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Abstract: The path-integral re-formulation due to E. Gozzi, M. Regini, M. Reuter, and
W. D. Thacker of Koopman and von Neumann’s original operator formulation of a clas-
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1. Introduction
In the early days of quantum mechanics, before the arrival of the path-integral formal-

ism, Koopman and von Neumann (KvN) [1–3], motivated by improving their understand-
ing of classical ergodicity, reformulated classical mechanics on a symplectic manifold M
as quantum mechanics on T∗M with Hamiltonian linear in momenta and complex wave
function on M given by the square root of the classical density function modulo phase,
whose fate remains an interesting open problem in KvN mechanics. Over half a century
later, an equivalent path-integral formulation was given by E. Gozzi, M. Reuter, and W. D.
Thacker (GRT) [4,5].

On the other hand, the Alexandrov–Kontsevich–Schwarz–Zaboronsky (AKSZ) for-
malism [6] provides a natural framework for the deformation quantization of graded
geometries appearing in the context of symplectic mechanics and gauge field theories. It
was initially applied for the quantization of topological systems, but is also suitable to the
description of dynamical systems with local degrees of freedom, provided these systems are
described in terms of an exterior Cartan-integrable system; see, e.g., [7–9] for discussions.

In this paper, we will show that the AKSZ formalism enables us to reframe in a
very natural way the path-integral formulation of classical mechanics starting from the
operatorial formulation by Koopman and von Neumann (KvN) [1–3], and was further
developed in [4,5]. For that purpose, we will be studying the dynamics of a classical
system whose phase space corresponds to the symplectic manifold (M, ω) and focus on its
cotangent bundle T∗M, which is also symplectic. We will further subject T∗M to a system
of first-class constraints that will provide us with a natural extension of the Koopman–von
Neumann (KvN) reformulation of classical mechanics on M. More precisely, as we shall
see, the link between KvN and AKSZ consists of the fact that the rewriting due to a series of
works by Gozzi, Reuter, and Thacker (GRT) [4,5] (and thereafter by Gozzi and Regini [10])
of the pull-back operation on M along a symplectomorphism generated by a Hamiltonian
vector field during a fixed time t, by means of time slicing of the path integral over particle
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configurations on T∗T[1]M, can be recovered by gauge fixing of a one-dimensional AKSZ
sigma model with the target

T∗(T[1]M ×R[1]
)

. (1)

In [10], the authors worked out all the different transformations of the fields appearing
in the path-integral formulation of classical mechanics, which we will briefly discuss in
Section 2, to show that they form the cotangent bundle T∗T[1]M of the reversed-parity
tangent bundle of the phase space M. In our case, we show that this identification is
quite natural from the viewpoint of a one-dimensional sigma model, opening up the
possibility of generalizing the construction by replacing R in (1) with a general group G.
Most importantly, our observation would facilitate novel ways of looking at the symmetries
and conservation laws of classical mechanics from the viewpoint of the rich geometric and
topological structure of the AKSZ sigma models. The possibility of a connection between
KvN formalism and geometric quantization as envisaged previously in [11,12] can now be
further explained from the vantage point of AKSZ sigma models.

Our plan for this paper is the following: In Section 2, we begin with a brief review of
the Koopman–von Neumann (KvN) formulation [1–3] of classical mechanics, as well its
path-integral reformulation due to Gozzi, Reuter, and Thacker (GRT) in [4,5,10]. Section 3
will then elaborate on the AKSZ action for the worldline of a particle. Finally, in Section 4,
we show the exact connection between the AKSZ sigma model and the GRT model and
conclude with a summary of our results and future outlook in Section 5.

2. KvN and Classical Path-Integral Formulation
Classical mechanics and quantum mechanics are developed on the basis of two com-

pletely different mathematical paradigms. Contrary to the geometric approach of classical
mechanics, the description of quantum mechanics is more algebraic in nature1. A state in
classical mechanics can be viewed as a point on a symplectic manifold, the phase space,
which is by definition endowed with a Lie bracket, the Poisson bracket. Any individual
observable can then be described as some real-valued function on this symplectic manifold,
associated with a Hamiltonian vector field, generating individual flows on this manifold.
For example, the flow corresponding to the Hamiltonian H would describe the time evo-
lution of the system. On the opposite side, the algebraic language of quantum mechanics
revolves around the construction of a Hilbert space. Each physical state is described by a
ray in the Hilbert space, and observables are the self-adjoint linear operators defined on the
Hilbert space. The Lie algebra structure appears by taking commutators between different
observables; i.e., it comes through via the associative product defined by the composition
of operators acting on the Hilbert space.

