
J
H
E
P
0
7
(
2
0
2
5
)
1
4
9

Published for SISSA by Springer

Received: April 25, 2025
Accepted: June 11, 2025
Published: July 11, 2025

Scalar field on a higher-spin background via Fedosov
quantization

Thomas Basile , Shailesh Dhasmana and Evgeny Skvortsov 1,2

Service de Physique de l’Univers, Champs et Gravitation, Université de Mons,
20 place du Parc, 7000 Mons, Belgium

E-mail: thomas.basile@umons.ac.be, shailesh.dhasmana@umons.ac.be,
evgeny.skvortsov@umons.ac.be

Abstract: Conformal higher-spin gravity is the log-divergent part of the effective action of
the scalar field coupled to background fields via higher-spin currents, as was defined by Segal
and Tseytlin, which can be worked out over the flat space background. We revisit the problem
of the scalar field in a higher-spin background and propose a manifestly covariant version
thereof. The construction utilizes the Fedosov quantization of the cotangent bundle and the
action is written with the help of the trace on a curved phase space that is provided by the
Feigin-Felder-Shoikhet cocycle. The same construction allows one to formulate quantum
mechanics on a curved space, the phase space being the cotangent bundle.

Keywords: Higher Spin Gravity, Scale and Conformal Symmetries

ArXiv ePrint: 2412.20459

1Research Associate of the Fund for Scientific Research — FNRS, Belgium.
2Also at Lebedev Institute of Physics.

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2025)149

https://orcid.org/0000-0003-4130-2569
https://orcid.org/0000-0002-7472-1658
https://orcid.org/0000-0002-1218-9520
mailto:thomas.basile@umons.ac.be
mailto:shailesh.dhasmana@umons.ac.be
mailto:evgeny.skvortsov@umons.ac.be
https://doi.org/10.48550/arXiv.2412.20459
https://doi.org/10.1007/JHEP07(2025)149


J
H
E
P
0
7
(
2
0
2
5
)
1
4
9

Contents

1 Introduction 1

2 Elements of Fedosov quantization 5

3 Wigner function and quadratic actions 12

4 Conformally-coupled scalar and higher-spins 15
4.1 Conformally-invariant Laplacian 15
4.2 Higher-spin background 17

5 Discussion 21

A A brief review of Weyl calculus 22

B More on Weyl transformations 26

C Feigin-Felder-Shoikhet invariant trace 28

D Curvature expansion 31

1 Introduction

Conformal higher-spin gravity [1–3] is a rare example of a higher-spin extension of (conformal)
gravity where the usual field theory concepts directly apply. For example, despite the infinite
spectrum of states it is a perturbatively local field theory, a feature enforced by the Weyl
symmetry; it has an action and there is some understanding of what the underlying geometry
is.1 The action can be extracted as the anomalous part of the effective action of a (massless)
scalar field in a higher-spin background, which is similar to how the Yang-Mills and the
Weyl gravity actions arise as conformal anomalies in the presence of the background of gauge
fields and of conformal gravity, respectively.

Despite its conceptual simplicity, e.g. the action can be extracted order by order over
the flat space background [3, 19, 20], realizing conformal and higher-spin symmetries in
a manifestly covariant way has been an open problem. This problem was solved recently
in [21]. Essentially, the notion of a higher-spin covariant derivative is encoded in the Fedosov
approach to deformation quantization of the cotangent bundle (of spacetime). The notion
of a higher-spin invariant measure, which is needed to write down an action, is encoded in
the trace operation. Surprisingly, defining a trace (over the deformed algebra of functions)
explicitly within the Fedosov approach took some time and was done by Feigin, Felder and

1Numerous 3d higher-spin gravities [4–11] lack local degrees of freedom except for [12]. The action for
chiral higher-spin gravity [13–15] is available in the light-cone gauge, while covariant equations of motion are
known [16–18], and there is no clear understanding of the geometry behind.
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Shoikhet in [22], who relied on Shoikhet’s proof [23] of an extension of Kontsevich formality
conjectured by Tsygan [24], known as Shoikhet-Tsygan-Kontsevich formality.

In this paper we address the problem of how to couple a (massless) scalar field to the
background of (off-shell) conformal higher-spin fields. This problem was bypassed in [21]
thanks to Segal’s approach to conformal higher-spin gravity that allows one to fix the action
directly by the gauge invariance and, hence, the actual problem boiled down to covariantizing
the construction.

In more detail, the route between the free scalar field and conformal higher-spin fields is
as follows. Being a free theory, the massless scalar on flat space possesses an infinite tower
of on-shell conserved currents for all integer spin s ≥ 0, which come from the invariance of
the d’Alembert equation under the action of conformal Killing tensors [25]. The existence of
these conserved currents opens the possibility of introducing interactions between the scalar
field ϕ, and gauge fields of arbitrary spin, starting with the Noether coupling and completing
it to all orders. For instance, the currents of spin 1 and 2,

Jµ := i

2
(
ϕ∗ ∂µϕ− ϕ∂µϕ∗

)
, Tµν := ϕ∗ ∂µ∂νϕ−

2n
n− 1 ∂(µϕ

∗∂ν)ϕ+ ϕ∂µ∂νϕ
∗ − (traces),

(1.1)
can be used to introduce gauge fields, say Aµ and hµν respectively, to the free scalar action, via

S[ϕ,A] =
∫
Rn

dnx 1
2 ϕ

∗□ϕ+ eAµ J
µ , and S[ϕ, h] =

∫
Rn

dnx 1
2 ϕ

∗□ϕ+ κTµν hµν ,

(1.2)
where e and κ are coupling constants. Since both currents are divergenceless on-shell (meaning
modulo the scalar field equation of motion □ϕ ≈ 0), and the spin 2 one is also traceless,
the gauge transformations

δεAµ = ∂µε , δξhµν = ∂(µξν) + ηµν σ , (1.3)

together with the transformations of the scalar field

δεϕ = −ie ε ϕ , and δξϕ = ξµ∂µϕ , (1.4)

leave the respective actions invariant up to second order in the coupling constants. The spin
1 case can be completed to a gauge-invariant action to all orders by adding a quadratic term
in the gauge field Aµ, which amounts to re-constructing scalar electrodynamics,

S[ϕ,A] = 1
2

∫
Rn

dnxϕ∗□Aϕ , where □A = (∂µ + ieAµ)(∂µ + ieAµ) . (1.5)

The spin 2 case is technically more involved, though similar in spirit. It requires infinitely
many correction terms, which can be re-summed into the action for the conformally-coupled
scalar field,

S[ϕ, g] = 1
2κ

∫
M

dnx
√
−g ϕ∗

(
∇2 − n− 2

4(n− 1) R
)
ϕ, gµν := ηµν + hµν , ∇2 := gµν ∇µ∇ν ,

(1.6)
expanded around flat spacetime. In both of these low spin cases, the Noether coupling is
completed by higher order terms in the gauge fields and suitable deformations of their gauge
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symmetries. The output of this procedure is an action, quadratic in the scalar field, and
non-linear in the gauge fields. The all order coupling of the former to the latter is encoded
in a covariant differential operator — the square of the covariant derivative in the spin 1
case and the conformal Laplacian in the spin 2 case. From this point of view, these gauge
fields are background fields for the scalar field ϕ.

One can then integrate out the scalar field to derive an action for the background fields.
To be more precise, the effective action for the scalar field ϕ can be interpreted as an action
for the background fields, a point of view already advocated by Sakharov [26] in his approach
to gravity as an ‘induced theory’. Indeed, focusing on the spin 2 case above, the effective
action boils down to the computation of the determinant of the conformal Laplacian (since
the scalar field action is quadratic). In practice, one needs to resort to a regularization
scheme, say for instance the use of a UV cut-off. Expanding the effective action in powers of
the cut-off, several coefficients consist of local functionals of the metric g and its derivatives,
which are diffeomorphism-invariant. The latter can be considered as potential actions for
the metric, whose diffeomorphism invariance stems from a successful deformation of the
linear gauge symmetries generated by ξ in (1.3). Weyl transformations, that is rescalings
of the metric and the scalar field ϕ for the form

g 7−→ Ω2 g and ϕ 7−→ Ω−n−2
2 ϕ , (1.7)

for an arbitrary (but nowhere vanishing) parameter Ω also leave invariant the action (1.6) and
define an all order completion of the linear gauge transformations generated by σ. In even
dimensions, only one term in the effective action is also invariant under Weyl transformations,
namely the coefficient of the logarithmically divergent piece. For n = 4, this term is essentially
the integral of the Weyl tensor squared (up to a total derivative and a topological term),
which is the action for Weyl gravity.

The lessons of these low spin examples is that one can leverage the existence of conserved
currents to derive an action for gauge fields introduced as sources of the aforementioned
currents. For a massless free scalar, the latter are also traceless which leads to an additional,
‘Weyl-type’, symmetry. Insisting on preserving this linear gauge symmetry at the non-linear
level, and after having integrated out the scalar field, leads to a unique action for the gauge
fields under consideration.

This procedure generalizes to the higher-spin currents, thereby producing a coupling
of the original complex scalar to a background of higher-spin gauge fields, via a differential
operator, covariant under the associated higher-spin symmetries which define a non-linear
completion of the linear gauge transformations

δξ,σhµ1...µs = ∂(µ1ξµ2...µs) + η(µ1µ2 σµ3...µs) , (1.8)

for all integers s ≥ 1. These were identified as the linear symmetries of conformal higher-
spin gravity (CHSGra), a higher-spin generalization of conformal (super)gravity proposed
by Fradkin and Tseytlin [27] at the free level, and studied further at the cubic level [28].
Accordingly, Tseytlin proposed to define conformal higher-spin gravity as the coefficient of
the logarithmically divergent piece of the effective action of a scalar field in a higher-spin
background [1]. However, as the spin 2 case already illustrates, working out perturbatively the
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exact expression of the relevant differential operator encoding this coupling for all spins s > 2
seems unrealistic. This is not to say that with a perturbative approach to this problem it is
impossible to get/recover manifestly (higher-spin) covariant objects. It allows one to compute
the conformal higher-spin gravity action at the lowest orders, and confirm that the quadratic
piece is the expected one [27], as argued in [1] and worked out in details in [3] (see also [29] for a
similar approach with N = 4 super Yang-Mills theory, and [20] from a worldline perspective).

A. Segal proposed an elegant solution to the problem of coupling a (complex) scalar
field to a background of higher-spin fields and computing its effective action, by resorting to
symbol calculus, and more generally, to deformation quantization [2]. Without delving into
technical details — that we shall review in the bulk of the paper — the idea is to translate
action and its gauge symmetries which formally read

S[ϕ, hs] =
1
2 ⟨ϕ| Ĥ[hs] |ϕ⟩ , δεĤ = ε̂ † ◦ Ĥ + Ĥ ◦ ε̂ , δε |ϕ⟩ = −ε̂ |ϕ⟩ , (1.9)

where Ĥ and ε̂ are differential operators respectively encoding the coupling to background
fields hs and gauge parameters (which appear as coefficients of these operators), into the
language of symbols, i.e. functions on the cotangent bundle T ∗Rn. This approach has some
computational advantages, and in particular, the cubic part of the action for CHSGra was
derived [2] in this framework.

One of the drawback of both approaches outlined above, however, is that they are defined
around flat spacetime. Working out the expression of conserved currents for a free scalar
field on a more general background can be rather challenging, although the case of Weyl-flat
space (and N = 1 supersymmetrization thereof) has been successfully worked out [30]. More
generally, formulating CHSGra around an arbitrary background or in a manifestly covariant
manner, has been the subject of several works [30–34] (see also [35–39] for supersymmetric
extensions, and [40] for an approach to conformal gravity using ‘unfolding’).

In this paper, we shall expand on the framework developed in [31] and [21], wherein
Segal’s ideas were combined with techniques from Fedosov quantization in order to obtain a
background-independent formulation of CHSGRa, and work out how to express the coupling
of a scalar field to a conformal higher-spin fields within this setting. Having both the CHSGra
action, and the action for a matter scalar field coupled to it, in the same formalism would
allow one to probe various aspects of this coupling.

This paper is organized as follows: in section 2 we review the main constructions of
Fedosov quantization for the cotangent bundle of any manifold (our spacetime), before
introducing in section 3 an analogue of the Wigner function which we use to build an
action for a scalar field coupled to a background of higher-spin fields in this framework.
In section 4, we illustrate our proposal by detailing the case of the conformally-coupled
scalar, and show how Weyl symmetry is embedded in our formulation. We also explain how
higher-spin couplings arise, together with the gauge symmetries. We conclude the paper in
section 5 with a discussion of possible further directions to be explored, and complement
it with a short review of Weyl calculus in appendix A, some computational details about
Weyl transformations in the formalism presented here in appendix B, a quick review the
definition of the FFS cocycle in appendix C, and finally a curvature expansion of the Fedosov
connection is presented in appendix D.
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2 Elements of Fedosov quantization

Before spelling out our action for a complex scalar coupled to an arbitrary higher-spin
background, we shall briefly review some constructions proposed by Fedosov in his seminal
paper [41] on the deformation quantization of symplectic manifolds (see also his textbook [42]
for more details). Readers familiar with these ideas may safely skip this section, while
unfamiliar readers interested in complementary references may consult [31, appendix A]
which we closely follow, as well as [21] where these techniques have been used in the context
of conformal higher-spin gravity.

