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Abstract. Markov chains and Markov decision processes (MDPs) are 
well-established probabilistic models. While finite Markov models are 
well-understood, analyzing their infinite counterparts remains a signif-
icant challenge. Decisiveness has proven to be an elegant property for 
countable Markov chains: it is general enough to be satisfied by several 
natural classes of countable Markov chains, and it is a sufficient condi-
tion for simple qualitative and approximate quantitative model-checking 
algorithms to exist. 

In contrast, existing works on the formal analysis of countable MDPs 
usually rely on ad hoc techniques tailored to specific classes. We provide 
here a general framework to analyze countable MDPs by extending the 
notion of decisiveness. Compared to Markov chains, MDPs exhibit extra 
non-determinism that can be resolved in an adversarial or cooperative 
way, leading to multiple natural notions of decisiveness. We show that 
these notions enable the approximation of reachability and safety prob-
abilities in countable MDPs using simple model-checking procedures. 

We then instantiate our generic approach to two concrete classes of 
models inducing countable MDPs: non-deterministic probabilistic lossy 
channel systems and partially observable MDPs. This leads to an algo-
rithm to approximately compute safety probabilities in each of these 
classes. 

Keywords: Markov decision processes · Reachability · Decisiveness · 
Lossy channel systems · Partially observable Markov decision processes 

1 Introduction 

Formal methods for systems with random or unknown behaviours call for models 
with probabilistic aspects, and appropriate automated verification techniques. 
One of the simplest classes of probabilistic models is the one of Markov chains. 
The verification of finite-state Markov chains has been thoroughly studied in the 
literature and is supported by multiple mature tools such as PRISM [ 31] and  
STORM [ 18]. 
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Countable Markov Chains. In some cases, finite Markov chains fall short at pro-
viding an appropriate modelling formalism, and infinite Markov chains must be 
considered. There are two general directions for the model checking of infinite-
state Markov chains. One option is to focus on Markov chains generated in a 
specific way; for instance, when the underlying transition system is the config-
uration graph of a lossy channel system [ 2,25], a pushdown automaton [ 30], or 
a one-counter system [ 19]. In this case, ad hoc model-checking techniques have 
been developed for the qualitative and quantitative analysis. The second option 
is to establish general criteria on infinite Markov chains that are sufficient for 
their qualitative and/or quantitative model checking to be feasible. 

Abdulla et al. explored the latter direction and proposed the elegant notion 
of decisive Markov chains [ 1]. Intuitively, decisive countably infinite Markov 
chains exhibit certain desirable properties of finite-state Markov chains. For 
instance, one such property is that if a state is continuously reachable with a 
positive probability, then it will almost surely be reached. Precisely, a Markov 
chain is decisive (with respect to a target state �, from a given initial state s0) if  
almost all runs from s0 either reach � or end in states from which � is no longer 
reachable. This is convenient to deal with reachability objectives, i.e., the event 
of reaching a specified set of states. Assuming decisiveness, the qualitative model 
checking of reachability objectives reduces—as in the finite case—to simple graph 
analysis. Moreover, decisiveness is the property that allows for approximating 
the probability of reachability objectives up to any desired error margin and 
for sampling trajectories towards statistical model-checking of infinite Markov 
chains [ 8]. While certain decisive classes have been exhibited [ 1], decidability of 
the decisiveness property has been shown in some other classes [ 22]. A stronger 
property for countable Markov chains is the existence of a finite attractor, i.e., 
a finite set of states that is reached almost surely from any state of the Markov 
chain. Sufficient conditions for the existence of a finite attractor are given in [ 5]. 

Markov Decision Processes. Purely probabilistic models are too limited to repre-
sent features such as, e.g., the lack of any assumption regarding scheduling poli-
cies or relative speeds (in concurrent systems), the lack of information regarding 
values that have been abstracted away (in abstract models), or the latitude left 
for delayed implementation decisions (in early designs). In such situations, it is 
not desirable to assume the choices to be resolved probabilistically, and non-
determinism is needed. Markov decision processes (MDPs) are an extension of 
Markov chains with nondeterministic choices; they exhibit both nondeterminism 
and probabilistic phenomena. In MDPs, the nondeterminism is resolved by a 
scheduler, which can either be adversarial or cooperative, so that for a given 
event it is relevant to consider both the infimum and supremum probabilities 
that it occurs, ranging over all schedulers. 

Similarly to the case of Markov chains, when considering infinite systems, one 
can either opt for ad hoc model-checking algorithms for classes of infinite-state 
MDPs, or derive generic results under appropriate assumptions. In the first sce-
nario, one can mention MDPs which are generated by lossy channel systems [ 2, 6], 
with nondeterministic action choices and probabilistic message losses. Up to our
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knowledge, only qualitative verification algorithms—based on the finite-attractor 
property—have been developed. In particular, the existence of a scheduler that 
ensures a reachability objective with probability 1 (or with positive probability) 
is decidable for lossy channel systems [ 6]; however, the existence of a scheduler 
ensuring a Büchi objective with positive probability is undecidable [ 2]. More 
generally, there are also examples of games on infinite arenas with underly-
ing tractable model for which decidability results exist: recursive concurrent 
stochastic games [ 14,20], one-counter stochastic games [ 12,13] or lossy channel 
systems [ 3,11]. In the second scenario, general countable MDPs have been con-
sidered with the aim of characterizing the value function for various quantitative 
objectives [ 35] or identifying the resources (memory requirements, randomness) 
needed by optimal or ε-optimal schedulers [ 27,33,35]. Up to our knowledge, 
there are however no generic approaches to provide quantitative model-checking 
algorithms. This is the purpose of this paper. 

Contributions. In this paper, we address the design of generic algorithms for the 
quantitative model checking of reachability objectives in countable MDPs. To do 
so, we first build on the seminal work on decisive Markov chains [ 1] and explore 
how the notion of decisiveness can be extended to Markov decision processes. We 
propose two notions of decisiveness, called inf-decisiveness and sup-decisiveness, 
which differ on whether the resolution of nondeterminism is adversarial or coop-
erative. These notions are natural extensions of the existing decisiveness for 
Markov chains. Second, we provide approximation schemes for the infimum and 
supremum probabilities of reachability objectives. These schemes provide a non-
decreasing sequence of lower bounds, as well as a non-increasing sequence of 
upper bounds, for the probability one wishes to compute. Third, we identify 
sufficient conditions related to decisiveness for the two sequences to converge 
towards the same limit, which is necessary for the scheme to terminate for any 
given error margin. We obtain that for inf-decisive MDPs, one can approximate 
the infimum reachability probability up to any error, and for sup-decisive MDPs, 
one can approximate the supremum reachability probability up to any error. 

We end the paper by instantiating our generic approach to two concrete 
classes of models inducing countably infinite MDPs of very different nature: non-
deterministic probabilistic lossy channel systems and finite partially observable 
MDPs. Using decisiveness, we show in both classes that the infimum reachability 
probabilities can be approximated up to any desired precision. To the best of 
our knowledge, this is the first time that quantitative model-checking algorithms 
are provided for these classes. As we will discuss, existing algorithms often focus 
on the qualitative problems (e.g., whether there is a scheduler reaching a state 
almost surely) due to the undecidability of most other quantitative problems. 

For consistency, we mostly discuss reachability objectives throughout the 
paper. However, note that minimizing the probability of a reachability objective 
is equivalent to maximizing the probability of the dual safety objective (con-
sisting of avoiding a specified set of states). All results regarding the infimum 
probability of a reachability objective can therefore be thought of as results 
about the supremum probability of a safety objective (and vice versa).
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Due to space constraints, we omit most proofs in this conference version. 
Where proofs are omitted, we provide references to the full version of the 
paper [ 9]. 

2 Preliminaries 

2.1 Markov Decision Processes 

Definition 1. A Markov decision process (MDP) is a tuple M = (S, Act, P) 
where S is a countable set of states, Act is a countable set of actions, P : S ×Act× 
S → [0, 1] ∩ Q is a probabilistic transition function satisfying

∑
s′∈S P(s, a, s′) ∈ 

{0, 1} for all (s, a) ∈ S × Act. 

An MDP M is finite if S is finite. Let M = (S, Act, P) be an MDP. Given  
(s, a) ∈ S × Act, we say that the action a is enabled at state s whenever∑

s′∈S P(s, a, s′) = 1. We write En(s) for the set of actions enabled at s. We  
assume that each state has at least one enabled action. A state s is absorbing if 
for all enabled actions a ∈ En(s), P(s, a, s) = 1. The MDP M is finitely action-
branching if for every s ∈ S, En(s) is finite. It is finitely prob-branching if for 
every (s, a) ∈ S × Act, the support of P(s, a, ·) is finite. It is  finitely branching if 
it is both finitely action-branching and finitely prob-branching. 

A history (resp. path) in  M is an element s0s1s2 · · ·  of S+ (resp. Sω) such 
that for every relevant i ≥ 0, there is ai ∈ Act such that P(si, ai, si+1) > 0 
(in particular, ai is enabled at si). We write Hist(M) for the set of histories 
in M and Paths(M) for the set of paths in M. We define the length of a history 
h = s0s1 · · ·  sk as k, and denote its last state by last(h) =  sk. We sometimes 
write h · s for a history ending in a state s, to emphasize its last state. 

We consider the σ-algebra generated by cylinders in Paths(M): for a history 
h ∈ Hist(M), the cylinder generated by h is 

Cyl(h) =  {ρ ∈ Paths(M) | h is a prefix of ρ} . 

Definition 2. A scheduler in M is a function σ : Hist(M) → Dist(Act) which 
assigns a probability distribution over actions to any history, with the constraint 
that for every h ∈ Hist(M), the support of σ(h) is included in En(last(h)). We  
write Sched(M) for the set of schedulers in M. 

