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Abstract

In this thesis, we derive the equations of motion of Chiral Higher Spin Gravity (HiSGRA) in

terms of its underlying L∞-algebra. Chiral HiSGRA contains self-dual Yang-Mills and self-

dual gravity as closed subsectors, which themselves form closed subsectors of Yang-Mills and

general relativity. We begin by constructing a covariant formulation for self-dual Yang-Mills

and self-dual gravity, and subsequently extend this construction to the full Chiral Higher Spin

Gravity.

Remarkably, the L∞-algebra is constructed from an A∞-algebra of pre-Calabi-Yau type,

suggesting a deep connection to non-commutative deformation quantization. The structure

maps of the resulting L∞-algebra are expressed as integrals of a simple exponential over convex

polygons in R2. The existence of this covariant and coordinate independent formulation of

chiral HiSGRA demonstrates, via the AdS/CFT correspondence, that O(N) vector models

possess a closed chiral subsector.

Finally, we prove that the A∞-algebra follows from Stokes’ theorem – a crucial feature of

the known formality theorems. To this end, we construct integration spaces that generalize

convex polygons to R3, and are intimately connected to positive Grassmanians. This Stokes-

based derivation points towards a novel generalization of Kontsevich’ formality theorem to the

non-commutative setting.
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Chapter 1

Introduction

1.1 Motivation

Spin

0 Higgs

1
2

Matter: electron, neutrinos,
quarks, ...

1
Photon, gluons, W±, Z bosons
Yang-Mills Theory

3
2 Gravitino

2 Graviton, GR

5
2

3

7
2

4

SUGRA

HiSGRA

Figure 1.1: The standard model and

general relativity are described by

fields up to spin 2. In addition to this

lower-spin sector, HiSGRA also incor-

porates higher spins. Figure adopted

from [1]

Today, our best understanding of the universe is for-

mulated in the remarkably successful standard model

and theory of general relativity. The latter describes

the dynamics of spacetime by means of differential ge-

ometry, giving rise to gravity and various other effects.

Meanwhile, the standard model explains the behaviour

of the fundamental particles that everything in the uni-

verse consists of in the framework of quantum field the-

ory. It consists of a collection of interacting particles,

or rather, quantum fields, of spin up to 1. In the spin 0

sector, it describes the Higgs field, which is responsible

for giving mass to other fundamental particles. Matter,

such as the quarks and electrons that constitute atoms,

live in the spin 1/2 sector, while the electromagnetic,

the weak and the strong nuclear force are mediated by

spin 1 fields, i.e. photons, gluons, W± and Z bosons.

This is neatly summarized in Figure 1.1. Mathemati-

cally, spin labels the irreducible representations of the

Lorentz algebra (or more precisely, its double cover).

From a group-theoretic perspective, it can take arbi-

trary integer and half-integer values. However, all ele-

mentary particles observed in nature so far are bounded

by spin-1. Still, it has been theorized that if general

relativity could be incorporated into the framework of

quantum field theory, it would be mediated by the graviton, a massless spin-2 particle [2].

Although gravitons have not been observed so far, the vast majority of the physics community

believes that their existence – and with it, a quantum field theory description of general rel-

1



2 CHAPTER 1. INTRODUCTION

ativity – could be key to understanding profound questions regarding black hole singularities,

dark matter, dark energy, and more.

From the theoretical side, the existence of irreducible representations alone is not sufficient

to be physically relevant; one still needs to construct a consistent, interacting theory containing

them in the spectrum. This has proven to be particularly difficult for spin higher than 2. In fact,

various no-go theorems, including the famous Weinberg’s low-energy theorem [2] and Coleman-

Mandula theorem [3], have ruled out the existence of such theories in specific settings. We

will discuss these theorems in more detail later. However, these no-go theorems often require

certain assumptions, such as a vanishing cosmological constant, analyticity of the S-matrix,

a finite spectrum, unitarity, etc. HiSGRA (higher spin gravity) is the study of theories that

contain the graviton and at least one interacting massless higher spin (s ≥ 2) field in its

spectrum and it probes the theories that are viable when some assumptions in these no-go

theorems are relaxed.

As was already touched upon briefly, a longstanding problem in physics is the construction

of a theory of quantum gravity. This entails the inclusion of the graviton, a massless spin-2

particle, in the framework of quantum field theory. Naive attempts to quantize the gravitational

field inevitably lead to a perturbatively non-renormalizable theory. Over the last decades, var-

ious resolutions have been proposed, including supersymmetry and string theory. Interestingly,

both possess the remarkable feature of canceling UV divergences, which greatly improves the

UV behaviour of gravity [4, 5]. These cancellations occur in supersymmetric theories due to

the extended symmetry, while in string theory, among other reasons, this is due to the presence

of an infinite tower of massive higher spin fields.

HiSGRA in four spacetime dimensions employs both strategies: its spectrum contains an

infinite tower of massless higher spin fields1, which, as a consequence of being massless, con-

stitute a gauge algebra of an underlying higher spin symmetry. The philosophy is simple: the

infinite-dimensional higher spin symmetry constrains the theory to such an extent that only

a few (or even no) counterterms are allowed. It is therefore believed that HiSGRA provides

a consistent, and potentially UV-finite, toy model of quantum gravity. Recent studies have

shown promising cancellations of UV divergences in various HiSGRA theories [7–11].

The reach of HiSGRA is not limited to quantum gravity alone; it also provides novel insights

into conformal field theories, including the celebrated Ising model, which remains not yet solved

exactly in 3D. This is achieved by means of holography. It was conjectured in [12] that HiSGRA

is holographically dual to Chern-Simons vector models. In the large-N limit, the conformal

symmetry is extended to an exact, infinite-dimensional higher spin symmetry and these models

correspond to free CFTs [13–15]. In this case, the higher spin symmetry is strong enough to fix

all correlation functions [16–19, 19, 20]. For finite N , interactions are turned on and the higher

spin symmetry is broken, leading to the non-conservation of higher spin currents. However, this

non-conservation occurs in a controlled manner, due to the sparse spectrum of Chern-Simons

1It was long believed that an infinite tower of massless states is required in 4d HiSGRa. However, it was
recently found that chiral HiSGRA contains many consistent truncations of chiral HiSGRA with a finite number
of fields [6].
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vector models. Specifically, this ensures that the non-conservation is expressed in terms of

composite operators built from higher spin currents themselves. This is often referred to as

slightly broken higher spin symmetry [21]. Early results suggest that slightly broken higher spin

symmetry is still strong enough to fix three-point and four-point functions [21–28].

The 3D Chern Simons vector models exhibit a couple of notable dualities, among which the

conjectured 3D bosonization duality [25, 29–33]. This duality states that the correlation func-

tions for models describing interacting fermions coincide with those of interacting bosons, i.e.

the observables in these theories are insensitive to their microscopic description. Slightly broken

higher spin symmetry is expected to be constraining enough to fix all correlation functions and

to express them in terms of higher spin invariants [22, 25].

The development of HiSGRA also has implications for pure mathematics. Exact higher

spin symmetry has been proposed to result from the deformation quantization of Poisson man-

ifolds. Kontsevich’ celebrated formality theorem guarantees the existence of an associative

star-product on every finite-dimensional Poisson manifold, with its deformation controlled by

the Poisson structure [34]. Many higher spin algebras2 can be realized as particular examples

of such star-product algebras [37], establishing a deep link between deformation quantization

and higher spin theory.

Interacting HiSGRA, however, must be constructed from a more general structure. Proposed

candidates include the deformation quantization of Poisson orbifolds and the non-commutative

deformation quantization of Poisson manifolds. The latter is a non-commutative deformation

of the associative star-product algebras and naturally leads to the construction of A∞-algebras,

from which L∞-algebras can be obtained that describe a field theory. These are examples of

strong homotopy algebras. The explicit construction of HiSGRA as its underlying L∞-algebra

may offer guidance to the generalization of Kontsevich’ formality theorem.

Another field that is deeply related to HiSGRA is string (field) theory. In this framework,

strings excitations form an infinite tower of massive higher spin fields. In the tension-less

limit, these fields become massless and are conjectured to be described by a HiSGRA [38–42].

Alternatively, string (field) theory can be thought of as a spontaneously broken phase of a

HiSGRA. Not only may enforcing the connection between string (field) theory and higher spin

theory result in insight into why string theory is UV-finite, but it would also provide a limit of

string (field) theory that allows for significantly more manageable computations.

1.1.1 History of HiSGRA

Although HiSGRA holds far-reaching promises, the construction of these theories has proven to

be remarkably difficult because of their extremely constraining nature. This is not surprising, as

a multitude of no-go theorems even go as far as disproving the existence of HiSGRA, albeit under

specific assumptions. Yet, over the past few decades, the development of HiSGRA has seen

substantial progress, with the construction of several concrete theories. To better understand

2Higher spin algebras were first described in [35] and [36].
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the technical challenges and the key successes of HiSGRA, let us give a brief historical account

of its development.

• In 1939, Wigner classified the irreducible unitary representations of the Poincaré group,

laying the foundations for massless and massive higher spin fields [43]. In the same year,

a consistent set of free equations of motion for massive fields of arbitrary spin propagating

in Minkowski space were obtained by Fierz and Pauli [44]. Due to the need to include

a variety of auxiliary fields to obtain a consistent Lagrangian formulation for these free

equations, this was only found in 1974 by Singh and Hagen [45].

• In 1978, a gauge-invariant set of free equations of motion describing massless tensor fields

of any spin was found by Fronsdal, generalizing lower spin gauge theories [46]. While this

was first obtained in flat space, Fronsdal lifted this result to (A)dS shortly after, opening

up the possibility to evade the no-go theorems.

• Despite these significant achievements, several no-go theorems3 emerged between the

1960s and 1980s that impose severe restrictions on interacting HiSGRA in flat space.

The most well-known of these are the Coleman-Mandula theorem [3] and Weinberg’s

low-energy theorem [2].

Weinberg’s theorem proves that long-range interactions involving massless fields of spin

s > 2 are inconsistent, effectively implying that the interaction strength must vanish.

The Coleman-Mandula theorem states that the symmetry group of a non-trivial, analytic,

unitary S-matrix with a finite number of particle types below any mass threshold is the

direct product of the Poincaré group and the internal symmetry group. In other words,

the symmetry group cannot mix spacetime and internal symmetries, as is required for

HiSGRA.

Other examples of no-go theorems – these particular ones formulated in the 1970s and

1980s – include the Weinberg-Witten theorem and the Aragone Deser argument. The

former should be combined with Weinberg’s low-energy theorem. This states that mass-

less higher spin fields couple minimally to gravitons at low energies, which in turn is

prohibited by the Weinberg-Witten theorem [48]. In the same vein, Aragone and Deser

studied a spin-5/2 particle coupled minimally to gravity and showed that this leads to

inconsistencies due to the breakdown of gauge-invariance – a result later generalized to

arbitrary spin [49, 50].

These theorems, however, are based on various assumptions, such as: the spectrum of the

theory contains a finite amount of particle types below any mass, higher spin particles

interact via minimal coupling, the S-matrix is analytic, the theory is unitary and local.

When any of these assumptions is lifted – for example, breaking unitarity or introducing

an infinite tower of fields – the no-go theorems no longer directly apply and may be cir-

cumvented, opening a door for the construction of a consistent formulation of interacting

3See [47] for a modern discussion on no-go theorems.
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HiSGRA. However, avoiding a number of assumptions does not have to immediately lead

to any consistent theory by itself.

Let us note that it has long been thought that moving to (A)dS is a way to avoid all

the no-go theorems. However, Weinberg/Coleman-Mandula theorems have a direct AdS

analog [51, 52]. In fact, thanks to AdS/CFT correspondence the proof of some no-go

results in flat space, the most notable being [53], can be streamlined [53–59]. At present,

there do not seem to be any invariant statements that would prefer (A)dS space to

the flat one, see e.g. discussion in [60]. For example, the two-derivative gravitational

interactions of massless higher-spin fields exist both in the 4d flat [15, 61, 62] and (A)dS4

[63] spacetimes. However, they cannot be written in terms of the standard Fronsdal

field: only the (2s− 2)-derivative can be constructed in the flat space and a fixed linear

combination of the 2-derivative and (2s− 2)-derivative ones can be constructed in AdS4

[35, 64]. The latter just shows that certain statements made within the Fronsdal approach

to higher spin fields do not have an invariant meaning.

• It was not until the 1980s that (some) interactions of higher-spin fields were studied,

see e.g. [35, 64–66]. Around the same time, the Vasiliev equation were introduced [67],

with generalizations to 3d [68] and arbitrary dimensions [69]. These equations provide a

formal framework for studying interactions in higher spin theories, though they are not

sufficiently restrictive to uniquely determine them. Essentially, the equations allow one

to parameterize in a neat way all possible gauge-invariant and, in general, nonlocal inter-

action vertices together with, in general, nonlocal field redefinitions. Therefore, being the

most general ansatz for interactions, the equations hide infinitely many free parameters.4

Most notably, the Vasiliev equations are built using the unfolding formalism [71], rather

than on the conventional construction from local Lagrangians. This formalism will be

discussed in greater detail later in this thesis.

The fields described in the Vasiliev equations live in an extended non-commutative space

where a star-product algebra defines the higher spin algebra. The construction of the

Vasiliev equations has led to a wide array of technical tools and profound conceptual

insights, many of which will play an important role in this thesis. However, one of the

main challenges of the Vasiliev formalism is that the interactions are manifestly non-local5,

see for instance [78] for a discussion. As a result, it is difficult to extract conventional

quantum field theory observables from the theory, such as the (holographic) S-matrix.

Other interacting HiSGRAs are conformal HiSGRA, which generalizes conformal gravity

[79]; topological (3D) HiSGRA, which generalizes the conventional formulation of gravity as

4For example, it is well-known that the Noether procedure is empty or, essentially, anything is a solution
provided the locality is abandoned [70]. Equivalently, in the light-cone gauge “any” function is a Hamiltonian
provided the boost generators are allowed to be nonlocal.

5Instead of trying to directly impose locality, which does not seem to be even possible for the complete
theory (with Chiral HiSGRA being a notable exception that can be associated to the self-dual truncation of
the complete HiSGRA) one can try to extract some physical observables directly at the level of the given
L∞-algebra, e.g. [72], or to resort to even more general ideas, e.g. [73–77, 77].
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Chern-Simons theory with gauge algebra sl(2,R)⊕ sl(2,R) to sl(N,R)⊕ sl(N,R), with N the

highest spin present in the theory [80–86]; and chiral HiSGRA [8, 10, 87], which generalizes

and unifies self-dual Yang-Mills and self-dual gravity with their higher spin extensions. It is

the latter theory that we investigate in this thesis and we will elaborate on it in more detail

later in the thesis.

1.2 Goals and structure of the thesis

The thesis follows two lines of research:

• The first is the construction of a covariant formulation of chiral HiSGRA in terms of its

underlying L∞-algebra, using the methods provided by the unfolding approach. In a few

words, we exploit the integrability of chiral HiSGRA to obtain the cubic structure map

of this L∞-algebra. From there, we employ homological perturbation theory (HPT) to

extend this result to higher order structure maps. We start by applying this procedure

to the self-dual theories, i.e. self-dual Yang-Mills and self-dual gravity, for which the

L∞-algebra is just a differential graded Lie algebra. These cases simplify greatly, because

for them the higher structure maps vanish.

This line is based on [88–92].

• The second concerns a connection to a putative extension of Kontsevich’ formality the-

orem. We uncover this by expressing the theory’s L∞-relations as Stokes’ theorem. His-

torically, the results were obtained using homological perturbation theory, but they will

be presented diagrammatically.

This line is based on [93].

The thesis is structured as follows. In Chapter 1, we start by reviewing some mathematical

methods that were used in the thesis, after which we offer a self-contained summary of the

papers this thesis is based on, omitting only technical details and computations. In Chapter

2, we construct the L∞-algebra for the self-dual theories SDYM and SDGR. This result is

generalized in Chapter 3, where we obtain the cubic interaction for chiral HiSGRA. In Chapter

4, we employ homological perturbation theory to derive all higher-point vertices for chiral

HiSGRA. The second line of research is captured in Chapter 5, where we prove the A∞-relations

underlying chiral HiSGRA using Stokes’ theorem. Chapter 6 concludes the main part of the

thesis with an overview of the results obtained in the thesis and a brief discussion. Finally, in

Appendix A we introduce some relevant notation and conventions and Appendix B, C and D

contain appendices relevant for Chapter 2, 3 and 4, respectively.
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1.3 Mathematical framework

Throughout this thesis, we make extensive use of concepts and techniques from strong homotopy

algebras, homological perturbation theory, and deformation quantization. In this section, we

aim to provide a brief and sufficient introduction to these topics, that will allow the reader

to read the remainder of the paper. More details on how homological perturbation theory is

applied in the thesis can be found in Appendix D.1 and Section 4.2.

For more information on strong homotopy algebras, we refer to [94, 95]. A discussion on

homological perturbation theory applied to HiSGRA can be found in [96] and [97, 98] contain

comprehensive reviews on deformation quantization.

1.3.1 Differential graded structures

The definition of strong homotopy algebras requires a prior understanding of differential graded

algebras and related structures, which we now discuss.

Definition 1.3.1 Consider the vector spaces Vn over the field C with degree n ∈ Z. Then,

the direct sum V =
⊕

n∈Z Vn is called a Z-graded vector space. An element vn ∈ Vn is called

homogeneous and is said to be of degree n, denoted |vn| = n.

Definition 1.3.2 A degree-shifted vector space V [l], l ∈ Z, is obtained by shifting the degrees

of the linear subspaces of V according to

V [l] =
⊕
k∈Z

(V [l])k , (V [l])k = Vk+l . (1.3.1)

Graded vector spaces are the starting point of the structures that appear in strong homotopy

algebras.

Definition 1.3.3 A differential graded vector space is a Z-graded vector space V together with

a differential d : V → V for which d(Vn) ⊂ Vn+1 and satisfies d2 = 0. The collection (V, d) is

called a cochain complex.

Equipped with an associative product, we obtain the structure of a differential graded algebra.

Definition 1.3.4 A differential graded algebra (DGA) is a differential graded vector space V

endowed with a product m : V ⊗ V → V of degree 0 that satisfies, given homogeneous elements

vi ∈ V ,

• associativity: m(v1,m(v2, v3)) = m(m(v1, v2), v3);

• graded Leibniz rule: dm(v1, v2) = m(dv1, v2) + (−1)|v1|m(v1, dv2).

Replacing the associative product with a graded Lie bracket gives rise to a differential graded

Lie algebra.
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Definition 1.3.5 A differential graded Lie algebra (DGLA) is a differential graded vector space

V endowed with a bracket [−,−] : Vn ⊗ Vm → Vn+m of degree 0 that satisfies

• graded skew-symmetry [v1, v2] = −(−1)|v1||v2|[v2, v1];

• graded Jacobi identity [v1, [v2, v3]] = [[v1, v2], v3] + (−1)|v1||v2|[v2, [v1, v3]];

• graded Leibniz rule d[v1, v2] = [dv1, v2] + (−1)|v1|[v1, dv2].

Adding commutativity, we obtain a differential graded commutative algebra.

Definition 1.3.6 A differential graded commutative algebra (DGCA) is a DGA whose product

is graded commutative, meaning it satisfies

m(v1, v2) = (−1)|v1||v2|m(v2, v1) (1.3.2)

for all homogeneous elements v1, v2.

The sign obtained from swapping multiple homogeneous elements is called the Koszul sign.

Definition 1.3.7 Let v1, . . . , vn be homogeneous element of a graded vector space, each with

degree vi. Let Sn denote the permutation group, i.e. the group of all permutations of the set

{1, . . . , n}. Given a permutation σ ∈ S, the Koszul sign ϵ(σ; v1, . . . , vn) is defined by:

vσ(1) ⊗ · · · ⊗ vσ(n) = ϵ(σ; v1, . . . , vn)v1 ⊗ · · · ⊗ vn , (1.3.3)

where the sign ϵ(σ; v1, . . . , vn) arises from swapping homogeneous elements according to

m(v1, v2) = (−1)|v1||v2|m(v2, v1) . (1.3.4)

1.3.2 Strong homotopy algebras

Strong homotopy algebras, being generalizations of differential graded algebras, include the

what is called A∞- and L∞- algebras, which we focus on in this thesis. More specifically, the

former is a generalization of the notion of a differential graded associative algebra (DGA) and

the latter generalizes differential graded Lie algebras (DGLA). Both admit three equivalent

definitions; one algebraic, one coalgebraic and one geometric. While the first of these is easier

to understand, the last two provide deeper insights and are more useful to relate to field theory.

We will present the definitions in the order mentioned above. However, we choose to present

only the algebraic definition for both the A∞- and L∞-algebra and to discuss the other two

definitions only for L∞-algebras, in order to avoid too much repetition. Subsequently, we will

discuss the connection between L∞-algebras and field theories.