Building the Fedosov connection. The ingredient we need is a flat connection on the
Weyl bundle,

WX := S(TX)⊗ Ŝ(T ∗X) ↠ X , (2.1)

where X denotes our n-dimensional spacetime manifold, and Ŝ(. . . ) the completion of the
symmetric algebra. To be concrete, a typical section of this bundle locally takes the form

Γ(WX) ∋ a(x; y, p) =
∑
k,l

ab1...bl
a1...ak

(x) ya1 . . . yak pb1 . . . pbl
, (2.2)

where {ya} and {pb}, for a, b = 1, . . . , n := dimX, respectively define a basis of its cotangent
and tangent space over the point x ∈ X. The above section is polynomial in p, but is allowed
to be a formal power series in y, in accordance with the fact that the Weyl bundle is the tensor
product of the symmetric algebra of TX, and the completion of the symmetric algebra of T ∗X.

The fiber at each point is isomorphic, upon extending it over RJℏK, to that of the Weyl
algebra A2n generated by the 2n variables y and p, whose associative (but non-commutative)
product ∗ is given by

(
f ∗ g

)
(y, p) = f(y, p) exp

(ℏ
2

[←−
∂

∂y
·
−→
∂

∂p
−
←−
∂

∂p
·
−→
∂

∂y

])
g(y, p) , (2.3)

where we denoted the contraction of Latin indices by a dot, i.e. y · p = ya pa. This product
is called the Moyal-Weyl product, see appendix A for a review of its derivation from the
perspective of symbol calculus. Note that the operation2

ℏ† = −ℏ , (ya)† = ya , (pa)† = pa , (2.4)

which also acts by complex conjugation on coefficients, defines an anti-involution of the
Weyl algebra, that is

(f ∗ g)† = g† ∗ f † , (2.5)
2One can think of it as essentially complex conjugation, upon considering ℏ as a purely imaginary formal

parameter. When deriving the Moyal-Weyl product from the point of view of symbol calculus, as recalled in
appendix A, the ℏ factor in its definition appears multiplied by the imaginary unit, which we chose to absorb
in ℏ itself here to simplify computations.

– 5 –
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for any pair of elements f and g. The sections of the Weyl bundle can therefore be multiplied,
using the Moyal-Weyl product fiberwise, and thereby making WX into a bundle of associative
algebras. The Weyl algebra can be endowed with a grading, namely

deg(ya) = 1 = deg(ℏ) , deg(pa) = 0 , (2.6)

with respect to which the Moyal-Weyl product is of degree 0.
Having recalled the definition of the Weyl bundle, we can come back to our initial goal

which is to construct a flat connection on it. As it turns out, this is relatively simple, as
one can show that any 1-form connection of the form A0 = dxµ eaµ pa + . . . , where eaµ are
the components of an invertible frame field on X and the dots denote higher order terms
in y and p, can be extended into a flat connection on WX,

dA+ 1
2ℏ [A,A]∗ = 0 , with A = A0 + (corrections) . (2.7)

A simple way of constructing such a flat connection is to start from

A0 = dxµ
(
eaµ pa + ωa,bµ pa yb

)
, (2.8)

where ωa,b := dxµ ωa,bµ are the components of the torsionless spin-connection with respect
to the vielbein eaµ, which preserves the fiber metric ηab, used to raise and lower the fiber
(i.e. Latin) indices. Let us introduce

δ := −1
ℏ
[dxµ eaµ pa,−]∗, ∇ := d + 1

ℏ
[dxµ ωa,bµ pa yb,−]∗, R∇ :=

(
dωa,b + ωa,c ω

c,b) pa yb,
(2.9)

so that the curvature of ∇ is simply given by

∇2 = 1
ℏ
[R∇,−]∗ , (2.10)

and one can easily check that

δ∇+∇δ = 0 , (2.11)

as a consequence of the torsionlessness of ∇. Note that δ and ∇ are respectively of degree
−1 and 0 with respect to the previously introduced grading (2.6). One can then show that
there exists a unique 1-form γγγ ∈ Ω1(X,WX) of degree ≥ 2 such that

A = A0 + γγγ , (2.12)

defines a flat connection on the Weyl bundle, with γγγ linear in p and obeying hγγγ = 0, and where

h := 1
N
ya eµa

∂

∂(dxµ) , N := ya
∂

∂ya
+ dxµ ∂

∂(dxµ) , (2.13)

with N the number operator returning the sum of the form degree and y-degree of its
argument. Equivalently, the associated covariant derivative

D := d + 1
ℏ
[A,−]∗ ≡ −δ +∇+ 1

ℏ
[γγγ,−]∗ , (2.14)

– 6 –



J
H
E
P
0
7
(
2
0
2
5
)
1
4
9

defines a differential, i.e. squares to zero, on the Weyl bundle. The 1-form γγγ can be computed
order by order in y via the recursive formulae

γγγ(2) = h(R∇) and γγγ(k+1) = h

(
∇γγγ(k) +

1
2ℏ

k−1∑
l=2

[γγγ(l), γγγ(k+1−l)]∗
)

for k ≥ 2 , (2.15)

which yield

γγγ = −1
3 dxµRµacb yaybpc −

1
12 dxµ∇aRµbdc yaybycpd

− dxµ
[ 1
60 ∇a∇bRµc

e
d +

2
45 R×a

e
bRµc

×
d

]
yaybycydpe + (· · · )

(2.16)

where the dots denote terms of higher order in y.3 Introducing the notation

R := hR∇ , and ∂∇ := h∇ , (2.17)

we can re-sum the defining relations of γγγ as

γγγ = R+ ∂∇γγγ + 1
2ℏ h[γ

γγ,γγγ]∗ , (2.18)

so that the first few orders of γγγ in y can be re-written as

γγγ(2) = R , γγγ(3) = ∂∇R , γγγ(4) = ∂2
∇R+ 1

2ℏ h
[
R,R

]
∗ . (2.19)

As mentioned above, any 1-form connection valued in the Weyl algebra whose component
along pa is an invertible vielbein can be extended to a flat connection by the same mechanism
as above: the vielbein piece gives rise to the differential δ, and the components of the
1-form valued in the Weyl bundle needed to flatten the original connection can be computed
recursively using its contracting homotopy h. In particular, one may start from a connection
containing higher-spin components which appear as terms of higher order in p (and y) in
the initial data, e.g.

A0 = ea pa + ωa,b pa yb + eab papb + ωab,c papb yc + . . . , (2.20)

and find γγγ so that A = A0 + γγγ is flat, though the 1-form γγγ will also involve the curvature
of these higher-spin components.4 The higher components of (2.20) correspond to vielbeins
and spin-connections of conformal higher-spin fields within the frame-like formulation, which
was developed in [43, 44].

3Remark that the grading (2.6) with respect to which the defining recursion relation for γγγ is given, reduces
to the degree of homogeneity in y. This is a consequence of the fact that the first correction γγγ(2) is linear in p

so that, not only all higher order correction stay linear in p, but also the star-commutator in (2.15) reduces to
the Poisson bracket piece, i.e. to its piece of order ℏ1. Consequently, no ℏ correction appear in γγγ in the case of
interest here.

4Note that in the case where the initial data A0 contain higher-spin components (higher orders in p), one
should use a slightly different degree, namely one should assign degree 1 to both y and p and degree 2 to ℏ,
so that the Moyal-Weyl product remains of degree 0 with respect to this new grading. This is actually the
gradation used originally by Fedosov [41, 42], for more details see also, e.g., [21, appendix E].

– 7 –



J
H
E
P
0
7
(
2
0
2
5
)
1
4
9

Lift of symbols and invariant trace. Once the Fedosov connection D is constructed,
we can define the lift of the symbol of a differential operator on X, that is a function on
the cotangent bundle T ∗X, say f(x, p) ∈ C∞

pol.(T ∗X) ∼= Γ(STX), as the (unique) section
F (x; y, p) ∈ Γ(X,WX) verifying

DF = 0 , F |y=0 = f , (2.21)

i.e. the (unique) covariantly constant section of the Weyl bundle whose order 0 in y is
f . In other words, starting from a function only of xµ and pa, one reconstruct a flat
section of the Weyl bundle, which is a function of xµ, pa and ya, whose dependency on y is
completely determined by the covariant constancy condition, and the coefficients of these
terms proportional to y are obtained from the original function of x and p. To do so, one
simply needs to solve the covariant constancy condition, which can be done iteratively via

F(0) = f and F(k+1) = h
(
∇F(k) +

1
ℏ

k+1∑
l=2

[γγγ(l), F(k+1−l)]∗
)

for k ≥ 0 , (2.22)

where F(n) denotes the component of the lift F homogeneous of degree n with respect to
grading (2.6), i.e. it corresponds to the homogeneity both in y and ℏ. This leads to

F (x; y, p) = f + ya∇af + 1
2 y

ayb
(
∇a∇b +

1
3 Rda

c
b pc

∂

∂pd

)
f + (. . . ) , (2.23)

at the first few orders. This lift of (fiberwise polynomial) functions establishes a bijection
between the latter and covariantly constant sections of the Weyl bundle,

τ : C∞(T ∗X) ∼−→ Ker(D) ⊂ Γ(WX)
f(x, p) 7−→ F (x; y, p) ≡ τ(f)(x; y, p) ,

(2.24)

and allows us to define a star-product, i.e. an associative but non-commutative deformation
of the pointwise product, via the simple formula5

f ⋆ g = (F ∗G)
∣∣
y=0 , f, g ∈ C∞

pol(T ∗X) , (2.25)

where F,G ∈ Γ(WX) are the lifts of f and g respectively. Associativity simply follows from
the fact that the Moyal-Weyl product in the fiber is itself associative. To summarize, we are
able to define a star-product on the cotangent bundle of our spacetime T ∗X thanks to the
fact that any function can be lifted to a flat section of the Weyl bundle, wherein we can use
the Moyal-Weyl star-product to multiply the flat sections corresponding to two functions on
X, and evaluate the result at y = 0 thereby producing another function on T ∗X.

There exists a trace (essentially unique) on the space of covariantly constant sections
of the Weyl bundle, which takes the form [21]

TrA(F ) =
∫
x∈X

∫
T ∗

xX
dnp µ(F |A, · · · , A︸ ︷︷ ︸

n times

) , (2.26)

5Remark that, by construction, the evaluation of a covariantly constant section at y = 0 yields the function
on the cotangent bundle that it is the lift of. In other words, this simple operation is the inverse of the lift
τ , i.e. τ−1(−) = (−)|y=0. The star-product on T ∗X can therefore be written as f ⋆ g = τ−1(τ(f) ∗ τ(f)

)
which makes it clear that the lift τ is a morphism of algebras between

(
Ker(D), ∗

)
and

(
C∞(T ∗X), ⋆

)
, the

star-product on the latter being ‘pulled-back’ from the Moyal-Weyl one defined fiberwise.

– 8 –
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where µ : A∧n
2n ⊗ A2n −→ R[pa] is a multilinear map valued in polynomials in p, obtained

from the Feigin-Felder-Shoikhet cocycle [22]. The fact that µ is obtained from a Hochschild
cocycle for the Weyl algebra ensures two important properties of this trace: it is invariant
under the gauge transformations

δξA = dξ + 1
ℏ
[A, ξ]∗ , ξ ∈ Γ(WX) , (2.27)

of the flat connection A up to boundary terms, i.e.

