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Block Majorization Minimization with Extrapolation and Application to \bfitbeta -NMF\ast 
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Abstract. We propose a Block Majorization Minimization method with Extrapolation (BMMe) for solving a
class of multiconvex optimization problems. The extrapolation parameters of BMMe are updated
using a novel adaptive update rule. By showing that block majorization minimization can be re-
formulated as a block mirror descent method, with the Bregman divergence adaptively updated at
each iteration, we establish subsequential convergence for BMMe. We use this method to design ef-
ficient algorithms to tackle nonnegative matrix factorization problems with \beta -divergences (\beta -NMF)
for \beta \in [1,2]. These algorithms, which are multiplicative updates with extrapolation, benefit from
our novel results, which offer convergence guarantees. We also empirically illustrate the significant
acceleration of BMMe for \beta -NMF through extensive experiments.

Key words. block majorization minimization, extrapolation, nonnegative matrix factorization, \beta -divergences,
Kullback--Leibler divergence
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1. Introduction. In this paper, we consider the following class of multiconvex optimization
problems:

min
xi\in \scrX i

f(x1, . . . , xs),(1.1)

where x= (x1, . . . , xs) is decomposed into s blocks, \scrX i \subseteq \BbbE i is a closed convex set for i= 1, . . . , s,
\BbbE i is a finite dimensional real linear space equipped with the norm \| \cdot \| (i) and the inner product
\langle \cdot , \cdot \rangle (i) (we will omit the lower-script (i) when it is clear in the context), \scrX = \scrX 1 \times . . .\scrX s \subseteq 
int dom(f), and f :\BbbE =\BbbE 1\times \cdot \cdot \cdot \times \BbbE s\rightarrow \BbbR \cup \{ +\infty \} is a differentiable function over the interior
of its domain. Throughout the paper, we assume f is lower bounded and multiconvex, that
is, xi \mapsto \rightarrow f(x) is convex.

1.1. Application to \bfitbeta -NMF, \bfitbeta \in [\bfone ,\bftwo ]. Nonnegative matrix factorization (NMF) is a
standard linear dimensionality reduction method tailored for datasets with nonnegative values
[20]. Given a nonnegative data matrix, X \geq 0, and a factorization rank, r, NMF aims to
find two nonnegative matrices, W with r columns and H with r rows, such that X \approx WH.
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BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1293

The \beta -divergence is a widely used objective function in NMF to measure the difference between
the input matrix, X, and its low-rank approximation, WH [10]. This problem is referred to
as \beta -NMF and can be formulated in the form of (1.1) with two blocks of variables, W and H,
as follows: given X \in \BbbR m\times n

+ and r, solve

min
W\in \BbbR m\times r,W\geq \varepsilon ,
H\in \BbbR r\times n,H\geq \varepsilon 

D\beta (X,WH),(1.2)

where D\beta (X,WH) =
\sum m

i=1

\sum n
j=1 d\beta (Xij , (WH)ij), with

d\beta (x, y) =

\left\{     
x log

x

y
 - x+ y for \beta = 1,

1

\beta (\beta  - 1)

\bigl( 
x\beta + (\beta  - 1)y\beta  - \beta xy\beta  - 1

\bigr) 
for 1<\beta \leq 2.

When \beta = 2, d\beta is the Euclidean distance, and when \beta = 1, it is the Kullback--Leibler (KL)
divergence; see section 4.3 for a discussion on the KL divergence. Note that we consider a
small positive lower bound, \varepsilon > 0, for W and H to allow the convergence analysis. In practice,
we use the machine epsilon for \varepsilon , which does not influence the objective function much [14].

1.2. Previous works. Block coordinate descent (BCD) methods serve as conventional
techniques for addressing the multiblock problem (1.1). These approaches update one block
of variables at a time, while keeping the values of the other blocks fixed. There are three main
types of BCD methods: classical BCD [12, 39], proximal BCD [12], and proximal gradient
BCD [4, 6, 41]. These methods fall under the broader framework known as the block successive
upper-bound minimization algorithm (BSUM), as introduced in [36]. In BSUM, a block xi of x
is updated by minimizing a majorizer (also known as an upper-bound approximation function,
or a surrogate function; see Definition 2.1) of the corresponding block objective function.

To accelerate the convergence of BCD methods for nonconvex problems, a well-established
technique involves the use of extrapolation points in each block update, as seen in [43, 33, 35,
32, 15]. Recently, [16] proposed TITAN, an inertial block majorization-minimization frame-
work for solving a more general class of multiblock composite optimization problems than
(1.1), in which f is not required to be multiconvex. TITAN updates one block of x at a time
by selecting a majorizer function for the corresponding block objective function, incorporat-
ing inertial force into this majorizer, and then minimizing the resulting inertial majorizer.
Through suitable choices of majorizers and extrapolation operators, TITAN recovers sev-
eral known inertial methods and introduces new ones, as detailed in [16, section 4]. TITAN
has proven highly effective in addressing low-rank factorization problems using the Frobenius
norm, as demonstrated in [13, 16, 15, 42]. However, to ensure convergence, TITAN requires
the so-called nearly sufficiently decreasing property (NSDP) of the objective function between
iterations. The NSDP is satisfied in particular when the majorizer is strongly convex or when
the error function, that is, the difference between the majorizer and the objective, is lower
bounded by a quadratic function [16, section 2.2]. Such requirements pose issues in some sit-
uations; for example, the Jensen surrogate used to design the multiplicative updates (MU) for
standard \beta -NMF (see section 4.1 for the details) lacks strong convexity, and the corresponding
error function is not lower bounded by a quadratic function. In other words, although TITAN
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1294 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

does not require f to be multiconvex, utilizing TITAN for accelerating the MU in the context
of \beta -NMF is very challenging. This scenario corresponds to a specific instance of problem
(1.1).

Consider \beta -NMF (1.2). For \beta = 2, NMF admits very efficient BCD algorithms with
theoretically grounded extrapolation [15] and heuristic-based extrapolation mechanisms [1].
Otherwise, the most widely used algorithm to tackle \beta -NMF is the multiplicative updates
(MU): for 1\leq \beta \leq 2,

H\leftarrow MU(X,W,H) = max

\left(  \varepsilon ,H \circ [W\top [X]
[WH].(2 - \beta ) ]

[W\top [WH].(\beta  - 1)]]

\right)  ,(1.3)

and W\top \leftarrow MU(X\top ,H\top ,W\top ), where \circ and [\cdot ]
[\cdot ] are the componentwise product and division

between two matrices, respectively, and (.).x denotes the componentwise exponent. The MU
are guaranteed to decrease the objective function [10]; see section 2.1 for more details. Note
that, by symmetry of the problem, since X = WH \Leftarrow \Rightarrow X\top = H\top W\top , the MUs for H and
W are the same, up to transposition.

As far as we know, there is currently no existing algorithm in the literature that accelerates
the MU while providing convergence guarantees. On the other hand, it is worth noting that
an algorithm with a guaranteed convergence in theory may not always translate to practical
success. For instance, the block mirror descent method, while being the sole algorithm to en-
sure global convergence in KL-NMF, does not yield effective performance in real applications,
as reported in [14].

1.3. Contribution and outline of the paper. Drawing inspiration from the versatility of
the BSUM framework [36] and the acceleration effect observed in TITAN [16], we introduce
BMMe, which stands for Block Majorization Minimization with Extrapolation, to address
problem (1.1). Leveraging the multiconvex structure in problem (1.1), BMMe does not need
the NSDP condition to ensure convergence; instead, block majorization minimization for
the multiconvex problem (1.1) is reformulated as a block mirror descent method, wherein the
Bregman divergence is adaptively updated at each iteration, and the extrapolation parameters
in BMMe are dynamically updated using a novel adaptive rule. We establish subsequential
convergence for BMMe, apply BMMe to tackle \beta -NMF problems with \beta \in [1,2], and showcase
the obtained acceleration effects through extensive numerical experiments.

