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Abstract

ELECTRE TRI-nB is a method designed to sort alternatives evaluated on several
attributes into ordered categories. It is an extension of ELECTRE TRI-B, using
several limiting profiles, instead of just one, to delimit each category. ELECTRE
TRI-nB comes in two flavours: pseudo-conjunctive and pseudo-disjunctive. In a
previous paper, we have characterized the ordered partitions that can be obtained
with ELECTRE TRI-nB, pseudo-conjunctive, using a simple axiom called linearity.
The present paper is dedicated to the axiomatic analysis of ELECTRE TRI-nB,
pseudo-disjunctive. It also provides some combinatorial results.

Keywords Multiple criteria analysis - Sorting models - ELECTRE TRI-nB

1 Introduction

Given a set of alternatives, multiple criteria decision analysis (MCDA, aka multiple
criteria decision making) is a sub-field of operations research simultaneously
dealing with several criteria or objectives over this set (for an overview of this field,
see e.g. Belton & Stewart 2001, Greco et al., 2016). The goal is usually to choose a
single most desirable alternative or to rank them by decreasing order of preference.

Authors are listed alphabetically. They have contributed equally.

D4 Thierry Marchant
thierry.marchant@UGent.be

Denis Bouyssou
dbouyssou@gmail.com

Marc Pirlot
marc.pirlot@umons.ac.be

I CNRS, Paris, France
Department of Data Analysis, Ghent University, H. Dunantlaan, 1, 9000 Ghent, Belgium

Université de Mons, rue de Houdain 9, 7000 Mons, Belgium

Published online: 15 April 2025 @ Springer


http://orcid.org/0000-0002-2893-2964
http://crossmark.crossref.org/dialog/?doi=10.1007/s11238-025-10034-2&domain=pdf

D. Bouyssou et al.

A problem with such an approach is that the best alternative may be a poor one, if
all other alternatives are even poorer. That is why some researchers have proposed
methods aiming at sorting the alternatives into a few ordered categories (e.g. good,
passable and unacceptable) that are defined using some kind of norms or references.
In sorting methods, the norms defining a category originally are alternatives that
stand at the border of two consecutive categories'. They are called limiting profiles
For a recent survey of sorting methods, see Belahcene et al. (2023a, 2023b). See also
the Special issue on multiple criteria sorting methods (Marchant & Pirlot, 2021).
Notice that sorting models are studied not only in MCDA, but also in decision under
risk (Nakamura, 2004) and decision under uncertainty (Bouyssou & Marchant,
2011).

An important difficulty when applying multiple criteria decision analysis is the
choice of an adequate method (there are hundreds of them in the literature) and
the choice—or elicitation—of parameters (often tens of them) that are reasonably
compatible with the preferences of the decision-maker (for a survey about elicitation,
see Dias et al., 2018). Since the 1960s, many papers and books (Bouyssou et al.,
2006; Keeney & Raiffa, 1976) have shown that the axiomatic analysis of MCDA
methods (for choosing or ranking) within the framework of Multi-attribute Utility
Theory (Krantz et al., 1971) can provide valuable results for guiding the choice of
the method and of the parameters. More recently, a thread of papers have done a
similar job for MCDA methods aimed at sorting (e.g. Bouyssou & Marchant, 2007a;
Stowiriski et al., 2002).

ELECTRE TRI (or ETRI for short) is a family of sorting methods. The first
method in this family was ETRI-B (Roy & Bouyssou, 1993; Yu, 1992). Then came
several variants, that we do not detail.” The principle of all ELECTRE methods is
to build a binary relation on the set of alternatives, which represents the preferences
of the decision maker. Basically, an alternative is said to be preferred to another (or
to “outrank” the other) if it is at least as good as the other on a sufficient coalition
of criteria (concordance) and there is no criterion on which it is unacceptably worse
than the other (non discordance). Such a relation, which is not necessarily transitive,
is known as an outranking relation. In the ETRI-B sorting method, this relation is
used to assign alternatives to categories by comparing them to limiting profiles.
There are two versions of ETRI-B. The simpler one, called pseudo-conjunctive (aka
pessimistic) assigns an alternative to a category if this alternative is preferred to
(i.e., outranks) the lower limiting profile of the category and is not preferred to its
upper limiting profile. The other variant, called pseudo-disjunctive (or optimistic),
assigns an alternative to a category if the upper limiting profile of the category is
strictly preferred to the alternative while the lower limiting profile of the category is
not strictly preferred to it.

! Sorting methods have been recently proposed in which the norms defining a category stand central in
that category

2 For an overview of ELECTRE methods, we refer to Roy and Bouyssou (1993, Ch. 5 & 6), Figueira
et al. (2013, 2016).
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Recently, Fernandez et al. (2017) proposed a new variant (named ELECTRE
TRI-nB or ETRI-nB for short) that uses several limiting profiles instead of merely
one as in the original ETRI-B. Like ETRI-B, the new ETRI-nB has two versions:
pseudo-conjunctive (pc) and pseudo-disjunctive (pd).