Schedulers are sometimes called strategies or policies in the literature. We 
fix a scheduler σ in M. If  σ only depends on the last state of histories, i.e., 
if last(h) = last(h′) implies σ(h) =  σ(h′), then it is called positional. If for  
every history h, σ(h) is a Dirac probability measure, it is said pure. A pure 
and positional scheduler can alternatively be described as a function σ : S → 
Act. We write Schedpp(M) for the set of pure and positional schedulers in M, 
and Schedph(M) for the set of pure (a priori not positional, that is, history-
dependent) schedulers. 

Given a scheduler σ in M and an initial state s0 ∈ S, one can define a 
probability measure Pσ 

M,s0 
on Paths(M) inductively as follows:
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– Pσ 
M,s0 

(Cyl(s0)) = 1; 
– if h = s0 · · ·  sk ∈ Hist(M) and  h · sk+1 ∈ Hist(M), then 

Pσ 
M,s0 

(Cyl(h · sk+1)) = Pσ 
M,s0 

(Cyl(h)) ·
∑

a∈En(last(h)) 

σ(h)(a) · P(sk, a, sk+1) . 

Equivalently, it is the probability measure in the (infinite) Markov chain Mσ 
induced by the scheduler σ on M. 

Fig. 1. Example of a finitely branching MDP with infinite state space. For readability, 
the absorbing states � and � are duplicated in the figure. Self-loops on absorbing 
states are omitted. 

Figure 1 presents an example of a countably infinite MDP, which is finitely 
branching. Under a scheduler which always selects α, this yields a random 
walk [ 36, Section 3.1]. It is “diverging” if p >  1 2 , which entails that the prob-
ability λp not to reach � is positive from every state (except �). In particular, 
in this case, the infimum probability of reaching � depends on the relative values 
of q and λp. 

2.2 Optimum Reachability Probabilities 

Depending on the application, the non-determinism in Markov decision processes 
can be thought of as adversarial or as cooperative. For the probability of a 
given event, it thus makes sense to consider both the infimum and supremum 
probabilities when ranging over all schedulers. 

We describe path properties using the standard LTL operators F and G, and  
their step-bounded variants F ≤n and G≤n. Let  ρ = s0s1 · · ·  ∈  Paths(M) be a  
path in M. If  ψ is a state property, the path property F ψ holds on ρ if there 
is some index k ∈ N such that sk satisfies ψ. Given  n ∈ N, F ≤n holds on ρ if 
there is some index k ≤ n such that sk satisfies ψ. Dually, ρ satisfies Gψ if 
all indices k ∈ N are such that sk satisfies ψ, and  ρ satisfies G≤nψ if for all 
indices k ≤ n, sk satisfies ψ. Now, given a path property φ, we write �φ�M,s0 

for 
the set of paths from s0 in M that satisfy φ. 

In this paper, we focus on the optimization of the probability of reacha-
bility objectives, and thus aim at computing or approximating the following
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values: given an MDP M, an initial state s0, a set of target states T , and  
opt ∈ {inf, sup}, 

P
opt 
M,s0 

(F T ) def = optσ∈Sched(M)P
σ 
M,s0 

(F T ) . 

Without loss of generality, one can assume that T consists of a single absorbing 
state which we denote � in the sequel. 

Remark 1. The literature often considers safety objectives, which correspond to 
events G¬T for T a set of states. Note that by the duality of reachability and 
safety objectives, all results below also hold for safety objectives by inverting inf 
and sup. 

For finite MDPs, the computation of the above values for opt = inf and 
opt = sup is well-known (see e.g. [ 7, Chap. 10]). It reduces to solving a linear 
program (of linear size), resulting in a polynomial-time algorithm. Moreover, the 
infimum and supremum values are attained by pure and positional schedulers, 
as stated below. 

Lemma 1. Let M be a finite MDP, s0 be an initial state, and � be a target 
state. Then, for opt ∈ {inf, sup}, there exists a pure and positional scheduler 
σopt ∈ Schedpp(M) such that Pσopt 

M,s0 
(F �) =  Popt 

M,s0 
(F �). 

Alternatively to solving a linear program, value-iteration techniques can also 
be used and often turn out to be more efficient in practice; see [ 24]. They 
rely on a fixed-point characterization (the Bellman equations) of the values 
valopt M (s) 

def = Popt 
M,s(F�), where opt ∈ {inf, sup}. This characterization also holds 

for finitely action-branching countable MDPs [ 35], and can even be extended 
to stochastic turn-based two-player games with reachability objectives [ 14,29]. 
Yet, the convergence of the fixed point does not imply the existence of a stopping 
criterion that can be used to identify when the computed value is sufficiently 
close to the actual value. 

We recall existing results about the complexity of optimal schedulers for 
reachability objectives in MDPs, which we will use in later sections. The two 
items below are implied respectively by [ 35, Theorem 7.3.6] and [ 33, Theorem B].  
The latter was also discussed more recently in [ 27]. 

Lemma 2. Let M = (S, Act, P) be a countable MDP and � ∈ S be a target 
state. 

1. Assume M is finitely action-branching. There exists σ ∈ Schedpp(M) s.t. 
for all s ∈ S, Pσ 

M,s(F �) =  Pinf 
M,s(F �). 

2. For all ε >  0, there exists σ ∈ Schedpp(M) s.t. for all s ∈ S, Pσ 
M,s(F �) ≥ 

P
sup 
M,s(F �) − ε. 

A couple of remarks are of interest:
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– The finite action-branching assumption is needed for the first item. Optimal 
schedulers for infimum reachability probabilities may not exist for infinitely 
branching MDPs, and ε-optimal schedulers may even require memory [ 28, 
Theorem 3]. 

– For supremum reachability probabilities, optimal schedulers may not exist, 
even in finitely branching MDPs; such an example is provided in [ 27, Figure 1]. 
This is why we only consider ε-optimal schedulers in the second item. Inter-
estingly, item 2 fails to hold in MDPs with an uncountable state space [ 33, 
Theorem A]. As per the definition above, all MDPs in this paper are assumed 
countable. 

Approximation Schemes and Algorithms. Even if characterizations of the val-
ues exist in infinite MDPs [ 35], no general algorithm is known to compute 
Pinf 

M,s0 
(F �) and  Psup 

M,s0 
(F �), or to decide whether these values exceed a thresh-

old. Of course, such algorithms would very much depend on the representation 
of infinite MDPs. 

In this paper, we aim at providing generic approximation schemes for infimum 
and supremum reachability probabilities in countable MDPs. 

Definition 3. An approximation algorithm takes as an input an MDP M, an  
initial state s0, a target state �, an optimization criterion opt ∈ {inf, sup}, and  
a precision  ε >  0, and returns a value v such that |v − Popt 

M,s0 
(F �)| ≤  ε. 

In this paper, we provide generic approximation schemes, defined by two 
sequences (r− 

n )n and (r+ 
n )n, respectively non-decreasing and non-increasing, such 

that for every n ∈ N, r− 
n ≤ Popt 

M,s0 
(F �) ≤ r+ 

n . An approximation scheme is 
converging on M from s0 if for every precision ε >  0, there exists n ∈ N such that 
|r+ 

n −r− 
n | ≤  ε (which means that any v in the interval [r− 

n , r
+ 
n ] is a solution to our 

problem). An approximation scheme yields an approximation algorithm if it is 
converging and the values r− 

n and r+ 
n can be effectively computed for arbitrarily 

large n. 
Converting a converging approximation scheme into an algorithm requires 

hypotheses on the MDPs considered (e.g., finitely representable, restrictions on 
branching). In Sect. 4, we focus on approximation schemes; in Sect. 5, we inves-
tigate when these schemes are converging; in Sect. 6, we show on specific classes 
of models that these converging schemes can be made into algorithms. All these 
results will be enabled by the notion of decisiveness for MDPs, discussed in 
Sect. 3. 

3 Decisiveness for MDPs 

In this section, we define several flavors of decisiveness for MDPs, inspired by 
the notion of decisiveness defined for Markov chains [ 1]. We fix an MDP M = 
(S, Act, P) and an absorbing target state � ∈ S for the rest of this section.
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3.1 Avoid Sets 

For Markov chains, the first ingredient to define decisiveness is the notion of 
avoid set, which is the set of states from which one can no longer reach � (the 
avoid set was denoted �̃ in [ 1]). We extend this notion in several directions. 

If σ ∈ Schedpp(M), we define the avoid set of M w.r.t. σ as: 

Avoidσ 
M(�) =

{
s ∈ S | Pσ 

M,s(F �) = 0
}

. 

This is the avoid set of the Markov chain (as defined in [ 1]) induced by the pure 
and positional scheduler σ on M. 

We also define two other notions of avoid set, depending on whether one 
considers the infimum or supremum value over schedulers. For opt ∈ {inf, sup}, 
we let: 

Avoidopt M (�) =
{
s ∈ S | optσ∈Sched(M)P

σ 
M,s(F �) = 0

}
. 

Note that 

sup 
σ∈Sched(M) 

Pσ 
M,s(F �) = 0 iff  ∀σ ∈ Sched(M), Pσ 

M,s(F �) = 0  

iff ∀σ ∈ Schedpp(M), Pσ 
M,s(F �) = 0  , 

where the second equivalence can be shown using Lemma 2, item 2. We deduce 
that: 

Avoidsup M (�) =
⋂

σ∈Schedpp(M) 

Avoidσ 
M(�) . 

In contrast, it may happen that infσ∈Sched(M) P
σ 
M,s(F �) = 0, yet there is no 

σ ∈ Sched(M) such that Pσ 
M,s(F �) = 0. For instance, on the MDP ML in Fig. 2 

(left), when choosing action αi from s0, the probability of F � is 1 
2i . Recall that 

given Lemma 2 (item 1), this behaviour requires infinite action-branching: when 
M is finitely action-branching, we have that there exists a pure and positional 
scheduler σinf such that Avoidσinf 

M (�) =  Avoidinf M(�). 
Following the definitions, for every σ ∈ Schedpp(M), we have 

Avoidsup M (�) ⊆ Avoidσ 
M(�) ⊆ Avoidinf M(�) . 