To give an idea of the simplicity and acceleration of BMMe, let us show how it works for
\beta -NMF. Let (W,H) and (W p,Hp) be the current and previous iterates, respectively. BMMe
will provide the following MU with extrapolation (MUe):

\^H =H + \alpha H [H  - Hp]+, H\leftarrow MU(X,W, \^H),(1.4)

and similarly for W . We will show that MUe not only allows us to empirically accelerate
the convergence of the MU significantly for a negligible additional cost per iteration (see
Remark 1.1 below) and a slight modification of the original MU, but also has convergence
guarantees (Theorem 3.2). We will discuss in detail how to choose the extrapolation param-
eters \alpha W and \alpha H in section 3. It is important to note that no restarting step is required to
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BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1295

ensure convergence. As a result, there is no need to compute objective function values during
the iterative process, which would otherwise incur significant computational expenses. We
will also show how to extend the MUe to regularized and constrained \beta -NMF problems in
section 4.3. Figure 1 illustrates the behavior of MU versus MUe on the widely used CBCL
facial image dataset with r= 49, as in the seminal paper of [20], which introduced NMF, and
with \beta = 3/2. MUe is more than twice faster than MU: over 10 random initializations, it takes
MUe between 88 and 95 iterations with a median of 93 to obtain an objective smaller than
the MU with 200 iterations. We will provide more experiments in section 5 that confirm the
significant acceleration effect of MUe.

Remark 1.1 (time versus iterations). The extra cost of MUe compared to MU is only the
computation of the extrapolated point, \^H = H + \alpha H [H  - Hp]+. For the update of H, this
costs O(nr) operations and O(nr) memory. The MU itself requires the computation of WH in
O(mnr) operations and O(mn) memory, and multiplying [X]./[[WH].(2 - \beta )] and [WH].(\beta  - 1)

by W\top requires O(mnr) operations. The same observation holds for W where the role of
m and n are exchanged. For example, for the CBCL dataset experiment in Figure 1, with
m= 361, n= 2429, r = 49, MUe requires less than 1\% more time than MU: on 30 runs with
1000 iterations, the average time for MU is 11.63 s and for MUe it is 11.71 s, which is about
0.7\% more than MU. Given this negligible difference, for simplicity we report the iteration
number instead of the computational time when comparing MU with MUe. When comparing
with other algorithms, we will use the computational time.

The paper is organized as follows. In the next section, we provide preliminaries on ma-
jorizer functions, the majorization-minimization method, the multiplicative updates for \beta -
NMF, and nonconvex optimizations. In section 3, we describe our new proposed method,
BMMe, and prove its convergence properties. In section 4, we apply BMMe to solve standard
\beta -NMF, as well as an important regularized and constrained KL-NMF model, namely the
minimum-volume KL-NMF. We report numerical results in section 5 and conclude the paper
in section 6.

Figure 1. MU versus MUe with Nesterov extrapolation sequence (3.10) on the CBCL dataset with r = 49.
Evolution of the median relative objective function values, over 10 random initial initializations, of \beta -NMF for
\beta = 3/2 minus the smallest relative objective function found among all runs (denoted emin).
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1296 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

Notation. We denote [s] = \{ 1, . . . , s\} . We use I\scrX to denote the indicator function associated
to the set \scrX . For a given matrix X, we denote by X:j and Xi: the jth column and the ith
row of X, respectively. We denote the nonnegative part of X as [X]+ = max(0,X) where the
max is taken componentwise. Given a multiblock differentiable function f : x= (x1, . . . , xs)\in 
\BbbE \mapsto \rightarrow f(x), we use \nabla if(x) to denote its partial derivative \partial f(x)

\partial xi
. We denote by e the vector of

all ones of appropriate dimension.

2. Preliminaries.

2.1. Majorizer, majorization minimization method, and application to \bfitbeta -NMF. We
adopt the following definition for a majorizer.

Definition 2.1 (majorizer). A continuous function g : \scrY \times \scrY \rightarrow \BbbR is called a majorizer
(or a surrogate function) of a differentiable function f over \scrY if the following conditions are
satisfied:

(a) g(x,x) = f(x) for all x\in \scrY ,
(b) g(x, y)\geq f(x) for all x, y \in \scrY , and
(c) \nabla 1g(x,x) =\nabla f(x) for all x\in \scrY .
It is important to note that condition (c) can be replaced by the condition on directional

derivatives as in [36, Assumption 1 (A3)], and the upcoming analysis still holds. For simplicity,
we use condition (c) in this paper. Let us give some examples of majorizers. The second and
third ones will play a pivotal role in this paper. More examples of majorizers can be found in
[25, 38, 16].

1. Lipschitz gradient majorizer (see, e.g., [43]). If \nabla f is L-Lipschitz continuous over \scrY ,
then

g(x, y) = f(y) + \langle \nabla f(y), x - y\rangle + L

2
\| x - y\| 2

is called the Lipschitz gradient majorizer of f .
2. Bregman majorizer (see, e.g., [28]). Suppose there exist a differentiable convex function

\kappa and L> 0 such that x \mapsto \rightarrow L\kappa (x) - f(x) is convex. Then

g(x, y) = f(y) + \langle \nabla f(y), x - y\rangle +L(\kappa (x) - \kappa (y) - \langle \nabla \kappa (y), x - y\rangle )(2.1)

is called a Bregman majorizer of f with kernel function \kappa . When \kappa = 1
2\| .\| 

2, the Bregman
majorizer coincides with the Lipschitz gradient majorizer.

3. Jensen majorizer (see, e.g., [8, 30, 19]). Suppose \~f : \BbbR \rightarrow \BbbR is a convex function and
\omega \in \BbbR r is a given vector. Define f : x\in \BbbR r \mapsto \rightarrow \~f(\omega \top x). Then

g(x, y) =

r\sum 
i=1

\alpha i
\~f

\biggl( 
\omega i

\alpha i
(xi  - yi) + \omega \top y

\biggr) 
,

where \alpha i \geq 0,
\sum r

i=1\alpha i = 1, and \alpha i \not = 0 whenever \omega i \not = 0, is called a Jensen majorizer of f . The
term ``Jensen"" in the name of the majorizer comes from the fact that the Jensen inequality
for convex functions is used to form the majorizer. Indeed, by the Jensen inequality,

r\sum 
i=1

\alpha i
\~f

\biggl( 
\omega i

\alpha i
(xi  - yi) + \omega \top y

\biggr) 
\geq \~f

\Biggl( 
r\sum 

i=1

\alpha i

\biggl[ 
\omega i

\alpha i
(xi  - yi) + \omega \top y

\biggr] \Biggr) 
= \~f(\omega \top x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1297

Choosing \alpha i = \omega iyi

\omega \top y , g(x, y) =
\sum r

i=1
\omega iyi

\omega \top y
\~f(\omega 

\top y
yi
xi) is an example of a Jensen surrogate of f if g

is well defined.
Given a majorizer of f , the minimization of f over \scrX can be achieved by iteratively

minimizing its majorizer, using

xt+1 \in argmin
x\in \scrX 

g(x,xt),

where xt denotes the tth iterate. This is the majorization minimization (MM) method, which
guarantees, by properties of the majorizer, that f(xt+1) \leq f(xt) for all t; see [18, 38] for
tutorials.

Example with the multiplicative updates for \beta -NMF. The standard MU for \beta -NMF, given
in (1.3), can be derived using the MM method. By symmetry of the problem, let us focus
on the update of H. Moreover, we have that D\beta (X,WH) =

\sum 
iD\beta (X:i,WH:i), that is, the

objective function is separable w.r.t. each column of H, and hence one can focus w.l.o.g. on
the update of a single column of H. Let us therefore provide a majorizer for D\beta (v,Wh) and
show how its closed-form solution leads to the MU (1.3).

The following proposition, which is a corollary of [10, Theorem 1], provides a Jensen
majorizer for h \in \BbbR r \mapsto \rightarrow D\beta (v,Wh) :=

\sum m
i=1 d\beta (vi, (Wh)i) with \beta \in [1,2], where v \in \BbbR m

+ and
W \in \BbbR m\times r

+ are given.

Proposition 2.2 (see [10]). Let us denote \~v=W\~h, and let \~h be such that \~vi > 0 and \~hi > 0
for all i. Then the following function is a majorizer for h \mapsto \rightarrow D\beta (v,Wh) with \beta \in [1,2]:

g(h,\~h) =

m\sum 
i=1

r\sum 
k=1

Wik
\~hk

\~vi
d\beta 

\biggl( 
vi, \~vi

hk
\~hk

\biggr) 
.(2.2)

With this surrogate, the MU obtained via the MM method [10, eq. 4.1] are as follows:

argminx\geq \varepsilon g(x,\~h) = max

\left(  \varepsilon ,\~h \circ [W\top [v]

[W\~h].(2 - \beta )
]

[W\top [W\~h].(\beta  - 1)]

\right)  ,

which leads to the MU in the matrix form (1.3). The term multiplicative in the name of the
algorithm is due to the fact that the new iterate is obtained by an elementwise multiplication
between the current iterate, \~h, and a correction factor.

2.2. Critical point and coordinatewise minimizer. Let us define three key notions for
our purpose: subdifferential, critical point, and coordinatewise minimizer.