A simplified version of ETRI-B-pc received a detailed axiomatic analysis in
Bouyssou and Marchant (2007a, 2007b), Stowiriski et al. (2002), Greco et al.
(2001). Later, Bouyssou and Marchant (2015) have shown that ETRI-B-pd is much
more difficult to analyze than ETRI-B-pc, although their definitions may seem dual
to each other at first sight.

Bouyssou et al. (2023)—hereafter referred to as BMP23—have characterized
the pseudo-conjunctive version of ETRI-nB making auxiliary use of a simplified
version thereof. This characterization uses a single axiom—Linearity—that was first
proposed by Goldstein (1991). It turns out that ETRI-nB-pc is a very general sorting
model, if the number of limiting profiles is unbounded: any monotone assignment
to ordered categories is representable in this model, using an appropriate number
of limiting profiles. Bouyssou et al. (2022) have characterized the particular case of
ETRI-nB using at most 2 limiting profiles.

The present paper intends to axiomatically analyze ETRI-nB-pd or a simplified
version thereof. Is this model able to represent any monotone assignment rule as
ETRI-nB-pc does, using an appropriate number of limiting profiles? Otherwise, what
are the monotone rules that can be represented in this model? Our main findings are
twofold. The first one is similar to that in Bouyssou and Marchant (2015): ETRI-
nB-pd is much more difficult to analyze than ETRI-nB-pc, although their definitions
may seem dual to each other. Only a subset of the monotone assignment rules can
be represented in the pseudo-disjunctive model, but we are not able to characterize
which ones do. Our second main finding is a characterization of a special case of
ETRI-nB-pd, involving Linearity and a new condition, raising some interesting
combinatorial questions about maximal antichains in direct products of chains.

2 Framework and notation

As in BMP23, we will restrict our attention to the case of two categories. This allows
us to use a simple framework while not concealing any important difficulty.* For the
same reasons, we suppose throughout that the set of objects to be sorted is finite.

The finite set of alternatives is X = X; X ... X X,, with n > 2. The set of attributes
is N={l,...,n}. For x,yeX,ieN and JCN, we use X;,X_;, X;,X_;,(x;,y_;)
and (x;, y_;) as usual. Our primitives consist of a twofold partition (.4, U) of the set X,
where A (resp. U) contains the sAtisfactory (resp. Unsatisfactory) alternatives.

An attribute i is influential for (A, ) if there exist x;,y; € X; and a_; € X_; such
that (x;,a_;) € A and (y;,a_;) € U. If an attribute is not influential, it does not play

3 Bouyssou and Marchant (2007b) have shown how to extend the axiomatic analysis to the case of more
than two categories, in the case of ETRI-B. Their technique applies mutatis mutandis to ETRI-nB.
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any role and can be suppressed. We therefore suppose without loss of generality that
all attributes are influential.

3 Axiomatic analysis of ETRI-nB-pc: a digest

In this section, we recall some definitions and results presented in BMP23. All ETRI
methods start with a preference modelling step during which a preference relation
is built for each attribute. This valued preference relation depends on a number of
parameters that we do not detail here. In a second step, these n valued preference
relations are aggregated into a single valued preference relation that is afterwards
cut to define a crisp outranking relation S. The assignment of alternatives to
categories occurs in a third step. In order to save space, we do not present the exact
definition of ETRI-nB-pc, but an idealization thereof: Model E. It mostly simplifies
steps 1 and 2 and we will later see that this does not entail any loss of generality. See
Fernindez et al. (2017) for a complete description of ETRI-nB-pc and BMP23 for
the relationship between Model E and ETRI-nB-pc.

Definition 1 (Models E, E¢, E*) We say that a partition (A, If) has a representation in
Model E if:

e for all i € N, there is a semiorder S; on X; (with asymmetric part P; and
symmetric part [;),

e foralli € N, there is a strict semiorder V; on X; that is included in P; and is the
asymmetric part of a semiorder U,

e (S, U;)is a homogeneous nested chain of semiorders and W, is a weak order that
is compatible with both S; and U,,*

e there is a set of subsets of attributes F C 2V such that, for all I,J € 2V, [l € F
and/ CJ]=>J e F,

e there is a binary relation S on X (with symmetric part / and asymmetric part P)
defined by

xSy & [S(x,y) € Fand V(y,x) = @],

where S(,y) ={ieN : x;S;y;}and V(x,y) ={i €N : x; V, y;},
e there is a set P= {pl,... ,pk} C X of k limiting profiles, such that for all
p-q € P, Not[p P q],

and

xSp for somep € P and

€A = {Not[qu] forallg € P. @

4 W, is the intersection of the weak orders §*? and U}, respectively induced by S; and U;. See Appendix
A of the supplementary material of BMP23.
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We then say that ((S;, V;);en» F. P) is a representation of (A, ) in Model E. Model
E° is the particular case of Model E, in which there is a representation that shows no
discordance effects, i.e. in which all relations V; are empty. Model E* is the particular
case of Model E°, in which there is a representation that requires unanimity, i.e. such
that 7 = {N}.