Roughly speaking, an A∞-algebra generalizes DGAs by relaxing the requirement that the

bilinear product is associative. This failure of associativity is controlled by a trilinear map.
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Higher associativity constraints are imposed, with, again, a non-associative piece that is con-

trolled by multilinear maps. Formally, an A∞-algebra contains infinitely many higher order

products. A DGA is an example of an A∞-algebra for which all higher (trilinear and beyond)

maps vanish. Similarly, an L∞-algebra allows for the failure of the graded Jacobi identity

in a controlled manner by introducing higher brackets. DGAs and DGLAs are examples of

A∞-algebras and L∞-algebras, respectively, for which all higher (trilinear and beyond) maps

vanish.

Definition 1.3.8 (algebraic definition) An A∞-algebra is a collection (V,m1,m2, . . . ) of a

Z-graded vector space V =
⊕

n Vn over the field6 C and linear products mk : V
⊗k → V of degree

2− k (k ≥ 1), satisfying the A∞-relations

n−1∑
r=0

n−r∑
k=1

(−1)rk+n−k−rmn−k+1 ◦ (1⊗r ⊗mk ⊗ 1⊗(n−k−r)) = 0 , n ≥ 1 . (1.3.5)

To better understand this structure, it is instructive to evaluate the A∞-relations for n ≤ 3.

For this, we define homogeneous elements vi ∈ Vi ⊂ V , with degree |vi|.

• n = 1: This gives the relation

m1 ◦m1(v1) = 0 ,

which implies that m1 is a differential on V .

• n = 2: We find

m1 ◦m2(v1, v2) = m2(m1(v1), v2) + (−1)|v1|m2(v1,m1(v2)) ,

i.e. the graded Leibniz rule, meaning that m1 is a derivation on V with respect to the

product m2.

• n = 3: The relations give

m2(m2(v1, v2), v3)−m2(v1,m2(v2, v3)) = m1 ◦m3(v1, v2, v3)+

+m3(m1(v1),m2,m3) + (−1)|v1|m3(v1,m1(v2), v3) + (−1)|v1|+|v2|m3(v1, v2,m1(v3)) .

The associativity fails to hold due to the presence of the map m3.

It is now easy to see that a DGA (V, d, · ), i.e. m1 = d, m2(v1, v2) = v1 · v2 and m≥3 = 0, is an

example of an A∞-algebra.

The name strong homotopy algebra reflects that – in the case of an A∞-algebra – the failure

of associativity is captured by a homotopy. This can be made precise using the following notion:

6In general, it can be defined over any field K, but we restrict ourselves to C for all practical purposes. The
same is true for L∞-algebras.
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Definition 1.3.9 Let f, g : V → W be two morphisms of degree 0 between the cochain com-

plexes (V, dV ) and (W,dW ), meaning dWf = fdV and dWg = gdV . A homotopy is a morphism

h : V → W of degree −1 between V and W such that f − g = h ◦ dV + dW ◦ h.

Now consider the associator Ass(m2) = m2(m2(•, •), •)−m2(•,m2(•, •)). The A∞-relation for

n = 3 becomes

Ass(m2)− 0 = dV ◦m3 +m3 ◦ dV ⊗3 , (1.3.6)

with dV = m1 and dV ⊗3 is the extension of m1 to V ⊗3 via the Leibniz rule. This equations

show that Ass(m2) is homotopic to 0, with m3 providing the homotopy. The higher (n > 3)

A∞-relations lead to higher homotopies in a similar fashion. This observation justifies the name

strong homotopy algebra.

Definition 1.3.10 (algebraic definition) An L∞-algebra is a collection (g, l1, l2, . . . ) of a Z-
graded vector space g over the field C and linear products lk : g∧k → g of degree 2− k (k ≥ 1)

that are graded skew-symmetric ln(vσ(1), . . . , vσ(n)) = (−1)σϵ(σ, v)ln(v1, . . . , vn) and satisfy the

L∞-relations

n∑
k=1

(−1)k
∑

σ∈Unsh(k,n-k)

(−1)σϵ(σ, v)ln−k+1(lk(vσ(1), . . . , vσ(k)), vσ(k+1), . . . , vσ(n)) = 0 . (1.3.7)

Here, ϵ(σ, v) is the Koszul sign of the permutation σ and the Unsh(k, n − k) subset of the

permutation group (k, n− k)-unshuffle. An unshuffle τ ∈ Unsh(k, n− k) is a permutation such

that its inverse τ−1 ∈ Sh(k, n − k) is a shuffle. The latter group consists of the permutations

that satisfy

σ(1) < σ(2) < · · · < σ(k), σ(k + 1) < · · · < σ(n) .

Again, we analyze the L∞-relations for n ≤ 3. Let xi ∈ Vi ⊂ V be homogeneous elements.

• n = 1: We find the relation

l1 ◦ l1(x1) = 0 , (1.3.8)

which means that l1 is a differential on g.

• n = 2: This gives

l1 ◦ l2(x1, x2) = l2(l1(x1), x2) + (−1)|x1|l2(x1, l1(x2)) , (1.3.9)

which implies that l1 is a derivation on g with respect to l2.
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• n = 3: this yields

l2(l2(x1, x2), x3) + (−1)(|x1|+|x2|)|x3|l2(l2(x3, x1), x2) + (−1)(|x2|+|x3|)|x1|l2(l2(x2, x3), x1) =

l1 ◦ l3(x1, x2, x3) + l3(l1(x1), x2, x3) + (−1)|x1|l3(x1, l1(x2), x3)+

+ (−1)|x1|+|x2|l3(x1, x2, l1(x3)) ,

(1.3.10)

which shows that the graded Jacobi identity is satisfied up to a term controlled by l3.

Similarly to the A∞-algebra, we note that the DGLA (g, d, [−,−]) is an example of an L∞-

algebra with l1 = d, l2(x1, x2) = [x1, x2] and l≥3 = 0. Moreover, one can always obtain an

L∞-algebra through the graded anti-symmetrization of an A∞-algebra, comparable to how

a Lie algebra is obtained from an associative one. Analogously, not all L∞-algebras can be

obtained from A∞-algebras.

With this we understand that A∞/L∞-algebras generalize differential graded structures.

Let us now turn to the other two definitions of L∞-algebras.

The second definition of an L∞-algebra uses the notion of graded coalgebras.

Definition 1.3.11 A graded coalgebra is a graded vector space C =
⊕

n∈ZCn, equipped with a

comultiplication map of degree 0,

∆ : C → C ⊗ C , (1.3.11)

that is coassociative, meaning it satisfies

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆ . (1.3.12)

Analogously to differential graded algebras, one can enrich a graded coalgebra with a differen-

tial.

Definition 1.3.12 A differential graded coalgebra is a graded coalgebra, together with a map

b : C → C of degree 1, that satisfies the co-Leibniz rule

∆ ◦ b = (b⊗ id + id⊗ b) ◦∆ (1.3.13)

and satisfies b2 = 0.

An example of a differential graded coalgebra is a tensor coalgebra of a differential graded

vector space V ,

T c(V ) =
⊕
n≥0

V ⊗n (1.3.14)
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with comultiplication

∆(v1 ⊗ · · · ⊗ vn) =
n∑

i=0

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vn) (1.3.15)

for homogeneous elements v1, . . . , vn ∈ V . In the following, a major role is played by the

reduced tensor algebra, which we denote by T
c
(V ) =

⊕∞
n=1 V

⊗n.

Definition 1.3.13 (coalgebraic definition) An L∞-structure on g is encoded by a coderiva-

tion b of degree 1 on the reduced symmetric coalgebra of g, S
c
(g[1]) =

⊕
n≥1 g

⊙n, satisfying

b2 = 0. The coderivation is given by a set of maps bk : g
⊗k → g for k ≥ 1.

Given the condition b2 = 0, it can be proven that the components bk are isomorphic to the

maps mk satisfing the L∞-relations. See [94, 96] for a more detailed discussion.

Definition 1.3.14 (geometric definition) An L∞-algebra on g is encoded by a homological

vector field Q of degree 1 on the graded manifold g[1], called a Q-manifold, satisfying Q2 = 0.

A physical theory does not have a single unique L∞-algebra associated to it. It is therefore

useful to define the following,

Definition 1.3.15 Let ϕ : S
c
(g[1]) → S

c
(g′[1]) be a morphism of graded coalgebras composed

of a collection of maps ϕn : Sn(g[1]) → g′[1], such that ϕ ◦ b = b′ ◦ ϕ. Then, ϕ : (g, b) → (g′, b′)

is an L∞-morphism between these two L∞-algebras.

In general, L∞-morphisms are too general to preserve the physical data of a theory. Instead,

one should consider the slightly more specific notion of L∞-quasi-isomorphisms. Physically, they

allow one to relate two formulations of equivalent field theories with different field content, e.g.

field theories that are equivalent after integrating out fields.

Definition 1.3.16 Consider two cochain complexes (V, dV ) and (W,dW ) and a morphism of

complexes f : V → W , i.e. degree-0 morphism satisfying dWf = fdV . Then f is called a

quasi-isomorphism of complexes if the induced morhpisms on the cohomology

Hn(f) : Hn(V, dV ) → Hn(W,dW ) (1.3.16)

are isomorphisms of all degrees n.

Definition 1.3.17 An L∞-quasi-isomorphism is an L∞-morphism ϕ for which the first struc-

ture map ϕ1 is a quasi-isomorphism of complexes.

In the BV-BRST treatment of gauge theories, one can construct an L∞-algebra L =
⊕

Ln

as an extension of the BV-BRST complex. This L∞-algebra contains all physical data captured

by the theory, such as gauge symmetries ∈ L≤0, classical fields ∈ L1, equations of motion ∈ L2,

and Noether identities ∈ L≥3.
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One particularly useful L∞-algebra is the minimal model. In a sense, it can be viewed as

the “smallest” L∞-algebra that contains all physical information of a field theory. It is related

to the L∞-algebra obtained from the BV-BRST complex by an L∞-quasi-isomorphism.

Definition 1.3.18 An L∞-algebra is minimal (also known as minimal model) if the first struc-

ture map vanishes, l1 = 0.

The L∞-algebra we are after in this thesis is constructed from definition 1.3.14. Consider

a (non-negatively) graded supermanifold N with coordinates XA equipped with a homological

vector field Q of degree 1, i.e.

[Q,Q] = 0 ⇔ QB
∂

∂XB
QA = 0 . (1.3.17)

The pair (N , Q) is then considered to be a differential graded manifold. The equations of

motion can then be written as a sigma model

dΦ = Q(Φ) , (1.3.18)

where the form-fields Φ = Φ(x, dx) are maps Φ : T [1]M → N from the degree 1 shifted tangent

bundle of a spacetime manifold M to the supermanifold N . The maps ΦA are pullbacks of the

coordinates XA. Equations of this form are then said to form a free differential algebra (FDA)

[99].

In practice, the form-fields Φ(x, dx) are the fields present in the spectrum of a given field

theory. For traditional gauge theories7, the spectrum splits in two sectors composed of zero-

forms ω and one-forms C. The former typically contain the gauge fields, while the latter contain

the (components of) the field strengths. For these fields, the equation of motion 1.3.18 yields

the equations

dω = V(ω, ω) + V(ω, ω, C) + V(ω, ω, C,C) + . . . ,

dC = U(ω,C) + U(ω,C,C) + . . . ,
(1.3.19)

which lead to L∞-relations when applying the de Rham differential d and imposing the integra-

bility condition d2 = 0. This is equivalent to the nilpotency condition (1.3.17) and constitutes

L∞-relations that describe the chiral HiSGRA.

1.3.3 Higher spin algebra and its deformation

It is well known that the higher spin algebra typically admits a star-product realization, see

[100] for a review. In order to motivate this, let us recall the standard definition of the higher

spin algebra hs on AdS4. By the definition of HiSGRA, the spectrum of the theory contains

a graviton, which is described by an so(3, 2)-connection. Hence, we start with the universal

7Exceptions include p-form gauge fields.
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enveloping algebra U(so(3, 2)), which can be viewed as a module over itself. However, this

space is too large – it contains many elements that do no correspond to higher spin symmetry

generators. Therefore the higher spin algebra hs is defined as the quotient of the universal

enveloping algebra by some ideal I,

hs =
U(so(3, 2))

I
. (1.3.20)

Typically, the ideal I is the annihilator of the singleton representation inside the universal

enveloping algebra U(so(3, 2)). In other words, I is the two-sided ideal generated by all elements

of U(so(3, 2)) that act trivially on the singleton module.

Alternatively, hs can be realized without specifying the ideal I explicitly, by constructing

it as a deformation of U(so(3, 2)) that preserves the Jacobi identity. This happens naturally

if hs acts on the space of functions C[y, y], where yA and yA
′
are sl(2,C) spinors, and the Lie

bracket is the commutator of some associative product, i.e.

[f, g]⋆(y, y) = f(y, y) ⋆ g(y, y)− g(y, y) ⋆ f(y, y) (1.3.21)

and

f(y, y) ⋆ (g(y, y) ⋆ h(y, y)) = (f(y, y) ⋆ g(y, y)) ⋆ h(y, y) . (1.3.22)

The star-product can be written as

a ⋆ b = ab+ ℏϕ1(a, b) + ℏ2ϕ2(a, b) + . . . , (1.3.23)

where the point-wise product is denoted by juxtaposition and ϕi are bidifferential operators

acting on yA and yA
′
. The fact that ⋆ must satisfy (1.3.22), implies that {−,−} is a Poisson

bracket with {a, b} = a⋆b−b⋆a
ℏ

∣∣∣
ℏ=0

. Deformation quantization is the field of study that considers

exactly such star products. In fact, Kontsevich proved in his celebrated formality theorem [101]

that every Poisson manifold admits a deformation of its algebra of functions that is determined

by its Poisson structure in terms of a star-product. The simplest non-trivial example is the

Moyal-Weyl star-product that is obtained from a constant non-degenerate Poisson structure,

i.e. proportional to ϵAB.8

However, it was proven in [14] that exact higher spin symmetry leads to a free CFT on the

boundary of AdS4. Indeed, we will shortly see that the current star-product gives only the first

structure map in the first line of (1.3.19), which encodes only information of the free HiSGRA.

It is well-known that higher spin algebras are rigid – they cannot be deformed smoothly.

As was shown in [102], the Z2-extension of the higher spin algebra hs ⋊ Z2 does admit a one-

parameter family of deformations and is described by an L∞-algebra that is constructed from

an A∞-algebra. This turns out to be related to non-commutative deformation quantization.

8See Appendix A for the definition.
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In short, consider the deformation of an associative product that is controlled by a formal

parameter ℏ. This is given by (1.3.23). We then promote the deformation parameter ℏ to an

element of hs.9 The power series in (1.3.23) now provides genuine multilinear maps, and is able

to produce the right-hand side of (1.3.19).

Thus, the Z2-extension of hs is given by multilinear maps mk(a, b, ℏ, . . . , ℏ) that do not

satisfy the (higher order) Jacobi identity, and its failure is controlled by other structure maps.

This is very reminiscent of slightly broken higher spin symmetry, where the non-conservation

of higher spin currents is controlled by other higher spin currents. This resemblance is precisely

the reason why A∞-algebras are expected to capture the essence of slightly broken higher spin

symmetry.
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Figure 1.2: (Anti-)Chiral HiSGRA is

a closed subsector of a full, parity-

invariant HiSGRA. It should be dual

to a closed subsector of Chern-Simons

vector models.

A powerful method for explicitly constructing

such an A∞-algebra is homological perturbation theory

(HPT). Here, we will briefly discuss the logical flow of

how this is achieved. For more details on how HPT

is applied in this thesis, we refer to Appendices D.2

and D.1 and to Section 4.2. A detailed review of HPT

applied to HiSGRA is found in [96].

In a nutshell, HPT is a means of transferring alge-

braic data from one cochain complex to another. It also

allows one to transfer algebraic data between cochain

complexes built from tensor coalgebras and a codiffer-

entials, which are equivalent to an A∞-algebra. The

homological perturbation lemma then provides an ex-

plicit method for deriving a deformed codifferential in

one cochain complex by deforming the codifferential in

the other. In particular, one cochain complex is com-

posed of the tensor coalgebra of the cohomology of hs

with zero differential and the other is the tensor coalge-

bra of a larger graded vector space of which the coho-

mology of hs is a subspace, together with some nonzero

differential. One then perturbs this differential and per-

turbatively obtains an A∞-algebra with m1 = 0 on the

other cochain complex through the homological pertur-

bation lemma. This is the minimal model we are interested in.

9A subtle, but crucial, difference is that we have ℏ ∈ hs⋆, which is inspired by the free higher spin action.
This will be explained in 1.4.2.
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1.4 Chiral HiSGRA and self-dual theories

As was briefly mentioned, chiral HiSGRA contains self-dual Yang-Mills, self-dual gravity and

their higher spin extensions as consistent truncations. Similarly to these theories, chiral HiS-

GRA breaks parity invariance. At the same time, chiral HiSGRA itself is thought to be a

consistent truncation of some putative parity-invariant HiSGRA, see Figure 1.2. This diagram

shows that through the AdS/CFT correspondence, chiral HiSGRA is thought to be dual to a

chiral subsector of Chern-Simons vector models.

Not only did the construction of chiral HiSGRA offer a new example of a HiSGRA, it also

showed that different formulations of HiSGRA can lead to more (or less) restrictive conditions on

the theory. More specifically, it was found that chiral HiSGRA in the light-cone gauge allows

more types of interaction than the covariant, metric-like formulation of HiSGRA. Here, the

name metric-like refers to the fact that higher spin fields are represented as tensors, generalizing

the notion of the metric. Another formulation that we have already encountered is the unfolding

formalism. In this approach, one expresses the equations of motion as a first-order differential

equation of wedge-products of the fields, which are forms valued in finite-dimensional irreducible

representations of the Lorentz algebra. This approach generalizes the frame-like formulation of

general relativity.

The foundation for chiral HiSGRA was laid by Metsaev in the early 1990s, when he classified

all cubic interactions of massless higher spin fields in flat space and found many – though not

all – such interactions in (A)dS, by working in the light cone-gauge [103]. Much later, in

2016, Ponomarev and Skvortsov observed that this classification contains two consistent sets of

interactions [87]: interactions of fields with helicity λ1, λ2 and λ3, with the sum λ1+λ2+λ3 ≥ 0

leads to the what is called chiral HiSGRA, while λ1 + λ2 + λ3 ≤ 0 gives rise to the anti-chiral

HiSGRA. The vertex for the chiral theory reads

Vchiral =
∑

λ1,λ2,λ3

Cλ1,λ2,λ3Vλ1,λ2,λ3 , Cλ1,λ2,λ3 =
κ(lp)

λ1+λ2+λ3−1

Γ(λ1 + λ2 + λ3)
, (1.4.1)

which has all its structure constants fixed in terms of the dimensionless constant κ and a

constant of dimension length lp, which may be chosen to be the Planck length. Here, Vλ1,λ2,λ3

captures the kinematics of the scattering and it gives the amplitude

Vλ1,λ2,λ3

∣∣∣
on−shell

∼ [12]λ1+λ2−λ3 [13]λ1−λ2+λ3 [23]−λ1+λ2+λ3 (1.4.2)

for complex momenta. The antichiral vertex can be obtained simply by complex conjugation.

The theory is named (anti-)chiral, because it treats positive and negative helicities asym-

metrically. Interestingly, the theory truncates at cubic order; no higher order interactions are

present. Even more strikingly, the results hold both in flat space and in (A)dS. In flat space,

chiral HiSGRA cleverly evades traditional no-go theorems in several ways: some no-go theo-

rems rely on gauge invariant methods, whereas chiral HiSGRA was constructed in the light-cone
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gauge; the theory contains an infinite tower of massless fields; it is non-unitary; and despite the

existence of non-trivial interactions, the S-matrix is trivial. Recently, a covariant action has

been constructed for free higher spin fields [60], which will be a building block of this thesis,

and it has been generalized to the partially massless setting [104].

1.4.1 SDYM and SDGR

Self-dual theories, including self-dual Yang-Mills (SDYM) and self-dual gravity (SDGR) and

their higher spin extensions HS-SDYM and HS-SDGRA, are closed subsectors of the full theo-

ries. This means that solutions to the self-dual theories are solutions in the full ones and that

scattering amplitudes coincide. In many aspects, the self-dual theories are simpler theories than

their full theory counterparts. For example, self-dual theories possess various powerful proper-

ties: they are integrable, UV-finite and one-loop exact. Moreover, self-dual theories allow one

to perform a perturbative expansions of the full theory around a self-dual background, rather

than a flat one. As a consequence, it is often fruitful to study the self-dual version of a theory,

as it can expose underlying structures and provide simpler computational methods for certain

problems.

SDYM

Let us show the perturbative expansion of Yang-Mills around its self-dual sector as an example.

In this derivation and in the remainder of the thesis, we will be working with two-component

spinor language, which is well-suited for 4d-theories and offers many advantages for self-dual

theories in particular. Our notation is explained in Appendix A and more details can be found

in [105]. Let us still mention the most important definitions.

