-
nificant computational and memory overhead, resulting in long training
times and limited efficiency for real-time applications.

• Lack of Real-Time Performance: Current inference speed is insufficient
for real-time deployment, particularly in dynamic or safety-critical environ-
ments.
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• Limited Testing on Embedded Systems: The model has not been evalu-
ated on edge or embedded platforms, which raises concerns about its porta-
bility and hardware adaptability.

• Limited Semantic Understanding Under Heavy Occlusion: In near-complete
occlusions or sparse data situations, the model struggles to infer meaningful
representations due to insufficient contextual and semantic cues.

• Weak Generalization to Unseen Environments: The model exhibits lim-
itations when deployed in new, unstructured, or underrepresented environ-
ments, highlighting a need for greater adaptability.

Future improvements can be explored along three major research directions:

1. Optimization and Real-Time Performance

• Develop lightweight voxelization and efficient data preprocessing pipelines
to reduce training and inference time.

• Enable hardware-aware neural architecture search (NAS) (172) or knowl-
edge distillation to meet real-time requirements on limited hardware.

• Introduce adaptive loss functions to dynamically adjust learning based
on occlusion severity and environmental complexity.

• Leverage distributed and scalable training approaches, as demonstrated
in recent work on high-performance deep learning for industrial sys-
tems (173), to accelerate training on large datasets.

2. Model Compression and Portability

• Apply model compression techniques such as pruning, quantization,
and low-rank decomposition to reduce memory usage and inference
latency.

• Benchmark the optimized model on edge and embedded platforms to
ensure cross-device portability.

• Design deployment strategies for resource-constrained settings, in-
cluding mobile and IoT-enabled surveillance systems.

3. Eliminating LiDAR Dependency via 2D-Based Depth Estimation

• Advance 2D-to-3D mapping by generating reliable point clouds from
RGB-derived monocular depth estimations.

• Explore hybrid training pipelines that combine real-world and syn-
thetic data to boost depth prediction under occlusion.
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• Leverage self-supervised and continual learning to improve general-
ization in unseen or sparsely annotated environments.

Additional directions include leveraging transformer-based architectures and
vision-language models (VLMs) (174) to enhance multimodal fusion, contextual
reasoning, and robustness in occluded scenarios. Future work could also explore
user-centric system enhancements, such as developing intuitive interfaces for real-
time object monitoring and detection management in smart surveillance environ-
ments.

Furthermore, explainable AI remains a key area for development. The inte-
gration of interpretable learning strategies,such as those used for medical image
analysis in (175), may contribute to greater trust and transparency in complex
occluded detection settings.

6.3 Application and Research Perspectives
FuDensityNet’s contributions extend beyond the academic realm, offering practi-
cal applications in several domains:

• Autonomous Vehicles: The ability to detect objects under occlusion makes
FuDensityNet highly suitable for improving safety and reliability in self-
driving systems.

• Smart Surveillance: The model’s robustness enables efficient monitor-
ing in crowded environments, addressing security and crowd management
needs.

• Industrial Robotics: FuDensityNet’s fusion capabilities enhance robotic
perception, enabling more accurate navigation and object manipulation.

From a research perspective, the following directions hold promise for extend-
ing the impact of this work:

• Developing fully 2D-driven approaches, such as generating point clouds
from depth maps derived from RGB images, to reduce reliance on expensive
3D sensors like LiDAR.

• Integrating emerging deep learning techniques, such as transformers, for
enhanced feature extraction and occlusion handling.

• Incorporating additional sensor modalities, such as thermal or hyperspectral
imaging, to improve detection under adverse conditions.