In this definition, S; is the idealization of the preference relation on attribute i,
V, represents all pairs of levels on attribute i for which a discordance could occur
(step 1).° S is the idealization of the outranking relation (step 2). The third step (the
assignment of alternatives to categories) is described by (1).

Goldstein (1991) has proposed a simple condition that may be satisfied by some
partitions:

Definition 2 (Linearity) The partition (A,U) is linear on attribute i if, for all
x,y; €EX;andalla_;,b_; € X_,

(x,a_) €A Opa_) €A
and => or 2)
Opb_p)e A (x;,b_) € A

The partition (A, ) is linear if it is linear on all attributes. If all partitions that can
be represented in some Model M are linear, we say that Model M satisfies Linearity.

Replacing A by U in (2) yields an equivalent definition of Linearity. On each
attribute X;, we define the relation %, letting, for all x;,y; € X,

x; z;y;if [foralla_; € X_;, (y;,a_) € A= (x;,a_;) € Al

By construction, %; is transitive and reflexive; it is complete if and only if the
partition is linear on attribute i. The symmetric part of %, is denoted by ~;. It is not
useful to keep in X; elements that are equivalent w.r.t. the equivalence relation ~;.
Indeed, if x; ~ y; then (x;,a_;) € A iff (y;,a_;) € A. In order to simplify notation,
we suppose throughout the paper that we are dealing with partitions on HLI X; for
which all relations ~; are trivial®. This non-restrictive convention implies that each
relation ; is antisymmetric.

Let = be the relation on X defined by x % y iff x; %, y; for all i € N. This relation
is a partial order (reflexive, transitive and antisymmetric). Let A, = min(A4, %) be
the set of minimal elements in A for . By construction, for any x € A, and y; <; x;,
we have (y;,x_;) € U.

5 In Definition 1, S; and V; are supposed to be semiorders. The reason of this assumption is that the
notion of semiorder is related to the existence of thresholds, as they appear in the modelling of prefer-
ence and veto in the classical ELECTRE methods.

o If ~; is not trivial, we can work without loss of generality with the quotient X;/ ~,.
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We say Model M is nested in—or is a special case of—Model M’ (denoted
M C M) if all partitions that can be represented in M can also be represented in
M'. Models M and M’ are equivalent (denoted M = M') if M C M’ and M’ C M.
We note M C M’ if M C M’ and M is not equivalent to M’. By construction, we
have E* C E° C E. The main results in BMP23 can now be summarized in the
following theorem.

Theorem 1
1. ETRI-nB-pc=E = E° = E“.
2. A partition (A, Uf) has a representation in any of these models iff it is linear.

3. This representation can always be taken to be ((Z;, V; = @);en, F = (N}, P = A,),
that is a representation in Model E*.

We like to stress point 1: although model E and the nested models E¢ and E*
seem to be simplifications of ETRI-nB-pc, they are not: all four models are fully
equivalent.

4 ETRI-nB-pd: definition and difficulties

The pseudo-disjunctive version of ETRI-nB consists of three steps. The first and
the second one are identical to steps 1 and 2 in ETRI-nB-pc. The only difference
is the third step: the assignment of alternatives to categories. With ETRI-nB-pc,
an alternative x is assigned to A iff it is weakly preferred (in terms of S) to a
limiting profile and no limiting profile is strictly preferred to x (in terms of P), as
in (1). With ETRI-nB-pd, an alternative x is assigned to I/ iff (i) there is a limiting
profile strictly preferred (in terms of P) to x and (ii) x is not strictly preferred to
any limiting profile. As in Sect. 3, in order to save space, we do not present the
exact definition of ETRI-nB-pd, but an idealization thereof: Model F. We define
Model F that is to ETRI-nB-pd what Model E is to ETRI-nB-pc.

Definition 3 Model F is defined exactly as Model E, except that we now replace (1)
by:

pPx for somep € P and

xeu = {Not[qu] forall g € P. G

The definition of Models F¢ and F* parallels that of £ and E“.
All pseudo-disjunctive models mentioned so far satisfy linearity.
Lemma 1 If (A, U) has a representation in Model F, then it is linear. The same holds

for ETRI-nB-pd, F* and F*.
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Proof Consider first Model F. Suppose that we have (x;,a_;) € U and (y;,b_;) € U.
We have either x; W, y; or y; W, x; since W, is a weak order. Suppose wlog that
y; W, x;. Because (y;,b_;) € U, we know that p P (y;,b_;), for some p € P, and
Not[(y;,b_;) P q] for all g € P. Using Lemma 3 in BMP23, we obtain p P (x;,b_;)
and Not[(x;,b_;) P q] for all g € P.” Hence, (x;,b_;) €U and linearity holds for
Model F. By construction, F* C F° C F and linearity thus also holds for these
models.