Definition 2.3 (subdifferentials). Let g : \BbbE \rightarrow \BbbR \cup \{ +\infty \} be a proper lower semicontinuous
function.

(i) For each x \in domg, we denote \^\partial g(x) as the Fr\'echet subdifferential of g at x which
contains vectors v \in \BbbE satisfying

lim inf
y \not =x,y\rightarrow x

1

\| y - x\| 
(g(y) - g(x) - \langle v, y - x\rangle )\geq 0.

If x \not \in dom g, then we set \^\partial g(x) = \emptyset .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1298 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

(ii) The limiting-subdifferential \partial g(x) of g at x\in dom g is defined as follows:

\partial g(x) := \{ v \in \BbbE : \exists xk\rightarrow x, g(xk)\rightarrow g(x), vk \in \^\partial g(xk), vk\rightarrow v\} .

Partial subdifferentials with respect to a subset of the variables are defined analogously by
considering the other variables as parameters.

Definition 2.4 (critical point). We call x\ast \in dom g a critical point of g if 0\in \partial g (x\ast ) .

If x\ast is a local minimizer of g, then it is a critical point of g.

Definition 2.5 (coordinatewise minimizer). We call x\ast \in domf a coordinatewise minimizer
of problem (1.1) if

f(x\ast 1, . . . , x
\ast 
i - 1, x

\ast 
i , x

\ast 
i+1, . . . , x

\ast 
s)\leq f(x\ast 1, . . . , x

\ast 
i - 1, xi, x

\ast 
i+1, . . . , x

\ast 
s) \forall xi \in \scrX i,

or, equivalently, \langle \nabla if(x\ast ), xi  - x\ast i \rangle \geq 0\forall xi \in \scrX i.

For problem (1.1), a critical point of f(x) +
\sum s

i=1 I\scrX i
(xi) must be a coordinatewise mini-

mizer.

3. Block Majorization Minimization with Extrapolation (BMMe). In this section, we
introduce BMMe (see Algorithm 3.1) and then prove its convergence (see Theorem 3.2).

Remark 3.1 (mappings \scrP i). BMMe requires the mappings \scrP i, one for each block of vari-
ables. There are multiple choices possible for a given case. For example, if dom(f ti ) is the
full space, then both [.]+ and the identity mapping would satisfy condition \^xti \in int dom(f ti ).
If dom(f ti ) is a convex cone, then \scrP i

\bigl( 
xti  - x

t - 1
i

\bigr) 
= [xti  - x

t - 1
i ]\scrC would satisfy the condition,

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone . BMMe for solving problem (1.1).

1: Choose initial points x - 1, x0 \in dom(f). (Typically, x - 1 = x0.)
2: \bff \bfo \bfr t= 0, . . . \bfd \bfo 
3: \bff \bfo \bfr i= 1, . . . , s \bfd \bfo 
4: Extrapolate block i:

\^xti = xti + \alpha t
i\scrP i

\bigl( 
xti  - xt - 1

i

\bigr) 
, where(3.1)

\bullet \scrP i is a mapping such that \^xti \in int dom(f ti ), where f ti is defined in (3.3) (for
example, in \beta -NMF, we use \scrP (a) = [a]+; see section 4),
\bullet \alpha t

i are the extrapolation parameters; see section 3.2 for the conditions they need
to satisfy.

5: Update block i:

xt+1
i = argminxi\in \scrX i

Gt
i(xi, \^x

t
i),(3.2)

where Gt
i is a majorizer of f ti over its domain.

6: \bfe \bfn \bfd \bff \bfo \bfr 
7: \bfe \bfn \bfd \bff \bfo \bfr 
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BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1299

where [\cdot ]\scrC denotes the projection onto any closed convex subset \scrC of dom(f ti ). This is what
we use for \beta -NMF, with \scrP i(a) = [a]+ for all i.

3.1. Description of BMMe. BMMe (see Algorithm 3.1) updates one block of variables
at a time, say, xi, by minimizing a majorizer Gt

i of

f ti (xi) := f(xt+1
1 , . . . , xt+1

i - 1, xi, x
t
i+1, . . . , x

t
s),(3.3)

where the other blocks of variables \{ xj\} j \not =i are fixed, and t is the iteration index. The main
difference between BMMe and standard block MM (BMM) is that the majorizer in BMMe
is evaluated at the extrapolated block, \^xti given in (3.1), while it is evaluated at the previous
iterate xti in BMM. The MUe (1.4) described in section 1.1 follows exactly this scheme; we
elaborate more on this specific case in section 4.2.

In the following, we explain the notation that will be used in what follows and then state
the convergence of BMMe.

\bullet Denote \=fi(xi) := f(\=x1, . . . , \=xi - 1, xi, \=xi+1, . . . , \=xs), where \=x is fixed. As assumed, the

function \=fi(\cdot ), for i\in [s], is convex and admits a majorizer G
(\=x)
i (\cdot , \cdot ) over its domain.

\bullet Given \=x and \~xi, we denote \xi 
(\=x,\~xi)
i (xi) =G

(\=x)
i (xi, \~xi) (i.e., we fix \=x and \~xi) and

\scrD \=x,\~xi
(xi, x

\prime 
i) =\scrB \xi i(xi, x\prime i)

= \xi i(xi) - \xi i(x\prime i) - \langle \nabla \xi i(x\prime i), xi  - x\prime i\rangle ,

where we omit the superscript of \xi 
(\=x,\~xi)
i for notation succinctness. Using this notation,

we can write

G
(\=x)
i (xi, \~xi) = \=fi(\~xi) + \langle \nabla \=fi(\~xi), xi  - \~xi\rangle +\scrD \=x,\~xi

(xi, \~xi),(3.4)

where we use the facts that \=fi(\~xi) =G
(\=x)
i (\~xi, \~xi) and \nabla \=fi(\~xi) =\nabla 1G

(\=x)
i (\~xi, \~xi).

\bullet Denote x(t,i) = (xt+1
1 , . . . , xt+1

i - 1, x
t
i, x

t
i+1, . . . , x

t
s), and let Gt

i = G
(x(t,i))
i be the majorizer

of f ti , which is the notation used in Algorithm 3.1, and \scrD t
\^xi

=\scrD x(t,i),\^xi
.

Key observation for BMMe. Using the notation in (3.4), the MM update in (3.2) can be
rewritten as

xt+1
i \in argmin

xi\in \scrX i

f ti (\^xi) + \langle \nabla f ti (\^xi), xi  - \^xi\rangle +\scrD t
\^xi

(xi, \^xi),(3.5)

which has the form of a mirror descent step with the Bregman divergence \scrD t
\^xi

(xi, \^xi) being
adaptively updated at each iteration. This observation will be instrumental in proving the
convergence of BMMe.

3.2. Convergence of BMMe. We present the convergence of BMMe in Theorem 3.2. All
the technical proofs, except for our main Theorem 3.2, are relegated to Appendix A.

Theorem 3.2. Consider BMMe described in Algorithm 3.1 for solving problem (1.1). We

assume that the function xi \mapsto \rightarrow G
(\=x)
i (xi, \~xi) is convex for any given \=x and \~xi. Furthermore, we

assume the following conditions are satisfied.
(C1) Continuity. For i\in [s], if x(t,i)\rightarrow \=x when t\rightarrow \infty , then Gt

i(\`xti, \'x
t
i)\rightarrow G

(\=x)
i (\`xi, \'xi) for any

\`xti\rightarrow \`xi and \'xti\rightarrow \'xi, and G
(\=x)
i (\cdot , \cdot ) is a majorizer of \=fi(\cdot ).
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1300 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

(C2) Implicit Lipschitz gradient majorizer. At iteration t of Algorithm 3.1, for i\in [s], there
exists a constant Ci > 0 such that

\scrD t
\^xt
i
(xti, \^x

t
i) \leq Ci\| xti  - \^xti\| 2 = Ci(\alpha 

t
i)
2\| \scrP i(xti  - xt - 1

i )\| 2.(3.6)

(C3) The sequence of extrapolation parameters satisfies

\infty \sum 
t=1

(\alpha t
i)
2\| \scrP i(xti  - xt - 1

i )\| 2 <+\infty for i\in [s].(3.7)

Then we have

\infty \sum 
t=1

s\sum 
i=1

\scrD t
\^xt
i
(xti, x

t+1
i )<+\infty ,(3.8)

and the sequence generated by BMMe (Algorithm 3.1), \{ xt\} t\geq 0, is bounded if f has bounded
level sets.

Furthermore, under the condition
(C4) limt\rightarrow \infty \| xti  - x

t+1
i \| = 0 when limt\rightarrow \infty \scrD t

\^xt
i
(xti, x

t+1
i ) = 0,

any limit point of \{ xt\} t\geq 0 is a critical point of f(x) +
\sum s

i=1 I\scrX i
(xi).