• Exploring continual learning strategies to enable the model to adapt dynam-
ically to changing environments and unseen scenarios.
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6.4 General Conclusion
This thesis presented FuDensityNet and its enhanced version, FuDensityNet2.0,
as robust solutions for addressing occlusion challenges in object detection. By
leveraging multimodal data fusion, voxel density-aware strategies, and innovative
preprocessing techniques, FuDensityNet2.0 demonstrated significant advancements
in precision and recall across diverse occlusion levels. Experimental results from
datasets such as KITTI, NuScenes, and OccludedPascal3D highlighted that Fu-
DensityNet2.0 achieved up to 76.6% AP in "Hard" scenarios for car detection,
surpassing state-of-the-art models like Pyramid-RCNN by over 11%. The inte-
gration of both 2D and 3D data modalities underscores the importance of a multi-
modal approach in tackling complex object detection tasks.

FuDensityNet2.0’s neural architecture, combining CSPDarknet53 for 2D fea-
ture extraction and VoxNet for 3D point cloud processing, coupled with Low-
Rank Tensor Fusion for multimodal data integration, proved instrumental in achiev-
ing these results. Notably, the model’s ability to adapt detection strategies based
on occlusion rates further enhanced its robustness. Comparative analysis demon-
strated that FuDensityNet2.0 consistently outperformed existing approaches in
handling severe occlusions, achieving high AP across object classes such as cars,
pedestrians, and cyclists.

The contributions of this work are twofold: first, FuDensityNet2.0 sets a new
benchmark for occlusion-aware object detection, offering a 5–10% improvement
in precision and recall over competing methods in challenging scenarios. Sec-
ond, the framework’s flexibility and scalability open avenues for its application
in real-world settings, such as autonomous vehicles, smart surveillance systems,
industrial robotics, and railway monitoring systems. The Infrabel tests underscore
the model’s adaptability and reliability in industrial contexts, highlighting its role
in improving safety and operational efficiency.

Future work aims to refine the model further by optimizing computational effi-
ciency, improving multimodal fusion techniques, and broadening its applicability
to other domains. Additionally, ongoing research into generating point clouds
from 2D images represents a promising step towards cost-effective and scalable
solutions for occlusion handling. The modular design of FuDensityNet2.0 ensures
its capacity to evolve and integrate emerging architectures and modalities, such as
transformers or new sensor technologies, enhancing its robustness and adaptabil-
ity for diverse applications. Expanding the current work will not only improve
performance but also solidify FuDensityNet2.0’s role as a key advancement in
computer vision.
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Appendix A

Scientific Contributions

This appendix provides an overview of the research, teaching, and academic ac-
tivities carried out during my PhD.

A.1 Publications

A.1.1 Conference Papers
• Ouardirhi, Z., Mahmoudi, S. A., Zbakh, M., El Ghmary, M., Benjelloun,

M., Abdelali, H. A., & Derrouz, H. (2022, October). An Efficient real-time
Moroccan automatic license plate recognition system based on the YOLO
object detector. In International Conference On Big Data and Internet of
Things (pp. 290-302). Cham: Springer International Publishing.

• Ouardirhi, Z., Mahmoudi, S. A., & Zbakh, M. (2023, November). A novel
approach for recognizing occluded objects using Feature Pyramid network
based on occlusion rate analysis. In 2023 IEEE 6th International Confer-
ence on Cloud Computing and Artificial Intelligence: Technologies and Ap-
plications (CloudTech) (pp. 01-07). IEEE.

• Ouardirhi, Z., Mahmoudi, S. A., & Zbakh, M. (2024). Holistic Approach for
Enhanced Object Recognition in Complex Environments. In International
Conference of Cloud Computing Technologies and Applications (pp. 274-
287). Springer, Cham.

• Ouardirhi, Z., Amel, O., Zbakh, M., & Mahmoudi, S. A. (2024). FuDensi-
tyNet: Fusion-Based Density-Enhanced Network for Occlusion Handling.
Proceedings Copyright, 632, 639.
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A.1.2 Journal Articles
• Ouardirhi, Z., Mahmoudi, S. A., & Zbakh, M. (2024). Enhancing Object

Detection in Smart Video Surveillance: A Survey of Occlusion-Handling
Approaches. Electronics, 13(3), 541.