δξ TrA(F ) =
∫
X

∫
dnp

[
d(. . . ) + ∂

∂pa
(. . . )a

]
, (2.28)

and it is cyclic, also up to boundary terms,

TrA([F,G]∗) =
∫
X

∫
dnp

[
d(. . . ) + ∂

∂pa
(. . . )a

]
, (2.29)

for any covariantly constant sections F and G.
The detailed expression for µ is given in appendix C, for the moment it is enough for our

purpose to know that, for a flat connection A which is linear in p as the example reviewed
previously, the associated trace of any lifted symbol F boils down to

TrA(F ) =
∫
X
dnx |e|

∫
T ∗

xX
dnp

∑
k≥0

µ∇
a1...ak

(x) ∂k

∂pa1 . . . ∂pak

F
∣∣
y=0 , (2.30)

where µ∇
a1...ak

(x) are polynomials in the curvature of ∇ and covariant derivatives thereof.
What has been reviewed above is just the Fedosov approach to deformation quantization

for the particular case of the symplectic manifold being the cotangent bundle (of the spacetime),
which was also studied by Fedosov himself [45]. A development since [45] is the construction
of the invariant trace by Feigin, Felder and Shoikhet [22]. Let us briefly explain now, see [21]
for more details, how this is related to conformal higher-spin fields. To begin with, an off-shell
description of conformal higher-spin fields requires the Fedosov connection A and a covariantly
constant section of the Weyl bundle F . Different types of scalar matter, i.e. whether we start
out with L ∼ ϕ□ϕ or L ∼ ϕ□kϕ, k > 1, lead to different spectra of (higher-spin) currents
and, hence, to different spectra of sources/background (higher-spin) fields. An immediate
consequence is that it is necessary to fix the background value for F to land on a specific
theory. We will consider F of the form

F = p2 +
∑
s>2

ha1...as(x) pa1 . . . pas + . . . , (2.31)

where the presence of p2 here implies that we are coupling the usual free scalar field L ∼ ϕ□ϕ
to (higher-spin) background fields ha1...as . The formalism is flexible enough to allow one to
realize conformal higher-spin fields both in the frame-like, cf. (2.20), and in the metric-like
ways, as below. In this paper, we prefer to keep A purely gravitational, i.e. it is completely
expressed in terms of a vielbein ea. With the help of the ξ gauge-symmetry one can move
between the frame-like and metric-like formulations.
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Fock space bundle. Having constructed a bundle of Weyl algebra, let us now proceed with
the definition of a vector bundle associated with the Fock representation. As a vector space,
the latter can be identified with the subspace of A2n ∼= R[ya, pb] consisting of polynomials
(or even formal power series) in y, that we shall denote by Fn ≡ R[ya]. The representation
is given by the quantization map,

(
ρ(f)φ

)
(y) = f(y, p) exp

(
− ℏ
←−
∂

∂p
·
[1
2

←−
∂

∂y
+
−→
∂

∂y

])
φ(y)

∣∣
p=0 , (2.32)

for any element f(y, p) ∈ A2n of the Weyl algebra and φ(y) ∈ Fn of the Fock space. That it
defines a representation of the Weyl algebra means that it verifies

ρ(f) ◦ ρ(g) = ρ(f ∗ g) , f, g ∈ A2n . (2.33)

The name ‘quantization map’ comes from the fact that it allows one to associate, to any
(polynomial) function of R2n ∼= T ∗Rn, which are nothing but elements of the Weyl algebra,
a differential operator acting on the space of ‘wave functions’, i.e. smooth functions on Rn,
which we consider as elements of the Fock space (via for instance their Taylor series). Put
differently, the pair (W2n,Fn) can be thought of as a flat model for the quantization of a
cotangent bundle T ∗X with dimX = n, wherein the Weyl algebra models the algebra of
functions on T ∗X, while the Fock space models smooth functions on the base manifold X, on
which functions on the cotangent bundle act as differential operators.

Given now an arbitrary smooth manifold X, one can consider the ‘bundle of Fock spaces’
defined as

FX := S(T ∗X) ↠ X , (2.34)

whose sections are

Γ(FX) ∋ Φ(x; y) =
∑
k≥0

1
n! Φa1...ak

(x) ya1 . . . yak , (2.35)

that we shall extend as formal power series in ℏ. A Fedosov connection A defines a flat
covariant derivative on this Fock bundle, whose local expression is

D = d + 1
ℏ
ρ(A) , (2.36)

with ρ is the quantization map above. A simple computation leads to

ρ(pa) = −ℏ
∂

∂ya
, ρ(yapb) = −

ℏ
2

(
ya

∂

∂yb
+ ∂

∂yb
ya
)
= −ℏ

(
ya

∂

∂yb
+ 1

2 δ
a
b

)
, (2.37)

and more generally,

−1
ℏ
ρ(ya1 . . . yanpb) = ya1 . . . yan

∂

∂yb
+ n

2 δ
(a1
b ya2 . . . yan) , (2.38)

so that, upon choosing ∇ to be a metric connection, and A the flat connection (2.12) built
from it as explained above, one finds

DΦ =
(
− δ +∇+ ρ(γγγ)

)
Φ , with δ = ea

∂

∂ya
, (2.39)
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which in particular, contains the same acyclic piece δ as in the Fedosov connection (2.12),
which is an operator of degree n − 1 in y. As a consequence, we can solve for covariantly
constant sections of the Fock bundle in a similar manner as we did in the Weyl bundle:
expanding the condition

DΦ = 0 , with Φ
∣∣
y=0 = ϕ , (2.40)

order by order in y yields

δΦ(n+1) = ∇Φ(n) +
1
ℏ

n+1∑
k=2

ρ(γγγ(k))Φ(n+1−k) , (2.41)

which gives us a definition of the order n + 1 term in the y expansion of Φ thanks to the
contracting homotopy (2.13) introduced before, i.e.

Φ(n+1) = h

(
∇Φ(n) +

1
ℏ

n+1∑
k=2

ρ(γγγ(k))Φ(n+1−k)

)
. (2.42)

The whole covariant section |Φ⟩ only depends on its value at y = 0, which is a function
on X, thereby establishing a bijection

τ : C∞(X) ∼−→ Ker(D) ⊂ Γ(FX)
ϕ(x) 7−→ Φ(x; y) ≡ τ(ϕ)(x; y) ,

(2.43)

between C∞(X) and covariantly constant sections of the Fock bundle (that we denoted by
the same symbol τ as the isomorphism between functions on the cotangent bundle and flat
sections of Weyl bundle, in a slight abuse of notation). The first few order of the covariantly
constant section associated with ϕ(x) read

Φ(x; y) = ϕ+ ya∇aϕ+ 1
2 y

ayb
(
∇a∇b −

1
6 Rab

)
ϕ+ . . . (2.44)

where Rab denotes the Ricci tensor of ∇, and the dots denote terms of order 3 or higher in y.
We can now define a quantization map in this curved setting, that is to say, a way to

associate to any symbol f ∈ C∞
pol(T ∗X), that is any fiberwise polynomial function on the

cotangent bundle of X, a differential operator f̂ which acts on ‘wave functions’, i.e. functions
ϕ ∈ C∞(X) on the base, defined as follows6

(
f̂ϕ
)
(x) := ρ(F )Φ

∣∣
y=0 , (2.45)

where F ∈ Γ(WX) and Φ ∈ Γ(FX) are the lifts of f and ϕ respectively as a covariantly constant
section of the Weyl and Fock bundles. This defines a representation of the star-product
algebra

(
C∞
pol(T ∗X), ⋆

)
on the space of ‘wave functions’ C∞(X), i.e.

f̂ ◦ ĝ = f̂ ⋆ g ∀f, g ∈ C∞
pol(T ∗X) , (2.46)

6Let us note that, as for the star-product, writing the quantization map in terms of the lift τ , namely
f̂ϕ = τ−1[ρ(τ(f)

)
τ(ϕ)

]
, makes it apparent that the latter defines a morphism of pairs algebra-module between(

C∞(T ∗X),C∞(X)
)

and flat sections of the Weyl and Fock bundles. This also shows that the quantization
map on C∞(X) is ‘pulled-back’ from that on flat sections of the Fock bundle, in complete parallel with the
definition of the star-product on T ∗X.
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where ⋆ is the star-product defined in (2.25). Here again, this is simply a consequence of
the fact that (Fn, ρ) is a representation of (A2n, ∗), i.e. we sort of ‘pullback’ the algebra and
representation structure from the fiber to the base manifold X. Note that this approach
was already outlined in [31, appendix A].

3 Wigner function and quadratic actions

We have now all the ingredients needed to re-express the coupling of a scalar field to an
arbitrary higher-spin background. The latter is encoded in a pair of fields,7 namely a flat
connection A and a covariantly constant section F of the Weyl bundle [31, 50],

dA+ 1
2ℏ [A,A]∗ = 0 , dF + 1

ℏ
[A,F ]∗ = 0 , (3.1)

which is invariant under the gauge transformations

δξA = dξ + 1
ℏ
[A, ξ]∗ , δξ,wF = 1

ℏ
[F, ξ]∗ + {F,w}∗ , dw + 1

ℏ
[A,w]∗

!= 0 , (3.2)

where ξ, w ∈ Γ(WX) are 0-form valued in the Weyl bundle, with w required to be covariantly
constant, while ξ is unconstrained. The sum ε = 1

ℏξ + w corresponds to the symbol of an
arbitrary differential operator, such as ε̂ appearing in (1.9), and it splits into its Hermitian
and anti-Hermitian part, respectively w and ξ (though both are real, the latter is dressed
with ℏ that we take as imaginary in the sense that ℏ† = −ℏ).

As usual when dealing with gauge theories, matter fields consists of sections of vector
bundles associated with representation of the gauge algebra (meaning here, the algebra in
which gauge fields take values). Accordingly, we add the scalar field ϕ to the previous system
in the guise of its lift as a covariantly constant section of the Fock bundle,

dΦ + 1
ℏ
ρ(A)Φ = 0 , (3.3)

which transforms in the corresponding representation,

δξ,wΦ = −ρ(1
ℏ
ξ + w)Φ , (3.4)

thereby preserving the covariant constancy condition. Now all we need is an action functional
implementing the coupling of ϕ to the higher-spin background in a gauge-invariant manner.

Around flat space, Segal’s approach consisted in considering a quadratic action for a
complex scalar field ϕ in flat spacetime,

S[ϕ] =
∫
Rn

dnx ϕ∗(x) (Ĥϕ)(x) , (3.5)

for some differential operator Ĥ which encode the coupling of ϕ to a background of gauge
fields, the latter being related to the ‘coefficients’ of this operator. For instance, in the case
of the conformally-coupled scalar, Ĥ would be the conformal Laplacian whose expression

7Such a description is obtained from an approach known as the ‘parent formulation’ of gauge theories,
developed in [46–49] and references therein.
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depends on a metric g (via its inverse contracting two covariant derivatives, and via the
Ricci scalar term), and which implements the coupling of ϕ to conformal gravity. The above
action can formally be written as

S[ϕ] = ⟨ϕ| Ĥ |ϕ⟩ , (3.6)

so that it becomes relatively simple to see that it is invariant under the following infinitesimal
transformations

δε |ϕ⟩ = −ε̂ |ϕ⟩ , δεĤ = ε̂ † ◦ Ĥ + Ĥ ◦ ε̂ , (3.7)

where ε is another, arbitrary, differential operator. Assuming that the space of operators we
are working with possesses a trace, we can further re-write the action as

S[ϕ] = Tr
(
Ĥ ◦ |ϕ⟩⟨ϕ|

)
, (3.8)

that is the trace of the operator Ĥ composed with the projector |ϕ⟩⟨ϕ|. In this form, the
action can be more easily translated in terms of symbols, leading to

S[ϕ] =
∫
T ∗Rn

dnp dnx
(
H ⋆Wϕ

)
(x, p) (3.9)

where H(x, p) and Wϕ(x, p) are the symbols of the kinetic operator Ĥ and the projector
|ϕ⟩⟨ϕ|, also known as the Wigner function, respectively. The integration over the cotangent
bundle T ∗Rn defines a trace over the space of symbols, at least those which are compactly
supported or vanish at infinity sufficiently fast. Indeed, in this case one finds

Tr(f ⋆ g) =
∫
T ∗Rn

dnx dnp (f ⋆ g)(x, p) =
∫
T ∗Rn

dnx dnp f(x, p) g(x, p) = Tr(g ⋆ f) , (3.10)

for any symbols f and g, since all higher order terms in the star product are total derivatives
on T ∗Rn, and hence can be ignored for the aforementioned suitable class of symbols. The
transformation rule, in terms of symbols, becomes

δεH = ε† ⋆ H +H ⋆ ε , and δεWϕ = −ε ⋆ Wϕ −Wϕ ⋆ ε
† , (3.11)

under which the action transform as

δεS[ϕ] = −Tr
(
[H ⋆Wϕ , ε

†]⋆
)
= 0 , (3.12)

i.e. the action is left invariant as a consequence of the cyclicity of the trace.
We have seen in the previous section how to define a star-product and construct the

associated invariant trace via the FFS cocycle for any, possibly curved, manifold X so that
we only need to find a suitable generalization of the Wigner function to curved settings. One
can think of the Wigner function as a bilinear map

W : Fn ⊗ Fn −→ A2n , (3.13)

taking two elements of the Fock representation and constructing an element of the Weyl
algebra out of them. For our purpose, what matters is that it possesses the following couple
of properties (whose proof are recalled in appendix A).
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(i) First, it intertwines the left and right multiplication in the Weyl algebra with the Fock
action

F ∗W [Φ,Ψ] =W [ρ(F )Φ,Ψ] , W [Φ,Ψ] ∗ F † =W [Φ, ρ(F )Ψ] , (3.14)

for any element F (y, p) ∈ A2n and any pair of Fock space states Φ(y),Ψ(y) ∈ Fn.

(ii) Second, integrating it over momenta yields∫
Rn

dnp ∂k

∂pa1 . . . ∂pak

W [Φ,Ψ] = δk,0 Φ(y)Ψ(y) , (3.15)

for any Fock space elements Φ,Ψ ∈ Fn which are seen as embedded in the Weyl algebra
on the right hand side.

A first naive guess for a curved version Wϕ of the Wigner function associated with a
scalar field ϕ ∈ C∞(X) is to simply apply the above bilinear map to two copies of its lift
as covariantly constant sections of the Fock bundle, i.e.