Before proving Theorem 3.2, let us discuss its conditions:
\bullet If \scrD \=x,\~xi

(xi, \~xi) \leq Ci\| xi  - \~xi\| 2, then (3.6) is satisfied. This condition means \=fi(\cdot ) is
actually upper bounded by a Lipschitz gradient majorizer. However, it is crucial to re-
alize that the introduction of Ci is primarily for the purpose of the convergence proof.
Employing a Lipschitz gradient majorizer for updating xi is discouraged due to the
potential issue of Ci being excessively large (this situation can result in an overly di-
minishing/small step size, rendering the approach inefficient in practical applications).
For example, Ci =O(1/\varepsilon 2) in the case of KL-NMF; see the proof of Theorem 4.4.

\bullet If Gt
i(\cdot , \^xti) is \theta i-strongly convex, then condition (C4) is satisfied (here \theta i is a constant

independent of \{ x(t,i)\} and \{ \^xti\} ), since \theta i-strong convexity implies

\scrD t
\^xt
i
(xti, x

t+1
i )\geq \theta i

2
\| xti  - xt+1

i \| 
2.

\bullet We see that the update in (3.5) has the form of an accelerated mirror descent (AMD)
method [40] for the one-block convex problem. Hence, it makes sense to involve
the extrapolation sequences that are used in AMD. This strategy has been used in
[43, 15, 16]. An example of choosing the extrapolation parameters satisfying (3.7) is

\alpha t
i = min

\biggl\{ 
\alpha t
Nes,

c

tq/2
1

\| \scrP i(xti  - x
t - 1
i )\| 

\biggr\} 
,(3.9)

where q > 1, c is any large constant and \alpha t
Nes is the extrapolation sequence defined by

\eta 0 = 1,

\eta t =
1

2

\Bigl( 
1 +

\sqrt{} 
1 + 4\eta 2t - 1

\Bigr) 
, \alpha t

Nes =
\eta t - 1  - 1

\eta t
.(3.10)
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BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1301

Another choice is replacing \alpha t
Nes in (3.9) by \alpha t

c = t - 1
t [40]. In our experiments, we

observe that when c is large enough, \alpha t
i coincides with \alpha t

Nes (or \alpha t
c). A motivation to

choose \alpha t
Nes is that, for the one-block problem with an L-smooth convex objective,

BMMe with the Lipschitz gradient majorizer recovers the famous Nesterov fast gradi-
ent method, which is an optimal first-order method. However, it is pertinent to note
that the best choice may vary depending on the particular application and dataset
characteristics.

Proof of Theorem 3.2. Since Gt
i(\cdot , \cdot ) is a majorizer of xi \mapsto \rightarrow f ti (xi),

f ti (x
k+1
i )\leq Gt

i(x
k+1
i , \^xti) = f ti (\^xti) + \langle \nabla f ti (\^xti), x

t+1
i  - \^xti\rangle +\scrD t

\^xt
i
(xt+1

i , \^xti).(3.11)

Applying Proposition A.1 in Appendix A.1 for (3.5) with \varphi (xi) = f ti (\^xti) + \langle \nabla f ti (\^xti), xi  - \^xti\rangle 
and fixing z = \^xti, we get

\varphi (xi) +\scrD t
\^xt
i
(xi, \^x

t
i)\geq \varphi (xt+1

i ) +\scrD t
\^xt
i
(xt+1

i , \^xti) +\scrD t
\^xt
i
(xi, x

t+1
i ).(3.12)

Hence, from (3.11) and (3.12), for all xi \in \scrX i, we have

f ti (x
t+1
i )\leq \varphi (xi) +\scrD t

\^xt
i
(xi, \^x

t
i) - \scrD t

\^xt
i
(xi, x

t+1
i ).(3.13)

On the other hand, since f ti (\cdot ) is convex, we have \varphi (xi) \leq f ti (xi). Therefore, we obtain the
following inequality for all xi \in \scrX i

f ti (x
t+1
i ) +\scrD t

\^xt
i
(xi, x

t+1
i )\leq f ti (xi) +\scrD t

\^xt
i
(xi, \^x

t
i).(3.14)

Taking xi = xti in (3.14), using the assumption in (3.6), and summing up the inequalities from
i= 1 to s, we obtain

f(xt+1) +

s\sum 
i=1

\scrD t
\^xt
i
(xti, x

t+1
i )\leq f(xt) +

s\sum 
i=1

Ci(\alpha 
t
i)
2\| \scrP i(xti  - xt - 1

i )\| 2,

which further implies the following inequality for all T \geq 1:

f(xT+1) +

T\sum 
t=1

s\sum 
i=1

\scrD t
\^xt
i
(xti, x

t+1
i )\leq f(x1) +

T\sum 
t=1

s\sum 
i=1

Ci(\alpha 
t
i)
2\| \scrP i(xti  - xt - 1

i )\| 2.(3.15)

From (3.15) and the condition in (3.7) we have (3.8) and \{ f(xt)\} t\geq 0 is bounded. Hence \{ xt\} t\geq 0

is also bounded if f is assumed to have bounded level sets.
Suppose x\ast is a limit point of \{ xk\} ; that is, there exists a subsequence \{ xtk\} converging

to x\ast . From (3.8), we have \scrD t
\^xt
i
(xti, x

t+1
i )\rightarrow 0. Hence, \{ xtk+1\} also converges to x\ast . On the

other hand, as \alpha t
i\| \scrP i(xti  - x

t - 1
i )\| \rightarrow 0, we have \^xti\rightarrow x\ast i . From the update in (3.2),

Gtk
i (xtk+1

i , \^xtki )\leq Gtk
i (xi, \^x

tk
i ) \forall xi \in \scrX i.

Taking tk\rightarrow \infty , from condition (C1), we have

\=Gi(x
\ast 
i , x

\ast 
i )\leq \=Gi(xi, x

\ast 
i ) \forall xi \in \scrX i,

where \=Gi(\cdot , \cdot ) is a majorizer of xi \mapsto \rightarrow f\ast i (xi) = (x\ast 1, . . . , x
\ast 
i - 1, xi, x

\ast 
i+1, . . . , x

\ast 
s). Hence,

0\in \partial ( \=Gi(x
\ast 
i , x

\ast 
i ) + I\scrX i

(x\ast i )) for i= 1, . . . , s.

Finally, using [3, Proposition 2.1] and noting that \nabla 1
\=Gi(x

\ast 
i , x

\ast 
i ) =\nabla if(x\ast ), this implies that

x\ast is a critical point of (1.1).
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1302 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

Complexity, scalability, and practical implementation aspects. BMMe serves as an acceler-
ated version of the block majorization-minimization method (BMM). In essence, while BMM
updates each block xi by xt+1

i = argminxi\in \scrX i
Gt

i(xi, x
t
i), BMMe achieves the same by replacing

xti by an extrapolation point \^xti, which is computed with a marginal additional cost, namely
O(n) operations, where n is the number of variables. Consequently, BMMe inherits crucial
properties regarding complexity, scalability, and practical implementation from BMM. BMM
updates one block of variables at a time while keeping others fixed, thus scaling effectively
with data size in terms of the number of block variables. However, the complexity of each
block update grows with the dimension of the block variable. The efficiency of BMM heavily
relies on selecting suitable majorizers, ensuring closed-form solutions for block updates, and
thus circumventing the need for outer solvers in large-scale problems (this may help avoid
substantial computational resources). The choice of appropriate majorizers is pivotal and
application-specific; for instance, in applications utilizing the \beta -NMF model, Jensen majoriz-
ers are commonly and effectively employed; see section 4 below for the details. Moreover, it is
worth noting that a properly designed majorizer allows for the computation of its closed-form
minimizer in an elementwise manner. This characteristic is particularly beneficial for handling
large-scale problems, as it can be efficiently executed on a parallel computation platform.

Iteration complexity. Iteration complexity of BMM-type methods is a challenging topic,
especially for nonconvex problems. Considering the use of general majorizers together with
inertial/extrapolated parameters in each block update, the work that is most related to our
paper is [16]. As explained in [16, Remark 9], as long as a global convergence (that is, the
whole generated sequence converges to a critical point) is guaranteed, a convergence rate
for the generated sequence can be derived by using the same technique as in the proof of [2,
Theorem 2]. In fact, the technique of [2] has been commonly used to establish the convergence
rate in other block coordinate methods, for which specific majorizers are used in each block
update (for example, [43] uses Lipschitz gradient majorizers). However, it is challenging to
extend the result to BMMe. Along with the Kurdyka--\Lojasiewicz assumption, the BMM-
type methods with extrapolation, such as [16, 43], need to establish the NSDP, as discussed
in section 1.2. And as such, extending the usual convergence rate result to BMMe is an open
question. A recent work [24] establishes iteration complexity of a BMM method for solving
constrained nonconvex nonsmooth problems; however, the majorizers are required to have
a Lipschitz gradient, which is not satisfied by many Bregman majorizers.