We show two examples to illustrate various kinds of avoid sets and when they 
can differ. 

Example 1. Consider the three-state MDP MR on the right of Fig. 2. We have  
that Avoidsup MR(�) 	= Avoidσ 

MR(�) for some scheduler σ: indeed, Avoidsup MR(�) =  
{�}, but for the pure and positional scheduler σα that chooses α in s0, we have  
Avoidσα 

MR(�) =  {�, s0}. 
Consider again the infinitely branching MDP ML given in Fig. 2 (left). We 

have that Avoidσ 
ML(�) 	= Avoidinf ML(�) for all pure and positional schedulers σ: 

indeed, Avoidinf ML(�) =  {s0,�}, but Avoidσ 
ML(�) =  {�} for all such σ.
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Fig. 2. Left: MDP ML for which Pinf 
ML,s0 

(F �) = 0, yet for every scheduler σ, 
Pσ 

ML,s0 
(F �) > 0. Right: MDP MR such that Avoidsup MR (�) �= Avoidσ 

MR (�) for  some  
scheduler σ. 

3.2 Decisiveness Properties 

We now define several notions of decisiveness for MDPs, which are natural exten-
sions of the decisiveness for Markov chains [ 1]. 

Definition 4 (Decisiveness). Let M = (S, Act, P) be an MDP, � ∈ S be an 
absorbing target state, and s ∈ S be a state. 

– Let σ ∈ Schedpp(M). MDP  M is said σ-decisive w.r.t. � from s whenever 

Pσ 
M,s

(
F � ∨ F Avoidσ 

M(�)
)

= 1  . 

– MDP M is univ-decisive w.r.t. � from s whenever for all σ ∈ Schedpp(M), 
M is σ-decisive w.r.t. � from s; that is, 

∀σ ∈ Schedpp(M), Pσ 
M,s

(
F � ∨ F Avoidσ 

M(�)
)

= 1  . 

– Let opt ∈ {inf, sup}. MDP  M is opt-decisive w.r.t. � from s whenever 

∀σ ∈ Schedpp(M), Pσ 
M,s

(
F � ∨ F Avoidopt M (�)

)
= 1  . 

In the case of Markov chains, all these notions are equivalent and coincide 
with the notion of decisiveness defined in [ 1]. In the case of MDPs, these notions 
are different. Since Avoidsup M (�) ⊆ Avoidσ 

M(�) ⊆ Avoidinf M(�) (for all pure and 
positional schedulers σ), sup-decisiveness is a stronger condition than univ-
decisiveness, which is itself stronger than inf-decisiveness. We show examples 
distinguishing these notions.
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Example 2. To distinguish sup-decisiveness from univ-decisiveness, we go back 
to the three-state MDP MR from Example 1 (Fig. 2, right). Recall that 
Avoidsup MR(�) =  {�}. Hence, for the scheduler σα that chooses α in s0, we  
have Pσα 

MR,s0 
(F �∨F Avoidsup MR(�)) = 0. Hence, MR is not sup-decisive w.r.t. �

from s0. On the other hand, we can show it is univ-decisive by considering the 
only two pure and positional schedulers σα and σβ . We have  Avoidσα 

MR(�) =  
{�, s0}, so  Pσα 

MR,s0 
(F �∨ F Avoidσα 

MR(�)) = 1. We have Avoid σβ 
MR(�) =  {�}, so  

P 
σβ 
MR,s0 

(F �∨ F Avoid σβ 
MR(�)) = 1. Hence, MR is univ-decisive w.r.t. � from s0. 

To distinguish univ-decisiveness from inf-decisiveness, consider the MDP M 
that was depicted in Fig. 1, and assume that p >  1 2 (i.e., the random walk when 
choosing α repeatedly is diverging). Add to this MDP M an initial state s0 from 
which one can go to any state si with an action αi. We have that Avoidinf M(�) =  
{s0,�}, since the probability to reach � can be made arbitrarily small by 
choosing αi for a sufficiently large i. Hence, Pσ 

M,s0 
(F � ∨ F Avoidinf M(�)) = 1 

for all schedulers σ, so  M is inf-decisive w.r.t. � from s0. However, for all fixed 
schedulers σ, we have  Avoidσ 

M(�) =  {�}, so  Pσ 
M,s0 

(F � ∨ F Avoidσ 
M(�)) < 1. 

So M is not univ-decisive w.r.t. � from s0. 
We finally show an example which is not inf-decisive (and thus, not univ-

decisive or sup-decisive either). Consider again the MDP M in Fig. 1, also with 
p >  1 2 , but this time without the extra state s0. It is such that Avoidinf M(�) =  
{�} since there is a positive probability to visit � from every state (except 
from �), no matter the scheduler. The MDP M is not inf-decisive from s0 
w.r.t. �, since the scheduler which always selects α avoids � and � with positive 
probability λp. 

Remark 2. Observe that the definitions of avoid sets and decisiveness only quan-
tify over pure and positional schedulers. This will turn out to be sufficient for 
our purposes, notably thanks to the scheduler complexity results from Lemma 2. 

Also, intuitively, quantifying over arbitrary schedulers would allow the cause 
for non-decisiveness to arise from the scheduler rather than the structure of the 
MDP. This would make the properties harder to check and less commonly satis-
fied. To see why, consider again the three-state MDP MR in Fig. 2 (right). Con-
sider the (infinite-memory) scheduler σ that, as long as s0 is not left, chooses α 
with probability 1 − 1 

2i+1 and β with probability 1 
2i+1 at step i. This scheduler 

avoids � with probability
∏

i(1 − 1 
2i+1 ) > 0. Yet, there is always a non-zero 

probability to reach �. Fixing σ induces an infinite Markov chain whose avoid 
set is {�}, but we do not have that {�,�} is reached with probability 1. If we 
were to consider such schedulers, the MDP MR would not be univ-decisive. 

3.3 Decisiveness Criteria 

We show how to adapt two existing criteria for the decisiveness of Markov 
chains [ 1, Lemmas 3.4 & 3.7] to MDPs. In both cases, we generalize the def-
inition of a property to MDPs and show that this property implies some form 
of decisiveness. The proofs are in [ 9, Appendix A].



80 N. Bertrand et al.

The first criterion relates to the existence of a finite attractor. It will be used 
in Sect. 6.1 to show that a class of infinite MDPs (NPLCSs) is inf-decisive. 

Definition 5. Let M = (S, Act, P) be an MDP. We say that M has a finite 
attractor if there exists a finite set A ⊆ S such that from all states s ∈ S, for  
all schedulers σ ∈ Schedpp(M), Pσ 

M,s(F A) = 1. 
Remark 3. Quantifying only over pure and positional schedulers in the definition 
of a finite attractor is sufficient for our purposes (such as the upcoming result). 
It would be stronger to require that Pσ 

M,s(F A) = 1 for all σ ∈ Sched(M), as 
witnessed, e.g., by [ 28, Figure 3a] with A = {t}. 
Proposition 1. Let M = (S, Act, P) be an MDP and � ∈ S be an absorbing 
target state. If M has a finite attractor, then M is univ-decisive (hence also 
inf-decisive) w.r.t. � from every state. 

Observe that, in particular, all finite MDPs are univ-decisive and inf-decisive 
(as for finite MDPs, the full state space S is a finite attractor). However, not all 
finite MDPs are sup-decisive; a counterexample was given in Example 2. 

In finite MDPs, we can relate the notion of sup-decisiveness to the notion 
of end component [ 4]. An end component of an MDP M = (S, Act, P) is a pair 
(R, A) where R ⊆ S and A : R → 2Act such that for all s ∈ R, A(s) ⊆ En(s) and  
for all a ∈ A(s), the support of P (s, a, ·) is included in R, and the graph induced 
by (R, A) is strongly connected. As end components are commonly studied in 
MDPs, we formally state the relation here; however, we will use neither this 
result nor the notion of end component in the sequel. 

Proposition 2. Let M = (S, Act, P) be a finite MDP and � ∈ S be an 
absorbing target state. We have that M is sup-decisive w.r.t. � from every 
state if and only if for all end components (R, A) of M, either R = {�} or 
R ⊆ Avoidsup M (�). 

This result gives another reason why the three-state MDP MR from Exam-
ple 1 is not sup-decisive, as ({s0}, {α}) is an end component which is neither {�} 
nor contained in Avoidsup M (�). 

For finite MDPs, the property of end components used in Proposition 2 
already appears in various works as a necessary property for the value-iteration 
algorithm to converge [ 15,24]. However, the notion of end components and its 
related results do not carry over straightforwardly to infinite MDPs; we believe 
that sup-decisiveness is a natural candidate for a property that is both well-
defined on infinite MDPs and happens to coincide with this known property of 
finite MDPs. 

We now extend a second decisiveness criterion by generalizing the concept 
of globally coarse Markov chains [ 1, Lemma 3.7]. Here, this extension yields a 
criterion for sup-decisiveness in MDPs. 

Definition 6. Let M = (S, Act, P) be an MDP with an absorbing target state �
and a distinct absorbing state � (in particular, � ∈ Avoidsup M (�)). The MDP M 
is semantically stopping w.r.t � and � if there exists p >  0 such that from every 
state s, for all schedulers σ ∈ Schedpp(M), Pσ 

M,s(F � ∨ F�) ≥ p.
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Proposition 3. Let M = (S, Act, P) be an MDP, � be an absorbing target 
state, and � be an absorbing state. If M is semantically stopping w.r.t. �
and �, then M is sup-decisive w.r.t. � from every state. 

We can immediately deduce a natural syntactic class of MDPs that are sup-
decisive. We say that an MDP M = (S, Act, P) is  stopping if there exists p >  0 
from every state s, for every action a ∈ En(s), P(s, a, {�,�}) ≥ p. It means that 
there is a uniformly bounded probability that a path “terminates” at every step. 
This is a natural adaptation to MDPs of the concept of stopping introduced by 
Shapley for stochastic games in 1953 [ 37] and used, e.g., in [ 17]. 