Since we did not formally define ETRI-nB-pd, we cannot provide the proof that
linearity holds for partitions generated by ETRI-nB-pd. For the interested reader,
this proof closely follows that of Corollary 1 in BMP23. |

Hence, combining Lemma 1 with Theorem 1, we obtain the next proposition.
Proposition1 F* C F° C F C E and ETRI-nB-pd C E = ETRI-nB-pc.

At this stage, given the apparent duality between the definitions of the pseudo-
conjunctive and pseudo-disjunctive models, we can suspect that F* = F°=F =
ETRI-nB-pd = E, but the next result shows that it does not hold.

Proposition2 F* C Fand F C E.

Proof Part1 F* C F: Let N = {1,2,3} and X; = {0, 1} for all i € N, so that X has
23 = 8 elements. Consider the partition {A,2f) such that 4 = {111, 101, 011} and
U= {110,100,010,001,000}, abusing notation in an obvious way. It is simple to
check that all attributes are influential for {.4,) and that, for all i € N, we have
1, >; 0,. Notice that we have A, = Min(>, A) = {101,011} and U* = Max(x,U) =
{110,010,001}.

Let us show that this partition cannot be obtained with Model F*. Observe first
that, here, since all attributes are influential and can only take two values, we must
have that S; = ;, foralli € N.

Since 110 € U, there must be p € P such that p P 110. Since we are looking for
a representation in Model F* and we know that S; = %, for all i € N, we must find
a profile p € P such that p > 110. The only candidate is 111. But taking P = {111}
together with F = {N} does not lead to the desired partition. Indeed, we have
111 > 101, so that 101 should be in /.

This partition can be obtained with Model F¢, taking S; =%, for all i €N,
P={111}and F = {{1,3},{2,3}}.

Part 2 FCE: Letn=4and X, =X, = X; ={2,1,0} and X, = {0, 1}, so that
X has 54 elements. Consider the partition (.4, i) such that A = {2221, 2211, 2121,
1221, 2111, 1211, 1121, 1111, 2220}. Notice that A, = {1111,2220}. It is easy to
check that all attributes are influential for {A,U) and that, for all i € {1,2,3}, we

7 Lemma 3 in BMP23 is established under the hypothesis that the partition [A,] is representable in
Model E. Since the proof only uses the properties of relation S, which are common to Models E and F,
the result also holds for partitions representable in Model F.
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have 2; >; 1, >; 0;, while 1, >, 0,. Hence, the partition is linear and, by Theorem 1,
it can be represented in Model E.

In order to show that this partition cannot be obtained in Model F, we have to
examine, all cases of indifference thresholds (associated with the strict semiorders
S;), combined with all cases of veto thresholds (associated with the strict semiorders
V,), and combined with all choices for F.

Notice that if an attribute in i € {1,2,3} has thresholds (i.e. S; is not a weak
order), this means that 2; I; 1, and 1, I; 0,. But veto effects can only occur among the
elements that are strictly preferred. Hence, in this case, the only possibility is to take
2,V 0,

If {1,2,4} € F, then, without veto, 2201 € I/ outranks all elements in A, a
contradiction. This will remain true unless, there is a veto effect on attribute 3.

If 2, V5 03, the only elements in .4 that are not strictly beaten by another element
in A are 2220, 1111, and 1121. It is easy to check that taking all of them or any
subset of them as the set of profiles does not lead to the desired partition (consider
2201 € U). If, furthermore, 2; V; 15, the only elements in A that are not strictly
beaten by another element in .4 are 2220 and 1111. It is easy to check that taking
all of them or any subset of them as the set of profiles does not lead to the desired
partition (consider 2201 € U).

The analysis of the cases {1,3,4} € F and {2, 3,4} € F is entirely similar.

Suppose now that 7 = {{1,2,3}, N}. Suppose that only attribute 1 has thresholds.
Without veto, it is easy to check that 1220 € U outranks all elements in A. This
remains true, whatever the choice of veto thresholds on attributes 2 and 3. This also
remains true if 1, V, 0,. But veto effects on attribute 1 are immaterial since 1, is
indifferent to both 2, and 0,.

The situation is entirely similar if 2 (resp. 3) is the only attribute to have
thresholds.

Suppose that only attributes 1 and 2 have thresholds. Without veto, it is easy to
check that 1120 € U outranks all elements in .A. This remains true, whatever the
choice of veto thresholds on attributes 1 and 2 since 1, (resp. 1,) is indifferent to 2,
and O, (resp. 2, and 0,). This also remains true if 1, V, 0,. Clearly, the veto threshold
on attribute 3 is immaterial.

