
Université de Mons
Faculte Polytechnique de Mons

Energy-optimal configurations for
High-Performance Computing

applications: automated low-impact
characterization and performance
optimization of shared-memory

applications
Vitor Ramos Gomes da Silva

A dissertation submitted in fulfilment of the requirements of
the degree of Docteur en sciences de l’ingénieur et technologie

Advisors
Prof. Carlos VALDERRAMA, UMons, Supervisor
Prof. Pierre MANNEBACK, UMons, Co-supervisor
Prof. Samuel XAVIER-DE-SOUZA, UFRN, Co-supervisor

Jury
Prof. Thierry DUTOIT, UMons, President
Prof. Sidi MAHMOUDI, UMons, Secretary
Prof. Demétrios COUTINHO, UFRN, Chair member
Eng. Lotfi GUEDRIA, CETIC, Chair member
Prof. Emanuel TRABES, UMONS, Chair member

August 24, 2024

.

Acknowledgements

I would like to thank my wife, Ingrid, my parents, Claudia and Paulo,
and my sister, Tais, for their constant support and encouragement during
my doctoral studies.

I would also like to thank Professor Carlos and Professor Samuel for
their guidance, expertise, and encouragement. Their valuable comments
and advice helped shape this research into its current form. I would
also like to thank the entire research team at UMons and UFRN for the
numerous collaborations that facilitated this research. Special thanks to
my colleagues, Anderson Braulio and Alex Fortunato for their helpful
suggestions and support during our numerous discussions.

I acknowledge the financial support provided by UMons, which made
this research possible.

To all who contributed to this work, thank you.

iii

Abstract

Energy consumption is key to enabling exascale High-performance Com-
puting (HPC). However, energy-optimized hardware and software combi-
nations could still be inefficient if the software operates poorly.

This work proposes a set of tools, models, and algorithms for energy
optimization aimed at high-performance computing based on knowledge
of the application and the specific hardware architecture. The main
contributions of this work are.

A framework called Parallel Scalability Suite (PaScal Suite) automati-
cally measures and compares multiple executions of a parallel application
according to various scenarios characterized by input size, number of
threads, cores, and frequencies. As a result, PascalSuite can automate
designing application models with an overhead of less than 1%.

An entire system energy model based on the CPU frequency and
the number of cores. The model aims to understand and optimize the
energy behavior of parallel applications in HPC systems according to
application parameters, such as the degree of parallelism, input load, and
CPU parameters related to dynamic and static power.

A methodology that combines measurement data with a heuristic
algorithm to provide insights into choosing the best phase divisions. Our
heuristic can reduce the scan space from 107000 to 102 with an average error
of 10% and up to 38% reduction in energy consumption using optimal
distribution compared to standard Linux DVFS.

A novel normalized time representation of the application characterizes
the application parameters and model, named application fingerprint.

iv

Contents

List of Acronyms xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 6
1.3 Contributions . 6
1.4 Organization . 8

2 Theoretical background 9
2.1 High-Performance Computing Architectures 10
2.2 Parallelism in HPC . 11
2.3 Energy Optimization in HPC Systems 12
2.4 Case-Study Architecture 13

2.4.1 Frequency Control 15
2.4.2 Power consumption monitoring 18
2.4.3 Performance Counters 20

2.5 Case-Study Applications 22

3 A Framework For Automated Energy Analysis and Ex-
periments 24
3.1 Pascal Analyzer: An Advanced Framework for Energy

Efficiency Analysis and Scalability 25
3.2 State of the Art Profiling and Tracing Tools 27
3.3 Framework Architecture 31

v

vi Contents

3.4 Instrumentation and Intrusiveness 32
3.5 Features and Usage . 38
3.6 Exported Data Structure 39
3.7 Profiling with Performance Counters 42

3.7.1 State of the Art Performance Counters APIs . . . 43
3.8 Reading Performance Counters Precisely 44

3.8.1 Workload Module 44
3.8.2 Profiler . 46
3.8.3 Events Module 46
3.8.4 Analyzer Module 46

3.9 Performance Counters and Intrusiveness 48
3.10 Pascal Analyzer Use Cases 50

3.10.1 Case of study . 52

4 Application Energy and Performance Models 58
4.1 Introduction to Models 59
4.2 Energy Models Theoretical Background 60

4.2.1 Power Models . 61
4.2.2 Performance Models 62

4.3 Energy Models Related Work 63
4.4 Proposed Power Model 66
4.5 Propsed Performance Model 68
4.6 Proposed Energy model 69
4.7 Verifying Hypothesis . 71

4.7.1 Frequency and Voltage Relation 71
4.7.2 Input Size and Instructions 72

4.8 Fitting the Models . 76
4.9 Measured Versus Modeled Energy 78

4.9.1 Frequency X Cores 78
4.9.2 Frequency X Input 79
4.9.3 Cores X Input . 79

4.10 Comparison . 79
4.10.1 Overheads on training 84

4.11 Deeper Analysis . 85
4.12 DVFS and DPM optimization 89

5 Application-Phase 94

vii

5.1 The Effect of Phase Division Choices on Energy Consumption 95
5.2 Prior-knowledge Measurement Campaign 97
5.3 Phase Division Related Work 98
5.4 Phase Division Proposed Approach 99
5.5 Energy Estimation Algorithm For a Single Phase 101
5.6 Energy Estimation Combining Multiple Phases 104
5.7 Optimizing Phase Division 105
5.8 Experimental Results . 106

5.8.1 Data Gathering 106
5.8.2 Experiments with the number of phases 107
5.8.3 Comparing against the default Linux governor . . 111

5.9 Application Fingerprint 111
5.10 Application Characterization, Modeling, and Behavioral

Clustering Based on Fingerprint 116
5.10.1 Defining a Fingerprint Metric 116
5.10.2 Clustering Applications Based on Fingerprint Metric117

6 Conclusions and future work 125
6.1 Introduction . 126
6.2 Pascal Suite Framework 126
6.3 Application-Energy Model 127
6.4 Phase Division Approach 127
6.5 General . 128
6.6 Extensibility for Future Research 129

List of Figures

1.1 Estimated data center electricity consumption and its share
in total electricity demand in 2022 and 2026, International
Energy Agency. 3

1.2 HPC Architectures . 4

1.3 Power breakdown of a typical node of an HPC cluster at
full use. It is noteworthy that the primary components
contributing to energy consumption are processor execution
and memory usage. 4

2.1 Node architecture: 2 Intel Xeon E5-2698 v3 processors,
16 cores each, 2 hardware threads per core, total physical
memory capacity of 128 GB (8 × 16 GB) (the image was
made with the lstop application). 14

2.2 Illustration of C states: managed components and states’
transition cost; source: https://www.thomas-krenn.com/
en/wiki/Processor_P-states_and_C-states 16

2.3 Diagram illustrating the key components and their intercon-
nections within the IPMI architecture. [source https://pt.
wikipedia.org/wiki/Intelligent_Platform_Management_
Interface] . 19

viii

https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://pt.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://pt.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://pt.wikipedia.org/wiki/Intelligent_Platform_Management_Interface

ix

3.1 Pascal Analyzer architecture showing the interconnections
of the central parts of the tool. Whether using a binary
(with the wrapper library) or an instrumented source code,
the target application can be launched on the target plat-
form by the tool core following the configuration parameters
chosen by the user while deploying actuators/sensors. The
resulting data collection is stored in JSON file format for
post-analysis and visualization (GUI). 33

3.2 Measuring variance of the time to single instrumentation,
i.e., a call to pascal_start and pascal_stop while vary-
ing the number of measurements. 36

3.3 The Performance Counters Module Interconnection Structure 45
3.4 Post-processing workflow steps applied to the Polybench

2mm application, depicting the process from raw data
collection to final smoothing for analysis. Each subfigure
illustrates a key step in the data refinement process. . . . 47

3.5 Efficiency diagrams and impact of inner regions on program
scalability. (x-axis = inputs; y-axis = number of threads). 53

3.6 Efficiency diagrams after removing #pragma omp crtical
clause. (x-axis = inputs; y-axis = number of threads). . . 54

3.7 Visualization modes of diagrams provided by PaScal Viewer. 55
3.8 Speedup curves for Raytrace and OpenMC applications

across different input sizes. These plots illustrate how much
they can scale with the number of threads when varing the
input size. 56

3.9 Energy consumption identified in the execution of applica-
tions while varying the number of cores for several input
sizes. Those plots give an indication of the energy con-
sumption when increasing the number of cores. 56

3.10 Efficiency diagram varying the input size and the number
of cores. The color bar indicates the efficiency value in
percentage. 57

4.1 Frequency voltage relation. 71
4.2 Relation between time and instructions for each input size. 72
4.3 Rate of instructions per second varying the input size

normalized by the frequency. 73

x List of Figures

4.4 Example fit for a specific input size. “measured values” are
the sensor data, and “minimum energy” is the minimum
energy model prediction. 78

4.5 Example fit for a specific input size. “measured values” are
the sensor data and “minimum energy” is the minimum
energy model prediction. 79

4.6 Example fit for a specific input size. “measured values” are
the sensor data and “minimum energy” is the minimum
energy model prediction. 80

4.7 Average of the mean squared error for all applications of
our study case Section 2.5. 82

4.8 Comparison of the mean percentage error between the
proposed model and SVR. “Model mean” and “SVR mean”
are the average of all MPE values for all applications. . 83

4.9 MPE of the case studies versus training size, comparing how
many training points are necessary to reach an acceptable
result. 84

4.10 Overall results for energy and MPE for each training size. 85
4.11 Pareto frontier for several values of static power parameter.

The arrows with blue heads indicate the maximum energy,
while the arrows with redhead the minimal energy for each
corresponding curve. The configuration is described by
(Frequency, # Number of cores). 87

4.12 Pareto frontier for several levels of parallelism. The arrows
with blue heads indicate the maximum energy, while the
arrows with redheads, the minimal, for each corresponding
curve. The configuration is described by (Frequency, #
Number of cores). 88

4.13 Optimization workflow showing how DVFS and DPM op-
timization could be implemented from ou model. 90

4.14 Energy savings comparisons between the proposed model
and the Worst case. 91

4.15 Energy savings comparisons between the proposed model
and the Random case. 91

4.16 Energy savings comparisons between the proposed model
and the Best case. 92

xi

4.17 Number of CPU requests during one year in HPC cluster,
sorted by the number of cores requested per job. 93

5.1 Power vs. percentage of execution for a given application
in 4 power profiles. For each profile, the red dots represent
the power samples, the dashed vertical lines define the start
and stop time intervals of the phase, and the hatched area
is the estimated phase energy. 103

5.2 Relative energy vs the number of phases using applications
from PARSEC 3.0, HPC, and Openmc benchmarks with
different sizes’ inputs. 107

5.3 Histogram showing the frequency of the optimal number
of phases for all applications 108

5.6 Phase division heatmaps showing the energy consumption
per phase for all applications with different numbers of
phases. 111

5.7 Optimal phase splitting energy vs. on-demand governor
on Linux: relative energy comparison for applications with
different input sizes for the worst choice case. Lower is
better. 112

5.8 Optimal phase splitting energy vs. on-demand governor
on Linux: relative energy comparison for applications with
different input sizes for the random choice case. Lower is
better. 113

5.9 Optimal phase splitting energy vs. on-demand governor
on Linux: relative energy comparison for applications with
different input sizes for the best choice case. Lower is better.113

5.10 Power profiles and the optimal phase distribution for a
given configuration. 115

5.11 Dendrogram of fingerprint according to Eq. (5.1) for 30
applications in the Polybench benchmark suite. 117

5.12 Spring force graph of Canberra distance according to Eq. (5.1)
for 30 applications in the Polybench benchmark suite. . . 118

5.13 Input size - Cluster 1 . 119
5.14 Input size - Cluster 2 . 120
5.15 Input size - Cluster 3 . 120

xii List of Figures

5.16 Dendrogram of fingerprint according to number of floating-
point operations per second for 30 applications in the
Polybench benchmark suite. 121

5.17 Spring force graph of Canberra distance for floating-point
operations per second for 30 applications in the Polybench
benchmark suite. 122

5.18 Floating point - Cluster 1 123
5.19 Floating point - Cluster 2 124
5.20 Floating point - Cluster 3 124

List of Tables

2.1 Advanced Configuration and Power Interface (ACPI) C
states . 16

3.1 Instrumentation overhead estimation varying the number
of samples collected with TAU and Analyzer. 36

3.2 Instrumentation overhead while varying the number of
threads with the number of samples fixed to one million. 37

3.3 Comparison with other state-of-the-art APIs with our pro-
posed approach . 48

3.4 Dataframe generated automatically from collected samples
using the Python API. 52

4.1 Summary of Related Work on Power Models 66
4.2 Correlation of time and instructions for all applications. . 73
4.3 Variation of the number of instructions when changing the

number of cores for the same input. 74
4.4 Variation of the number of instructions when changing the

frequency for the same input. 75
4.5 Summary of Models and Configurations 81
4.6 Comparison of the Mean Percentage Error between the

proposed model and SVR: raw values. 83

xiii

List of Acronyms

Various acronyms will be used throughout this dissertation to abbreviate
frequent terms, some of which will even find usages across all sections. The
expansion will be given at least on the first occurrence of each acronym
in the text, but the following list of acronyms can be used as a reference
if needed.

DPM Dynamic Power Management. iv, x, 3–5, 13, 52–54, 75–77, 85, 88,
91, 124, 140

DVFS Dynamic Voltage and Frequency Scaling. iv, x, 3–6, 13, 38, 52–54,
56, 75–77, 85, 88, 91, 92, 99, 124, 140

FINFET Fin Field-Effect Transistor. 59

HPC High Performance Computing. iv, viii, x, 2, 4, 5, 8, 11–13, 19–21,
23, 33, 38, 53, 54, 75, 76, 87, 91, 123–126, 140

IPMI Intelligent Platform Management Interface. viii, 14, 15, 17–19, 25,
29, 35, 67

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor. 59

MPE Mean Percentage Error. ix, x, 69, 72–74, 82

MSE Mean Squared Error. 71

xiv

xv

MSR Model-Specific Registers. 19, 41

PMU Performance Monitoring Unit. 38, 39, 41, 43

RAPL Intel Running Average Power Limit. 14, 17, 19, 25, 29, 35

SVR Support Vector Regression. x, xii, 68, 70–74, 82

CHAPTER 1
Introduction

In this chapter, we present the motivations for this work, as well as its
objectives and main contributions.

1

2 Introduction

1.1. Motivation

In recent years, the importance of data center energy efficiency has
significantly escalated due to its profound economic, environmental, and
performance implications. The energy consumption of leading petaflop
supercomputers, for instance, ranges from 1 to 30 MW TOP500 (2024)
of electrical power, averaging around 2 MW, translating into substantial
annual electricity expenses, often in the millions of dollars Ishfag (2012). In
2010, data center energy usage was estimated to account for between 1.1%
and 1.5% of global electricity consumption Dayarathna (2016); Corcoran
(2017); Iea (2021), resulting in environmental repercussions comparable
to those of a nation like Argentina Mathew (2012). Moreover, in some
scenarios, the expenditure on power surpasses the costs associated with
hardware procurement Rivoire (2007). This trend is exacerbated by the
doubling of energy expenses for operating a typical data center every five
years Buyya (2013), making electricity bills a substantial financial burden
for data center operators Poess (2008); Gao (2013). Consequently, data
center energy efficiency has emerged as a primary concern for operators,
often prioritized over traditional considerations such as availability and
security.

According to the International Energy Agency, data centers in the
United States, European Union, China, Denmark, and Ireland are ex-
pected to experience a considerable rise in electricity consumption from
2022 to 2026, with China and Ireland seeing the most substantial in-
creases (see Figure 1.1). This surge in energy demand, coupled with the
growing share of total electricity consumption attributed to data cen-
ters, underscores the urgent need for more efficient energy management
strategies.

Moreover, there are various types of HPC architectures, each with
unique challenges and opportunities for energy efficiency. In this work,
we focus on cluster architectures, which have become the dominant HPC
architecture over the last few decades, as illustrated in Fig. 1.2. The
widespread adoption of cluster architectures is driven by several factors:
they utilize well-known, widely-supported software, eliminate the need
for specialized hardware, and benefit from the economies of scale, making
them more cost-effective to maintain. This trend underscores the critical

3

Figure 1.1: Estimated data center electricity consumption and its share in
total electricity demand in 2022 and 2026, International Energy Agency.

importance of optimizing energy efficiency within these shared memory
systems.

In the cluster HPC systems there are various strategies for achiev-
ing green computing have been devised, ranging from advancements in
electrical materials to circuit design, systems integration, and software
optimization. While these approaches may vary, they share a common ob-
jective: to significantly reduce overall system energy consumption without
compromising performance. Notably, the processor and main memory are
the primary contributors to power consumption, collectively accounting
for a significant portion, as shown in Fig. 1.3. The processor alone can
consume up to 50% of the total energy Fan (2007); Barroso (2007); Malladi
(2012). Consequently, modern processors are equipped with numerous
power management features Rotem (2012); Brown (2005); Hackenberg
(2015); Intel (2020); Cardoso (2017), including Dynamic Power Manage-
ment and Dynamic Voltage and Frequency Scaling. DPM encompasses
a suite of techniques aimed at achieving energy-efficient computing by
deactivating or reducing the performance of system components when
they are idle or underutilized Shuja (2012); Benini (2000). On the other
hand, DVFS enables the adjustment of frequency and voltage in real time
based on current workload demands.

4 Introduction

Figure 1.2: HPC Architectures

(a) Our system, built in 2016 and
equipped with two Intel Xeon

E5-2698, 128 GB of DDR4 memory,
and SSD as storage.

(b) Study case Malladi (2012), built
in 2012 and equipped with two
Xeon E5507, 32GB of DDR3
memory and HDD as storage.

Figure 1.3: Power breakdown of a typical node of an HPC cluster at full
use. It is noteworthy that the primary components contributing to energy
consumption are processor execution and memory usage.

5

DVFS operates on the principle that frequency and power exhibit
a near-cubic relationship Dayarathna (2016); Ishfag (2012). This rela-
tionship suggests that lowering the CPU frequency results in a linear
decrease in performance and a nearly cubic reduction in power consump-
tion, potentially leading to a near-square reduction in CPU energy usage.
Consequently, significant energy savings can be realized through frequency
control alone, contingent upon the system and its architecture. However,
while promising, determining the optimal voltage and frequency settings
for running applications remains a challenge for system software. Failure
to do so not only risks performance degradation but could also increase
energy consumption Ishfag (2012).

Reducing the CPU frequency extends the execution time, subsequently
increasing the energy consumption of other system components like mem-
ory and disks. Moreover, there’s an associated overhead of time and
energy with voltage and frequency switching, further complicating the se-
lection process. Thus, identifying the most suitable voltage and frequency
settings for all scenarios presents a non-trivial task. Consequently, since
its inception in 1994, Ishfag (2012), extensive research has been dedicated
to developing DVFS algorithms.

The DPM technique can yield substantial energy savings, particularly
in systems characterized by high static power or prolonged periods of
inactivity. In such scenarios, the challenge lies in determining the optimal
timing and selection of components for activation or deactivation. Reports
indicate that DPM has achieved energy savings of up to 70% Shuja (2012);
Benini (2000).

While these power-saving techniques hold the potential to reduce
overall system energy consumption, they may introduce performance com-
promises, necessitating a careful balance to develop more energy-efficient
algorithms. Consequently, this study delves into whether constructing
an energy consumption model for an application can result in significant
energy savings. By understanding the intricacies of how an application
interacts with system resources and consuming components, it becomes
feasible to optimize energy utilization without sacrificing performance.
Through this investigation, we aim to uncover insights that can inform
the development of strategies to achieve the delicate equilibrium between
energy efficiency and computational performance.

We propose an analytical energy model tailored to a given applica-

6 Introduction

tion, contingent upon two primary control variables prevalent in most
HPC systems: CPU operating frequency and the number of active cores.
This model comprises three application-specific parameters and three
architecture-related parameters. The application parameters encapsulate
aspects such as parallelism percentage and input size, while the system
architecture parameters encompass dynamic, static, and leakage power
characteristics, inherently tied to power and technology considerations.
With this customized approach, our objective is to establish a comprehen-
sive framework for understanding and optimizing energy consumption,
specifically tailored to the distinctive features of individual applications
and system architectures.

1.2. Objectives

The overarching goal of this thesis is to advance solutions harnessing the
full capabilities of involved systems, leveraging insights into architectures
and applications. Specifically, the objectives are outlined as follows:

• Develop a framework facilitating and automating the modeling
process for applications and architectures while maintaining trans-
parency and non-interference with the application’s operation.

• Propose an analytical energy model tailored to HPC systems’ ap-
plications. This model should optimize energy consumption within
these systems while enabling in-depth analysis through analytical
equations.

• Introduce a heuristic algorithm designed to adapt to fluctuations
in application behavior and system dynamics. This algorithm will
consider evolving conditions to enhance energy efficiency in HPC
environments.

1.3. Contributions

In this thesis, the contributions are delineated as follows.
In Chapter 3, we introduce a novel tool designed for the automated

7

measurement and comparison of multiple executions of parallel appli-
cations across diverse scenarios. These scenarios encompass variations
in input arrangements, thread counts, core allocations, and frequencies.
Unlike existing performance analysis tools, our proposed tool addresses
critical gaps by providing specialized features necessary for comprehen-
sively understanding scalability trends across computational resources.
Importantly, it achieves this with minimal intrusion, imposing less than
1% overhead.

Chapter 4 presents a comprehensive full-system energy model predi-
cated on CPU frequency and core count. The model is crafted to elucidate
and optimize the energy dynamics of parallel applications within HPC sys-
tems. It incorporates application-specific parameters, such as parallelism
degree, and CPU characteristics of dynamic and static power. Unlike
conventional models, ours integrates frequency and core count within the
same equation to estimate energy consumption for a given application
configuration. This model serves as a foundational framework for address-
ing optimization challenges related to DVFS and DPM. Furthermore, by
considering both frequency and active cores, it facilitates the analysis of
each parameter’s contribution to overall energy consumption. In essence,
our model offers a robust foundation for refining energy optimization
strategies in HPC environments, thereby enhancing the efficiency and
sustainability of computational systems.

Chapter 5 introduces a novel methodology that merges empirical mea-
surement data with a heuristic approach to guide the selection of optimal
phase divisions. Our heuristic effectively reduces the scan space from an
astronomical 107000 to a manageable 102, with an average error rate of
10%. Moreover, it achieves up to a 38% reduction in energy consumption
compared to standard Linux DVFS by identifying the optimal distribu-
tion of phases. Furthermore, we evaluate the trade-offs associated with
excessive phase divisions and the ensuing overhead. Notably, our analysis
reveals practical constraints on the number of phases that an application
can effectively leverage, establishing a lower limit on the minimum number
of phases required for optimal performance.

8 Introduction

1.4. Organization

The document is organized as follows:
In Chapter 2, this chapter lays down fundamental concepts essential

for the thesis, including definitions, system configurations, and bench-
marks used throughout the study. It provides a crucial foundation for
understanding the subsequent chapters.

Next Chapter 3 provides a comprehensive exposition of the PaScal
Analyzer as a framework for automating energy analysis and experiments.
This chapter details its functionalities and associated validation process,
affirming its efficacy in practical applications.

Subsequently, Chapter 4 introduces the proposed energy model. Here,
the intricacies of the model are elucidated, along with its formulation
and validation methodologies. This chapter is pivotal for grasping the
analytical framework employed in the study.

Among these chapters, the PaScal Analyzer Framework (Chapter 3)
and the proposed energy model (Chapter 4) presents practical applications
and potential to significantly impact energy analysis and optimization in
computational systems.

Following that, Chapter 5, Optimization of Phase Divisions, presents a
heuristic algorithm tailored to optimize phase divisions within applications.
This chapter outlines the algorithm’s design and its integration with
empirical data to achieve energy-efficient outcomes.

Finally, Chapter 6 encapsulates the conclusions drawn from this thesis.
It synthesizes the key findings, contributions, and implications of the
research conducted, offering insights for future exploration in the field.

CHAPTER 2
Theoretical background

This chapter serve to elucidate key concepts and configurations essential
for comprehending the subsequent discussions and analyses in this the-
sis. By providing clarity on fundamental terms, system configurations,
and performance metrics, we aim to establish a solid foundation for ex-
ploring the intricacies of data center energy efficiency and performance
optimization.

The chapter further elucidates the architectural details of HPC systems,
encompassing components such as processors, memory subsystems, and
interconnects. It also discuss varius aspects of applications that run on
these systems.

Furthermore we devle into the intricacies of CPU performance states,
elucidating how dynamic frequency scaling operates to regulate power
consumption the dirverse sources available for monitoring power consump-
tion, and other metrics we can use ranging from hardware sensors to
software-based monitoring tools, we gain insight into the methodologies
employed to quantify energy usage across various system components.

Lastly, we explore the selection criteria for applications utilized in
experimental analyses throughout this thesis. By examining the charac-
teristics and complexities of these applications, we lay the groundwork for
conducting empirical investigations into performance optimization and
energy efficiency in high-performance computing environments.

9

10 Theoretical background

2.1. High-Performance Computing Architec-
tures

High Performance Computing (HPC) (HPC) systems are designed to solve
complex computational problems by leveraging the collective power of
multiple processors, memory modules, and storage systems. These systems
are typically composed of interconnected nodes, each containing one or
more CPUs, memory, and sometimes local storage. The architecture of
HPC systems can vary widely, but they generally fall into one of the
following categories:

• Symmetric Multiprocessing (SMP): In an SMP system, all
processors share a single memory space and communicate through
a common bus. This architecture is simple but can become a
bottleneck as the number of processors increases due to contention
for shared resources.

• Massively Parallel Processing (MPP): MPP systems consist of
multiple processors, each with its own private memory, connected
through a high-speed interconnect. This allows for greater scalability,
as each processor can operate independently, but requires explicit
message passing (e.g., using MPI) to coordinate between processors.

• Distributed Memory Systems (Clusters): Similar to MPP,
distributed memory systems consist of nodes with private memory,
but the nodes are connected over a network, often with lower band-
width and higher latency than in MPP systems. This architecture
is common in large-scale clusters.

• Non-Uniform Memory Access (NUMA): NUMA is a hybrid
architecture where memory is distributed among processors, but
processors can access memory located on other processors. Mem-
ory access time depends on the memory’s location relative to the
processor, with local memory being faster to access than remote
memory.

These architectural differences have significant implications for per-
formance and energy consumption. Optimizing energy efficiency in HPC

11

systems requires a deep understanding of the underlying architecture, par-
ticularly how computational workloads are distributed and how memory
access patterns affect performance.

As already mentioned in the previous section Chapter 1, this work
focous on clusters, the most commonly used architecture.

2.2. Parallelism in HPC

Parallelism is a fundamental characteristic of HPC systems, enabling them
to perform large-scale computations by dividing tasks across multiple
processors. There are several forms of parallelism commonly exploited in
HPC:

• Data Parallelism: This form of parallelism involves distributing
different chunks of data across multiple processors, with each pro-
cessor performing the same operation on its chunk. Data parallelism
is particularly effective in applications where the same operation
needs to be applied repeatedly to large datasets.

• Task Parallelism: In task parallelism, different processors perform
different tasks simultaneously. This approach is well-suited to
workflows where tasks can be executed independently or where
tasks have varying computational requirements.

• Pipeline Parallelism: Pipeline parallelism involves dividing a
task into stages, with each stage being processed by a different
processor or group of processors. This is common in applications
like video processing, where data flows through multiple stages of
transformation.

• Hybrid Parallelism: Many HPC applications use a combination
of data, task, and pipeline parallelism to optimize performance. For
example, an application might use data parallelism within each
node and task parallelism across nodes in a distributed memory
system.

Managing parallelism effectively is crucial for optimizing both perfor-
mance and energy efficiency. In systems with NUMA architecture, for

12 Theoretical background

example, thread placement and memory allocation strategies must be
carefully managed to minimize costly remote memory accesses, which can
degrade performance and increase power consumption.

We are going to take advantage of this information to build specialized
models that considers the characteristics of the applications that runs on
those systems, this will be detailed in Section 4.5.

2.3. Energy Optimization in HPC Systems

Energy consumption is a critical concern in HPC due to the significant
power requirements of large-scale computing systems. Several strate-
gies have been developed to optimize energy usage without sacrificing
performance:

• Dynamic Voltage and Frequency Scaling (DVFS): DVFS is
a widely used technique in HPC systems where the voltage and
frequency of a processor are adjusted dynamically based on workload
demands. Lowering the frequency reduces power consumption but
also decreases performance, so DVFS must be carefully managed to
balance energy savings with computational throughput.