4 Generic Approximation Schemes 

The objective of this section is to provide generic approximation schemes for 
optimum reachability probabilities, and to understand under which conditions 
they are converging. For conciseness, most proofs are omitted from this section; 
they can be found in [ 9, Appendix B and C]. 

For the rest of this section, we let M = (S, Act, P) be an MDP,  s0 ∈ S be an 
initial state, and � ∈ S be an absorbing target state. 

4.1 Collapsing Avoid Sets and First Approximation Scheme 

For opt ∈ {inf, sup}, we build a new MDP Mopt = (Sopt , Act, Popt) by merging 
states in Avoidopt M (�) into a fresh absorbing state �opt . 

Formally, Mopt = (Sopt , Act, Popt) with 

– Sopt =
(
S\Avoidopt M (�)

)
∪ {�opt}; 

– for every s, s′ ∈ Sopt\{�opt}, for every a ∈ Act, Popt(s, a, s′) =  P(s, a, s′); 
– for every s ∈ Sopt\{�opt}, Popt(s, a,�opt ) =

∑
s′∈Avoidopt M(�) P(s, a, s′); 

– for every a ∈ Act, Popt(�opt , a,�opt ) = 1.  

In both cases (when opt = inf or when opt = sup), notice that � ∈ Sopt. 
W.l.o.g., we assume that the initial state is preserved in the collapsed MDP (i.e., 
s0 ∈ S ∩ Sopt); otherwise, by definition of Avoidopt M (�), optσPσ 

M,s0 
(F�) = 0  and  

the value to be computed is trivially 0. 
Note also the following two properties: 

– for every s ∈ Sinf\{�inf}, for every σ ∈ Sched(Minf), Pσ 
Minf ,s(F �) > 0; 

– for every s ∈ Ssup\{�sup}, there is σ ∈ Sched(Msup) s.t. Pσ 
Msup,s(F �) > 0. 

The above constructions collapsing avoid sets preserve optimum probabilities 
(with no prior assumption on M; proof in [ 9, Appendix C]): 

Lemma 3. Popt 
M,s0 

(F �) =  Popt 
Mopt,s0 

(F �).
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According to Lemma 3, computing the supremum probability (resp. infimum 
probability) in M can equivalently be done in Msup (resp. Minf). 

To do so, for every integer n, we define the following events in Mopt:
{

Rn = F ≤n�
Hopt 

n = G≤n(¬� ∧ ¬�opt ) . 

In words, Rn expresses that the target is reached within n steps, and Hopt 
n 

denotes that the target has not been reached within n steps, but that we are 
still in a region from which the probability of reaching � is bounded away from 
0 (in the case opt = inf) or from which reaching � is possible with positive 
probability (in the case opt = sup). Note that Rn ∨Hopt 

n = F ≤n�∨ G≤n¬�opt . 
We use these events to find lower and upper bounds on the desired probability 

p = Popt 
Mopt,s0 

(F �). The aim is that, thanks to the step bound n, these bounds 
are easier to compute than p in many classes of MDPs. A lower bound for p 
is trivially given by Popt 

Mopt,s0 
(Rn): reaching � within n steps naturally implies 

reaching �. An upper bound is given by Popt 
Mopt,s0 

(Rn ∨ Hopt 
n ): to reach �, it  

is necessary to either reach � within n steps or to be in a state from which 
reaching � is still possible after n steps. We state these observations formally. 

Lemma 4. For every initial state s0 ∈ S and every n ∈ N, 

P
opt 
Mopt,s0 

(Rn) ≤ Popt 
Mopt,s0 

(F �) ≤ Popt 
Mopt,s0 

(Rn ∨ Hopt 
n ) 

≤ Popt 
Mopt,s0 

(Rn) +  Psup 
Mopt,s0 

(Hopt 
n ) . 

Thanks to Lemma 4, it is natural to define an approximation scheme with 
P
opt 
Mopt,s0 

(Rn) as a lower bound, and Popt 
Mopt,s0 

(Rn ∨ Hopt 
n ) as an upper bound, as 

formalised in Scheme 1. If the input is a Markov chain, this corresponds exactly 
to the path enumeration algorithm from [ 1, Algorithm 1]. 

Input : An MDP  M, s0 ∈ S, � ∈ S, and  ε ∈ (0, 1). 
Output: A value v ∈ [0, 1]. 
n := 0; 
repeat 

n := n + 1;  
popt,− 

n := Popt 
Mopt,s0 

(F ≤n�); 
popt,+ 

n := Popt 
Mopt,s0 

(F ≤n� ∨ G≤n(¬� ∧ ¬�opt )); 
until |popt,+ 

n − popt,− 
n | ≤  ε; 

return popt,− 
n 

Scheme 1: Approx Schemeopt 1 

Thanks to the last inequality of Lemma 4, if we prove that if in some MDP, 
for all schedulers, the probability of Hopt 

n becomes negligible as n grows, then 
this ensures the convergence of the scheme for this MDP.
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Theorem 1. Let M = (S, Act, P) be an MDP, s0 ∈ S be an initial state 
and � ∈ S be a target state. Assume that limn→∞ P

sup 
Mopt,s0 

(Hopt 
n ) = 0. Then  

Approx Schemeopt 1 provides a converging approximation scheme for Popt 
M,s0 

(F �). 
Proof. The sequence (popt,− 

n )n is non-decreasing and the sequence (popt,+ 
n )n is 

non-increasing. Assuming they converge to the same value (which is the case 
when limn→∞ P

sup 
Mopt,s0 

(Hopt 
n ) = 0 thanks to Lemma 4), then Approx Schemeopt 1 

converges, which means that it returns an ε-approximation of Popt 
Mopt,s0 

(F �). By 
Lemma 3, this corresponds to an ε-approximation of Popt 

M,s0 
(F �). 
�

Scheme Approx Schemeopt 1 is based on unfoldings of the MDP to deeper and 
deeper depths. Precisely, the lower bound popt,− 

n is the probability in the unfold-
ing up to depth n of histories that reach �; popt,+ 

n is the probability in the same 
unfolding of histories that either reach � or end in a state from which there is 
a path to � in Mopt. 

For completeness, we further clarify the relevance of the sequences (popt,− 
n )n 

and (popt,+ 
n )n with respect to our aim. Focusing on (popt,− 

n )n, observe that what 
the scheme computes is (an approximation) of the limit of this sequence, i.e., 
limn optσP

σ 
Mopt,s0 

(F ≤n�). Yet, the actual value we want to approximate is 
P
opt 
Mopt,s0 

(F �), which is equal to optσ limn P
σ 
Mopt,s0 

(F ≤n�). The convergence of 
the scheme is a sufficient condition for limn→∞ p

opt,− 
n = Popt 

Mopt,s0 
(F �): indeed, 

given Lemma 4, this is the only possible limit value. Independently of the con-
vergence of the scheme, these two values also always coincide in finitely action-
branching MDPs. This statement is proved in [ 9, Appendix B]. 
Lemma 5. Let M be a finitely action-branching MDP. Then, 

lim
n→∞ 

popt,− 
n = Popt 

Mopt,s0 
(F �) and lim

n→∞ 
popt,+ 

n = Popt 
Mopt,s0 

(F �∨G(¬�∧¬�opt )) . 

However, this fails to hold in some infinitely branching MDPs. 
Example 3. Consider the infinitely branching MDP M from Fig. 3. Note that 
Avoidinf M(�) =  ∅, so  Minf = M. From  s0, there is a single choice αi (i ≥ 1) to 
make, determining that � will be reached in exactly i steps. This means that 
for all n, it is possible to avoid seeing � within n steps (e.g., by choosing αn+1). 
Hence, for all n, Pinf 

M,s0 
(F ≤n�) = 0. We deduce that limn p

inf,− 
n = 0.  

However, Pinf 
M,s0 

(F �) = 1, as any action leads surely to �. We conclude 
that, unlike the finitely branching case, we have 

0 = lim
n 

inf
σ 

Pσ 
M,s0 

(F ≤n�) < inf
σ 

lim
n 

Pσ 
M,s0 

(F ≤n�) = 1  . 

Using Lemma 4, we also have that 1  =  Pinf 
M,s0 

(F �) ≤ limn p
inf,+ 
n . Hence, the 

scheme Approx Schemeinf 1 does not converge on that particular MDP. 
When opt = sup, Approx Schemeopt 1 may not converge, even on finite MDPs. 

Consider the three-state MDP MR from Example 1: we have that for every 
n ≥ 1, psup,− 

n = 1 2 and psup,+ 
n = 1. Hence, the scheme does not terminate when 

ε <  1 2 .
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Fig. 3. An infinitely branching MDP M such that 0 = limn infσ P
σ 
M,s0 (F ≤n�) < 

infσ limn P
σ 
M,s0 (F ≤n�) = 1.  

4.2 Sliced MDP and Second Approximation Scheme 

To overcome the above-mentioned shortcoming of Approx Schemesup 1 , we propose  
a refined approximation scheme. Intuitively, instead of unfolding the MDP up to 
a fixed depth, as implicitly done in Approx Schemeopt 1 , we consider slices of the 
MDP consisting of the restrictions to all states that are reachable from s0 within 
a fixed number of steps. Doing so, the convergence on finite MDPs is ensured. 

Let M = (S, Act, P) be an MDP,  s0 ∈ S be an initial state, opt ∈ {inf, sup}, 
and Mopt be as defined in Sect. 4.1. For every n ∈ N, we define the sliced MDP 
Mopt 

n as the restriction of Mopt to states that can be reached within n steps 
from s0. This construction is illustrated in Fig. 4. 