Let the gauge field A = Aa
AA′tae

AA′
, with eAA′ the vielbein, be valued in some Lie algebra

with a non-degenerate invariant bilinear form with Lie algebra generator ta. The generator

can be thought of as ta ∈ MatN . For simplicity, we will not write the generators from now

on. We can decompose the field strength into its self-dual and anti-self-dual components FAA

and FA′A′ , respectively. We adopt the convention that spin tensors with repeated indices are

symmetrized, e.g. FAA is equivalent to 1
2
(FAB + FBA), up to relabeling of indices. We choose

the field FAA to carry negative helicity degrees of freedom and FA′A′
to carry positive helicity

ones. The (anti-)self-duality condition states

(⋆F )AA = FAA , (⋆F )A′A′ = −FA′A′ . (1.4.3)

The decomposition of the field strength reads

F = dA− A ∧ A = HAAFAA +HA′A′
FA′A′ . (1.4.4)

Here, HAA and HA′A′
are the self-dual and anti-self-dual 2-form basis, respectively. They are

composed of two vielbeins: HAA = eAA′ ∧ eAA′
and HA′A′

= eA
A′ ∧ eAA′

. The wedge-products
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between the two-form basis elements read

HAA ∧HBB = ϵABϵABdVol4 , HAA ∧HA′A′ = 0 ,

HA′A′ ∧HB′B′ = −ϵA′B′ϵA′B′dVol4 ,
(1.4.5)

where the volume for dVol4 is chosen with a convenient normalization.

The Yang-Mills action reads

S[F ] = − 1

2g2
tr

∫
F ∧ ⋆F = − 1

4g2
tr

∫
(FAAFAA + FA′A′

FA′A′)dVol4 . (1.4.6)

A topological term, sometimes called the θ-term, can be added to the action. Due to its

topological nature, it does not affect any perturbative properties of the theory. This term reads

Stop = tr

∫
F ∧ F = tr

∫
(FAAFAA − FA′A′

FA′A′)dVol4 . (1.4.7)

Adding the right amount of the topological term allows one to express the action only in the

self-dual field strength,

S[F ]− 1

4g2
Stop = − 1

2g2
tr

∫
FAAFAAdVol4 . (1.4.8)

which is perturbatively equivalent to the Yang-Mills action.

In order to derive the self-dual action, consider the action

S[F,Ψ] = tr

∫
ΨAAFAAdVol4 +

g2

2
tr

∫
ΨAAΨAAdVol4 , (1.4.9)

where the symmetric field ΨAA is a Lagrange multiplier. Varying with respect to the fields,

yields

DA
A′
ΨAB = 0 , FAA = −g2ΨAA , (1.4.10)

with D = eAA′
DAA′ = ∇ − [A, •] the gauge and Lorentz covariant derivative. The Lorentz

covariant derivative ∇ acts on a generic spin-tensor TA(n),A(m) as

∇TA(n),A′(m) = dTA(n),A′(m) − nωA
B T

A(n−1)B,A′(m) +mωA′
B′ TA(n),A′(m−1)B′

(1.4.11)

and gives

∇2TA(n),A′(m) = −nHA
B T

A(n−1)B,A′(m) −mHA′
B′ TA(n),A′(m−1)B′

.

on a background with constant curvature with cosmological constant Λ.

The second equation in (1.4.10) is purely algebraic, meaning that ΨAA is an auxiliary field.

Substituting it back into the action (1.4.9) returns (1.4.8), so this is still perturbatively equiv-
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alent to the Yang-Mills action. The self-dual limit is obtained in the limit g → 0, where we

have FAB = 0. While it is the self-dual component of the field strength that vanishes – and

so the field strength is now anti-self-dual –, we still refer to this as the self-dual theory out

of convenience. The last equation in (1.4.10) indicates that the degrees of freedom described

by FAA do not vanish in the self-dual limit; they are carried over to the field ΨAA. To better

illustrate this, we can write the decomposition of the field strength two-form as

F = −g2HAAΨAA +HA′A′
FA′A′ . (1.4.12)

Now, the field FA′A′ carries positive helicity degrees of freedom and ΨAA negative helicity ones.

Thus, in the self-dual limit, the negative helicity degrees of freedom survive, but they simply

decouple from the field strength and the gauge fields.

Although through different methods, self-dual gravity can be related to general relativity

using the Plebanksi action [106]. For chiral HiSGRA it is still an open question whether it can

be related to a parity-invariant completion of the theory, because such a theory has not yet

been constructed. However, as discussed before, such a theory is conjectured to exist through

the AdS/CFT correspondence, so it is likely that the above-mentioned relation generalizes to

higher spins.

FDA for SDYM in flat space. Here we set Λ = 0. The starting point for the FDA is given

by

DA
A′
ΨAB = 0 , FAA = 0 , (1.4.13)

i.e. the self-dual limit of (1.4.10), together with the Bianchi identity

DF = HB′B′ ∧DFB′B′ = 0 . (1.4.14)

The strategy is to find solutions to (1.4.13) and (1.4.14) that are parametrized by new fields

that encode the derivatives of the original fields. For example, the first equation in (1.4.13)

does not require the derivative of ΨAA to vanish completely. We can decompose DBB′
ΨAA into

its symmetric and antisymmetric components. This yields

DAA′
ΨBC = D(A|A′

ΨB|C) +
1

2
ϵACDD

A′
ΨBD , (1.4.15)

whereX(AY B) = 1
2
(XAY B+XBY A) indicates symmetrization andXAY B−XBY A = ϵABXCY

C

is used to extract the antisymmetric component. Clearly, (1.4.13) does not impose any condi-

tion on the symmetric component, while it forces the anti-symmetric one to vanish. We then

introduce a new field ΨAAA,A′
to parametrize the symmetric component and we get

DΨAA = eBB′ΨAAB,B′
. (1.4.16)
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To both this equation and (1.4.14), one can apply D and employ

D2χ = −[F, χ] = −HB′B′

[FB′B′ , χ] . (1.4.17)

The full FDA can be constructed by repeatedly imposing the Bianchi identity to constrain the

new fields. One should keep in mind that these fields are not independent; they encode the

derivatives of the physical field ΨAA.

The field content of the free (Abelian) and interacting theory is the same, because both

versions of the theory contain the same amount of local degrees of freedom. The field theory

of the free theory is given by

dFA(k),A′(k+2) = eBB′FA(k)B,A′(k+2)B′
, (1.4.18)

dΨA(k+2),A′(k) = eBB′ΨA(k+2)B,A′(k)B′
. (1.4.19)

In order to have a genuine FDA, (1.3.18) implies that the vielbein and (anti-)self-dual

components of the spin-connection are part of the field content. The field content is described

by maps Φ : T [1]M → N , see (1.3.18). It is summarized by

N :
1 : eAA′

, ωAB , ωA′B′
, A ,

0 : FA(k),A′(k+2) ,ΨA(k+2),A′(k) , k = 0, 1, 2, ...

and the FDA takes the form

deAA′
= ωA

B ∧ eBA′
+ ωA′

B′ ∧ eAB′
,

dωAB = ωA
C ∧ ωBC ,

dωA′B′
= ωA′

C′ ∧ ωB′C′
,

dA = AA+HB′B′FB′B′
,

dF = l2(ω, F ) + l2(A,F ) + l2(e, F ) + l3(e, F, F ) ,

dΨ = l2(ω,Ψ) + l2(A,Ψ) + l2(e,Ψ) + l3(e, F,Ψ) .

(1.4.20a)

The operations

l2(ω, F ) = kωA
B F

A(k−1)B,A′(k+2) + (k + 2)ωA′
B′ FA(k),A′(k+1)B′

,

l2(A,F ) = [A,F ]
(1.4.21)

define the bilinear maps l2 corresponding to parts of the usual Lorentz and gauge covariant

derivatives. To simplify the FDA, they can be absorbed into D = ∇ − [A, •]. The term
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HB′B′FB′B′
is a specific tri-linear map l3(e, e, F ). The FDA becomes

∇eAA′
= 0 , ∇2 = 0 ,

dA = AA+HB′B′FB′B′
,

DF = l2(e, F ) + l3(e, F, F ) ,

DΨ = l2(e,Ψ) + l3(e, F,Ψ) .

(1.4.22a)

The first line implies that we are in flat space and the spin-connection vanishes. The associated

L∞-relations are

D2F + l2(e,DF ) + l3(e,DF, F ) + l3(e, F,DF ) ≡ 0 ,

D2Ψ+ l2(e,DΨ) + l3(e,DF,Ψ) + l3(e, F,DΨ) ≡ 0
(1.4.23)

and decompose into

l2(e, l2(e, F )) ≡ 0 ,

−[HBBF
BB, F ] + l2(e, l3(e, F, F )) + l3(e, l2(e, F ), F ) + l3(e, F, l2(e, F )) ≡ 0 ,

l3(e, l3(e, F, F ), F ) + l3(e, F, l3(e, F, F )) ≡ 0 ,

l2(e, l2(e,Ψ)) ≡ 0 ,

−[HBBF
BB,Ψ] + l2(e, l3(e, F,Ψ)) + l3(e, l2(e, F ),Ψ) + l3(e, F, l2(e,Ψ)) ≡ 0 ,

l3(e, l3(e, F, F ),Ψ) + l3(e, F, l3(e, F,Ψ)) ≡ 0 .

(1.4.24)

The full solution to the interacting theory is given by

DFA(k),A′(k+2) = eBB′
FA(k)B,A′(k+2)B′

− eA
B′

k−1∑
n=0

2
(n+1)!

(k+2)!
(k−n−1)!(k−n+1)(k+1)

[FA(n),A′(n+1)B′ , FA(k−n−1),A′(k−n+1)] .

(1.4.25)

and

DΨA(k+2),A′(k) = eCC′
ΨA(k+2)C,A′(k)C′

− eA
C′

k−1∑
n=0

2
(n+1)!

k−n+2
k+3

k!
(k−n−1)! [FA(n),A′(n+1)C′ ,ΨA(k−n+1),A′(k−n−1)]

+ eA
C′

k−2∑
n=0

2
(n+2)!

n+1
k+3

k!
(k−n−2)! [FA(n),A′(n+2),ΨA(k−n+1),A′(k−n−2)C′ ] .

(1.4.26)

It was also verified that all higher order structure maps vanish.
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FDA for SDYM on background with constant curvature. The free Maxwell equations

on a background with constant curvature rewritten as an FDA read [107]

dA = HB′B′
FB′B′ + ϵHBBΨBB , (1.4.27a)

∇FA(k),A′(k+2) = eBB′FA(k)B,A′(k+2)B′
+ k(k + 2)ΛeAA′

FA(k−1),A′(k+1) , (1.4.27b)

∇ΨA(k+2),A′(k) = eCC′ΨA(k+2)C,A′(k)C′
+ k(k + 2)ΛeAA′

ΨA(k+1),A′(k−1) , (1.4.27c)

where Λ is the cosmological constant, which we will set to Λ = 1, and ϵ allows one to take the

self-dual limit. On general grounds, the FDA for SDYM, together with the covariant constancy

condition on the vielbein, reads

∇eAA′
= 0 ,

dA = AA+HB′B′FB′B′
,

DF = l2(e, F ) + l̃2(e, F ) + l3(e, F, F ) ,

DΨ = l2(e,Ψ) + l̃2(e,Ψ) + l3(e, F,Ψ) ,

where l̃2 encodes the corrections to the free equations (1.4.27b) and (1.4.27c). The gravitational

curvature gives

∇2TA(n),A′(m) = −nHA
B T

A(n−1)B,A′(m) −mHA′
B′ TA(n),A′(m−1)B′

.

Since the new FDA is a deformation of the one in flat space, the only new L∞-relations are

l̃2(e, l3(e, F, F )) + l3(e, l̃2(e, F ), F ) + l3(e, F, l̃2(e, F )) = 0 , (1.4.28a)

l̃2(e, l3(e, F,Ψ)) + l3(e, l̃2(e, F ),Ψ) + l3(e, F, l̃2(e,Ψ)) = 0 . (1.4.28b)

This system is solved by

DFA(k),A′(k+2) = eBB′
FA(k)B,A′(k+2)B′ + k(k + 2)eAA′FA(k−1),A′(k+1)

− eA
B′

k−1∑
n=0

2
(n+1)!

(k+2)!
(k−n−1)!(k−n+1)(k+1)

[FA(n),A′(n+1)B′ , FA(k−n−1),A′(k−n+1)] ,
(1.4.29a)

DΨA(k+2),A′(k) = eCC′
ΨA(k+2)C,A′(k)C′ + k(k + 2)eAA′ΨA(k+1),A′(k−1)

− eA
C′

k−1∑
n=0

2
(n+1)!

k−n+2
k+3

k!
(k−n−1)! [FA(n),A′(n+1)C′ ,ΨA(k−n+1),A′(k−n−1)]

+ eA
C′

k−2∑
n=0

2
(n+2)!

n+1
k+3

k!
(k−n−2)! [FA(n),A′(n+2),ΨA(k−n+1),A′(k−n−2)C′ ] .

(1.4.29b)

Similarly to flat space, it was verified that all higher order maps vanish.
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SDGR

FDA for SDGR. Self-dual gravity with vanishing cosmological constant can be formulated

with the help of two fields [108]: a one-form ωAA and a zero-form ΨA(4). They can be obtained

from the Plebanksi action [106], which reads∫
ΨA(4) ∧ FAA ∧ FAA , (1.4.30)

where we identify FAA = dωAA. The equations of motion are

FAA ∧ FAA = 0 , dΨAABB ∧ FBB = 0 . (1.4.31)

The solution to the former equation in flat space is dωAA = HAA, where e
AA′

= dxAA′
. Repeated

application of d to this equation and to the second equation in (1.4.31), yields the linearized

FDA

dωAA = eAB′ ∧ eAB′
,

deAA′
= ωA

B ∧ eBA′
,

dωA′A′
= ωA′

B′ ∧ ωA′B′
+HM ′M ′CM ′M ′A′A′

,

dΨA(4) = eBB′ΨA(4)B,B′
,

(1.4.32)

where CA′(4) is the anti-self-dual component of the Weyl tensor. We observe that gravitational

corrections are only described by the anti-self-dual field ωA′A′
. The free equations for helicity

±2 fields are [109]

∇B
A′
ΨA(3)B = 0 , ∇A

B′ CA′(3)B′
= 0 , (1.4.33)

and can be rewritten in the FDA form as [107]

∇CA(k),A′(k+4) = eCC′CA(k)C,A′(k+4)C′
, ∇ΨA(k+4),A′(k) = eCC′ΨA(k+4)C,A′(k)C′

. (1.4.34)

It follows that the field content of the FDA, which again constitute the coordinates on the

supermanifold N , is

N :
1 : ωA′B′

, eAA′
, ωAB ,

0 : CA(k),A′(k+4) ,ΨA(k+4),A′(k) , k = 0, 1, 2, ...
(1.4.35)

We define the covariant derivative ∇ = d − ω, which lacks the ωA′B′
-part. For an arbitrary

spin-tensor TA(n),A′(m) we get

∇2TA(n),A′(m) = −mHM ′M ′CM ′M ′A′
B′ TA(n),B′A′(m−1) . (1.4.36)
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These L∞-relations then read

−(k + 4)HMMC
MMA

B C
A(k+3)B,A′(k) + l2(e,∇C) + l3(e,∇C,C) + l3(e, C,∇C) = 0 ,

−kHMMC
MMA

B ΨA(k−1)B,A′(k+4) + l2(e,∇Ψ) + l3(e,∇C,Ψ) + l3(e, C,∇Ψ) = 0 ,
(1.4.37)

and decompose into

l2(e, l2(e, C)) = 0 , (1.4.38)

l3(e, l3(e, C, C), C) + l3(e, C, l3(e, C, C)) = 0 , (1.4.39)

l2(e, l2(e,Ψ)) = 0 , (1.4.40)

l3(e, l3(e, C, C),Ψ) + l3(e, C, l3(e, C,Ψ)) = 0 , (1.4.41)

−(k + 4)HMMC
MMA

B C
A(k+3)B,A′(k) + l2(e, l3(e, C, C))

+ l3(e, l2(e, C), C) + l3(e, C, l2(e, C)) = 0 ,
(1.4.42)

−kHMMC
MMA

B ΨA(k−1)B,A′(k+4) + l2(e, l3(e, C,Ψ))

+ l3(e, l2(e, C),Ψ) + l3(e, C, l2(e,Ψ)) = 0 .
(1.4.43)

The solution to this system is found to be given by

∇CA(k),A′(k+4) = eCC′
CA(k)C,A′(k+4)C′

+
k−1∑
n=0

2
(n+2)!

(k+4)!(k−n)
(k−n+2)!(k+1)

eA
C′
CA(n),A′(n+2)C′

D′
CA(k−n−1),A′(k−n+2)D′

(1.4.44)

and

∇ΨA(k+4),A′(k) = eCC′
ΨA(k+4)C,A′(k)C′

+
k∑

n=0

2
(n+2)!

k!
(k−n−2)!

k−n+4
k+5

eA
C′
CA(n),A′(n+2)C′

D′
ΨA(k−n+3),A′(k−n−2)D′

−
k∑

n=0

2
(n+2)!

k!
(k−n−3)!

n+1
(k+5)(n+3)

eA
C′
CA(n),A′(n+3)

D′
ΨA(k−n+3),A′(k−n−3)C′D′ .

(1.4.45)

Again, it was proved that the FDA is consistent without higher order structure maps.

1.4.2 Cubic interactions for Chiral HiSGRA

We start by constructing the cubic interaction vertex on a background with arbitrary cosmo-

logical constant. We relate to this the parameter λ =
√

|Λ|. The free action for chiral HiSGRA
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is

S =

∫
ΨA(2s) ∧HAA ∧∇ωA(2s−2) , (1.4.46)

with ωA(2s−2) = ΦA(2s−2)B,B′eBB′
encoding the higher spin gauge potential. The fields take

values in a Lie algebra with a non-degenerate invariant bilinear form, so they can be assumed

to take values in MatN . The action is easily seen to generalize the SDYM and SDGR actions.

The equations of motion read

∇ΨA(2s) ∧HAA = 0 , HAA ∧∇ωA(2s−2) = 0 . (1.4.47)

Following the same procedure as for SDYM and SDGR, the FDA of the free chiral theory is

(n = 2s− 2)

∇ωA(n) = eAB′ ωA(n−1),B′
,

∇ωA(n−i),A′(i) = eAB′ ωA(n−i−1),A′(i)B′
+ λeB

A′
ωA(n−i)B,A′(i−1) , i = 1, ..., n− 1 ,

∇ωA′(n) = HB′B′CA′(n)B′B′
+ λeB

A′
ωB,A′(n−1) ,

∇CA′(n+k+2) = eBB′CB,A′(n+k+2)B′
,

∇CA(k),A′(n+k+2) = eBB′CA(k)B,A′(n+k+2)B′
+ λeAA′

CA(k−1),A′(n+k−1) , k = 1, 2, ... ,

∇ΨA(n+2) = eBB′ΨA(n+2)B,B′
,

∇ΨA(n+k+2),A′(k) = eBB′ΨA(k+n+2)B,A′(k)B′
+ λeAA′

ΨA(n+k+1),A′(k−1) , k = 1, 2, ...

(1.4.48)

and after renaming ΨA(n),A′(m) → CA(n),A′(m), where n−m = 2s, the field content reads

h = +s : ωA(2s−2−k),A′(k) , CA(i),A′(2s+i) , k = 0, ..., 2s− 2 , i = 0, 1, 2, ... ,

h = −s : CA(2s+i),A′(i) , i = 0, 1, 2, ... ,

h = 0 : CA(i),A′(i) , i = 0, 1, 2, ... .

(1.4.49)

The only physical fields are the ones present in the action, while all other fields are derivatives

thereof. The field content is visually represented in Figure 1.3.

It will prove useful to collect all fields in generating functions,

ω(y, y) =
∑
n,m

1
n!m!

ωA(n),A′(m) y
A...yA yA

′
...yA

′
,

C(y, y) =
∑
n,m

1
n!m!

CA(n),A′(m) y
A...yA yA

′
...yA

′
.

(1.4.50)
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#A

#A′

one-forms, ω

zero-forms, C

ωA(2s−2)

ΨA(2s), h = −s Weyl tensor

CA′(2s), h = +s Weyl tensor

ωA′(2s−2)

V(e, e, C)-cocycle

Figure 1.3: Field content of HiSGRA. Along the axes we have the number of unprimed/primed
indices on a spin-tensor. The black square shows a cocycle that links the one-form sector to
zero-forms (at the free level it relates two fields for each spin’s subsystem). The two fields in
the rounded rectangle enter the free action. The rest of the fields encode derivatives thereof
in a coordinate invariant and background independent way. The solid lines link pairwise the
fields that ‘talk’ to each other in the free equations.