4. Application of BMMe to \bfitbeta -NMF. Before presenting the application of BMMe to the
standard \beta -NMF problem with \beta \in [1,2] (section 4.2), and a constrained and regularized
KL-NMF problem (section 4.3), we briefly discuss the majorizers for the \beta -divergences.

4.1. Majorizer of the \bfitbeta -divergence, \bfitbeta \in [\bfone ,\bftwo ]. Recall that the function defined in (2.2)
is a majorizer for h \mapsto \rightarrow D\beta (v,Wh), where \~v =W\~h; see Proposition 2.2. The function g(\cdot , \cdot ) is
twice continuously differentiable over \{ (h,\~h) : h\geq \varepsilon ,\~h\geq \varepsilon \} , and

\nabla 2
hk
g(h,\~h) =

m\sum 
i=1

Wik\~vi
\~hk

d\prime \prime \beta 

\biggl( 
vi, \~vi

hk
\~hk

\biggr) 
,(4.1)

where d\prime \prime \beta (x, y) denotes the second derivative with respect to y of (x, y) \mapsto \rightarrow d\beta (x, y).
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BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1303

On the other hand, as already noted in section 2.1,

D\beta (X,WH) =

n\sum 
j=1

D\beta (X:j ,WH:j) =

m\sum 
i=1

D\beta (X\top 
i: ,H

\top W\top 
i: ).

Hence a majorizer of H \mapsto \rightarrow D\beta (X,WH) while fixing W is given by

G
(W )
2 (H, \~H) =

n\sum 
j=1

g
(W )
j (H:j , \~H:j),(4.2)

where g
(W )
j (H:j , \~H:j) is the majorizer of H:j \mapsto \rightarrow D\beta (X:j ,WH:j), which is defined as in (2.2)

with v=X:j . Similarly, the following function is a majorizer of W \mapsto \rightarrow D\beta (X,WH) while fixing
H:

G
(H)
1 (W, \~W ) =

m\sum 
i=1

\bfg 
(H)
i (W\top 

i: ,
\~W\top 
i: ),(4.3)

where \bfg 
(H)
i (W\top 

i: ,
\~W\top 
i: ) is the majorizer of W\top 

i: \mapsto \rightarrow D\beta (X\top 
i: ,H

\top W\top 
i: ) defined as in (2.2) with v

being replaced by X\top 
i: and W being replaced by H\top .

Note that there exist other majorizers for \beta -NMF---for example, majorizers for both vari-
ables simultaneously [26], for \ell 1-regularized \beta -NMF with sum-to-one constraints [27], and
quadratic majorizers for the KL divergence [34].

Remark 4.1 (choice of majorizer). Incorporating a regularization term \lambda | xi  - xti| 2 in the
Jensen surrogate to have a strongly convexity majorizer would fulfill the conditions outlined
in TITAN [16]. However, this is not recommended, as it would result in a regularized Jensen
surrogate that lacks a closed-form solution for the subproblem, necessitating an outer solver
and requiring adaptation of the convergence analysis of TITAN to accommodate inexact
solutions (the current analysis of TITAN does not support inexact solutions). In contrast, the
extrapolation strategy employed by BMMe will preserve the closed-form update for \beta -NMF
in its iterative step by embedding the extrapolation point directly into the majorizer.

4.2. MU with extrapolation for \bfitbeta -NMF, \bfitbeta \in [\bfone ,\bftwo ]. We consider the standard \beta -NMF
problem in (1.2) with \beta \in [1,2]. Applying Algorithm 3.1 to solve problem (1.2), we get MUe, a
multiplicative update method with extrapolation described in Algorithm 4.1. The convergence
property of MUe is given in Theorem 4.2; see Appendix A.2 for the proof.

Theorem 4.2. Suppose the extrapolation parameters in Algorithm 4.1 are chosen such that
they are bounded and

\infty \sum 
t=1

(\alpha t
H)2\| [Ht  - Ht - 1]+\| 2 <+\infty , and

\infty \sum 
t=1

(\alpha t
W )2\| [W t  - W t - 1]+\| 2 <+\infty .(4.4)

Then MUe (Algorithm 4.1) generates a bounded sequence and any one of its limit points,
(W \ast ,H\ast ), is a KKT point of problem (1.2), that is,

W \ast \geq \varepsilon , \nabla WD\beta (X,W \ast H\ast )\geq 0, \langle \nabla WD\beta (X,W \ast H\ast ),W \ast  - \varepsilon ee\top \rangle = 0,

and similarly for H\ast .
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1304 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone . MUe for solving \beta -NMF (1.2).

1: Choose initial points (W - 1,W 0,H - 1,H0)\geq \varepsilon > 0.
2: \bff \bfo \bfr t= 0, . . . \bfd \bfo 
3: Compute extrapolation points:

\^W t =W t + \alpha t
W [W t  - W t - 1]+,

\^Ht =Ht + \alpha t
H [Ht  - Ht - 1]+,

where \alpha t
W and \alpha t

H satisfy (4.4).
4: Update the two blocks of variables:

W t+1 = argmin
W\geq \varepsilon 

Gt
1(W,

\^W t) = MU(X\top , (Ht)\top , ( \^W t)\top )\top [see (1.3)],

Ht+1 = argmin
H\geq \varepsilon 

Gt
2(H,

\^Ht) = MU(X,W t+1, \^Ht),

where Gt
1 =G

(Ht)
1 and Gt

2 =G
(W t+1)
2 be the majorizers defined in (4.3) with H =Ht

and (4.2) with W =W t+1, respectively.
5: \bfe \bfn \bfd \bff \bfo \bfr 

4.3. MUe for constrained and regularized KL-NMF. The KL divergence is especially
relevant when the statistical characteristics of the observed data samples conform to a Poisson
distribution, turning KL-NMF into a meaningful choice for count datasets such as images
[37], documents [20], and single-cell sequencing [7]. In numerous scenarios, there are specific
additional constraints and regularizers to add to KL-NMF. For example, the minimum-volume
(min-vol) KL-NMF, which incorporates a regularizer encouraging the columns of matrix W to
have a small volume, along with a normalization constraints (such as H\top e= e or W\top e= e),
enhances identifiability/uniqueness [23, 11], a crucial aspect in various applications such as
hyperspectral imaging [29] and audio source separation [21]. In this section, we consider the
following general regularized KL-NMF problem:

min
W\in \=\Omega W ,H\in \=\Omega H

\Bigl\{ 
f(W,H) := DKL(X,WH) + \lambda 1\phi 1(W ) + \lambda 2\phi 2(H)

\Bigr\} 
,(4.5)

where \=\Omega W := \{ W :W \geq \varepsilon ,W \in \Omega W \} and \=\Omega H := \{ H :H \geq \varepsilon ,H \in \Omega H\} . We assume that there
exist continuous functions L\phi 1

( \~W ) \geq 0 and L\phi 2
( \~H) \geq 0 such that for all W, \~W \in \{ W : W \geq 

0,W \in \Omega W \} and H, \~H \in \{ H :H \geq 0,H \in \Omega H\} , we have

\phi 1(W )\leq \=\phi 1(W, \~W ) := \phi 1( \~W ) + \langle \nabla \phi 1( \~W ),W  - \~W \rangle +
L\phi 1

( \~W )

2
\| W  - \~W\| 2,

\phi 2(H)\leq \=\phi 2(H, \~H) := \phi 2( \~H) + \langle \nabla \phi 2( \~H),H  - \~H\rangle +
L\phi 2

( \~H)

2
\| H  - \~H\| 2.

(4.6)

Furthermore, L\phi 1
( \~W ) and L\phi 2

( \~H) in (4.6) are upper bounded by \=L\phi 1
and \=L\phi 2

, respectively.
We focus on the min-vol regularizer, \phi 1(W ) = det(W\top W + \delta I), and \Omega W = \{ W | W\top e = e\} 
[21]. In that case, \phi 1(W ) satisfies this condition, as proved in Lemma 4.3; see Appendix A.3
for the proof.
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BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1305

Lemma 4.3. The function \phi 1(W ) = log det(W\top W + \delta I) with \delta > 0 satisfies the condition
in (4.6) with L\phi 1

( \~W ) = 2\| ( \~W\top \~W + \delta I) - 1\| 2, which is upper bounded by 2/\delta .