During the era of 1930s, several attempts were made to reconcile these two languages.
Perhaps with this early motivation, Koopman and von Neumann reformulated classical
mechanics to associate it with a Hilbert space of complex and square-integrable functions
similar to its quantum mechanical counterparts. Analogous to quantum mechanics, one
can also associate complex classical wave functions with a classical mechanical system, of
course, with some caveats on which we will not focus in the current context and instead
refer to [18].

Without losing any generality, let us start with an one-dimensional system with phase
space density ρ(q, p, t), which can be interpreted as the probability density of finding a
particle at point q with momentum p exactly at time t with the measure

∫
dq dp. Liouville’s

theorem states that this density has the same property as an incompressible fluid that the
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phase space volume
∫

ρ(q, p, t) dq dp remains constant and the corresponding continuity
equation becomes

dρ

dt
=

∂ρ

∂t
+ q̇

∂ρ

∂q
+ ṗ

∂ρ

∂p
= 0 . (2)

One can now use Hamilton’s equations

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, (3)

to show that
∂ρ

∂t
= −∂H

∂p
∂ρ

∂q
+

∂H
∂q

∂ρ

∂p
. (4)

One can easily generalize the discussion to a dynamical system with n degrees of freedom
in configuration space, corresponding to a phase space of dimension 2n. Defining the
Liouville operator as

L̂ = −i
∂H
∂pi

∂

∂qi + i
∂H
∂qi

∂

∂pi
, (5)

one can rewrite (4) as

i
∂ρ

∂t
= L̂ ρ . (6)

In the following, we will use the notation z = (za) = (q1, . . . , qn, p1, . . . , pn) for the
dynamical variables in phase space. The basic postulates of Koopman and von Neumann
formalism are the following:

(1) The existence of a complex function ψ(z, t), which obeys the same dynamical equation
as ρ(z, t), i.e.,

i
∂ψ(z, t)

∂t
= L̂ψ(z, t) ; (7)

(2) ψ(z, t) is L2 normalizable; i.e., its norm with respect to the following scalar product
is finite 〈

ψ|φ
〉

t =
∫

d2nz ψ(z, t)∗φ(z, t) . (8)

Equation (7) can then be thought of as the analogue of Schrödinger’s equation in
quantum mechanics. The Hilbert space spanned by the functions ψ(z, t) can then be
considered as the Hilbert space for classical mechanics. The postulate of the scalar product
ensures a proper definition of the Hilbert space and imposes the norm squared of the states
to be 〈

ψ|ψ
〉
=

∫
d2nz ψ(z, t)∗ψ(z, t) . (9)

With this definition of scalar product, one can further show that L̂ is a Hermitian operator2

such that 〈
ψ|L̂ φ

〉
=

〈
L̂ψ|φ

〉
. (10)

The Hermitian character of L̂ ensures that
〈
ψ|ψ

〉
remains conserved during the evolution.

Therefore, one can now consistently interpret

ψ∗(z, t)ψ(z, t) = ρ(z, t) (11)

as the density probability function, and note that the Liouville theorem (6) can be derived
starting from the postulate (7) of KvN mechanics itself. As evident from (6), although
the classical wave function ψ(z, t) is complex, the evolution of its phase is completely
independent from its modulus, unlike the situation in quantum mechanics. We will
keep the implications of this observation and further comparisons of KvN mechanics and
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quantum mechanics for the excellent review in [18], and move on to the path-integral
approach. More details of the following discussion can be found in [10,18].