• Dynamic Power Management (DPM): DPM involves selec-
tively powering down or reducing the power usage of certain com-
ponents (e.g., CPU cores, memory modules, or entire nodes) during
periods of low activity. This can lead to significant energy savings,
particularly in workloads with irregular computational demands.

• Power-Aware Scheduling: In power-aware scheduling, tasks are
assigned to processors in a way that minimizes energy consumption
while meeting performance targets. This might involve scheduling
tasks on processors that are already active, thereby avoiding the
energy cost of waking up idle processors, or prioritizing energy-
efficient processors for less demanding tasks.

• Thermal Management: High energy consumption in HPC sys-
tems often leads to increased heat generation, which can impact
both performance and reliability. Thermal management techniques,

13

such as adaptive cooling and thermal-aware task scheduling, are
used to control the temperature of the system while optimizing
energy usage.

The energy optimization strategies discussed above are integral to your
research. By leveraging a combination of DVFS, DPM, and power-aware
scheduling, this work seeks to reduce the energy consumption of HPC
systems while maintaining or even improving computational performance.
The applications of those techniques will be detailed in Section 4.12.

2.4. Case-Study Architecture

The experiments conducted in this thesis were executed on a single com-
puter node featuring two Intel Xeon E5-2698 v3 processors, each equipped
with sixteen cores and two hardware threads per core. The architecture
of the system is illustrated in Fig. 2.1. The processors operated at a
maximum non-turbo frequency of 2.3 GHz, and the node boasted a total
physical memory capacity of 128 GB (8 × 16 GB). Throughout the ex-
periments, turbo frequency and hardware multi-threading functionalities
were disabled to maintain consistency. The operating system employed
was Linux CentOS 6.5, running kernel version 4.16.

The Linux kernel offers various power management policies depending
on the driver in use (see Section 2.4.1). In our setup, utilizing the default
acpi-cpufreq driver, the available governor options included are Powersave,
Performance, Ondemand, Conservative, and Userspace. Each governor
implements a distinct policy for frequency selection. In our investigations,
the frequency control was achieved using the Userspace governor, enabling
the application to set the CPU frequency. Additionally, core control was
managed by modifying relevant system files with the default CPU-hotplug
driver.

Furthermore, the architecture was equipped with the Intelligent Plat-
form Management Interface (IPMI) and the Intel Running Average Power
Limit (RAPL) Section 2.4.2, which comprises a set of interfaces facili-
tating out-of-band management of computer systems and monitoring of
platform status via the local network Schwenkler (2006). IPMI enables
the monitoring of various system variables and resources, such as tem-

14 Theoretical background

Figure 2.1: Node architecture: 2 Intel Xeon E5-2698 v3 processors, 16
cores each, 2 hardware threads per core, total physical memory capacity
of 128 GB (8 × 16 GB) (the image was made with the lstop application).

15

perature, voltage, fan speed, and power supplies, leveraging independent
sensors integrated into the hardware. This capability enhances system
monitoring and management, contributing to overall operational efficiency
and reliability.

2.4.1 Frequency Control

In contemporary computing systems, the regulation of processor frequency
can be achieved through a combination of hardware and software mecha-
nisms. A pivotal standard in this realm is the Advanced Configuration
and Power Interface (ACPI), embraced by operating systems to configure
power management settings for hardware components.

Within the ACPI framework, two key states, crucial for Dynamic
Frequency Scaling are defined: "C" and "P". These states optimize energy
consumption by modulating the processor activity based on workload
demands.

The "P" state, activated during processor operation, encompasses
multiple levels denoted as P0 through Pn. At each level, both frequency
and voltage are adjusted, with P0 representing the highest possible fre-
quency and voltage, gradually decreasing through subsequent levels until
reaching Pn, where both are minimized. The transition between P states
is contingent upon processor utilization, with the processor transitioning
to a higher or lower state based on the workload intensity. The specific
thresholds for state transitions vary by manufacturer.

Conversely, during idle periods, the processor enters "C" states, begin-
ning with C0, where it remains fully active, and progressing through C1

to Cn as activity diminishes. At each level, various features are disabled
to conserve power. While the ACPI standard delineates functionalities
disabled between levels C1 and C3, other levels are manufacturer-specific.

Table 2.1 illustrates the functionalities disabled across C states as per
the ACPI standard, providing insight into the power-saving mechanisms
employed during periods of reduced processor activity.

In the C states, the higher the level the greater the energy savings,
but returning to the fully functional level is more difficult. Fig. 2.2 best
illustrates these changes of states, in which we can see which parts of the
circuits are deactivated and the latency and energy required to return to
the active state (Wakeup Time and Transition Energy).

16 Theoretical background

Mode Name Functionality
C0 operating state Active processor
C1 Halt Stop executing instructions
C2 Stop-Clock Disable the internal clock
C3 Sleep Disable cache coherence

Table 2.1: Advanced Configuration and Power Interface (ACPI) C states

Figure 2.2: Illustration of C states: managed components and states’
transition cost; source: https://www.thomas-krenn.com/en/wiki/
Processor_P-states_and_C-states

https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states

17

In Linux, the management of the CPU frequency is facilitated through
various tools and modules, providing users with granular control over
performance and power consumption. One of the primary modules for
this purpose is the acpi-cpufreq, which offers direct manipulation of CPU
frequency settings through system files.

Acpi-cpufreq leverages a set of policies to dynamically adjust CPU
frequency based on workload demands. These policies are accessible
to users via the Linux filesystem, typically located under the /sys/de-
vices/system/cpu/cpu*/cpufreq/ directory. Within this directory, users
can find files corresponding to different frequency scaling governors, such
as scaling_governor, which determines the current policy in use.

The available scaling governors include:

• Performance: This governor sets the CPU frequency to the max-
imum allowable value, ensuring optimal performance at all times.
It’s suitable for tasks that require maximum processing power, albeit
at the expense of increased power consumption.

• Powersave: In contrast, the Powersave governor aims to minimize
power consumption by setting the CPU frequency to the lowest pos-
sible value. This mode is ideal for scenarios where power efficiency
takes precedence over performance.

• Userspace: The userspace governor grants users direct control over
CPU frequency settings. By writing frequency values to the scal-
ing_setspeed file, users can manually adjust CPU frequency to suit
specific workload requirements.

• Ondemand: The Ondemand governor adjusts the CPU frequency
dynamically based on processor load. As the workload increases,
the governor scales up CPU frequency to meet demand, ensuring
optimal performance while conserving power during idle periods.

• Conservative: Similar to the Ondemand governor, the conservative
governor adjusts CPU frequency based on workload. However,
it does so more gradually, avoiding sudden frequency changes to
minimize power fluctuations.

18 Theoretical background

Users can select the desired governor by writing its name in the
scaling_governor file. Additionally, they can adjust other parameters,
such as frequency scaling thresholds and transition latencies, to fine-tune
performance and power efficiency according to specific use cases.

This comprehensive suite of frequency scaling governors empowers
Linux users to effectively manage CPU performance and power consump-
tion, enabling optimization for a wide range of computing scenarios.

2.4.2 Power consumption monitoring

In this work, we monitor power consumption by leveraging two key
interfaces: the (Intel Running Average Power Limit) and the Intelligent
Platform Management Interface, as detailed in IPMI (2013).

IPMI

IPMI, as outlined in IPMI (2013), encompasses a suite of specifications
designed for autonomous subsystems, providing management and mon-
itoring capabilities independent of processors, firmware, and operating
systems. This enables system administrators to manage servers remotely.
This feature is particularly beneficial given that server environments are
often located in remote or inhospitable locations characterized by low
temperatures and high levels of noise from ventilation systems. Remote
management via IPMI allows administrators to perform tasks such as
powering servers on and off, accessing the BIOS remotely, and reinstalling
systems in case of critical failures.

As illustrated in Fig. 2.3, IPMI consists of critical components, includ-
ing sensors that monitor various system parameters such as temperature,
voltage, fan speed, and power supply. Communication with the IPMI net-
work is facilitated through either the HTTP protocol or specialized tools
like ipmitool provided by manufacturers. ipmitool grants network access
to IPMI functionality, allowing administrators to monitor platform health
in real time using sensor data. This capability provides valuable insights
into system health and performance, facilitating real-time management
of the server infrastructure without requiring constant manual oversight.

Our framework communicates seamlessly with IPMI via HTTP through
the Baseboard Management Controller (BMC) network, enabling auto-

19

Figure 2.3: Diagram illustrating the key components and their intercon-
nections within the IPMI architecture. [source https://pt.wikipedia.
org/wiki/Intelligent_Platform_Management_Interface]

https://pt.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://pt.wikipedia.org/wiki/Intelligent_Platform_Management_Interface

20 Theoretical background

mated retrieval of power and sensor data. Leveraging this functionality,
our tool streamlines system metric monitoring, covering power consump-
tion and various sensor readings, reducing the need for constant manual
intervention. This automated data collection enhances efficiency and
facilitates real-time analysis of server health and performance, empower-
ing administrators to optimize system operation and resource utilization
through informed decisions.

RAPL

Modern Intel microprocessors, based on the SandyBridge architecture,
include the RAPL interface Rotem (2012); Hahnel (2012); Hackenberg
(2015) aimed at regulating chip energy usage while maintaining peak
performance. This interface provides energy measurement capabilities
through an integrated circuit that estimates power consumption based
on a model driven by architectural event counters for all components.

The energy estimates proposed by RAPL have been validated by Intel.
In addition, RAPL provides temperature readings and current leak models.
These estimates are accessible through model-specific registers (MSR)
and are updated every few milliseconds. The processor’s MSR registers
allow direct access to performance counter values, and power limits can
be specified within defined time windows. The operating system offers
a simplified interface for managing data, especially in cases of overflows.
Beyond energy information, extensive performance parameter data is
available, including cache hit rates, processor frequency, and branch
instructions.

Our framework incorporates the capability to retrieve data from the
RAPL interface, enhancing its effectiveness in monitoring and managing
energy consumption in Intel-based microprocessors.

2.4.3 Performance Counters

Performance counters, also known as hardware counters or performance
monitoring counters (PMCs), are specialized registers built into mod-
ern processors. These counters track a variety of low-level events and
metrics related to processor and memory subsystem activities, providing
detailed insights into system performance. By analyzing data from these

21

counters, developers and researchers can optimize software and hardware
configurations for improved performance and energy efficiency in HPC
environments.

Types of Performance Counters

Performance counters can be broadly categorized based on the type of
events they monitor:

• CPU Performance Counters: These counters track events re-
lated to CPU operations, such as the number of instructions exe-
cuted, cache hits and misses, branch predictions, pipeline stalls, and
cycles spent in different execution states. For example, an important
counter is the Instructions Retired counter, which counts the
number of instructions that have been completed successfully.

• Memory Performance Counters: These counters monitor memory-
related events, such as memory accesses, cache coherence events,
memory bandwidth utilization, and NUMA-related metrics. Metrics
like Last Level Cache (LLC) Misses are critical for understand-
ing the efficiency of memory usage in HPC applications.

• Power and Thermal Counters: Some modern processors include
counters that estimate power consumption and thermal behavior.
For example, Intel’s Running Average Power Limit (RAPL) counters
provide energy consumption estimates for different parts of the
processor, such as the CPU package, cores, and DRAM.

• I/O Performance Counters: These counters track events re-
lated to input/output operations, including disk accesses, network
transfers, and peripheral device usage. These metrics are espe-
cially important in data-intensive HPC applications where I/O can
become a bottleneck.

• GPU Performance Counters: For systems equipped with GPUs,
performance counters monitor metrics related to GPU utilization,
memory usage, and execution efficiency. These are particularly
relevant in heterogeneous HPC systems where both CPUs and
GPUs are used for parallel processing.

22 Theoretical background

Utilizing Performance Counters in HPC

In the context of HPC, performance counters serve multiple purposes:

• Performance Tuning: By analyzing the data collected from per-
formance counters, developers can identify performance bottlenecks
and inefficiencies in their code. For example, high cache miss rates
might indicate that data is not being accessed in a cache-friendly
manner, leading to performance degradation. Optimizing such issues
can significantly enhance computational throughput.

• Energy Efficiency: Performance counters provide essential data
for energy optimization strategies. By correlating performance
metrics with energy consumption (e.g., using RAPL counters),
researchers can identify trade-offs between performance and power
usage, enabling more informed decisions about frequency scaling
and power management.

• Application Profiling: Performance counters allow for detailed
profiling of applications, enabling developers to understand the
behavior of their software on a granular level. This is particularly
useful in identifying phases of computation that are either CPU-
bound, memory-bound, or I/O-bound, which can then be optimized
independently.

• System Monitoring and Debugging: Performance counters
are also useful for real-time system monitoring and debugging.
They help detect anomalies such as unexpected stalls, excessive
branching, or inefficient resource utilization, which can be indicative
of underlying hardware or software issues.

2.5. Case-Study Applications

To showcase the effectiveness of our power models and optimizations,
we selected applications from three different benchmark suites to form
the basis of our case study. These benchmarks were chosen for their
suitability for High Performance Computing environments and their
coverage of diverse use cases within such systems. Additionally, they are

23

widely studied in academia and used in industry. The chosen applications
are Black-Scholes, Bodytrack, Canneal, Dedup, Fluidanimate, Freqmine,
Raytrace, Swaptions, Vips and x264 from the PARSEC parallel benchmark
suite version 3.0 Bienia (2008) (https://parsec.cs.princeton.edu/
download.htm; accessed on 20 February 2020), OpenMC Romano (2015)
and LINPACK (HPL) Dongarra (1988).

The PARSEC benchmark suite is specifically tailored to address emerg-
ing workloads, aiming to represent the next generation of shared-memory
programs for chip multiprocessors. Spanning a diverse array of domains,
including financial analysis, computer vision, engineering, enterprise stor-
age, animation, similarity search, data mining, machine learning, and
media processing, PARSEC offers a comprehensive coverage of modern
computing applications. In contrast, the Linpack Benchmark assesses a
computer’s floating-point rate of execution by solving a dense system of
linear equations. Widely adopted in the industry, the Linpack Benchmark
serves as a standard measure for ranking supercomputers based on their
computational performance. OpenMC, on the other hand, is a community-
developed Monte Carlo neutron and photon transport simulation code.
Renowned for its versatility, OpenMC is capable of performing fixed
source, k-eigenvalue, and subcritical multiplication calculations on models
constructed using either constructive solid geometry or CAD represen-
tation. Its adoption of a hybrid MPI and OpenMP programming model
aligns well with the conventions of high-performance computing environ-
ments, making it an ideal candidate for evaluating system performance
and efficiency in such contexts.

Program Domain Parallelization Granularity Data Sharing Data Exchange
blackscholes Financial Analysis data-parallel coarse low low
bodytrack Computer Vision data-parallel medium high medium
canneal Engineering unstructured fine high high
dedup Enterprise Storage pipeline medium high high
facesim Animation data-parallel coarse low medium
ferret Similarity Search pipeline medium high high
fluidanimate Animation data-parallel fine low medium
freqmine Data Mining data-parallel medium high medium
raytrace Rendering data-parallel medium low medium
streamcluster Data Mining data-parallel medium high low
swaptions Financial Analysis data-parallel coarse low medium
vips Media Processing data-parallel coarse low medium
x264 Media Processing pipeline coarse high high
OpenMC Simulation hybrid medium high high
LINPACK Numerical Analysis data-parallel coarse medium low

https://parsec.cs.princeton.edu/download.htm
https://parsec.cs.princeton.edu/download.htm

CHAPTER 3
A Framework For Automated

Energy Analysis and
Experiments

Crafting accurate energy models demands an in-depth analysis across vari-
ous execution scenarios. This challenge requires a profound understanding
of parallel systems and the analytical tools that dissect their performance
as well as energy consumption profiles. Despite the abundance of tools
available, a gap remains in their ability to provide a balanced focus on
both performance metrics and energy consumption insights, essential for
holistic optimization strategies. To bridge this gap, we introduce a novel
measurement framework specifically designed to analyze energy efficiency
and parallel scalability.

Our proposed framework, detailed in our publications Silva (2019,
2022) focuses on a holistic view of software performance and energy
efficiency, incorporating tracing, profiling with performance counters, and
post-mortem analysis. The framework automates the analysis of parallel
applications across a broad range of configurations by automatically
identifying parallel regions in binaries, calculating energy consumption for
each, and aggregating data to reduce memory and disk usage, all while
maintaining high accuracy and low overhead of less than 1%.

24

25

3.1. Pascal Analyzer: An Advanced Frame-
work for Energy Efficiency Analysis and
Scalability

Given the emphasis on energy efficiency within the field of parallel com-
puting, optimizing parallel programs for high-performance systems ne-
cessitates a deep understanding of their energy consumption patterns.
Performance measurement and analysis tools play a crucial role in this
optimization process by enabling developers to discern execution char-
acteristics, identify energy inefficiencies, and isolate the computational
behaviors that significantly impact the program’s energy consumption.
The primary goal of these tools is to guide developers in implementing
enhancements that not only boost program efficiency but also reduce
energy usage.

The complexity of modern parallel systems makes the task of accurately
identifying and mitigating energy consumption bottlenecks particularly
challenging Huck (2007); Islam (2019); Weber (2019). Developers must
be adept at comparing various measurements across different execution
configurations to pinpoint these bottlenecks. This process is often arduous
and demands a comprehensive grasp of the domain, parallel systems, and
the intricacies of performance and energy measurement tools Bergel (2019);
Weber (2019); Malony (2005); Geimer (2010); Malony (2006); Adhianto
(2010); Miller (1995); Galobardes (2015); Pillet (2007); Islam (2019).
These tools, each with unique measurement strategies, metrics, and focus
areas, require mastery to effectively harness their capabilities Brink (2020);
Huck (2007).

Although many existing tools provide valuable insights into program
behavior through a detailed set of metrics, their utility in analyzing en-
ergy efficiency and parallel scalability specifically in the context of energy
consumption can be limited Bergel (2019); Silva (2018). Traditional tools
tend to focus on analyzing single execution runs, whereas a more holis-
tic understanding of energy efficiency often necessitates examining the
program across multiple configurations of the target execution platform.
From an energy perspective, scalability analysis benefits more from com-
paring key data points across varied configurations rather than collecting

26 A Framework For Automated Energy Analysis and Experiments

extensive, fine-grained data from single configurations.
The intrinsic overhead associated with traditional analysis tools can

skew the observed energy consumption data. Some studies indicate that
this overhead can constitute a significant portion of the program’s runtime
energy consumption Eriksson (2016), reaching 40%, thus obscuring the
true energy efficiency landscape. An analytical approach that prioritizes
the collection of only essential data can mitigate this issue, reducing the
degree of intrusion and simplifying the tool’s usage for developers.

In this light, the contributions made through this thesis, particularly
with the introduction of PaScal Analyzer, are pivotal. This novel frame-
work contributes the approach to energy efficiency analysis in parallel
computing by automating the measurement and comparison of parallel
application executions across various scenarios with an exceptionally low
overhead. By focusing on energy models and offering specialized features
for an in-depth exploration of energy consumption patterns across dif-
ferent computational scenarios, PaScal Analyzer directly addresses the
challenges of existing performance analysis tools Roberts (2017); Eastep
(2017); Hackenberg (2014); Roberts (2019). This advancement not only
facilitates a more precise and comprehensive analysis of energy efficiency
but also paves the way for the development of more energy-efficient parallel
programs, ultimately contributing to the broader goal of green computing.

Our proposed framework integrates tracing-based and profiling-based
measurement techniques to redefine the boundaries of analysis regions.
The tracing approach supports a hierarchical region analysis model, al-
lowing users to visualize how the efficiency of internal components affects
the program’s overall scalability. Meanwhile, the profiling-based approach
ensures low-overhead power monitoring with performance counters de-
tailed in Section 3.7 and also intregrating with IPMI and RAPL described
in Section 2.4.2, combining detailed insights with minimal performance
intrusion. The collected data can be exported as a file, enabling inter-
pretation by other tools to create energy models or to be rendered by
graphics libraries for visualization and analysis.

In addition, the framework incorporates an aggregation feature to
reduce the volume of data produced while preserving accurate analysis
capability with minimal overhead. This mechanism operates by collecting
and aggregating measurement data from various regions of an applica-
tion. It ensures that the aggregated data reflects the overall execution

27

characteristics, such as maximum runtime, start times, and stop times.
This streamlined approach ensures efficient utilization of computational
resources, optimizing the analysis process. Furthermore, to enhance user
experience and streamline workflow, the tool proposes intuitive usabil-
ity features. These features, detailed in Section 3.5, automate tedious
tasks associated with measurement and analysis, significantly reducing
developer effort. By automating the execution and consolidation of data
across multiple configurations, manual interventions are circumvented,
mitigating the limitations of non-computer-centric analysis approaches.

The following sections describe how the framework was built and used
for performance analysis. Section 3.2 presents the related works regarding
application profiling and tracing tools. Section 3.3 describes the proposed
tool architecture and goals; it explains the main features, usage, and
collected data. The experimental results are presented in Section 3.10.
Finally, the contributions are summarized in Section 6.2, with an outlook
of future works.

3.2. State of the Art Profiling and Tracing
Tools

In the pursuit of optimizing parallel programs for high-performance sys-
tems, understanding and improving energy efficiency is crucial. As high-
lighted in the introduction, achieving scalable performance involves effi-
ciently utilizing computing resources such as processors or cores as the
problem size or number of concurrent tasks increases. Performance anal-
ysis tools are indispensable in this optimization process, as they enable
developers to discern execution characteristics, identify energy inefficien-
cies, and isolate computational behaviors that significantly impact energy
consumption. Tools such as Caliper Boehme (2016), HPCToolkit Adhi-
anto (2010), Scalasca Geimer (2010), TAU Malony (2006), Vampir Weber
(2019), and VTune Intel (2021) play a critical role by collecting detailed
execution data to guide developers in enhancing both performance and
energy efficiency. These tools differ primarily in their data measurement
and analysis strategies—whether tracing-based or profiling-based, post-
mortem or real-time, focusing on individual or comprehensive observation,

28 A Framework For Automated Energy Analysis and Experiments

and whether they provide visual elements to facilitate data interpretation.
Additionally, frameworks like DASHING Islam (2019) and the HATCHET
library Brink (2020) integrate performance data from multiple sources to
provide a robust dataset for analysis.

Understanding a parallel program’s execution sequence as a series of
significant activities is crucial for analyzing its behavior Houstis (1997).
Events are the basic units of this analysis, and the way they are observed
influences data collection strategies.

The profiling-based approach analyzes program performance by mea-
suring metrics such as execution time, CPU utilization, and memory
usage. Tools designed for this type of analysis collect information from
events during program execution, typically through statistical sampling
using interrupts. These interrupts can be triggered by periodic intervals
or hardware events, enabling the system to gather relevant data based
on the observation focus. Such tools employ statistical techniques to
describe program behavior through aggregate performance metrics, often
ignoring the chronology of events. This approach is particularly useful
for identifying issues like load imbalance, high communication time, or
excessive routine calls. Examples of tools using this strategy include
Paradyn Miller (1995) and Periscope Ott (2010).

Conversely, tracing-based analysis involves comprehensively collect-
ing information about a program’s execution flow, including function
calls, data accesses, and communication events. These tools gather per-
formance data from events occurring when the program enters specific
states, providing invaluable insights into the temporal aspects of program
execution. This method allows users to pinpoint when and where transi-
tions of routines, communications, and specific events occur. However,
this approach is generally more invasive and intrusive, often generating
significantly larger datasets compared to the profiling-based approach. Ex-
amples of tracing tools include Vampir Weber (2019) and Paraver Labarta
(2005). Additionally, some tools, such as HPCToolkit Adhianto (2010),
Scalasca Geimer (2010), TAU Malony (2006), and VTune Intel (2021),
support both profiling-based and tracing-based analysis.

In this work, we propose using tracing-based methods to identify
parallel regions in combination with profiling-based methods to measure
relevant performance counters for modeling applications. To mitigate some
disadvantages of tracing-based approaches, our framework implements

29

features such as automatic instrumentation and resource aggregation,
alongside time-based analysis. Our automatic instrumentation mode is
non-invasive, allowing users to analyze an application’s execution without
modifying the source code or executable.

Runtime overhead refers to the additional instructions executed to
collect program measurements, which can vary depending on the tool
used and the aspects being measured. This "extra code" incurs time
overhead, directly impacting the comprehensiveness and accuracy of the
measurements. Excessive overhead can distort the understanding of
program behavior and misdirect optimization efforts toward less effective
areas. Comparative studies have revealed that traditional tools often
impose a runtime overhead ranging from 2% to 40% Eriksson (2016).
Thus, minimizing this overhead is paramount for accurate analysis and
efficient optimization strategies.

Although many other analysis tools offer automatic instrumentation
modes, this work presents a detailed approach to mapping and measuring
code parts. Our strategy extends the analysis to parallel regions as a
primary objective, effectively identifying the scaling trends of parts or
the entire parallel program. By collecting only specific runtime data, we
reduce the overhead associated with the measurement process. Similar
to tools like HPCToolkit Adhianto (2010) and TAU Malony (2006), our
framework supports any version of OpenMP . Despite the program’s
specific characteristics, our instrumentation strategy results in negligible
overhead (less than 1%), making it optimal for analyzing trends in parallel
applications, as demonstrated later.

The timing of measurement, data collection, and analysis tasks varies.
Real-time analysis continuously monitors performance data during pro-
gram execution, providing immediate feedback for swift adjustments and
optimizations, particularly valuable for diagnosing performance issues
in dynamic or time-critical applications. However, many performance
analysis tools favor a post-mortem approach.

Post-mortem analysis retrospectively examines collected performance
data after program execution to identify inefficiencies and areas for en-
hancement. This method offers thorough investigation but lacks imme-
diate insights during execution. Examples of post-mortem performance
analysis tools include HPCToolkit Adhianto (2010), Scalasca Geimer
(2010), TAU Malony (2006), and VTune Intel (2021). These tools may

30 A Framework For Automated Energy Analysis and Experiments

require storing large amounts of data, but they are best suited to provide
an overall view of the execution.

Run-time analysis tools perform both measurement and analysis at run
time, accurately detecting waiting states and communication inefficiencies.
Examples of such tools include Periscope Ott (2010) and Paradyn Miller
(1995). However, the run-time analysis generally requires the coordinated
action of tools, increasing structural complexity. The need for synchronous
initialization and communication between analysis resources, as well as
their impact on the runtime environment, are drawbacks of this approach.
Additionally, the scalability analysis, relying on data collected at the end
of execution, may be degraded by infrastructure overhead, not benefiting
from the characteristics of real-time tools.

Energy management solutions can also provide similar measurement
and analysis features. For example, GEOPM Eastep (2017) measures
the time and energy of specific regions. An essential contribution of our
tool, which we have not found in any other framework, is its ability to
provide specific energy consumption data of parallel regions in a fully
automated and non-invasive way. For example, in GEOPM, it is necessary
to instrument the source code to obtain the same result.

By focusing on objective analysis, we introduce an innovative tool
that offers a fresh perspective on observing the scalability trends of
parallel programs, addressing the challenges highlighted. Our framework is
designed to collect only the essential information needed to infer the overall
behavior of the program or specifically chosen parts of it, incorporating
features relevant to effective measurement and analysis. Automation is a
key component of our approach, enabling the acquisition of comparative
measurements across multiple runs. This observability of scalability trends
involves correlating program behaviors across various executions with
different configurations. Consequently, our framework automates program
executions based on user-specified configuration parameters, generates
datasets with comparative runtime measurements, and optimizes the
volume of produced data. To manage data efficiently, our approach
employs aggregation, streamlining storage and facilitating comprehensive
analysis, as detailed in the forthcoming sections.

31

3.3. Framework Architecture

To analyze energy, performance, and scalability trends of parallel programs,
we have developed a tool that measures, collects, combines, and compares
data from multiple runs. The core of the tool is built around two primary
concepts: actuators and sensors. Both actuators and sensors are integrated
into the tool as modular components.

Actuators represent parameters that we aim to control. These are vari-
ables representing elements external to the program that, when modified,
can influence aspects such as performance and efficiency of the running
application. Understanding the state of actuators is essential for assessing
their impact on program behavior, particularly on scalability and energy
consumption. By default, the tool includes actuators that control the
number of active cores and threads, program input, and CPU operating
frequency.

Sensors are designed to measure and monitor variations resulting from
the actions of actuators. Currently, the tool implements three types of
sensors:

• Begin/end: collects data at the start and end of each program run.
• Time sample: periodically collects data.
• Event-based: collects data when specific events occur.