The free equations become

∇ω = eBB′
(λyB′∂B + yB∂B′)ω +HB′B′

∂B′∂B′C(y = 0, y) ,

∇C = eBB′
(λyByB′ − ∂B∂B′)C .

(1.4.51)

Decomposing the covariant derivative ∇, we obtain

dω = V(ω0, ω) + V(ω0, ω0, C) , dC = U(ω0, C) , (1.4.52)

which is the linearized version of (1.3.19), where the spin-2 sector of ω is set to its background

value ω0.

This allows us to relate the equations in (1.4.51) to boundary conditions for the structure

maps of the L∞-algebra. These boundary conditions read

V(e, ω) + V(ω, e) = eCC′
(λyC′∂C + yC∂C′)ω ,

U(e, C) + U(C, e) = eCC′
(λyCyC′ − ∂C∂C′)C ,

V(e, e, C) = eB
C′
eBC′

∂C′∂C′C(y = 0, y) ,

(1.4.53)

with e = eAA′
yAyA′ .

The structure maps take on the form of poly-diffential operators

V(f1, ..., fn) = V(y, ∂1, ..., ∂2) f1(y1)...fn(yn)
∣∣∣
yi=0

, (1.4.54)
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where fi’s are ω’s or C’s. We have explicitly indicated dependence of y’s; the y’s can be treated

similarly. Our notation can be summarized as follows: (i) we abbreviate yA ≡ pA0 , ∂
yi
A ≡ piA,

yA
′ ≡ qA

′
0 , ∂

yi
A′ ≡ qiA′ ; (ii) contractions pij ≡ pi · pj ≡ −ϵABp

A
i p

B
j = pAi pjA are done in such a way

that exp[p0 · pi]f(yi) = f(yi + y); (iii) Lorentz invariance forbids to mix primed and unprimed

indices; (iv) all indices must be contracted with ϵAB or ϵA′B′ ; (v) explicit arguments yi in f ’s

and the symbol |yi=0 are omitted. Importantly, all operators are assumed to be local, i.e. they

send polynomials to polynomials.

The variables y and y are treated unequally and the structure map can be written as

V(f1, ..., fn) = v(f ′1(y), ..., f
′
n(y))⊗ f ′′1 (y) ⋆ ... ⋆ f

′′
n(y) , (1.4.55)

where fi(y, y) = f ′i(y)⊗ f ′′i (y). All y-dependent factors are multiplied via the star-product:

f ′′1 (y) ⋆ ... ⋆ f
′′
n(y) = exp

[ ∑
0=i<j=n

ri · rj

]
f ′′1 (y1)...f

′′
n(yn)

∣∣∣
yi=0

. (1.4.56)

Thus, we have the Weyl algebra A1 acting on the y’s.

The goal is to solve the L∞-relations (1.3.19) with the boundary conditions (1.4.53). To

illustrate the procedure, let us go through a few examples. At the lowest order in C we find

V(V(ω, ω), ω)− V(ω,V(ω, ω)) = 0 . (1.4.57)

This simply means that ω ∈ hs and the first structure map V(ω, ω) is an associative product

in the higher spin algebra hs. The structure map is found to be

V(ω, ω) = exp [p01 + p02] . (1.4.58)

To improve readability, we omitted the component of the structure map acting on the y and we

also omitted the field this poly-differential operator acts on in the right-hand side. This result

shows that the structure map V(•, •) is the commutative product on the commutative algebra

on functions C[y]. The higher spin algebra thus reads hs = C[y]⊗ A1 ⊗MatN .

The structure map U(ω,C) obeys

U(V(ω, ω), C)− U(ω,U(ω,C)) = 0 , (1.4.59)

which implies that U(•, •) defines a representation of the algebra, so the fields C reside in the

module of hs. In fact, the action (1.4.46) suggests that this module is hs⋆, as the action is a

functional S : hs⊗ hs⋆ → R.
Because the fields ω and C take values in MatN , we must distinguish between different

orderings of the fields. We write

U(ω,C) = U1(ω,C) + U2(C, ω) , (1.4.60)
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where U1(ω, •) and U2(•, ω) encode the left and right action of the higher spin algebra hs on

the bimodule, respectively. These maps are now structure maps of an underlying A∞-algebra,

from which our L∞-algebra is obtained by graded anti-symmetrizing its structure maps. The

integrability condition gives

U1(V(ω, ω), C)− U(ω,U1(ω,C)) = 0 ,

U2(U1(ω,C), ω)− U1(ω,U2(C, ω)) = 0 ,

U2(C,V(ω, ω)) + U2(U2(C, ω), ω) = 0 ,

(1.4.61)

which are exactly the defining relations of the bimodule over hs. The solution is given by

U1(ω,C) = exp [p02 + p12] ,

U2(C, ω) = − exp [p01 − p12] ,
(1.4.62)

which realizes the left and right coadjoint action of hs on its dual space hs⋆.

The cubic map V(ω, ω, C) is decomposed into

V(ω, ω, C) = V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω) . (1.4.63)

The consistency conditions are obtained in the same manner as before and the solution is given

by

V1(ω, ω, C) : + p12

∫
∆2

exp[(1− t1) p01 + (1− t2) p02 + t1p13 + t2p23] ,

V2(ω,C, ω) :

−p13
∫
∆2

exp[(1− t2) p01 + (1− t1) p03 + t2p12 − t1p23]+

−p13
∫
∆2

exp[(1− t1) p01 + (1− t2) p03 + t1p12 − t2p23] ,

V3(C, ω, ω) : + p23

∫
∆2

exp[(1− t2) p02 + (1− t1) p03 − t2p12 − t1p13] .

(1.4.64)

(1.4.65)

(1.4.66)

Here, ∆2 is the 2-simplex described by 0 ≤ t1 ≤ t2 ≤ 1.

Similarly, we split the structure map U(ω,C,C) into

U(ω,C,C) = U1(ω,C,C) + U2(C, ω, C) + U3(C,C, ω) . (1.4.67)
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The consistency conditions require them to take the form

U1(ω,C,C) : + p01

∫
∆2

exp[(1− t2) p02 + t2p03 + (1− t1) p12 + t1p13] ,

U2(C, ω, C) :

−p02
∫
∆2

exp[t2p01 + (1− t2) p03 − t1p12 + (1− t1) p23]+

−p02
∫
∆2

exp[t1p01 + (1− t1) p03 − t2p12 + (1− t2) p23] ,

U3(C,C, ω) : + p03

∫
∆2

exp[(1− t1) p01 + t1p02 + (t2 − 1) p13 − t2p23] .

(1.4.68)

(1.4.69)

(1.4.70)

The structure maps that were obtained can be verified by using them to compute the cubic

tree level scattering amplitude, as is done in Appendix C.1. These calculations confirm that the

structure maps are correct. They also survive another, independent test: the FDA obtained

for the FDA for SDYM and SDGR are found from Taylor expansion of the structure maps.

Moreover, they are directly related to the FFS cocycle obtained in [110].

While chiral HiSGRA in light-cone gauge only admits cubic interactions, there is no guar-

antee that the covariant formulation in terms of the underlying L∞-algebra truncates at cubic

level. In fact, it is easy to write down the next order of L∞-relations and check if they are

consistent with vanishing quartic terms and find that this is not the case. This implies that

the higher order maps are required to ensure Lorentz covariance; this covariance is manifestly

broken in light-cone gauge. Another improvement of the obtained structure maps would be the

generalization to define them on any background with constant curvature. Both enhancements

will be made in the next section.

1.4.3 Higher order interactions

While it is easy to verify that the L∞-relations fail for vanishing quartic structure maps, solving

them by brute force turns out to be an inefficient strategy. Instead, we will rely on HPT to

obtain all higher order structure maps. The cubic map provides a perturbation away from the

free theory, from which a HPT recipe can be cooked up. The more general details of HPT are

given in Appendix D.1 and the recipe is elaborated on more in Appendix D.2. Here we will

only demonstrate how to build structure maps on a background with arbitrary cosmological

constant Λ. Instead of the cosmological constant itself, we will use the parameter λ =
√
|Λ|

and refer to this as the cosmological constant for convenience.

Homological perturbation recipe. The main idea behind the HPT approach is that we

enlarge the algebra of polynomial functions C[yA] to C[yA, zA, dzA], with exterior differential

dz in z. Instead of deforming hs directly, we deform the DGA (C[yA, zA, dzA], dz) and map this

deformation back to hs. The product in C[yA, zA, dzA] is the composition of the wedge product
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and the star-product

(f ⋆ g)(Y ) = exp(Y a∂1a + Y a∂2a + Ωab∂1a∂
2
b )f(Y1)g(Y2)|Y1,2=0 , (1.4.71)

where Y a ≡ (yA, zA) and the matrix Ωab is given by

Ωab = −

(
λϵ ϵ

−ϵ 0

)
. (1.4.72)

Alternatively, it is more convenient for our purposes to write the star-product in the integral

form

(f ⋆ g)(y, z) =

∫
du dv dp dq f(y + u, z + v)g(y + q, z + p) exp(v · q − u · p+ λ q · u) . (1.4.73)

Using the Poincaré lemma, we also define the homotopy operator h. Given a cochain complex

(V, d), a contracting homotopy operator is a morphism of degree −1 h : V → V , such that

dh+ hd = idV . (1.4.74)

It acts on one-forms f (1) = dzAf
(1)
A (z) and two-forms f (2) = 1

2
f (2)(z)ϵABdz

A ∧ dzB as

f (1) = h[f (2)] = dzAzA

∫ 1

0

tdtf (2)(tz) , f (0) = h[f (1)] = zA
∫ 1

0

dtf
(1)
A (tz) (1.4.75)

and annihilates zero-forms f (0), i.e. h[f (0)] = 0, see also [100].

We will construct the structure maps using connected graphs. The star-product, here de-

noted by µ, represents a trivalent vertex with two incoming legs and one outgoing. Internal

lines correspond to the homotopy operator. Each diagram may be decorated by one or two ω’s

and arbitrarily many C’s. Graphs with two ω’s depict V structure maps, while graphs with one

ω represent U structure maps. All C’s enter via Λ[C] = h[C ⋄ 1
2
κdz2], with κ = exp[zAyA] and

C ⋄ g(z, y) = g(z, y + pi)C(yi)
∣∣∣
yi=0

. (1.4.76)

In order to construct bigger trees, it is convenient to label the fields. We write αi ∈ A0 for

the C fields and a, b ∈ A1 for the ω fields, where A0 and A1 are the zero-form and one-form

sector of the A∞-algebra to be constructed via HPT, respectively. Concretely, the A∞-algebra

is Â =
(
A1 ⊕ A0

)
⊗ A1 ⊗MatM with A1 = C[y][−1] and A0 = C[y]⋆ ∼= C[[∂y]]. We expect this

structure to deform in (A)dS. Structure maps are obtained by computing all admissible graphs

with the corresponding order of fields. As an example, we consider the vertex V(ω, ω, C). We
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find

V1(ω, ω, C) = ω(y) ⋆ h[ω(y) ⋆ Λ[C]]|z=0 =

µ

ω µ

ω Λ[C] ,

h

its mirror image

V3(C, ω, ω) = h[Λ[C] ⋆ ω(y)] ⋆ ω(y)|z=0 =

µ

µ ω

Λ[C] ω

h

and the middle vertex receives contributions from two graphs

V2(ω,C, ω) = ω(y) ⋆ h[Λ[C] ⋆ ω(y)]|z=0 + h[ω(y) ⋆ Λ[C]] ⋆ ω(y)|z=0 =

=

µ

ω µ

Λ[C] ω

h

⊕
µ

µ ω

ω Λ[C]

h

Let us get familiar with the procedure by considering the construction of V(ω, ω, C) as an
example. We start with

Λ[C] = dzAzA

∫ 1

0

dt tκ(tz, y + p3)α(y3)
∣∣∣
yi=0

. (1.4.77)

Next, we have

b(y) ⋆ Λ[C] = dzA(zA + p2A)e
yp2

∫ 1

0

dt tκ(tz + tp2, y + p3 + λp2)b(y2)α(y3)
∣∣∣
yi=0

(1.4.78)

and then we apply the homotopy operator,

h[b(y) ⋆ Λ[C]] = (z · p2)eyp2
∫ 1

0

dt′
∫ 1

0

dt tκ(tt′z + tp2, y + p3 + λp2)b(y2)α(y3)
∣∣∣
yi=0

. (1.4.79)
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Lastly, we take another star-product and set z = 0. We get

a ⋆ h[b ⋆ Λ[C]]
∣∣∣
z=0

= p12e
p1+y2

∫ 1

0

dt′
∫ 1

0

dt tκ(tt′p1 + tp2, y + p3 + λp1 + λp2)a(y1)b(y2)α(y3)
∣∣∣
yi=0

.

(1.4.80)

We then perform a change of integration variables u = t t′ and v = t and we obtain the extension

of V(ω, ω, C) in (1.4.64) to arbitrary λ.

Explicitly, for the bilinear maps we find

V(ω, ω) = exp[p01 + p02 + λp12] ,

U(ω,C) = exp[p02 + p12 + λp02] ,

U(C, ω) = − exp[−p12 + p02 − λp01] .

(1.4.81)

This defines the sectors A1 = Aλ[−1] and A0 = A⋆
λ of the A∞-algebra underlying chiral HiSGRA

in (A)dS. Here, the algebra Aλ interpolates between the commutative algebra A0 = C[y] and
the Weyl algebra A1.

Quartic vertex. Before we give the general solution, let us present the quartic vertex. It

was checked that they satisfy the next order in the L∞-relations. Here, there are 6 different

ways to order the arguments ω2C2. We find

V1(ω, ω, C,C) = (p12)
2

∫
D1

exp((1− u1 − u2)p01 + (1− v1 − v2)p02 + u1p13 + u2p14 + v1p23 + v2p24+

+ λp12(1 + u1 + u2 − v1 − v2 + u1v2 − u2v1)) ,

V2(ω,C, ω, C) = −(p13)
2

∫
D1

exp(p01(1− u1 − u2) + (1− v1 − v2)p03 + u2p12 + u1p14 − v2p23 + v1p34+

+ λp13(1 + u1 − u2 − v1 − v2 − u1v2 + u2v1))

− (p13)
2

∫
D1

exp(p01(1− u1 − u2) + (1− v1 − v2)p03 + u1p12 + u2p14 − v1p23 + v2p34+

+ λp13(1− u1 + u2 − v1 − v2 + u1v2 − u2v1))+

− (p13)
2

∫
D2

exp((1− uR − vL)p01 + (1− uL − vR)p03 + vLp12 + uRp14 − uLp23 + vRp34

+ λp13(1− uL + uR − vL − vR − uLuR + vLvR)) ,

V3(ω,C,C, ω) = (p14)
2

∫
D1

exp((1− u1 − u2)p01 + (1− v1 − v2)p04 + u2p12 + u1p13 − v2p24 − v1p34+

+ λp14(1− u1 − u2 − v1 − v2 − u1v2 + u2v1))−

+ (p14)
2

∫
D1

exp((1− v1 − v2)p01 + (1− u1 − u2)p04 + v1p12 + v2p13 − u1p24 − u2p34+

+ λp14(1− u1 − u2 − v1 − v2 − u1v2 + u2v1))−

+ (p14)
2

∫
D2

exp((1− uR − vL)p01 + (1− uL − vR)p04 + vLp12 + uRp13 − uLp24 − vRp34



1.4. CHIRAL HISGRA AND SELF-DUAL THEORIES 33

+ λp14(1− uL − uR − vL − vR − uLuR + vLvR)) ,

V4(C, ω, ω, C) = (p23)
2

∫
D2

exp((1− uR − vL)p02 + (1− uL − vR)p03 − vLp12 − uLp13 + uRp24 + vRp34

+ λp23(1 + uL + uR − vL − vR − uLuR + vLvR)) ,

V5(C, ω, C, ω) = −(p24)
2

∫
D1

exp((1− v1 − v2)p02 + (1− u1 − u2)p04 − v2p12 − u2p14 + v1p23 − u1p34+

+ λp24(1− u1 + u2 − v1 − v2 + u1v2 − u2v1))+

− (p24)
2

∫
D1

exp((1− v1 − v2)p02 + (1− u1 − u2)p04 − v1p12 − u1p14 + v2p23 − u2p34+

+ λp24(1 + u1 − u2 − v1 − v2 − u1v2 + u2v1))+

− (p24)
2

∫
D2

exp((1− uR − vL)p02 + (1− uL − vR)p04 − vLp12 − uLp14 + uRp23 − vRp34

+ λp24(1 + uL − uR − vL − vR − uLuR + vLvR)) ,

V6(C,C, ω, ω) = (p34)
2

∫
D1

exp((1− v1 − v2)p03 + (1− u1 − u2)p04 − v2p13 − u2p14 − v1p23 − u1p24+

+ λp34(1 + u1 + u2 − v1 − v2 + u1v2 − u2v1)) ,

with integration variables

u1 ≡
t1t2(1− t3)t4
1− t1t2t3

, v1 ≡
t1(1− t2t3)

1− t1t2t3
,

u2 ≡
(1− t1t2)t3t4
1− t1t2t3

, v2 ≡
(1− t1)t3
1− t1t2t3

,

which belong to some integration domain D1 and

uL ≡ t1t2(1− t3)

1− t1t2t3t4
, vL ≡ t1(1− t2t3t4)

1− t1t2t3t4
,

uR ≡ (1− t1)t3t4
1− t1t2t3t4

, vR ≡ t3(1− t1t2t4)

1− t1t2t3t4

parametrizing the domain D2. In order to identify these domains, we invert the above relations

and use 0 ≤ ti ≤ 1. For D1 we find

t1 =
u2v1(1− v1 − v2) + u1v2(v1 + v2)

u1v2 + u2(1− v1 − v2)
, t3 =

v2
1− v1

,

t2 =
u1v2

u2v1(1− v1 − v2) + u1v2(v1 + v2)
, t4 = u1 + u2

1− v1
v2

.

It was found that the coordinates ui and vi belong to the interval [0, 1] and that they satisfy

0 ≤ v2 ≤ 1 , 0 ≤ u1 ≤ v1 ≤ 1− v2 ,
u1
v1

≤ u2
v2

≤ 1− u1
1− v1

.
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As a result, the integrals should be evaluated as

∫
D1

≡
∫ 1

0

dv2

∫ 1−v2

0

dv1

∫ v1

0

du1

∫ v2
1−u1
1−v1

u1v2
v1

du2 .

For D2 we find the inverted relations

t1 =
uLuR − vLvR + vL

1− vR
, t3 =

uLuR − vLvR + vR

1− vL
,

t2 =
uL

uLuR − vLvR + vL
, t4 =

uR

uLuR − vLvR + vR
.

Again, the coordinates u
L/R
i and v

L/r
i belong to [0, 1]. The other restrictions are

0 ≤ uL ≤ 1 , 0 ≤ uL ≤ vL ≤ 1− uR ,

uL

vL
≤ 1− vR

1− uR
,

uR

vR
≤ 1− vL

1− uL

and the integration is evaluated as

∫
D2

≡
∫ 1

0

duL
∫ 1−uL

0

duR
∫ 1−uR

uL

dvL
∫ 1−uL(1−uR)

vL

uR 1−uL

1−vL

dvR .

All orders. Here we outline the procedure used to construct all vertices of chiral HiSGRA

for a fixed ordering of the arguments, as obtained via the HPT method described above. One

should keep in mind that all trees that have the same ordering should be taken into account.