In [19], the author prescribes a simple way to introduce a path-integral formulation
for classical mechanics. Unlike quantum mechanics, where each path is weighted by a
probability exp( i

h̄ S) with S being the action of the path considered, in classical mechanics,
only the classical path between two fixed end points is allowed to have weight 1, while all
the others are weighted to zero. Nevertheless, Hamilton’s variational principle considers
all these virtual paths as well, only one being realized in the classical world as the one
that extremizes the action. One can think of the classical analogue of the propagator, i.e.,
the probability of finding a classical particle at a point z in phase space at some time t, if it
was initially at the point z0 at the time t0, as follows:

K(z, t|za
0, t0) = δ2n(za − za

cl(t; z0, t0)
)

, (12)

where, by za
cl(t; z0, t0), we denote the classical solution of the Hamiltonian equations

of motion
ża = πab∂bH , (13)

given the initial condition z|t=t0 = za
0 , where π = (πab) is the inverse of the symplectic matrix.

Slicing up the time interval [t, t0] into N + 1 equal intervals δt, and denoting the time
in each interval as ti with zi = z(ti) and tN+1 = t , one can write the delta distribution in
(12) as

δ2n(za − za
cl(t; z0, t0)

)
= (

N

∏
i=1

∫
dzi)δ

2n(zN+1 − zcl(tN+1; zN , tN)
)

. . . δ2n(z1 − zcl(t1; z0, t0)
)

. (14)

Using (13) and having in mind the limit where N ! ∞, so that the interval δt = ti+1 − ti

goes to zero, each of the delta distributions above (j ∈ {0, 1, . . . , N}) can be rewritten as

δ2n(zj+1 − zcl(tj+1; zj, tj)
)
=

2n

∏
a=1

δ
(
ża − πab∂bH

)
|t=tj det[∂tδ

a
b − πac∂c∂b H]|t=tj , (15)

where we have made use of the standard formula δ2n(za − za
∗) = δ2n(ga(z))

∣∣det( ∂ga

δzb )
∣∣,

where ga(z) = δt
( za

i+1−za
i

δt − πac∂cH(zi)
)

. At this level of formality, the absolute value of
the determinant is dropped. Collecting all these definitions together and taking the N ! ∞
limit3, one can rewrite

δ2n(za − za
cl(t; z0, t0)

)
=

∫ z

z0

DZ δ̃(ża − πab∂bH)det(∂tδ
a
b − πac∂c∂bH) , (16)

in a form of path integral in phase space, where the symbol δ̃ indicates a functional
definition for the product of the infinite number of delta function coming from (14) in the
limit N ! ∞ .

One can then exponentiate both factors under the path integral in (16) by introducing 2n
variables λa and a total of 4n anti-commuting variables (c̄a, ca) through the simple relations

δ̃(ża − πab∂bH) =
∫

Dλ exp
[

i
∫ t

t0

dt′ λa(t′)
(
ża − πab∂b H

)]
,

det(∂tδ
a
b − πac∂c∂bH) =

∫
DcDc̄ exp

[∫ t

t0

dt′ c̄a(t′)(∂t′δ
a
b − πac∂c∂b H)cb(t′)

]
.

(17)
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The final result is that the propagator in classical mechanics can be represented as the
path integral

K(z, t|z0, t0) =
∫ z

z0

DZDλDcDc̄ exp
[

i
∫ t

t0

dt′ L
]

, (18)

with the Lagrangian L being

L = λa ża + ic̄a ċa − λaπab∂bH − ic̄aπad(∂d∂bH)cb . (19)

The first two terms provide one with a symplectic structure. The rest give the extended
Hamiltonian H as [10],

H = λaπab∂bH + ic̄aπad(∂d∂bH)cb. (20)

Hence, starting from the original 2n dimensional phase space with coordinates za ,
one arrives at an 8n dimensional extended phase space with coordinates (za, λa, ca, c̄a),
where each of the paths in the path-integral formulation is weighted by a factor of
exp[ iS̃ ] = exp[i

∫
dtL], which, by construction, reproduces all the standard results of

classical mechanics. In the series of works pioneered by E. Gozzi in [19], the authors have
explicitly searched for the geometric meaning of this 8n dimensional space, which at this
point seems like an abstraction over the usual notions of the symplectic formulation of
classical mechanics. In the following sections, we will show how this apparent abstraction
of the extended 8n dimensional phase space can be understood through a one-dimensional
AKSZ sigma model. Together with the equations of motion derived from L