For n ≥ 0, let Reach≤n 
s0 

be the set of states reachable from s0 with a positive 
probability in at most n steps. Formally, Reach≤0 

s0 
= {s0} and for n ≥ 0, 

Reach≤n+1 
s0 

= Reach≤n 
s0 

∪ {s′ ∈ Sopt | ∃s ∈ Reach≤n 
s0 

, ∃a ∈ Act, Popt(s, a, s′) > 0} . 

For n ≥ 0, the sliced MDP Mopt 
n = (Sopt 

n , Act, Popt n ) is defined as follows: 

– Sopt 
n = Reach≤n 

s0 
∪ {sn 

⊥}; 
– for all s, s′ ∈ Reach≤n 

s0 
, for all a ∈ Act, Popt n (s, a, s′) =  Popt(s, a, s′); 

– for all s ∈ Reach≤n 
s0 

, for all a ∈ Act, Popt n (s, a, sn 
⊥) =

∑
s′ /∈Reach≤n 

s0 
Popt(s, a, s′); 

– for all a ∈ Act, Popt n (sn 
⊥, a, sn 

⊥) = 1.  

The state spaces of Mopt and Mopt 
n coincide on Reach≤n 

s0 
, and all transi-

tions going out of Reach≤n 
s0 

in Mopt are directed to sn 
⊥ in Mopt 

n . Any path 
in Mopt induces a unique path in Mopt 

n which either stays in the common 
state space Reach≤n 

s0 
or reaches sn 

⊥. Moreover, any path in Mopt 
n that reaches� corresponds to a path in Mopt that also reaches �. In the sequel, we use 

transparently the correspondence between paths in Mopt that only visit states 
reachable within n steps, and paths in Mopt 

n that avoid sn 
⊥. Observe that the 

sliced MDPs of finitely branching MDPs are all finite. 
We use events on the sliced MDP to find lower and upper bounds on the 

desired probability p = Popt 
Mopt,s0 

(F �). A lower bound can be obtained through
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Fig. 4. Construction of the sliced MDP Mopt 
n (right) from Mopt (left). 

P
opt 

Mopt 
n ,s0 

(F �): reaching � in Mopt 
n (only through states in Reach≤n 

s0 
) implies 

reaching � in Mopt. An upper bound is given by Popt 

Mopt 
n ,s0 

(F (� ∨ sn 
⊥)): a path 

that reaches � in Mopt would either reach � or sn 
⊥ in Mopt 

n . We state these 
bounds formally, along with relations with the sequences (popt,− 

n )n and (popt,+ 
n )n 

from Approx Schemeopt 1 , in the following lemma (proved in [ 9, Appendix C]). 

Lemma 6. The sliced MDP Mopt 
n enjoys the following inequalities: 

1. Popt 

Mopt 
n ,s0 

(F �) ≤ Popt 
Mopt,s0 

(F �) ≤ Popt 

Mopt 
n ,s0 

(F (� ∨ sn 
⊥)), 

2. Popt 

Mopt 
n ,s0 

(F (� ∨ sn 
⊥)) ≤ Popt 

Mopt 
n ,s0 

(F �) +  Psup 

Mopt 
n ,s0 

(F sn 
⊥), 

3. popt,− 
n = Popt 

Mopt,s0 
(F ≤n�) ≤ Popt 

Mopt 
n ,s0 

(F �), 
4. Popt 

Mopt 
n ,s0 

(F (� ∨ sn 
⊥)) ≤ Popt 

Mopt,s0 
(F ≤n� ∨ G≤n(¬� ∧ ¬�opt )) = popt,+ 

n . 

Thanks to Lemma 6 (item 1), it is natural to define an approximation scheme 
with Popt 

Mopt 
n ,s0 

(F �) as a lower bound, and Popt 

Mopt 
n ,s0 

(F (� ∨ sn 
⊥)) as an upper 

bound. It is formalised in Scheme 2. 

Input : An MDP  M, s0 ∈ S, � ∈ S, and  ε ∈ (0, 1). 
Output: A value v ∈ [0, 1]. 
n := 0; 
repeat 

n := n + 1;  
qopt,− 
n := Popt 

Mopt 
n ,s0 

(F�); 
qopt,+ 
n := Popt 

Mopt 
n ,s0 

(F (� ∨ sn 
⊥)); 

until |qopt,+ 
n − qopt,− 

n | ≤  ε; 
return qopt,− 

n 

Scheme 2: Approx Schemeopt 2 

Through Lemma 6 (items 3 and 4), we learn that for every n, popt,− 
n ≤ 

qopt,− 
n and qopt,+ 

n ≤ popt,+ 
n . Thus,  Approx Schemeopt 2 is a refinement of 

Approx Schemeopt 1 , which we can state as follows. 

Theorem 2. Let M = (S, Act, P) be an MDP, s0 ∈ S be an initial state, and� ∈ S be a target state. Assume that Approx Schemeopt 1 provides a converging 
approximation scheme for Popt 

M,s0 
(F �). Then so does  Approx Schemeopt 2 .
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We give below a criterion for ensuring that Approx Schemeopt 2 is an approxi-
mation scheme. It refines Theorem 1, as we have  Popt 

Mopt 
n ,s0 

(F sn 
⊥) ≤ Popt 

Mopt,s0 
(Hopt 

n ): 
indeed, any path in Mopt 

n that reaches sn 
⊥ (which takes at least n + 1 steps) cor-

responds to a path that reaches neither � nor � within n steps in Mopt. 

Theorem 3. Let M = (S, Act, P) be an MDP, s0 ∈ S be an initial state, 
and � ∈ S be a target state. Assume that limn→∞ P

sup 

Mopt 
n ,s0 

(F sn 
⊥) = 0. Then,  

Approx Schemeopt 2 provides a converging approximation scheme for Popt 
M,s0 

(F �). 

Proof. The sequences (qopt,− 
n )n and (qopt,+ 

n )n are respectively non-decreasing and 
non-increasing. When they converge to the same limit, Approx Schemeopt 2 termi-
nates for all ε >  0. Moreover, thanks to Lemma 6 (item 1), for every n ∈ N, 
qopt,− 
n ≤ Popt 

Mopt,s0 
(F �) ≤ qopt,+ 

n so that upon termination, Approx Schemeopt 2 

returns an ε-approximation of Popt 
Mopt,s0 

(F �). This is an ε-approximation of 
P
opt 
M,s0 

(F �) by Lemma 3. 
Under the assumption that limn→∞ P

sup 

Mopt 
n ,s0 

(F sn 
⊥) = 0, item 2 of Lemma 6 

implies that limn→∞ P
opt 

Mopt 
n ,s0 

(F (� ∨ sn 
⊥)) = limn→∞ P

opt 

Mopt 
n ,s0 

(F �). We obtain 
that the two sequences (qopt,− 

n )n and (qopt,+ 
n )n converge towards Popt 

Mopt,s0 
(F �), 

and Approx Schemeopt 2 converges. 
�
Remark 4 (The case of finite MDPs). Approx Schemeopt 2 converges for finite 
MDPs (and stops at the latest after a number of iterations equal to the number 
of reachable states). In contrast, recall that approximating the supremum prob-
ability of a reachability objective with Approx Schemesup 1 may not converge on 
some finite MDPs (see Example 2 and Proposition 2). 

5 When Do These Schemes Converge? 

In this section, we give criteria related to decisiveness that ensure conver-
gence of the approximation schemes. We start with criteria that ensure conver-
gence of Approx Schemeopt 1 (hence of Approx Schemeopt 2 by Theorem 2). We then 
show that, for finitely branching MDPs, the convergence of Approx Schemeinf 2 

implies the convergence of Approx Schemeinf 1 . Finally, we give conditions on the 
MDPs that ensure the convergence of Approx Schemesup 2 (but not necessarily 
Approx Schemesup 1 ). Missing proofs for this section are in [ 9, Appendix D]. 

5.1 Convergence of Approx Schemeopt 1 

We give conditions related to decisiveness which ensure the convergence of the 
approximation schemes (recall that the convergence of Approx Schemeopt 1 implies 
the convergence of Approx Schemeopt 2 by Theorem 2). 

Theorem 4. Let M = (S, Act, P) be an MDP, s0 ∈ S be an initial state, and �
be a target state. Let opt ∈ {inf, sup}. Assume that M is finitely action-branching 
and opt-decisive w.r.t. � from s0. Then  Approx Schemeopt 1 converges on M 
from s0.
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To highlight the role of the decisiveness hypotheses in Theorem 4, we show on 
some examples that without decisiveness, the approximation schemes may not 
converge. We first show that for some non-inf-decisive MDPs, the approximation 
schemes do not converge. Consider indeed the MDP M from Fig. 1, which has 
Avoidinf M(�) =  {�}, so that Minf = M. In case  p >  1 2 , M is not inf-decisive 
from s1 w.r.t. � since the pure and positional scheduler σ that always picks 
action α has a positive probability, say λp, to never reach � nor �. For every 
n ≥ 1, 

pinf,+ 
n = Pinf 

M,s1 
(F ≤n� ∨ G≤n(¬� ∧ ¬�)) = 1 − Psup 

M,s1 
(F ≤n�) =  q .  

This is achieved by choosing β straight away; any other scheduler runs the risk 
of reaching �. On the other hand, pinf,− 

n ≤ Pinf 
M,s1 

(F �) ≤ 1 − λp (which is the 
value obtained by the scheduler always choosing α). Hence, by picking q and p 
such that q >  1 − λp, Approx Schemeinf 1 does not converge on M from s1. 

Similar arguments show that Approx Schemeinf 2 does not converge on M 
from s1. First,  qinf,+ 

n = Pinf 
Minf 

n ,s1 
(F (�∨ sn 

⊥)) = q—this is achieved by choosing β 
straight away; any other scheduler runs the risk of reaching � or sn 

⊥. Second, 
qopt,− 
n ≤ Pinf 

M,s1 
(F �) ≤ 1−λp. Thus,  Approx Schemeinf 2 does not converge either 

if q >  1 − λp. 
Observe also that Approx Schemesup 2 (and thus Approx Schemesup 1 ) do not  

converge on the MDP M from Fig. 1 from s1. This MDP is not sup-decisive (as 
it is not inf-decisive) w.r.t. � from s1. We have that for every n ∈ N, qsup,+ 

n = 1  
(achieved by only choosing α), and yet Psup 

M,s1 
(F �) < 1. 