A generic tree T , with n leaves on the left branch andm leaves on the right branch, that rep-

resents a V vertex takes the form of the left panel in Figure 1.4. The right panel shows the tree

we refer to as the base tree T0. We construct theA∞ structure map V(. . . , C, . . . , ω, . . . , ω, . . . , C, . . . )
from the graph as follows. We assign two-dimensional vectors q⃗i = (ui, vi), r⃗i = (p1,i, p2,i) to

αi ∈ A0 and r⃗m+n+1 = (p01, p02), q⃗m+n+1 = (1 −
∑m+n

i=1 ui, 1 −
∑m+n

i=1 vi) to α0 ∈ A0. We also

introduce the matrices

PT0 = (⃗0, 0⃗, r⃗1, . . . , r⃗m+n, r⃗m+n+1) , QT0 = (−e⃗1,−e⃗2, q⃗1, . . . q⃗m+n, q⃗m+n+1) , (1.4.82)

belonging to the base tree T0, where e⃗1 =

(
1

0

)
, e⃗2 =

(
0

1

)
. The base tree T0 yields the

expression

(p12)
n+m

∫
Vn+m

exp
[
PT0Q

t
T0

+ λp12|QT0|
]
, (1.4.83)

where |QT | is the sum of minors ofQT . This tree is understood to yield the vertex V(ω, ω, C, . . . , C)
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when acting on

a(y1)b(y2)c1(y3) . . . cm+n(ym+n+2)|yi = 0 (1.4.84)

for a, b ∈ A1 and αi ∈ A0. The configuration space Vn+m is given by the chain of inequalities

u1
v1

≤ u2
v2

≤ · · · ≤ un+m+1

vn+m+1

, un+m+1 ≡ 1−
n+m∑
i=1

ui , vn+m+1 = 1−
n+m∑
i=1

vi , (1.4.85)

where 0 ≤ ui ≤ 1 and 0 ≤ vi ≤ 1 for i = 1, 2, . . . , n+m+ 1. A generic tree T can be obtained

αm+1

a α0αm+n αm+n−1α∗ b α1α2 α3α4

T T0

α0

a b α1 α2 αm+n

Figure 1.4: A generic tree T in the left panel with elements of A0 attached left and right
arbitrarily and the ‘base’ tree T0 in the right panel with only elements of A0 attached to the
right on the right branch. T can be obtained form T0 through flipping αi’s to the left of the
right branch and/or shifting them to the left branch.

from T0 through two types of operations: (i) flipping αi to the left of the right branch and (ii)

a counterclockwise shift of all αi’s along the cord connecting a and b. Importantly, in the latter

case α0 also moves along the cord, while another αi takes its place. To express the symbol

corresponding to T we define PT = (⃗0, 0⃗, r⃗1, . . . , r⃗m,−r⃗m+1, r⃗m+2, . . . , r⃗n+m,−r⃗m+n+1). We also

define a matrix QT by filling up its columns, starting with e⃗1, corresponding to a in Fig.1.4 and

from there on with a⃗i following through the tree counterclockwise. As an example, for the tree

in the left panel of Fig.1.4 this looks like

QT = (−q⃗a, q⃗n+m+1, q⃗n+m−1, . . . , q⃗4, q⃗2,−q⃗b, q⃗1, q⃗3, . . . , q⃗m+1, . . . , q⃗m+n) . (1.4.86)

The cosmological term for a generic tree is then given by λp12|QT |, where |QT | is the sum of

minors of QT .

For vertices, the labels on pi and the corresponding arguments yi of a, b and the αj’s are

read off from the tree from left to right. Since we have labeled them from bottom right to top

left, we require a permutation σT that relabels the pi’s and yi’s accordingly. Moreover, σT also

shuffles the elements in (1.4.84) corresponding to their respective position in the tree T . A
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generic tree with cosmological constant contributes to a vertex by

sTσT (p12)
m+n

∫
Vm+n

exp(tr[PTQ
t] + λp12|QT |)a(y1)b(y2)α1(y3) . . . αym+n(ym+n+2)|yi=0 .

(1.4.87)

Here, sT = (−1)k and k is the number of zero-forms C in between the two ω’s. The sign σT

is the combination of the sign factor we get by evaluating the product of two branches with a

sign coming from homological perturbation theory. Finally, a vertex with generic ordering of

its arguments is constructed by adding all trees with that ordering.

The U structure maps can also be constructed using HPT. Alternatively, one can construct

a non-degenerate pairing

⟨f |g⟩ = exp[p12]f(y1)g(y2)
∣∣∣
y1=y2=0

, (1.4.88)

with f ∈ A1 and g ∈ A0. This yields the duality maps ⟨fg|h⟩ = ⟨f |U1(g, h)⟩ and ⟨fg|h⟩ =

−⟨g|U2(h, f), where ⟨f |g⟩ = ⟨g|f(−y)⟩. This can directly be used to related V and U structure

maps by

⟨V1(a, b, α1, . . . , αn)|αn+1⟩ = ⟨a|U1(b, α1, . . . , αn, αn+1)⟩ . (1.4.89)

The explicit expression for the U structure map can be found in 4.4.3, where it is observed that

the two methods agree.

Not only does the duality map provide a means of deriving the U structure maps, it also

identifies and relates classes of both V and U structure maps. For example, all V structure maps

with the same total number of elements of A0 and the same number of elements of αi ∈ A0

between a, b ∈ A1 are related to each other by the commuting diagram

⟨V(αj+1, . . . , αn, a, α1, . . . , αi, b, αi+1 . . . , αj−1|αj⟩ = (1.4.90)

⟨V(αj−k+1, . . . , αn, a, α1, . . . , αi, b, αi+1, . . . , αj−k−1|αj−k⟩ . (1.4.91)

Lastly, we have the duality map among U structure maps,

⟨a|Un+2(α1, . . . , αn+1, b)⟩ = −⟨b|U1(a, α1, . . . , αn+1)⟩ . (1.4.92)

The duality maps are visually depicted by

V(a, b, α1, . . . , αn) U(b, α1, . . . , αn+1)

V(α1, . . . , αn, a, b) U(α1, . . . , αn+1, b)

V-V

V-U

V-U

U -U
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As a result, the duality maps hugely reduce the number of structure maps that are to be

computed.

Locality. A crucial observation is that the structure maps V and U are manifestly local up

to all orders. This is a result of the absence of the operators pij in the exponential. To see

this, we must remember that all structure maps contain a hidden star-product on the primed

indices, which contains contractions between the C’s. Taylor expanding this gives an infinite

series in powers of qij. Since descendants encode derivatives of the physical fields, we have

pijqij ↔ ∇AA′∇AA′ . So a structure map is called local if it does not have any contractions

between the C(y)’s.

Minimality. The L∞ structure maps admit some form of minimality in the sense that they

are almost zero. For λ = 0 and Abelianizing the theory, i.e. the fields are valued in Mat1, we

find ∑
k+m+n=N

V(α1 . . . , αk, b, αk+1, . . . , αk+m, a, αk+m+1, . . . , αk+m+n) = 0 , for N ≥ 1 ,∑
m+n=N

U(α1 . . . , αm, b, αm+1, . . . , αm+n) = 0 , for N ≥ 2 .

This means that if we assume the A∞-algebra to be C[y]⊗A1 ⊗Mat1 (i.e. fields on flat space

without matrix values), the structure maps of the associated L∞-algebra vanish, apart from

V(ω, ω) and U(ω,C), which describe the free theory. This is to be expected, since we are now

taking the graded anti-symmetrization of a commutative structure.

Configuration space

The expressions for the structure maps as obtained from HPT are far from the ones we have

presented here. Originally, the integration domains are simply hypercubes [0, 1]2n with n the

number of C’s, as HPT only produces integrals over the line [0, 1]. On the other hand, the

integrands quickly become unmanageable even for low order maps. We found an appropriate

change of variables that trades off the simplicity of the integration domain for a manageable

integrand. This leaves us with the integration domains Vn, also called configuration space,

described in (1.4.85).

While Vn has a more complicated structure than the hypercube, it still admits a neat geo-

metric interpretation. An example, the configuration space V3 that is associated to the quintic

structure maps, is represented in the left panel of Figure 1.5. The configuration space is ob-

tained by connecting the vectors q⃗a, q⃗b, q⃗i ∈ R2 in the order Q = (q⃗a, q⃗b, q⃗1, q⃗2, q⃗3). This leads

to a closed polygon with six vertices, of which three are fixed at (0, 0), (1, 0), and (0, 1). The

configuration space consists of the remaining three vertices in the ’bulk’ of the unit square. As

a defining feature of the configuration space, (1.4.85) only allows these vertices to be positioned

such that the upper boundary of the shaded region is concave. In other words, the complement
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q⃗a

q⃗b0 1

1

u

v

q⃗1
q⃗2

q⃗3

q⃗4

+

q⃗a

q⃗b

1
0

u

v

q⃗1
q⃗2

q⃗3

q⃗4

+

−

Figure 1.5: In the left panel a swallowtail constructed from the vectors (q⃗1, q⃗2, q⃗3, q⃗4, q⃗a, q⃗b) and
in the right panel a self-intersecting polygon constructed from (q⃗1, q⃗2, q⃗a, q⃗3, q⃗4, q⃗b). They are
associated to the quintic structure maps, respectively.

of the shaded region under the diagonal is convex. We refer to the concave regions as swallow-

tails. In Appendix D.6 we prove that the swallowtails are compact and Vn ⊂ [0, 1]2n ⊂ R2n.

The above is easily generalizable. The configuration space Vn shows up in the expression

for the structure maps V(ω, ω, C, . . . , C) with n C’s. One draws a closed polygon in the order

Q = (q⃗a, q⃗b, q⃗1, . . . , q⃗n+1). This yields a polygon with n + 3 vertices, of which 3 are fixed. The

configuration space consists of the remaining n vertices that are restricted to form a swallowtail.

Another interesting finding is that the volume of the shaded region in the left panel of Figure

1.5 is equal to half the term proportional to the cosmological constant λ in the structure maps

corresponding to the base tree with any number of C’s.

This is not the case for trees with other topologies, however. As an alternative, the cos-

mological term is related to a self-intersecting polygon, such as the one in the right panel of

1.5. In general, the (possibly self-intersecting) polygon associated to a tree T is obtained from

connecting the vectors q⃗a, q⃗b and q⃗i as they appear in QT . If a polygon is self-intersecting, the

shaded region splits up in two separate regions, each of which are themselves swallowtails. The

shaded region above (below) the horizontal axis provides a positive (negative) contribution to

the oriented area of the polygon. The cosmological term in any tree T is then given by half the

oriented area of the polygon constructed from QT . This statement has been made explicit, as

the cosmological term is proportional to the sum of minors of QT .

When representing the structure maps of the A∞-algebra that underpins chiral HiSGRA in

the most efficient coordinates, we encounter a deeper geometric layer in terms of swallowtails.

This hints that there might be an alternative way to construct other HiSGRAs by choosing

different configuration spaces, akin to Kontsevich’ formality theorem [34]. Another observation

is made in Section 4.5.2. Here, the swallowtails are reformulated as positive Grassmannians,

which have been recently showing up in statistical physics, integrable models and scattering

amplitudes. A recent account of this topic can be found in [111, 112].
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Pre-Calabi-Yau algebra

From the above construction, the A∞-algebra underlying chiral HiSGRA is now revealed to be

Â = A ⊗ B, where B is the unital associative algebra B = A1 ⊗MatN and the what is called

minimal A∞-algebra A splits up as A = A0 ⊕ A1 = A⋆
λ ⊕ Aλ[−1]. As discussed in Appendix

D.4, this is a pre-Calabi-Yau algebra of degree 2. Pre-Calabi-Yau algebras are a particular

type of A∞-algebra that offer precisely the type of duality maps that we used to relate different

structure maps to each other. Interestingly, pre-Calabi-Yau algebras are related to deformation

quantization of non-commutative manifolds and often show up in string field theory [113].

1.5 Stokes’ theorem

The formulation of chiral HiSGRA based on its A∞-algebra raises the questions (i) what struc-

tures in deformation quantization and non-commutative geometry gives rise to the structures

in chiral HiSGRA and (ii) is there a more general formality theorem of which the (Shoikhet-

Tsygan-)Kontsevich formality is a particular example and that gives chiral HiSGRA? In this

section, we summarize the results obtained in Chapter 5, where we proved the A∞-relations

using Stokes’ theorem, as is also done in the known formality theorems. Together with the sim-

ilarities between the structure maps obtained in the previous sections and Kontsevich’ recipe

to find star-products, this hints at the extension of the known formality theorems as mentioned

above.

Namely, like the bi-differential structure maps that constitute the Kontsevich star-product,

the structure maps can be represented after Taylor expansion by sums over graphs Γ as

mn(f1, . . . , fn) =
∑
Γ

wΓWΓ(f1 ⊗ · · · ⊗ fn) , fi ∈ A . (1.5.1)

Here, wΓ are weights and WΓ are poly-differential operators. The main difference from Kont-

sevich is that the weights are expressed in terms of integrals over some configuration space CΓ

of concave polygons, i.e. swallowtails. As for the Moyal-Weyl case, the graphs are built from

simple wedges that represent p•,•, excluding pij, see Figure 1.6. Completing the analogy with

the Moyal-Weyl star-product, we then have the simplest non-trivial Poisson structure ϵAB.

∂D
α3α2α1ba

pa,3 pb,3

pa,b

D

Figure 1.6: A typical Kontsevich-like graph contributing to a quintic structure map. D is the
upper half-plane and ∂D is its boundary.
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The A∞-relations have the schematic form∑
i,j

±mi(•, . . . ,mj(•, . . . , •), . . . , •) = 0 , (1.5.2)

which is a ’product’ of structure maps. In order to prove the A∞-relations using Stokes’ theorem,

we construct a configuration space C and a closed form Ω on C, such that the boundary

∂C =
∑
Γ,Γ′

CΓ × CΓ′ (1.5.3)

reproduces the product space of the configuration spaces of (1.5.1). These will be chosen such

that Ω evaluated on ∂C exactly reproduces (1.5.2). With Ω restricted to ∂C providing the

A∞-terms, while also being closed, this yields the (schematic) equivalence

0 =

∫
C
dΩ =

∫
∂C

Ω , ⇐⇒ A∞-relations . (1.5.4)

This section follows Chapter 5 closely, only omitting some details. However, we will provide

instructions for drawing diagrams and extracting expressions from them. We have no choice

but to write these instructions in roughly the same way.

1.5.1 The recipe

The initial calculations we performed were heavily based on HPT. However, this led to enor-

mously involved expressions, so we built a diagrammatic representation for the proof. The

diagrammatic representation is fully self-consistent, so it renders the initial calculations obso-

lete.

Structure maps

Before we lay out the recipe for building diagrams and extracting the closed form Ω and the

configuration space C out of them, we propose an alternative diagrammatic representation of

the trees we encounter in the previous section. This will also turn the diagrams required for

the Stokes’ theorem proof a natural generalization. Since the expressions built out of the trees

were constructed by reading off the ordering of the fields counterclockwise, it is natural to wrap

the trees inside a circle, see Figure 1.7.

Each disk diagram consists of a circle with a diameter, trivalent vertices, lines from the

diameter to the boundary and an arrow on one of the fields on the boundary. Lines cannot

intersect each other or themselves. The arrow points away from the disk if it is attached to a

field belonging to A0 and otherwise it is pointing inwards. The disk will always be rotated such

that the arrow is found on the northern semicircle or on the points where the boundary and

the diameter intersect.
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b

⇒ S5(α1, α2, a, α3, α4, b, α5)

a

α2

α1

α5

α4

α3

q⃗1

q⃗2

q⃗3

q⃗4

q⃗5

b ⇒ S5(α1, α2, α3, a, α4, α5, b)a

α3

α2 α1

α5

α4

q⃗1

q⃗2

q⃗3

q⃗4

q⃗5

Figure 1.7: Two disk diagrams that contribute to S5.

It turns out to be useful to assign to each disk diagram a structure map

SN(α1, . . . , αk, a, αk+1, . . . , αk+m, b, αk+m+n) ,

where αi ∈ A0 and a, b ∈ A1. The total number of elements of A0 is
10 N = k+m+n. Only later

will we extract the A∞ structure maps mN+1, with N + 1 arguments, from SN . The ordering

of the arguments of SN is determined by the order in which they appear on the boundary of

the disk diagram in the counterclockwise direction, starting from the arrow. This is called the

boundary ordering. The labels on the αi are also assigned according to the boundary ordering.

One assigns the vectors q⃗i = (ui, vi) to the red lines with i increasing in the direction from

b to a along the diameter. This is called the bulk ordering. We also assign q⃗a = (−1, 0) and

q⃗b = (0,−1) to the points a and b, respectively. The vectors forms a closed polygon, i.e.

q⃗1 + · · ·+ q⃗N + q⃗a + q⃗b = 0 (1.5.5)

We also require ui, vi ≥ 0. Next, we assign a ’time’ ti = ui/vi at which we pass through the

10We also use the symbol N in MatN . These uses are unrelated and should be distinguished from context.
We avoid using matrix-valued N in any explicit calculations, so no confusion should arise
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i-th vertex following the bulk ordering. The chronological ordering ti ≤ tj for i ≤ j then gives

0 ≤ u1
v2

≤ u2
v2

≤ · · · ≤ uN
vN

≤ ∞ . (1.5.6)

Together, this describes the integration domain VN−1.

With regard to extracting the integrand out of a disk diagram D, one defines a 2× (N +2)

array QD, which is composed of vectors q⃗i according to the boundary ordering, i.e.

QD =
(
q⃗i1 , . . . , q⃗iN+2

)
, with ik ∈ {a, b, 1, 2, . . . , N} . (1.5.7)

The labels on the vectors are also named according to the boundary ordering. To simplify

expressions, we will often refer to the canonical ordering associated with SN(a, b, α1, . . . , αN),

which gives

QD =
(
q⃗a, q⃗b, q⃗1, . . . , q⃗N+2

)
. (1.5.8)

This corresponds to the base tree T0 in the previous section. We also define a 2× (N +2) array

PD = (r⃗1, . . . , r⃗k, r⃗a, r⃗k+1, . . . , r⃗k+m, r⃗b, r⃗k+m+1, . . . , r⃗k+m+n) , (1.5.9)

where r⃗i =
(
p1,i, p2,i

)
for i = 1, . . . , N and r⃗a = r⃗b =

(
0, 0
)
.

Lastly, we define sD to be the number of αi’s in the southern semicircle in diagram D. We

then define the integrand

ID = sD(pa,b)
N−1 exp[tr(PDQ

t
D) + λ|QD|pa,b] (1.5.10)

and the structure map SN then reads

SN =
∑
D

∫
VN−1

ID , (1.5.11)

where the sum is over all admissable disk diagrams with the same ordering of arguments.

The structure map mN+1 can be computed from SN using the natural pairing

⟨•, •⟩ : A1 ⊗ A0 → C . (1.5.12)

For example, given a map SN(. . . ) = ⟨V(. . . ), α⟩, one may remove the last α and obtain the V
structure map. Alternatively, for f(y1) ∈ A1 and g(y2) ∈ A0, one may use

⟨f(y1), g(y2)⟩ = −⟨g(y2), f(y1)⟩ = exp[p1,2]f(y1)g(y2)|y1=y2=0 (1.5.13)

to extract the V and U structure maps from SN . This procedure yields the same structure

maps as the original procedure in the previous section.
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Recipe for Stokes’ theorem proof

The schematic form of the Stokes’ theorem proof as given in (1.5.4) can be made more precise

by

0 =
∑∫

Wk,l,m,n

dΩa
k,l,m,n(y) + dΩc

k,l,m,n(y) =
∑∫

∂Wk,l,m,n

Ωa
k,l,m,n(y) + Ωc

k,l,m,n(y)

⇕
A∞-relations

(1.5.14)

where k +m+ l + n = N . Here, Wk,l,m,n are integration spaces and Ωa
k,l,m,n(y) and Ωc

k,l,m,n(y)

are closed differential forms, called potentials, with values in multi-linear maps

Ωa,c
k,l,m,n(y) : T

kA0 ⊗ A1 ⊗ T lA0 ⊗ A1 ⊗ TmA0 ⊗ A1 ⊗ T nA0 → A1 .

The potentials take a, b, c ∈ A1 and ci ∈ A0 as arguments and the labels k, l,m, n indicate how

the αi’s are distributed between the elements of A1. As will become clear soon, there exist two

potentials Ωa and Ωc whose ordering can never mix. Expressed in terms of the disk diagrams

for structure maps V and U , the A∞-relations take on the diagrammatical form that is shown

in Figure 1.8, which represents the insertion of one structure map into an other.

Σ U V = 0

Figure 1.8: Graphical representation for the A∞-relations.

We must also consider configuration spaces Wk,l,m,n ⊂ R2N+1 with dim(Wk,l,m,n) = 2N + 1.

The dimension is determined by the fact that the boundary ∂Wk,l,m,n should be the prod-

uct space of two swallowtails. Again, we build disk diagrams from which the potentials and

configuration spaces can be derived.

The following is nearly identical to what is discussed in Chapter 5. Still, we believe it is too

important not to mention here. The recipe to construct disk diagrams for the potentials and

configuration space is:

Consider a circle. The interior will be referred to as the bulk and the circle as the boundary.

a c

b

Choose three distinct points on the boundary and label them a, b, c counterclockwise.

Consider the point at the center of the bulk, now called junction, and connect this to each
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of the points a, b, c by blue lines. These points correspond to elements of A1. The lines are

called a-leg, b-leg and c-leg, correspondingly.

a c

b

Draw any number of red lines connecting these legs to the boundary at either side of the

legs. Lines are not allowed to intersect. Their endpoints at the boundary correspond to

elements of V0.

a c

b

Connect an arrow to one of the vertices on the boundary of the disk between a and c,

pointing away from the disk, i.e. there has to be one marked point on the boundary. If the

arrow is connected to a vertex connected to the a-leg, the potential that can be extracted

using (5.4.6) is Ωa
k,l,m,n, while Ωc

k,l,m,n can be found when it is connected to the c-leg.

a c

b

δ1 γ3

γ1

γ2

β1

α1

β2

α2

Label the points at the boundary that are connected to red lines αi, βi, γi, δi if the lines

emanate from the a-leg, b-leg, c-leg or are in between the red line connected to the arrow

and the junction, respectively, and i increases from the boundary to the junction. This

way if the arrow is attached to an argument belonging to the a-leg, the arguments after the

arrow are labelled δi and those in between a and including the arrow are named αi. The

subscripts k, l,m, n on the potentials count the number of points with labels αi, βi, γi, δi,

respectively, disregarding the label associated with the arrow.