ża = πab∂bH,

ċa = πac∂c∂b H cb,

˙̄cb = −c̄a πac∂c∂bH,

λ̇b = −πac∂c∂b H λa − i c̄a πac∂c∂d∂b H cd,

(21)

and the transformations of each of these new fields under symplectic diffeomorphisms
of za, the authors in [10,18] correctly concluded that the phase space spanned by the 8n
variables (za, λa, ca, c̄a) is T∗T[1]M, where M is the symplectic manifold coordinatized by
the original 2n variables za. We remark that, here and in the rest of the paper, we work
in Darboux coordinates, only allowing for canonical transformations instead of all the
possible diffeomorphisms of M.

3. Worldline Model: AKSZ Approach
In this section, we show that the identification of a phase space T∗T[1]M automatically

follows from the AKSZ treatment of a classical particle.

3.1. Constraints from Lie Algebra Actions

Instead of considering an unconstrained particle evolving though an Hamilton flow,
as we did in the previous section, here, we consider a constrained particle whose phase
space corresponds to a symplectic manifold (M , ω), subject to a system of first-class
constraints TI , which define a representation of a Lie algebra g on the algebra of func-
tions C ∞(M ). In other words, we assume that the constraints TI assemble into an
equivariant moment map T : M −! g∗, meaning that the functions TI are obtained as
TI(x) := ⟨T(x), tI⟩g for x ∈ M and {tI} a basis of g, and where ⟨−,−⟩g denotes the
canonical pairing between g and its linear dual g∗. Such a system can be encoded in the de-
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gree 0 symplectic Q-manifold M × T∗g[1]∼= M × (g[1]⊕ g∗[−1]), with the cohomological
vector field

Q := {{{Θ,−}}} where Θ = cI (TI − 1
2 f I J

K cJ PK) , (22)

and where {cI} are degree +1 coordinates on g[1] and {PI} are their momenta, i.e., degree
−1 coordinates in the fiber directions of T∗g[1], and {{{−,−}}} is the sum of the Poisson
brackets on M and the canonical Poisson bracket on T∗g[1]. The algebra of functions on
this graded manifold is isomorphic to the complex

∧(g⊕ g∗)⊗ C ∞(M ) , (23)

equipped with the differential
Q = δg + δ , (24)

where
δg = cI

(
{TI ,−}+ f I J

K PK
∂

∂PJ
− 1

2 f I J
K cJ ∂

∂cK

)
(25)

is the Chevalley–Eilenberg differential on the module ∧g⊗ C ∞(M ), and

δ = TI
∂

∂PI
(26)

is the Koszul differential. In other words, it is nothing but the Batalin–Fradkin–Vilkovisky
(BFV) [20–22] and Batalin–Vilkovisky (BV) [23,24] extensions of the Becchi–Rouet–Stora–
Tyutin (BRST) [25–27] complex associated with the constrained system described by
(M , {TI}). Note that the AKSZ sigma model having the BFV–BRST phase space of a
constrained system was first introduced and discussed in [28]. For reviews on the BV, BFV,
and BRST approaches to gauge theories, see, e.g., [29–35].

3.2. AKSZ Action

Let us assume that the symplectic form on M is exact, i.e., that we can write

ω = dϑ , (27)

for some one-form ϑ ∈ Ω1(M ). The source manifold Σ of the sigma model we shall
consider is the worldline of the classical particle. One can write the AKSZ action associated
with M × T∗g[1] in terms of “super-maps”

T[1]Σ −! M × T∗g[1] , (28)

whose components give rise to the “super-fields”4

xµ(τ) := xµ(τ) + θ πµν(x) x+ν (τ) eI(τ) := cI(τ) + θ eI(τ) , cI(τ) := e+I (τ) + θ c+I (τ) (29)

where τ and θ are respectively the even and the odd coordinates on T[1]Σ and the bivector
πµν(x) is the inverse of the symplectic form ωµν of M . The classical fields, of ghost number
0, consists of a map x : Σ ! M from the worldline Σ to the target space M and a Lagrange
multiplier e = eI tI , which takes values in g. It can be thought of as an einbein, or a gauge
field on the worldline Σ, whose gauge parameters give rise to the ghosts c = cI tI of ghost
number 1 and g-valued. The corresponding antifields x+, e+ and c+ are of ghost number
−1, −1 and −2, respectively.