• Ouardirhi, Z., Zbakh, M., & Mahmoudi, S. A. (2025). Bridging 2D and 3D
Object Detection: Advances in Occlusion Handling Through Depth Estima-
tion. CMES Journal.

• Ouardirhi, Z., Zbakh, M., Benjelloun, M., & Mahmoudi, S. A. (2025). Fu-
DensityNet2.0: Occlusion-Aware Object Detection with Density-Enhanced
Strategies. Signal Processing Journal. (Submitted)

A.1.3 Book Chapter
• Ouardirhi, Z., Zbakh, M., & Mahmoudi, S. A. (2024). Holistic Approach for

Enhanced Object Recognition in Complex Environments. In M. Zbakh, M.
Essaaidi, C. Tadonki, A. Touhafi, & D. Panda (Eds.), Artificial Intelligence
and High Performance Computing in the Cloud. Springer.

A.2 Workshops
• Participation in « Workshop TRAIL édition 2021 » in Paris, focused on

supervised learning challenges.

• Participation in « HackAI’22 ».

• Participation in « Developing an African Quantum Education Programme »
, led by Prof. Frank Domoney, Glencroft Ltd, Morocco.

A.3 Training
• Certificate « Hands on AI », UMONS.

• Certificate in Deep Learning, Udacity Nanodegree Program.

• PhD Trainings:

– « Méthodologie de recherche », ENSIAS, UM5R, Morocco.

– « Pédagogie universitaire », ENSIAS, UM5R, Morocco.

– « Scientific Communication », ENSIAS, UM5R, Morocco.
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A.4 Teaching & Supervision
• Co-supervision of TFE: « Few-Shot Learning for Image Classification using

Deep Neural Networks » , FPMS, UMONS.

• Conducting a lab session (TP) on graphical interface design using Access
Forms, for the course « Modélisation des données, Big Data et projet »,
2021-2022, FPMS, UMONS, Belgium.

• Assisted in a lab session (TP) on Big Data management with MongoDB,
2021-2022, FPMS, UMONS, Belgium.

• Supervision of two mini-projects in the course « Modélisation des données,
Big Data et projet », 2022-2023, FPMS, UMONS, Belgium.

• Co-supervision of participants in:

– Workshop « HackAI’23 », Mons, Belgium.

– Workshop « HackAI’24 », Mons, Belgium.

• Supervision of two Master students for a project in the course « Advanced
Machine & Deep Learning » entitled: « Monocular Depth Estimation and
Point Cloud Generation for Autonomous Systems », 2024-2025, FPMS,
UMONS, Belgium.

A.5 Presentations
• Short presentation of my PhD domaine to Master Cloud Computing stu-

dents, ENSIAS, March 2022.

• Participation in « Mardi des Chercheurs » at UMONS with a poster, Septem-
ber 2022.

• Presentation entitled « Artificial Intelligence and Deep Learning for 2D/3D
object detection with the presence of occlusion » at « Journée de Recherche
d’Infortech’23 », UMONS, Belgium.

• Presentation entitled « FuDensityNet: A Fusion-Based Network for Density-
Enhanced Occlusion Handling » at « Journée de Recherche d’Infortech’24
», UMONS, Belgium.
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A.6 Summer Schools
• Participation in « VISUM’22 », Porto, Portugal, July 2022.

A.7 Seminars
• Participation in various « TRAIL » seminars.

• Research training by « Web of Science Group ».

• Participation in « 6ème édition des Rencontres Scientifiques de la CMR »,
Morocco.

A.8 Invited Talks & Webinars
• « AI Online Formation » – Invited speaker at a webinar organized by «

Mines IT Club », ENIM, April 2, 2023.

A.9 Conference Organization
• Member of the organizing committee of « CloudTech’23 », an international

conference on cloud computing and AI, Marrakech, Morocco, November
21-22, 2023.
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