• The diagram must contain at least one element of A0, connected to the piece of the bound-

ary between a and c, which can be attached to either the a-leg or the c-leg. If the diagram

contains more than one element of A0, they have to be attached to at least two different

legs.

From the diagram we can read off the expressions for the scalars

⟨Ωa
k,l,m,n, αk+1⟩ and ⟨Ωc

k,l,m,n, γm+1⟩ , (1.5.15)

depending on the name of the field that the arrow connects to. If the arrow is connected through

a line to the a-leg (c-leg), we call this an a-diagram (c-diagram). From here the potentials and

configurations space can be obtained in the same way as the structure maps V and U were

found from SN . It is easy to see that a c-diagram can always be obtained from reversing the

boundary ordering on an a-diagram. This gives

Ωa
k,l,m,n ↔ Ωc

m,l,k,n , with a↔ c . (1.5.16)
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Thus, the potential Ωa
k,l,m,n and Ωc

m,l,k,n are accompanied by the same integration domain

Wk,l,m,n.

To the a-leg, b-leg and c-leg we assign the vectors q⃗a = (−1, 0, 0), q⃗b = (0,−1, 0) and

q⃗c = (0, 0,−1), respectively. Otherwise they are q⃗a,i = (uai , v
a
i , w

a
i ), q⃗b,i = (ubi , v

b
i , w

b
i ) and

q⃗c,i = (uci , v
c
i , w

c
i ) for the elements of A0 in the order that they are attached to the a-leg, b-leg

or c-leg from the boundary inwards. The labels increase from boundary to junction. We now

assign a time tuvi = u•i /v
•
i , t

uw
i = u•i /w

•
i and tvwi = v•i /w

•
i and impose a chronological ordering

along three paths in the bulk of the disk diagram.

• Path 1: One moves from b to c, after which one continues to a. This imposes chronological

ordering in time tuvi .

• Path 2: One moves from c to b, after which one continues to a. This imposes chronological

ordering in time tuwi .

• Path 3: One moves from c to a, after which one continues to b. This imposes chronological

ordering in time tvwi .

a c

b

δ1
γ3

γ1

γ2

β1

α1

β2

α2

a

c

b

α1

δ1

γ1

γ2

β1α1

β2

α3

Figure 1.9: The disk diagrams for ⟨Ωa
1,2,3,1(a, α1, δ1, β2, b, β1, γ3, γ1, c, γ2), α2⟩ and

⟨Ωc
3,2,1,1(α3, α1, a, α2, β2, b, β1, δ1, γ1, c), γ2⟩ on the left and right, respectively.

The paths are shown in Figure 1.11. Together with the condition that all u, v and w

variables take values between 0 and 1, the chronological order shows the configuration space

Wk,l,m,n to be

0 ≤u•i , v•i , w•i ≤ 1 ,
∑

(u•i , v
•
i , w

•
i ) = (1, 1, 1) ,

vai
wa

i

wb
i

ubi

uci
vci

= 1 ,

0 ≤u
b
1

vb1
≤ · · · ≤ ubl

vbl
≤ ucm
vcm

= · · · = uc1
vc1

≤
uak+n+1

vak+n+1

≤ · · · ≤ ua1
va1

≤ ∞ ,

0 ≤ uc1
wc

1

≤ · · · ≤ ucm
wc

m

≤ ubl
wb

l

= · · · = ub1
wb

1

≤
uak+n+1

wa
k+n+1

≤ · · · ≤ ua1
wa

1

≤ ∞ ,

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

≤ ∞ .

(1.5.17)
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Here, the • stands for a, b or c. A naive counting of the dimension of the configuration space

gives the wrong dimension. After all, the configuration space is parametrized by the 3N + 3

coordinates u, v and w. However, one can see in Figure 1.11 that the paths run over some legs

twice, which leads to the equalities

ucm
vcm

≤ · · · ≤ uc1
vc1

≤ uc1
vc1

≤ · · · ≤ ucm
vcm

⇒ ucm
vcm

= · · · = uc1
vc1
. (1.5.18)

The second relation in (1.5.17) is called the closure constraint and it restricts 3 more coordinates.

The third relation fixes one more. Together, this fixes exactly the right amount of coordinates,

such that dim(Wk,l,m,n) = 2N + 1.

The chains of equalities can be parametrized by α, 1
β
and γ according to

α =
uci
vci
,

1

β
=
vai
wa

i

, γ =
ubi
wb

i

, (1.5.19)

which in turn characterizes the planes in which the vectors q⃗i ∈ R3 lie. The third relation in

the first line of (1.5.17) relates the planes by

γ =
α

β
. (1.5.20)

A special configuration space W0,0,m,n is associated to the what is called left-ordered disk di-

agrams. They give rise to potentials of the form Ω•0,0,m,n(a, b, c, γ1, . . . , γm, δ1, . . . , δn). The con-

figuration space W0,0,m,n admits a nice visualization R3 in a way that it extends the swallowtails

in R2, see Figure 1.10. We refer to the closed polygons (q⃗a, q⃗b, q⃗c, q⃗c,1, . . . , q⃗c,m, q⃗a,n+1, . . . , q⃗a,1)

as maximally concave polygons, because their projections onto the uv-, uw- and vw-plane are

swallowtails. The equalities in the uv-chain (1.5.17) enforce all vectors q⃗c,i to be coplanar and

the equalities in the vw-plane require the vectors q⃗a,i to be coplanar. This is also depicted in

Figure 1.10.

q⃗a

q⃗b

q⃗c

q⃗c,1

q⃗c,2

q⃗a,3

q⃗a,2

q⃗a,1

q⃗a

q⃗b

q⃗c

q⃗c,1

q⃗c,2

q⃗a,3

q⃗a,2

q⃗a,1

Figure 1.10: On the left (right) the blue (red) shaded region depicts the plane in which the
vectors q⃗c,i (q⃗a,i) lie in W0,0,2,2. The scale in the v-direction was doubled to accentuate the
details in the pictures.
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a

b

c a

b

c a

b

c

Figure 1.11: Paths 1 - 3 from left to right, leading to the time ordering of times tuvi , tuwi and
tvwi , respectively.

The potentials turns out to be found easiest by considering a master space UN ⊂ R3N

described by

0 ≤ ui, vi, wi ≤ 1 ,
N+1∑
i=1

(ui, vi, wi) = (1, 1, 1) . (1.5.21)

On this space we define the master potential

Ωa
N = µID ,

with µ the measure

µ =µ1 ∧ · · · ∧ µN ,

µi =pa,bdui ∧ dvi + pa,cdui ∧ dwi + pb,cdvi ∧ dwi ,
(1.5.22)

and ID the integrand

ID = sD exp[Tr[PDQ
T
D] + λ(pa,b|Q12

D |+ pa,c|Q13
D |+ pb,c|Q23

D |)] . (1.5.23)

QD is an array filled with q-vectors according to the boundary ordering and sD is a sign that will

be explained soon. PD is an array filled with r-vectors, also matching the boundary ordering.

The r-vectors are r⃗i =
(
pa,i, pb,i, pc,i

)
with i = 1, . . . , N for elements of A0 and r⃗a =

(
−1, 0, 0

)
,

r⃗b =
(
0,−1, 0

)
and r⃗c =

(
0, 0,−1

)
for elements of A1. The potential Ωa

k,l,m,n is obtained by

restricting the master potential to Wk,l,m,n, i.e.

Ωa
k,l,m,n = Ωa

N

∣∣∣
Wk,l,m,n

. (1.5.24)

From there, Ωc
k,l,m,n can be found.

The sign sD of the potential Ωa
k,l,m,n and s′D for Ωc

k,l,m,n are given by

sD = (−1)M and s′D = (−1)M+1 , (1.5.25)

whereM is the number of red lines in the shaded regions in the left (right) panel of Figure 1.12

for the diagram associated with Ωa
k,l,m,n (Ωc

k,l,m,n).
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a c

b

a c

b

Figure 1.12: The sign sD of Ωa
k,l,m,n and Ωc

k,l,m,n is determined by the number of red lines in the
shaded regions in the left and right diagram, respectively.

Boundaries

The boundary of Wk,l,m,n is a union of many boundary components Pi, i.e. ∂Wk,l,m,n = ∪iPi.

Each Pi is obtained by saturating one inequality in (1.5.17). We differentiate between various

types of boundary components.

• A∞-components: on these boundary components, one retrieves a term from the A∞-

relations.

• Gluing term: the potential are non-zero on these boundary components, but do not

produce A∞-terms. Instead, there is another disk diagram with a different topology that

evaluates to the same value (up to a minus sign) on one of its boundary components. The

contributions then cancel pairwise.

• Zero measure: on these boundary components the measure vanishes and so do the poten-

tials. This gives no contribution.

• Higher codimension coboundary: sometimes saturating inequalities in (1.5.17) has im-

plications on other inequalities and fixes more than one coordinate, thereby leading to

higher codimension boundaries. This gives no contribution. To apply Stokes’ theorem,

we are only interested in codimension 1 boundaries.

As mentioned above, the limits are reached by saturating an inequality in (1.5.17). In the

HPT language this corresponds to evaluating an integral on its upper or lower integration

bound. This allows us to formulate a diagrammatic visualization of disk diagrams on the

corresponding boundaries. All internal lines, except for the outmost segment of the a-leg, b-leg

and c-leg contain an integration, due to the presence of the homotopy operator, and give rise

to two boundary terms. Most of these fall into the classes of vanishing boundary contributions

that were discussed above. The internal lines that yield non-vanishing boundary terms are

represented by green and red lines in Figure 1.13. The green/red lines correspond to evaluating

the potential on the upper/lower bound and they are accompanied by the sign with which these

terms appear.
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a c

b

δ1
γ3

γ1

γ2

β1

α1

β2

++
−
−

−
a

c

b

α1

δ1

γ1

β1α2

β2

α3

+

+

− −
−

Figure 1.13: Disk diagrams that show which line segments correspond to boundaries that
yield non-zero expressions for potentials of the type Ωa

k,l,m,n and Ωc
k,l,m,n on the left and right,

respectively. The diagrams also show the signs that the boundaries are accompanied with.

For the non-vanishing boundary terms, we should devise a visual representation for trans-

forming a disk diagram into a nested disk diagram, see Figure 1.8, in which the A∞-relations

are represented. To this end, we distinguish between the boundaries related to (i) the line

segments on the a-leg, b-leg, and c-leg and (ii) the line segments connected to elements αi, βi,

and γi.

In the former case, the chord segment shrinks to a point and the closed curved line is moved

to the junction and then it moves past the junction to another leg, such that it is still connected

to the same arc of the circle and lines do not intersect. Then, the leg at which we evaluate the

boundary is split off and forms a disk diagram itself, which is connected to the a curved line in

the original disk diagram by an arrow pointing toward the diameter of the new disk diagram. If

moving the curved line over the junction results in two legs having no curved lines attached to

them, both legs are separated from the disk diagram, forming a new one. Then, a curved line

in the new disk diagram is connected by an arrow with the diameter of the original one. Lastly,

if moving the curved line over the junction does not lead to an admissible nested diagram, the

curved line remains at the junction and this becomes a gluing term. On the other hand, if the

boundary is evaluated on a curved line, the leg onto which this line is attached splits off and

forms a new disk diagram with a curved line in the original disk diagram connected to the new

diagram by an arrow pointing to its diameter.

An example of this procedure is given in Figure 1.14, which gives rise to nested structure

maps of type V(. . . ,V(. . . ), . . . ). This boundary is obtained by setting u•i = 0, where • stands

for a, b or c.

Another example is displayed in Figure 1.15, which gives rise to nested structure maps of

type V(. . . ,U(. . . ), . . . ). This boundary is reached by setting w•i = 0.

Lastly, a gluing term is depicted in Figure 1.16. This boundary term is obtained by setting
uc
m

vcm
=

ub
l

vbl
.

Now that the recipe has been explained, all that is left to do is to see if the terms in

the A∞-relations are indeed recovered correctly by evaluating the potentials on the boundary

components of Wk,l,m,n without producing additional terms. We leave the details to chapter 5
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c

b

a

α1

δ1 β1β2

γ1

γ2

−→ a

α1 α2

c

b

α5

α6

α3

α4

Figure 1.14: An example of a boundary term contributing to V(a, α1, α2,V(α3, b, α4, α5, c, α6)).
After splitting the disk diagram in two, one relabels the elements of A0, as to make them
correspond to the arguments of the structure maps V .

c

b

a

α1

δ1 β1β2

γ1

γ2

−→

a

b
α2

α1

α3

α4

α5

α6

c

Figure 1.15: An example of a boundary term contributing to V(a, α1, α2, α3, b, α4,U(α5, c, α6)).

c

b

a

α1

δ1 β1β2

γ1

γ2

−→
c

b

a

α1

α2 α4α3

α5

α6

c

b

a

α1

δ1 β1
β2

γ1

γ2

−→
c

b

a

α1

α2 α3

α4

α5

α6

Figure 1.16: Two examples of a boundary term contributing to a gluing term, with both
orientations of β2.

and only state the result: the A∞-relations underlying chiral HiSGRA can be proven by Stokes’

theorem for any value of the cosmological constant and this positive result strongly hints at

some extension of the (Shoikhet-Tsygan-) Kontsevich formality theorem.



Chapter 2

Minimal model for self-dual theories

In this chapter, we derive the Free Differential Algebra (FDA) for self-dual Yang-Mills and

self-dual gravity. The content is entirely based on [88], co-authored with Evgeny Skvortsov,

and published in the Journal of High Energy Physics.

Note that, due to changes introduced in later works, the primed and unprimed spinor indices

are swapped in this chapter and the next compared to the introduction and the other chapters.

2.1 Introduction

Self-dual theories have a number of remarkable properties that make them very useful toy

models in general and first order approximations to more complicated theories: (a) self-dual

theories are closed subsectors of the corresponding complete theories; (b) as a result, all solu-

tions of self-dual theories are solutions of the full ones; (c) all amplitudes of self-dual theories

are also amplitudes of the full ones; (d) self-dual theories are integrable; (e) self-dual theories

are finite and one-loop exact; (f) existence of a self-dual truncation allows one to rearrange

the perturbation theory in a nontrivial way, e.g. to represent Yang-Mills theory as expansion

over self-dual rather than flat backgrounds; (g) tools from twistor theory are very-well adapted

to self-dual theories, see e.g. [114–121]. We are interested in constructing L∞-algebras of the

simplest self-dual theories: SDYM and SDGR, to uncover their algebraic structure.

There is a hierarchy of L∞-algebras that originate from (quantum) field theories and string

field theory, see e.g. [95, 122–128]. The simplest L∞-algebras emerge from a re-interpretation

of the BV-BRST formalism: upon expanding the master action in ghosts and anti-fields one

finds multilinear maps that obey L∞-relations. Another L∞-algebra emerges from the jet

space version of the BV-BRST formulation of a given gauge theory [129–133]. Such L∞ is

especially useful when investigating various properties of this gauge theory systematically, e.g.

classification of deformations of the action, or the question of possible anomalies [129, 130].

Given an L∞-algebra one can consider various equivalent reductions. The smallest possible

quasi-isomorphic algebra is the minimal model, which still captures all the relevant properties

of the field theory. Another closely related algebraic structure is Free Differential Algebra [99],

which emerges as the sigma-model based on the minimal model.

51
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In this letter we construct the minimal models for self-dual Yang-Mills and self-dual gravity

theories. As a starting point we take the Chalmers-Siegel action [117] for SDYM and the

recently constructed action for SDGR with vanishing cosmological constant [108], which is

equivalent to other actions in the literature [134, 135].

Our general motivation stems from several possible applications, where we hope to under-

stand from the algebraic, L∞, point of view: (i) integrability of self-dual theories; (ii) the

double-copy relations, see [136, 137] and [138, 139] for the recent results in this direction. Also,

the results serve as a starting point for covariantization [89] of Chiral Higher Spin Gravity

[8, 10, 11, 57, 87, 140, 141].

We begin with a short review of relation between L∞ and field theory and then proceed to

SDYM and SDGR, respectively, with some technicalities left to appendices.

2.2 Minimal models

As it was already sketched in the introduction, given any (gauge) field theory in the BV-BRST

language it is natural to consider its jet space extension [131–133, 142, 143], which is what is

done when investigating the local BRST-cohomology [129, 130]. The jet space extension leads

to a rather big L∞-algebra, better say to a Q-manifold provided global issues are taken into

account. Various Q-cohomology groups correspond to all physically relevant quantities, e.g.

deformations/interactions, anomalies, charges, etc., see e.g. [129, 130]. For every L∞-algebra

there always exists a (usually much smaller) L∞-algebra, known as the minimal model, see e.g.

[133, 144, 145], that contains the same information — it is said to be quasi-isomorphic.1 Some

care is needed to prove the same statement for field theories [133, 147], where relevant L∞-

algebras are necessarily infinite-dimensional. Minimal models were first introduced by Sullivan

[99] in the context of differential graded algebras to study rational homotopy theory. We

construct such minimal models for SDYM and SDGR.

Given any non-negatively graded supermanifold N equipped with a homological vector field

Q, QQ = 0, e.g. given by the minimal model, one can write down a sigma-model [131]:

dΦ = Q(Φ) ,

where Φ ≡ ΦA are maps ΠTM → N from the exterior algebra of differential forms on a

spacetime manifold M to N . Together with natural gauge symmetries the sigma-model is

equivalent to the classical equations of motion of the initial field theory [131–133], thereby

having the form of a Free Differential Algebra, see [99] for exact definitions.2 In this thesis we

adopt a more pragmatic point of view on minimal models: we seek for the classical equations

1There is also another, ’quantum’, minimal model [146] — the L∞-algebra given by 1PI correlation functions.
2FDA was introduced by Sullivan and applied to problems in topology. Later, FDA’s sneaked into physics

in the context of supersymmetry and supergravity [148, 149] and, even later, applied to construct formally
consistent deformations of the FDA for free higher spin fields [71].
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of motion as an FDA [71]. If Φ = {ΦA} are coordinates on N , then Q = QA∂/∂ΦA and

Q2 = 0 ⇐⇒ QB ∂
∂ΦBQ

A = 0 .

This condition is equivalent to the Frobenius integrability of the field equations, i.e. the equa-

tions are formally consistent. The L∞-relations emerge by Taylor expanding QQ = 0 at a

stationary point of Q [126]. By abuse of notation we always denote coordinates on N and

the corresponding fields by the same symbols. For a large class of field theories N has coor-

dinates of degree-one and degree-zero to be associated with gauge connection(s) A and with

some matter-like zero-forms L. The simplest FDA with this data reads

dA = 1
2
[A,A] , dL = ρ(A)L ,

and is equivalent to A taking values in some Lie algebra and to L taking values in its module

ρ. We consider these equations free. In particular, it is easy to solve them locally in the pure

gauge form, e.g. A = g−1dg. The most general deformation of the free equations here-above

that is consistent with the form-degree counting reads

dA = l2(A,A) + l3(A,A,L) + l4(A,A,L, L) + . . . = FA(A;L) ,

dL = l2(A,L) + l3(A,L, L) + . . . = FL(A;L) .

Our strategy for each of the cases, SDYM and SDGR, is to start off with an action, rewrite

the variational equations of motion in the ’almost’ FDA form, where ’almost’ means that at

each step the equations/Q-structure will require new fields/coordinates on N be introduced.

At the end of the day we find the complete Q. Interacting field theories are defined modulo

admissible field redefinitions (those that do not change the S-matrix). We found a field frame

where no structure maps higher than l3(•, •, •) are needed for SDYM and SDGR, which also

fixes all field redefinitions.3

2.3 SDYM

2.3.1 Action, initial data

The theory can be formulated [117] with two fields:4 the usual one-form gauge potential A ≡
Aµ dx

µ ≡ Aa
µ dx

µ Ta and a zero-form ΨAB ≡ ΨBA, ΨAB ≡ ΨAB;a Ta. Here Ta are generators

of some Lie algebra with a non-degenerate invariant bilinear form. We usually suppress form

indices and dx’s, as well as the Lie algebra indices. In practice, it is convenient to think of

3This is a key difference with respect to [71], where locality and field redefinitions are not taken into account
[78, 150], which results in a general ansatz for interactions rather than a concrete theory.

4We use almost exclusively the two-component spinor language, which is well-suited for 4d-theories. A
short compendium can be found in Appendix A. A classical source is [105]. The most important fact about our
notation is that symmetric or to be symmetrized indices can be denoted by the same letter. Also, A(k) ≡ A1...Ak.
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generators Ta as of taking values in some matrix algebra and assume A and ΨAB to take values

in MatN , with matrix indices again suppressed. The action reads5

SSDYM = tr

∫
ΨA′B′ ∧HA′B′ ∧ F , (2.3.1)

where F = dA− A ∧ A and we prefer to omit ∧-symbol. The equations of motion imply

FA′B′ = 0 , DA
B′ ΨA′B′

= 0 , (2.3.2)

where D ≡ dxAA′
DAA′ ≡ ∇ − [A, •] is the gauge and Lorentz covariant derivative. We also

used the decomposition of F into (anti)self-dual parts

F = HBBFBB +HB′B′
FB′B′ .