Finally, the finitely action-branching hypothesis is also critical. Recall that 
for the infinitely branching MDP in Example 3, the  Approx Schemeinf 1 does not 
converge from s0. Yet, this MDP is inf-decisive w.r.t. � from s0. 

Despite the differences between the two approximation schemes, we have that 
for finitely branching MDPs, the convergence of Approx Schemeinf 2 implies the 
convergence of Approx Schemeinf 1 . 

Theorem 5. Let M = (S, Act, P) be a finitely branching MDP, s0 ∈ S be an ini-
tial state, and � be a target state. If Approx Schemeinf 2 converges on M from s0, 
then Approx Schemeinf 1 converges on M from s0. 

5.2 Convergence of Approx Schemeopt 2 

By applying the result and the discussion of Sect. 5.1, we already know that 
Approx Schemeopt 2 converges under the conditions of Theorem 4, that is, when the 
MDP is finitely action-branching and opt-decisive. The sup-decisiveness property 
is rather restrictive and is not satisfied by finite MDPs, while Approx Schemesup 2 

obviously converges on finite MDPs. We therefore propose alternative conditions 
that ensure the convergence of Approx Schemesup 2 . 

Definition 7. Let M = (S, Act, P) be an MDP, � ∈ S be a target state, and 
s ∈ S be an initial state. The MDP M is non-fleeing w.r.t. � whenever for
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every σ ∈ Schedpp(M), 

Pσ 
Msup,s0 

(div ∩ F Avoidσ 
Msup (�)) = 0 

where div is the event
⋂

n∈N

(
F

(
Ssup 

n+1\Ssup 
n

))
. 

We explain the intuition of that notion through its negation: being fleeing 
corresponds to the possibility (in a probabilistic sense) to fly away from the 
origin of the MDP (and in particular never reach the target)—and even reach 
the avoid set of the current scheduler—in such a way that at any point, there 
exists a deviating scheduler that would reach the target (otherwise it would hit 
the avoid set summarized as �sup in Msup). 

Theorem 6. Let M = (S, Act, P) be an MDP, s0 ∈ S be an initial state, and �
be a target state. Assume that M is finitely branching, univ-decisive w.r.t. �
from s0, and non-fleeing. Then, Approx Scheme

opt 
2 converges on M from s0. 

The convergence condition in this theorem is incomparable to the one in 
Theorem 4: on the one hand, sup-decisiveness implies univ-decisiveness and non-
fleeingness, so this condition is less restrictive; on the other hand, this theorem 
deals with finitely branching MDPs, as opposed to the more general finitely 
action-branching MDPs of Theorem 4. To prove this theorem, thanks to Theo-
rem 3, it suffices to show the following (proof in [ 9, Appendix D]). 

Lemma 7. If M is finitely branching, univ-decisive, and non-fleeing, then 

lim
n→∞ 

P
sup 
Msup 

n ,s0 
(F sn 

⊥) = 0  . 

6 Applications 

We discuss the instantiation of the above approximation schemes into approx-
imation algorithms for two concrete classes of systems: non-deterministic and 
probabilistic lossy channel systems (NPLCSs) and partially observable MDPs 
(POMDPs). Although theses models have distinct sources of randomness and 
infiniteness, they both induce countably infinite MDPs, where states are “con-
figurations” of the system (control states and channel contents for NPLCSs, 
rational beliefs for POMDPs). In each case, we show that the induced MDPs (or 
small modifications thereof) satisfy a kind of decisiveness, which allows to use 
approximation schemes. We then show how to effectively compute approxima-
tions of the infimum reachability probabilities. 

6.1 Lossy Channel Systems 

In our first application, we consider the case where MDPs are induced by a prob-
abilistic variant of lossy channel systems. Non-deterministic and probabilistic 
lossy channel systems build on channel systems, incorporating probabilistic mes-
sage losses and allowing non-deterministic choices between possible read/write 
actions [ 6,10].
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Lossy Channel Systems and Induced MDP Semantics. A channel system is a 
tuple S = (Q, C, M, L,Δ) consisting of a finite set Q of control states, a finite set 
C of channels, a finite message alphabet M, a finite set L of silent action labels, 
and a finite set Δ of transition rules. Each transition rule has the form q op −→ p 
where op is an operation of the form 

– c!m for c ∈ C  and m ∈ M, representing the sending of message m along 
channel c; 

– c?m for c ∈ C  and m ∈ M, representing the reception of message m from 
channel c; 

– � ∈ L, representing an internal action labeled with � with no corresponding 
sending/reception. 

Messages are stored in FIFO queues, and the contents of the queues are natu-
rally represented by finite words over M. A  configuration of a channel system S 
is a pair (q, w) ∈ Q × (M∗)C consisting of a control state and of words describing 
each channel’s contents. A transition rule δ = (q, op, q′) is  enabled in a configu-
ration (p, w) if  p = q and one of the following conditions applies: op = c?m and 
w(c) =  mv with v ∈ M∗, or  op = c!m, or  op ∈ L. If so, firing δ from (q, w) 
yields the configuration δ(q, w) = (q′, w′) where, if op = c?m then w′(c) =  v 
and for every c′ 	= c, w′(c′) =  w(c′) (message m is read from channel c), if 
op = c!m then w′(c) =  w(c)m and for every c′ 	= c, w′(c′) =  w(c′) (message m is 
written to channel c), and if op = � ∈ L then for every c ∈ C, w′(c) =  w(c) (no  
operation is performed on the channels contents). 

A non-deterministic and probabilistic lossy channel system (NPLCS) is a 
pair N = (S, λ) consisting of a channel system S and a loss rate λ ∈ (0, 1). Its 
semantics is the MDP M[N ] = (S, Act, P) where 

– S = Q × (M∗)C : states are configurations of S; 
– Act = Δ: actions are transition rules of S; 
– the probabilistic transition function P is defined as follows 

P((q, w), δ,  (q′, w′)) =

{
λ|v|−|w′|(1 − λ)|w′|( v 

w′
)

if δ(q, w) = (q′, v) 
0 in all other cases. 

where the combinatorial coefficient
(
v 
w′

)
is the number of different embeddings 

of w′ in v. When writing δ(q, w) = (q′, v), we implicitly assume that δ is 
enabled in (q, w). 

So defined, actions available from a configuration of an NPLCS correspond to 
transition rules that are enabled in the underlying channel system, and the 
successor configuration is obtained in two steps: first the rule is applied (possibly 
modifying the channels contents from w to v), and second each message is lost 
independently with probability λ (and kept with probability (1 − λ)) so that the 
resulting channels contents is w′. 

In the sequel, when S and λ are clear from the context, we may simply write 
M for the MDP M[S, λ].
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Figure 5 represents a simple example of a channel system with a single chan-
nel (thus omitted in the action labels). Figure 6 shows an excerpt of the MDP 
induced by this channel system with a loss rate λ = .2. Because of the FIFO 
policy, the control state � can only be reached from the initial configuration 
(q, ε) if messages are lost, for instance along this execution where a message is 
lost in the first step: 

(p, ε) !b−→ (q, ε) !a−→ (q, a) !a−→ (q, aa) ?a−→ (p, a) !b−→ (q, ab) ?a−→ (p, b) ?b−→ (�, ε) . 

Fig. 5. A simple example of a channel system (with a single FIFO channel). 

Fig. 6. An excerpt of MDP M[N ] induced by the NPLCS N from Fig. 5 with λ = .2: 
actions and states beyond the gray configurations are omitted. 

We first state (un)decidability of comparing optimum reachability probabil-
ities to qualitative threshold (0 or 1), and then use the inf-decisiveness property 
to show infimum reachability probability can be approximated in NPLCSs. 

Qualitative Problems. We start with qualitative reachability in NPLCSs. Missing 
proofs are provided in [ 9, Appendix E]. 

Theorem 7. When � ⊆ Q is a set of control states, the following problems are 
decidable for NPLCSs:
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1. Pinf(F �) = 1; 
2. Psup(F �) = 0; 
3. Pinf(F �) = 0. 

Yet, we establish the undecidability of the value-1 problem for NPLCSs, 
which also contrasts with the fact that the existence of a scheduler ensuring 
almost surely a reachability objective is decidable for NPLCSs [ 6]. 

Theorem 8. The problem whether Psup(F �) = 1  is undecidable for NPLCSs. 

Approximation of the Infimum Reachability Probability. Iyer and Narasihma pro-
vided an approximation scheme for reachability probabilities in probabilistic 
channel systems, whose semantics is given by a countable Markov chain [ 25]. 
This result was then generalized to all decisive Markov chains by Abdulla, Ben 
Henda, and Mayr [ 1]. Here we show that, as far as infimum reachability probabil-
ities are concerned, our approximation schemes can be used for MDPs induced 
by NPLCSs, thus lifting the early result of [ 25] from Markov chains to MDPs. 

The key to prove the feasibility of approximating infimum reachability prob-
abilities for NPLCSs is their finite attractor property: 

Lemma 8 ([ 6], Proposition 4.2). Let N be an NPLCS. Then M[N ] has a 
finite attractor. 

More precisely, the set of configurations with empty channels is a finite 
attractor for M[N ]. We deduce by Proposition 1 that M[N ] is univ-decisive, 
hence inf-decisive, from (q0, ε) w.r.t. any set F . The two approximation schemes 
Approx Schemeinf 1 and Approx Schemeinf 2 thus converge and are correct by The-
orems 4 and 2. 