Sensors are designed to measure and monitor variations resulting from
the actions of actuators. Currently, the tool implements three types
of sensors. The begin/end sensor collects data at the start and end of
each program run. The time sample sensor periodically collects data
throughout the program’s execution. The event-based sensor gathers data
when specific events occur during the program’s execution.

Currently, there are sensors to measure time, energy, and performance
counters. The default sensor is a begin/end type used to collect the
execution time of the entire application. To measure energy consumption,
we developed sampling sensors capable of retrieving data from RAPL
and IPMI, which are interfaces that provide power information from the
CPU and the entire system. Additionally, the time sample and begin/end
sensors gather performance counters data.

32 A Framework For Automated Energy Analysis and Experiments

Scalability analysis relies on measurements obtained from event-based
sensors. To facilitate this, the tool incorporates markers that automatically
trigger events, enabling the identification of boundaries within source
code parallel regions. These boundaries are typically defined when new
threads are created and are well specified in low-level libraries like POSIX,
Pthreads, and OpenMP. This capability allows us to automatically hook
calls related to the creation and destruction of threads to identify parallel
regions and trigger the collection of sensor data directly from the binary
code. This seamless integration of sensor functionality into software
applications enhances our ability to monitor performance accurately.
Additionally, the tool provides manual markers that developers can insert
into the source code to monitor specific parts of the program. Furthermore,
any system event can be configured as a trigger. The following section
outlines the procedure for instrumenting the source code with manual
markers.

Fig. 3.1 illustrates the integration of each component within the
proposed software architecture. The modular design allows for easy
addition or removal of actuators and sensors. The core of the tool
manages all operations, including launching the application and gathering
data.

3.4. Instrumentation and Intrusiveness

Instrumentation is the process of integrating monitoring or measurement
capabilities directly into the software application. Therefore, the instru-
mentation module, which directly interfaces with the source code (as
depicted in Fig. 3.1), emerges as one of the most critical components. Be-
sides automating instrumentation, it determines the level of intrusiveness
and overhead associated with the process.

The instrumentation module is designed to execute the fewest in-
structions possible in the most optimized manner. Currently, it supports
C/C++ languages through shared libraries, facilitating both automatic
and manual instrumentation of the source code. Manual instrumenta-
tion is preferred for cases requiring precise examination of specific code
sections.

Manual instrumentation provides three routines for use with the source

33
19/10/2021 09:49

Page 1 sur 1about:blank

Proposed Analyzer

sensors

performance counters

time power

launcher

instrumentation

wrapper
library

actuators

CPU frequency

CPU cores

output
JSON

GUI

source

System target platform

instrumented
source

instrumented
binary

build

build

tool core

binary

Figure 3.1: Pascal Analyzer architecture showing the interconnections of
the central parts of the tool. Whether using a binary (with the wrapper
library) or an instrumented source code, the target application can be
launched on the target platform by the tool core following the configuration
parameters chosen by the user while deploying actuators/sensors. The
resulting data collection is stored in JSON file format for post-analysis
and visualization (GUI).

34 A Framework For Automated Energy Analysis and Experiments

code: one for initialization, another to mark the beginning of the region
of interest (pascal_start), and a routine to mark the end of that region
(pascal_stop). The initialization routine is called when loading the
library to create the necessary data structures and set up data exchange
communication. The pascal_start and pascal_stop routines collect
thread identifiers and store timestamps. These routines are implemented
to ensure thread safety by allowing only one thread at a time to write
in a designated position of a two-dimensional array, thus eliminating the
need for locks.

Automatic instrumentation includes a routine that intercepts the cre-
ation of threads via the LD_PRELOAD environment variable. This routine
overwrites parts of an existing native library, such as pthread_create
in the thread library, GCC implementation GOMP_parallel, or Clang
implementation __kmpc_fork_call in the OpenMP framework. Similar
functions for other compilers are intercepted to automatically identify
parallel regions. This approach is less intrusive than methods like us-
ing a debugger interface with breakpoints or performing binary code
instrumentation.

A critical aspect of performance analysis tools, especially when ex-
amining real-time program execution, is ensuring that instrumentation
minimally impacts program behavior and execution time. As outlined
in Section 3.3, our tool supports three types of sensors, each varying in
intrusion level. There is minimal intrusion from the begin/end sensor, as
it only involves the invocation of data collection routines at the start and
end of program execution. However, with sampling sensors, the level of
intrusion fluctuates based on the sampling rate and the application’s total
execution time, making intrusion assessment a case-specific endeavor.

The instrumentation overhead does not depend on the number of
instructions or the runtime required to process the set of instructions to
be analyzed. However, it varies according to the number of processing
units used and the measurements taken. To estimate the magnitude of
the overhead (Tm), we measured recurring calls to the proposed sampling
functions delimiting the regions in a simple benchmark code. This exper-
iment was conducted on the same target architecture described in the
experimental results of Section 2.4, and the code structure is presented in
Listing 3.1. The time required to execute N calls to the pascal_start
and pascal_stop functions was obtained using the gettimeofday routine

35

from the sys/time.h library.

1 // Measure start time
2 #pragma omp parallel for
3 for (c=0; c<interations; c++) {
4 pascal_start(1);
5 usleep(1e4); // to simulate a simple operation
6 pascal_stop(1);
7 }
8 // Measure end time

Listing 3.1: Measuring the Overhead of Instrumentation Functions
pascal_start and pascal_stop, defined as Tm.

The algorithm above was executed with 1 ×104, 2 ×104, 3 ×104, 4
×104, 5 ×104, and 1 ×105 calls to the pair of functions, each test repeated
ten times. The mean, median, and variance values were computed. Fig. 3.2
shows these results. Fig. 3.2a presents the mean, median, and variance of
the time for a single call to our instrumentation function while varying
the number of calls/measurements. Fig. 3.2b complements these results,
showing the variance in each execution.

Table 3.1 shows the results from the same experiment (Listing 3.1),
comparing the time without and with the analyzer (columns Real-Time
and Analyzer, respectively). We observe that the proportional impact
(overhead) remains constant while the number of iterations increases. Ta-
ble 3.1 also presents data referring to the simulation using the TAU
profiling tool. For this simulation, we replaced the analyzer direc-
tives with the time measurement directives (TAU_PROFILE_START and
TAU_PROFILE_STOP) of TAU, allowing us to approximate the measure-
ment and analysis conditions.

From the results, it is evident that the tool proposed in this work has a
higher overhead than TAU, but the analysis capabilities are distinct. TAU
adds the individual runtime of each thread to define the execution time
of a parallel region. This strategy does not account for the simultaneous,
specific actions of threads in processing instructions, leading to potential
double-counting and inaccurate measurement of the parallel region. The
Analyzer addresses this problem by counting intersection periods only once.
Therefore, despite TAU’s lower overhead, our more accurate measurement

36 A Framework For Automated Energy Analysis and Experiments

Measurements

12

10

8

6

In
st

ru
m

en
ta

tio
n

ov
er

he
ad

median
mean
variance

20,000 40,000 60,000 80,000 100,000

10

10

10

10

(a) Time consumed from sampling
a region one time in seconds.

Measurements

10 5

1.05 × 10 5

1.1 × 10 5

1.15 × 10 5

1.2 × 10 5

In
st

ru
m

en
ta

tio
n

ov
er

he
ad

10,000 20,000 30,000 40,000 50,000 100,000

(b) Box plot showing the statistics
of the sampling time of a single

region.

Figure 3.2: Measuring variance of the time to single instrumentation, i.e.,
a call to pascal_start and pascal_stop while varying the number of

measurements.

Table 3.1: Instrumentation overhead estimation varying the number of
samples collected with TAU and Analyzer.

Iterations
Time (s) Overhead (%)

Real
Time

TAU Analyzer TAU Analyzer

10,000 100.933 100.992 101.053 0.058 0.118
20,000 201.863 201.980 202.094 0.057 0.114
30,000 302.797 302.977 303.142 0.059 0.114
40,000 403.738 403.978 404.176 0.059 0.108
50,000 504.675 504.959 505.212 0.056 0.106
100,000 1009.359 1009.927 1010.432 0.056 0.106

37

is crucial for effective scalability analysis.
Varying the number of threads impacts the cost of instrumentation.

As shown in Table 3.2, the overhead percentage tends to rise with the
application’s runtime. However, this increase becomes negligible when
considering the exponential growth in thread count.

Table 3.2: Instrumentation overhead while varying the number of threads
with the number of samples fixed to one million.

Threads
Time (s)

Overhead (%)
Direct With

Analyzer

1 1009.360 1010.430 0.107
2 504.733 505.374 0.127
4 252.399 252.742 0.135
8 126.215 126.390 0.138
16 63.109 63.199 0.143

Increasing the processing load favorably affects the relationship be-
tween execution time and overhead percentage. As processing demand
grows, runtime naturally increases, while the overhead changes only with
the number of threads.

For pluggable sensors, overhead is generally not a concern as they run
on a separate thread with minimal CPU usage. However, specific scenarios
may cause interference. One such scenario is when the application requires
all the machine’s resources simultaneously, and sensors respond faster than
the processing speed at a given sample rate. In this case, the overhead is
directly linked to the sample rate and system concurrency management.
Such occurrences are rare in HPC, as they require an application with
perfect linear scaling. Another potential scenario is I/O overhead, where
network, disk, or memory resources may become unavailable due to high
sensor usage. However, this scenario is even less common, as sensors
seldom produce data that quickly; in all the tests performed, this was not
an issue.

38 A Framework For Automated Energy Analysis and Experiments

3.5. Features and Usage

The analyzer is a simple and easy-to-use tool designed to help users
understand the general behavior of a program before investing in more
in-depth and long-term analysis. To meet various needs and resource
constraints, the tool offers several functionalities that allow users to
parameterize the measurement process. Key features include:

1. Automatic binary instrumentation for OpenMP and Pthreads ap-
plications, with optional manual source instrumentation for more
precise control.

2. CPU actuators for controlling cores, frequency, and enabling/dis-
abling hyperthreading. Application actuators to automatically
execute with multiple inputs.

3. Sensors based on performance counters enabling measurement of
instructions executed, cache misses, , and more. Integration with
RAPL and IPMI for precise power measurements.

4. Aggregation of collected metrics by region, significantly reducing
disk and RAM usage. Users can choose to group the data by mean,
median, minimum, or maximum values.

5. Hierarchical regions: facilitating the identification of aligned regions
and enabling the analysis of the calling hierarchy of inner regions
and blocks.

The tool can be used via the command line or through its API.
The API provides calls to integrate sensors and actuators, as shown in
Listing 3.2.

1 from analyzer.run import Run
2 from analyzer.actuators import CPUFrequencies
3 from analyzer.actuators import CPUCores
4 from analyzer.sensors import RAPL
5 from analyzer.sensors import fingerprint
6 from itertools import product
7

39

8 lsensors = [
9 RAPL(),

10 fingerprint(counters=["INSTRUCTIONS"])
11]
12 cores = [
13 CPUCores(c) for c in range(1, 32)
14]
15 freqs = [
16 CPUFrequencies(2800000),
17 CPUFrequencies(2600000)
18]
19

20 # all combinations
21 configs = list(product(cores, freqs))
22 app = Run(application="a.out",
23 repetitions=10,
24 instr_auto=True,
25 sensors=lsensors)
26 app.run(configs)
27 app.savedata("out.json")

Listing 3.2: Python script showing some API features provided by the
tool, and how a custom run can be configured.

3.6. Exported Data Structure

The data collected by the tool is exported to a JSON file and stored on
disk. This data structure is divided into two main groups: configuration
parameters and sensor measurements. The configuration encompasses
information about the host machine, sensors, and actuators and their
configuration. The data is organized by keys representing a unique
combination of actuators derived from the actuator’s value.

Listing 3.3 provides an example of data collected by the analyzer
exported to a file. The file consists of several main sections, starting
with a header containing essential system information. Following the
header, the description of the collected data is presented, which includes

40 A Framework For Automated Energy Analysis and Experiments

a list of actuators and the specific types of information collected from
the sensors. The collected samples are then presented, and organized by
actuator configurations and sensor types.

1 {
2 "config": {
3 "execdate": "Execution timestamp",
4 "kernel": "Kernel version or system details",
5 "pkg": "Package or configuration name",
6 "data_descriptor": {
7 "keys": ["Parameter1", ... , "ParameterN"],
8 "values": ["MeasuredMetric"],
9 "extras": {

10 "sensors": {
11 "values": ["SensorType1", ... , "SensorTypeN"]
12 }
13 }
14 },
15 "arguments": ["Input parameters for execution", ...]
16 },
17 "data": {
18 "key1;key2;key3;keyN": {
19 "MeasuredMetric": "Value of the metric",
20 "sensors": {
21 "SensorType1": [["SensorReading1", "Timestamp1"], ...],
22 ...
23 "SensorTypeN": [...]
24 }
25 },
26 ...
27 }
28 }

Listing 3.3: Sample exported data file showing the internal structure and
organization of the data.

The keys and values in the JSON file might not be easily identifiable
and understandable for users. However, they can be efficiently interpreted
by a script or visualization software such as PaScal Viewer Silva (2018).

41

The PaScal Viewer provides a visualization module that interprets and
presents the data in an organized and user-friendly manner, enhancing
the usability of the collected data.

42 A Framework For Automated Energy Analysis and Experiments

3.7. Profiling with Performance Counters

The PaScal Analyzer utilizes performance counters to gather essential
data on application behavior, crucial for optimizing performance and
energy efficiency in High Performance Computing (HPC) systems. These
counters, embedded within modern processors, count micro-architectural
events such as instructions executed, cache hits, branch mispredictions,
and energy estimations. This capability is integral to understanding the
intricate dynamics of how applications utilize system resources, offering
unprecedented insight into application performance and system utilization.

Originally developed for debugging, performance counters now play
a pivotal role in diverse applications including software profiling Melo
(2010); Kufrin (2005); Knupfer (2011), CPU power modeling Zamani
(2012), DVFS, malware defense Demme (2013), and more. Their ability
to capture real-time, granular performance data without impacting appli-
cation execution makes them indispensable for any in-depth analysis of
HPC systems.

This profiling module provides a methodological approach for collecting
and analyzing these metrics, enhancing our capacity to discern energy
consumption patterns and computational bottlenecks. It combines a
high-level Python API with an efficient C++ backend, ensuring that
the integration of performance counter data collection into application
analysis is both user-friendly and minimally invasive. This balance is
vital for maintaining the integrity of performance data while ensuring
minimal overhead.

Moreover, exploiting Performance Monitoring Units (PMU) effectively
necessitates a deep understanding of both micro-architecture and kernel
APIs, along with strategies to manage their growing complexity. Despite
the availability of tools leveraging performance counters, high-level, ac-
curate programmable interfaces are scarce. Most existing APIs, such as
PAPI Weaver (2013); Mucci (1999) and Perfmon Eranian (2008), face
challenges related to poor documentation, instability, or narrow design
focus, which limits their usability and precision.

Our approach addresses these challenges by providing efficient, low-
level access to PMUs complemented by high-level, user-friendly pro-
grammable interfaces. This strategy allows for comprehensive configura-

43

tion and post-processing via Python, while the underlying C++ module
handles precise data collection, thus minimizing overhead and ensuring
measurement fidelity. The accuracy of this module has been rigorously
tested against existing tools, confirming its superior capability in cap-
turing and processing performance data, thereby facilitating effective
application fingerprinting and subsequent optimization strategies.

3.7.1 State of the Art Performance Counters APIs

There are only a few APIs allowing access to performance counters. PAPI
Weaver (2013); Mucci (1999), one of the most used libraries for accessing
hardware performance counters, was originally developed to provide
portable access to the counters found on a diverse collection of modern
microprocessors. Instead of creating a new performance framework from
scratch each time it is adapted to a new machine, developers can write
measurement code using the PAPI API, which abstracts the underlying
interface.

PAPI was developed on C and a few non-official libraries were ported
to Python. The main problem with the Python versions, besides having
a considerable overhead, is that it does not have an easy way to create
raw events, or low-level control, without having to use a special driver.
And, as our tests will show later, counter-sampling over time does not
produce good results either.

There are also available sets of interfaces using their drivers, mainly
because the counters are only accessible in kernel mode (ring 0) to control
the events for which the counter must be started or stopped. As such,
the hardware performance counters are only accessible by the operating
system’s kernel, which operates at the highest privilege level. Some
events are fixed and others require the development of a dedicated kernel
driver. Perfctr Nikolaev (2011) supports per-kernel-thread and system-
wide monitoring for most major processor architectures. It is distributed
as a stand-alone kernel patch. The interface is mostly used by tools built
on top of the PAPI performance toolkit. The Intel VTUNE Intel (2021)
performance analyzer comes with its kernel interface, implemented by an
open-source driver. The interface supports system-wide monitoring only
and is very specific to the needs of the tool.

The problem with the approach of a tool and its kernel interface

44 A Framework For Automated Energy Analysis and Experiments

is dangerous because, as mentioned on Eranian (2008), there is clearly
code duplication, but more importantly, there is no coordination between
the various interfaces that may coexist sharing access to the same PMU
resource. To solve this problem, Perfmon2 Eranian (2008) offers a standard
interface that all tools can use. Unfortunately, it has not been widely
adopted, just supported by a few architectures like the IA64. Instead,
Linux comes up with a performance counters subsystem which provides a
complete set of configurations.

Despite the availability of various APIs, there remains a need for
standardized interfaces and improved coordination among tools accessing
PMUs. While Linux’s performance counters subsystem offers a com-
prehensive set of configurations, widespread adoption of standardized
interfaces like Perfmon2 remains limited.

3.8. Reading Performance Counters Precisely

Our performance counter module is architecturally segmented into five
primary blocks: Profiler, Events, Workload, Analyzer, and libpfm4, span-
ning across two operational levels: interface and kernel. This structure
establishes a robust framework for performance monitoring, adept at han-
dling complex data interactions and ensuring reliability in data acquisition
and analysis.

Figure 3.3 illustrates the interconnected roles of these blocks within
the tool’s architecture.

This integrated system design ensures that our tool not only efficiently
reads and processes performance counters but also ensures the data’s accu-
racy and actionability for performance optimization in high-performance
computing environments. Detailed descriptions of each module’s func-
tionality are provided below.

3.8.1 Workload Module

The Linux system provides a performance monitoring subsystem that
facilitates access to per-task and per-CPU performance counters, counter
groups, and related event features via an abstraction layer over the hard-
ware capabilities. These counters are managed through Model-Specific

45

Figure 3.3: The Performance Counters Module Interconnection Structure

Registers (MSR), which are accessible only in kernel mode (ring 0).

All events are modeled as 64-bit virtual counters, regardless of the
underlying hardware counter widths. They are accessed through special
file descriptors, with each descriptor dedicated to one virtual counter.
These counters can be managed via interrupt handling, polling, or time-
based sampling. Interrupt handling involves a user-defined function
triggered by an event such as a counter overflow, leading to a signal
that passes control to the handler function. Polling allows reading from
a queue of events processed by the system, and time-based sampling
involves reading the counters at specified intervals.

The Workload Module, developed in C++, is the core of our tool,
orchestrating application deployment and managing the sampling process.
Key functionalities include synchronization at application start, halting
execution before the first instruction, and utilizing the debug interface
on Linux to ensure counters are reset prior to application launch. This
module offers extensive control over the runtime system through seamless
interfacing with Python via the Python C API.

46 A Framework For Automated Energy Analysis and Experiments

3.8.2 Profiler

The Profiler serves as the user interface for selecting and configuring
monitoring events. Given the hardware constraints where only a limited
number of counters are available at any given time, events must be carefully
selected and, if necessary, multiplexed, sacrificing some precision for
broader coverage. The available counters differ by processor architecture;
for instance, modern Intel CPUs Intel (2013) support three fixed and
four programmable counters per core, monitoring events like Instructions
Retired, logical cycles, and reference cycles.

3.8.3 Events Module

The Events Module catalogs a wide array of event parameters, configura-
tions, and the available PMUs. It handles system calls for creating and
reading these events, mostly managed directly by the Workload Module or
indirectly via an intermediary Python link to the libpfm4 Eranian (2008).
The libpfm4 library is crucial for translating event names (specified as
strings) into their respective hardware or OS-specific codes, which is
essential for configuring the monitoring setup.

3.8.4 Analyzer Module

Despite expectations, hardware performance counters often do not yield
exact and deterministic results, evidenced by run-to-run variations and
overcounts, especially in x86-64 machines Weaver (2008, 2013); Das (2019);
Guire (2009). This variability poses challenges for applications requiring
strict determinism, such as deterministic replay or threading libraries. To
address these issues, we have developed a methodology to minimize noise
and overcounts using multiple application runs.

The Analyzer Module plays a critical role in post-processing the data
collected. It applies various techniques to refine the data, such as median
filtering to remove outliers, interpolation to standardize data points, and
application of Savitzky-Golay filters for smoothing. This comprehensive
suite of functions facilitates comparative analysis by reducing noise and
interpolating values to present a clear, consistent dataset for further
analysis.

47

The post-processing phase is graphically represented in Fig. 3.4, which
illustrates the transformation of raw execution data into a refined format
ready for analytical assessment.

0 2000 4000 6000 8000 10000 12000
Sample

0

1

2

3

4

5

In
st

ru
ct

io
ns

 e
xe

cu
te

d

1e7

(a) Input executions curves with
different inputs.

0 2000 4000 6000 8000 10000 12000
Sample

0

1

2

3

4

5

In
st

ru
ct

io
ns

 e
xe

cu
te

d

1e9

(b) Single execution representation
after median filtering.

0 20 40 60 80 100
Sample

0

1

2

3

4

5

In
st

ru
ct

io
ns

 e
xe

cu
te

d

1e9

(c) B-spline interpolation of the
curve showing normalized sample

number.

0 20 40 60 80 100
Sample

0

1

2

3

4

In
st

ru
ct

io
ns

 e
xe

cu
te

d

1e9

(d) Final curve after applying
Savgol filtering and normalizing.

Figure 3.4: Post-processing workflow steps applied to the Polybench
2mm application, depicting the process from raw data collection to final
smoothing for analysis. Each subfigure illustrates a key step in the data

refinement process.

The steps include:

• Median Filtering: Each set of run data undergoes a median filter
to remove outliers and reduce variability, helping to clarify the
underlying trends.

48 A Framework For Automated Energy Analysis and Experiments

• Interpolation: The median-filtered data is then interpolated using
a B-spline algorithm Hang (2017), which ensures that all curves
have the same number of points for consistent comparison.

• Normalization: This step normalizes the horizontal axis over the
interval from 0 to 100, allowing the comparison of program execution
in a consistent interval, rather than over time.

• Savgol Filtering: Finally, we apply a Savitzky-Golay (Savgol)
filter Luo (2005) to smooth the data further, enhancing the signal-
to-noise ratio without significant distortion.

3.9. Performance Counters and Intrusiveness

Another important aspect to validate is the intrusiveness of our perfor-
mance counter module. For that, we compared the results of the counters
obtained with different APIs. We used the hand-crafted assembly bench-
mark from Weaver (2013), designed to test the determinism and accuracy
of PMUs. We compared the values obtained from the Linux API, PAPI
on C, and PAPI on Python. The events used for this comparison were
instructions retired, branch instructions, memory read, memory load, and
arithmetic operations. We ran the benchmark 30 times and calculated
the mean and standard deviation as shown in Table 3.3. Some events
could not be measured using PAPI because the tool does not accept raw
events and there are no equivalent events.

Table 3.3: Comparison with other state-of-the-art APIs with our proposed
approach

Average×10−6 Standard deviation

Counters Pined
values

Linux
API PAPI PAPI

Python Proposed Linux
API PAPI PAPI

Python Proposed

INSTRUCTIONS_RETIRED 226.99 227 227 225.9 227 396 133 337763 175
BRANCH_INSTRUCTIONS_RETIRED 9.24 9.25 9.25 9.24 9.25 297 208 8485 91
BR_INST_RETIRED:CONDITIONAL 8.22 8.22 8.22 8.21 8.22 0 0 3383 0
MEM_UOP_RETIRED:ANY_LOADS 2484.18 2484.16 37399 38953
MEM_UOP_RETIRED:ANY_STORES 189.96 189.96 1513 687
UOPS_RETIRED:ANY 12291.08 12290.9 345246 333298
PARTIAL_RAT_STALLS:MUL_SINGLE_UOP 0.6 0.6 1222 521
ARITH:FPU_DIV 5.8 5.8 1760 1544
FP_COMP_OPS_EXE:X87 48.79 48.79 1283 3311
INST_RETIRED:X87 17.2 17.2 4 3
FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 5.4 5.4 1547 2097

49

Since the benchmark was hand-crafted with assembly, we know ex-
actly the value for some counter events. For this reason, the number of
instructions, branch instructions, and conditional branches are pinned.
However, some other events are architecture-specific and there is no pined
value. In the latter case, we can still compare to the Linux API, which
should be closest to reality.

The differences using the Linux low-level API, PAPI, and our proposed
tool on Table 3.3, are negligible (the average percentage difference is less
than 0.01% in all the cases). As expected, PAPI on Python had the
largest difference (with an average difference of 0.25%) mainly due to
an unsynchronized start that resulted in the loss of some instructions at
the beginning of the execution. This can be an important problem if the
application contains a small number of instructions.

The standard deviation of the 30 executions shows that our tool has
the smallest variation on a run-to-run on most events. On the contrary,
PAPI on Python shows a big variation compared to the others.

50 A Framework For Automated Energy Analysis and Experiments

3.10. Pascal Analyzer Use Cases

In this Section, we discuss the measurements and simulation results for
three distinct cases, including two real applications. We also demonstrate
how external libraries and standalone visualization tools can be used to
render the collected data and investigate performance aspects such as the
program’s scalability capacity and energy consumption.

We used three experiments to assess the tool and demonstrate its
ability to support analysis aimed at observing parallel scalability. The first
includes a runtime imbalance between processing units in a specific parallel
region. In this case, the objective is to present how the analyzer helps users
observe the impact of the inefficiency of a code part on the whole program.
The code for this experiment is presented in Listing 3.4. It consists of
two simple parallel regions with the same functionality that divides the
iterations of a loop between the available threads. The difference between
the regions lies in the strategies used to manipulate the sum variable,
used in the example to store the values of the calculations performed in
each thread. We assume that the anyop() function invariably has the
same runtime in all function calls.

1 sum = 0;
2

3 #pragma omp parallel for schedule(static) reduction(+: sum)
4 for (i = 0; i < operations; i++) {
5 sum += anyop();
6 }
7

8 #pragma omp parallel for schedule(static)
9 for (i = 0; i < operations; i++) {

10 #pragma omp critical
11 sum += anyop();
12 }

Listing 3.4: Sample code used to visualize the impact of 2 regions on
program scalability.

The first directive on line 3 instructs the compiler to parallelize the
following for loop using OpenMP. The parallel for clause indicates

51

that the iterations of the for loop should be executed in parallel. The
schedule(static) clause specifies that the iterations of the loop are
divided into equal-sized chunks, with each thread executing a chunk.
Static scheduling is typically used when the workload of each iteration is
uniform. The reduction(+:sum) clause specifies a reduction operation
on the sum variable. The + symbol indicates that the sum of all the
private copies of the variable sum (created for each thread) should be
computed and combined at the end of the parallel region. This ensures
that the final value of sum is the total sum of all iterations, thus avoiding
race conditions.

The second directive on line 8 also tells the compiler to parallelize the
following for loop using OpenMP with static scheduling. However, this
loop contains a critical section. The critical directive ensures that the
code inside the critical section is executed by only one thread at a time.
This prevents race conditions but can lead to performance bottlenecks
due to the serialization of the critical section.

The two regions in this code are used to compare the scalability of
parallel reductions versus the use of critical sections. The first region
demonstrates a scalable reduction operation, while the second region
shows a potential bottleneck with critical sections.

The command presented on Listing 3.5 was used as the base to perform
experiments. For the experiment of Listing 3.4, we use just the parameters
-c, -r, -t, -a and -o, including the 64 value to -c option.

1 analyzer
2 application
3 -c 1,2,4,8,...,32 # threads/cores
4 -r 3 # number of repetitions
5 -t auto # automated instrumentation
6 -a 1 # aggregation mode
7 --ipmi ip user psswd # energy sensor
8 --idtm 5 # idle time between runs
9 --dhpt # disable hyper-thread

10 --dcrs # disable cores
11 --ipts ... # application specific inputs
12 -o application.json # output file

52 A Framework For Automated Energy Analysis and Experiments

Listing 3.5: Command line showing how experiments were run through a
terminal.