We will use the following majorizer for H \mapsto \rightarrow f(W,H) while fixing W :

G
(W )
2 (H, \~H) =

n\sum 
j=1

g
(W )
j (H:j , \~H:j) + \lambda 1\phi 1(W ) + \lambda 2 \=\phi 2(H, \~H),(4.7)

where \=\phi 2(H, \~H) is defined as in (4.6) and g
(W )
j is defined as in (4.2). Similarly, we use the

following majorizer for W \mapsto \rightarrow f(W,H) while fixing H:

G
(H)
1 (W, \~W ) =

m\sum 
i=1

\bfg 
(H)
i (W\top 

i: ,
\~W\top 
i: ) + \lambda 1 \=\phi 1(W, \~W ) + \lambda 2\phi 2(H),(4.8)

where \=\phi 1(W, \~W ) is defined as in (4.6), and \bfg 
(H)
i is defined as in (4.3). Applying Algorithm 3.1

to solve problem (4.5), we get Algorithm B.1, a BMMe algorithm for regularized and con-
strained KL-NMF; see its detailed description in Appendix B. It works exactly as Algo-

rithm 4.1, but the majorizers Gt
1 = G

(Ht)
1 and Gt

2 = G
(W t+1)
2 are defined as in (4.8) with

H = Ht and as in (4.7) with W = W t+1, respectively. The convergence property of Algo-
rithm B.1 is given in Theorem 4.4; see Appendix A.4 for the proof.

Theorem 4.4. Suppose the extrapolation parameters \alpha t
W and \alpha t

H satisfy (4.4). Then BMMe
applied to problem (4.5) (Algorithm B.1) generates a bounded sequence, and any one of its limit
points is a coordinatewise minimizer of problem (4.5).

BMMe for solving problem (4.5) (Algorithm B.1) is not necessarily straightforward to
implement, because its updates might not have closed forms. In the following, we derive such
updates in the special case of min-vol KL-NMF [21]:

min
W\geq \varepsilon ,H\geq \varepsilon 

DKL(X,WH) + \lambda 1 log det(W\top W + \delta I)

such that e\top W:j = 1, j = 1, . . . , r.(4.9)

The update of H is, as in (1.3), taking \beta = 1. The following lemma provides the update of
W ; see Appendix A.5 for the proof.

Lemma 4.5. For notation succinctness, let \^W = W t + \alpha t
W [W t  - W t - 1]+ and H = Ht+1.

BMMe for solving (4.9) (Algorithm B.1) updates W as follows:

W \leftarrow max

\biggl( 
\varepsilon ,

1

2

\biggl( 
 - B2 +

\Bigl[ 
[B2]

.2 + 4\lambda 1L\phi 1
( \^W )B1

\Bigr] .1/2\biggr) \biggr) 
,(4.10)

where

L\phi 1
( \^W ) = 2\| ( \^W\top \^W + \delta I) - 1\| 2, B1 =

[X]

[ \^WH]
H\top \circ \^W,

B2 = ee\top H\top + \lambda 1(A - L\phi 1
( \^W ) \^W + e\mu \top ),

A= 2 \^W ( \^W\top \^W + \delta I) - 1, \mu = (\mu 1, . . . , \mu r)
\top ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1306 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

and \mu k, for k = 1, . . . , r, is the unique solution of
\sum n

j=1Wjk(\mu k) = 1. We can determine \mu k
by using the bisection method over \mu k \in [\mu 

k
, \mu k], where

\mu 
k
= min

j=1,...,m
\~\mu jk, \mu k = max

j=1,...,m
\~\mu jk,

\~\mu jk =
1

\lambda 1
(4\lambda 1L\phi 1

( \^W )b1m - 1/m - 
n\sum 

i=1

(H\top )ik) +L\phi 1
( \^W ) \^Wjk  - Ajk,

(4.11)

with b1 =
\sum n

i=1
(H\top )ikXji

\~vi

\^Wjk and \~v=H\top \^W\top 
j: .

5. Numerical experiments. In this section, we show the empirical acceleration effect of
BMMe. We use the Nesterov extrapolation parameters (3.10). All experiments have been
performed on a laptop computer with Intel Core i7-11800H @ 2.30 GHz and 16 GB memory
with MATLAB R2021b. The code is available from https://github.com/vleplat/BMMe.

5.1. \bfitbeta -NMF for hyperspectral imaging. We consider \beta -NMF (1.2) with \beta = 3/2, which
is among the best NMF models for hyperspectral unmixing [9]. For this problem, the MU is
the workhorse approach, and we compare it to MUe: Figure 2 provides the median evolution
of objective function values for the Cuprite dataset (m = 188, n = 47750, r = 20); see the
supplementary material section SM1 for more details and experiments on 3 other datasets
with similar observations. There is a significant acceleration effect: on average, MUe requires
only 41 iterations to obtain a smaller objective than MU with 100 iterations.

5.2. KL-NMF for topic modeling and imaging. We now consider KL-NMF, which is the
workhorse NMF model for topic modeling and also widely used in imaging; see section 4.3.
We compare MUe with MU and the cyclic coordinate descent (CCD) method of [17]. As
reported in [14], MU and CCD are the state of the art for KL-NMF (sometimes one performs
best, and sometimes the other does). Figure 3 shows the median evolution of the relative
objective function for two datasets: a dense image dataset (ORL, m = 10304, n = 400), and

Figure 2. Median relative objective function of \beta -NMF for \beta = 3/2 minus the smallest objective function
found among 10 random initializations (denoted emin).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

7/
25

 to
 1

09
.1

36
.7

5.
42

 b
y 

N
ic

ol
as

 G
ill

is
 (

ni
co

la
s.

gi
lli

s@
um

on
s.

ac
.b

e)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/vleplat/BMMe


BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1307

Figure 3. Median relative objective function of KL-NMF minus the smallest objective function found among
10 runs (denoted emin) w.r.t. CPU time: (left) ORL, (right) hitech, with r= 10 in both cases. Note that MU,
MUe, and CCD, respectively, perform on average 7579, 6949, and 616 iterations for ORL, and 885, 886 and
343 iterations for hitech in the considered time intervals.

Figure 4. Evolution of the median relative errors (see (5.1)), minus the smallest relative error found among
the 20 random initializations, of min-vol KL-NMF (4.9) of the four algorithms. Note that MU, MUe, MM, and
MMe, respectively, perform on average 94, 92, 304, and 278 iterations within one second.

a sparse document dataset (hitech, m = 2301, n = 10080). For ORL, CCD and MU perform
similarly, while MUe performs the best. For hitech, MUe and CCD perform similarly, while
they outperform MU. In all cases, MUe provides a significant acceleration effect to MU. Similar
observations hold for 6 other datasets; see the supplementary material section SM2.

5.3. Min-vol KL-NMF for audio datasets. We address problem (4.9) in the context of
blind audio source separation [21]. We compare the following algorithms: MU with H update
from (1.3) and W update from Lemma 4.5, its extrapolated variant, MUe, a recent MM
algorithm by [22], denoted MM, and MMe incorporating the BMMe extrapolation step in MM.

Figure 4 displays the median relative objective function values,

erel(W,H) =
DKL(X,WH) + \lambda log det(WW + \delta I)

DKL(X, (Xe/n)e\top )
,(5.1)

minus the smallest relative objective found, for the prelude from J.S. Bach (m = 129, n =
2292, r = 16); see the supplementary material section SM3 for two other datasets and more
details. MUe exhibits accelerated convergence compared to MU. MM ranks second, while

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1308 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

its new variant, MMe, integrating the proposed extrapolation, consistently achieves the best
performance. This better performance stems from the nature of the majorizer employed for
the logdet term, which offers a more accurate approximation. It is worth noting that the
majorizer used by MMe satisfies neither condition (c) of Definition 2.1 nor Assumption 1 (A3)
of [36], and hence Theorem 3.2 does not apply to MMe.

6. Conclusion and further work. In this paper, we considered multiconvex optimization
(1.1). We proposed a new, simple yet effective acceleration mechanism for the Block Majoriza-
tion Minimization method incorporating Extrapolation (BMMe). We established subsequen-
tial convergence of BMMe, and leveraged it to accelerate multiplicative updates for various
NMF problems. Through numerous numerical experiments conducted on diverse datasets,
namely documents, images, and audio datasets, we showcased the remarkable acceleration
impact achieved by BMMe. Further work includes the use of BMMe for other NMF models
and algorithms [26, 27] and other applications, such as nonnegative tensor decompositions,
and new theoretical developments, such as relaxing condition (c) in Definition 2.1 (definition
of a majorizer) or the condition on directional derivatives [36, Assumption 1(A3)], extending
to the case when the subproblems in each block of variables are not convex,1 or studying
iteration complexity of BMMe (see the paragraph at the end of section 3).