The analysis of the cases in which attributes (1 and 3) or (2 and 3) have thresholds
is entirely similar.

It remains to tackle the case 7 = {N}.

Suppose that only attribute 1 has thresholds. Without veto, there are only 3
elements in A that are not strictly beaten by another element in .A4: 2220, 1111 and
2111. It is easy to check that taking all of them or any subset of them as the set of
profiles does not lead to the desired partition. It is simple to check that whatever the
choice of veto we make on attributes 2, 3 and 4, the situation remains the same.

There is only one possibility to put a veto on attribute 1, i.e. 2, V; 0,. In this case
there are only 2 elements in A that are not strictly beaten by another element in A:
2220 and 1111. In any case, it is impossible to recover the desired partition.

The situation is entirely symmetric in the case only attribute 2 or only attribute 3
has thresholds.
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Suppose that both attributes 1 and 2 have thresholds. Without veto, there are only
5 elements in A that are not strictly beaten by another element in A: 2220, 1111,
2211, 2111, and 1211. It is easy to check that taking all of them or any subset of
them as the set of profiles does not lead to the desired partition. It is simple to check
that whatever the choice of veto we make on attributes 3 and 4, the situation remains
the same. There is only one possibility to put a veto on attribute 1 (resp. 2), i.e.
2, V; 0, (resp. 2, V, 0,). It is simple to check that any of the three possible choices
for the veto on these attributes does not alter the situation.

The situation is entirely symmetric in the case only attributes 1 and 3 or only
attributes 2 and 3 have thresholds.

Finally, if all attributes have thresholds, there is only one element in A that is not
strictly beaten by another element in .4: 2220. It is easy to check that taking this
element to be the unique profile, does not lead to the desired partition. Now, the
choice of veto thresholds (they must be of the type 2; V; 0,) on attributes 1, 2, and 3
is immaterial. But it is also simple to check that adding a veto on attribute 4 does not
change the situation. a

Given Propositions 1 and 2, it would be highly desirable to know whether ETRI-
nB-pd = E or ETRI-nB-pd = F. Unfortunately, we are presently unable to prove
or disprove these equivalences. This shows that the relations between the pseudo-
disjunctive models are more complex than between the corresponding pseudo-
conjunctive models.

5 Two characterizations

In view of the above-metioned difficulties, we devote this section to two simpler
problems: (1) the characterization of Models F¢, F,E and ETRI-nB-pc when all
attributes are binary and (2) the characterization of a special case of Model F*“.

5.1 The case of binary attributes

Suppose the partition (.4, ) is linear on attribute i. We say attribute i is binary if
the weak order ; has exactly two equivalence classes. Such attributes are common
in many applications. The case in which all attributes are binary corresponds to the
well-developed theory of monotone Boolean functions (see Crama and Hammer,
2011).

Proposition 3 F¢ = F = E = ETRI-nB-pc whenever all attributes are binary.
Proof When all attributes are binary, each X; contains only two elements that we can
denote by 1, and 0; with 1, >; 0,. Each element in X corresponds to a unique coalition

Cx)={i €N : x;=1;} C2V. Hence, all linear partitions have a representation in
Fewith S, =%, forallie N,P={l11}and F = {C(x) : x € A}. O
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Since the proof uses a set P containing only one limiting profile, the reader may
have the impression that Proposition 3 only applies to ETRI-B and not to ETRI-nB.
What the result actually says is that any partition generated by a model F¢, F, E or
ETRI-nB-pc (irrespective of the number of limiting profiles) can be represented
in the other three models. The proof further shows that the representation can be
chosen so that P is a singleton.

5.2 A special case of Model F¥

In order to reduce the complexity of the models, let us assume that the data are of
good quality—in the sense of Roy (1996, Section 8.2)—meaning that there is no
imprecision, uncertainty, or inaccurate determination. In that case, there is no need
to use preference or indifference thresholds and the relation S; is a weak order. Since
Z; 1s also a weak order and we cannot have x; >; y; while y; S; x;, it must be the
case that S, is a refinement of %, (i.e. S; C %;). But since we have assumed that the
relation ~; is trivial, the equality S; = %; must hold.

So, in this section, we restrict our attention to partitions having a representation
in Model F* such that S; = %, is a weak order for all i € N. Model F* together
with this additional constraint will be denoted by F“. In such a model, S =%,
P => and Condition 3 reduces to x € i iff p > x, for some p € P. Indeed, we
may not have p > x > g for g € P, otherwise p > g, a contradiction. Notice that
FECF'GF CFGE.

By construction, the set A4, = Min(>,.4) is an antichain in the poset (X, ),
remembering our convention that each relation ~; is trivial. Observe that in the first
part of the proof of Proposition 2, the antichain A, = {101,011} is not a maximal
antichain, i.e. it is strictly included in the antichain {110, 101,011}. As shown below,
a characteristic feature of partitions that can be represented in Model F is that A, is
a maximal antichain in the poset (X, ).