The command on Listing 3.5 returns a .json file with all the information
necessary for our analysis. We can quickly generate tables with the
collected data from this file, thus supporting observation and analysis
of scalability, energy trends, and model fitting. The code described in
Listing 3.6 and Table 3.4 are samples of how users can easily read and
view collected data from the control terminal in a tabular way.

1 from analyzer import Data
2

3 data = Data("application.json")
4 data.energy(regions=True)

Listing 3.6: Example of using the Python API to load analyzer files.

Table 3.4: Dataframe generated automatically from collected samples
using the Python API.

Repetition Input Cores Regions Start Time (s) Stop Time (s) ipmi Energy (J)

1 1 1 1 0.00 66.31 13,156.19
1 1 1 2 0.00 66.27 13,148.87
...
1 5 30 4 0.00 8.46 1903.82
1 5 30 5 0.02 58.16 13,067.01

3.10.1 Case of study

The analyzer does not display graphics and other visual elements natively.
However, the simple use of external libraries allows generating graphics
and visualizing points of the program’s behavior that you want to observe.
In addition, specialized visualization tools can also be used to view the
results. PaScal Viewer Silva (2018), for example, natively interprets
the analyzer’s output files, complementing its functionality and creating
an integrated and appropriate environment for the program’s parallel
scalability analysis.

53

We used PaScal Viewer to observe in a hierarchical form the experiment
presented in Listing 3.4. This view allows us to evaluate how the different
OpenMP clauses impacted the region’s efficiencies. The efficiency, defined
as the ratio of speedup to the number of processing units, pinpoints how
a program can take advantage of increasing processing elements on a
parallel region. PaScal Viewer displays an efficiency diagram for each
analysis region, as presented in Fig. 3.5. The x-axis (i1..i7) corresponds to
different data inputs and the y-axis (64..2) to the number of threads used
in the processing. Comparing these diagrams, it is possible to see how a
critical clause damages the scalability. In addition, it is also possible to
observe that the second region affects the efficiency of the whole program
due to the code characteristics.

If the reduction clause replaces #pragma omp crtical (line 11 on the
second region of Listing 3.4), the second region and the entire program
become more efficient, as shown in Fig. 3.6.

(a) First region diagram. (b) Second region diagram.

(c) Whole program diagram.

Figure 3.5: Efficiency diagrams and impact of inner regions on program
scalability. (x-axis = inputs; y-axis = number of threads).

54 A Framework For Automated Energy Analysis and Experiments

(a) First region diagram. (b) Second region diagram.

(c) Whole program diagram.

Figure 3.6: Efficiency diagrams after removing #pragma omp crtical
clause. (x-axis = inputs; y-axis = number of threads).

55

Figures 3.5 and 3.6 were rendered using a tool feature that smoothes
the color transition of diagrams. This feature uses interpolation to create a
visual element where the color transition is less pronounced. The diagram
axes only show the initial and final values with this option. The user
can visualize diagrams with only discrete values or even compare the two
presentation modes side by side. Figure 3.7 shows the difference between
discrete and smoothed modes considering the whole program and the
simulation scenario that uses the clause #pragma omp crtical.

(a) PaScal Viewer diagram on
discrete mode

(b) PaScal Viewer diagram on
smoothed mode.

Figure 3.7: Visualization modes of diagrams provided by PaScal Viewer.

Other analysis objectives not supported by PaScal Viewer, such as vi-
sualization of the speedup curve or energy consumption, can be supported
by traditional plots. Figures 3.8 and 3.9 present the charts rendered
for analysis of the Raytrace and OpenMC applications. In these figures,
it is possible to observe that the program efficiency varies according to
the increase in the number of threads and with higher processing loads
(execution of inputs).

From the diagrams in Figure 3.10, it is possible to observe that
the applications exhibit different behaviors concerning their efficiency
variations and scalability capabilities. OpenMC maintains its efficiency
almost invariant. This pattern represents strong scalability and indicates
that the program can maintain its efficiency level when it uses a larger
number of threads and processes larger inputs. On the other hand,
Figure 3.10a demonstrates that Raytrace achieves higher efficiency values
when processing larger inputs. However, it is also possible to observe that
increasing the number of processing units fixing the input size will not

56 A Framework For Automated Energy Analysis and Experiments

0 5 10 15 20 25 30
Cores

2

4

6

8

10

12

Sp
ee

du
p

input 1
input 2
input 3
input 4
input 5
input 6

(a) Raytrace speedup.

0 5 10 15 20 25 30
Cores

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

du
p

input 1
input 2
input 3
input 4
input 5

(b) OpenMC speedup.

Figure 3.8: Speedup curves for Raytrace and OpenMC applications across
different input sizes. These plots illustrate how much they can scale with
the number of threads when varing the input size.

0 5 10 15 20 25 30
Cores

En
er

gy
 (k

J)

input 1
input 2
input 3
input 4
input 5
input 6

100,000

200,000

300,000

400,000

500,000

(a) Raytrace energy consumption.

0 5 10 15 20 25 30
Cores

0

En
er

gy
 (k

J)

input 1
input 2
input 3
input 4
input 5

10,000

20,000

30,000

40,000

50,000

60,000

(b) OpenMC energy consumption.

Figure 3.9: Energy consumption identified in the execution of applications
while varying the number of cores for several input sizes. Those plots give
an indication of the energy consumption when increasing the number of
cores.

57

improve or hold the efficiency. In the second Figure 3.10b the efficiency
is practically constant while varying the number of cores and the input
indicating a strong scalable program.

(a) Raytrace efficiency diagram. (b) OpenMC efficiency diagram.

Figure 3.10: Efficiency diagram varying the input size and the number of
cores. The color bar indicates the efficiency value in percentage.

The input values are shown in Figure 3.8 to Figure 3.10 indicating
different data sets for processing. For example, the input size i2 represents
a load that will require sequential processing with runtime twice as long
as input i1. Likewise, the input i3 represents a load that will require
sequential processing with runtime twice as long as input i2, and so on.

Even if the analyzer does not display graphics natively, analysis aimed
at observing scalability and energy consumption of applications depends on
precise measurements, reinforcing the advantage of the analyzer proposed
in this work.

CHAPTER 4
Application Energy and

Performance Models

This chapter introduces analytical models designed to predict and op-
timize software configurations for energy efficiency in single-node HPC
applications. Using the developed framework detailed in Chapter 3 we
develop models that leverage a detailed understanding of architecture
and application behavior to enhance the effectiveness of DVFS and DPM
strategies.

Key parameters, such as the degree of parallelism and dynamic power
characteristics, are integrated into the models to predict energy consump-
tion accurately under various hardware configurations. This enables more
informed decisions during software development and operation for energy
efficiency.

We present a comprehensive modeling approach building on our pub-
lished work Silva (2018, 2019, 2020) for 13 parallel applications, aiming
to identify energy-optimal configurations across diverse input sizes. Our
findings indicate potential energy savings of up to 70% compared to
default Linux power management settings, with an average improvement
of 14%. Additionally, we benchmark our analytical model against con-
ventional machine learning techniques, demonstrating that our model
achieves comparable accuracy with approximately tenfold reduction in
energy overhead.

58

59

4.1. Introduction to Models

While substantial research has been conducted on DVFS, the primary
focus has remained on consumer electronics and laptop markets. The
concept of energy awareness in HPC systems is is not entirely new Feng
(2003). Additionally, the operational characteristics of those systems differ
significantly.

Firstly, the workload on consumer systems is highly interactive with
end-users, whereas HPC platforms typically handle non-interactive work-
loads. Secondly, activities on non-HPC platforms often share machine
resources, whereas in HPC, each job usually runs with dedicated resources.
Thirdly, HPC systems are generally much larger making it more challeng-
ing to gather information, organize, and execute global decisions efficiently.
Given these differences, it is crucial to investigate whether DVFS schedul-
ing algorithms, effective in conventional computing environments, are
equally efficient for HPC systems.

This chapter proposes a comprehensive energy model based on CPU
frequency and the number of cores. The model aims to understand and
optimize the energy behavior of parallel applications in HPC systems by
considering application parameters, such as the degree of parallelism, and
CPU parameters related to dynamic and static power. Unlike existing
models, the proposed model integrates both frequency and core count
in a single equation to estimate the energy consumption of a specific
application in a given configuration.

Additionally, by incorporating frequency and active cores, this model
can serve as a foundation for DVFS and DPM optimization strategies.
It can also analyze the contribution of each parameter (e.g., level of
parallelism) to the overall energy consumption. The number of cores is
particularly crucial in HPC environments, where applications are designed
to run on multiple cores.

The proposed energy model combines an application-agnostic power
model with an architecture-specific application performance model. The
power model is based on the power draw of CMOS logic gates as a function
of frequency Sarwar (1997); Butzen and Ribas (2007) and extends this
to include the number of cores. The performance model is rooted in
Amdahl’s law Amdahl (1967); Eyerman (2010); Gustafson (1988), which

60 Application Energy and Performance Models

estimates runtime in multi-core systems. This model has been further
extended to account for execution frequency and input size, allowing it
to characterize application performance on the target architecture.

The main contributions of the proposed model are:

• Simpler to Compute: The model is designed to be simple and
computationally efficient, unlike complex machine learning models.
This simplicity allows for quicker fitting and computation, making it
highly effective for DVFS and DPM optimization without requiring
extensive computational resources.

• Parameters with Physical Meaning: Each parameter has a
clear and direct physical interpretation, helping to understand the
specific contributions of each factor to the overall model.

• Analytical Analysis: The presence of a closed-form equation
allows for extensive analytical mathematical analyses, enabling a
deeper understanding and exploration of the model’s behavior and
potential optimizations.

• Controllable Variables: The model equation incorporates param-
eters that can be directly controlled by the system such as frequency,
enhancing the precision of optimization efforts.

4.2. Energy Models Theoretical Background

A model is a formal representation of a natural system. The representation
of computer system models includes equations, graphical models, rules,
decision trees, representative collections of examples, and neural networks.
The choice of representation affects the model’s accuracy, as well as its
interpretability Seel (2012); Roy (2019); Zhu (2019). Accurate energy
and power consumption models are essential for many energy efficiency
schemes employed in computing equipment Rivoire (2007), and they can
have multiple uses, including the design, forecasting, and optimization of
data center systems. This study focuses on analytical models that could
aid energy optimization and analyses of crucial factors in the total energy
draw.

61

The desirable properties of a full-system model of energy consumption
include accuracy, speed, generality and portability, inexpensiveness, and
simplicity Rivoire (2008). However, modeling an HPC system’s exact
energy consumption behavior is not straightforward, either at the whole-
system level or at the level of individual components. Indeed, in addition
to the type of applications, data center energy consumption patterns
depend on multiple factors, such as hardware specifications, workload,
or even cooling requirements. Unfortunately, some are not easily mea-
surable, although we can obtain the most relevant ones for applications.
Furthermore, it is impractical to perform detailed energy consumption
measurements of lower-level components without incurring additional
overhead.

Several proposed models have already been classified concerning their
input parameters, as shown by Dayarathna et al. Dayarathna (2016),
who analyzed more than 200 models according to their characteristics
and limitations and classified them where the model is more suited to
its objectives. The most relevant categories include system utilization
or workload, frequency, and system states (such as cache miss, branch
prediction, number of instructions executed and others).

Often, energy models are described as a combination of two main
parts, the power model of the system and the performance model of the
application. This is because the concept of energy (E) is the total amount
of work performed by a system over some time (T), while power (P) is
the rate at which this work is performed. In other words, power is the
measure of how quickly the system executes the application. The relation
between these three amounts can be expressed as:

E =

∫ T

0

P (t)dt. (4.1)

In this section, we begin by looking in detail at the power and perfor-
mance models for systems and applications.

4.2.1 Power Models

The modeling of system parameters is becoming popular nowadays with
the advantage of performance counters provided by the CPU or the
operating system. These counters can measure micro-architectural events,

62 Application Energy and Performance Models

such as instructions executed, cache hits, miss-predicted branches, and
more; Thus, providing a base for many different estimations of power usage.
This makes this type of model very suitable for power estimation because
it can use information about several internal states of the computer.

Frequency-based models are the foundation for many power models
using performance counters Sarwar (1997); Butzen and Ribas (2007);
Usman (2013).

By characterizing the predictable digital circuit behavior with reliable
performance measurements, the model can accurately estimate overall
system power consumption. One of the most common frequency-based
model approximations are defined as follows:

P = α + βf 3, (4.2)

where α and β are model parameters, and f is the operating frequency
(details of this equation are covered in Chapter 4).

This type of model is suitable for optimization problems, because in
these the operating frequency can be easily controlled.

4.2.2 Performance Models

The most common way to model the application performance is by
analyzing its workload. The workload is an abstract representation of the
amount of work performed by an application for a given time and speed.

The workload, denoted as W , can be defined in many different ways.
A frequently used definition, employed in studies such as those by Paolillo
et al. Paolillo (2018), Francis et al. Ishfag (2012), and Kim et al. Kim
(2015), is the following:

W =

∫ τ

0

s(t)dt = sτ, (4.3)

where τ is the total active time, and s is the execution speed in
instructions/second.

Utilization models, defined as the ratio between the time that the
system is active (meaning when the processor was executing instructions)
and the total time (idle and active), are found alternately in the literature
Fu (2018); Ishfag (2012). These models are present in many DVFS

63

algorithms available in Linux. They can be viewed as a good alternative
to the workload since it is impossible to measure workload in real time.
Eq. (4.4) defines the workload in terms of CPU utilization (u):

u =
τ

T
=

W/s

T
, (4.4)

where T is the total execution time (idle and active), and τ is the
active time.

Models based on CPU utilization are the basis for DVFS algorithms.
Even though this is not a controllable parameter, it is straightforward to
measure system utilization with almost no overhead, and it is also very
portable in terms of operating systems and architectures.

4.3. Energy Models Related Work

Various modeling approaches have been developed to understand and pre-
dict the behavior of applications and hardware under different conditions.
This section reviews several key models related to energy consumption
and performance, highlighting their methodologies and limitations. By ex-
amining these different modeling approaches, this section provides a broad
overview of the current state of energy and performance modeling, setting
the stage for the introduction of a more integrated and application-aware
model.

Event-based models have been proposed because supported by some
operating systems, they are used to identify the different activities carried
out by the architecture during the execution of applications. Merkel et
al. Merkel (2006) and Roy et al. Roy (2013) provide foundational examples
of such models, calculating total energy based on the frequency and type
of events.

Merkel et al. Merkel (2006) developed an energy model for processors
based on events. Their model assumes a fixed energy consumption αi

for each activity, and by counting the number of occurrences ci of every
activity, they estimate the total energy as:

E =
n∑

i=1

αici. (4.5)

64 Application Energy and Performance Models

Another event-based model, introduced by Roy et al. Roy (2013),
described the computational energy consumed by a CPU for an algorithm
A as the Eq. (4.6):

E(A) = PclkT (A) + PwL(A), (4.6)

where Pclk is a processor clock leakage power, T (A) is the total execution
time, L(A) is the total time taken by non-I/O operations, and Pw is used
to capture the power consumption per operation performed by the CPU.
T (A) and W (A) are estimated using performance features.

Models based on events present some drawbacks, they are highly
dependent on the operating system and its architecture, which can com-
plicate portability. There are also limitations regarding the number of
simultaneous events that can coexist without adding a non-negligible
overhead. Additionally, there are cases where events need multiplexing,
for example, when using more hardware events than the CPU can provide.
There are also some well-known problems regarding the precision of some
events, as shown in many studies Weaver (2008, 2013); Das (2019); Guire
(2009); Silva (2019); Silva-de Souza (2020). Some events that should be
exact and deterministic (such as the number of executed instructions)
show run-to-run variations and over-count on various architectures, even
when running in strictly controlled environments. Because of that, our
proposed model is not dependent on events and, therefore, not vulnerable
to those drawbacks.

Instruction-level energy models, like the one proposed by Yakun et
al. Shao and Brooks (2013), estimate energy consumption based on an
energy per instruction (EPI) characterization made on Xeon Phi. Their
model is expressed as:

E(f) =
(p1 − p0)(c1 − c0)/f

N
, (4.7)

where N is the total number of dynamic instructions, p0 is the initial
idle power, p1 is the average dynamic power, and (c1 − c0) refers to the
cumulative number of cycles the micro-benchmark performs and f is the
clock frequency. This model is suitable for post-execution analysis when
it is possible to count the total cycles. However, it is challenging to use
for optimization or forecasting since it does not have an application model

65

to predict the cycles. For this reason, we propose a model that integrates
the behavior of the application taking into account the execution time.

Comprehensive system-level models, such as those by Lewis et al. Lewis
(2008) and Mills et al. Mills (2014), consider the energy consumed by
various system components.

Lewis et al. Lewis (2008) described the overall system energy con-
sumption using the following equation:

E = A0(Eproc + Emem) + A1Eem + A2Eboard + A3Ehdd, (4.8)

where A0, A1, A2, and A3 are unknown constants calculated via linear
regression analysis and remain constant for a specific server architecture.
This model, like the previous one, relies on knowledge of energy spent
on each component, making it suitable for post-analysis estimation after
the application has already run. However, it is not designed to optimize
energy consumption during the actual execution of the application, which
is the primary aim of our model.

In another energy consumption model, based on system utilization,
Mills et al. Mills (2014) modeled the energy consumed by a compute
node with CPU (single) executing at speed σ as Eq. (4.9),

E(σ, [t1, t2]) =

∫ t2

t1

σ3 + ρσmax
3dt, (4.9)

where ρ stands for the overhead power consumed regardless of the
processor speed, t1 and t2 are the application’s initial and final execution
times. The overhead includes power consumption by all other system
components, such as memory, network, and more. For this reason, al-
though the authors mentioned the energy consumption of a socket, their
power model is generalized to the entire server. This model lacks a closed
form, i.e., it depends on the definition of ρ(t) to be complete. Our model
has a closed form which facilitates analyses.

In reviewing various models related to energy consumption and per-
formance, it is clear that each approach has its unique advantages and
limitations. Event-based models, while effective in some contexts, face
challenges related to portability and precision. Instruction-level mod-
els provide detailed insights but are more suitable for post-execution
analysis rather than real-time optimization. Comprehensive system-level

66 Application Energy and Performance Models

models offer a holistic view of energy consumption but often require ex-
tensive component-specific knowledge, limiting their flexibility in dynamic
environments.

Overall, these models contribute valuable perspectives to the under-
standing of energy and performance dynamics in computing systems.
However, they also highlight the need for more integrated and application-
aware models that can adapt to varying workloads and system configura-
tions. Our proposed model aims to address these gaps by incorporating
the behavior of applications into energy and performance predictions,
facilitating more accurate and actionable insights for optimization.

Table 4.1 summarizes the existing models comparing the system
dependencies and the controllable variables.

Table 4.1: Summary of Related Work on Power Models

Model System Dependency Variables Controllable Variables

Merkel et al. Merkel (2006) Performance counters Number of activities -
Roy et al. Roy (2013) Performance counters I/O operations, total time -

Yakun et al. Shao and Brooks (2013) Number of instructions Frequency Frequency
Lewis et al. Lewis (2008) Energy of subcomponents Energy of subcomponents -
Mills et al. Mills (2014) Power of subcomponents Total time, frequency Frequency

Our model - Frequency, cores, input size Frequency, cores, input size

4.4. Proposed Power Model

The power model can be effectively based on frequency models, which
simplify the complex dynamics of processor behavior by focusing on the
fundamental components, transistors Rauber (2014); Goel (2016); Du
(2017); Gonzalez (1997). This approach extends the behavior of logic
gates to the entire architecture, thereby reducing the complexity of power
consumption modeling.

The main techniques for manufacturing transistors are FINFET and
MOSFET, with FINFET being the more recent and gradually replacing
MOSFET. Despite their differences, both technologies can be modeled
using common elements of power consumption Rauber (2014); Goel (2016);
Du (2017); Gonzalez (1997). These are static power Pstatic, dynamic power
Pdynamic, and leakage power Pleak, which, in combination, comprise and
approximate the total power draw.

67

The dynamic power and leakage power behavior can be approximated
by the following equations, respectively, as shown by Sarwar et al. Sarwar
(1997) and Butzen et al. Butzen and Ribas (2007).

Pdynamic = CV 2f, (4.10)

Pleak ∝∼ V, (4.11)

where C is the load capacitance, V is the voltage applied to the circuit,
and f is the switching frequency.

Another common approximation is to assume a linear relationship
between the voltage and the applied frequency Usman (2013), such that:

f ∝
∼
V, (4.12)

These approximations have been demonstrated to be very precise. In
the work of Silva et al., the mean percentage error (computed according
to Eq. (4.23)) was calculated to be 0.75% Silva (2019).

Thus, the proposed model for one processing core of a multi-core
processor is derived by using Equations (10)–(12) to write Eq. (4.13).

P (f) = c1f
3 + c2f + c3, (4.13)

where c1 c2, and c3 are the model’s parameters associated with the dy-
namic, leakage, and static power aspects, respectively. Including the
number of active cores p, the proposed estimation of the power consump-
tion of the whole processor becomes Eq. (4.14)

P (f, p) = p(c1f
3 + c2f) + c3, (4.14)

A precise power model can be developed by employing approximations
for dynamic and leakage power and assuming a linear relationship between
voltage and frequency. This model, extended to account for multiple cores,
provides an accurate estimation of the total power consumption of a
processor, as demonstrated by its low mean percentage error in empirical
studies.

68 Application Energy and Performance Models

4.5. Propsed Performance Model

To establish a robust performance model for applications, it is crucial to
understand the application’s behavior in terms of its execution dynam-
ics. This involves modeling the execution time based on the number of
instructions, the mean frequency of execution, and the instructions per
cycle. Additionally, incorporating the number of processing cores and
the parallelism of tasks using Amdahl’s law further refines the model.
By integrating these factors, along with the input size representing the
workload, we can derive a comprehensive equation to predict the execution
time of a program under varying conditions.

To establish a performance model, one must first examine the applica-
tion’s behavior. We consider a program a set of instructions executed on a
mean frequency f with ck instructions per cycle to model the application
execution time. The time Tf that this program will take to complete at a
given frequency is devised as follows:

Tf =
I

ckf
, (4.15)

where I is the total number of instructions and ck is the ratio of
instructions per unit of time.

This model does not yet consider parallel and sequential executions.
Thus, the next step is to include the number of cores in the equation.
Amdahl’s law Amdahl (1967), gives the theoretical background for that.
It describes the speedup in latency of the execution of a task at a fixed
workload. S, the theoretical speedup of the execution of the whole task,
can then be expressed by Eq. (4.16):

S =
Ts

Tp

=
1

1− w + w
p

, (4.16)

where Ts is the serial time, Tp is the parallel time, w is the proportion
of the execution time that benefits from improving system resources, and
p is the speedup part of the task that benefits from improved system
resources. Combining this with Eq. (4.15), the parallel time at frequency
f can be written as:

Tp =
Ts

S
=

Tf

1
1−w+w

p

, (4.17)

69

We can then write the equation of the program execution time as a
function of frequency, the number of cores, and parallelism as Eq. (4.18),
and subsequently derive Eq. (4.19):

T (f, p) =
I
ckf

1−w+w
p

, (4.18)

T (f, p) =
d1(p− wp+ w)

fp
, (4.19)

where d1 is a constant.
To fully characterize the application, a parameter called input size

N can be introduced to represent the application workload, i.e. the
number of basic operations required to complete a problem Kumar (1994).
In Oliveira et al. Oliveira (2018), they showed that this parameter
could generally be described as exponential. Therefore the proposed
performance model is presented in Eq. (4.20). This resulting equation
describes the behavior of the execution time of a program for an input
size N , frequency f , and p active cores:

T (f, p,N) =
d1N

d2(p− wp+ w)

fp
, (4.20)

where d1, d2 and w are constants that depend on the application.
The proposed performance model incorporates key factors such as

execution frequency, number of instructions, instructions per cycle, degree
of parallelism, and input size. This comprehensive approach allows for a
more complete characterization of application performance, facilitating
optimization and resource management in IT systems.

4.6. Proposed Energy model

The energy model, discussed in this section, represents a crucial integration
of both the power and performance models detailed in previous sections
(Sections 4.4 and 4.5).

Combining the power model output described in Section 4.4 and the
characterization of the application performance described in Section 4.5,

70 Application Energy and Performance Models

the total energy can be modeled as:

E(f, p,N) = P (f, p)× T(f, p,N), (4.21)

where P (f, p) is the total power modeled by Eq. (4.14), T (f, p,N) is the
execution time estimated by the Eq. (4.20), f is the frequency, p is the
number of active cores, and N is the input size. The final equation can
be written as:

E(f, p,N) =
d1N

d2(p− wp+ w)(p(c1f
3 + c2f) + c3)

fp
. (4.22)

By integrating power and performance models, the equation pro-
vides a detailed understanding of energy requirements under different
operating conditions. This comprehensive model facilitates informed
decision-making regarding resource allocation, optimization strategies,
and energy-efficient computing practices.

71

4.7. Verifying Hypothesis

In this section, we validate whether the assumptions of our model are
valid for the system used.

4.7.1 Frequency and Voltage Relation

One of the assumptions was that the frequency and the voltage have a
linear relationship, as indicated by Eq. (4.12). To verify that, we build an
experiment that sets the frequency to a specific value while sampling the
voltage using the APERF and MPERF registers that provide feedback on
the current CPU frequency. The average result of the sampling voltages
is shown in Fig. 4.1, where we can observe a near-perfect linear relation.
This is because manufacturers precisely define those values in the circuit
to better suit their design.

1.2 1.4 1.6 1.8 2.0 2.2
Frequency (GHz)

0.68

0.70

0.72

0.74

0.76

V
ol

ta
ge

 (
V

)

Figure 4.1: Frequency voltage relation.

72 Application Energy and Performance Models

4.7.2 Input Size and Instructions

We ran the benchmark applications from PARSEC (Section 2.5) with
different input workloads assuming linear growth in the amount of work
from one input to the other when building our model.

Measuring and controlling the workload would necessitate extensive
instrumentation and tuning to determine an input corresponding to a spe-
cific workload level. Therefore, assuming that workload is proportional to
execution time, we utilize time as a reference for the workload. Figure 4.2
illustrates the validation of this assumption. Table 4.2 shows that the
assumption was reasonable since the average correlation was 0.96 for all
applications, indicating that growth in the number of instructions will
follow the time. This was the case for all applications that we ran in our
benchmark and should hold for any data parallelism type of application.

140 160 180 200 220
Time (s)

2.25

2.50

2.75

3.00

3.25

3.50

3.75

In
st

ru
ct

io
ns

1e12

(a) Blackscholes.

76 78 80 82 84
Time (s)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

In
st

ru
ct

io
ns

1e11

(b) Canneal.

Figure 4.2: Relation between time and instructions for each input size.

The next assumption was that the application’s behavior was the
same when varying the workload. This condition is necessary for using
the model with an unknown input size because, if the behavior is the
same, we can interpolate the known inputs. One way to verify this is to
measure the rate of instructions per second normalized by the frequency,
as shown in Fig. 4.3.

Figure 4.3 shows that between certain workload limits, applications
have approximately the same curve when normalized; This happens for
all applications in our benchmark.

73

Table 4.2: Correlation of time and instructions for all applications.

Application Correlation
Blackscholes 0.99
Bodytrack 0.99
Canneal 0.99
Dedup 0.99
Ferret 0.96
Fluidanimate 0.99
Freqmineq 0.99
Openmc 0.94
Raytrace 0.99
Swaptions 0.99
Vips 0.98
x264 0.99
HPL 0.79

0 20 40 60 80 100
Percentage of execution (%)

0

1

2

3

4

In
st

ru
ct

io
ns

/s
ec

on
ds

1e10

input 1
input 2
input 3
input 4
input 5

(a) Blacksholes.

0 20 40 60 80 100
Percentage of execution (%)

0

1

2

3

4

5

6

7

In
st

ru
ct

io
ns

/s
ec

on
ds

1e9
input 1
input 2
input 3
input 4
input 5

(b) Canneal.

Figure 4.3: Rate of instructions per second varying the input size normal-
ized by the frequency.

74 Application Energy and Performance Models

The final assumption is that the workload should also not vary de-
pending on the number of cores or frequency. To verify, we measure the
total number of executed instructions while varying the cores from 1 to
32. Table 4.3 shows the results.

Table 4.3: Variation of the number of instructions when changing the
number of cores for the same input.