Wϕ(x; y, p) :=W [Φ,Φ] =
∫

dnu e
1
ℏ p·uΦ

(
x; y + 1

2 u
)

Φ†
(
x; y − 1

2 u
)
. (3.16)

First of all, let us note that this is a covariantly constant section of the Weyl bundle. Indeed,
upon writing it as Wϕ = W [Φ,Φ] in order to highlight the fact that it is bilinear in the
covariantly constant section of the Fock bundle Φ, one finds that it verifies

1
ℏ
[A,Wϕ]∗ =

1
ℏ
A ∗W [Φ,Φ] +W [Φ,Φ] ∗

(1
ℏ
A

)†
=W

[
ρ

(1
ℏ
A)Φ,Φ

]
+W

[
Φ, ρ

(1
ℏ
A

)
Φ
]
,

(3.17)
where we used the properties (i). We can then use the covariant constancy of Φ, to show that

dWϕ +
1
ℏ
[A,Wϕ]∗ = 0 , (3.18)

i.e. our curved version the Wigner function Wϕ is a covariantly constant section of the Weyl
bundle. Moreover, properties (i) also ensure that Wϕ transforms as

δξ,wWϕ = 1
ℏ
[Wϕ, ξ]∗ − {Wϕ, w}∗ . (3.19)

which implies that its star-product with the covariantly constant lift F behaves as

δξ,w(F ∗Wϕ) =
[
F ∗Wϕ,

1
ℏ
ξ − w

]
∗
, (3.20)

under the gauge transformations of the system. As a consequence, the functional8

S[ϕ] = TrA(F ∗Wϕ) , (3.21)

is well-defined, being the trace of the star-product of two covariantly constant sections of the
Weyl bundle, as well as gauge invariant under all transformations listed above thanks to the

8Note that the dependence on conformal higher spin fields in the action (3.21) is a little subtle to read-off:
as explained in [21], they can be moved around between A and F via gauge transformations, which can
therefore encode field redefinitions.
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cyclicity of the FFS trace, which holds up to boundary terms. Let us remark that, contrary
to the action for CHS gravity which is expressed as the FFS trace of a symbol that dies off at
infinity both in spacetime and in the fiber/momenta directions [21], this is not necessarily the
case here: the p-dependency of the integrand may not allows us to discard boundary terms
for arbitrary gauge parameters. In other words, we expect that the gauge parameters ξ and
w should be restricted so as to ensure that the boundary terms appearing when checking the
cyclicity/gauge invariance of the FFS trace (see [21, appendix C]) can actually be neglected.
Modulo this subtlety, eq. (3.21) gives a manifestly covariant and higher-spin invariant form of
a coupling between the scalar field and a background of conformal higher-spin fields, which is
one of the main results of the paper. On the other hand, irrespectively of the action principle,
the equations of motion ρ(F )Φ

∣∣
y=0 = 0 are well-defined and, in particular, gauge invariant.

As it turns out, in the case where A is linear in p, this expression simplifies to

S[ϕ] =
∫
X
dnx |e|

∫
T ∗

xX
dnp W [ρ(F )Φ,Φ]

∣∣
y=0 =

∫
X
dnx |e|ϕ∗(x) (f̂ϕ)(x) , (3.22)

as a consequence of the properties (i) and (ii) of the Wigner function, and the fact that
the trace takes the form (2.30).

4 Conformally-coupled scalar and higher-spins

Let us give two examples to show how the formalism and the action (3.21) can reproduce
what it has to, e.g. the coupling to low-spin background fields and to higher-spin background.
The latter problem was studied in d = 4 for a coupling to a spin-three field in [32].

4.1 Conformally-invariant Laplacian

As an illustration, let us show how we can recover the conformally-coupled scalar. This boils
down to identifying the symbol of the conformal Laplacian,

∇2 − n− 2
4(n− 1) R , (4.1)

which we can do in a couple of ways: either by working out its quantization, or by imposing
that it transforms correctly under the above gauge transformations.

Let us start with the former. Considering that the quantization map yields p̂a = −ℏ∇a,
we should consider the Ansatz f = p2 + αR for the symbol of the conformal Laplacian,
where α is a numerical coefficient to be fixed. It is then enough to compute the lift of this
symbol, up to order 2 in y,

F = τ(p2 + αR) = p2 + 1
3 y

aybRa
c
b
d pcpd + α

(
R+ ya∇aR+ 1

2 y
ayb∇a∇bR

)
+ . . . (4.2)

as well as that of the scalar field ϕ at order 2 in y given previously in (2.44), and use

ρ(p2)|y=0 = ℏ2 ∂2
y , ρ(yaybpcpd)|y=0 = ℏ2

2 δ(a
c δ

b)
d , (4.3)

to finds that the quantization of the Ansatz f reads

f̂ϕ = ℏ2
(
∇2 +

[
α

ℏ2 −
1
4

]
R

)
ϕ , (4.4)
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which implies

α = ℏ2

4(n− 1) =⇒ f = p2 + ℏ2

4(n− 1) R , (4.5)

upon imposing that it reproduces the conformal Laplacian. Note that this computation also
shows that, perhaps contrary to one’s intuition, the symbol of the ordinary Laplacian is not
p2, but should instead be corrected by a curvature dependent term ℏ2

4 R.
Let us now turn our attention to the symmetries of our action, focusing on Weyl symmetry.

Having constructed the 1-form connection A from a torsionless and metric connection, its
coefficients when expanded order by order in y are tensors built out of the vielbein and its
derivatives only, and hence have a definite behavior under Weyl transformations9

δWeyl
σ ea = σ ea . (4.6)

These Weyl transformations can be realized as gauge symmetries of A, by suitably choosing
the gauge parameters ξWeyl, wWeyl ∈ Γ(WX). In other words, we can embed the geometric
transformations that are Weyl rescalings, as gauge transformations of the system of fields
A, F and Φ (which are affected by both types of parameters, ξ and w). To explicitly find
the gauge parameter ξWeyl, one needs to solve the condition

dξWeyl +
1
ℏ
[A, ξWeyl]∗

!= δWeyl
σ A , (4.7)

for ξWeyl in terms of σ. This can be done as before, namely order by order in y, using the
contracting h. More precisely, for ξWeyl =

∑
k≥1 ξ(k) with ξ(k) of order k in y and linear

in p, one finds the recursion

ξ(k+1) = h

(
∇ξ(k) +

1
ℏ

k∑
l=2

[A(l), ξ(k+1−l)]∗ − δWeyl
σ A(k)

)
, (4.8)

which yields

ξWeyl = −σ y · p−∇aσ
(
ya y · p− 1

2 y
2 pa

)
− 1

3 ∇a∇bσ
(
yayb y · p− 1

2 y
2 ya pb

)
+ . . . , (4.9)

where as usual, the dots denote higher order terms in y. Now we can focus on the symbol
of our differential operator, that we assume to be of the form p2 + αR for some coefficient
α to be fixed by requiring that, here again, Weyl transformation can be implemented as
gauge symmetries. In other words, we want to impose(1

ℏ
[F, ξWeyl]∗ + {F,wWeyl}∗

) ∣∣
y=0

!= δWeyl
σ

(
p2 + αR

)
, (4.10)

with F = τ(p2 + αR) its covariantly constant lift, and where the gauge parameter wWeyl is
assumed to be proportional to the lift of the Weyl parameter σ, i.e.

wWeyl = β τ(σ) ≡ β
∑
k≥0

1
k! y

a1 . . . yak ∇a1 . . .∇ak
σ , (4.11)

9For instance, recall that the spin-connection and Riemann tensor transforms as δWeyl
σ ωa,b = 2 e[a ∇b]σ

under a Weyl rescaling.
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with β a coefficient to be determined as well. Note that at this point, the choice of wWeyl
is merely an educated guess: it should be covariantly constant, and related to the Weyl
parameter σ, hence this is the simplest option — which turns out to be the correct one as
we shall see. Using the previous formulae, one finds on the one hand,

(
δξWeyl,wWeylF

)∣∣
y=0 = 2σ (β + 1) p2 + ℏ2

2 β□σ + 2σ αβ R , (4.12)

while on the other hand

δWeyl
σ (p2 + αR) = −2α

(
σ R+ (n− 1)□σ

)
, (4.13)

which implies

β = −1 , and α = ℏ2

4(n− 1) , (4.14)

thereby fixing the symbol of the conformal Laplacian in accordance with the previous
discussion.

As a final consistency check, one can compute the gauge transformation of the lift of the
scalar ϕ generated by the parameter ξWeyl and wWeyl identified previously, and recover

δξWeyl,wWeylΦ
∣∣
y=0 = −n− 2

2 σ ϕ , (4.15)

as expected for a conformally-coupled scalar field.

4.2 Higher-spin background

Let us recall that A is kept purely gravitational and background conformal higher-spin fields
are placed into F as an uplift of10

f = p2 + ℏ2

4(n− 1) R+
∑
s>2

ha1...as(x) pa1 . . . pas . (4.16)

It is instructive to work out the gauge transformations of this symbol generated by the
gauge parameters

ξ = ξWeyl − τ
(∑
s>2

ξa1...as−1(x) pa1 . . . pas−1

)
, (4.17)

w = wWeyl + τ
(∑
s>2

σa1...as−2(x) pa1 . . . pas−2

)
, (4.18)

that is, we simply append to the gauge parameters identified previously the covariantly
constant uplift of arbitrary monomials in p. Indeed, in this manner the gauge variation
of A is unaffected by this new term,

δξA ≡ δξWeylA , (4.19)

10If one wants to consider all integer spins, a spin-one has to be included, which is naively missing above.
Alternatively, it is possible to truncate the system to even spins only.
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and thus boils down to a Weyl transformation of the gravitational sector. It does, however,
affect the gauge transformation of f . Computing δξ,wF |y=0 and extracting the piece of
order s > 2 in p, one finds

δξ,σh
a1...as = 2∇(a1ξa2...as) + 2 η(a1a2σa3...as) + (s− 2)σ ha1...as + . . . (4.20)

where the dots denote curvature corrections. The first two terms correspond to the ‘naive’
covariantization of the linearized gauge transformations initially proposed by Fradkin and
Tseytlin for conformal higher-spin fields, i.e. the flat space ones wherein partial derivatives are
replaced by covariant derivatives. The third term tells us that the Weyl weight of a conformal
higher-spin field with spin s is s − 2, which is also in accordance with expectations [27].11

This can be seen as another sign of relevance for this framework in the problem of formulating
CHS gravity in a manifestly covariant manner.

Higher-spin currents. As a final application, we can derive the higher-spin currents for
an arbitrary curved spacetime. To do so, let us split the previous symbol (4.16) into that
of the conformal Laplacian and the conformal higher-spin fields,

f = p2 + ℏ2

4(n− 1) R+ fhs(x, p) , fhs(x, p) :=
∑
s>2

ha1...as pa1 . . . pas , (4.21)

according to which the action obtained from f is the sum of the conformally-coupled scalar
and a Noether coupling part,

SNoether[h, ϕ] =
1
2 TrA(Fhs ∗Wϕ) =

1
2

∫
X
dnx |e|ϕ∗

[
ρ(Fhs)Φ

]
|y=0 , (4.22)

corresponding to the contribution of the higher-spin currents coupled to higher-spin sources/
background fields ha1...as . In other words, we can identify the higher-spin current by putting
the above functional in the form

SNoether[h, ϕ] =
1
2

∫
X
dnx |e|

∑
s>2

ha1...as Ja1...as(ϕ) , (4.23)

where the spin s current Ja1...as here is by definition bilinear in the scalar field ϕ.
This computation involve the action of the quantization map on the lift of fhs, which is

of arbitrary order in p. As a consequence, the relevant terms to compute in this lift, meaning
those that will contribute to the final result after applying the quantization of Fhs to Φ and
setting y = 0, are those that are y-independent or contain exactly the same number of y’s
and p’s. Indeed, the quantization map applied to a monomial of order l in y and m in p reads

ρ(ya1 . . . yal pb1 . . . pbm) =

(−ℏ)m
min(l,m)∑
k=0

1
2k

m!
(m− k)!

l!
k!(l − k)! y

(a1 . . . yal−k δ
al+1−k

(b1
. . . δ

al)
bk

∂

∂ybk+1
. . .

∂

∂ybm) ,
(4.24)

11Note that the Weyl weight of a metric-like field ϕµ1...µs is 2s − 2, e.g. it is 2 for metric gµν . Its fiber
version, to which ha1...as should be compared to, is obtained by contracting it with s inverse vielbeins eµ

a ,
giving Weyl weight of s − 2.
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so that when setting y = 0, only monomials with l ≤ m, i.e. less y’s than p’s, remain. This
would be difficult to compute for arbitrary spin s > 2, so we will focus on the curvature
independent part of the current. The relevant part of the lift of fhs is therefore given by
its ‘covariant Taylor series’,

Fhs =
∑
k≥0

1
k! y

a1 . . . yak ∇a1 . . .∇ak
fhs + . . . , (4.25)

where the dots denote curvature corrections. Applying the quantization map on this (partial)
lift, and evaluating the result at y = 0, one ends up with

ρ(Fhs)|y=0 =
∑
s>2

(−ℏ)s
s∑

k=0

1
2k

s!
k!(s− k)! ∇a1 . . .∇ak

ha1...ak ak+1...as
∂

∂yak+1
. . .