Theorem 2 Let X = []'_, X; be a finite set and (A,U) be a twofold linear partition of
X. The partition { A,U) has a representation in Model F“ iff the antichain A,, in the
poset (X, z), is maximal.

Proof Necessity. Suppose that A, is not a maximal antichain. Hence there is x € X
such that x is incomparable, using %, w.r.t. all elements in A,. In view of the defini-
tion of A,, it is impossible that x € A (since this would imply that x % z, for some
z € A,). Hence, we must have x € U/, so that there must be a profile p € P such
that p > x. This profile must be in .A. But, by hypothesis, this profile cannot belong
to A,. Hence, by construction, we know that p > y, for some y € A, C A, which
implies y € U, a contradiction.

Sufficiency. Since (A, U) is linear, we know that it has a representation in Model
E" using the representation ((Z;,V;, = @)y, F = {N},P=A,). Since A, is a
maximal antichain, it is easy to see that this representation is also a representation
in Model F“. Indeed, by construction, it is impossible that x € I/ is incomparable,
using %, to all p € P = A,. Let g € P be such that x and g are comparable using
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>. It is impossible that x > g since this would imply that x € A, in view of the
definition of A, = P. Hence, we must have that g > x. O

The next result shows that F% C F*“, thereby showing that the hypothesis that the
representation is such that S; = %, for all i € N, is not innocuous.

Proposition4 F“ C F*“,

Proof Let N ={1,2,3,4}and X; = {0,1,2} for all i € N, so that X has 34 =81 ele-
ments. Consider the partition (A, U) such that A = {2222, 2221, 2220, 2212, 2211,
2210, 2202, 2201, 2200, 2122, 2121, 2120, 2112, 2111, 2110, 2102, 2101, 2022,
2021, 2020, 2012, 2011, 2010, 2002, 2001, 1222, 1221, 1220, 1212, 1211, 1210,
1202, 1201, 1200, 1122, 1121, 1120, 1112, 1111, 1110, 1102, 1101, 1022, 0222,
0221, 0220, 0212, 0211, 0210, 0202, 0201, 0122, 0121, 0120, 0112, 0111, 0110,
0102, 0101, 0022}. The set A has 60 elements. It is easy to check that we have
A, = {2010, 2001, 1200, 0110, 0101, 0022}.

We have 2012 € A, 1012 e U, 1200 € A, 0200 € U, so that 2, >, 1, >, O,.
Similarly, we have: 2200 € A, 2100 €U, 1101 € A, 1001 €, so that
2, >, 1, >, 0,. We also have: 0022 € A, 0012 € U, 2110 € A, 2100 € U, so that
25 >5 13 >; 0,. Finally, we have: 0022 € A, 0021 e U, 2101 € A, 2100 € U, so
that 2, >, 1, >, 0, (notice that the role of attributes 3 and 4 is entirely symmetric,
in this example).

Hence, using Theorem 2, this partition cannot be represented in Model FX.
Indeed, the antichain A, is not maximal: the element 2100 is incomparable, using X,
to all elements in A,.

Yet it is cumbersome but easy to check that this partition can be obtained in
Model F*, taking P = {2200,0022}, F = {N}, S; = Z,, fori =2,3,4, and 2, P, O,
2,1;1,andl1, [, O,. O

Let us define E* in the same way as FZX. By Theorem 1, E“ is equivalent
to E“. Summarizing Proposition 4 and previous results, we have that
FLCF'CF CFCE=E =E*=EFE“ This long chain of inclusions and
equivalences illustrates the strong asymmetry between the families of pseudo-
conjunctive and pseudo-disjunctive models. In order to explore the gap between both
families, we devote the rest of the paper to comparing the numbers of partitions that
can be represented in models F“ and E“ (or any of the pseudo-conjunctive models
discussed in this paper). This will help us quantify how restrictive F% is compared
to EX.

6 Counting maximal antichains
The number of partitions that can be represented in model F% (resp. model E%) is the

number of maximal antichains (resp. antichains) in the poset (X, ). This poset can
be seen as a direct product of n chains, where n is the number of attributes and the
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ith chain (i € {1, ...,n}) is the set[m;] = {1, ..., m;} ordered by > (the natural order
on the integer interval [m;]), with m, being the number of equivalence classes of the
weak order ;. Notice that antichains in the direct product of n chains also plays
an important role in the analysis of multichoice cooperative games, as shown by
Grabisch (2016a). More generally, the importance of studying discrete mathematics
structures in decision theory was powerfully stressed in Grabisch (2016b).