Average Standard StandardApplication Number of Instructions Deviation Deviation (%)

Vip 7.97× 1011 7.16× 106 0.00
Openmc 8.17× 107 1.65× 104 0.02
Rtview 9.91× 1012 1.55× 109 0.02
X264 4.52× 1011 5.81× 107 0.01

Bodytrack 1.86× 1012 3.95× 1010 2.13
Fluidanimate 2.09× 1012 8.44× 1010 4.04

HPL 1.14× 108 1.24× 105 0.11
Blackschole 3.75× 1012 1.40× 109 0.04

Dedup 1.02× 1011 5.74× 107 0.06
Swapti 2.43× 1012 8.87× 108 0.04
Canneal 1.19× 1011 4.46× 107 0.04
Freqmine 1.27× 1012 4.78× 108 0.04

Ferret 4.76× 1011 7.04× 107 0.01

Table 4.3 shows the standard deviation and what that corresponds to
in terms of the total number of instructions as a percentage.

The same test was performed for the frequency, varying from 1.2 to
2.2 GHz with 100 MHz steps. The results are shown in Table 4.4.

The examination of various aspects crucial to our model’s assumptions
reveals a high degree of validity. From the linear relationship between
frequency and voltage to the correlation between workload and execution
time, each validation underscores the reliability of our model’s foundations.
With these verifications in place, we can confidently proceed to validate
the predictions of our model.

It is also important to notice that when we reference the total number
of instructions we are not considering the individual complexity of each one.

75

Table 4.4: Variation of the number of instructions when changing the
frequency for the same input.

Average Standard StandardApplication Number of Instructions Deviation Deviation (%)

Vip 7.97× 1011 1.16× 106 0.00
Openmc 8.17× 107 4.52× 103 0.01
Rtview 9.91× 1012 6.64× 105 0.00
X264 4.52× 1011 1.54× 105 0.00

Bodytrack 1.84× 1012 2.54× 105 0.00
Fluidanimate 2.38× 1012 1.70× 109 0.07

HPL 1.14× 108 5.95× 103 0.01
Blackschole 3.75× 1012 4.36× 105 0.00

Dedup 1.02× 1011 8.32× 107 0.08
Swapti 2.43× 1012 1.48× 105 0.00
Canneal 1.19× 1011 3.01× 105 0.00
Freqmine 1.27× 1012 3.70× 108 0.03

Ferret 4.76× 1011 5.63× 107 0.01

76 Application Energy and Performance Models

The need for a balance between accuracy and computational feasibility
justifies using an average instruction complexity model rather than a
detailed instruction-level approach such as Shao and Brooks (2013). While
a detailed model might offer higher precision, the average instruction
complexity model provides a practical and efficient solution for predicting
execution time in diverse scenarios. This approach aligns to develop a
performance model that is both informative and manageable, making it
suitable for use in real-world applications.

4.8. Fitting the Models

To find the parameters of Eq. (4.22), 10 uniformly random configurations
of frequencies (f), cores (p) and inputs (N) were chosen from the range
1 <= p <= 32, 1.2 <= f <= 2.2 and 1 <= N <= 5, respectively. The
application was executed for each chosen configuration, and the measured
energy and time values were collected. For the input size, if we assume
that all CPU instructions take approximately the same time to execute,
the number of basic operations will be directly correlated with the time.
Thus, we can estimate the input size by looking at the execution time,
allowing us to divide a large input size into several smaller ones, knowing
their relationship, as performed in the work of Oliveira Oliveira (2018).
The unity can also vary depending on the definition. For simplicity, we
assign numbers from 1 to 10, increasing the problem linearly, so it is also
possible to interpolate any input in between these values.

We aim to fit our energy consumption model to empirical data to
ensure accurate predictions of energy usage across various configurations.
To achieve this, we executed applications with uniformly random config-
urations of frequency, number of cores, and input sizes within specified
ranges, collecting energy and time measurements. Using uniformly ran-
dom configurations helps ensure that the model is tested across a diverse
range of scenarios, improving its generalizability and reliability.

To find the parameters of Eq. (4.22), 10 uniformly random config-
urations of frequencies (f), cores (p) and inputs (N) from the ranges
1 <= p <= 32, 1.2 <= f <= 2.2 and 1 <= N <= 5, respectively. We ex-
ecuted the selected application for each chosen configuration and collected
the measured energy and time values. Assuming all CPU instructions take

77

approximately the same time to execute, the number of basic operations
can be directly correlated with the execution time. Thus, knowing that
relationship, we can estimate the input size by examining the execution
time, allowing us to divide a large input size into several smaller ones, as
shown in the work of Oliveira Oliveira (2018). The unit of input size can
vary depending on the definition, but for simplicity, we assign numbers
from 1 to 10, increasing the problem size linearly, and making it possible
to interpolate any input size between these values.

For each configuration, power samples were collected using IPMI every
second. This sampling rate was chosen based on the magnitude of the
mean run time of the applications, which is on the order of minutes. This
rate therefore provides enough samples to measure the average power.
Additionally, timestamps and total execution time were collected. The
total energy spent on each configuration is estimated by first interpolating
the power samples using the first-order method and then integrating this
function over time.

The model parameters are determined by solving an optimization
problem using the nonlinear least-squares method, which minimizes the
sum of the squared differences between the predicted and measured values.
This approach ensures that the model accurately fits the observed data.
Furthermore, we applied machine learning techniques, specifically the
Support Vector Regression (SVR) model, to refine our predictions and
enhance the model’s accuracy. The Python library Scikit-Learn was
used to build the SVR model Pedregosa (2011). The SVR was trained
using the same data used for parameter estimation of Eq. (4.22) with
a grid search used to find the best kernel function and the best values
for the hyper-parameters penalty for the wrong (C) and (γ). For this
data, the best function was the radial base function (RBF), and the
hyper-parameters were C = 104 and γ = 0.5.

Through systematic data collection, optimization, and advanced ma-
chine learning techniques, our fitting process has yielded a robust energy
consumption model, offering reliable predictions across diverse configura-
tions.

78 Application Energy and Performance Models

4.9. Measured Versus Modeled Energy

To validate the model, we ran all possible configurations in the tested
machine, varying the cores in a range of 1 <= p <= 32, the frequency in
1.2 <= f <= 2.2, and the input in 1 <= N <= 5. The total number of
configurations varies from 400 to over 1000 depending on the application,
as some applications have restrictions on the number of cores that they
can run. Once the data was collected, we computed the mean percentage
error (MPE) according to the following equation:

MPE =
1

N

N∑
i

|yestimated − ymeasured|
ymeasured

. (4.23)

4.9.1 Frequency X Cores

Figure 4.4 plots the measured and modeled energy consumption for some
of the applications modeled. In addition, some of the possible shapes
that the model can take while varying the number of active cores, and
operating frequency, are shown.

Frequencies (GHz)

1.10
1.30

1.50
1.70

1.90
2.10

2.30

Active threads

1.00
5.00

9.00
13.00

17.00
21.00

25.00
29.00

E
nergy (K

J)

0

100

200

300

400

Trained values
Measured values
Model

(a) Blackscholes

Frequencies (GHz)

1.10
1.30

1.50
1.70

1.90
2.10

2.30

Active threads

1.00
5.00

9.00
13.00

17.00
21.00

25.00
29.00

E
nergy (K

J)

12

14

16

18

20

22

Trained values
Measured values
Model

(b) Canneal

Figure 4.4: Example fit for a specific input size. “measured values” are
the sensor data, and “minimum energy” is the minimum energy model
prediction.

79

4.9.2 Frequency X Input

Figure 4.5 plots the measured and modeled energy consumption for some
of the applications modeled. The diagrams show some of the possible
shapes that the model can take while varying the operating frequency
and input size.

Frequency (GHz)
1.10

1.30
1.50

1.70
1.90

2.10
2.30Input size

1.00

5.00

E
nergy (K

J)

15

20

25

30

35

Trained values
Measured values
Model

(a) Blackscholes

Frequency (GHz)
1.10

1.30
1.50

1.70
1.90

2.10
2.30Input size

1.00

5.00

E
nergy (K

J)

0

5

10

15

20

Trained values
Measured values
Model

(b) Canneal

Figure 4.5: Example fit for a specific input size. “measured values” are
the sensor data and “minimum energy” is the minimum energy model
prediction.

4.9.3 Cores X Input

Figure 4.6 plots the measured and modeled energy consumption for some
of the applications modeled. The diagrams show some of the possible
shapes that the model can take while varying the number of active cores,
and input size.

4.10. Comparison

In this section, the models presented in Sections 4.4 and 4.5 were validated
with a benchmark specific for multi-core architectures.

To assess the modeling overhead and accuracy, our proposal was first
compared to machine learning approaches. We compared against support
vector regression (SVR) Smola (2004), decision tree Kitts (2006), k-nearest

80 Application Energy and Performance Models

Input size

1.00

3.00

5.00

Active threads

1.00
5.00

9.00
13.00

17.00
21.00

25.00
29.00

E
nergy (K

J)

0

50

100

150

200

250

300

350

Trained values
Measured values
Model

(a) Blackscholes

Input size

1.00

3.00

5.00

Active threads

1.00
5.00

9.00
13.00

17.00
21.00

25.00
29.00

E
nergy (K

J)

13

14

15

16

Trained values
Measured values
Model

(b) Canneal

Figure 4.6: Example fit for a specific input size. “measured values” are
the sensor data and “minimum energy” is the minimum energy model
prediction.

neighbors Altman (1992), multilayer perceptron Murtagh (1991), and
some new methods, such as Gao et al. Gao (2019).

The complexity of these models can vary significantly. To optimize
each model and extract its maximum potential, we employed several
mechanisms:

1. Hyperparameter Tuning: Adjusting hyperparameters such as
the number of hidden layers, the number of neurons in each layer,
activation functions, learning rate, and batch size can significantly
impact model performance. Techniques such as grid search and
random search can be used to find optimal hyperparameter settings.

2. Regularization: To prevent overfitting, apply regularization tech-
niques such as L2 regularization (weight decay) and dropout. Dropout
randomly sets a fraction of the neurons to zero during training, which
helps in reducing overfitting and improving generalization.

3. Early Stopping: Monitor the validation performance during train-
ing and stop the process when performance no longer improves. This
prevents overfitting by stopping training before the model starts to
memorize the training data.

4. Batch Normalization: Normalize the inputs of each layer to have
a mean of zero and a variance of one. This technique can accelerate

81

training and improve model stability by reducing internal covariate
shift.

5. Learning Rate Scheduling: Adjust the learning rate dynamically
during training. Techniques such as learning rate decay, step decay,
or adaptive learning rate methods (e.g., Adam Kingma (2014),
RMSprop Tielema (n2012)) can help in achieving better convergence.

6. Feature Engineering: Enhance the quality of the input features by
creating new features or selecting relevant ones. Feature engineering
can significantly impact the performance of the MLP by providing
more informative data for learning.

7. Optimization Algorithms: Experiment with different optimiza-
tion algorithms and their variants. Algorithms like Adam, RMSprop,
and SGD Bottou (2010) with momentum can offer improved conver-
gence rates and better handling of various optimization landscapes.

Table 4.5 better details the configuration applied on each approach.

Model Type Configuration
Equation Regression Least Squares Optmizer Proposed equation model

MLP Neural Network

Normalization
Solver LBFGS Tang (2018)
Grid search hyperparameters
Activation: logistic, tanh, relu
Hidden layers sizes: 100, 300, 500

SVR Support Vector Regressor
Normalization
RBF Kernel Drucker (1997)
Grid search hyperparameters

Decision Tree Decision Tree Regressor Default settings (SKLEARN (2013))
KNN K-Nearest Neighbors Default settings (SKLEARN (2013))

Table 4.5: Summary of Models and Configurations

We computed the mean squared error MSE for all benchmark applica-
tions of our study case, as shown in Fig. 4.7. Note that the lowest MSE
was achieved by our proposed model. However, SVR was chosen as the
most representative of machine learning approaches because it performed
best in our tests after fine-tuning.

The average results for each application were calculated using a model

82 Application Energy and Performance Models

10 20 30 40 50 60
Training data size

102

103

M
ea

n
sq

ua
re

d
er

ro
r

Equation
KNN
MLP
SVR
Tree

Figure 4.7: Average of the mean squared error for all applications of our
study case Section 2.5.

trained with only 10 configurations, and the comparison is displayed
Fig. 4.8.

Fig. 4.8 shows that the proposed model always performed better, with
a lower MPE than SVR, when we were limited to 10 training points. This
result is further explored in the next Section 4.10.1, where we undertake
a comparison with different training sizes. The exact values are shown in
Table 4.6.

When looking at the MPE results comparing the proposed model
and SVR presented in Table 4.6, several key observations emerge. The
proposed model always achieves lower MPE values, with the best-case
scenario being an MPE of 2.18 for Blackscholes and 2.44 for Freqmine.
These represent instances where the model’s predictions closely align with
the measured energy consumption. Conversely, SVR exhibits higher MPE
values, with the worst-case scenario being an MPE of 34.12 for Bodytrack.
This indicates significant discrepancies between SVR predictions and
actual energy consumption for certain applications. The average MPE
for the proposed model across all applications is notably lower compared

83

Vi
ps

Ra
yt

ra
ce

Fr
eq

m
in

e

Fl
ui

an
im

at
e

Sw
ap

tio
ns

Bo
dy

tra
ck

Ca
nn

ea
l

HP
L

De
du

p

Bl
ac

ks
ch

ol
es

Op
en

m
c

Fe
rre

t

x2
64

0

10

20

30

M
ea

n
pe

rc
en

ta
ge

 e
rro

r Mean SVR
Mean model
SVR
Model

Figure 4.8: Comparison of the mean percentage error between the pro-
posed model and SVR. “Model mean” and “SVR mean” are the average
of all MPE values for all applications.

Application Model SVR
Ferret 5.25 12.49

Raytrace 6.36 11.95
Fluianimate 2.44 22.90

x264 8.28 15.33
Vips 7.54 10.80

Swaptions 6.54 18.57
Canneal 3.12 6.13
Dedup 8.85 13.70

Freqmine 2.44 3.24
Blackscholes 2.18 11.00

HPL 7.47 12.75
Bodytrack 16.98 34.12
Openmc 11.15 24.34

Table 4.6: Comparison of the Mean Percentage Error between the pro-
posed model and SVR: raw values.

84 Application Energy and Performance Models

to SVR, further highlighting its superior predictive accuracy.

4.10.1 Overheads on training

It is known that machine learning is data-driven; in that sense, the SVR
model obtained using only 10 configurations could be improved, but what
about the analytical model? To answer that question, the proposed model
and the SVR were also trained with a varying number of configurations.
We then compared the MPE and the amount of energy spent to create each
model. This accuracy-energy trade-off is crucial since building models’
energy overhead defeats the primary goal of saving power when running
applications.

10 20 30 40 50 60 70 80 90
Number of samples

5

6

7

8

9

10

11

12

M
ea

n
pe

rc
et

ag
e

er
ro

r

SVR
Model

(a) MPE for Ferret.

10 20 30 40 50 60 70 80 90
Number of samples

2

4

6

8

10

M
ea

n
pe

rc
et

ag
e

er
ro

r

SVR
Model

(b) MPE for Blackscholes.

10 20 30 40 50 60 70 80 90
Number of samples

6

8

10

12

14

M
ea

n
pe

rc
et

ag
e

er
ro

r

SVR
Model

(c) MPE for x264.

10 20 30 40 50 60 70 80 90
Number of samples

6

7

8

9

10

11

12

13

14

M
ea

n
pe

rc
et

ag
e

er
ro

r

SVR
Model

(d) MPE for Dedup.

Figure 4.9: MPE of the case studies versus training size, comparing how
many training points are necessary to reach an acceptable result.

Fig. 4.9 shows the comparisons of MPE and energy spent to create

85

each model for two selected applications. According to the results, the
analytical model is very stable, not changing much as more data is added,
while the SVR keeps reshaping to adapt to the data. The error of the
analytical model is almost constant but that of the SVR, initially very
high, drops as more data is used in the training process.

20 40 60 80
Number of samples

500

1000

1500

2000

En
er

gy
 (K

J)

Mean energy model and SVR

(a) Average energy spent on all
applications during model creation.

10 20 30 40 50 60 70 80 90
Number of samples

6

8

10

12

14

M
ea

n
pe

rc
et

ag
e

er
ro

r

Mean error SVR
Mean error model

(b) MPE of all applications.

Figure 4.10: Overall results for energy and MPE for each training size.

Figure 4.10 presents the overall results, with the mean energy overhead
and MPE for all applications. The meeting point of the MPE for the
SVR and the proposed model can be extracted from Fig. 4.10b. It shows
that, in around 90 configurations, the SVR starts to have a smaller error.
The cost of that is the linear increase in energy spent on training. The
increase in energy, about 10 times more, can be observed in Fig. 4.10a.

4.11. Deeper Analysis

One of the most significant advantages of using an analytical model is the
understanding of the problem that an equation provides, making many
different kinds of analysis possible that are otherwise impossible with a
machine learning model. In this section, we discuss one of the possible
analyses. In the following figures, we try to understand the contribution
of each parameter of the equation to the total energy consumption.

We focused on a specific application and its energy consumption model.

86 Application Energy and Performance Models

To understand how different settings affect energy usage, we systemati-
cally changed one parameter in the model equation while keeping others
constant. This allowed us to observe how variations in this parameter
influenced the application’s energy consumption across different configu-
rations. With the parameter variations in place, we plotted the energy
consumption against the application’s performance, typically measured in
time. Each configuration represented a unique combination of parameter
values, resulting in a distinct point on the graph. After that, we com-
puted the Pareto frontier, a set of all Pareto efficient allocations. Each
point on the Pareto frontier represents a configuration where no further
improvements can be made in one aspect (performance or energy) without
sacrificing the other. These configurations offer the best balance between
performance and energy efficiency.

By analyzing the application’s energy consumption model across var-
ious configurations and identifying the Pareto frontier, we pinpointed
the configurations where we achieve the most favorable trade-off between
performance and energy consumption. This information helps us make
informed decisions about resource allocation, ensuring optimal efficiency
in our system. Figure 4.11 shows the Pareto frontier for several values
for the static power parameter (c3 in Eq. (4.22)) with configurations of
frequency ranging from 1.2 to 5 GHz and cores from 1 to 64, so that
we can also have an idea of what is the tendency when we increase the
frequency and number of cores.

From this figure, we can see that when increasing the value of the static
power parameter, the total energy consumption increases as expected.
We can also observe that the values that minimize the total energy
consumption on the Y-axis tend to be high frequency and multiple cores.
This is one of the consequences of increasing the static power factor. As
the dynamic factor proportionally decreases, its variables tend to have less
impact on total consumption, enabling configurations with high frequency
and several cores. This also enables chip-level optimization for choosing
components that change the ratio between static and dynamic power.

Figure 4.12 shows the Pareto frontier in the same ranges described
before but for the parameter corresponding to the level of parallelism of
the application (w in Eq. (4.22)).

In Figure 4.12, we observe that, as the parallelism level increases the
total energy decreases. The number of cores tends to be higher with a

87

0 20 40 60 80
Time (s)

0

10,000

20,000

30,000

40,000

50,000

E
ne

rg
y

(J
)

(2.30 (GHz), #7)

(4.90 (GHz), #63)

(2.80 (GHz), #8)

(1.20 (GHz), #1)

(3.40 (GHz), #9)

(1.20 (GHz), #1)

(3.70 (GHz), #10)

(1.20 (GHz), #1)

50
100
200
300

Figure 4.11: Pareto frontier for several values of static power parameter.
The arrows with blue heads indicate the maximum energy, while the
arrows with redhead the minimal energy for each corresponding curve.
The configuration is described by (Frequency, # Number of cores).

88 Application Energy and Performance Models

0 20 40 60 80
Time (s)

0

10,000

20,000

30,000

40,000

50,000

E
ne

rg
y

(J
)

(4.90 (GHz), #1)

(4.90 (GHz), #63)

(4.90 (GHz), #2)

(4.90 (GHz), #63)

(4.80 (GHz), #3)

(4.90 (GHz), #63)

(3.80 (GHz), #6)

(1.20 (GHz), #1)

(3.00 (GHz), #13)

(1.20 (GHz), #1)

0.1
0.3
0.6
0.8
0.9

Figure 4.12: Pareto frontier for several levels of parallelism. The arrows
with blue heads indicate the maximum energy, while the arrows with
redheads, the minimal, for each corresponding curve. The configuration
is described by (Frequency, # Number of cores).

89

higher level of parallelism as expected, and the frequency shows an inverse
relation.

4.12. DVFS and DPM optimization

In the realm of power management optimization for HPC systems, effective
strategies can lead to substantial energy savings. This section delves into
the evaluation of our proposed approach for optimizing DVFS and DPM.
By leveraging a simple algorithm to determine the optimal frequency and
number of active cores based on a prescribed equation, we aim to surpass
the power management choices offered by default in the Linux operating
system.

The effectiveness of the proposed approach during optimization was
evaluated with a simple algorithm that finds the optimal frequency and
number of active cores from the proposed equation. The results were then
compared to the Linux default choices for power management.

With Eq. (4.22), it is possible to calculate energy consumption es-
timates for each possible configuration since there is a finite range of
possible values for the frequency and number of cores. It is also possible
to apply constraints on the execution time, frequency, and the number of
active cores. Then, the configuration that minimizes energy consumption
for a given input can be selected. The complete workflow is shown in
Fig. 4.13. We can see that any optimization problem can be structured
with our model and the system’s constraints.

In the following examples, the optimization problem that we build is to
minimize the energy equation given the constraints of possible frequencies
and the number of cores that our system can run. The algorithm selected
to minimize was the newton-CG Royer (2020). Current HPC managers
leave to the user the choice of how many cores to use. On this basis, three
situations were analyzed concerning the number of cores:

1. Worst choice: number of cores that maximize the total energy
consumed;

2. Random choice: energy consumed for a random choice of the number
of cores;

90 Application Energy and Performance Models
1/18/22, 4:09 PM DVFS optim

https://whimsical.com/dvfs-optim-Hdb4ictbZSvP6kzZeggyH6 1/1

Application

Model

Constraints

Optmization

algorithm

Optimal values

Figure 4.13: Optimization workflow showing how DVFS and DPM opti-
mization could be implemented from ou model.

3. Best choice: number of cores that minimize the total energy con-
sumed (oracle).

The default option for the Linux governor is Ondemand, and, by
default, it has no DPM control for the number of active cores. As
Ondemand only performs DVFS, for comparison, each application was
executed with all available cores in the system, from 1 to 32. Figs. 4.14
and 4.16, show the energy savings for Ondemand, i.e., Eq. (4.24) for the
three cases described above. The savings and losses for each case are:

Ondemand−Modelmin

Ondemand
(4.24)

1. Worst choice: save 69.88% on average;

2. Random choice: save 12.04% on average;

3. Best choice: lost 14.06% on average.

91

HP
L

De
du

p

Ca
nn

ea
l

Sw
ap

tio
ns

Bl
ac

ks
ch

ol
es

Op
en

m
c

Bo
dy

tra
ck

Ra
yt

ra
ce

Vi
ps

Fr
eq

m
in

e

Sw
ap

tio
ns

Ra
yt

ra
ce

x2
64

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

sa
vi

ng

Mean saving

Figure 4.14: Energy savings comparisons between the proposed model
and the Worst case.

HP
L

De
du

p

Ca
nn

ea
l

Sw
ap

tio
ns

Bl
ac

ks
ch

ol
es

Op
en

m
c

Bo
dy

tra
ck

Ra
yt

ra
ce

Vi
ps

Fr
eq

m
in

e

Sw
ap

tio
ns

Ra
yt

ra
ce

x2
64

0.2

0.0

0.2

0.4

Re
la

tiv
e

sa
vi

ng

Mean saving

Figure 4.15: Energy savings comparisons between the proposed model
and the Random case.

92 Application Energy and Performance Models

By default, operating systems do not implement DPM at the core
level, and, in HPC, the user usually explicitly chooses the number of
cores to run their job. To give a better idea of the impact on the energy
consumption of DPM at the core level, we analyzed the choices of the
number of cores over one year in the HPC center at UFRN. The result is
plotted in Fig. 4.17. It is noteworthy that the most common choice among
regular users is to request a single core per job, which corresponds to
the worst-case scenario for all applications analyzed in this investigation.
The best choice was quite often 32 cores, which is the third most popular
choice among users, but it is 72 times less frequent than 1 core. This
led us to envision how much energy could be saved and encouraged us
towards future research using the proposed model for DPM or more
advanced optimization algorithms. In practice, this approach can be
implemented by allowing the resource manager to perform these changes
for the user using pre-scripts and post-scripts for high-energy consumption
job submissions.

HP
L

De
du

p

Ca
nn

ea
l

Sw
ap

tio
ns

Bl
ac

ks
ch

ol
es

Op
en

m
c

Bo
dy

tra
ck

Ra
yt

ra
ce

Vi
ps

Fr
eq

m
in

e

Sw
ap

tio
ns

Ra
yt

ra
ce

x2
64

0.6

0.4

0.2

0.0

Re
la

tiv
e

sa
vi

ng

Mean saving

Figure 4.16: Energy savings comparisons between the proposed model
and the Best case.

In conclusion, our exploration into DVFS and DPM optimization

93

1 10 32 64 8 2 12 16 24 4 30 12
8

27
2 5 15 20 6 96 25
6 9 13 51
2 3

60
8 18 62 40
0 28 73
6

16
0

86
4 60 19
2 14 48 46
4

80
0

32
0

52
8 7 22 33
6 40 59 55 57 58 50

Requested cores

100

101

102

103

104

105

106

Nu
m

be
r o

f j
ob

s

Figure 4.17: Number of CPU requests during one year in HPC cluster,
sorted by the number of cores requested per job.

strategies reveals promising avenues for enhancing energy efficiency in
HPC environments. Through meticulous analysis and comparison, we’ve
demonstrated the potential of our proposed approach to outperform de-
fault power management schemes, offering substantial energy savings.
By aligning configurations with the Pareto frontier, we’ve identified opti-
mal trade-offs between performance and energy consumption, laying the
groundwork for future research and implementation in resource manage-
ment systems. This research underscores the significance of tailored power
management strategies in driving sustainability and cost-effectiveness in
high-performance computing.

CHAPTER 5
Application-Phase

While substantial research has been conducted on DVFS and DPM, an
underexplored aspect remains: the effect of phase division choices on
energy consumption.

This chapter delves into how phase division impacts the energy effi-
ciency of algorithms. We introduce a methodology that leverages mea-
surement data combined with a heuristic approach to guide the selection
of optimal phase divisions. Our heuristic significantly narrows the search
space from 107000 to 102, achieving an average error of 10% and reducing
energy consumption by up to 38% compared to standard Linux DVFS.

Additionally, we evaluate the trade-offs associated with having numer-
ous phase divisions and the resultant overhead. Our findings indicate a
practical limit to the number of beneficial phases for a running application,
establishing a lower bound for the minimum number of effective phases.

By exploring these factors, this chapter aims to provide a deeper
understanding of phase division’s role in optimizing energy consumption
in high-performance computing systems.

94

95

5.1. The Effect of Phase Division Choices on
Energy Consumption

Up to this point, we have been considering the application as a single
workload for our modeling efforts. However, in real-world scenarios, the
application workload can vary due to many factors, such as changing
input sizes, varying computational demands, and different execution paths.
Consequently, it is crucial to consider the different phases an application
can undergo. Each phase may exhibit unique characteristics and resource
requirements, which, if accounted for, can lead to more precise and
effective energy optimization strategies. This chapter, therefore, focuses
on analyzing and optimizing the energy consumption of applications by
taking into account their distinct phases.

Most studies on software energy-saving primarily focus on workload-
based optimization algorithms, with fewer addressing the division of
applications into distinct phases—segments with specific execution pa-
rameters. A common approach is to divide the application into equal
time slices, which simplifies optimization and ensures that the algorithms
remain lightweight. However, this method can lead to suboptimal energy
savings, as different phase divisions might yield better results. Addition-
ally, there is an overhead associated with switching configurations, which
could be reduced by determining the optimal timing for these switches.
This optimization may require more complex algorithms but can result
in more precise energy savings. The key challenges remaining are to
determine the optimal number of phases and to pinpoint the exact start
and end times for each phase.

Indeed, programs typically progress through multiple execution phases,
each characterized by a specific behavior. Thus, considering multiple
fixed configurations, one for each phase of the program’s execution can
offer additional flexibility in reducing energy consumption.

We propose a methodology to analyze the power profiles of applications
at different execution conditions to determine the most promising phase
divisions, as well as to provide practical boundaries and estimates for
energy gains. The main contributions of this work are:

• We leverage a prior-knowledge measurement campaign to estimate

96 Application-Phase

optimal phase divisions in multi-core applications;

• The use of only single-phase measurements in the campaign ensures
low overhead;

• The cost function we proposed based on these measurements allows
phase-division optimizations;

• For all applications analyzed, we show that the optimal energy does
not improve much over a few tens of phases.