The AKSZ action is then given by

SAKSZ[x, e, c] =
∫

T[1]Σ
(ϑµ(x) dΣxµ + cI dddΣeI − TI(x) eI + 1

2 f I J
K eI eJ cK) , (30)
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where
dΣ = θ ∂

∂τ , (31)

is the homological vector field corresponding to the de Rham differential on Σ, and the
integration over T[1]Σ is defined as∫

T[1]Σ
(−) =

∫
Σ

dτ
∫

dθ(−) , (32)

with the piece
∫

dθ(−) being the Berezin integral. In the AKSZ scheme, selecting the
top-form component amounts to restricting to the ghost number zero piece of the integrand.
Performing the Berezin integral yields

SAKSZ[x, e, c] =
∫

Σ
dτ

(
ϑµ(x) ẋµ − ⟨T(x), e⟩g − x+µ cI {TI , xµ}+ ⟨e+, ċ + [e, c]⟩g + 1

2 ⟨c
+, [c, c]⟩g

)
, (33)

where we write τ for the worldline coordinate; the dot over a field denotes its derivative
with respect to τ, e.g., ẋµ = dxµ

dτ ; and ⟨−,−⟩g denotes the pairing between g and g∗.
The classical piece of this action, obtained by setting all fields of a ghost number different
than zero, is simply given by

Scl.[x, e] =
∫

Σ
ϑµ(x) ẋµ − eI TI(x) , (34)

and is invariant (modulo a boundary term) under the gauge symmetry

δϵxµ = ϵI {TI , xµ} , δϵeI = ϵ̇I + f JK
I eJ ϵK , (35)

with the gauge parameter ϵ ∈ C ∞(Σ, g). The corresponding equations of motion read

ẋµ = eI {TI , xµ} , TI = 0 , (36)

In plain words, the trajectories are constrained on the surface defined by the zeroes of the
moment map, and evolve along the fundamental vector fields of the g-action.

3.3. Gauge Fixing

Let us single out a direction in g, denoted by the value D, and choose the gauge
wherein only this component of the einbein is fixed to 1 and all others to zero. To do so, we
should add the non-minimal sector to the AKSZ action,

Snon−min.[b, c̄+] =
∫

Σ
dτ bI c̄+I , (37)

where both bI and c̄+I have the ghost number 0, and encode this choice of gauge through
the gauge fixing fermion

Ψ[c̄, e] =
∫

Σ
dτ c̄I (eI − δI

D) . (38)

Its variation with respect to each field fixes the value of the corresponding antifield, which
in our case yields

c̄+I= δΨ
δc̄I

= eI − δI
D , e+I =

δΨ
δeI = c̄I , (39a)

x+µ =
δΨ
δxµ = 0 c+I= δΨ

δcI
= 0 , (39b)
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so that the gauge fixed action becomes

Sg.f.[x, e, c, c̄, b] =
∫

Σ
dτ

[
ϑµ(x) ẋµ − eI TI(x) + c̄I (ċI + f JK

I eJ cK) + bI (eI − δI
D)

]
. (40)

Upon integrating out the Lagrange multiplier bI , one finds

Sg.f.[x, c, c̄] =
∫

Σ
dτ

[
ϑµ(x) ẋµ −H(x) + c̄I (ċI + ρJ

I cJ)
]

, (41)

where we re-named TD(x) ≡ H(x) and fD J
I ≡ ρJ

I .