Appendix A. Technical proofs.

A.1. Proof of Proposition A.1. To prove our convergence result for BMMe in Theo-
rem 3.2, we need the following useful proposition, which is an extension of Property 1 of [40].

Proposition A.1. Let z+ = arg minu\in \scrY \varphi (u)+\scrB \xi (u, z), where \varphi is a proper convex function,
\scrY is a closed convex set, and \scrB \xi (u, z) = \xi (u)  - \xi (z)  - \langle \nabla \xi (z), u  - z\rangle , where \xi is a convex
differentiable function in u while fixing z (note that \xi may also depend on z, and we should use
\xi (z) for \xi , but we omit the superscript for notation succinctness). Then for all u\in \scrY we have

\varphi (u) +\scrB \xi (u, z)\geq \varphi (z+) +\scrB \xi (z+, z) +\scrB \xi (u, z+).

Proof. The optimality condition gives us

\langle \varphi \prime (z+) +\nabla 1\scrB \xi (z+, z), u - z+\rangle \geq 0 \forall u\in \scrY ,

where \varphi \prime (z+) is a subgradient of \varphi at z+. Furthermore, as \varphi is convex, we have

\varphi (u)\geq \varphi (z+) + \langle \varphi \prime (z+), u - z+\rangle .

Hence, for all u\in \scrY ,

\varphi (u) +\scrB \xi (u, z)\geq \varphi (z+) - \langle \nabla uB\xi (z
+, z), u - z+\rangle +\scrB \xi (u, z)

=\varphi (z+) - \langle \nabla \xi (z+) - \nabla \xi (z), u - z+\rangle + \xi (u) - \xi (z) - \langle \nabla \xi (z), u - z\rangle 
=\varphi (z+) +\scrB \xi (z+, z) +\scrB \xi (u, z+).

1We need the convexity assumption for the proof of Theorem 3.2 and Proposition A.1. Without convexity,
we cannot establish the inequality (3.15), which is key to prove Theorem 3.2.
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BLOCK MAJORIZATION MINIMIZATION WITH EXTRAPOLATION 1309

A.2. Proof of Theorem 4.2. Let us first prove that the generated sequence of Algo-
rithm 4.1 is bounded. For simplicity, we denote W =W t+1 and \^H = \^Ht in the following. We
have

Ht+1
kj = \^Hkj

\sum m
i=1Wik

Xij

([W \^H]ij)2 - \beta \sum m
i=1Wik([W \^H]ij)\beta  - 1

=

m\sum 
i=1

\^HkjWik
Xij

([W \^H]ij)2 - \beta \sum m
i=1Wik([W \^H]ij)\beta  - 1

\leq 
m\sum 
i=1

\^HkjWik
Xij

([W \^H]ij)2 - \beta 

Wik([W \^H]ij)\beta  - 1
=

m\sum 
i=1

\^Hkj
Xij

[W \^H]ij
=

m\sum 
i=1

\^Hkj
Xij\sum r

l=1Wil
\^Hlj

\leq 
m\sum 
i=1

\^Hkj
Xij

Wik
\^Hkj

\leq 
m\sum 
i=1

Xij

\varepsilon 
.

Hence, \{ Ht\} t\geq 0 is bounded. Similarly we can prove that \{ W t\} t\geq 0 is bounded.

Now we verify the conditions of Theorem 3.2. Note that W \mapsto \rightarrow G
(H)
1 (W, \~W ) and H \mapsto \rightarrow 

G
(W )
2 (H, \~H) are convex.

Condition (C1) of Theorem 3.2. We see that (W,H, \~H) \mapsto \rightarrow G
(W )
2 (H, \~H) is continuously

differentiable over \{ (W,H, \~H) : W \geq \varepsilon ,H \geq \varepsilon , \~H \geq \varepsilon \} . Furthermore, suppose (W t+1,Ht)\rightarrow 
( \=W, \=H); then we have \=W \geq \varepsilon and \=H \geq \varepsilon as W t+1 \geq \varepsilon and Ht \geq \varepsilon . Hence, it is not difficult to
verify that Gt

2 satisfies condition (C1) of Theorem 3.2, and similarly for Gt
1.

Condition (C2) of Theorem 3.2. Considering condition (C2) of Theorem 3.2, if we fix \=x

and \~xi \in \scrY i, where \scrY i is a closed convex set, and G
(\=x)
i (\cdot , \~xi) is twice continuously differentiable

over \scrY i and the norm of its Hessian is upper bounded by 2Ci over \scrY i, then by the descent
lemma [31], we have

G
(\=x)
i (xi, \~xi)\leq \=fi(\~xi) + \langle \nabla \=fi(\~xi), xi  - \~xi\rangle +Ci\| xi  - \~xi\| 2 \forall xi \in \scrY i.

This implies that

\scrD \=x,\~xi
(xi, \~xi) =G

(\=x)
i (xi, \~xi) - 

\bigl( 
\=fi(\~xi) + \langle \nabla \=fi(\~xi), xi  - \~xi\rangle 

\bigr) 
\leq Ci\| xi  - \~xi\| 2 \forall xi \in \scrY i,

and hence that condition (C2) is satisfied.
Now consider Algorithm 4.1. Note that W t \geq \varepsilon , Ht \geq \varepsilon , \^Ht =Ht + \alpha t

H [Ht  - Ht - 1]+ \geq \varepsilon ,
\^W t = W t + \alpha t

W [W t  - W t - 1]+ \geq \varepsilon , and we have proved that \{ (W t,Ht)\} t\geq 0 generated by
Algorithm 4.1 is bounded. This implies that \{ \^W t\} t\geq 0 and \{ \^Ht\} t\geq 0 are also bounded. We

verify (C2) for block H, and it is similar for block W ; recall that G
(W )
2 is defined in (4.2).

Consider the compact set \scrC = \{ (H, \~H) :H \geq \varepsilon , \~H \geq \varepsilon ,\| (H, \~H)\| \leq CH\} , where CH is a positive

constant such that \scrC contains (Ht, \^Ht). Since G
(W )
2 , with W \geq \varepsilon , is twice continuously

differentiable over the compact set \scrC , the Hessian \nabla 2
HG

t
2(\cdot , \^Ht) is bounded by a constant

that is independent of W t and \^Ht. As discussed above, this implies that condition (C2) of
Theorem 3.2 is satisfied.

Condition (C4) of Theorem 3.2. Finally, from (4.1), we see that \nabla 2
hk
g
(W )
j (h,\^h) is lower

bounded by a positive constant when h\geq \varepsilon , \^h\geq \varepsilon , W \geq \varepsilon , and h, \^h, and W is upper bounded.
Hence condition (C4) of Theorem 3.2 is satisfied.
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1310 L. T. K. HIEN, V. LEPLAT, AND N. GILLIS

By Theorem 3.2, any limit point (W \ast ,H\ast ) of the generated sequence is a coordinatewise
minimizer of problem (1.2). Hence,

W \ast \geq \varepsilon , \langle \nabla WD\beta (X,W \ast H\ast ),W  - W \ast \rangle \geq 0 \forall W \geq \varepsilon ,
H\ast \geq \varepsilon , \langle \nabla HD\beta (X,W \ast H\ast ),H  - H\ast \rangle \geq 0 \forall H \geq \varepsilon .

(A.1)

By choosing H = H\ast + \bfE (i,j) in (A.1) for each (i, j), where \bfE (i,j) is a matrix with a single
component equal to 1 at position (i, j) and the other being 0, we get \nabla HD\beta (X,W \ast H\ast ) \geq 0.
Similarly, we have \nabla WD\beta (X,W \ast H\ast ) \geq 0. By choosing H = \varepsilon ee\top and H = 2H\ast  - \varepsilon ee\top in

(A.1), we have \partial D\beta (X,W \ast H\ast )
\partial Hij

(\varepsilon  - H\ast 
ij) = 0. Similarly, we also have \partial D\beta (X,W \ast H\ast )

\partial Wij
(\varepsilon  - W \ast 

ij) = 0.
These coincide with the KKT conditions, and hence we conclude the proof.