• Our experiments show that the optimal phase divisions outperform
the Linux default governor.

• On average, our approach uses 38% less energy than the default
Linux governor with the optimal, maximal, and minimal amount of
active core counts, respectively.

In this chapter, we explore the impact of phase division on energy
consumption and propose a methodology to optimize energy usage in
high-performance computing applications. We begin by discussing the
complexity of the problem in Section 5.2 follow by Section 5.3, examining
existing research on phase division and its influence on energy efficiency.
Next, we detail the Section 5.4, introducing our approach to identify
energy-efficient phase divisions through a prior-knowledge measurement
campaign.

Subsequently, we present our Section 5.5, outlining the algorithm for
estimating the energy consumption of a single phase, and then extend
this to Section 5.6, where we combine multiple phases to estimate overall
energy consumption. We then describe the Section 5.7, where we employ
optimization techniques to determine the most energy-efficient phase
divisions.

In Section 5.8, we showcase the results of our experiments, demon-
strating the effectiveness of our proposed methods. Finally, we introduce
the concept of Section 5.9, a novel approach to characterize application
parameters and models, further enhancing our understanding of phase
behavior in applications.

97

5.2. Prior-knowledge Measurement Campaign

The growing complexity of modern computing applications necessitates
efficient methods to optimize energy consumption. To achieve this, we
propose an application-phase division algorithm supported by the charac-
terization and modeling of applications on specific CPU targets. This ap-
proach helps identify both energy-moderate and energy-intensive phases.

Naively identifying energy-optimal phase divisions using direct power
and performance measurements would require evaluating a vast number
of possible configurations. This approach is impractical because it would
necessitate evaluating each phase of the phase-division solution across all
possible power configurations, defined by combinations of frequency and
the number of active cores. The operating frequency may range from the
minimum processor frequency to the maximum, often in fixed steps. The
number of cores is also discrete and has increased significantly with the
advent of multi-core processors. Brute force or other sampling methods
would be infeasible, even with hardware constraints limiting the discrete
values.

For example, let dt be the minimum time interval a processor remains
in a given power configuration, T be the total application time, and C
be the number of possible power configurations. The number of possible
phase-division solutions can be estimated by:(

T

dt

)C

.

. This number grows astronomically because dt is in the order of microsec-
onds, T is in the order of seconds, minutes, or even hours, and C is in
the order of hundreds or thousands, leading to an estimate in the order
of 107000.

To circumvent this problem, we propose a heuristic that balances
accuracy with hardware limitations, making the analysis feasible. For a
specific application and workload, assuming that the power configuration
primarily affects speed or duration and negligible power is consumed
during phase switching, we measure the power profiles of single executions
for each power configuration. In brief, we run and measure the entire
application across all possible machine power settings (frequency-voltage

98 Application-Phase

and number of cores). We then estimate power profiles for any phase-
division solutions by consolidating the time intervals of the solution
(phases) with the measured power profiles, as described in the next
section. This approach drastically reduces the number of necessary runs
to explore the search space to the order of hundreds. It allows for swift
and fairly accurate power consumption estimates for alternative phase
divisions based on real measurements.

5.3. Phase Division Related Work

Previous works in energy optimization of computer systems have primarily
focused on techniques such as DVFS and DPM to control hardware
resources such as the processor’s operating frequency and the number
of active processor cores. These techniques have been widely studied
and implemented in various systems, including mobile devices and HPC
servers.

Scheduling algorithms have also been proposed as a way to optimize
energy consumption, managing the execution of tasks with deadlines
while taking processor parameters into account. For example, Irani et
al. Irani (2007) formalized the problem of scheduling incoming jobs to
minimize total energy consumption. Saha et al. Saha (2012) evaluated
various Real-Time DVFS (RT-DVFS) schedulers through implementation
and measurements. However, most evaluations were based on simulations,
drawing attention to the fact that real-time measurements can affect
execution, leading to contradictory results.

Feedback-based approaches have also been proposed, as in Poellabauer
et al. Poellabauer (2005), where, while running the application, the
CPU behavior is used to predict CPU requirements. However, in these
approaches, mispredictions can lead to missed deadlines, sub-optimal
energy savings, and significant overheads, with frequent changes in the
chosen frequency or voltage. One shortcoming of previous approaches is
that they don’t consider other "indicators" of future CPU requirements,
such as frequent I/O operations, memory accesses, or interrupts.

Although most papers consider the deadline, some also take job
division as part of the optimization problem. In the paper of Agrawal et
al. Agrawal (2021), the authors show that if the jobs can be divided into

99

arbitrary parts, a minimum-energy schedule can be generated in linear
time, giving exact scheduling algorithms. However, they provided proof
that the scheduling problem is NP-hard when jobs are not divisible while
also giving approximation techniques with boundary constraints.

When it comes to energy savings, it is not just a matter of speeding
up execution to meet a deadline. Indeed, choosing a different deadline
could result in quite different energy savings. However, if we split an
application into phases, by knowing the proper CPU settings for each
execution interval, we could optimally manage resources and, consequently,
energy. For that, regardless of the workload that would impact execution,
identifying the phase segments and their number and correlating these
phases to an ideal CPU configuration would be necessary.

While many works consider only the deadline, some also integrate the
division of jobs into the optimization problem. Agrawal et al. Agrawal
(2021) demonstrate that if the jobs can be divided into arbitrary parts, the
generation of a minimum-energy schedule can be achieved in linear time,
by proposing exact scheduling algorithms. In the scenarios where jobs
are non-divisible, they claimed proof that the scheduling problems are
NP-hard, and propose bounded approximation algorithms. However, this
approach runs into difficulties as various constraints limit the optimization
problem. Our approach, on the other hand, works with measured data,
enabling us to find solutions independent of these constraints.

All these works have, at some point, taken into account a deadline
(specified by the user or the system) which delimits the phases of the
execution. This implies that choosing a different deadline could result in
quite different energy savings. In our proposal, we first study the impact
on energy consumption of dividing an application into phases. In this
context, we estimate the amount of energy that could be saved if an
algorithm could somehow give the ideal deadline.

5.4. Phase Division Proposed Approach

In this section, we describe the proposed approach to estimate the en-
ergy of a given phase from a phase-division solution in a given power
profile. This is achieved using the power profiles collected when running
the application with fixed power configurations. It is worth noting that

100 Application-Phase

variations in a power profile are solely related to variations in the instruc-
tions executed by the application program, including their impact on the
memory hierarchy dynamics, since frequency and number of cores are
kept constant.

To find the optimal phase division, we need to ensure that the chosen
division is the most energy-efficient among all possible divisions and
combinations of power configurations. This mathematical problem can
be modeled in various ways, but always with some concessions to make it
solvable. A brute-force approach would be impractical due to the infinite
possibilities for splitting phases, although some hardware limitations make
our analysis more feasible. Hence, we propose a heuristic approach that
aims to achieve results as close as possible to brute force, while considering
hardware constraints to ensure viability. One primary constraint is the
discrete speeds at which the processor can operate.

Continuous division is impractical and unrealistic, limiting our analysis
to discrete time intervals corresponding to the processor’s maximum
performance speed. This constraint significantly reduces our exploration
space, yet it remains vast. For example, let dt be the minimum processor
action interval, T be the total application time, and C be the number of
power settings. The number of possibilities can be estimated by:(

T

dt

)C

.

This number grows astronomically because dt is in the range of microsec-
onds, T is in the range of seconds or minutes, and C is in the range of
hundreds, leading to an estimate in the range of 107000.

Each configuration provides a distinct power profile for a given appli-
cation, and phase division represents a combination of these configuration
settings. This insight allows us to rationalize the exploration of the
solution space. If we can run each power setting once and provide a
method to combine the resulting power profiles, our problem becomes
more manageable. To make this possible, we assume that configuration
changes only affect the program’s duration, not its behavior, ensuring
that at each division, the energy consumption remains independent of
previous configuration settings.

Our approach aims to combine speed and precision in modeling,
prioritizing efficiency without compromising accuracy. Consequently, our

101

algorithm uses real data collected from an actual system. The idea is to
first run the application with all possible configurations (e.g., frequency
and number of active cores) of the machine without time division, and
then estimate the power consumption for different combinations of phase
divisions. In summary, our approach aims to identify the optimal phase
division to minimize energy consumption for specific applications by
leveraging real system data for accurate modeling. Additionally, we
ensure that the modeling process remains both swift and precise.

5.5. Energy Estimation Algorithm For a Single
Phase

To analyze the impact of configurations and identify the optimal phase
division, we propose a zero-order integrator, which calculates the energy
consumption in an interval for a given configuration. The integrator
uses the data gathering method described in Section 5.8.1, leveraging
energy measurements and power profiles for an application running under
different power configurations.

The integrator algorithm computes energy consumption by integrating
power over time within specified phases of the application’s execution.
Figure 5.1 illustrates an example of energy computation for an application
with four different power configurations. The phases are defined as
percentages of the total execution time. Assuming the phases are already
defined, the integrator processes each phase based on the selected power
profile, providing the total energy consumption as a result.

The algorithm for the integrator is described as follows:

1 struct Info {
2 std::vector<double> time; // sample time
3 std::vector<double> power; // sample power
4 double start_time;
5 double stop_time;
6 double elapsed_time;
7 };
8 double integrator(Info& data, double start, double stop)
9 {

102 Application-Phase

10 auto t1 = data.start_time
11 + data.elapsed_time * start;
12 auto t2 = data.start_time
13 + data.elapsed_time * stop;
14 auto v1 = lower_bound(data.time.begin(),
15 data.time.end(), t1)
16 - data.time.begin();
17 auto v2 = lower_bound(data.time.begin() + v1,
18 data.time.end(), t2)
19 - data.time.begin();
20 if (v1 == v2)
21 return (t2 - t1) * data.power[v1];
22 auto en = (data.time[v1 + 1] - t1) * data.power[v1]
23 + (t2 - data.time[v2]) * data.power[v2];
24

25 #pragma omp simd
26 for (auto i = v1 + 1; i < v2; i++)
27 en += (data.time[i + 1] - data.time[i]) * data.power[i];
28

29 return en;
30 }

Figure 5.1 shows the energy estimation of the four phases of an
application in four different power profiles.

The proposed algorithm calculates the energy within the specified time
range of the phase by linearly interpolating power values between sample
points. It takes a reference to an Info object representing time-series data,
along with the start and stop times for the integration interval. The Info
struct contains vectors of sample times (time) and corresponding power
values (power), along with metadata about the time range represented by
the data. The algorithm first computes the corresponding indices (v1 and
v2) of the sample points closest to the start and stop times, respectively,
using binary search (lower_bound). Then, it calculates the energy within
the interval by summing up the contributions from the samples falling
within the interval. The contributions are computed based on the linear
interpolation of power values between adjacent sample points. If the
start and stop times fall within the same sample interval (v1 == v2), the
energy contribution is calculated using the power value at the closest

103

0.00 0.23 0.50 0.75 1.00
0

50

100

150 Config #1

Integrator
Power samples

0.00 0.23 0.50 0.75 1.00
0

50

100

150 Config #2

0.00 0.25 0.50 0.75 0.83 1.00
0

50

100

150

Po
we

r (
W

)

Config #3

0.00 0.25 0.50 0.75 0.83 1.00
Porcentage of execution (%)

0

50

100

150 Config #4

Figure 5.1: Power vs. percentage of execution for a given application in 4
power profiles. For each profile, the red dots represent the power samples,
the dashed vertical lines define the start and stop time intervals of the
phase, and the hatched area is the estimated phase energy.

104 Application-Phase

sample point.

5.6. Energy Estimation Combining Multiple
Phases

To estimate the energy consumption of an arbitrary phase division, we
consider minimizing the total energy over all possible combinations of
phases and power profiles. Instead, we adopt a per-phase approach that
reduces complexity. Given the power profiles obtained during the prior-
knowledge measurement campaign and a list of break points corresponding
to the phase divisions, we select a power profile for each phase that results
in the lowest power consumption for that phase.

The algorithm takes two inputs: a list of configurations and a list of
phase divisions for an application. For each phase, it iterates through
each configuration and calculates the energy consumption of the phase
using the integrator algorithm presented in Section 5.5, which calculates
the energy consumption by integrating the power samples over the phase
time interval.

For each phase, the algorithm selects the configuration with the lowest
energy consumption and adds this minimum energy consumption to the
total energy consumption of the application. The output is the total
energy consumption of the application for a given set of phases, as shown
in the following algorithm.

1 double phase_optimization(Pascal& data,
2 vector<double>& phase)
3 {
4 double total_en = 0.0;
5 for (size_t i = 0; i < phase.size() - 1; i++)
6 {
7 auto min_en = numeric_limits<double>::max();
8 for (auto& info : data.infos)
9 {

10 auto en = integrator(info,
11 phase[i],
12 phase[i + 1]);

105

13 if (en >= 0 && en < min_en)
14 min_en = en;
15 }
16 if (min_en == numeric_limits<double>::max())
17 return -1; // Error
18 total_en += min_en;
19 }
20 return total_en;
21 }

This algorithm offers a comprehensive view of the energy consump-
tion of a phase-division solution without requiring additional energy
measurements. Given a specified set of phases, it can effectively choose
optimal power profiles for each application phase by pinpointing the least
energy-consuming power settings. As such, it can be directly employed
to schedule the phases aiming for energy savings without compromising
performance.

The low-overhead calculation of phase energy and the minimum total
energy of a given phase-division solution for an application allows for
optimization of the time intervals that define the phases. The next
subsection presents an approach for such optimization.

5.7. Optimizing Phase Division

Here, we describe the algorithm employed to optimize the phase divisions,
which involves determining the duration and location of each phase.
Essentially, the algorithm solves a minimization problem to determine
the optimal time boundaries of each phase, given a specific number of
phases. To achieve this, we use the algorithm outlined in Section 5.6 as an
objective function. The goal is to find the phase divisions that minimize
the total energy consumption.

In this approach, a Genetic Algorithm (GA) serves as the solving
mechanism. This involves establishing the initial population with a
specified granularity, overseeing the mutation process, and using the
objective function to steer the evolution towards the desired outcome.

While other search algorithms could be applied to this problem, Ge-

106 Application-Phase

netic Algorithms offer several advantages that make them particularly
well-suited for this task. Their ability to handle complex and large search
spaces, balance exploration (searching new areas of the search space)
and exploitation (refining known good solutions), and provide a robust
and proven approach to optimization. The specific choices of population
size, number of generations, mutation rate, and crossover mechanisms are
tailored to balance exploration and exploitation, ensuring a complete and
effective optimization process.

For instance, to study the phases in the range of 3 to 100 divisions, we
use the GA with a population of 103 individuals. Over 300 generations, we
keep the best 10% of individuals from each generation while maintaining
a mutation rate of 10%. The reproduction function combines half of
the phases of two individuals, and the mutation randomly changes one
division. By randomly assigning the initial positions of the phases, a wide
range of possibilities are considered early in the optimization process,
increasing the chances of finding the optimal solution. This approach
ensures that the optimization process is thorough and not limited by
initial assumptions about phase size and position.

5.8. Experimental Results

The next two Subsections present the system and applications used in the
experiments, respectively. Following we describe how the measurements
were made and, in the last tow Subsections, we present the experiments
and the their results. The applications and setup for this experiment are
described in Section 2.4 and Section 2.5.

5.8.1 Data Gathering

Using the our framework Chapter 3, the data was collected by running
applications in all possible power configurations. In the system we used,
that is 32 cores and 13 frequencies, which means 416 (32*13) possible
power configurations. Power samples were taken from dedicated sensors
in the IPMI system with a sample rate of 0.5 seconds.

107

5.8.2 Experiments with the number of phases

We used the applications described in Section 2.5 to compute the optimal
phase selection. Fig. 5.2 indicates, for a set of representative applications,
the energy consumption according to the number of phases compared to
an optimized single-phase.

5 10 15 20 25 30
Number of phases

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Re
la

tiv
e

en
er

gy

ferret_3
fluid_3
bodytrack_2
vips_4
bodytrack_1
fluid_1

Figure 5.2: Relative energy vs the number of phases using applications
from PARSEC 3.0, HPC, and Openmc benchmarks with different sizes’
inputs.

Figure 5.2 shows very interesting results. The energy consumption
of the optimal single-phase configuration is always higher for all cases.
Furthermore, it is not necessary to divide the application into many tens
of phases. The amount of energy reduced beyond 35 phases was negligible.
In detail, Figure 5.3 illustrates the optimal number of phases for all our
tests. We can see that most applications reach the ideal configuration
with less than 20 phases, while there is still a uniform distribution to a
higher number of phases.

These results meet our expectation that the optimum for n phases
should always be better than or equal to a single phase. This becomes

108 Application-Phase

0 20 40 60 80 100
Number of phases for minimal energy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
un

t

Figure 5.3: Histogram showing the frequency of the optimal number of
phases for all applications

clearer when we look at the number of cores in Fig. 5.5a and Fig. 5.5b,
and frequencies in Fig. 5.4a and Fig. 5.4b for two particular applications,
Bodytrack and Black-Scholes. These applications demonstrate the optimal
frequency and cores do not fundamentally change between 35 and 99
phases. Moreover, the result shows that the phase granularity does
not fundamentally change the locations of the phases. This result is
particularly important when characterizing applications and identifying
behaviors independent of the hardware resources used.

When examining the behavior of a particular application, we can
observe how energy consumption varies with an increasing number of
phases. Comparing Fig. 5.6a and Fig. 5.6b, we notice a more detailed
breakdown of energy consumption with a higher phase count. This
aids in pinpointing energy-intensive phases, identifying inefficiencies in
code sections, and assessing hardware utilization. It also sheds light on
scalability attributes with varying input sizes. Nonetheless, it’s important
to note that a higher number of phases may introduce added complexity
and analysis overhead.

109

0 20 40 60 80 100
Percentage of execution

1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30

Fr
eq

ue
nc

y

1e6

35 phases
99 phases

(a) Execution frequency vs. percentage of execution for the Bodytrack applica-
tion, comparison when using 35 and 99 phases.

0 20 40 60 80 100
Percentage of execution

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Fr
eq

ue
nc

y

1e6

35 phases
99 phases

(b) Execution frequency vs. percentage of execution for the Black-Scholes
application, comparison when using 35 and 99 phases.

110 Application-Phase

0 20 40 60 80 100
Percentage of execution

0

5

10

15

20

25

30

Nu
m

be
r o

f c
or

es

35 phases
99 phases

(a) Number of cores vs. percentage of execution for the Bodytrack application,
comparison when using 35 and 99 phases.

0 20 40 60 80 100
Percentage of execution

20

22

24

26

28

30

32

Nu
m

be
r o

f c
or

es

35 phases
99 phases

(b) Number of cores vs. percentage of execution for the Black-Scholes applica-
tion, comparison when using 35 and 99 phases.

111

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of execution

ferret_2.json
xhpl.json

ferret_4.json
xhpl_2.json

black_4.json
black_3.json
black_6.json

freqmine_1.json
canneal_3.json

fluid_2.json
ferret_3.json

rtview_1.json
vips_3.json

x264_2.json
rtview_2.json

vips_2.json
dedup_1.json
black_1.json
x264_1.json

rtview_3.json
bodytrack_2.json

vips_1.json
ferret_1.json

swaptions_1.json
x264_4.json
vips_4.json

black_2.json
canneal_4.json

dedup_3.json
dedup_4.json

canneal_1.json
rtview_4.json

bodytrack_1.json
swaptions_3.json
swaptions_2.json

fluid_4.json
freqmine_2.json

openmc_kernel_novo.json
x264_3.json

dedup_2.json
bodytrack_3.json

freq.json
black_5.json

canneal_2.json

Ap
pl

ica
tio

n

0

20

40

60

80

100

En
er

gy
 d

ra
wn

 d
ur

in
g

ph
as

e
(%

)

(a) 3 divisions.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of execution

ferret_2.json
xhpl.json

ferret_4.json
xhpl_2.json

black_4.json
black_3.json
black_6.json

freqmine_1.json
canneal_3.json

fluid_2.json
ferret_3.json

rtview_1.json
vips_3.json

x264_2.json
rtview_2.json

vips_2.json
dedup_1.json
black_1.json
x264_1.json

rtview_3.json
bodytrack_2.json

vips_1.json
ferret_1.json

swaptions_1.json
x264_4.json
vips_4.json

black_2.json
canneal_4.json

dedup_3.json
dedup_4.json

canneal_1.json
rtview_4.json

bodytrack_1.json
swaptions_3.json
swaptions_2.json

fluid_4.json
freqmine_2.json

openmc_kernel_novo.json
x264_3.json

dedup_2.json
bodytrack_3.json

freq.json
black_5.json

canneal_2.json

Ap
pl

ica
tio

n

0

20

40

60

80

100

En
er

gy
 d

ra
wn

 d
ur

in
g

ph
as

e
(%

)

(b) 35 divisions.

Figure 5.6: Phase division heatmaps showing the energy consumption per
phase for all applications with different numbers of phases.

5.8.3 Comparing against the default Linux governor

Using the same metrics of Section 4.12, we analyze this method on the
worst, random, and best choices.

When we compare this method with the default DVFS algorithm in
Linux, we observe an average saving of 38%, as shown in Figures 5.7, 5.8
and 5.9, the relative energy per application with different input sizes.

5.9. Application Fingerprint

In our approach, applications are characterized using metrics collected
during their execution by performance counters. We can extract detailed
information from performance counters, such as CPU and memory usage,
disk access, or network traffic. For future work, it is important to reduce
further the number of data variants collected, to provide rapid identifica-
tion of phase locations for a particular given granularity, and to use this
information to provide a characterization of the program that can easily

112 Application-Phase

co
m

pl
et

o_
bl

ac
k_

5

co
m

pl
et

o_
bo

dy
tr

ac
k_

3

co
m

pl
et

o_
ca

nn
ea

l_
1

co
m

pl
et

o_
ca

nn
ea

l_
2

co
m

pl
et

o_
ca

nn
ea

l_
3

co
m

pl
et

o_
ca

nn
ea

l_
4

co
m

pl
et

o_
de

du
p_

1

co
m

pl
et

o_
de

du
p_

2

co
m

pl
et

o_
de

du
p_

3

co
m

pl
et

o_
fe

rr
et

_1

co
m

pl
et

o_
fe

rr
et

_2

co
m

pl
et

o_
fe

rr
et

_3

co
m

pl
et

o_
fr

eq
m

in
e_

1

co
m

pl
et

o_
fr

eq
m

in
e_

2

co
m

pl
et

o_
op

en
m

c_
ke

rn
el

_n
ov

o

co
m

pl
et

o_
rt

vi
ew

_4

co
m

pl
et

o_
sw

ap
tio

ns
_2

co
m

pl
et

o_
sw

ap
tio

ns
_3

co
m

pl
et

o_
vi

ps
_1

co
m

pl
et

o_
vi

ps
_2

co
m

pl
et

o_
vi

ps
_3

co
m

pl
et

o_
xh

pl

co
m

pl
et

o_
xh

pl
_2

Application

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
E

ne
rg

y
to

 o
nd

em
an

d Average
Energyoptimal

Ondemand

Figure 5.7: Optimal phase splitting energy vs. on-demand governor on
Linux: relative energy comparison for applications with different input
sizes for the worst choice case. Lower is better.

113

bl
ac

k_
5

bl
ac

k_
6

bo
dy

tra
ck

_3
ca

nn
ea

l_1
ca

nn
ea

l_2
ca

nn
ea

l_3
ca

nn
ea

l_4
de

du
p_

1
de

du
p_

2
de

du
p_

3
de

du
p_

4
fe

rre
t_

1
fe

rre
t_

2
fe

rre
t_

3
fe

rre
t_

4
fre

qm
in

e_
1

fre
qm

in
e_

2
op

en
m

c_
rtv

ie
w_

4
sw

ap
tio

ns
_2

sw
ap

tio
ns

_3
vi

ps
_1

vi
ps

_2
vi

ps
_3

vi
ps

_4
x2

64
_4

xh
pl

xh
pl

_2

Application

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Re

la
tiv

e
to

 O
nd

em
an

d
Average
Energyoptimal

Ondemand

Figure 5.8: Optimal phase splitting energy vs. on-demand governor on
Linux: relative energy comparison for applications with different input
sizes for the random choice case. Lower is better.

bl
ac

k_
5

bo
dy

tra
ck

_3
ca

nn
ea

l_1
ca

nn
ea

l_2
ca

nn
ea

l_3
ca

nn
ea

l_4
de

du
p_

1
de

du
p_

2
de

du
p_

3
fe

rre
t_

1
fe

rre
t_

2
fe

rre
t_

3
fre

qm
in

e_
1

fre
qm

in
e_

2
op

en
m

c_
rtv

ie
w_

4
sw

ap
tio

ns
_2

sw
ap

tio
ns

_3
vi

ps
_1

vi
ps

_2
vi

ps
_3

xh
pl

xh
pl

_2

Application

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

to
 O

nd
em

an
d Average

Energyoptimal

Ondemand

Figure 5.9: Optimal phase splitting energy vs. on-demand governor on
Linux: relative energy comparison for applications with different input
sizes for the best choice case. Lower is better.

114 Application-Phase

be transposed to the target hardware for power consumption estimation.
In addition, it is important to compute these metrics using a combination
of hardware performance counters that allow for optimal real-time phase
splitting. This metric can improve current DVFS algorithms by providing
them with a workload metric to improve energy savings.

Looking at programs’ characterization, relevant metrics can be utilized
to construct a profile or an application fingerprint, illustrating its behavior
across various parameters other than frequency and core count. As such,
the fingerprint can be used as an alternative method to estimate the phase
division leading to minimal energy consumption. This is a constructive
method that can follow, with a growing granularity, variations in the
fingerprint. Indeed, there is a relationship between the phase distribution
and the fingerprint. For instance, The Section 5.9 displays the optimal
phase distribution obtained by the proposed method superposed to the
power profiles collected during the execution for a specific application.
We deliberately chose the number of phases to highlight this correlation.
Observe the changes in power profiles with variations in frequency and
number of cores.

Some profiles, within specific parameter limits, exhibit consistent pat-
terns, facilitating the identification of phases. Additionally, we observed
that pertinent metrics can be amalgamated through a set of equations,
yielding a distinctive representation. These equations may assume diverse
forms, contingent on the application’s characteristics and the chosen coun-
ters. For instance, a straightforward equation could entail the summation
of all counters, whereas a more intricate one might involve a weighted
sum or a combination with distinct scaling factors. Furthermore, profiles
can be leveraged in different ways, for example, by comparing them to
a set of known phase divisions or utilizing machine learning techniques
to detect such patterns. By identifying these patterns, we can determine
the phase divisions to be employed by the optimization method. Finally,
by discerning the relevant patterns and trends, we can approximate the
application’s behavior for other configuration variants.

115

0 20 40 60 80 100
Percentage of execution

0

5

10

15

20

25

30

Co
re

s

0

500

1000

1500

Po
we

r (
W

)

power

(a) Black-Scholes application using 35 phases (Power profile config using 25
cores and 2.3GHz frequency).

0 20 40 60 80 100
Percentage of execution

1.9

2.0

2.1

2.2

2.3

Fr
eq

ue
nc

y
(G

Hz
)

1e6

0

500

1000

1500
Po

we
r (

W
)

power

(b) Bodytrack application using 35 phases (Power profile config using 25 cores
and 2.3GHz frequency).

Figure 5.10: Power profiles and the optimal phase distribution for a given
configuration.

116 Application-Phase

5.10. Application Characterization, Modeling,
and Behavioral Clustering Based on Fin-
gerprint

Based on the data we can collect, we can correctly model the behavior
of applications and provide performance figures in time or execution
percentage representations, referred to as fingerprints. These fingerprint
representations can be used to model, characterize, compare, and cluster
applications according to performance and behavioral parameters.

5.10.1 Defining a Fingerprint Metric

To cluster applications, we first need a way to compare two programs.
We define a new variable to compute a fingerprint for the program, which
should appear similar when executing the same program under different
conditions and inputs. Considering the simplest model of a program as a
Turing machine, where everything can be done with a tape of memory and
a set of rules, we empirically define the variable input size as described
in Eq. (5.1). On real computers, this is not too far from reality, as
most computations and input/output operations pass through memory.
Analyzing the relationship between the total number of instructions and
memory instructions provides a good fingerprint.

Isz =
I

Im
(5.1)

where Isz is the input size, I is the number of instructions executed,
and Im is the number of memory instructions executed.

We observe that this variable demonstrates the properties we are
looking for, producing similar results for the same program with different
input sizes and environments. This can be used to identify programs and
to observe similarities between different applications.