∂

∂yas
+ . . . .

(4.26)

Under the same restrictions, the lift of the scalar field reads

Φ =
∑
k≥0

1
k! y

a1 . . . yak ∇a1 . . .∇ak
ϕ+ . . . , (4.27)

so that,

ρ(Fhs)Φ|y=0 =
∑
s>2

(−ℏ)s
s∑

k=0

1
2k

s!
k!(s− k)! ∇a1 . . .∇ak

ha1...ak ak+1...as∇ak+1 . . .∇asϕ+ . . . ,

(4.28)

again keeping only curvature independent terms. Upon integration by parts, one finds

Ja1...as =
(
− ℏ

2

)s s∑
k=0

(−1)k s!
k!(s− k)! ∇(a1 . . .∇ak

ϕ∗∇ak+1 . . .∇as)ϕ+ . . . , (4.29)

as one may have expected. This the covariantized version of the well-known ‘dipole’ generating
function ϕ∗(x− y)ϕ(x+ y) that yields conserved quasi-primary (higher-spin) currents with
an admixture of descendants in the flat space. The curvature corrections can systematically
be worked out, see [32] for the spin-three example in the bottom-up approach. However, it
is clear that the higher the spin the more non-linearities in the Riemann tensor R and its
derivatives will enter. Therefore, eq. (3.21) seems to be the most compact way of writing
the coupling of the free scalar field to a higher-spin background.

First order correction in curvature. If we focus on the spin-3 case, then we only need to
compute the lift of fs=3 = habc papbpc to order 3. Pushing the computation of the lift of any
symbol f(x, p) presented in (2.23) to the next order, thanks to the recursion (2.22), yields

τ(f) =
(
1 + ya∇a +

1
2 y

ayb
[
∇a∇b +

1
3 Rda

c
b pc

∂

∂pd

]
(4.30)

+ 1
6 y

aybyc
[
∇a∇b∇c +

1
2 ∇aRdb

e
c pe

∂

∂pd
+Rda

e
b pe

∂

∂pd
∇c
]

(4.31)

+ ℏ2

12 y
a
[
Rab

d
c

∂2

∂pb∂pc
∇d −

1
4 ∇bRac

e
d pe

∂3

∂pb∂pc∂pd

]
+ . . .

)
f , (4.32)
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and applying it to fs=3, one finds that Fs=3 = τ(fs=3) is given by

Fs=3 =
(
habc+yi∇ihabc+

1
2 y

iyj
[
∇i∇jhabc+Rdiajhbcd

]
(4.33)

+ 1
6 y

iyjyk
[
∇i∇j∇khabc+

3
2∇iRdj

a
k h

bcd+3Rdiaj∇khbcd
]
+ . . .

)
papbpc (4.34)

+ ℏ2

2 yi
[
Rib

d
c∇dhabc−

1
4∇bRic

a
d h

bcd
]
pa+ . . . , (4.35)

where the dots denote terms of order 4 or higher, and its quantization evaluated at y = 0 reads

− 1
ℏ3 ρ(Fs=3)|y=0 = habc

∂3

∂ya∂yb∂yc
+ 3

2 ∇ah
abc ∂2

∂yb∂yc
+ 1

4
[
3∇a∇bhabc −Rab habc

] ∂

∂yc

(4.36)

+ 1
8
[
∇a∇b∇chabc −∇aRbc habc −Rab∇chabc

]
. (4.37)

Similarly, we can use (2.42) to compute the lift of the scalar field ϕ to order 3,

Φ = ϕ+ya∇aϕ+
1
2 y

ayb
(
∇a∇b−

1
6 Rab

)
ϕ+ 1

6 y
aybyc

(
∇a∇b∇c−

1
4 ∇aRbc−

1
2 Rab∇c

)
ϕ+ . . . ,

(4.38)
so that one finds

− 1
ℏ3 ρ(Fs=3)Φ|y=0 = habc

(
∇a∇b∇c −

3
8 ∇aRbc −

3
4 Rab∇c

)
ϕ+ 3

2 ∇ch
abc
(
∇a∇b −

1
4 Rab

)
ϕ

+ 3
4 ∇a∇bh

abc∇cϕ+ 1
8 ∇a∇b∇ch

abc ϕ . (4.39)

which leads to the following expression

Jabc = −
ℏ3

8
(
∇(a∇b∇c)ϕϕ∗ − 3∇(a∇bϕ∇c)ϕ∗ + 3∇(aϕ∇b∇c)ϕ∗ − ϕ∇(a∇b∇c)ϕ∗ (4.40)

− 3R(ab∇c)ϕϕ∗ + 3R(ab ϕ∇c)ϕ∗
)
, (4.41)

for the spin-3 current. More generally, the currents up to first order in the curvature tensor
(and its derivatives) are obtained from the generating function

J (x|u) = e−
ℏ
2 u·[∇1−∇2]

(
1− ℏ2

8 sinhc
(ℏ
4 u · ∇3

)
Rab(x3)uaub +O(R2)

)
ϕ(x1)ϕ∗(x2)

∣∣
xi=x

,

(4.42)
where

J (x|u) :=
∑
s≥0

(−ℏ)s
2s s! Ja1...as(x)ua1 . . . uas , sinhc(z) := sinh(z)

z
, (4.43)

and ∇i denotes the covariant derivative with respect to xi (see appendix D for the derivation
of this formula). Let us remark here that, in order to make contact with, say the computation
of [32] for the spin-three current or even the standard computation of the energy-momentum
tensor, one should find the correct field redefinition bringing the components of monomials in
p into the appropriate field frame (combination of conformal higher spin fields and derivatives
thereof), see e.g. [2, appendix F] and [3] for an instance of the same issue around a flat
background.
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5 Discussion

The present paper is a natural continuation of the quest to covariantize the construction of
conformal higher-spin gravities started in [21]. Now, both the action for conformal higher-
spin gravity SCHS [hs] and the coupling of the scalar matter to the higher-spin background,
⟨Φ| Ĥ[ϕs] |Φ⟩, can be written in a covariant way. The result completes the study initiated
in [32], where the mixing between covariant spin-three and spin-one currents that couple to
background fields have been discussed in n = 4. In addition, one can consider the matter
coupled conformal higher-spin gravity, see [19] for some amplitudes in this theory over flat
background. Note, however, that while the scalar matter can be coupled to a higher-spin
background for any n the conformal anomaly recipe gives SCHS [hs] only for n even.

The results open up the possibility of considering more general matter fields in the
relevant higher-spin background, such as the higher-derivative scalar fields (also known as
higher order singletons [51]), or spinor (and its higher-derivative counterpart), see [52]. The
latter would in principle require the use of the supersymmetry version of the FFS cocycle, i.e.
the representative of the cohomology class of the Clifford-Weyl algebra dual to the unique
Hochschild homology class of the same algebra [53].

Another possible application of the results is to conformally-invariant differential operators.
Conformal geometry (in the sense of gauge symmetries realized by diffeomorphisms and
Weyl transformations) is a part of the higher-spin system. As we showed, one can derive
the conformal Laplacian as a particular instance of the scalar field coupled to the conformal
gravity background. Generalizations such as Paneitz [54] or Fradkin-Tseytlin [55] operators
and GJMS operators [56] can also be recovered by considering F = (p2)k + . . . that would
lead to operators of type (∇2)k + . . . , i.e. starting with the kth power of the Laplacian,
and corrected by curvature terms.

It would also be interesting to apply the deformation quantization techniques to the
self-dual conformal higher-spin gravity [57, 58] that is natural to formulate on twistor space.
Here, the underlying space CP3 is already symplectic. The twistor description of low-spin
fields, s = 1, 2, requires usual (holomorphic) connections and vector-valued one-forms, which
can be understood as differential operators of zeroth and first order. An extension to higher-
spin calls for differential operators of arbitrary order, i.e. to the quantization of the cotangent
bundle again (see also [59] for additional discussions of the quantization of the cotangent
in relation with the definition of higher-spin diffeomorphisms).

Let us also note that the present paper bridges a gap in the phase space approach
to quantum mechanics. Indeed, one can attempt to extend the Fedosov construction to
accommodate all the usual ingredients required in quantum mechanics. The trace is, obviously,
given by the Feigin-Felder-Shoikhet cocycle; wave functions can be understood as covariantly
constant elements in the Fock representation obtained via the quantization map. Wigner
function takes exactly the same form as in the flat space, but in the fiber. The basic
ingredients above do not rely on the phase space being a cotangent bundle and should
extend to arbitrary symplectic manifolds (a polarization is needed to define the Fock space).
This seems to depart from the usual approach of symbol calculus on curved background,
e.g. [60–66] and references therein.

Finally, it would be interesting to construct the 3d matter-coupled conformal higher-spin
gravity, where the ‘dynamics’ of conformal higher-spin fields is given by the Chern-Simons
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action (as there is no conformal anomaly in 3d). Such a theory, namely the one based on
fermionic matter, can be seen to exist with the help of the argument based on the parity
anomaly [10] (see e.g. [67–69] for original papers on the derivation of Chern-Simons theory
from the parity anomaly and [70] for the spin-three case). An alternative idea along the
AdS/CFT correspondence lines was recently explored in [71, 72].
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A A brief review of Weyl calculus

Let us give a brief summary of the definition and construction of the Wigner function in
flat space (following e.g. the textbook [73], or the papers [2, 3, 74, 75]).

Quantization map in flat space. The deformation quantization of R2n ∼= T ∗Rn, amounts
to defining an isomorphism

C∞(T ∗Rn) D(Rn) ,∼ (A.1)

where D(Rn) stands for the space of differential operators on Rn. This map is referred to as
a ‘quantization map’ since, as we will recall shortly, it allows one to define a star-product
on the algebra of functions T ∗Rn, and hence a quantization thereof. To do so, we can take
advantage of the Fourier transform in flat space, that we denote by

(Ff)(u, v) :=
∫
R2n

dnx dnp
(2πℏ)n f(x, p) e−

i
ℏ (x·u+p·v) , (A.2)

for a symbol f(x, p). Given a choice of quantization for the phase space coordinates xµ → x̂µ

and pµ → p̂µ, where hatted symbols denote the corresponding operator, we want to associate
Schematically, we want to write something like “f̂(x̂, p̂) ∼ f(x, p) δ(x− x̂) δ(p− p̂)”, where

f(x, p) is the symbol of the operator f̂ . This sketchy formula can be given a precise sense,
using the Fourier representation of the Dirac distribution, leading to

f̂(x̂, p̂) =
∫
R2n

dnu dnv
(2πℏ)n (Ff)(u, v) e

i
ℏ (u·x̂+v·p̂) , (A.3)

and which is called the Weyl ordering of operators. Note that the exponential operator
can be re-written as

exp
(
i

ℏ
(u · x̂+ v · p̂)

)
= e

i
2ℏ u·v exp

(
i

ℏ
u · x̂

)
exp

(
i

ℏ
v · p̂

)
, (A.4)
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since we assume [x̂µ, p̂ν ] = iℏ δµν . Choosing the usual coordinate representation,

x̂µ = xµ , p̂µ = −iℏ ∂µ , (A.5)

the action of this operator on a wave function φ(x) is given by

(f̂ φ)(x) =
∫ dnu dnv

(2πℏ)n (Ff)(u, v) e
i

2ℏ u·v e
i
ℏ u·x φ(x+ v) (A.6)

=
∫ dnu dnv

(2πℏ)n
dnx′ dnp
(2πℏ)n f(x′, p) e−

i
ℏ p·v e

i
ℏ u·(x−x

′+ v
2 ) φ(x+ v) (A.7)

=
∫ dnv dnp

(2πℏ)n f

(
x+ v

2 , p

)
e

i
ℏ p·(x−v) φ(v) , (A.8)

where the first equation is obtained using (A.4) and the action of the translation operator,
the second line is merely the definition of the Fourier transform, and the last one is the
result of integrating over u, which gives a Dirac distribution, and then evaluating it by
integrating over x′. Upon Taylor expanding f and integrating by part, one can put this
formula into an operatorial form

(f̂φ)(x) = f(x, p) exp
(
−iℏ
←−
∂

∂p
·
[
1
2

←−
∂

∂x
+
−→
∂

∂x

])
φ(x)

∣∣
p=0 . (A.9)

The Moyal-Weyl star-product can be recovered from the composition of the two operators
associated with two symbols via the above symbol, or quantization, map. More precisely, it
can be defined as the symbol of the composition of the quantization of two symbols, i.e.

f̂ ◦ ĝ = f̂ ⋆ g . (A.10)

To do so, let us start by recalling that the action of a symbol f given above exhibits the
kernel of that associated operator, namely

(f̂ ϕ)(x) =
∫
Rn

dnq Kf (x, q)ϕ(q) , with Kf (x, q) :=
∫
Rn

dnp
(2πℏ)n f

(
x+ q

2 , p

)
e

i
ℏ p·(x−q) .