Theorem 9. There exists an algorithm that, given an NPLCS N with initial 
state q0, goal set � ⊆ Q and a rational number ε >  0, returns a value ε-close to 
Pinf 

M[N ],q0 
(F �). 

It remains to discuss the effectiveness of the schemes. Assuming finite action-
branching, thanks to Lemma 2 (item 1), computing Avoidinf M(�) amounts to 
computing states from which one can almost-surely avoid � under a pure and 
positional scheduler, which amounts to computing states from which one can 
(surely) avoid �. The latter set can be effectively computed as a fixed point [ 6]. 

6.2 Partially Observable MDPs 

We focus in this section on partially observable Markov decision processes, abbre-
viated POMDPs [ 16,26]. Like MDPs, they exhibit both nondeterminism and 
probabilistic transitions; they are more general in that the scheduler making 
decisions does not know the current state of the system in general, but only 
receives a signal at each step that gives partial information about the current 
state. All decisions must be based on the sequence of signals received (and not the
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states visited) up to some point. Given such a sequence, a common way to repre-
sent the most accurate information about our current knowledge of the state of 
the system is through the probability distribution on the possible states, called a 
belief. Even though we consider POMDPs with finitely many states, actions, and 
signals, POMDPs are relevant in our framework as they each induce naturally 
an infinite MDP on the state space of beliefs. 

Most natural quantitative problems in POMDPs are undecidable, already 
for simple reachability and safety (i.e., sup and inf reachability) objectives. 
This undecidability stems from results on the less general model of probabilistic 
automata [ 21,23,32,34]. Here are some examples of undecidable problems for 
probabilistic automata (and thus for POMDPs): 

– Given a probabilistic automaton and a threshold λ ∈ (0, 1), decide whether 
there is a scheduler that ensures that a goal state is reached with probability 
at least λ [ 34]. The same holds replacing “reached” by “avoided”. 

– Given a probabilistic automaton, decide whether the supremum probability 
of reaching a goal state is 1 [ 23]. 

– Given ε >  0 and a probabilistic automaton such that either (i) there is a 
word accepted with probability at least 1 − ε or (ii) all words are accepted 
with probability at most ε, decide which case holds [ 32]. 

The latter problem is especially relevant to our setting, as it implies that there 
is no approximation algorithm for the supremum probability of reachability in 
POMDPs. Hence, we will not be able to make use of Approx Schemesup 1 or 
Approx Schemesup 2 on general POMDPs. 

Yet, none of these results imply that the infimum reachability probability 
(i.e., the supremum value of safety) cannot be approximated in POMDPs. Using 
the inf-decisiveness property and Approx Schemeinf 1 , we show that there exists 
such an algorithm. 

POMDPs and Induced MDP Semantics. We first recall basic notions on partially 
observable MDPs (POMDPs). 

Definition 8. A partially observable MDP is a tuple P = (Q, Act, Sig, P) where 
Q is a finite set of states, Act is a finite set of actions, Sig is a finite set of 
signals, and P : Q × Act × Sig × Q → [0, 1] ∩ Q is a transition function such that 
for all q ∈ Q and a ∈ Act,

∑
s∈Sig

∑
q′∈Q P(q, a, s, q′) = 1. 

The main difference with the semantics of an MDP is that, in the case of 
POMDPs, the information of the current state is not known by schedulers in 
general; schedulers must base their decisions on the signals they receive (as well 
as the actions they have already selected). To keep this section concise, we will 
only express the semantics of POMDPs through the equivalent formulation of 
belief MDPs [ 26] below. 

Let P = (Q, Act, Sig, P) be a POMDP. We assume without loss of generality 
that there is a distinguished state q� ∈ Q and a distinguished signal done ∈ Sig 
such that for all q ∈ Q and a ∈ Act, P(q, a, s, q�) > 0 implies s = done, and for



Decisiveness for Countable MDPs and Insights for NPLCSs and POMDPs 93

all a ∈ Act, P(q�, a,  done, q�) = 1. In other words, when the state q� is reached, 
the scheduler is aware of it (through the observation of signal done) and cannot 
escape it. We recall that we focus in this section on the infimum probability of 
reachability, which means we try as much as possible not to reach state q�. 

We write DistQ(Q) =  {b : Q → [0, 1] ∩ Q | ∑
q∈Q b(q) = 1} for the set of 

distributions over Q with rational values. A belief (of P) is a probability distri-
bution b ∈ DistQ(Q). The belief-update function is the function B : DistQ(Q) × 
Act × Sig → DistQ(Q) such that for all (b, a,  s) ∈ DistQ(Q) × Act × Sig, 

B(b, a,  s)(q′) =

∑
q∈Q b(q) · P(q, a, s, q′)

∑
q∈Q(b(q) · ∑

q′′∈Q P(q, a, s, q′′)) 
. 

The belief B(b, a,  s) corresponds to the new belief that the scheduler has after 
selecting action a and observing signal s from belief b. The  support supp(b) 
of a belief b is the set {q ∈ Q | b(q) > 0}. The set of all belief supports 
then corresponds to the set 2Q \ {∅}. In what follows, we denote beliefs (i.e., 
distributions) with font b, and belief supports (i.e., sets) with font b. 

The belief MDP of P is the infinite MDP M[P] = (DistQ(Q), Act, PP) where 
DistQ(Q) is the  set of beliefs,  Act is the set of actions, and PP : DistQ(Q)× Act × 
DistQ(Q) → [0, 1] ∩ Q is 

PP(b, a,  b′) =
∑

s∈Sig s.t. 
B(b,a,s)=b′

∑

q,q′∈Q 

b(q) · P(q, a, s, q′) . 

Given our assumptions about the state q� of P, we have that as soon as  q�
is reached in the POMDP, we reach the corresponding belief q� �→ 1 in the  
belief MDP. We denote this belief by �. 

If q0 ∈ Q, we abusively write Pinf 
M[P],q0 

(F �) for the infimum probability of 
reaching � in M[P] starting from the belief q0 �→ 1 (i.e., we assimilate the 
notation q0 to the belief q0 �→ 1). 

Approximation of the Infimum Reachability Probability. Our plan is to apply 
Theorem 4 (and thus Approx Schemeinf 1 ) to the infinite MDP M[P] to approxi-
mate the infimum probability of reaching the goal state in a POMDP P. Observe 
first that M[P] is finitely action-branching as there are only finitely many actions 
in Act (and actually, even finitely branching as there are only finitely many sig-
nals in Sig, but this is not necessary to use Theorem 4). We would therefore 
need some kind of inf-decisiveness for M[P]. However, in general, M[P] is not  
inf-decisive. 

Example 4. Consider the POMDP P in Fig. 7. It has a single action α. Starting 
from q0, if  q1 is reached, then only signal s will ever be seen. Yet, through 
successive observations of s, the scheduler can never be sure to be in q1; there 
is a decreasing but positive probability that the current state is q2. Formally, 
the belief bn after seeing the sequence of signals sn (with n ≥ 1) is defined by 
bn(q1) = 1− 1 2n and bn(q2) =  1 2n . All these beliefs still have a positive probability
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to reach � (from q2), so none of them are in Avoidinf M[P](�). There is therefore 
a positive probability to stay in a region of M[P] that is neither � nor in 
Avoidinf M[P](�), which shows that M[P] is not inf-decisive w.r.t. � from q0. 

Fig. 7. A POMDP  P such that M[P] is not inf-decisive w.r.t. � from q0. 

Our proof scheme is as follows: even though M[P] is not inf-decisive in 
general, we show that from every POMDP P and every ε >  0, we can modify 
M[P] slightly to obtain an infinite MDP M[P]ε such that: 

– M[P]ε is inf-decisive (Lemma 9), 
– the infimum probability of reaching the goal state in M[P]ε is within ε of the 

infimum probability of reaching the goal state in M[P] (Lemma 10). 

To obtain an approximation algorithm, we then discuss how to compute effec-
tively the sequences (pinf,− 

n )n and (pinf,+ 
n )n in the infinite M[P]ε given the finite 

representation of P (Theorem 10). 
Let P = (Q, Act, Sig, P) be a POMDP,  q0 ∈ Q be an initial state, and ε >  0. 

We construct M[P]ε from M[P]. 
Observe that if a belief b is such that there is a scheduler σ such that 

Pσ 
M[P],b(F �) = 0, then for all beliefs b′ with supp(b′) =  supp(b), we also have 

Pσ 
M[P],b′(F �) = 0. We define 

B=0 = {b ∈ 2Q \  {∅} | ∃σ, ∀b s.t. supp(b) =  b, Pσ 
M[P],b(F �) = 0}. 

To build M[P]ε, we merge some specific beliefs of M[P] into a single, new 
absorbing state �ε . The beliefs that are merged are the beliefs b such that 

∃b′ ⊆ supp(b) s.t. b′ ∈ B=0 and
∑

q∈b′
b(q) ≥ 1 − ε .  

We call such a belief a (1 − ε)-avoiding belief. Intuitively, such a belief is one 
such that, if the current state is in a specific subset b′ of the support (which 
occurs with probability ≥ 1 − ε), a scheduler can ensure that the goal state is 
never reached. 

Formally, we define the state space of M[P]ε as 

Sε = {�ε} ∪ {b ∈ DistQ(Q) | b is not (1 − ε)-avoiding} .
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The transitions are then kept the same as in M[P], except that the transitions 
to a (1 − ε)-avoiding belief are redirected to the absorbing state �ε . 

Example 5. We build the MDP M[P]ε obtained from the POMDP P in Exam-
ple 4, with ε = 1 8 . It is shown in Fig. 8; we recall that state � in M[P] corre-
sponds to the belief q� �→ 1. 

Observe that the only belief support in B=0 is {q1}. Hence, the beliefs that 
are (1 − ε)-avoiding are the beliefs b such that b(q1) ≥ 7 8 . The MDP M[P]ε is 
even finite, and so is inf-decisive. 