To compute the distance between two programs, we use the Canberra
metric Jurman (2009), described in Eq. (5.2).

d(p, q) =
n∑

i=1

|pi − qi|
|pi|+ |qi|

(5.2)

117

where p and q are n-dimensional vectors.

5.10.2 Clustering Applications Based on Fingerprint
Metric

We computed the input size for all 30 applications in the Polybench bench-
mark suite Gonzalez (2021) with 3 different input sizes. Each program
was run 15 times, with a sampling rate of 0.01 seconds, collecting the
total number of instructions, number of load and store instructions, and
number of floating-point operations, along with some software counters.

heat-3d_LARGE
heat-3d_EXTRALARGE
heat-3d_M

EDIUM
seidel-2d_M

EDIUM
seidel-2d_LARGE
seidel-2d_EXTRALARGE
durbin_LARGE
durbin_EXTRALARGE
trisolv_LARGE
trisolv_EXTRALARGE
trm

m
_EXTRALARGE

trm
m

_LARGE
gesum

m
v_EXTRALARGE

gesum
m

v_LARGE
atax_EXTRALARGE
atax_LARGE
bicg_EXTRALARGE
bicg_LARGE
m

vt_EXTRALARGE
m

vt_LARGE
gem

ver_EXTRALARGE
gem

ver_LARGE
lu_LARGE
lu_EXTRALARGE
ludcm

p_EXTRALARGE
ludcm

p_LARGE
3m

m
_EXTRALARGE

cholesky_EXTRALARGE
2m

m
_EXTRALARGE

correlation_EXTRALARGE
covariance_EXTRALARGE
cholesky_LARGE
3m

m
_LARGE

floyd-warshall_LARGE
gram

schm
idt_EXTRALARGE

sym
m

_EXTRALARGE
floyd-warshall_EXTRALARGE
nussinov_EXTRALARGE
gem

m
_LARGE

covariance_LARGE
gram

schm
idt_LARGE

gem
m

_EXTRALARGE
syrk_EXTRALARGE
2m

m
_LARGE

correlation_LARGE
sym

m
_LARGE

nussinov_LARGE
jacobi-1d_EXTRALARGE
adi_M

EDIUM
jacobi-2d_LARGE
cholesky_M

EDIUM
syr2k_LARGE
fdtd-2d_EXTRALARGE
fdtd-2d_LARGE
lu_M

EDIUM
adi_EXTRALARGE
adi_LARGE
jacobi-2d_EXTRALARGE
syr2k_EXTRALARGE
ludcm

p_M
EDIUM

floyd-warshall_M
EDIUM

syrk_LARGE
3m

m
_M

EDIUM
2m

m
_M

EDIUM
doitgen_EXTRALARGE
gem

m
_M

EDIUM
nussinov_M

EDIUM
fdtd-2d_M

EDIUM
syrk_M

EDIUM
gram

schm
idt_M

EDIUM
covariance_M

EDIUM
doitgen_LARGE
correlation_M

EDIUM
sym

m
_M

EDIUM
jacobi-2d_M

EDIUM
syr2k_M

EDIUM
doitgen_M

EDIUM
trm

m
_M

EDIUM
deriche_M

EDIUM
deriche_EXTRALARGE
deriche_LARGE

Application

0

50

100

150

Di
st

an
ce

Figure 5.11: Dendrogram of fingerprint according to Eq. (5.1) for 30
applications in the Polybench benchmark suite.

After post-processing the collected data, we compute the input size
and perform hierarchical clustering using Ward’s linkage method Murtagh
(2011), which minimizes the total within-cluster variance. The results of
the clustering are shown in Fig. 5.12 and the dendrogram in Fig. 5.11.

From the dendrogram, we can infer the similarity between applications.
We chose the number of clusters that maximize the occurrence of the
same program with different input sizes in the same cluster; in this case,

118 Application-Phase

2mm_3
2mm_2

2mm_1

3mm_3

3mm_2

3mm_1

adi_3

adi_2

adi_1

atax_3

atax_2

bicg_3

bicg_2

cholesky_3

cholesky_2

cholesky_1

correlation_3

correlation_2

correlation_1

covariance_3

covariance_2

covariance_1

deriche_3

deriche_2

deriche_1

doitgen_3

doitgen_2doitgen_1

durbin_3

durbin_2

fdtd-2d_3

fdtd-2d_2

fdtd-2d_1

floyd-warshall_3
floyd-warshall_2

floyd-warshall_1

gemm_3

gemm_2

gemm_1

gemver_3

gemver_2

gesummv_3

gesummv_2

gramschmidt_3

gramschmidt_2

gramschmidt_1

heat-3d_3
heat-3d_2

heat-3d_1

jacobi-1d_3

jacobi-2d_3

jacobi-2d_2

jacobi-2d_1

lu_3

lu_2

lu_1

ludcmp_3

ludcmp_2

ludcmp_1

mvt_3

mvt_2

nussinov_3

nussinov_2

nussinov_1

seidel-2d_3

seidel-2d_2

seidel-2d_1

symm_3

symm_2

symm_1

syr2k_3syr2k_2

syr2k_1

syrk_3

syrk_2

syrk_1

trisolv_3

trisolv_2

trmm_3

trmm_2

trmm_1

Figure 5.12: Spring force graph of Canberra distance according to Eq. (5.1)
for 30 applications in the Polybench benchmark suite.

five clusters were identified.
We observed that as the input size grows, program behavior tends

toward a specific characteristic fingerprint, but for small input sizes, some
variations exist, leading to the same program being classified in more
than one cluster. This can also happen if specific parts of the program
are triggered with specific inputs, resulting in it belonging to multiple
clusters.

To obtain an overall classification of programs, we consider the fre-
quency of each program’s appearance in the clusters and classify it in the
cluster where it appears most often. The clusters are as follows:

• Cluster 1: 2mm, 3mm, cholesky, correlation, covariance, floyd-
warshall, gemm, gramschmidt, lu, ludcmp, nussinov, symm

• Cluster 2: deriche, doitgen, syrk

• Cluster 3: adi, fdtd-2d, jacobi-2d, syr2k

• Cluster 4: atax, bicg, durbin, gemver, gesummv, mvt, trisolv, trmm

119

• Cluster 5: heat-3d, seidel-2d

In Figure 5.12, we display the clusters using the Spring Force algorithm,
where each program with a specific input is a node, and the edge weight
is the Canberra distance. For better visualization, the input names were
replaced by numbers: EXTRALARGE is 3, LARGE is 2, and MEDIUM
is 1. From this graph, we see that clustering is well partitioned, and each
cluster is distinct. It is also interesting to note that applications in the
cluster represented by the circle symbol are more separated, indicating
they were classified this way because they did not fit well into any other
cluster.

To understand the behavior of the variable input size for each cluster,
we plotted it for the applications in clusters 1 and 2 in Figs. 5.13 and 5.14.

Figure 5.13: Input size - Cluster 1

0 20 40 60 80 100
Normalized time

5

10

15

20

25

30

35

In
pu

t s
ize

2mm_EXTRALARGE
2mm_LARGE
3mm_EXTRALARGE
3mm_LARGE
cholesky_EXTRALARGE
cholesky_LARGE
correlation_EXTRALARGE
correlation_LARGE
covariance_EXTRALARGE

covariance_LARGE
floyd-warshall_EXTRALARGE
floyd-warshall_LARGE
gemm_EXTRALARGE
gemm_LARGE
gramschmidt_EXTRALARGE
gramschmidt_LARGE
jacobi-1d_EXTRALARGE
lu_EXTRALARGE

lu_LARGE
ludcmp_EXTRALARGE
ludcmp_LARGE
nussinov_EXTRALARGE
nussinov_LARGE
symm_EXTRALARGE
symm_LARGE
syrk_EXTRALARGE

From these fingerprints, we can infer why certain behaviors were
classified in the same cluster.

In cluster 1, Figure 5.13, all applications show similar behavior with
approximately the same amplitude.

120 Application-Phase

Figure 5.14: Input size - Cluster 2

0 20 40 60 80 100
Normalized time

10

20

30

40

In
pu

t s
ize

2mm_MEDIUM
3mm_MEDIUM
correlation_MEDIUM
covariance_MEDIUM
deriche_EXTRALARGE
deriche_LARGE
deriche_MEDIUM

doitgen_EXTRALARGE
doitgen_LARGE
doitgen_MEDIUM
fdtd-2d_MEDIUM
floyd-warshall_MEDIUM
gemm_MEDIUM
gramschmidt_MEDIUM

jacobi-2d_MEDIUM
nussinov_MEDIUM
symm_MEDIUM
syr2k_MEDIUM
syrk_LARGE
syrk_MEDIUM
trmm_MEDIUM

0 20 40 60 80 100
Normalized time

0

20

40

60

80

100

120

140

In
pu

t s
ize

heat-3d_EXTRALARGE
heat-3d_LARGE

heat-3d_MEDIUM
seidel-2d_EXTRALARGE

seidel-2d_LARGE
seidel-2d_MEDIUM

Figure 5.15: Input size - Cluster 3

121

In Figure 5.14, we observe that curves with similar shapes, regardless
of the scale on the vertical and horizontal axes, were also classified in
the same cluster. This is the desired behavior, as it demonstrates that
our tool can compare and classify programs according to their fingerprint
behavioral representation.

This demonstrates that fingerprinting is an excellent tool for better
modeling and characterization of programs, regardless of their size and
complexity. Additionally, this technique can be extended to various other
performance parameters related to behavior depending on the processor’s
characteristics, as detailed in the following sections.

To conclude this study, we also clustered applications based on their
floating-point behavior. For this, we only used the counter corresponding
to floating-point operations. Figure 5.16 shows the dendrogram, and
Figure 5.17 displays the spring force graph plot.

2m
m

_LARGE
syr2k_LARGE
sym

m
_LARGE

2m
m

_EXTRALARGE
sym

m
_EXTRALARGE

syrk_EXTRALARGE
deriche_EXTRALARGE
deriche_LARGE
trm

m
_EXTRALARGE

lu_M
EDIUM

ludcm
p_M

EDIUM
ludcm

p_LARGE
lu_LARGE
lu_EXTRALARGE
ludcm

p_EXTRALARGE
syr2k_EXTRALARGE
cholesky_EXTRALARGE
cholesky_LARGE
covariance_EXTRALARGE
m

vt_EXTRALARGE
gem

ver_LARGE
gem

ver_EXTRALARGE
gesum

m
v_LARGE

gesum
m

v_EXTRALARGE
atax_LARGE
atax_EXTRALARGE
bicg_EXTRALARGE
bicg_LARGE
adi_EXTRALARGE
3m

m
_EXTRALARGE

correlation_EXTRALARGE
fdtd-2d_LARGE
syrk_LARGE
gram

schm
idt_LARGE

3m
m

_LARGE
cholesky_M

EDIUM
gram

schm
idt_EXTRALARGE

heat-3d_M
EDIUM

adi_M
EDIUM

seidel-2d_M
EDIUM

doitgen_LARGE
gem

m
_LARGE

gem
m

_M
EDIUM

sym
m

_M
EDIUM

correlation_M
EDIUM

doitgen_M
EDIUM

syr2k_M
EDIUM

correlation_LARGE
trm

m
_LARGE

3m
m

_M
EDIUM

fdtd-2d_M
EDIUM

durbin_EXTRALARGE
trisolv_LARGE
m

vt_LARGE
trisolv_EXTRALARGE
covariance_M

EDIUM
durbin_LARGE
deriche_M

EDIUM
trm

m
_M

EDIUM
gram

schm
idt_M

EDIUM
jacobi-2d_M

EDIUM
jacobi-1d_EXTRALARGE
syrk_M

EDIUM
2m

m
_M

EDIUM
heat-3d_EXTRALARGE
jacobi-2d_EXTRALARGE
seidel-2d_EXTRALARGE
heat-3d_LARGE
covariance_LARGE
seidel-2d_LARGE
jacobi-2d_LARGE
doitgen_EXTRALARGE
gem

m
_EXTRALARGE

fdtd-2d_EXTRALARGE
adi_LARGE

Application

0

50

100

150

200

250

Di
st

an
ce

Figure 5.16: Dendrogram of fingerprint according to number of floating-
point operations per second for 30 applications in the Polybench bench-
mark suite.

Figures 5.18 to 5.20 show the behavior within the same cluster for
floating-point operations. For this classification, the number of clusters

122 Application-Phase

2mm_3

2mm_2

2mm_1
3mm_3

3mm_2

3mm_1

adi_3

adi_2

adi_1

atax_3

atax_2

bicg_3

bicg_2

cholesky_3

cholesky_2

cholesky_1

correlation_3

correlation_2

correlation_1

covariance_3

covariance_2

covariance_1

deriche_3

deriche_2

deriche_1

doitgen_3

doitgen_2

doitgen_1

durbin_3

durbin_2

fdtd-2d_3

fdtd-2d_2

fdtd-2d_1

gemm_3

gemm_2

gemm_1

gemver_3

gemver_2

gesummv_3

gesummv_2

gramschmidt_3

gramschmidt_2

gramschmidt_1

heat-3d_3

heat-3d_2

heat-3d_1

jacobi-1d_3

jacobi-2d_3

jacobi-2d_2

jacobi-2d_1
lu_3

lu_2

lu_1

ludcmp_3

ludcmp_2

ludcmp_1mvt_3

mvt_2

seidel-2d_3

seidel-2d_2

seidel-2d_1

symm_3

symm_2

symm_1

syr2k_3

syr2k_2

syr2k_1

syrk_3

syrk_2

syrk_1

trisolv_3

trisolv_2

trmm_3

trmm_2

trmm_1

Figure 5.17: Spring force graph of Canberra distance for floating-point
operations per second for 30 applications in the Polybench benchmark
suite.

123

was 8.

0 20 40 60 80 100
Normalized time

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Fl
oa

tin
g

po
in

t o
pe

ra
tio

ns

2mm_EXTRALARGE
2mm_LARGE
deriche_EXTRALARGE

deriche_LARGE
symm_EXTRALARGE
symm_LARGE

syr2k_LARGE
syrk_EXTRALARGE

Figure 5.18: Floating point - Cluster 1

Here, we observe again that applications with similar shapes were
classified into the same clusters.

With this methodology, we can develop generic energy models for
each application cluster. By leveraging the fingerprint representations
and clustering techniques, we can capture the unique characteristics and
behaviors of different applications. Additionally, we can utilize various
input metrics to model energy consumption, ensuring that there is at
least one metric that works exceptionally well for accurately predicting
energy usage. This approach provides a robust framework for modeling
and optimizing energy efficiency across a wide range of applications,
ultimately contributing to more efficient and sustainable high-performance
computing environments.

124 Application-Phase

0 20 40 60 80 100
Normalized time

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Fl
oa

tin
g

po
in

t o
pe

ra
tio

ns

adi_LARGE
covariance_LARGE
doitgen_EXTRALARGE
fdtd-2d_EXTRALARGE

gemm_EXTRALARGE
heat-3d_EXTRALARGE
heat-3d_LARGE
jacobi-2d_EXTRALARGE

jacobi-2d_LARGE
seidel-2d_EXTRALARGE
seidel-2d_LARGE

Figure 5.19: Floating point - Cluster 2

0 20 40 60 80 100
Normalized time

0.8

0.6

0.4

0.2

0.0

0.2

Fl
oa

tin
g

po
in

t o
pe

ra
tio

ns

adi_MEDIUM
correlation_MEDIUM
doitgen_LARGE

doitgen_MEDIUM
gemm_LARGE
gemm_MEDIUM

heat-3d_MEDIUM
seidel-2d_MEDIUM
symm_MEDIUM

Figure 5.20: Floating point - Cluster 3

CHAPTER 6
Conclusions and future work

In this chapter, we deal with the conclusions about the effectiveness of the
frameworks and the advantages and disadvantages of using models and
algorithms with additional information on applications and architectures
for energy optimization. We also discussed what could be improved in
each approach and framework.

125

126 Conclusions and future work

6.1. Introduction

This thesis presents a comprehensive approach to modeling HPC ap-
plications, featuring a low-overhead framework for data collection, an
analytical model for energy consumption, and a heuristic algorithm for
multi-phase applications. Each of the methods presented has potential
improvements that will be discussed below.

6.2. Pascal Suite Framework

The Pascal Suite framework introduces practical and user-friendly tools for
measuring and analyzing the efficiency of parallel applications. The tool
focuses on observing energy consumption and scalability, implementing
features that enable analysis at hierarchical levels of the program’s inner
parts. It also simplifies the comparison of application runs under different
configurations, aiding developers in targeting software optimization efforts.

The tool adds minimal intrusion to the program’s performance mea-
surement under analysis, which is crucial for understanding the program’s
behavior.

The results indicate that the fingerprint module API has an overhead
similar to or lower than other low-level APIs, with the added advantage
of high abstraction and simplified configuration. With just a few lines of
code, it is possible to configure and gather performance counter data.

The developed fingerprint module also provided a way to compute
similarities between different programs or the same program with different
inputs. This can be useful for reducing application spaces for benchmarks,
as demonstrated in Polybench clustering, and for analyzing parameter
behavior, providing insights to identify potential bottlenecks.

Future work will focus on evolving this tool to include the ability to
predict speedup and efficiency from a few samples using state-of-the-art
prediction models from the literature Alex (2020); Silva (2020). The goal
is to present the general behavior of the program and reduce the execution
time necessary for comprehensive analysis. Additionally, we plan to include
features that allow the observation of parallel applications in distributed
environments using the Message Passing Interface (MPI) standard.

127

6.3. Application-Energy Model

The proposed energy model based on frequency and the number of cores
for a full shared memory system can serve as a basis for DVFS and DPM
optimization problems that include both frequency and active cores. It
can also be used to analyze the contribution of each parameter (e.g.,
parallelism level) to energy consumption.

Results from three HPC benchmarks running on a cluster demonstrate
the potential of the proposed model. While consuming less energy than
traditional machine learning approaches, it can serve as a basis for DVFS
and DPM algorithms, as shown in Section 4.12, achieving average energy
savings of about 12% up to 69%. Prior knowledge of the application’s
performance can reveal significant insights, such as parallel speedups,
which are difficult to estimate with run-time techniques based on DVFS.

A limitation of the proposed model is the need for information about
the application’s input size, which can be complex to derive. A potential
solution is to precisely define what constitutes input size, using a common
variable for all applications, such as throughput. Future work will explore
the various analyses possible with the equation and develop more advanced
DVFS models. For instance, identifying different phases of the target
program could enable more fine-grained adjustments to frequency and
the number of active cores, further improving the results presented here.

Another important aspect often overlooked is the number of processing
cores to be used by a parallel program. This choice is typically left to the
user, which, as shown in this thesis, is not a trivial decision.

6.4. Phase Division Approach

The main conclusion of this work is that in the HPC environment, not
many phases are needed to achieve optimal energy consumption, even
though finding the optimal phase divisions has clear advantages. An
average maximum of 35 phases was sufficient for the three benchmarks,
covering a wide range of HPC applications.

It was also observed that there is still significant potential for optimiz-
ing DVFS algorithms, as we achieved an average of 38% energy savings

128 Conclusions and future work

compared to the Linux OnDemand governor. Additionally, a relationship
between application behavior and phase locations was noted, independent
of their number.

In this work, we propose a phase division algorithm that can improve
other power management techniques in several ways. By providing a
detailed analysis of the energy impact of an application under different
execution conditions, the phase division algorithm can help identify energy-
intensive phases. This information can be used to characterize and model
applications according to the target CPU, optimizing the application’s
execution by focusing on the most energy-intensive phases.

The algorithm can also identify idle phases, which can then be managed
by power-saving techniques such as DPM or slack recovery. Particularly
energy-intensive phases, such as data loading or computation, can be
identified, characterized, and targeted for optimization through task
allocation or Crown scheduling.

By determining the phases of the application, the proposed algorithm
provides a granular view of power consumption, allowing finer control of
power management techniques. This can lead to more effective energy
savings and improved energy efficiency.

Furthermore, the algorithm can provide information on the optimal
number of phases and intervals, which can be used to optimize scheduling
algorithms, thereby reducing energy consumption without affecting system
performance.

6.5. General

In summary, this thesis provides a holistic approach to energy optimization
in HPC applications. The integration of practical tools, robust models,
and innovative algorithms offers a pathway to significant energy savings
and enhanced efficiency. By addressing both theoretical and practical
aspects of energy consumption, this work contributes to the broader goal
of sustainable and efficient high-performance computing.

129

6.6. Extensibility for Future Research

While this thesis presents significant advancements in optimizing energy
efficiency for cluster-based HPC systems, it is primarily focused on shared
memory architectures. This focus, while allowing for deep exploration and
refinement of energy optimization techniques within this specific context,
also represents a limitation when considering the broader landscape of
HPC. For instance, the methods and models developed in this work
have not been directly applied to distributed platforms such as those
utilizing OpenMPI, which manage communication and computation across
multiple nodes in a network. Extending this research to include distributed
HPC platforms involves adapting the proposed algorithms to handle the
complexities of inter-node communication and synchronization, which are
critical in such environments.

Additionally, the thesis does not address GPU-based platforms, which
have become increasingly important in high-performance computing due
to the increasing integration of artificial intelligence models like High
Performance Computing (HPC), particularly for workloads that benefit
from massive parallelism. Integrating GPU-based optimization into the
existing framework would require accounting for the unique power and
performance characteristics of GPUs, as well as their interaction with
CPUs in heterogeneous computing environments.

Finally, a significant portion of large data centers operate using con-
tainerized applications, which often lack direct control over the CPU. This
limitation could hinder the optimization techniques developed in this the-
sis. However, these challenges can be addressed through enterprise-level
solutions. By implementing CPU management at the infrastructure level,
enterprises can apply energy-saving techniques transparently, allowing
containerized applications to benefit from these optimizations without
compromising their inherent advantages.

The extensibility of this work is evident in its potential applications
beyond traditional HPC environments. Future research can build upon
the foundation laid in this thesis to explore new directions:

• Application to Distributed HPC Platforms: Adapting the algorithms
and models for use in distributed HPC platforms, such as those
using OpenMPI, presents a significant opportunity for extending

130 Conclusions and future work

this work. This would require addressing the challenges of inter-node
communication, synchronization, and the varying energy profiles of
nodes in a distributed system.

• GPU-Based Optimization: With the growing importance of GPUs
in HPC, particularly for AI and machine learning workloads, fu-
ture research could focus on integrating GPU-based optimization
into the existing framework. This would involve developing energy
models specific to GPU workloads and understanding the interac-
tion between CPU and GPU energy consumption in heterogeneous
systems.

• Exploration of Hybrid Architectures: As HPC systems continue
to evolve, incorporating hybrid architectures that combine CPUs,
GPUs, and possibly other accelerators, there is an opportunity
to extend the framework to manage energy efficiency across these
diverse architectures.

Bibliography

Ishfag, A.; Sanjay, R. Handbook of Energy-Aware and Green Computing ;
Chapman & Hall/CRC: London, England, 2012; Volume 1, pp. 702–713.

Dayarathna, M.; Wen, Y.; Fan, R. Data Center Energy Consumption
Modeling: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 732–794.
[CrossRef]

Corcoran, P.; Andrae, A. Emerging Trends in Electricity Consumption
for Consumer ICT ; National University of Ireland: Galway, Ireland,
2013; pp. 1–56.

Mathew, V.; Sitaraman, R. K.; Shenoy, P. Energy-aware load balancing
in content delivery networks. In Proceedings of the 2012 Proceedings
IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 954–962.

Rivoire, S.; Shah, M.A.; Ranganathan, P.; Kozyrakis, C.; Meza, J. Models
and Metrics to Enable Energy-Efficiency Optimizations. Computer
2007, 40, 39–48. [CrossRef]

Buyya, R.; Vecchiola, C.; Selvi, S.T. Mastering Cloud Computing ; Morgan
Kaufmann Publishers Inc.: San Francisco, CA, USA, 2013; pp. 3–27

Poess, M.; Nambiar, R.O. Energy cost, the key challenge of today’s data
centers. Proc. VLDB Endow. 2008, 1, 1229–1240. [CrossRef]

Gao, Y.; Guan, H.; Qi, Z.; Wang, B.; Liu, L. Quality of service aware

131

http://doi.org/10.1109/COMST.2015.2481183
http://dx.doi.org/10.1109/MC.2007.436
http://dx.doi.org/10.14778/1454159.1454162

132 Bibliography

power management for virtualized data centers. J. Syst. Archit. 2013,
59, 245–259. [CrossRef]

Fan, X.; Weber, W.D.; Barroso, L.A. Power provisioning for a warehouse-
sized computer. ACM SIGARCH Comput. Archit. News 2007, 35,
13–23. [CrossRef]

Barroso, L.A.; Hölzle, U. The Case for Energy-Proportional Computing.
Computer 2007, 40, 33–37. [CrossRef]

Malladi, K.T.; Nothaft, F.A.; Periyathambi, K.; Lee, B.C.; Kozyrakis, C.;
Horowitz, M. Towards energy-proportional datacenter memory with
mobile DRAM. In Proceedings of the 2012 39th Annual International
Symposium on Computer Architecture (ISCA), Portland, OR, USA,
9–13 June 2012; pp. 37–48.

Rotem, E.; Naveh, A.; Ananthakrishnan, A.; Weissmann, E.; Rajwan, D.
Power-Management Architecture of the Intel Microarchitecture Code-
Named Sandy Bridge. IEEE Micro 2012, 32 20–27. [CrossRef]

Brown, L.; Moore, R.; Li, D.S.; Yu, L.; Keshavamurthy, A.; Pallipadi, V.
ACPI in Linux. Symposium 2005, 51, 1–51.

Hackenberg, D.; Schone, R.; Ilsche, T.; Molka, D.; Schuchart, J.; Geyer,
R. An Energy Efficiency Feature Survey of the Intel Haswell Processor.
In Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, Hyderabad, India, 25–29 May 2015;
pp. 896–904.

Intel. 12th Generation Intel ® Core™ Processors ; Intel: Santa Clara, CA,
USA, 2020; pp. 420–430

Shuja, J.; Madani, S.A.; Bilal, K.; Hayat, K.; Khan, S.U.; Sarwar, S.
Energy-efficient data centers. Computing 2012, 94, 973–994. [CrossRef]

Benini, L.; Bogliolo, A.; De Micheli, G. A survey of design techniques
for system-level dynamic power management. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2000, 8, 299–316. [CrossRef]

Merkel, A.; Bellosa, F. Balancing power consumption in multiprocessor

http://dx.doi.org/10.1016/j.sysarc.2013.03.007
http://dx.doi.org/10.1145/1273440.1250665
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1109/MM.2012.12
http://dx.doi.org/10.1007/s00607-012-0211-2
http://dx.doi.org/10.1109/92.845896

133

systems. ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst. 2006, 40,
403–4014.

Roy, S.; Rudra, A.; Verma, A. An energy complexity model for algorithms.
In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, New York, NY, USA, 9–12 January 2013.

Weaver, V.M.; McKee, S.A. Can hardware performance counters be
trusted? In Proceedings of the 2008 IEEE International Symposium
on Workload Characterization, Seattle, WA, USA, 14–16 September
2008; pp. 141–150.

Weaver, V.M.; Terpstra, D.; Moore, S. Non-determinism and overcount on
modern hardware performance counter implementations. In Proceedings
of the 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Austin, TX, USA, 21–23 April 2013;
pp. 215–224.

Das, S.; Werner, J.; Antonakakis, M.; Polychronakis, M.; Monrose, F. SoK:
The Challenges, Pitfalls, and Perils of Using Hardware Performance
Counters for Security. In Proceedings of the 2019 IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019;
pp. 20–38.

Mc Guire, N.; Okech, P.; Schiesser, G. Analysis of Inherent Randomness
of the Linux Kernel. In Proceedings of the Eleventh RealTime Linux
Workshop, Dresden, Germany, 28–30 September 2009.

Ramos, V.; Valderrama, C.; Xavier de Souza, S.; Manneback, P. An Accu-
rate Tool for Modeling, Fingerprinting, Comparison, and Clustering of
Parallel Applications Based on Performance Counters. In Proceedings
of the IEEE International Parallel and Distributed Processing, Rio de
Janeiro, Brazil, 20–24 May 2019; pp. 797–804.

Silva-de Souza, W.; Iranfar, A.; Bráulio, A.; Zapater, M.; Xavier-de Souza,
S.; Olcoz, K.; Atienza, D. Containergy—A Container-Based Energy and
Performance Profiling Tool for Next Generation Workloads. Energies
2020, 13, 2162. [CrossRef]

http://dx.doi.org/10.3390/en13092162

134 Bibliography

Shao, Y.S.; Brooks, D. Energy characterization and instruction-level
energy model of Intel’s Xeon Phi processor. In Proceedings of the Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
Beijing, China, 4–6 September 2013; pp. 389–394.