3.4. Generic First-Class Constraints

Suppose that the constraints TI do not come from a moment map for some Lie algebra,
but are instead generic first-class constraints,

{TI , TJ} = CI J
K TK , (42)

where CI J
K ≡ CI J

K(x) are structure functions; i.e., they may depend non-trivially on the
phase space coordinates xµ. In this more general case, the target space BRST charge Θ
receives corrections,

Θ(x, c,P) = cI TI − 1
2 CJK

I cIcJPK + . . . , (43)

where the dots denote the term of higher order in ghost momenta P . We can nevertheless
write the corresponding AKSZ action

SAKSZ[x, e, c] =
∫

Σ
dτ

[
ϑµ(x) ẋµ + e+I ċI − x+µ πµν δ

δxν Θ(x, c, e+)− eI δ
δcI Θ(x, c, e+)− c+I

δ
δe+I

Θ(x, c, e+)
]

. (44)

The same gauge fixing as in the previous paragraph can be implemented to give

Sg.f.[x, e, c, c̄, b] =
∫

Σ
dτ

[
ϑµ(x) ẋµ − eI ∂

∂cI Θ(x, c, c̄) + c̄I ċI + bI (eI − δI
D)

]
, (45)

which can be further simplified by integrating out bI ,

Sg.f.[x, e, c, c̄, b] =
∫

Σ
dτ

[
ϑµ(x) ẋµ − δ

δcD Θ(x, c, c̄) + c̄I ċI
]

. (46)

4. Recovering the GRT Formulation
In order to make contact with the Lagrangian (19) and the other results of [4] (Section 3)

reviewed in Section 2, it appears that one must consider the cotangent bundle of the phase
space of our original system, i.e., M = T∗M, where M is the original symplectic manifold
with local coordinates (za)a=1,...,2n , as this would account for the classical fields (za, λa),
where λa are conjugated to za in T∗M. In other words, we have the decomposition

(xµ)µ=1,...,4n = (za, λa)a=1,...,2n . (47)

On top of that, the symplectic potential on M is taken to be canonical, ϑ = ϑµ(x)dxµ =

λa dza, which does lead to the kinetic term
∫

Σ dτ λa ża . To account for the interactions in
the action, as a result of a gauged fixed AKSZ action as described above, we find that one
should use a BFV–BRST charge of the form

Θ(z, λ, c,P) = cD
(

λa πab ∂b H(z) + cb Pa πac ∂c∂b H(z)
)
+ . . . , (48)
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where we recall the notation ∂a ≡ ∂
∂za , and where the dots denote terms that are independent

of cD and that ensure that {{{Θ, Θ}}} = 0.
This suggests that the constrained system described by the sought-for BRST charge Θ

is determined by choosing the constraints

TI = (TD , Ta) , i.e., I = (D , a) , (49)

where

TD = λaXa
H(z) , Ta = λa , with Xa

H(z) = {za, H}M = πab ∂bH(z) , (50)

which verify
{TD, Ta}T∗M = CDa

b Tb , with CDa
b = ∂aXb

H . (51)

These constraints are all first class, in accordance with our working assumption, and
the structure functions are nothing but the first derivatives of the components of the
Hamiltonian vector field of the Hamiltonian H. A direct computation shows that the
BRST charge

Θ(z, λ, c,P) = cD TD + ca Ta − CDa
b cDca Pb

= ca λa + cD πab λa ∂bH(z)− cDcb πac ∂b∂cH Pa , (52)

with the previously defined constraints and structure functions, does indeed satisfy
{{{Θ, Θ}}} = 0.

Therefore, we have shown that the action of [4] (Section 3) reproduced in the expo-
nential in Equation (18) is recovered from a gauge fixed AKSZ model in one dimension,
whose target space is associated with the system of first-class constraints {TD , Ta} on T∗M
(namely, the Lagrangian (19) is recovered by plugging (52) in the gauge-fixed action (46)
for a first-class constrained system). This is the main result of the present paper.

Let us discuss these constraints. The easiest ones are Ta = λa, which identify the
constraint surface as a submanifold of the phase space T∗M. In fact, TD does not specify
further the constraint surface, as it vanishes already on M ≡ {(za, λa = 0)} ⊂ T∗M. Recall
however that in the presence of first-class constraints, one is interested in the reduced
phase space, that is, the quotient of the constraint surface by the action of the distribution
generated by the first-class constraints. This is where TD becomes relevant for us, as
quotienting M by its action yields the set of classical trajectories (the flows generated by
the Hamiltonian H) as the reduced phase space of our model.