Fig. 8. The MDP M[P]ε obtained from P in Example 4 with ε = 1 
8 
. 

We can now state the aforementioned results leading to an approximation 
algorithm for the infimum probability of reachability in POMDPs (proofs in [ 9, 
Appendix F]). 

Lemma 9. The infinite MDP M[P]ε is inf-decisive. 

Lemma 10. We have that 

Pinf 
M[P]ε,q0 

(F �) ≤ Pinf 
M[P],q0 

(F �) ≤ Pinf 
M[P]ε,q0 

(F �) +  ε .  

Theorem 10. There exists an algorithm that, given any POMDP P and ratio-
nal number ε >  0, returns a value ε-close to Pinf 

M[P],q0 
(F �). 

Proof. We describe the algorithm. Let P be a POMDP and ε >  0 be rational. 
We consider the MDP M[P]ε/2, which is inf-decisive by Lemma 9. As  M[P]ε/2 is 
finitely action-branching, approximation scheme Approx Schemeinf 1 is converging 
(Theorem 4). 

It remains to argue that the sequences (pinf,− 
n )n and (pinf,+ 

n )n appearing in 
Approx Schemeinf 1 can be computed effectively. We first compute the set B=0; 
this corresponds to multiple almost-sure safety problems on P, which are decid-
able [ 16]. All beliefs up to a fixed depth can be computed exactly (they are all 
arrays of rational numbers), and since B=0 was precomputed, we can decide 
whether a belief is (1 − ε 

2 )-avoiding (and thus whether we have reached �ε/2 

in M[P]ε/2).
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Hence, we have an effective algorithm that returns a value v such that 
Pinf 

M[P]ε/2,q0 
(F �) − ε 

2 ≤ v ≤ Pinf 
M[P]ε/2,q0 

(F �) +  ε 
2 . By Lemma 10, we have  

that Pinf 
M[P]ε/2,q0 

(F �) ≤ Pinf 
M[P],q0 

(F �) ≤ Pinf 
M[P]ε/2,q0 

(F �) +  ε 
2 . Hence, 

Pinf 
M[P],q0 

(F �) − ε ≤ v ≤ Pinf 
M[P],q0 

(F �) +  ε 
2 

, 

which suffices for an approximation algorithm with precision ε. 
�

7 Conclusion 

We extended the decisiveness notion from Markov chains to Markov decision 
processes (MDPs) and demonstrated how to leverage this property to derive 
approximation schemes for optimum reachability probabilities (corresponding 
to maximizing the probability of reachability or safety objectives). The notion 
of inf-decisiveness appears to be of practical relevance, as we showed that it 
enables the approximation of the infimum reachability probability in two impor-
tant classes of models: nondeterministic and probabilistic lossy channel systems 
and partially observable MDPs. The stronger notion of sup-decisiveness, while 
not yielding here new decidability results for specific MDP classes, provides valu-
able insights through its connection to the stopping notion and the convergence 
of value iteration for finite MDPs. 

Natural directions for future research include extending our framework to 
richer objectives (e.g., repeated reachability) and exploring its applicability to 
broader classes of models (e.g., probabilistic vector addition systems with states). 
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Lottery. 
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vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31 

19. Etessami, K., Wojtczak, D., Yannakakis, M.: Quasi-birth-death processes, tree-like 
QBDs, probabilistic 1-counter automata, and pushdown systems. Perform. Eval. 
67(9), 837–857 (2010). https://doi.org/10.1016/j.peva.2009.12.009 

20. Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. Logical 
Methods Comput. Sci. 4(4) (2008). https://doi.org/10.2168/LMCS-4(4:7)2008 

21. Fijalkow, N.: Undecidability results for probabilistic automata. ACM SIGLOG 
News 4(4), 10–17 (2017). https://doi.org/10.1145/3157831.3157833

https://doi.org/10.1145/1297658.1297663
https://doi.org/10.1145/1297658.1297663
https://doi.org/10.1145/1297658.1297663
https://doi.org/10.1145/1297658.1297663
https://doi.org/10.1145/1297658.1297663
https://doi.org/10.1145/1297658.1297663
https://doi.org/10.1145/1297658.1297663
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://arxiv.org/abs/2008.10426
https://arxiv.org/abs/2008.10426
https://arxiv.org/abs/2008.10426
https://arxiv.org/abs/2008.10426
https://arxiv.org/abs/2008.10426
https://arxiv.org/abs/2008.10426
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.1007/3-540-36576-1_8
https://doi.org/10.4204/EPTCS.117.8
https://doi.org/10.4204/EPTCS.117.8
https://doi.org/10.4204/EPTCS.117.8
https://doi.org/10.4204/EPTCS.117.8
https://doi.org/10.4204/EPTCS.117.8
https://doi.org/10.4204/EPTCS.117.8
https://doi.org/10.4204/EPTCS.117.8
https://doi.org/10.4204/EPTCS.117.8
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1007/978-3-642-22012-8_26
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1016/J.IC.2011.02.002
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/J.JCSS.2016.02.009
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.1016/j.peva.2009.12.009
https://doi.org/10.2168/LMCS-4(4:7)2008
https://doi.org/10.2168/LMCS-4(4:7)2008
https://doi.org/10.2168/LMCS-4(4:7)2008
https://doi.org/10.2168/LMCS-4(4:7)2008
https://doi.org/10.2168/LMCS-4(4:7)2008
https://doi.org/10.2168/LMCS-4(4:7)2008
https://doi.org/10.2168/LMCS-4(4:7)2008
https://doi.org/10.2168/LMCS-4(4:7)2008
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.1145/3157831.3157833


98 N. Bertrand et al.

22. Finkel, A., Haddad, S., Ye, L.: About decisiveness of dynamic probabilistic models. 
In: Proceedings of 34th International Conference on Concurrency Theory (CON-
CUR’23). LIPIcs, vol. 279, pp. 14:1–14:17. Leibniz-Zentrum für Informatik (2023). 
https://doi.org/10.4230/LIPICS.CONCUR.2023.14 

23. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: decidable and 
undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf 
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538. 
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 44 

24. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs. 
Theoret. Comput. Sci. 735, 111–131 (2018). https://doi.org/10.1016/j.tcs.2016. 
12.003 

25. Iyer, S., Narasimha, M.: Probabilistic lossy channel systems. In: Proceedings 7th 
International Conference on Theory and Practice of Software Development (TAP-
SOFT’97). Lecture Notes in Computer Science, vol. 1214, pp. 667–681. Springer, 
Cham (1997). https://doi.org/10.1007/BFB0030633 

26. Kaelbling, L., Littman, M.L., Cassandra, A.R.: Planning and acting in partially 
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998). https://doi. 
org/10.1016/S0004-3702(98)00023-X 

27. Kiefer, S., Mayr, R., Shirmohammadi, M., Totzke, P., Wojtczak, D.: How to play 
in infinite MDPs (invited talk). In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 
Proc. 47th International Colloquium on Automata, Languages, and Programming 
(ICALP 2020). LIPIcs, vol. 168, pp. 3:1–3:18. Leibniz-Zentrum für Informatik 
(2020). https://doi.org/10.4230/LIPICS.ICALP.2020.3 

28. Kiefer, S., Mayr, R., Shirmohammadi, M., Wojtczak, D.: Parity objectives in count-
able MDPs. In: Proceedings of 32th Annual Symposium on Logic in Computer 
Science (LICS 2017), pp. 1–11. IEEE Computer Society Press (2017). https://doi. 
org/10.1109/LICS.2017.8005100 

29. Kucera, A.: Lectures in Game Theory for Computer Scientists. Cambridge Univer-
sity Press, Turn-Based Stochastic Games (2011). chap 

30. Kucera, A., Esparza, J., Mayr, R.: Model checking probabilistic pushdown 
automata. Logical Methods Comput. Sci. 2(1) (2006). https://doi.org/10.2168/ 
LMCS-2(1:2)2006 

31. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic 
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, 
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47 

32. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning 
and infinite-horizon partially observable Markov decision problems. In: Hendler, J., 
Subramanian, D. (eds.) Proc. 16th National Conference on Artificial Intelligence 
and Eleventh Conference on Innovative Applications of Artificial Intelligence, pp. 
541–548. AAAI Press / The MIT Press (1999) 

33. Ornstein, D.: On the existence of stationary optimal strategies. Proc. Am. Math. 
Soc. 20(2), 563–569 (1969). http://www.jstor.org/stable/2035700 

34. Paz, A.: Introduction to Probabilistic Automata. Academic Press (1971) 
35. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley Series in Probability and Statistics, Wiley, 1st edn. (1994). 
https://doi.org/10.1002/9780470316887 

36. Sericola, B.: Markov Chains: Theory, Algorithms and Applications. Wiley, Hoboken 
(2013) 

37. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. 39(10), 1095–1100 (1953). 
https://doi.org/10.1073/pnas.39.10.1095

https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/BFB0030633
https://doi.org/10.1007/BFB0030633
https://doi.org/10.1007/BFB0030633
https://doi.org/10.1007/BFB0030633
https://doi.org/10.1007/BFB0030633
https://doi.org/10.1007/BFB0030633
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.4230/LIPICS.ICALP.2020.3
https://doi.org/10.1109/LICS.2017.8005100
https://doi.org/10.1109/LICS.2017.8005100
https://doi.org/10.1109/LICS.2017.8005100
https://doi.org/10.1109/LICS.2017.8005100
https://doi.org/10.1109/LICS.2017.8005100
https://doi.org/10.1109/LICS.2017.8005100
https://doi.org/10.1109/LICS.2017.8005100
https://doi.org/10.1109/LICS.2017.8005100
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://www.jstor.org/stable/2035700
http://www.jstor.org/stable/2035700
http://www.jstor.org/stable/2035700
http://www.jstor.org/stable/2035700
http://www.jstor.org/stable/2035700
http://www.jstor.org/stable/2035700
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1073/pnas.39.10.1095