Lewis, A.; Ghosh, S.; Tzeng, N.F. Run-time energy consumption estima-
tion based on workload in server systems. In Proceedings of the 2008
Conference on Power Aware Computing and Systems, San Diego, CA,
USA, 8–10 December 2008; pp. 3–4.

Mills, B.; Znati, T.; Melhem, R.; Ferreira, K.B.; Grant, R.E. Energy
Consumption of Resilience Mechanisms in Large Scale Systems. In
Proceedings of the 2014 22nd Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, Turin, Italy,
12–14 February 2014; pp. 528–535.

Feng, W.c. Making a Case for Efficient Supercomputing. Queue 2003, 1,
54–64. [CrossRef]

Sarwar, A. Cmos power consumption and cpd calculation. In Proceeding:
Design Considerations for Logic Products; Texas Instruments: Dallas,
TX, USA, 1997.

Butzen, P.; Ribas, R. Leakage Current in Sub-Micrometer CMOS Gates;
Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 2007;
pp. 1–30.

Amdahl, G.M. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the Spring Joint
Computer Conference on—AFIPS ’67 (Spring), New York, NY, USA,
18–20 April 1967.

Eyerman, S.; Eeckhout, L. Modeling critical sections in Amdahl’s law
and its implications for multicore design. In Proceedings of the 37th
Annual International Symposium on Computer Architecture—ISCA
’10, New York, NY, USA, 19–23 June 2010.

Gustafson, J.L. Reevaluating Amdahl’s law. Commun. ACM 1988, 31,
532–533. [CrossRef]

http://dx.doi.org/10.1145/957717.957772
http://dx.doi.org/10.1145/42411.42415

135

Seel, N.M. Encyclopedia of the Sciences of Learning ; Springer: Berlin/Hei-
delberg, Germany, 1988; pp. 223–242.

Roy, P.; Mahapatra, G.S.; Dey, K.N. Forecasting of software reliability us-
ing neighborhood fuzzy particle swarm optimization based novel neural
network. IEEE/CAA J. Autom. Sin. 2019, 6, 1365–1383. [CrossRef]

Zhu, W.; Liu, X.; Xu, M.; Wu, H. Predicting the results of RNA molecular
specific hybridization using machine learning. IEEE/CAA J. Autom.
Sin. 2019, 6, 1384–1396. [CrossRef]

Rivoire, S.; Ranganathan, P.; Kozyrakis, C. A comparison of high-level
full-system power models. In Proceedings of the 2008 Conference on
Power Aware Computing and Systems, San Diego, CA, USA, 8–10
December 2008; pp. 1–5.

Usman, S.; Khan, S.U.; Khan, S. A comparative study of voltage/fre-
quency scaling in NoC. In Proceedings of the IEEE International
Conference on Electro-Information Technology, Rapid City, SD, USA,
9–11 May 2013; pp. 1–5.

Paolillo, A. Optimisation of Performance Metrics of Embedded Hard Real-
Time Systems using Software/Hardware Parallelism, Ph.D. Thesis,
Université libre de Bruxelles, Brussels, Belgium, 2018.

Kim, D.H.; Imes, C.; Hoffmann, H. Racing and Pacing to Idle: Theoretical
and Empirical Analysis of Energy Optimization Heuristics. In Proceed-
ings of the 2015 IEEE 3rd International Conference on Cyber-Physical
Systems, Networks, and Applications, Hong Kong, China, 19–21 August
2015; pp. 78–85.

Fu, C.; Chau, V.; Li, M.; Xue, C.J. Race to idle or not: Balancing the
memory sleep time with DVS for energy minimization. J. Comb. Optim.
2018, 35, 860–894. [CrossRef]

Rauber, T.; Rünger, G.; Schwind, M.; Xu, H.; Melzner, S. Energy
measurement, modeling, and prediction for processors with frequency
scaling. J. Supercomput. 2014, 70, 1451–1476. [CrossRef]

http://dx.doi.org/10.1109/JAS.2019.1911753
http://dx.doi.org/10.1109/JAS.2019.1911756
http://dx.doi.org/10.1007/s10878-017-0229-7
http://dx.doi.org/10.1007/s11227-014-1236-4

136 Bibliography

Goel, B.; McKee, S.A. A Methodology for Modeling Dynamic and Static
Power Consumption for Multicore Processors. In Proceedings of the
IEEE International Parallel and Distributed Processing Symposium,
Chicago, IL, USA, 23–27 May 2016; pp. 273–282.

Du, Z.; Ge, R.; Lee, V.W.; Vuduc, R.; Bader, D.A.; He, L. Modeling the
Power Variability of Core Speed Scaling on Homogeneous Multicore
Systems. Sci. Program. 2017, 2017, 1–13. [CrossRef]

Gonzalez, R.; Gordon, B.; Horowitz, M. Supply and threshold voltage
scaling for low power CMOS. IEEE J. Solid-State Circuits 1997, 32,
1210–1216. [CrossRef]

Silva, V.R.G.; Furtunato, A.F.A.; Georgiou, K.; Sakuyama, C.A.V.; Eder,
K.; Xavier-de Souza, S. Energy-Optimal Configurations for Single-Node
HPC Applications. In Proceedings of the 2019 International Conference
on High Performance Computing & Simulation (HPCS), Dublin, Ireland,
15–19 July 2019; pp. 448–454.

Kumar, V.; Gupta, A. Analyzing Scalability of Parallel Algorithms and
Architectures. J. Parallel Distrib. Comput. 1994, 22, 379–391. [Cross-
Ref]

Oliveira, V.H.F.; Furtunato, A.F.A.; Silveira, L.F.; Georgiou, K.; Eder,
K.; Xavier-de Souza, S. Application Speedup Characterization. In Pro-
ceedings of the ACM/SPEC International Conference on Performance
Engineering, Berlin, Germany, 9–13 April 2018; pp. 43–44.

Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat.
Comput. 2004, 14, 199–222. [CrossRef]

Kitts, B. Regression Trees Lecture. Data Min. 2006, 6–7.

Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonpara-
metric Regression. Am. Stat. 1992, 46, 175–185.

Murtagh, F. Multilayer perceptrons for classification and regression. Neu-
rocomputing 1991, 2, 183–197. [CrossRef]

Gao, S.; Zhou, M.; Wang, Y.; Cheng, J.; Yachi, H.; Wang, J. Dendritic

http://dx.doi.org/10.1155/2017/8686971
http://dx.doi.org/10.1109/4.604077
http://dx.doi.org/10.1006/jpdc.1994.1099
http://dx.doi.org/10.1006/jpdc.1994.1099
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1016/0925-2312(91)90023-5

137

Neuron Model With Effective Learning Algorithms for Classification,
Approximation, and Prediction. IEEE Trans. Neural Netw. Learn. Syst.
2019, 30, 601–614. [CrossRef]

Schwenkler, T.; Deutschland, S. Intelligent Platform Management Inter-
face. In Sicheres Netzwerkmanagement ; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 169–207.

Bienia, C.; Kumar, S.; Singh, J.P.; Li, K. The PARSEC benchmark
suite. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques—PACT ’08, New York, NY,
USA, 25–29 October 2008.

Romano, P.K.; Horelik, N.E.; Herman, B.R.; Nelson, A.G.; Forget, B.;
Smith, K. OpenMC: A state-of-the-art Monte Carlo code for research
and development. Ann. Nucl. Energy 2015, 82, 90–97. [CrossRef]

Dongarra, J.J. The LINPACK Benchmark: An explanation. In Proceed-
ings of the 1st International Conference on Supercomputing, Athens,
Greece, 8–12 June 1987.

Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.;
Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et
al. Scikit-learn: Machine Learning in {P}ython. J. Mach. Learn. Res.
2011, 12, 2825–2830.

Royer, C.W.; O’Neill, M.; Wright, S.J. A Newton-CG algorithm with
complexity guarantees for smooth unconstrained optimization. Math.
Programm. 2020, 180, 451–488.

Tibor Horyath and Kevin Skadron. Multi-mode energy management
for multi-tier server clusters. Parallel Architectures and Compilation
Techniques - Conference Proceedings, PACT, 270–279, 2008.

John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam
Waksman, Simha Sethumadhavan, and Salvatore Stolfo. On the feasi-
bility of online malware detection with performance counters. ACM
SIGARCH Computer Architecture News, 41(3):559, 2013.

http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1016/j.anucene.2014.07.048

138 Bibliography

Stephane Eranian. Perfmon2: a standard performance monitoring inter-
face for Linux. Slides, perfmon2 overview, 2008.

Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. Mea-
suring energy consumption for short code paths using RAPL. ACM
SIGMETRICS Performance Evaluation Review, 40(3):13, 2012.

Reza Zamani and Ahmad Afsahi. A study of hardware performance
monitoring counter selection in power modeling of computing systems.
2012 International Green Computing Conference, IGCC 2012, 2012.

IPMI Configuration User Guide. 2017(November), 2013.

Fionn Murtagh and Pierre Legendre. Ward’s Hierarchical Clustering
Method: Clustering Criterion and Agglomerative Algorithm. (June):1–
20, 2011.

PJ Mucci, Shirley Browne, Christine Deane, and George Ho. PAPI: A
portable interface to hardware performance counters. Proceedings of
the department of defense HPCMP users group conference, 32:7–10,
1999.

Jianwen Luo, Kui Ying, Ping He, and Jing Bai. Properties of Savitzky-
Golay digital differentiators. Digital Signal Processing: A Review
Journal, 15(2):122–136, 2005.

Rick Kufrin. Perfsuite: An accessible, open source performance analy-
sis environment for linux. Dans Presented at The 6th International
Conference on Linux Clusters: The HPC Revolution, 151(April):5, 2005.

Andreas Knüpfer and Christian Rössel. Score-P – A Joint Performance
Measurement Run-Time Infrastructure for. 1–12, 2011.

Giuseppe Jurman, Samantha Riccadonna, Roberto Visintainer, and Ce-
sare Furlanello. Canberra distance on ranked lists. Proceedings, Ad-
vances in Ranking-NIPS 09 Workshop, pages 22–27, 2009.

Houjun Hang, Xing Yao, Qingqing Li, and Michel Artiles. Cubic B-Spline
Curves with Shape Parameter and Their Applications. Mathematical
Problems in Engineering, 2017:1–8, 2017.

139

Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide. 3(253665):1–
1386, 2013.

Huck, K.; Malony, A.; Shende, S.; Morris, A. Scalable, Automated
Performance Analysis with TAU and PerfExplorer. In Proceedings of
the PARCO, Aachen, Germany, 4–7 September 2007; Volume 15, pp.
629–636.

Islam, T.; Ayala, A.; Jensen, Q.; Ibrahim, K. Toward a Programmable
Analysis and Visualization Framework for Interactive Performance
Analytics. In Proceedings of the IEEE/ACM International Workshop
on Programming and Performance Visualization Tools (ProTools),
Denver, CO, USA, 17 November 2019; pp. 70–77. [CrossRef]

Weber, M.; Ziegenbalg, J.; Wesarg, B. Online Performance Analysis with
the Vampir Tool Set. In Tools for High Performance Computing 2017,
Proceedings of the 11th International Workshop on Parallel Tools for High
Performance Computing, Dresden, Germany, 11–12 September, 2017 ;
Springer International Publishing: Cham, Switzerland, 2019; pp. 129–143.
[CrossRef]

Bergel, A.; Bhatele, A.; Boehme, D.; Gralka, P.; Griffin, K.; Hermanns, M.A.;
Okanović, D.; Pearce, O.; Vierjahn, T. Visual Analytics Challenges in
Analyzing Calling Context Trees; Springer: Cham, Switzerland, 2019; pp.
233–249. [CrossRef]

Huck, K.; Malony, A. PerfExplorer: A Performance Data Mining Frame-
work For Large-Scale Parallel Computing. In Proceedings of the SC ’05:
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,
Seattle, WA, USA, 12–18 November 2005; p. 41. [CrossRef]

Geimer, M.; Wolf, F.; Wylie, B.; Ábrahám, E.; Becker, D.; Mohr, B. The
Scalasca performance toolset architecture. Concurr. Comput. Pract.
Exp. 2010, 22, 702–719. [CrossRef]

Shende, S.S.; Malony, A.D. The Tau Parallel Performance System. Int.
J. High Perform. Comput. Appl. 2006, 20, 287–311. [CrossRef]

http://doi.org/10.1109/ProTools49597.2019.00015
http://dx.doi.org/10.1007/978-3-030-11987-4_8
http://dx.doi.org/10.1007/978-3-030-17872-7_14
http://dx.doi.org/10.1109/SC.2005.55
http://dx.doi.org/10.1002/cpe.1556
http://dx.doi.org/10.1177/1094342006064482

140 Bibliography

Adhianto, L.; Banerjee, S.; Fagan, M.; Krentel, M.; Marin, G.; Mellor-
Crummey, J.; Tallent, N.R. HPCTOOLKIT: Tools for performance
analysis of optimized parallel programs. Concurr. Comput. Pract. Exp.
2010, 22, 685–701. [CrossRef]

Miller, B.; Callaghan, M.; Cargille, J.; Hollingsworth, J.; Irvin, R.;
Karavanic, K.; Kunchithapadam, K.; Newhall, T. The Paradyn parallel
performance measurement tool. Computer 1995, 28, 37–46. [CrossRef]

Galobardes, E.C. Automatic Tuning of HPC Applications. The Periscope
Tuning Framework ; Shaker: Herzogenrath, Germany, 2015.

Pillet, V.; Labarta, J.; Cortes, T.; Girona, S. PARAVER: A Tool to
Visualize and Analyze Parallel Code. In Proceedings of the WoTUG-18:
Transputer and Occam Developments, Manchester, UK, 9–13 April
2007.

Brink, S.; Lumsden, I.; Scully-Allison, C.; Williams, K.; Pearce, O.;
Gamblin, T.; Taufer, M.; Isaacs, K.E.; Bhatele, A. Usability and Per-
formance Improvements in Hatchet. In Proceedings of the IEEE/ACM
International Workshop on HPC User Support Tools (HUST) and Work-
shop on Programming and Performance Visualization Tools (ProTools),
Atlanta, GA, USA, 18 November 2020; pp. 49–58. [CrossRef]

Silva, A.B.N.; Cunha, D.A.M.; Silva, V.R.G.; Furtunato, A.F.A.; Souza,
S.X.-d.-S. PaScal Viewer: A Tool for the Visualization of Parallel
Scalability Trends. In Proceedings of the ESPT/VPA@SC, Dallas, TX,
USA, 11–16 November 2018.

Eriksson, J.; Ojeda-may, P.; Ponweiser, T.; Steinreiter, T. Profiling and
Tracing Tools for Performance Analysis of Large Scale Applications;
PRACE—Partnership for Advanced Computing in Europe: Brussels,
Belgium, 2016; pp. 1–30. Available online: https://prace-ri.eu/
wp-content/uploads/WP237.pdf (accessed on 12 January 2020).

Roberts, S.I.; Wright, S.A.; Fahmy, S.A.; Jarvis, S.A. Metrics for Energy-
Aware Software Optimisation. In High Performance Computing, Pro-
ceedings of the 32nd International Conference, ISC High Performance
2017, Frankfurt, Germany, 18–22 June 2017 ; Kunkel, J.M., Yokota, R.,

http://dx.doi.org/10.1002/cpe.1553
http://dx.doi.org/10.1109/2.471178
http://dx.doi.org/10.1109/HUSTProtools51951.2020.00013
https://prace-ri.eu/wp-content/uploads/WP237.pdf
https://prace-ri.eu/wp-content/uploads/WP237.pdf

141

Balaji, P., Keyes, D., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 413–430.

Eastep, J.; Sylvester, S.; Cantalupo, C.; Geltz, B.; Ardanaz, F.; Al-Rawi,
A.; Livingston, K.; Keceli, F.; Maiterth, M.; Jana, S. Global Extensible
Open Power Manager: A Vehicle for HPC Community Collaboration
on Co-Designed Energy Management Solutions. In High Performance
Computing, Proceedings of the 32nd International Conference, ISC High
Performance 2017, Frankfurt, Germany, 18–22 June 2017 ; Kunkel,
J.M., Yokota, R., Balaji, P., Keyes, D., Eds.; Springer International
Publishing: Cham, Switzerland, 2017; pp. 394–412.

Hackenberg, D.; Ilsche, T.; Schuchart, J.; Schöne, R.; Nagel, W.E.; Simon,
M.; Georgiou, Y. HDEEM: High Definition Energy Efficiency Monitor-
ing. In Proceedings of the Energy Efficient Supercomputing Workshop,
New Orleans, LA, USA, 16 November 2014; pp. 1–10. [CrossRef]

Roberts, S.I.; Wright, S.A.; Fahmy, S.A.; Jarvis, S.A. The Power-
Optimised Software Envelope. ACM Trans. Archit. Code Optim. 2019,
16, 1–27. [CrossRef]

Boehme, D.; Gamblin, T.; Beckingsale, D.; Bremer, P.T.; Gimenez,
A.; LeGendre, M.; Pearce, O.; Schulz, M. Caliper: Performance
Introspection for HPC Software Stacks. In Proceedings of the SC
’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Salt Lake City, UT,
USA, 13–18 November 2016; pp. 550–560. [CrossRef]

Corporation, I. Intel VTune. Available online: https://software.intel.
com/vtune (accessed on 15 February 2020).

Pantazopoulos, K.N.; Houstis, E. Performance Analysis and Visualization
Tools for Parallel Computing. 1997. Available online: https://docs.
lib.purdue.edu/cstech/1346 (accessed on 20 May 2020).

Gerndt, M.; Ott, M. Automatic Performance Analysis with Periscope.
Concurr. Comput. Pract. Exp. 2010, 22, 736–748. [CrossRef]

Labarta, J.; Gimenez, J.; Martínez, E.; González, P.; Servat, H.; Llort,
G.; Aguilar, X. Scalability of Tracing and Visualization Tools. In

http://dx.doi.org/10.1109/E2SC.2014.13
http://dx.doi.org/10.1145/3321551
http://dx.doi.org/10.1109/SC.2016.46
https://software.intel.com/vtune
https://software.intel.com/vtune
https://docs.lib.purdue.edu/cstech/1346
https://docs.lib.purdue.edu/cstech/1346
http://dx.doi.org/10.1002/cpe.1551

142 Bibliography

Proceedings of the International Conference ParCo, Prague, Czech
Republic, 10–13 September 2005; pp. 869–876.

Bienia, C.; Kumar, S.; Singh, J.P.; Li, K. The PARSEC benchmark suite:
Characterization and architectural implications. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, Toronto, ON, Canada, 25–29 October 2008; pp. 72–81.
[CrossRef]

Furtunato, A.F.A.; Georgiou, K.; Eder, K.; Xavier-De-Souza, S. When
Parallel Speedups Hit the Memory Wall. IEEE Access 2020, 8, 79225–
79238. [CrossRef]

Silva, V.R.G.; Valderrama, C.; Manneback, P.; Xavier-de-Souza, S.
Analytical Energy Model Parametrized by Workload, Clock Frequency
and Number of Active Cores for Share-Memory High-Performance
Computing Applications. Energies 2022, 15, 1213. [CrossRef]

A. C. de Melo, “The New Linux ’perf’ Tools,” Linux Kongress, 2010.

Abella-Gonzalez, M., Carollo-Fernandez, P., Pouchet, L., Rastello, F. &
Rodrıiguez, G. PolyBench/Python: Benchmarking Python Environ-
ments with Polyhedral Optimizations. Proceedings Of The 30th ACM
SIGPLAN International Conference On Compiler Construction. pp.
59-70 (2021)

Nikolaev, R. & Back, G. Perfctr-Xen: A Framework for Perfor-
mance Counter Virtualization. Proceedings Of The 7th ACM SIG-
PLAN/SIGOPS International Conference On Virtual Execution Envi-
ronments. pp. 15-26 (2011)

Iea, “Data centres and data transmission networks – analysis,”
Nov 2021. [Online]. Available: https://www.iea.org/reports/
data-centres-and-data-transmission-networks

J. M. Cardoso, J. G. F. Coutinho, and P. C. Diniz, “Chapter 2 -
high-performance embedded computing,” in Embedded Computing
for High Performance, J. M. Cardoso, J. G. F. Coutinho, and
P. C. Diniz, Eds. Boston: Morgan Kaufmann, 2017, pp. 17–

http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1109/ACCESS.2020.2990418
http://dx.doi.org/10.3390/en15031213
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks

143

56. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128041895000028

S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,” ACM
Transactions on Algorithms, vol. 3, p. 41, 11 2007. [Online]. Available:
https://dl.acm.org/doi/10.1145/1290672.1290678

C. Poellabauer, L. Singleton, and K. Schwan, “Feedback-based dynamic
voltage and frequency scaling for memory-bound real-time applications,”
2005, pp. 234–243.

S. Saha and B. Ravindran, “An experimental evaluation of real-time dvfs
scheduling algorithms.” ACM Press, 2012, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2367589.2367604

I. Pietri and R. Sakellariou, “Energy-aware workflow scheduling using
frequency scaling.” IEEE, 9 2014, pp. 104–113. [Online]. Available:
http://ieeexplore.ieee.org/document/7103444/

L. Mashayekhy, M. M. Nejad, D. Grosu, D. Lu, and W. Shi, “Energy-aware
scheduling of mapreduce jobs.” Institute of Electrical and Electronics
Engineers Inc., 9 2014, pp. 32–39.

M. H. N. Yousefi and M. Goudarzi, “A task-based greedy scheduling
algorithm for minimizing energy of mapreduce jobs,” Journal of Grid
Computing, vol. 16, pp. 535–551, 12 2018.

C. Kessler, S. Litzinger, and J. Keller, “Crown-scheduling of sets of
parallelizable tasks for robustness and energy-elasticity on many-
core systems with discrete dynamic voltage and frequency scaling,”
Journal of Systems Architecture, vol. 115, p. 101999, 5 2021. [On-
line]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S1383762121000175

M. S. Ajmal, Z. Iqbal, F. Z. Khan, M. Bilal, and R. M. Mehmood,
“Cost-based energy efficient scheduling technique for dynamic volt-
age and frequency scaling system in cloud computing,” Sustainable
Energy Technologies and Assessments, vol. 45, p. 101210, 6 2021. [On-
line]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S2213138821002204

https://www.sciencedirect.com/science/article/pii/B9780128041895000028
https://www.sciencedirect.com/science/article/pii/B9780128041895000028
https://dl.acm.org/doi/10.1145/1290672.1290678
http://dl.acm.org/citation.cfm?doid=2367589.2367604
http://ieeexplore.ieee.org/document/7103444/
https://linkinghub.elsevier.com/retrieve/pii/S1383762121000175
https://linkinghub.elsevier.com/retrieve/pii/S1383762121000175
https://linkinghub.elsevier.com/retrieve/pii/S2213138821002204
https://linkinghub.elsevier.com/retrieve/pii/S2213138821002204

144 Bibliography

P. Agrawal and S. Rao, “Energy-efficient scheduling: classification, bounds,
and algorithms,” Sādhanā, vol. 46, p. 46, 12 2021. [Online]. Available:
http://link.springer.com/10.1007/s12046-021-01564-w

V. R. G. da Silva, A. B. N. da Silva, C. Valderrama, P. Manneback, and
S. Xavier-de Souza, “A minimally intrusive approach for automatic
assessment of parallel performance scalability of shared-memory hpc
applications,” Electronics, vol. 11, no. 5, 2022. [Online]. Available:
https://www.mdpi.com/2079-9292/11/5/689

TOP500, “TOP500 Supercomputer Sites,” [Online]. Available: https:
//www.top500.org.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, An-
dreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexan-
dre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud
Joly, Brian Holt, Gaël Varoquaux, API design for machine learning
software: experiences from the scikit-learn project, in ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, 2013,
pp. 108–122.

H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and
V. Vapnik, Support vector regression machines, Advances in
Neural Information Processing Systems, vol. 1, pp. 155–161,
1997. doi:10.1.1.10.4845. http://papers.nips.cc/paper/
1238-support-vector-regression-machines.pdf

R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. M. Shi, and P. T. P.
Tang, A Progressive Batching L-BFGS Method for Machine Learning,
2018. arXiv:1802.05374.

T. Tieleman and G. Hinton, Lecture 6.5 - RMSProp: Divide the gradient
by a running average of its recent magnitude, COURSERA: Neural
Networks for Machine Learning, 2012. https://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf

L. Bottou, Large-Scale Machine Learning with Stochastic Gradient De-
scent, Proceedings of the 19th International Conference on Com-
putational Statistics (COMPSTAT 2010), pp. 177–186, 2010. http:
//leon.bottou.org/publications/1001

http://link.springer.com/10.1007/s12046-021-01564-w
https://www.mdpi.com/2079-9292/11/5/689
https://www.top500.org
https://www.top500.org
http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://leon.bottou.org/publications/1001
http://leon.bottou.org/publications/1001

145

D. P. Kingma and J. B. Adam, Adam: A Method for Stochastic Optimiza-
tion, arXiv preprint arXiv:1412.6980, 2014. https://arxiv.org/abs/
1412.6980

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Energy-optimal configurations for High-Performance
Computing applications: automated low-impact char-
acterization and performance optimization of shared-
memory applications

Energy consumption is key to enabling exascale High-performance
Computing (HPC). However, energy-optimized hardware and software
combinations could still be inefficient if the software operates poorly.

This work proposes a set of tools, models, and algorithms for energy
optimization aimed at high-performance computing based on knowledge
of the application and the specific hardware architecture. The main
contributions of this work are.

A framework called Parallel Scalability Suite (PaScal Suite) automati-
cally measures and compares multiple executions of a parallel application
according to various scenarios characterized by input size, number of
threads, cores, and frequencies. As a result, PascalSuite can automate
designing application models with an overhead of less than 1%.

An entire system energy model based on the CPU frequency and
the number of cores. The model aims to understand and optimize the
energy behavior of parallel applications in HPC systems according to
application parameters, such as the degree of parallelism, input load, and
CPU parameters related to dynamic and static power.

A methodology that combines measurement data with a heuristic
algorithm to provide insights into choosing the best phase divisions. Our
heuristic can reduce the scan space from 107000 to 102 with an average error
of 10% and up to 38% reduction in energy consumption using optimal
distribution compared to standard Linux DVFS.

A novel normalized time representation of the application characterizes
the application parameters and model, named application fingerprint.

	List of Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Organization

	Theoretical background
	High-Performance Computing Architectures
	Parallelism in HPC
	Energy Optimization in HPC Systems
	Case-Study Architecture
	Frequency Control
	Power consumption monitoring
	Performance Counters

	Case-Study Applications

	A Framework For Automated Energy Analysis and Experiments
	Pascal Analyzer: An Advanced Framework for Energy Efficiency Analysis and Scalability
	State of the Art Profiling and Tracing Tools
	Framework Architecture
	Instrumentation and Intrusiveness
	Features and Usage
	Exported Data Structure
	Profiling with Performance Counters
	State of the Art Performance Counters APIs

	Reading Performance Counters Precisely
	Workload Module
	Profiler
	Events Module
	Analyzer Module

	Performance Counters and Intrusiveness
	Pascal Analyzer Use Cases
	Case of study

	Application Energy and Performance Models
	Introduction to Models
	Energy Models Theoretical Background
	Power Models
	Performance Models

	Energy Models Related Work
	Proposed Power Model
	Propsed Performance Model
	Proposed Energy model
	Verifying Hypothesis
	Frequency and Voltage Relation
	Input Size and Instructions

	Fitting the Models
	Measured Versus Modeled Energy
	Frequency X Cores
	Frequency X Input
	Cores X Input

	Comparison
	Overheads on training

	Deeper Analysis
	DVFS and DPM optimization

	Application-Phase
	The Effect of Phase Division Choices on Energy Consumption
	Prior-knowledge Measurement Campaign
	Phase Division Related Work
	Phase Division Proposed Approach
	Energy Estimation Algorithm For a Single Phase
	Energy Estimation Combining Multiple Phases
	Optimizing Phase Division
	Experimental Results
	Data Gathering
	Experiments with the number of phases
	Comparing against the default Linux governor

	Application Fingerprint
	Application Characterization, Modeling, and Behavioral Clustering Based on Fingerprint
	Defining a Fingerprint Metric
	Clustering Applications Based on Fingerprint Metric

	Conclusions and future work
	Introduction
	Pascal Suite Framework
	Application-Energy Model
	Phase Division Approach
	General
	Extensibility for Future Research