We can rewrite the variational equations as

dA− AA = HBBFBB , DΨA′B′
= eCC′ΨC,A′B′C′

, (2.3.3)

which is the starting point for constructing the corresponding L∞-algebra. The first equation

simply states that FA′B′ = 0 and, hence, connection A is self-dual. Therefore, only the self-dual

part may not be trivial and it is parameterized by FAB. A simple consequence is the Bianchi

identity for FAB. In the second equation we introduced a field ΨA,A′B′C′
that parameterizes the

first derivative of Ψ that is consistent with (2.3.2), i.e. it corresponds to a coordinate on the

on-shell jet of ΨA′B′
.6

The problem is, therefore, to find a completion of (2.3.3), which requires an infinite set of

coordinates on N and Q defined on them in such a way that QQ = 0. The first few terms of Q

and N are already clear from (2.3.3). The on-shell jet space is also well-known [105]. It is the

same as for the free theory where we turned off non-Abelian Yang-Mills groups that result in

non-linearities. That the coordinates on N are the same for the free and interacting theories

is due to the requirement for them to have the same number of local degrees of freedom.

Coordinates, on-shell jet. The coordinates onN are: degree-oneA; degree-zero FA(k+2),A′(k)

and ΨA(k),A′(k+2), k = 0, 1, 2, .... The free equations, i.e. (self-dual) Maxwell equations on

Minkowski space, can be written as [107]

dA = HBBFBB + ϵHB′B′
ΨB′B′ , (2.3.4)

5Here, see also appendix A, HAB ≡ HBA, HA′B′ ≡ HB′A′
is the basis of self-dual two-forms, HAB ≡

eAC′ ∧ eBC′
, idem. for HA′B′

. Vierbein one-form is eAA′
.

6Equations of motion for free fields of arbitrary spin can be recast into the FDA form [107]. The on-shell jet
is very easy to describe in spinorial language [105].
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which just defines FAB and ΨA′B′
as (anti)-self-dual components of dA. The Bianchi identities

imply

dFA(k+2),A′(k) = eBB′FA(k+2)B,A′(k)B′
, (2.3.5)

and a similar chain of equations for the field Ψ

dΨA(k),A′(k+2) = eCC′ΨA(k)C,A′(k+2)C′
. (2.3.6)

The system (2.3.4), (2.3.5), (2.3.6) is equivalent to Maxwell equations, i.e. no self-dual trun-

cation has yet been taken. The free SDYM equations are obtained by setting ϵ = 0 in (2.3.4),

while no other modifications are needed. What erasing ΨA′B′
from (2.3.4) does is that it makes

the anti-selfdual part of dA vanish. The Ψ-subsystem (2.3.6) decouples and describes the second

degree of freedom (say, helicity −1). The first equations in (2.3.5) and (2.3.6) are equivalent to

the well-known [109]

DA
B′
FAB = 0 , DA

B′ ΨA′B′
= 0 ,

and describe helicity +1 and −1 degrees of freedom. Subsystems (2.3.5) and (2.3.6) are closed

and identical to each other (upon swapping primed and unprimed indices). What makes them

different is that only the physical degree of freedom carried by F gets embedded into A once

we set ϵ = 0. There is no change in the number of physical degrees of freedom in the ϵ = 0

limit.

General form. In order to have a genuine FDA we should incorporate the background gravi-

tational fields: vierbein eAA′
and the (anti)-self-dual components ωAB, ωA′B′

of spin-connection.

Finally, we have

N :
1 : eAA′

, ωAB , ωA′B′
, A ,

0 : FA(k+2),A′(k) ,ΨA(k),A′(k+2) , k = 0, 1, 2, ...

We will prove below that the complete L∞-algebra of SDYM can be cast into the following

simple form:

deAA′
= ωA

B ∧ eBA′
+ ωA′

B′ ∧ eAB′
,

dωAB = ωA
C ∧ ωBC ,

dωA′B′
= ωA′

C′ ∧ ωB′C′
,

dA = AA+HBBF
BB ,

dF = l2(ω, F ) + l2(A,F ) + l2(e, F ) + l3(e, F, F ) ,

dΨ = l2(ω,Ψ) + l2(A,Ψ) + l2(e,Ψ) + l3(e, F,Ψ) .
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Some of the maps above are self-evident, e.g. l2(ω, •) and l2(A, •) are parts of the usual Lorentz
and gauge covariant derivatives. HBBF

BB is a specific tri-linear map l3(e, e, F ). Introducing

the standard Lorentz covariant derivative ∇ and appending it with the gauge part [A, •] we
define D = ∇− [A, •]. The equations reduce to

∇eAA′
= 0 , ∇2 = 0 ,

dA = AA+HBBF
BB ,

DF = l2(e, F ) + l3(e, F, F ) ,

DΨ = l2(e,Ψ) + l3(e, F,Ψ) .

The first line is equivalent to living in Minkowski space. Covariant derivative D allows us to

absorb l2(A,F ) = [A,F ] and l2(A,Ψ) = [A,Ψ]. The L∞-structure relations are equivalent to

(i) e, ω being a flat connection of Poincare algebra; (ii) a bit more nontrivial L∞-relations that

follow from

D2F + l2(e,DF ) + l3(e,DF, F ) + l3(e, F,DF ) ≡ 0 ,

D2Ψ+ l2(e,DΨ) + l3(e,DF,Ψ) + l3(e, F,DΨ) ≡ 0

and decompose into

l2(e, l2(e, F )) ≡ 0 , (2.3.9a)

−[HBBF
BB, F ] + l2(e, l3(e, F, F )) + l3(e, l2(e, F ), F ) + l3(e, F, l2(e, F )) ≡ 0 , (2.3.9b)

l3(e, l3(e, F, F ), F ) + l3(e, F, l3(e, F, F )) ≡ 0 , (2.3.9c)

l2(e, l2(e,Ψ)) ≡ 0 , (2.3.9d)

−[HBBF
BB,Ψ] + l2(e, l3(e, F,Ψ)) + l3(e, l2(e, F ),Ψ) + l3(e, F, l2(e,Ψ)) ≡ 0 , (2.3.9e)

l3(e, l3(e, F, F ),Ψ) + l3(e, F, l3(e, F,Ψ)) ≡ 0 . (2.3.9f)

The first and the fourth relations are guaranteed by the free equations of motion.

2.3.2 FDA, flat space

Appetizer. Firstly, let us explain why a non-linear completion of (2.3.4), (2.3.5), (2.3.6)

is necessary. The root of the nonlinear completion is in the fact that D2 ̸= 0 and, for a

field χ in representation ρ of the Yang-Mills algebra we find D2χ = −ρ(F )χ. In the adjoint

representation, one gets (matrix/Lie algebra indices are implicit)

D2χ = −[F, χ] = −HBB[F
BB, χ] .
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Therefore, the Bianchi identity for the first equation in the F -subsystem

DFAA = eBB′FAAB,B′

leads to

D2FAA = −HBB[F
BB, FAA] = −eBB′ ∧DFAAB,B′

. (2.3.10)

The aim is to use the above equation to obtain DFAAA,A′
. Matching the indices and imposing

that DFAAA,A′
is a one-form, one may take the ansatz

DFAAA,A′
= eCC′FAAAC,A′C′

+ αeC
A′
[FAC , FAA] + βeC

A′
[FAA, FAC ]

+ γeAA′
[FA

C , F
AC ] .

The Fierz identity (A.0.3) and the anti-symmetry of the commutator reduce this to

DFAAA,A′
= eCC′FAAAC,A′C′

+ α00eC
A′
[FAC , FAA] ,

where the label on α00 was added for future convenience. Upon contraction with eBB′ this

yields7

eBB′ ∧DFAAB,B′
= 0 + 1

3
α00eBB′ ∧ eCB′

[FBC , FAA] + 2
3
α00eBB′ ∧ eCB′

[FAC , FAB]

= 1
3
α00HBB[F

BB, FAA] ,
(2.3.11)

where (A.0.2) was used. Comparing this to (2.3.10), one obtains the solution

DFAAA,A′
= eCC′FAAAC,A′C′

+ 3eC
A′
[FAC , FAA] , (2.3.12)

where the first term on the r.h.s. is there due to the free equations. Similarly, taking the

covariant derivative of the above result yields another consistency equation. Following the

same steps as before, one finds

D2FAAA,A′
= −HBB[F

BB, FAAA,A′
] = −eBB′ ∧DFAAAB,A′B′

− 3eC
A′ ∧ [DFAC , FAA]− 3eC

A′
[FAC , DFAA] ,

which results in

eBB′ ∧DFAAAB,A′B′
= HBB[F

BB, FAAA,A′
]− 3

2
HBB[F

AA, FABB,A′
]

+ 3
2
HBB[F

AB, FAAB,A′
] + 3

2
HB′

A′
[FAB, FAA

B
,B′

] .
(2.3.13)

7The first term can be rewritten as eBB′ ∧ eCC′FAABC,B′C′
= 1

2 (HBCϵB′C′ + ϵBCHB′C′)FAABC,B′C′
and

vanishes as the contracted indices are symmetrized in FAABC,B′C′
and anti-symmetrized in the ϵ’s. The last term

must be zero, because eBB′ ∧ eC
B′

= 1
2HBC is symmetric in B,C, whereas the commutator is anti-symmetric.
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The minimal ansatz for DFAAAA,A′A′
reads

DFAAAA,A′A′
= eCC′FAAAAC,A′A′C′

+ α02eC
A′
[FAC , FAAA,A′

]

+ α12eC
A′
[FAAC,A′

, FAA] .

We contract this with eBB′ to find

eBB′ ∧DFAAAB,A′B′
= 3α02

16
HBB[F

BB, FAAA,A′
] + (9α02

16
− 3α12

8
)HBB[F

AB, FAAB,A′
]

− 3α12

8
HBB[F

AA, FABB,A′
] + (3α02

16
+ α12

8
)HB′

A′
[FAB, FAA

B
,B′

] .
(2.3.14)

We compare this to (2.3.13) to obtain the result

DFAAAA,A′A′
= eCC′FAAAAC,A′A′C′

+ 16
3
eC

A′
[FAC , FAAA,A′

]

+ 4eC
A′
[FAAC,A′

, FAA] .

The procedure presented above is nothing more than the practical realisation of solving the

L∞-relation (2.3.9b). This procedure will be generalized next.

Main course, F -sector. By looking at the first few equations in the system it is easy to

come up with an ansatz:

DFA(k+2),A′(k) = eBB′
FA(k+2)B,A′(k)B′

+
k−1∑
n=0

αnke
B
A′ [FA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)] ,

(2.3.15)

for any k ≥ 0. This ansatz makes use of the fact that DFA(k+2),A′(k) should be a one-form,

which requires the presence of eBB′
and it matches the number of (un)-primed indices. In any

non-linear theory there is always a freedom to perform field redefinitions. We have also fixed

the redefinitions by requiring that there are no index contractions between F in [F, F ]. Terms

with contracted indices can easily be introduced by field-redefinitions. Our ansatz contains

only the terms that are necessary to ensure consistency and, thereby, is the minimal one.

Taking the covariant derivative of the ansatz yields

D2FA(k+2),A′(k) =−HBB[FBB, FA(k+2),A′(k)] = −eBB′ ∧DFA(k+2)B,A′(k)B′

− eBA′ ∧
k−1∑
n=0

αnk[DFA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)]

− eBA′ ∧
k−1∑
n=0

αnk[FA(n+1)B,A′(n), DFA(k−n+1),A′(k−n−1)] .

(2.3.16)
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and considering only terms quadratic in F gives8

eBB′ ∧DFA(k+2)B,A′(k)B′ = HBB[FBB, FA(k+2),A′(k)]

− 1
2
HBB

k−1∑
n=0

αnk[FA(n+1)BB,A′(n+1), FA(k−n+1),A′(k−n−1)]

− 1
4
HBB

k∑
n=0

(αnk − α(k−n)k)[FA(n+1)B,A′(n), FA(k−n+1)B,A′(k−n)]

+ 1
2
HB′

A′

k−1∑
n=0

αnk[FA(n+1)
B
,A′(n) , FA(k−n+1)B,A′(k−n−1)B′ ] ,

(2.3.17)

where terms cubic in F are ignored for now. Alternatively, we contract eBB′
withDFA(k+3),A′(k+1)

to obtain

eBB′ ∧DFA(k+2)B,A′(k)B′ = −1
2
HBBα0(k+1)

k+2
(k+3)(k+1)

[FBB, FA(k+2),A′(k)]

− 1
2
HBB

k−1∑
n=0

α(n+1)(k+1)
(n+2)(k+2)
(k+3)(k+1)

[FA(n+1)BB,A′(n+1), FA(k−n+1),A′(k−n−1)]

− 1
4
HBB

k∑
n=0

(αn(k+1)
(k−n+2)(k+2)
(k+3)(k+1)

− α(k−n)(k+1))
(n+2)(k+2)
(k+3)(k+1)

)[FA(n+1)B,A′(n), FA(k−n+1)B,A′(k−n)]

+ 1
2
HB′

A′

k∑
n=0

(α(k−n)(k+1)
(n+2)(k−n)
(k+3)(k+1)

+ αn(k+1)
(k−n+2)(k−n)
(k+3)(k+1)

)[FA(n+1)
B
,A′(n) , FA(k−n+1)B,A′(k−n−1)B′ ] .

Comparing this with (2.3.17) results in the following system of recurrence relations:

0 = α0k +
2k(k+2)
k+1

,

0 = α(n+1)(k+1)
(n+2)(k+2)
(k+3)(k+1)

− αnk ,

0 = αn(k+1)
(k−n+2)(k+2)
(k+3)(k+1)

− α(k−n)(k+1)
(n+2)(k+2)
(k+3)(k+1)

− αnk + α(k−n)k ,

0 = α(k−n)(k+1)
(n+2)(k−n)
(k+3)(k+1)

+ αn(k+1)
(k−n+2)(k−n)
(k+3)(k+1)

− αnk .

This system is over-determined, but, nevertheless, is solved by

αnk = − 2
(n+1)!

(k+2)!
(k−n−1)!(k−n+1)(k+1)

.

8In the third term we have made the anti-symmetry of the commutator explicit by writing [X,Y ] = 1
2 ([X,Y ]−

[Y,X]) and renaming the dummy indices accordingly. This automatically gets rid of terms that vanish because
of symmetry reasons, like the last term in the middle expression of (2.3.11). As the summation now runs up to
n = k, the coefficient αkk shows up, so we set αkk = 0 by hand since it was not present in the ansatz.
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The full solution reads

DFA(k+2),A′(k) = eBB′
FA(k+2)B,A′(k)B′

− eBA′

k−1∑
n=0

2
(n+1)!

(k+2)!
(k−n−1)!(k−n+1)(k+1)

[FA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)] .

(2.3.19)

It was assumed that the ansatz only contains linear and quadratic terms in F . The fact that

terms cubic in F vanish in (2.3.17) is proved in Appendix B.1.2. This confirms the L∞-relation

in (2.3.9c) and it implies that DFA(k+2),A′(k) indeed truncates at quadratic order.

Main course, Ψ-sector. As was clear from the L∞-relations in (2.3.9), the non-linear ex-

tension of the Ψ-sector is different from the F -sector. The minimal ansatz for DΨA(k),A′(k+2) is

slightly more involved as it reads

DΨA(k),A′(k+2) = eCC′
ΨA(k)C,A′(k+2)C′ +

k−1∑
n=0

βnke
C
A′ [FA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

+
k−2∑
n=0

γnke
C
A′ [FA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)] .

(2.3.20)

We follow the same steps as for the F -sector: we write the Bianchi identity for the ansatz above

and as a parallel calculation we contract eBB′
with ΨA(k+1),A′(k+3) to obtain two expressions for

eBB′ ∧ DΨA(k)B,A′(k+2)B′ and compare them. This provides us with a system of recurrence

relations for βnk and γnk. The details of the calculation are left for Appendix B.1.1. The

system is solved by

βnk = − 2
(n+1)!

k−n+2
k+3

k!
(k−n−1)! , γnk =

2
(n+2)!

n+1
k+3

k!
(k−n−2)! .

The full solution reads

DΨA(k),A′(k+2) = eCC′
ΨA(k)C,A′(k+2)C′

− eCA′

k−1∑
n=0

2
(n+1)!

k−n+2
k+3

k!
(k−n−1)! [FA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

+ eCA′

k−2∑
n=0

2
(n+2)!

n+1
k+3

k!
(k−n−2)! [FA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)] .

(2.3.21)

In Appendix B.1.2 we show that this solution ensures consistency of the L∞-relation in (2.3.9f),

i.e. the above solution does not require higher order corrections.
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Summary. SDYM can be cast in the form of an L∞-algebra. This gives rise to three L∞-

relations for the F -sector and the Ψ-sector of SDYM, see (2.3.9). The first of each gives rise to

the free equation for DFA(k+2),A′(k) and DΨA(k),A′(k+2). The second L∞-relation can be solved

to obtain the quadratic piece of the non-linear extension in both sectors, which are proportional

to [F, F ] and [F,Ψ], respectively. In particular, the coefficients can be found by writing down

the minimal ansätze (2.3.15) and (2.3.20) and checking their Bianchi identities. This yields

two expressions for eBB′
FA(k+2)B,A′(k)B′ and eBB′

ΨA(k)B,A′(k+2)B′ . Comparing them gives rise to

a system of recurrence relations, whose solution gives the final results (2.3.19) and (2.3.21),

i.e. the boxed equations above. Furthermore, the third L∞-relation ensures that the system

is closed, i.e. there are no higher order corrections. It is proved that these relation are indeed

satisfied for the obtained solutions and hence the expressions we have found are the complete

non-linear extensions for the two sectors.

An interesting follow up would be to consider the higher spin extensions of SDYM [57, 60]

and the supersymmetric higher spin extensions constructed in [151].

2.3.3 FDA, constant curvature space

As a simple modification of SDYM on Minkowski background we can consider a constant

curvature background, i.e. de Sitter or anti-de Sitter spaces. The action is the same. Let us

first recall that the free Maxwell equations on a constant curvature background rewritten as an

FDA read [107]

dA = HBBFBB + ϵHB′B′
ΨB′B′ , (2.3.22a)

∇FA(k+2),A′(k) = eBB′FA(k+2)B,A′(k)B′
+ k(k + 2)ΛeAA′

FA(k+1),A′(k−1) , (2.3.22b)

∇ΨA(k),A′(k+2) = eCC′ΨA(k)C,A′(k+2)C′
+ k(k + 2)ΛeAA′

ΨA(k−1),A′(k+1) . (2.3.22c)

The only difference is the presence of new eAA′
-terms that are consistent on their own and do

not require any other modifications. It is also convenient to set Λ = 1 in what follows. The

L∞-algebra for SDYM on a constant background is given by

deAA′
= ωA

B ∧ eBA′
+ ωA′

B′ ∧ eAB′
,

dωAB = ωA
C ∧ ωBC +HAB ,

dωA′B′
= ωA′

C′ ∧ ωB′C′
+HA′B′

,

dA = AA+HBBF
BB ,

dF = l2(ω, F ) + l2(A,F ) + l2(e, F ) + l̃2(e, F ) + l3(e, F, F ) ,

dΨ = l2(ω,Ψ) + l2(A,Ψ) + l2(e,Ψ) + l̃2(e,Ψ) + l3(e, F,Ψ) ,
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where l̃2 encodes the gravitational correction to the free equations (2.3.22b) and (2.3.22c). The

contributions

l2(ω, F ) = (k + 2)ωA
B F

A(k+1)B,A′(k) + kωA′
B′ FA(k+2),B′A′(k−1)

and l2(A,F ) = [A,F ] (and similarly for Ψ) can be absorbed into the covariant derivative

D = ∇− [A, •]. As a result, the relations can be rewritten as

∇eAA′
= 0 ,

dA = AA+HBBF
BB ,

DF = l2(e, F ) + l̃2(e, F ) + l3(e, F, F ) ,

DΨ = l2(e,Ψ) + l̃2(e,Ψ) + l3(e, F,Ψ) .

As different from ∇2 = 0 in flat space, in a constant curvature background we have for any

spin-tensor TA(n),A′(m)

∇2TA(n),A′(m) = −nHA
B T

A(n−1)B,A′(m) −mHA′
B′ TA(n),A′(m−1)B′

.