(A.11)
The symbol of the operator f̂ can be extract back from its kernel, via its inverse transform

f(x, p) =
∫
Rn

dnq Kf

(
x+ 1

2 q, x−
1
2 q
)
e−

i
ℏ p·q , (A.12)

and therefore, using this together with the fact that the integral kernel of the composition
of two operators is given by

K
f̂◦ĝ(x, x

′) =
∫
Rn

dnq K
f̂
(x, q)Kĝ (q, x

′) , (A.13)

one ends up with

(
f⋆g

)
(x, p) = 1

(πℏ)2n

∫
dnv1 dnv2 dnw1 dnw2 e

2i
ℏ (v1·w2−v2·w1) f(x+v1, p+w1) g(x+v2, p+w2) .

(A.14)
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Upon Taylor expanding the two functions f and g around (x, p), and integrating by part, one

(f ⋆ g)(x, p) = f(x, p) exp
(
iℏ
2

[←−
∂

∂x
·
−→
∂

∂p
−
←−
∂

∂p
·
−→
∂

∂x

])
g(x, p) , (A.15)

Note that the Moyal-Weyl star-product is Hermitian, meaning that it satisfies

(f ⋆ g)∗ = g∗ ⋆ f∗ , (A.16)

where (−)∗ denotes the complex conjugation, i.e. the latter is an anti-involution of the
Weyl algebra.

One can think of the quantization map as providing a representation of the Weyl algebra:
identifying the latter as the subalgebra of polynomial functions on T ∗Rn, wave functions which
are nothing but functions on Rn, the base of the cotangent bundle T ∗Rn, are acted upon by
the former via the quantization map. This subspace can be thought of as a Fock space, which
carries a representation of the Weyl algebra as can be seen from the defining relation (A.10).

The integration over the cotangent bundle T ∗Rn defines a trace over the space of symbols,
at least those which are compactly supported or vanish at infinity sufficiently fast. Indeed,
in this case one finds

Tr(f ⋆ g) =
∫
T ∗Rn

dnx dnp (f ⋆ g)(x, p) =
∫
T ∗Rn

dnx dnp f(x, p) g(x, p) = Tr(g ⋆ f) , (A.17)

for any symbols f and g, since all higher order terms in the star product are total derivatives
on T ∗Rn, and hence can be ignored for the aforementioned suitable class of symbols.

Wigner function in flat space. Having worked out how to translate the action and
composition of differential operators in terms of their symbol, as well as their trace, we can
now turn our attention to the computation of matrix elements for these operators, expressing
the transition probability from one state to another. Since the latter can be expressed as

⟨ψ| Ĥ |ϕ⟩ = Tr
(
Ĥ ◦ |ϕ⟩⟨ψ|

)
, (A.18)

we have everything we need to derive such quantities using symbols, provided that we know
that of the projector |ϕ⟩⟨ψ|. In light of the relation between the symbol of an operator
and its integral kernel, we may first focus on that of the projector. This integral kernel
is easily computed,

(
|ϕ⟩⟨ψ|φ⟩

)
(x) != ϕ(x)

∫
Rn

dnq ψ∗(q)φ(q) =⇒ K|ϕ⟩⟨ψ|(x, q) ≡ ϕ(x)ψ∗(q) , (A.19)

which leads to

W [ϕ, ψ](x, p) =
∫
Rn

dnq ϕ
(
x+ q

2

)
ψ∗
(
x− q

2

)
e−

i
ℏ p·q , (A.20)

for its symbol. It obey the following useful properties

ξ ⋆ W [ϕ, ψ] =W [ξ̂ ϕ, ψ] , W [ϕ, ψ] ⋆ ξ† =W [ϕ, ξ̂ ψ] , (A.21)
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in accordance with the fact that it is the symbol of the projector |ϕ⟩⟨ψ|, and∫
Rn

dnp W [ϕ, ψ](x, p) = ϕ(x)ψ∗(x) . (A.22)

Now we can replace the right hand side of (A.18) with its symbol counterpart, leading to

Tr(H ⋆W [ϕ, ψ]) = Tr
(
W [Ĥϕ, ψ]

)
=
∫
T ∗Rn

dnx dnp W [Ĥϕ, ψ] =
∫
Rn

dnx ψ∗(x) (Ĥϕ)(x) ,
(A.23)

upon using the previously listed properties of W [ϕ, ψ], thereby reproducing the expected
result for the quantity ⟨ψ| Ĥ |ϕ⟩ from a quantum mechanical point of view. The Wigner
function Wϕ associated with a wave function ϕ is the symbol of the projector |ϕ⟩⟨ϕ|, i.e.

Wϕ(x, p) :=W [ϕ, ϕ](x, p) ≡
∫
Rn

dnq e−
i
ℏ q·p ϕ

(
x+ q

2

)
ϕ

(
x− q

2

)
, (A.24)

whose integral over p is nothing but the probability density defined by ϕ.
To conclude this appendix, let us prove the identity (A.22) and a small variation on it

(the intertwining property (A.21) can be proved by direct computation using the integral
formulae for the star-product and the quantization map), by expressing the Wigner function
in terms of star-product. To achieve this, recall that the star-product of a phase factor e i

ℏ q·p,
where q is a fixed parameter, with any symbol f(x, p) yields

e
i
ℏ q·p ⋆ f(x, p) = e

i
ℏ q·pf

(
x+ q

2 , p
)
, f(x, p) ⋆ e

i
ℏ q·p = e

i
ℏ q·pf

(
x− q

2 , p
)
, (A.25)

i.e. it implements translations in x up to a phase.12 Integrating these formulae over q yields

(
f⋆δp

)
(x, p) =

∫
Rn

dnq e−
i
ℏ q·p f

(
x+ q

2 , p
)
,

(
δp⋆f

)
(x, p) =

∫
Rn

dnq e−
i
ℏ q·p f

(
x− q

2 , p
)
,

(A.26)
where δp is the Dirac distribution in the space of momenta pa. With these simple identities
at hand, one finds

ϕ ⋆ δp ⋆ ψ
∗ =

∫
Rn

dnq ϕ(x) ⋆
[
e−

i
ℏ q·pψ∗

(
x− 1

2 q
)]

(A.27)

=
∫
Rn

dnq
[
ϕ(x) ⋆ e−

i
ℏ q·p

]
ψ∗
(
x− 1

2 q
)

(A.28)

=
∫
Rn

dnq ϕ
(
x+ q

2

)
ψ∗
(
x− q

2

)
e−

i
ℏ p·q =W [ϕ, ψ] , (A.29)

where to pass from the first to the second line, one should notice that since ϕ only depends
on x, its star-product with any other Weyl algebra element will produce only derivatives
with respect to p on the latter.

12To be more precise, the action of translation on elements depending on x only is generated by

e
i
ℏ q·p ⋆ ϕ(x) ⋆ e−

i
ℏ q·p = ϕ(x + q) ,

which can be recovered from the formulae (A.25).
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Now this expression makes it relatively easy to evaluate the integral over momenta of
the Wigner function and its derivatives with respect to p. Indeed, since the only term of this
star-product that depends on momenta is the Dirac distribution, the result is of the form

ϕ ⋆ δp ⋆ ψ
∗ ∼

∑
k,l≥0

∂kxϕ× ∂k+l
p δ(p)× ∂lxψ∗ , (A.30)

so that the integral over p schematically reads∫
dnp W [ϕ, ψ] ∼

∑
k,l≥0

∫
dnp ∂k+l

p δ(p)× (∂kxϕ∂lxψ∗) , (A.31)

which identically vanishes for k + l > 0 since both ϕ and ψ do not depend on p, and
yields (A.22) for k = 0 = l. On top of that, since taking partial derivative with respect to x
or p commutes with the star-product, the derivatives of the Wigner function with respect
to p are of the form ∂kpW [ϕ, ϕ] ∼ ϕ ⋆ ∂kp δp ⋆ ψ

∗, and hence the same argument shows that
the integral over the momenta identically vanishes,∫

Rn
dnp ∂k

∂pa1 . . . ∂pak

W [ϕ, ψ] = 0 , ∀k > 0 . (A.32)

B More on Weyl transformations

In this appendix, we provide more details concerning the computation of the gauge variation
of the symbol p2 + αR. For convenience, let us introduce the tensor

Pabcd := δc(aδ
d
b) −

1
2 ηab η

cd , (B.1)

with which the gauge parameter ξWeyl, identified in (4.9) as the one generating Weyl trans-
formations for the components of the 1-form connection A, is given by

ξWeyl = −σ y · p− Pbcad ybycpd∇aσ −
1
3 y

(a Pcdb)eycydpe∇a∇bσ + . . . , (B.2)

plus terms of order 3 and higher in y, but all linear in p. In order to compute the gauge
transformation of F = τ(p2 + αR) generated by ξWeyl, and wWeyl given by

wWeyl = β τ(σ) = β

(
1 + ya∇a +

1
2 ∇a∇b + . . .

)
σ , (B.3)

one needs to compute the star-product between elements of the Weyl algebra which are at
most quadratic in p. For our purpose, it will be enough to compute neglecting terms with
less, or as many, y’s than p’s. We therefore only need the lift of p2 and R up to order 2 in y,

τ(p2) = p2 + 1
3 y

aybRa
c
b
d pcpd+ . . . , τ (R) = R+ ya∇aR+ 1

2 y
ayb∇a∇bR+ . . . , (B.4)

which yields
1
ℏ
[
p2, ξWeyl

]
∗ = 2σ p2 + 4Pbcda yb pcpd∇aσ + 2

3 y
cyd Pcda(• pb) pa∇b∇•σ (B.5)

+ 4
3 y

(b Pdec)a ye pdpa∇b∇cσ + . . . (B.6)

= 2 p2
(
σ + ya∇aσ + 1

3 y
ayb∇a∇bσ

)
+ 2

3

(
y · p ya − 1

2 y
2 pa

)
pb∇a∇bσ + . . . ,

(B.7)
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while the commutator of ξWeyl with other terms in the lift of p2 or R do not contribute
terms with less y’s than p’s, and

{
τ(p2),wWeyl

}
∗ =

(
2
[
p2+ 1

3 Ra
c
b
d yayb pcpd

]
+ ℏ2

2

[
ηab+ 1

3 Ra
c
b
d yayb

]
∂2

∂ya∂yb

)
wWeyl+ . . .

(B.8)

= 2β p2
(
σ+ya∇aσ+

1
2 y

ayb∇a∇bσ
)
+ 2β

3 σRa
c
b
d yayb pcpd+β

ℏ2

2 □σ+ . . .

(B.9){
τ(R),wWeyl

}
∗
= 2τ(R)wWeyl = 2β σR+ . . . (B.10)

where again the dots denote terms of order 3 or higher in y. Putting everything together,
we end up with

δξWeyl,wWeylF = 2σ
[
(β + 1) p2 + αβ R

]
+ β

ℏ2

2 □σ + 2(β + 1) p2 ya∇aσ (B.11)

+ yayb pcpd

([
β + 2

3

]
ηcd δ×a δ

•
b +

2
3 η

×c δdaδ
•
b −

1
3 ηab η

×cη•d
)
∇×∇•σ + . . .

(B.12)

whose value at y = 0, which we gave earlier in (4.15), can be compared to the Weyl variation
of p2 + αR and imposing that the two agree implies

α = ℏ2

4(n− 1) , β = −1 . (B.13)

From now on, we will fix these values, and will denote the gauge transformations generated
by ξWeyl and wWeyl with the same symbol as for a Weyl transformation generated by σ,

δξWeyl,wWeyl ≡ δσ , (B.14)

since the two agree with the aforementioned values of α and β. As a final cross-check, let
us compute the Weyl transformation of the equation of motion

f̂ϕ =
(
□− n− 2

4(n− 1) R
)
ϕ , (B.15)

which, in our formalism, is obtained by evaluating

δσ
(
ρ(F ) Φ

)
= ρ(δσF ) Φ + ρ(F ) δσΦ , (B.16)

at y = 0, where recall that Φ = τ(ϕ) is the lift of ϕ as a flat section of the Fock bundle,
whose first order in y are given in (2.44). To compute the first term, we only need to use
the simple quantization formula (4.3), to find

ρ(δσF ) Φ|y=0 = ℏ2 n− 4
6

(
□σ + 1

n− 1 Rσ
)
ϕ . (B.17)
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To compute the second term, we should also use

ρ(F )|y=0 = ℏ2 ηab
∂2

∂ya∂yb
− ℏ2

12
n− 4
n− 1 R , (B.18)

as well as

1
ℏ
ρ(ξWeyl) = −

(
σ+ya∇aσ

) (
y · ∂
∂y

+ n

2

)
+ 1
2 y

2∇a ∂

∂ya
− n+ 1

3 yayb∇a∇bσ+
1
6 y

2 □σ+ . . . ,

(B.19)
and

ρ(wWeyl) = −
(
1 + ya∇a +

1
2

[
∇a∇b −

1
6 Rab

]
+ . . .