The number of antichains (maximal antichains) in [m;] X ... X [m,] will be
denoted by dy(m,,...,m,) (resp. dg(m,,...,m,)). When m; = ... =m, =m, the
numbers dg(m,,...,m,) and dp(m,,...,m,) are respectively denoted by Dy(m,n)
and Dy (m,n). We first tackle two special cases (n =2 and m = 2) and then the
general case, for which we have few results.

6.1 Thecasen =2

Let N denote the set of positive integers. The next result, due to Covington (2004),
presents a recurrence relation for dp(m,, m,).

Theorem 3 For allm;,m, € N, dp(m,, m,) is equal to

m;—2 my—2

dpmy = 1,my = D)+ Y d(imy = 1)+ Y dem; = 1,). ()
=0 i=0

A detailed proof of this result can be found in Bouyssou et al. (2024). For
dg(m,, m,), the following result easily follows from Berman and Koéhler (1976).

Corollary 1 For all m;,m, € N, we have

dg(my,m,) = <m1 +my >

my

Proof According to Berman and Kohler (1976), the number of antichains in

[m] X [m,] X [m3] is equal to
my+my+i
my—1 m,

I1 : 5)
i=0 my+1
< m )
Setting m; = 11in this expression yields the desired result. O

For illustration purpose, we computed some numerical results under the
constraint that m; = m, (to save space). Some terms of the sequences Dy(m,2) and
Dp(m,2) can be found in Table 1, with the corresponding ratios Dy(m,2)/Dg(m, 2).
For small values of m, the difference of expressivity between models F% and E% is
not very large, but it grows for large values of m, since the ratio seems to converge
to 0.
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Table 1 Number D (m,2) of

D 2 D 2 D 2)/D 2

maximal antichains, number " #(m. 2) £(m,2) #(m, 2)/Dg(m, 2)
Dg(m,2) of antichains and ratio 1 1 2 0.5
of these numbers in [m]? for ’
m e [15]and m = 100. Values 2 6 05
of Dy(m, 2) are computed by 3 20 0.45
means of (4) 4 27 70 0.385714286

5 83 252 0.329365079

6 259 924 0.28030303

7 817 3432 0.238053613

8 2599 12870 0.201942502

9 8323 48620 0.171184698

10 26797 184756 0.145039945

11 86659 705432 0.122845292

12 281287 2704156 0.104020256

13 915907 10400600 0.088062900

14 2990383 40116600 0.074542284

15 9786369 155117520 0.06309003

100 3.76527E+51 9.05485E+58 4.15829E-08
Table 2 Number D(2, n) of

> D.(2 D2 D.(2 D.(2

maximal antichains, number " r(2.1) £(2n) #(2,m)/Dp(2.1)
Dy(2, n) of antichains and ratio 1 ) 0.6666667
of these numbers in [2]" for ’
nelll 2 3 0.5

3 7 20 0.35

4 29 168 0.172619

5 376 7581 0.04959768

6 31746 7828354 0.004055259

7 123805914 2414682040998 0.00005127214

Dp(m,2) and Dg(m,2) are respectively sequences A171155 and A000984 in
the On-line Encyclopedia of Integer Sequences OEIS (2023). A recurrence rela-
tion is mentioned by Alois P. Heinz (without proof) for Dy(m, 2) in OEIS (2023):

Dy(m,2)is equal to

(4m = 3)Dp(m —1,2) — (2m — 5)Dp(m — 2,2) + Dp(m — 3,2) — (m — 3)Dp(m — 4,2)

m

Some other results (old and new) about the case n = 2 are presented in Bouyssou
et al. (2024). Therein, in addition to enumeration results, correspondences
(bijections) between (maximal) antichains in products of chains and other

mathematical structures are established.
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6.2 Thecasem =2

Dy(2,n) is sequence A326358 in OEIS (2023). No expression seems to be known
for this sequence and the highest known value corresponds to # = 7. Some terms
can be found in Table 2.

Dg(2,n) corresponds to the Dedekind numbers (sequence A000372 in OEIS
(2023)), for which no expression is known. The highest known value corresponds
to n=9. Some terms can be found in Table 2 with the corresponding ratios
Dp(2,n)/Dg(2,n). Here again, for small values of n, the difference of expressivity
between models F* and E* is not very large, but for large values of n, the ratio seems
to converge to 0.

6.3 The general case

In the general case, analytic expressions for Dp(m,n) and Dy(m,n) are difficult
to obtain and we therefore only provide a lower bound for Dy(m,n) and some
numerical results.

6.3.1 Alower bound for D.(m, n)

Proposition 5 The number of maximal antichains in [m]" is at least the number of
antichains of [m]"™, that is Dg(m,n) > Dg(m,n — 1).

Proof The set {x € [m]" : x; = m}is the set of elements x € X having their ith coor-
dinate equal to m. We shall prove that any antichain, not necessarily maximal, in
{x € [m]" : x; = m} can be extended into a maximal antichain of X, which has no
other element with its ith coordinate x; equal to m. This will establish Proposition 5
since any antichain of X_; is in one-to-one correspondence with an antichain of
{(xe[m]" : x; =m}.