A.3. Proof of Lemma 4.3. We have

\phi 1(W )\leq \phi 1( \~W ) + \langle ( \~W\top \~W + \delta I) - 1,W\top W  - \~W\top \~W \rangle 
\leq \phi 1( \~W ) + \langle 2 \~W ( \~W\top \~W + \delta I) - 1,W  - \~W \rangle + \| ( \~W\top \~W + \delta I) - 1\| 2\| W  - \~W\| 22
\leq \phi 1( \~W ) + \langle \nabla \phi 1( \~W ),W  - \~W \rangle + \| ( \~W\top \~W + \delta I) - 1\| 2\| W  - \~W\| 2,

where we use the concavity of log det(\cdot ) for the first inequality and the property that W \mapsto \rightarrow 
\langle ( \~W\top \~W + \delta I) - 1,W\top W \rangle is 2\| ( \~W\top \~W + \delta I) - 1\| 2-smooth for the second inequality.

A.4. Proof of Theorem 4.4. We verify the conditions of Theorem 3.2. It is similar to the

case of standard \beta -NMF with \beta \in [1,2]; we have that W \mapsto \rightarrow G
(H)
1 (W, \~W ) and H \mapsto \rightarrow G

(W )
2 (H, \~H)

are convex and condition (C1) is satisfied.

Condition (C2) of Theorem 3.2. At iteration t, we verify (C2) for block H (recall that G
(W )
2

is defined in (4.7)), and it is similar for block W , by symmetry. For notation succinctness, in
the following we denote W =W t+1 and \^H = \^Ht. Note that W t+1 \geq \varepsilon and \^Ht =Ht +\alpha t

H [Ht - 
Ht - 1]+ \geq \varepsilon . We observe that G

(W )
2 is separable with respect to the columns H:j , j = 1, . . . , n,

of H. Specifically,

G
(W )
2 (H, \~H) =

n\sum 
j=1

\Bigl( 
g
(W )
j (H:j , \~H:j) + \lambda 2 \=\phi j2(H:j , \~H)

\Bigr) 
+ \lambda 1\phi 1(W ),

where \=\phi j2(H:j , \~H) = \phi 2( \~H) + [\nabla \phi 2( \~H)]\top :j (H:j  - \~H:j) +
L\phi 2 (

\~H)
2 \| H:j  - \~H:j\| 2. Hence, as discussed

above in the proof of Theorem 4.2, it is sufficient to prove that the norm of the Hessian

\nabla 2
h(g

(W )
j (h, \^H:j) + \lambda 2 \=\phi j2(h,

\^H)), for j = 1, . . . , n, is upper bounded over h \geq \varepsilon by a constant

that is independent of W t+1 and \^Ht. As L\phi 2
( \~H) is assumed to be upper bounded by \=L\phi 2

, it

is sufficient to prove that \nabla 2
hg

(W )
j (h, \^H:j) is upper bounded over h\geq \varepsilon .

We have

\nabla 2
hk
g
(W )
j (h,\^h) =

m\sum 
i=1

Wik\^vi
\^hk

vi(\^hk)2

(\^vihk)2
=

m\sum 
i=1

Wik
\^hk

\^vi

vi
(hk)2

(\mathrm{a})

\leq 
m\sum 
i=1

Wik
\^hk

\^vi

vi
\varepsilon 2

(\mathrm{b})

\leq 
m\sum 
i=1

vi
\varepsilon 2
,

where we used hk \geq \varepsilon in (a) and Wik
\^hk \leq \^vi =

\sum r
k=1Wik

\^hk in (b). Hence Condition (C2) is
satisfied. Together with (4.4), this implies that the generated sequence of Algorithm B.1 is
bounded as the objective of (4.5) has bounded level sets.
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Finally, as the generated sequence is upper bounded and W \geq \varepsilon , H \geq \varepsilon , and \^H \geq \varepsilon , we

see that \nabla 2
hk
g
(W )
j (h,\^h) is lower bounded by a positive constant, which implies that condition

(C4) is satisfied.

A.5. Proof of Lemma 4.5. The update of W is given by

W t+1\leftarrow arg min
W\geq \varepsilon 

G1(W, \^W ) =

m\sum 
i=1

gi(W\top 
i: , \^W\top 

i: ) + \lambda 1 \=\phi 1(W, \^W )

s.t. e\top W:k = 1, k= 1, . . . , r.

(A.2)

Problem (A.2) is equivalent to

min
W\geq \varepsilon 

max
\mu \in \BbbR r
\scrL (W,\mu ) :=G1(W, \^W ) + \langle W\top e - e,\mu \rangle .

Since \scrL (\cdot , \mu ) is convex, \scrL (W,\mu ) \rightarrow +\infty when \| W\| \rightarrow +\infty , and \scrL (W, \cdot ) is linear, we have
strong duality [5, Proposition 4.4.2]; that is,

min
W\geq \varepsilon 

max
\mu \in \BbbR r
\scrL (W,\mu ) = max

\mu \in \BbbR r
min
W\geq \varepsilon 
\scrL (W,\mu ).

On the other hand, as W \mapsto \rightarrow \scrL (W,\mu ) is separable with respect to each Wjk of W , minimizing
this function over W \geq \varepsilon reduces to minimizing scalar strongly convex functions of Wjk over
Wjk \geq \varepsilon for j = 1, . . . , n, k= 1, . . . , r:

min
Wjk\geq \varepsilon 

\Biggl\{ 
n\sum 

i=1

(H\top )ik \^Wjk

\~vi
Xji log

\biggl( 
1

Wjk

\biggr) 
+

n\sum 
i=1

(H\top )ikWjk

+ \lambda 1

\biggl( 
AjkWjk +

1

2
L\phi 1

( \^W )(Wjk  - \^Wjk)2
\biggr) 

+Wjk\mu k

\Biggr\} 
,

where \~v=H\top \^W\top 
j: . This optimization problem can be rewritten as

min
Wjk\geq \varepsilon 

 - b1 log(Wjk) + b2Wjk +
1

2
\lambda 1L\phi 1

( \^W )W 2
jk,

which has the optimal solution

Wjk(\mu k) = max

\biggl( 
\varepsilon ,

1

2

\Bigl( 
 - b2 + (b22 + b3b1)

1/2
\Bigr) \biggr) 

,

where

b1 =

n\sum 
i=1

(H\top )ikXji

\~vi
\^Wjk, b3 = 4\lambda 1L\phi 1

( \^W ),

b2(\mu k) =

n\sum 
i=1

(H\top )ik + \lambda 1(Ajk  - L\phi 1
( \^W ) \^Wjk + \mu k).
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In matrix form, we have (4.10). We need to find \mu k such that
\sum n

j=1Wjk(\mu k) = 1. We have

Wjk(\mu k) = max(\varepsilon ,\psi jk(\mu k)), where \psi jk(\mu k) = 1
2( - b2 +

\sqrt{} 
b22 + 4b3b1). Note that \mu k \mapsto \rightarrow Wjk(\mu k)

is a decreasing function since

\psi \prime 
jk(\mu k) =

1

2

\Biggl( 
 - \lambda 1 +

\lambda 1b2\sqrt{} 
b22 + 4b3b1

\Biggr) 
< 0.

We then apply the bisection method to find the solution of
\sum n

j=1Wjk(\mu k) = 1. To determine
the segment containing \mu k, we note that if \varepsilon < 1/n, then Wjk(\~\mu jk) = 1/n, where \~\mu jk is defined
as in (4.11). Hence, \mu k \in [\mu 

k
, \mu k], where \mu 

k
and \mu k are defined as in (4.11).

Appendix B. BMMe for solving constrained and regularized KL-NMF (4.5). Algo-
rithm B.1 is BMMe for the specific case of constrained and regularized KL-NMF.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfB .\bfone . BMMe for solving constrained and regularized KL-NMF (4.5).

1: Choose initial points W - 1 \geq \varepsilon ,W 0 \geq \varepsilon ,H - 1 \geq \varepsilon ,H0 \geq \varepsilon .
2: \bff \bfo \bfr t= 1, . . . \bfd \bfo 
3: Compute extrapolation points:

\^W t =W t + \alpha t
W [W t  - W t - 1]+,

\^Ht =Ht + \alpha t
H [Ht  - Ht - 1]+,

where \alpha t
W and \alpha t

H satisfy the condition of Theorem 4.2.
4: Update the two blocks of variables:

W t+1 \in argmin
W\in \=\Omega W

Gt
1(W, \^W t),

Ht+1 \in argmin
H\in \=\Omega H

Gt
2(H,

\^Ht),
(B.1)

where Gt
1 =G

(Ht)
1 and Gt

2 =G
(W t+1)
2 are the majorizers defined in (4.8) with H =Ht

and (4.7) with W =W t+1, respectively.
5: \bfe \bfn \bfd \bff \bfo \bfr 
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