)
σ . (B.20)

Acting with the last two operators on the lift of ϕ, one finds

δσΦ = −ρ
(1
ℏ
ξWeyl + wWeyl

)
Φ (B.21)

= −n− 2
2 σ ϕ− n

2 y
a∇a(σ ϕ)−

n+ 2
4 yayb σ

(
∇a∇b −

1
6 R

)
ϕ (B.22)

− n

2 y
ayb∇aσ∇bϕ−

n− 2
6 yayb ϕ∇a∇bσ + 1

2 y
2
(
∇σ · ∇ϕ+ 1

6 ϕ□σ
)
+ . . . , (B.23)

which leads to

ρ(F ) δσΦ|y=0 = −ℏ2 n+ 2
2 σ□ϕ− ℏ2 n− 4

6 ϕ□σ + ℏ2 n(3n− 4) + 4
24(n− 1) σ Rϕ . (B.24)

Collecting the two terms (B.17) and (B.24), we finally obtain the action of a Weyl trans-
formation on the equation of motion,

δσ
(
f̂ϕ) = −n+ 2

2 σ

(
□− n− 4

4(n− 1) R
)
ϕ , (B.25)

as expected: we recover the fact that the conformal Laplacian sends functions of Weyl weight
−n−2

2 to functions of Weyl weight −n+2
2 .

C Feigin-Felder-Shoikhet invariant trace

The Hochschild cohomology of the Weyl algebra A2n with values in its linear dual A∗
2n is

known to be concentrated in degree 2n and to be one-dimensional [76]. A representative for
this cohomology class, that we will denote by Φ hereafter, was given explicitly by Feigin,
Felder and Shoikhet [22], and reads as follows:

Φ(a0|a1, . . . , a2n) =
∫
u∈∆2n

exp
[
ℏ

∑
0≤i<j≤2n

(1
2 + ui − uj

)
πij

]
det

∣∣ ∂
∂pIa

,
∂

∂yaI

∣∣
I=1,...,2n (C.1)

× a0(y0, p0) a1(y1, p1) . . . a2n(y2n, p2n)|yk=0,

where ∆2n is the standard 2n-simplex which can be defined as

∆2n =
{
(u1, . . . , u2n) ∈ R2n | u0 ≡ 0 ≤ u1 ≤ u2 ≤ · · · ≤ u2n ≤ 1

}
, (C.2)
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and
πij :=

∂

∂yai

∂

∂pja
− ∂

∂pia

∂

∂yaj
, (C.3)

and the determinant is taken over the 2n× 2n matrix whose entries are the operators ∂
∂pI

a

and ∂
∂ya

I
where the index I runs over 1 to 2n, so that the argument a0 remains unaffected

by this determinant operator.
In practice, we need only the Chevalley-Eilenberg cocycle obtained from Φ by skew-

symmetrisation of its arguments,13 which we will denote by,

[Φ](a0|a1, . . . , a2n) =
∑
σ∈S2n

(−1)σ Φ(a0|aσ1 , . . . , aσ2n) , (C.4)

where (−1)σ denotes the signature of the permutation σ. The n-cochain defined by

µ(a0|a1, . . . , an) :=
1
n! ϵb1...bn [Φ](a0|yb1 , . . . , ybn , a1, . . . , an) , (C.5)

is almost a Chevalley-Eilenberg cocycle, in the sense that it satisfies
n∑
i=0

(−1)i µ
(
[a−1, ai]∗|a0, . . . , an

)
+

∑
0≤i<j≤n

(−1)i+j µ
(
a−1|[ai, aj ]∗, a0, . . . , an

)
= ∂

∂pa
φa(a−1|a0, . . . , an) ,

(C.6)

where

φa(a−1|a0, . . . , an) =
1

(n− 1)! ϵab1...bn−1 [Φ](a−1|yb1 , . . . , ybn−1 , a0, . . . , an) , (C.7)

i.e. it verifies the cocycle condition modulo a total derivative in p. As a first step towards
simplifying the expression of µ, let us note that

det
∣∣ ∂
∂yaI

,
∂

∂pIa

∣∣ = ∑
σ∈Sn|n

(−1)σ ϵa1...an
∂

∂ya1
σ1
. . .

∂

∂yan
σn

ϵb1...bn

∂

∂p
σn+1
b1

. . .
∂

∂pσ2n
bn

(C.8)

where Sn|n denotes the set of permutations of 2n elements which preserve the order of the first n
and the last n elements separately, i.e. σ1 < σ2 < · · · < σn and σn+1 < σn+2 < · · · < σ2n, and

1
n! ϵa1...an

∑
σ∈S2n

(−1)σ ya1
σ1 . . . y

an
σn
a1(yσn+1 , pσn+1) . . . an(yσ2n , pσ2n) (C.9)

= ϵa1...an

∑
σ∈Sn|n

(−1)σ ya1
σ1 . . . y

an
σn

∑
τ∈Sn

(−1)τ aτ1(yσn+1 , pσn+1) . . . aτn(yσ2n , pσ2n) ,

so that, put together, these two formulae yield

det
∣∣ ∂
∂yaI

,
∂

∂pIa

∣∣( 1
n! ϵa1...an

∑
σ∈S2n

(−1)σ ya1
σ1 . . . y

an
σn
a1(yσn+1 , pσn+1) . . . an(yσ2n , pσ2n)

)
(C.10)

= (2n)!
∑

{i1<···<in}
⊂{1,...,2n}

∑
σ∈Sn

(−1)σ ϵa1...an

∂aσ1

∂pa1
(yi1 , pi1) . . .

∂aσn

∂pan

(yin , pin) , (C.11)

13Recall that the skew-symmetrisation map is a morphism of complexes between the Hochschild complex of
an associative algebra, and the Chevalley-Eilenberg of its commutator Lie algebra.
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where the first sum is taken over all ordered subsets of n integers in the set {1, . . . , 2n}.
We are now in position of writing down the cochain µ: for any a0, a1, . . . , an ∈ A2n, it is
given explicitly by

µ(a0|a1, . . . , an) = (2n)!
∑
σ∈Sn

(−1)σ
∫
u∈∆2n

D(u; a0, aσ1 , . . . , aσn)|y=0 , (C.12)

where

D(u;−) =
∑

f∈∆([n],[2n])
exp

[
ℏ

∑
0≤i<j≤n

(1
2 +uf(i)−uf(j)

)
πij

]
ϵa1...an

(
1⊗ ∂

∂pa1
⊗· · ·⊗ ∂

∂pan

)
,

(C.13)
and

∆([k], [l]) :=
{
f : {1, 2, . . . , k} −→ {1, 2, . . . , l} | f(i) < f(j) , 1 ≤ i < j ≤ k

}
(C.14)

denotes the set of order-preserving maps from the set [k] of the first k integers, to the set [l]
of the first l integers. Note that by convention, we put f(0) = 0 and u0 = 0.

Trace on the deformed algebra of functions. Suppose that a1, . . . , an are linear in p, and
write ∂a

∂pb
= ab(y) for their derivative with respect to p. Then the above operator collapses to

D(u; a0, a1, · · · , an)

=
∑

f∈∆([n],[2n])
exp

[
ℏ

n∑
i=1

(
uf(i) −

1
2

)
∂

∂pa

∂

∂yai

]
a0(y, p)× ϵb1...bn a

b1
1 (y1) . . . abn

n (yn) ,

(C.15)

thereby exhibiting a clear distinction between the arguments: the zeroth one will only receive
derivative with respect to p, while the remaining n arguments will only receive derivatives
with respect to y. Now consider the case where a0 = F (y, p), and all other arguments are
equal to the Fedosov connection, a1 = · · · = an = A. Since A is linear in p we can write it as

A(y, p) = dxµ eaµAab(y) pb , (C.16)

and introducing the notation

A(y1, . . . , yn) := ϵa1...an ϵb1...bn Aa1
b1(y1) · · ·Aan

bn(yn) , (C.17)

we end up with

D(u;F,A, . . . , A) = dnx |e|
∑

f∈∆([n],[2n])
exp

[
ℏ

n∑
i=1

(
uf(i)−

1
2

)
∂

∂pa

∂

∂yai

]
F (y, p)×A(y1, . . . , yn) ,

(C.18)
where |e| is the determinant of the vielbein. This formula exhibits a couple of properties:

• First, as we noticed earlier, the argument F (y, p) is the only one to receive derivatives
with respect to p. This means that in order to compute µ(F |A, . . . , A), one only needs
to know F |y=0, the y-independent part of the symbol F .
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• Second, the integral over the simplex will produce some combinatorial coefficients
∑

f∈∆([n],[2n])

∫
∆2n

(
uf(ℓ1) −

1
2

)
· · ·

(
uf(ℓk) −

1
2

)
, (C.19)

which depends on a k-tuple of integers (ℓ1, . . . , ℓk) comprised between 1 and n. In fact,
one can refine this dependency a little bit by remarking that if two k-tuple are related
by a permutation τ ∈ Sk, the associated coefficients are equal, so that these coefficients
may as well be labeled by partitions of k.

Putting this together, one ends up with

µ(F |A, . . . , A) = dnx |e|
∑
k≥0

µ∇
a1...ak

(x) ∂k

∂pa1 · · · ∂pak

F (y, p)
∣∣
y=0 , (C.20)

where µ∇
a1...ak

(x) are polynomials in the (covariant derivatives of the) curvature of ∇ which
is obtained by computing the term of order ℏk in

∑
f∈∆([n],[2n])

∫
∆2n

exp
[
ℏ

n∑
i=1

(
uf(i) −

1
2

)
∂

∂yai
⊗ ∂

∂pa

]
A(y1, . . . , yn)⊗ F (y, p)

∣∣
yi=0 . (C.21)

D Curvature expansion

Since the components of γγγ are constructed from the curvature tensor of ∇, its covariant
derivatives and contractions thereof, we can re-arrange its expansion in power of the curvature,
which appears through

R ≡ −1
3 dxµRµacb yayb pc , (D.1)

namely we write γγγ = ∑
k≥1 γγγ

(k) where γγγ(k) is of order k in R and its derivatives. Let us
now evaluate its defining equation (2.18) at order n in R,

γγγ(k) = R δk,1 + ∂∇γγγ
(k) +

k−1∑
l=1

1
2ℏ h

[
γγγ(l), γγγ(k−l)]

∗ , (D.2)

which we can re-write, for k > 1, as

γγγ(k) = 1
2ℏ

k−1∑
l=1

j∇h
[
γγγ(l), γγγ(k−l)]

∗ , with j∇ := 1
1− ∂∇

=
∞∑
m=0

∂m∇ . (D.3)

The first few orders in this curvature expansion

γγγ(1) = j∇R , γγγ(2) = 1
2ℏ j∇{

{{R,R}}} , γγγ(3) = 1
2ℏ2 j∇{{{R,{{{R,R}}}}}} , (D.4)

γγγ(4) = 1
2ℏ3 j∇{{{R,{{{R,{{{R,R}}}}}}}}}+

1
8ℏ3 j∇{{{{{{R,R}}},{{{R,R}}}}}} , (D.5)

where we introduce the bracket

{{{−,−}}} := h
[
j∇(−), j∇(−)

]
∗ , (D.6)
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as a shorthand notation. This approach has a couple of advantages: first, it allows us to
access in one go whole pieces of γγγ at arbitrary order in y, and second, the recursion in order
of curvature exhibits an interesting structure, namely it appears that it is controlled by the
grafting (non-planar) binary trees. Indeed, denoting the operator j∇ by an edge, and the
composition of the star-commutator with the contracting homotopy by a vertex, i.e.

j∇(X) =
X 1

2ℏ h[X,Y ]∗ =
X Y

(D.7)

where the diagrams should be read from top to bottom, so that for instance

j∇{{{X,Y }}} =
X Y

(D.8)

one can re-write the recursion relation (D.3) as

γγγ(k) =
k−1∑
l=1

γγγ(l) γγγ(k−l)

(D.9)

for all k > 1. Now it becomes relatively easy to see that the result of this recursion relation
is to express γγγ(k) as a sum over all rooted planar binary trees with k leaves. Indeed, the latter
can be obtained by successively grafting—meaning summing over all trees resulting from
attaching the root of a tree to the leaves of another one — the rooted binary tree with a
single vertex to itself, k times, which is exactly what the above relation produces. Taking
into account the fact that {{{−,−}}} is antisymmetric amounts to identifying any two rooted
planar binary trees which can be related by permuting the two leaves at each node, that
is, one should sum over rooted non-planar binary trees and take into account the number
of planar ones that it is equivalent to as a multiplicity.