Constraints from the Shifted Tangent Bundle

Let us re-derive this constrained system from a different perspective. Suppose we are
given a symplectic manifold M and an Hamiltonian H ∈ C ∞(M). The latter defines an
action on M of R, which viewed a Lie group with addition as its multiplication rule, whose
fundamental vector field is thus the associated Hamiltonian vector field XH = {H,−}.
The integral curves of this vector field, which are nothing but the classical trajectories of
this mechanical system, correspond to the orbits of R on M. Therefore, the set of classical
solutions can be identified with the quotient M/R, the set of the aforementioned orbits.

In order to recover the space of classical solutions from a one-dimensional AKSZ
sigma model, to be identified with the previous model, we should find a BFV description
of this space, i.e., identify the symplectic Q-manifold of degree 0 encoding the space of
classical trajectories as the result of a coisotropic Weinstein reduction. In other words, let
us look for a constrained system, with only first-class constraints, such that the orbits of the
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gauge symmetry generated by the latter on the constraint surface is isomorphic to the set
of classical trajectories.

We have recalled that the space of classical solutions can be thought of as the set of
orbits of the R-action generated by the Hamiltonian H, on the phase space M. Therefore,
we should find a way to recover the latter as a constraint surface, in another symplectic
manifold. One simple manner to do so is to consider the cotangent bundle T∗M, with
coordinates (za, λb), where za are coordinates on M and λa the associated momenta, i.e.,
the coordinates along the fibers of T∗M. The original manifold M can then be recovered as
a constraint surface defined by

M =
{
(za, λa) ∈ T∗M | λa = 0

}
, (53)

or more geometrically, by identifying M as the zero section

ζ : M ↪−! T∗M , (54)

of its cotangent bundle T∗M ↠ M. We can lift the R action to T∗M, where it becomes
Hamiltonian, generated by the cotangent lift of XH . To summarize, this reasoning leads us
to considering the same system of first-class constraints as we proposed before, that is,

Ta := λa , TD = Xa
Hλa = πab λa ∂bH . (55)

The first ones, Ta, identify M as the constraint surface in T∗M, while the last one, TD ,
corresponds to the R-action lifted to T∗M.

At this point, we can make two observations. First, the Hamiltonian vector fields
associated with Ta obviously form an integrable distribution, as they span the tangent
bundle of M at any point, and hence the Lie algebroid associated with it is simply TM.
Second, the R-action also defines a Lie algebroid, as any action of a Lie algebra on a manifold
does,5 denoted M⋊R, whose underlying vector bundle is the trivial one, M×R, and which
has only a non-trivial anchor in the guise of the fundamental vector XH generating the
action of R. Both TM and M ⋊R are Lie algebroids over M, and hence, so is their direct
(or Whitney) sum, which we shall denote with

E := TM ⋊R . (56)

Any Lie algebroid famously gives rise to a Q-manifold [37], so in our case, E[1] is a graded
manifold with coordinates za of degree 0, corresponding to coordinates on M, and degree
1 coordinates ca and cD corresponding to coordinates along the fibers of TM and M ⋊R,
respectively, giving rise to ghosts on the worldline. The cohomological vector field making
E[1] into a Q-manifold reads

QE = ca ∂
∂za + cD πab ∂bH ∂

∂za − cD cb πac ∂b∂cH ∂
∂ca , (57)

in this coordinate system. The cotangent bundle of this Q-manifold

T∗E[1] = T∗(T[1]M ⋊R[1]
)

, (58)

defines the symplectic Q-manifold encoding the BFV description of the classical trajectories
we discussed, in accordance with the results and observations of [38]. Recalling from (22)
that the momentum of ca is Pa, the cotangent lift of QE is given by

Θ = ca λa + cDπab λa ∂b H − cDcbπac ∂b∂c H Pa , (59)
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which exactly reproduces the BFV–BRST charge (52) defining the AKSZ sigma model, with
target space T∗E[1], and whose gauge fixing reproduces the GRT one [4], as we have shown.