We take wlog i=1. If the antichain in {x € [m]" : x;, = m} is maximal,
the result is obvious. Otherwise, let A be any non-maximal antichain in
{x € [m]" : x, =m]}. Since A is not maximal in {x € [m]" : x; = m}, there is at
least one element x = (m, x,, ..., x,) that is incomparable to all elements in A. Let
X' =(@m-1,x,,...,x,). We have that x > x’ and x’ is incomparable to any element
in A. Indeed, for no y € A, we have x’ > y (otherwise x > y would hold too) and, for
no y € A, we have y > x’ (otherwise y > x would also hold). Consider the set of all
elements in {x € [m]" : x; = m} that are incomparable to all elements in A. Select
the minimal elements from this set. Change the first coordinate of each minimal
element x into x, = m — 1, yielding an element x’. Let A’ be the set obtained by
adding all such elements x’ to the antichain A. These elements are incomparable to
all elements in A and incomparable to one another. Therefore, A’ is an antichain. It
is easy to see that it is maximal in X. Furthermore, the intersection of A’ with the set
{x € [m]" : x;, = m}is exactly A. O
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Since Dy(m,n) is nondecreasing with m and n, we may conclude in particular that
the number of maximal antichains in X is at least the number of antichains in [2]"~},
which is Dedekind number Dg(2,n — 1). Table 2 suggests that this bound is very
weak. It also suggests that D (m, n) grows extremely fast with n even for m = 2.

6.3.2 Some numerical results

Table 3 presents some values of D(m, n) for small values of m and n, computed with
the help of the software system Macaulay2 (Grayson & Stillman, 2021). For [3]3,
we used the function maximalAntichains provided by the package Posets in
the software system Macaulay2 (Grayson & Stillman, 2021) and manually checked
the result. For [4]? and [3]*, we also used the function maximalAntichains,
but without manual check. For larger values (except when m =2 or n = 2), the
calculations are prohibitively long (indicated by question marks in Table 3).

For [37%, using (5), we find Dg(3,3) = 980 so that the ratio Dy(3,3)/Dg(3,3) is
equal to 0.14693878. Similarly, for [4]3, we obtain Dy(4,3) = 232848 so that the
ratio Dp(4,3)/Dg(4,3) is equal to 0.04565639, which implies a huge difference of
expressivity between F* and E“.

7 Conclusion

We provided characterizations for two special cases of ETRI-nB-pd. Theses cases
are not extremely restrictive and definitely correspond to applications. For these
two special cases, our results can be used to develop elicitation techniques for the
parameters of the method.

In addition, although our results about ETRI-nB-pd and its special cases are
partial, we have axiomatic and combinatorial results showing that

1. the analysis of the pseudo-disjunctive models is far more complex than that of
the pseudo-conjunctive models;

2. there is a whole variety of pseudo-disjunctive models that are not all equivalent,
contrary to what we observed for pseudo-conjunctive models;

3. most pseudo-disjunctive models are strict special cases of the corresponding
pseudo-conjunctive models;

Table 3 Number of maximal

L. . Dy(m,n) n=1 2 3 4
antichains (Dy(m, n)) for small

valu.es of m and n. Boldface m=1 1 1 1 1
entries are new
2 2 3 7 29
3 3 9 144 116547
4 4 27 10631 ?
5 5 83 ? ?
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4. the pseudo-disjunctive model F% is much more restrictive than the corresponding
pseudo-conjunctive model.

The strong asymmetry between the pseudo-conjunctive and pseudo-disjunctive
models can be ascribed to the central role played by the relation P in the definition
of ETRI-nB-pd while S is central in ETRI-nB-pc. Indeed, Bouyssou and Pirlot
(2015a, 2015b) have shown that the nature of the relation P is rather different from
that of the relation S in the ELECTRE methods.

Hence, paralleling Bouyssou and Marchant (2015), we suggest to define the dual
of ETRI-nB-pc not by means of (3), but rather by

pSx for some p € P and
YeU = {Not[qu] forall g € P. (6)
It is easy to see that ETRI-nB-pc and its dual now correspond via the transposition
operation consisting in inverting the direction of preference on all criteria and
permuting A and U (see Almeida-Dias, Figueira, and Roy, 2010, Bouyssou and
Marchant, 2015, Roy, 2002).

Mimicking Bouyssou et al. (2023, Th. 15), it is clear this dual model is
characterized by Linearity. Instead of taking A, as the set of profiles to delimit
A, we now take U" = Max(Z,U) to delimit the category U, still using S; = X, and
F={N}.

If we replace (3) by (6) in the definition of Models F, F° and F", it is also simple
to see that they are all equivalent to the dual of ETRI-nB-pc.
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