Alternative processing route of WC-Ni cemented carbides

UMONS Université de Mons Alexandre Mégret, Véronique Vitry, Fabienne Delaunois Metallurgy Department, University of Mons, 20 Place du Parc, 7000 Mons, Belgium

PLANSEE
SEMINAR
21 | 2025

Context

WC-Ni are processed by powder metallurgy

- → Press and Sinter route
- → Milling is necessary for mixing powders
- → Long times and high energy needed for good homogenisation

Proposition: coating of the WC particles by electroless plating (reduction of Ni salt by NaBH₄)

Advantages: time and cost saving (no milling and no pre-treatment needed)

Methods

WC powder

Electroless bath parameters

Compound	Formula	Content (per L)
Source of Ni ions	NiCl ₂ ·6H ₂ O	24 g
Complexing agent	$C_2H_8N_2$	60 ml
Reducing agent	NaBH₄	0.6 g
pH regulator	NaOH	39 g
Stabilizer	PbWO ₃	2 ml / 0 ml
Temperature	_	85°C / 90 °C
Time	_	5 min

Post-processing

- Washing in demineralized water
- Centrifugation for recovery
- Drying 100°C 12 h

Thermodynamic modelling

- Pseudo-binary W-C-Ni-B phase diagram
- Fixed Ni (10 wt.%) and B (0.2 wt.%) contents

Results

Expected extra phases: graphite and (Ni,W)₂B

■ICP

Plating temperature 95°C -> rapid reaction that is difficult to control

Plating temperature 85/90°C → suitable Ni content for applications (cutting tools or wear parts) → co-deposition of B

Red arrows → coated WC particles with NiB

Green arrows → Ni particles in the bath

High standard deviations \rightarrow inhomogeneous microstructures (η -phase and/or nickel pools) $90^{\circ}\text{C} - 5 \text{ g} \rightarrow \text{low hardness (}1100\text{-}1200 \text{ HV}_{30}\text{)}$ due to high nickel content and large WC grains $90^{\circ}\text{C} - 10 \text{ g} \rightarrow \text{higher hardness (around 1500 HV}_{30}\text{)}$ due to more homogeneous microstructure/

Conclusions et perspectives

Optimized sintered part reached a hardness of $1570 \pm 70 \text{ HV}_{30}$ and a facture toughness of $11.3 \pm 2.1 \text{ MPa}\sqrt{\text{m}}$ (plating conditions: 90°C and 10 g).

Optimization of the sintering temperature needed to reduce η -phase and thus to improve mechanical properties

Acknowledgments

FNRS for funding the CdR J.0038.19 "E-WC"

Materia Nova for SEM analysis