5. Conclusions
This paper offers a way to rethink classical mechanics as a gauge fixed AKSZ sigma model.

The way we showed this is to start from the GRT reformulation of KvN classical mechanics.
In the GRT reformulation of classical mechanics, one considers a simple classical

system evolving in phase space along a Hamiltonian flow. The authors of [4,5,10] proposed
a path-integral prescription for the classical system, for which the price to pay is the
introduction of additional fields. They showed that, for the classical motion of the system
with n degrees of freedom in configuration space, one has to introduce a total of 8n fields
to ensure the consistency of the path integral and to reproduce the expected classical
trajectories in the phase space of dimension 2n. As observed in [10], these 8n variables span
T∗T[1]M, where M is the 2n dimensional phase space for the system under consideration.

In this paper, we considered the worldline of a particle constrained by a set of first
class constraints, and wrote the AKSZ action corresponding to that constrained particle.
We showed that the gauge-fixed version of the AKSZ action, for a suitable choice of target
space and constraints spelled out in Section 4, reproduces the action that dictates the GRT
path-integral formulation of classical mechanics.

We then reinterpreted our AKSZ sigma model as the BFV description of the constrained
system that was designed to reproduce the GRT formulation of a classical, unconstrained,
dynamical system in a phase space M. The reduced phase space of this constraint system
on T∗M, which consists of the set of classical trajectories of the original mechanical system
encoded by M and the Hamiltonian H, is recovered by taking the quotient of M by the
distribution associated with the Lie algebroid TM ⋊R. In particular, the last factor R
accounts for the flow generated by the Hamiltonian H of the original system. These
observations confirm our claim that a classical system, whose phase space corresponds to
the symplectic manifold M, is equivalent to a gauge fixed one-dimensional AKSZ sigma
model with target space T∗(T[1]M ×R[1]).

This simple yet intriguing mapping between a classical system and a gauge-fixed
AKSZ sigma model opens up interesting avenues of research. One direct application of
this mapping would be to start with a constrained classical system, and look for its AKSZ
counterpart. In particular, one could consider the case of first-class constraints generated by
the action of a Lie group G on M, whose BFV–BRST description leads to an AKSZ model
with target space T∗(M ⋊ g[1]), where g is the Lie algebra of G. In light of the previous
treatment of an unconstrained classical system, one could expect that the relevant target
space be of the form T∗(T[1]C ⋊ (R[1]⊕ g[1])

)
, where C is the constraint surface defined

by the first-class constraints.
As another direction of research, one can study higher-dimensional sigma models and

look for an effective classical mechanical system equivalent to it. Another interesting avenue
would be to understand the connection between geometric quantization (see [13–15] for
original references, and, e.g., [16,17]) and KvN mechanics, as shown by [11,12] in more
detail now in the light of AKSZ sigma models.
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Notes
1 Note that geometric quantization stems in part from noticing this gap of approach, and aims at bridging it [11–17].
2 Assuming ψ(z, t) to behave in such a way that ψ(z, t)|z!∞ = 0.
3 The normalization factor arising due to this limit can be absorbed into the path-integral measure DZ .
4 By “super-maps” we mean maps between graded manifolds that do not preserve the degree. This is instrumental in recovering

the set of fields, ghosts, and antifields in the AKSZ formalism, see, e.g., [36] (Section 4.9.1).
5 Indeed, given a Lie algebra g that acts on a smooth manifold M via ρ : g −! Γ(TM), one can endow the trivial bundle M× g ↠ M

with a structure of Lie algebroid as follows. First, notice that sections of this trivial bundle are nothing but g-valued functions on
M, i.e., Γ(M × g) ∼= C ∞(M)⊗ g. The anchor of the Lie algebroid is therefore simply given by the C ∞(M)-linear extension of
the g-action ρ. Explicitly, for a section ψ ∈ Γ(M × g) written as ψ = ψa(x) ta with {ta} a basis of g, one defines the action of the
anchor on it via

ρψ := ψa(x) ρta = ψa(x) ρa
µ(x)∂µ .

The Lie bracket is defined as

[ψ1, ψ2]M×g =
(
ψa

1ρa
µ∂µψc

2 − ψa
2ρa

µ∂µψc
1 + ψa

1ψb
2 fab

c)tc ,

which can be thought of as a “twist” of the Lie bracket of g by the action of the latter on C ∞(M).
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