Having worked out the recursion formula for γγγ in order of the curvature, we can do
the same for the lift of symbols. Indeed, resumming the defining relation (2.22) for the lift
F (x; y, p) of a symbol f(x, p) yields,

F = ∂∇F + 1
ℏ
h [γγγ, F ]∗ (D.10)

from which we can extract the order k piece via

F (0) = j∇f , F (k>0) = 1
ℏ

k−1∑
l=0

j∇h [γγγ(k−l), F (l)]∗ . (D.11)

The first few orders are given by

F (1) = 1
ℏ
j∇ {{{R, f}}} , F (2) = 1

2ℏ2 j∇
(
{{{{{{R,R}}}, f}}}+ 2{{{R,{{{R, f}}}}}}

)
, (D.12)
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and

F (3) = 1
2ℏ3 j∇

(
{{{{{{R,{{{R,R}}}}}}, f}}}+{{{{{{R,R}}},{{{R, f}}}}}}+{{{R,{{{{{{R,R}}}, f}}}}}}+2{{{R,{{{R,{{{R, f}}}}}}}}}

)
.

(D.13)
Finally, the same can be done for the lift of a function ϕ(x) to a covariantly constant

section Φ(x; y) of the Fock bundle: the re-summed for of the recursion relation (2.42) reads

Φ = ∂∇Φ+ 1
ℏ
h ρ(γγγ)Φ . (D.14)

which, when evaluated at order n in R gives us

Φ(0) = j∇ ϕ , Φ(k>0) = 1
ℏ

k−1∑
l=0

j∇h ρ(γγγ(k−l))Φ(l) . (D.15)

The first few orders read

Φ(1) = 1
ℏ
j∇
(
R ▷▷▷ ϕ

)
, Φ(2) = 1

2ℏ2 j∇
(
{{{R,R}}} ▷▷▷ ϕ+ 2R ▷▷▷

(
R ▷▷▷ ϕ

))
, (D.16)

and

Φ(3) = 1
2ℏ3 j∇

(
{{{R,{{{R,R}}}}}}▷▷▷ϕ+{{{R,R}}}▷▷▷(R▷▷▷ϕ)+R▷▷▷

(
{{{R,R}}}▷▷▷ϕ

)
+2R▷▷▷

(
R▷▷▷(R▷▷▷ϕ)

))
, (D.17)

where we introduced the shorthand notation

• ▷▷▷ (−) := h ρ
(
j∇(•)

)
j∇(−) , (D.18)

for the sakes of conciseness. The term of order k will be almost identical to that of F , except for
the replacement of f with ϕ, and any bracket of the form {{{−, f}}}, i.e. whose second argument
is f , with (−) ▷▷▷ ϕ. This is of course not surprising since the only difference between the two
case is the representation of the Weyl algebra in which the covariantly constant section that
we are solving for sits in: the adjoint for symbols like f and the Fock one for functions like ϕ.

Simplifying the elementary operations. Let us try to find a concise expression for the
operator j∇. To do so, first notice that

∂∇α = h∇α = 1
N

(
ya∇aα−∇N hα

)
, (D.19)

so that, on forms valued in the Weyl algebra which are annihilated by the homotopy operator
h, one finds

hα = 0 =⇒ ∂∇α = 1
N
y · ∇α = y · ∇ 1

N + 1 α , (D.20)

where we used the fact that y · ∇ is obviously of degree 1 in y, and hence increases the
eigenvalue of the number operator N , a fact we should take into account when moving the
latter to the right of the former. Repeating this operation, we end up with

j∇ =
∑
k≥0

(y · ∇)k 1
(N + 1)k

=
∑
k≥0

1
k! (y · ∇)

k (1)k
(N + 1)k

≡ 1F1
[
1;N + 1; y · ∇

]
, (D.21)
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where (a)k = a(a+1) . . . (a+k−1) is the raising Pochhammer symbol, and where we used the
fact that (1)k = k! to recognize the confluent hypergeometric function. Let us stress that the
above expression is valid only for j∇ acting on elements in Ker(h), which is enough for us since
we are interested in applying it to either γγγ or a 0-form, both annihilated by h, by definition.

We can now use the integral representation of the confluent hypergeometric function,

1F1
[
a; b;x

]
:=
∑
k≥0

xk

k!
(a)k
(b)k

= Γ(b)
Γ(a) Γ(b− a)

∫ 1

0
dt et x ta−1 (1− t)b−a−1 , (D.22)

which holds for Re(b) > Re(a) > 0. In our case, both parameters are positive integer,
and verify the inequality except if N = 0, i.e. if we act on a y-independent 0-form. This
case is particularly simple to treat since the hypergeometric series collapses to an ordinary
exponential, i.e.

j∇|C∞(T ∗X) = ey·∇ . (D.23)

We can therefore exclude this case, that is consider N > 0, and use the above integral
representation to re-write j∇ as

j∇ = N

∫ 1

0
dt et y·∇ (1− t)N−1 =

∫ 1

0
dt e(1−t) y·∇ d

dt t
N , (D.24)

where we used the change of variable t → 1 − t before recognizing the derivative. We
therefore find

j∇(α) =
∫ 1

0
dt e(1−t) y·∇ d

dtα(x, t dx, t y, p) (D.25)

= α+ y · ∇
∫ 1

0
dt e(1−t) y·∇ α(x, t dx, t y, p) , (D.26)

for any Weyl algebra-valued form α such that hα = 0. Remark that this last form obtained
by integrating by part, namely

j∇ = 1−
∫ 1

0
dt d

dt
(
e(1−t) y·∇) tN , (D.27)

also makes sense for N = 0, since it reproduces (D.23).

Lifts at first order in curvature. Let us now use this operator to compute the lift of
symbols and wave functions at first order in curvature. Starting with the latter, we need
to first compute

ρ(j∇R) j∇ϕ

= exp
(
−ℏ∂p ·

[1
2 ∂y1 +∂y2

])∫ 1

0
duu2 e(1−u)y1·∇ (−dxµRµacb ya1yb1 pc

)
× ey2·∇ϕ

∣∣
p=0,y1=y=y2

=−ℏ
2

∫ 1

0
duu2 e(1−u)y·∇ (dxµRµa ya)×ey·∇ϕ+(· · · ) , (D.28)
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where the dots denote terms annihilated by the contracting homotopy h. Applying the latter
composed with j∇, we end up with

Φ(1) ≡ 1
ℏ
j∇ h ρ(j∇R) j∇ϕ = −1

2

∫
[0,1]3

dt ds du e(1−t) y·[∇1+∇2] (D.29)

× d
dt
(
s t2 u2 et s y·[∇1+(1−u)∇2]ϕ(x1)Rab(x2) yayb

)
|x1=x=x2 ,

where ∇i denotes the covariant derivative with respect to xi. Evaluating this formula up
to third order in y yields

Φ= ϕ+ya∇aϕ+
1
2y

ayb
(
∇a∇b−

1
6Rab

)
ϕ+ 1

6y
aybyc

(
∇a∇b∇c−

1
2Rab∇c−

1
4∇aRbc

)
ϕ+(. . . ),

(D.30)
as previously derived from the defining recursion relation for the lift of the wave function ϕ

in the Fock bundle. We can re-write this lift up to first order in curvature as

Φ(x; y) =
(
τ (0)(y · ∇1) + τ (1)(y · ∇1, y · ∇2)

1
2 y

aybRab(x2) + . . .

)
ϕ(x1)|xi=x , (D.31)

with τ (0)(z1) = ez1 and

τ (1)(z1, z2) = −
∫

[0,1]3
dt ds du e(1−t) [z1+z2] d

dt
(
s t2 u2 et s [z1+(1−u) z2]

)
= −1

6 e
z1 1F1

[
2; 4; z2

]
(D.32)

which, upon using the integral representation (D.22), can be expressed as

τ (1)(z1, z2) = ez1

∫ 1

0
dt (t− 1) t et z2 . (D.33)

and hence

Φ(x; y) =
(
1 + 1

2 y
ayb

∫ 1

0
dt t (t− 1) et y·∇Rab + . . .

)
ey·∇ϕ . (D.34)

Now let us turn our attention to the piece of first order in curvature of the lift of f ,
for which we need to compute

[j∇R, j∇f ]∗ =
∑
σ=±

σ exp
(
σℏ
2
[
∂y1 · ∂p2 − ∂p1 · ∂y2

])
(D.35)

×
∫ 1

0
du e(1−u) y1·∇ (− u2 dxµRµacbya1yb1 p1 c

)
× ey2·∇f(p2)

∣∣y1=y=y2
p1=p=p2

(D.36)

=
∑
σ=±

σ exp
(
σℏ
2 ∂y1 · ∂p2

)∫ 1

0
du e(1−u) y1·∇(u2 dxµRµacb ya1yb1

)
(D.37)

×
(
− p1 c +

σℏ
2 ∇c

)
ey2·∇ f(p2)

∣∣y1=y=y2
p1=p=p2

(D.38)

= ℏ
2
∑
σ=±

∫ 1

0
du e(1−u)[ y+ σℏ

2 ∂p]·∇
(
u2 dxµRµacb

[
yb

∂

∂pa
+ σℏ

2
∂2

∂pa∂pb

])
(D.39)

×
(
− p′c +

σℏ
2 ∇c

)
ey·∇ f(p)|p′=p + (. . . ) , (D.40)

– 35 –
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where the dots denote terms that are annihilated by h. Applying it followed by j∇, one finds

F (1) ≡ 1
ℏ
j∇h [j∇R, j∇f ]∗ =

1
2
∑
σ=±

∫
[0,1]3

ds dt du e(1−t) y·[∇1+∇2] (D.41)

× d
dt

(
t u2 es t y·[(1−u)∇1+∇2]+ σℏ

2 (1−u) ∂p·∇1 ydRda
c
b(x1) (D.42)

×
[
t s yb

∂

∂pa
+ σℏ

2
∂2

∂pa∂pb

](
− p′c +

σℏ
2 ∇c

)
f(x2, p)

)∣∣x1=x=x2
p′=p

. (D.43)

After explicitly performing the integrals as for the lift of ϕ, one finds

F (1)(x, p; y)

= 1
2 e

y·∇1
∑
k,l≥0
σ=±

(
σℏ
2

)k (∂p · ∇2)k
k!

(y · ∇2)l
l! yaRda

c
b(x2)

1
(k + 1)(l + k + 2)(l + k + 3)

(D.44)

×
[
yb

∂

∂pd
+ σℏ

2
l + 2k + 4
(k + 2)

∂2

∂pb∂pd

](
p′c −

σℏ
2 ∇c

)
f(x1, p)

∣∣xi=x,
p′=p

(D.45)

= 1
2
∑
σ=±

∫
[0,1]2

ds dt t (1− t) ey·∇1+t [y+sσℏ
2 ∂p]·∇2

[
p′ − σℏ

2 ∇1

]
c

(D.46)

× ya
(
yb + σℏ

[
1 + t

2 (1− s) y · ∇2

]
∂

∂pb

)
Rda

c
b(x2)

∂

∂pd
f(x1, p)

∣∣xi=x,
p′=p

, (D.47)

for the piece of first order in curvature of the lift τ(f) of any symbol f(x, p).

Generating function. Combining the first order lift Φ(1) of the scalar field given in (D.34)
with the fact that

ρ(j∇f)|y=0 = exp
(
− ℏ∂p ·

[1
2 ∇+ ∂y

])
f
∣∣
y=0=p (D.48)

for a symbol f = f(x, p), i.e. y-independent, one ends up with

ρ(F (0))Φ(1)|y=0

= ℏ2

2

∫ 1

0
dt (t− 1)t × e−ℏ ∂p·[∇1+t∇2+ 1

2 ∇3] ϕ(x1)Rab(x2)
∂2

∂pa∂pb
f(x3, p)

∣∣
xi=x,p=0 ,

(D.49)

upon using the BCH formula. Note that the commutator appearing in these manipulations
can be discarded as a consequence of the fact that we are working at first order in curvature.
Now applying the quantization map to the first order lift F (1) of a symbol given in (D.46),
we end up with,

ρ(F (1))Φ(0)|y=0 = ℏ2

8
∑
σ=±

∫
[0,1]2

ds dt t(t− 1) e−
ℏ
2 ∂p·[2∇1+t(1−σ s)∇2+∇3] (D.50)

×
[
(1− 2σ) + σℏ

2 t(1− s) ∂p · ∇2

]
ϕ(x1)Rab(x2)

∂2

∂pa∂pb
f(x3, p)

∣∣xi=x,
p=0

,

– 36 –
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after using the BCH formula a few times as before. Performing the integrals, multiplying
the result by ϕ∗, and integrating by part so that all derivatives on f are re-distributed on
ϕ, ϕ∗ and the curvature, one ends up with

J (x|u) = e−
ℏ
2 u·[∇1−∇2]

(
1− ℏ2

8 sinhc
(ℏ
4 u · ∇3

)
Rab(x3)uaub +O(R2)

)
ϕ(x1)ϕ†(x2)

∣∣
xi=x

,

(D.51)
where

J (x|u) :=
∑
s≥0

(−ℏ)s
2s s! Ja1...as(x)ua1 . . . uas , (D.52)

is the generating function for the higher spin currents, and

sinhc(z) := sinh(z)
z

. (D.53)

is the hyperbolic version of the sinc function.
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