Higher-order effects in extended conjugated molecular emitters near plasmonic nanostructures

<u>Mhamad Hantro</u>^{*1}, Gilles Rosolen², Bjorn Maes², Colin Van Dyck¹

1) Theoretical Chemical Physics group, University of Mons 2) Micro- and Nanophotonic Materials Group, Research Institute for Materials, University of Mons

1. Introduction

Spontaneous emission is the process by which an excited emitter emits light.

Usually, we say that it emits light because, in vacuum, it can only couple to the "vacuum electromagnetic density of states". [Unless you work in High energy physics]

Fermi's Golden Rule: Point-dipole Approximation – Quite BAD

Ask me: Why? When? Where?

However, the spontaneous emission, or the spontaneous decay, if you wish, happens **whenever** an excited emitter is in the close vicinity of any continuum density of states.

This is especially true near Nanoplasmonic structures, where it decays into plasmons. [Plasmon is the quanta for electrons oscillation] \rightarrow Feel free to ask more about it.

Importantly, the interaction then is more complicated [1], and you are right to ask then: is it still a spontaneous *emission*, or is it now only decaying into plasmons, and no longer photons?

Interestingly, it is both. You get plasmons, and you get photons. How much is the % of each is my work. In addition, we see activation of dark transitions. [Dark transition = Very low probability of emitting a photon]

Generalized Fermi's Golden Rule

🔵 Molecule 🔵 Structure

MIRAGE – Our Code

3. Results					
	3.1. Higher-order effects			3.2. Allowed vs Forbidden	
2				SAME order of magnitude!	

Figure 1. Molecule suspended on top of a gold nanosphere, and displaced: (**Top**) radially, (**Bottom**) tangentially, with respect to the surface. The graphs show a comparison between the point-dipole approximation (PDA) and the full molecular treatment.

Figure 2. Molecule sitting in the gap between the STM-tip and the substrate. It is displaced horizontally under the tip along its long axis. On the **left**, is an α -quinquethiophene monomer (dipole-allowed emitter). On the **right**, is an α -quinquethiophene H-aggregate (dipole-forbidden).

4. Conclusion

L. Full molecular treatment is essential for quantitative results, and even at times, qualitative ones.

- 1. Dark emitters can exhibit huge enhancements that put them on par with their bright counterparts.
- 2. A new code MIRAGE was developed capable of providing full molecular treatment at the time complexity of the usual approximations, making them obsolete for all practical purposes.

Acknowledgments

We acknowledge the funding support from Actions de Recherche Concertées (project ARC-21/25 UMONS2), we also acknowledge CECI (Consortium des Équipements de Calcul Intensif) for providing us with computation time.

Metamaterials, Photonic Crystals and Plasmonics

References

- 1. Rivera et al., Shrinking light to allow forbidden transitions on the atomic scale, DOI: 10.1126/science.aaf6308
- 2. Hantro et al., Higher-order effects and validity of the pointdipole approximation for conjugated extended molecular emitters near plasmonic nanostructures, DOI:10.1063/5.0242123

3. Hantro et al., To be Submitted.

Mhamad Hantro PhD student at UMONS

<u>Mamad.hantro@umons.ac.be</u>

Scan the QR code to download the poster