The L∞-relations of the sought for L∞-algebra read

−[HBBF
BB, F ] + l2(e,DF ) + l̃2(e,DF ) + l3(e,DF, F ) + l3(e, F,DF ) ≡ 0 , (2.3.23a)

−[HBBF
BB,Ψ] + l2(e,DΨ) + l̃2(e,DΨ) + l3(e,DF,Ψ) + l3(e, F,DΨ) ≡ 0 . (2.3.23b)

Since l̃ can be viewed as a deformation of the previously found FDA, all terms without l̃ vanish

already. The remaining nontrivial relations read

l̃2(e, l3(e, F, F )) + l3(e, l̃2(e, F ), F ) + l3(e, F, l̃2(e, F )) = 0 , (2.3.24a)

l̃2(e, l3(e, F,Ψ)) + l3(e, l̃2(e, F ),Ψ) + l3(e, F, l̃2(e,Ψ)) = 0 , (2.3.24b)

where we ignore terms quadratic in the cosmological constant. These relations are satisfied

automatically. A proof of this given in Appendix B.1.3. Consequently, on a constant curvature

gravitational background we obtain

DFA(k+2),A′(k) = eBB′
FA(k+2)B,A′(k)B′ + k(k + 2)eAA′FA(k+1),A′(k−1)

− eBA′

k−1∑
n=0

2
(n+1)!

(k+2)!
(k−n−1)!(k−n+1)(k+1)

[FA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)] ,
(2.3.25a)
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DΨA(k),A′(k+2) = eCC′
ΨA(k)C,A′(k+2)C′ + k(k + 2)eAA′ΨA(k−1),A′(k+1)

− eCA′

k−1∑
n=0

2
(n+1)!

k−n+2
k+3

k!
(k−n−1)! [FA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

+ eCA′

k−2∑
n=0

2
(n+2)!

n+1
k+3

k!
(k−n−2)! [FA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)] .

(2.3.25b)

Summary. We constructed the L∞-algebra of SDYM on a constant curvature background and

derived the corresponding L∞-relations. The free Maxwell equations on a constant curvature

background in terms of an FDA, (2.3.22), are well-known in the literature and solve the first

L∞-relation of both the F -sector and Ψ-sector. In section 2.3.2 we computed the non-linear

extension of DFA(k+2),A′(k) and DΨA(k),A′(k+2) on a flat background. In the second L∞-relation

of each sector we see an interplay between the gravitational contribution of the free equations

and the non-linear extension on flat space. We demonstrated that the second L∞-relation for

both sectors decomposes into the flat space L∞-relation and a new relation containing the

gravitational contributions in such a way that the latter does not contribute to the quadratic

order in DFA(k+2),A′(k) and DΨA(k),A′(k+2). The third L∞-relation then contains no gravitational

contribution and remains satisfied. The complete non-linear extension of both sectors are only

modified in the linear terms according to the free equations and are shown in the boxed equation

(2.3.25a) and (2.3.25b) above.

2.4 SDGR

2.4.1 Action, initial data

Self-dual gravity with vanishing cosmological constant can be formulated with the help of two

fields [108]: one-form ωA′B′
and zero-form ΨA′B′C′D′

. The action reads∫
ΨA′B′C′D′ ∧ dωA′B′ ∧ dωC′D′ . (2.4.1)

The equations of motion are (FA′B′
= dωA′B′

)

F(A′B′ ∧ FC′D′) = 0 , dΨA′B′C′D′ ∧ FA′B′ = 0 . (2.4.2)

One-form ωA′B′
looks like the anti-self-dual part of the Lorentz spin-connection, but it is not.

The curvature FA′B′ for ωA′B′
lacks the ”ωω”-part. Nevertheless, this interpretation is not very

far from the reality since action (2.4.1) can be understood as a limit of that for self-dual gravity

with cosmological constant [152]. In the latter FA′B′
= dωA′B′ − ωA′

C′ ∧ ωC′B′
is the canonical

one and the limit is to drop the ωω-part.

Minkowski space is a special solution of (2.4.2): ωA′A′
0 = xC

A′
dxCA′

such that dωA′B′
0 =

HA′B′
, where HA′B′

is built from the Minkowski’s space vierbein eAA′
= dxAA′

, HA′B′ ≡ eC
A′ ∧
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eCB′
and its conjugate is HAB ≡ eAC′ ∧eBC′

. One can easily write down the first few equations

of the FDA that corresponds to variational equations (2.4.2):9

dωA′A′
= eB

A′ ∧ eBA′
,

deAA′
= ωA

B ∧ eBA′
,

dωAA = ωA
C ∧ ωCA +HMMC

MMAA ,

(2.4.4a)

dΨA′A′A′A′
= eBB′ΨB,A′A′A′A′B′

. (2.4.4b)

The main idea is to identify the right gauge algebra [108]. This is the starting for constructing

the L∞-algebra. The first equation of (2.4.4a) implies that the gravitational degrees of freedom

fully reside in the anti-self-dual part. The last equation of (2.4.4a) identifies the only nonvan-

ishing part of the curvature with the self-dual Weyl tensor CABCD, RA
B = HMMC

MMA
B . As a

result one obtains a Bianchi identity for RA
B . Eq. (2.4.4b) introduces a new field ΨA,A′B′C′D′E′

,

which parameterizes the first derivative of Ψ and is contained in the on-shell jet of ΨA′B′C′D′
.

Similarly to SDYM we aim to find a completion of (2.4.4a) and we need to define an infinite

set of coordinates on N and Q such that QQ = 0.

Coordinates, on-shell jet. Coordinates on supermanifold N coincide with those of the free

massless spin-two field, i.e. with [107] and [105]. Indeed, the set of one-forms turned out to be

the same, while the zero-forms begin with (anti)-self-dual components of Weyl tensor and are

just the on-shell nontrivial derivatives of those. Therefore, the coordinates on N are: degree-

one ωAB, eAA′
and ωA′B′

; degree-zero CA(k+4),A′(k) and ΨA(k+4),A′(k), k = 0, 1, 2, .... A similar

discussion follows as for SDYM. In particular, the free equations for helicity ±2 fields are [109]

∇A
B′ ΨA′B′C′D′

= 0 , ∇A
B′
CABCD = 0 ,

and can be rewritten in the FDA form as [107]

∇CA(k+4),A′(k) = eCC′CA(k+4)C,A′(k)C′
, ∇ΨA(k),A′(k+4) = eCC′ΨA(k)C,A′(k+4)C′

. (2.4.5)

One needs to supplement these equations with the free limit of (2.4.4). Our problem is to find

a nonlinear completion of (2.4.5) that is consistent with (2.4.4).

9As a side remark, let us write the curvature for so(3, 2) ∼ sp(4), which is relevant for anti-de Sitter space
(they correspond to Lorentz generators LA′A′ , LAA and to translations PAA′):

dωAA − ωA
C ∧ ωCB − eAB′ ∧ eAB′

= RAA ,

deAA′
− ωA′

B′ ∧ eAB′
− ωA

B ∧ eBA′
= TAA′

,

dωA′A′
− ωA′

C′ ∧ ωC′B′
− eB

A′
∧ eBA′

= RA′A′
,

The gauge algebra for the SDGR with zero scalar curvature can be understood as a limit of so(3, 2)-algebra
where LA′A′ become abelian [108].
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General form. The supermanifold N has coordinates

N :
1 : ωA′B′

, eAA′
, ωAB ,

0 : CA(k+4),A′(k) ,ΨA(k),A′(k+4) , k = 0, 1, 2, ...

Now, we try to reformulate the theory in the L∞-form. Given the data above and our desire

to truncate the FDA at l3(•, •, •), we write

dωA′A′
= eB

A′ ∧ eBA′
,

deAA′
= ωA

B ∧ eBA′
,

dωAA = ωA
C ∧ ωCA +HMMC

MMAA ,

dC = l2(ω,C) + l2(e, C) + l3(e, C, C) ,

dΨ = l2(ω,Ψ) + l2(e,Ψ) + l3(e, C,Ψ) .

We define the covariant derivative ∇ = d − ω, which lacks the ωA′B′
-part. For an arbitrary

spin-tensor TA(n),A′(m) we get

∇2TA(n),A′(m) = −nHMMC
MMA

B T
BA(n−1),A′(m) . (2.4.6)

The covariant derivative allows one to absorb the terms l2(ω,C) and l2(ω,Ψ) and we can write

∇C = l2(e, C) + l3(e, C, C) , ∇Ψ = l2(e,Ψ) + l3(e, C,Ψ) .

This gives rise to the L∞-relations for SDGR, which read

−(k + 4)HMMC
MMA

B C
A(k+3)B,A′(k) + l2(e,∇C) + l3(e,∇C,C) + l3(e, C,∇C) = 0 ,

−kHMMC
MMA

B ΨA(k−1)B,A′(k+4) + l2(e,∇Ψ) + l3(e,∇C,Ψ) + l3(e, C,∇Ψ) = 0 ,

and decompose into

l2(e, l2(e, C)) = 0 , (2.4.7a)

l3(e, l3(e, C, C), C) + l3(e, C, l3(e, C, C)) = 0 , (2.4.7b)

l2(e, l2(e,Ψ)) = 0 , (2.4.7c)

l3(e, l3(e, C, C),Ψ) + l3(e, C, l3(e, C,Ψ)) = 0 , (2.4.7d)

−(k + 4)HMMC
MMA

B C
A(k+3)B,A′(k) + l2(e, l3(e, C, C))

+ l3(e, l2(e, C), C) + l3(e, C, l2(e, C)) = 0 ,
(2.4.7e)

−kHMMC
MMA

B ΨA(k−1)B,A′(k+4) + l2(e, l3(e, C,Ψ))

+ l3(e, l2(e, C),Ψ) + l3(e, C, l2(e,Ψ)) = 0 .
(2.4.7f)
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2.4.2 FDA

Appetizer. Let us first illustrate our approach by presenting the source of the non-linear

extension with an explicit example. We follow roughly the same steps as for SDYM, though

some subtle differences arise. The most important ones come from the commutativity of the

C’s and the additional contraction of unprimed indices that we will see shortly.

The Bianchi identity for the curvature, ∇RAA = 0 implies

∇CAAAA = eBB′
CAAAB,B′ .

Its own Bianchi identity via (2.4.6) imposes

∇2CAAAA = −eBB′ ∧∇CAAAAB,B′ = 4HBBCABB
D CAAAD .

We need to construct an ansatz for ∇CAAAAA,A′ . Commutativity of the C’s and the Fierz

identity allow us to construct the minimal ansatz as

∇CAAAAA,A′ = eCC′
CAAAAAB,A′C′ + a01e

C
A′ CAAC

D CAAAD . (2.4.8)

Contracting the ansatz with eBB′
yields

eBB′ ∧∇CAAAAB,B′ = −2a01
5
HBBCABB

D CAAAD − 3a01
5
HBBCAAB

D CAABD

= −2a01
5
HBBCABB

D CAAAD .

One term is dropped, as commuting the two C’s and raising/lowering the contracted indices

tells us that this term vanishes. Comparing the result with (2.4.8) yields the solution

∇CAAAAA,A′ = eCC′
CAAAAAC,A′C′ + 10eCA′ CAAC

D CAAAD .

The procedure that we have followed is a practical realisation of solving the L∞-relation (2.4.7e).

This procedure will be generalized next.

Main course, C-sector. Using the same criteria as before we propose the minimal ansatz

∇CA(k+4),A′(k) = eCC′
CA(k+4)C,A′(k)C′ +

k−1∑
n=0

anke
C
A′ CA(n+2)C

D
,A′(n)CA(k−n+2)D,A′(k−n−1) .
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Taking another derivative leads to

∇2CA(k+4),A′(k) = (k + 4)HBB′
CABB

D CA(k+3)D,A′(k) = −eCC′ ∧∇CA(k+4)C,A′(k)C′

−
k−1∑
n=1

anke
C
A′ ∧∇CA(n+2)C

D
,A′(n)CA(k−n+2)D,A′(k−n−1)

−
k−2∑
n=0

anke
C
A′ ∧ CA(n+2)C

D
,A′(n) ∇CA(k−n+2)D,A′(k−n−1) .

(2.4.9)

Considering only terms quadratic in C yields

eCC′ ∧∇CA(k+4)C,A′(k)C′ = −(k + 4)HBBCABB
D CA(k+3)D,A′(k)

− 1
2
HBB

k−1∑
n=0

ankCA(n+2)BB
D
,A′(n+1)CA(k−n+2)D,A′(k−n−1)

− 1
2
HBB

k∑
n=0

(ank

2
− a(k−n)k

2
)CA(n+2)B

D
,A′(n)CA(k−n+2)BD,A′(k−n)

− 1
2
HA′

B′
k−1∑
n=0

ankCA(n+2)B
D
,A′(n)CA(k−n+2)

B
D,A′(k−n−1)B′ ,

(2.4.10)

where in the third line we made the anti-commuting property of the C’s explicit, together with

the anti-symmetry of the spinorial inner product. At the same time we contract eBB′
with

∇CA(k+5),A′(k+1) to obtain

eBB′ ∧∇CA(k+4)B,A′(k)B′ = −HBB k+2
(k+5)(k+1)

a0(k+1)CABB
D CA(k+3)D,A′(k)

− 1
2
HBB

k−1∑
n=0

(k+2)(n+3)
(k+5)(k+1)

a(n+1)(k+1)CA(n+2)BB
D
,A′(n+1)CA(k−n+2)D,A′(k−n−1)

− 1
4
HBB

k∑
n

( (k+2)(k−n+3)
(k+5)(k+1)

an(k+1) − (k+2)(n+3)
(k+5)(k+1)

a(k−n)(k+1))

× CA(n+2)B
D
,A′(n)CA(k−n+2)BD,A′(k−n)

− 1
2
HA′

B′
k−1∑
n=0

( (k−n)(n+3)
(k+5)(k+1)

a(k−n)(k+1) +
(k−n)(k−n+3)
(k+5)(k+1)

an(k+1))

× CA(n+2)B
D
,A′(n)CA(k−n+2)

B
D,A′(k−n−1)B′ .

Comparing this expression with (2.4.10) brings about the following system of recurrence rela-

tions:

0 = a0k − (k+4)(k+3)k
k+1

,

0 = a(n+1)(k+1) − (k+5)(k+1)
(k+2)(n+3)

ank ,
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0 = (k+2)(k−n+3)
(k+5)(k+1)

an(k+1) − (k+2)(n+3)
(k+5)(k+1)

a(k−n)(k+1) − ank + a(k−n)k ,

0 = ank − (k−n)(n+3)
(k+5)(k+1)

a(k−n)(k+1) − (k−n)(k−n+3)
(k+5)(k+1)

an(k+1) .

This over-determined system is solved by

ank =
2

(n+2)!
(k+4)!(k−n)

(k−n+2)!(k+1)

and the full solution reads10

∇CA(k+4),A′(k) = eCC′
CA(k+4)C,A′(k)C′

+
k−1∑
n=0

2
(n+2)!

(k+4)!(k−n)
(k−n+2)!(k+1)

eCA′ CA(n+2)C
D
,A′(n)CA(k−n+2)D,A′(k−n−1) .

(2.4.11)

In appendix B.2.2 we prove that this solution is complete, i.e. no higher order terms arise.

Main course, Ψ-sector. For the Ψ-sector we follow a similar approach. The minimal ansatz

reads

∇ΨA(k),A′(k+4) = eCC′
ΨA(k)C,A′(k+4)C′ +

k∑
n=0

bnke
C
A′ CA(n+2)C

D
,A′(n) ΨA(k−n−2)D,A′(k−n+3)

+
k∑

n=0

cnke
C
A′ CA(n+3)

D
,A′(n) ΨA(k−n−3)CD,A′(k−n+3) .

(2.4.12)

The details of the calculations are left to Appendix B.2.1, but the approach is as follows: we

take the covariant derivative of the ansatz above. We also contract eBB′
with ∇ΨA(k+1),A′(k+5).

Both will give us an expression for eBB′ ∧∇ΨA(k)B,A′(k+4)B′ and we compare them. This results

in a system of recurrence relations, which is solved by

bnk =
2

(n+2)!
k!

(k−n−2)!
k−n+4
k+5

, cnk = − 2
(n+2)!

k!
(k−n−3)!

n+1
(k+5)(n+3)

,

10A closely related problem was addressed in [153], which is to find an FDA form of the full gravity to the
next to the leading order (the problem to find the complete minimal model for gravity does not seem to admit
a solution in a closed form, even though it does always exist as a matter of principle). It would be interesting
to understand what [153] describes since it does not coincide with the FDA of SDGR with (non)-vanishing
cosmological constant. The physical degrees of freedom are the same though.
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and the solution in the Ψ-sector reads

∇ΨA(k),A′(k+4) = eCC′
ΨA(k)C,A′(k+4)C′

+
k∑

n=0

2
(n+2)!

k!
(k−n−2)!

k−n+4
k+5

eCA′ CA(n+2)C
D
,A′(n) ΨA(k−n−2)D,A′(k−n+3)

−
k∑

n=0

2
(n+2)!

k!
(k−n−3)!

n+1
(k+5)(n+3)

eCA′ CA(n+3)
D
,A′(n) ΨA(k−n−3)CD,A′(k−n+3) .

(2.4.13)

We prove in Appendix B.2.2 that ∇ΨA(k),A′(k+4) is consistent as it is and does not require higher

order terms.

Summary. We rewrote SDGR as an L∞-algebra. This gives rise to three L∞-relations for

the C-sector and the Ψ-sector, see (2.4.7). Solving the first relation of each sector yields the

free equations for ∇CA(k+4),A′(k) and ∇ΨA(k),A′(k+4). We constructed a minimal ansatz for a

non-linear extension of the free equations and used the second L∞-relation to determine its

structure. The results are shown in the boxes expressions above, (2.4.11) and (2.4.13). The

third L∞-relation is found to be satisfied for the obtained solutions, which implies that the

minimal ansatz is sufficient to solve the whole system.

An interesting followup of this project is construct FDA for SDGR in the constant-curvature

background. The action of this theory [152] is even more natural∫
ΨA′B′C′D′ ∧ FA′B′ ∧ FC′D′ ,

where FA′B′
= dωA′B′ − ωA′

C′ ∧ ωC′B′
. However, it is more nonlinear, featuring quartic terms

(the quintic one vanishes). A simpler problem is to consider the higher spin extensions of SDGR

[57, 60] with vanishing cosmological constant.

2.5 Conclusions and Discussion

Since every (gauge) field theory defines and is defined by its minimal model, a certain L∞-

algebra, our general motivation is to first understand how various properties of field theories,

e.g. integrability, asymptotic symmetries, conserved charges, actions, anomalies etc., can be

understood in the known cases and derived from this L∞-algebra in the cases where this in-

formation is yet unavailable. For example, it would be interesting to understand the Ward

construction of Yang-Mills instantons [115] from the L∞ point of view.

As we have reviewed in section 2.2, the minimal model can naturally be associated to any

gauge theory and it is the smallest L∞-algebra that captures all local BRST cohomology of this

field theory. However, the minimal model is usually difficult to construct explicitly. Apart from

this paper, the only available examples where minimal models were explicitly constructed are
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(a) Chern-Simons theory, which is just dA = AA and, for that reason, is hard to consider this

as a genuine example of a minimal model (nevertheless, this toy model was quite useful to prove

that all matter-free higher spin gravities in 3d are of Chern-Simons form [145]); (b) another

example is discussed in [153] and is closely related to the SDGR FDA of the present paper. It

is tempting to argue that minimal models can explicitly be constructed only for theories that

feature some kind of (hidden) simplicity, e.g. they are integrable like Chern-Simons theory,

SDYM and SDGR.

All physically relevant local information about a given theory is encoded in its minimal

model via the Q-cohomology. For example, conserved charges correspond to elements of H(Q)

of spacetime form degree 3 and field space degree 0 with values in the trivial module, while the

action functional corresponds to elements of H(Q) of spacetime form degree 4 and field space

degree 0 with values in the trivial module. A more complicated example is the presymplectic

structure ΩAB δΦ
A ∧ δΦB which is a two-form on the field space and is a degree (d − 1) form

from the spacetime point of view. It corresponds to H(Q,Λ2(N )), where the action of Q is

understood as Lie derivative LQ along Q that is defined canonically on (p, q)-tensors on N , see

[72, 154–156] for more detail and examples. As the last example, Q-cohomology with values

in vector fields, H(Q, T 1,0(N )), corresponds to spactime 0-forms and field space 1-forms. It

is responsible for deformations of Q itself, i.e. it classifies possible interactions. It is worth

noting that Q-cohomology can often be computed without having to know the minimal model

explicitly. The latter is an additional bonus that should be a signal of integrability.



Chapter 3

Cubic interactions in chiral HiSGRA

In this chapter, we obtain the cubic interaction vertex for chiral HiSGRA. The content is entirely

based on [89], co-authored with Evgeny Skvortsov, and published in the Physical Review D.

Note that, due to changes introduced in later works, the primed and unprimed spinor

indices, and equivalently y and y, are swapped in this chapter and the previous compared to

the introduction and the other chapters.

3.1 Introduction

Higher Spin Gravities (HiSGRA) are defined to be the smallest possible extensions of gravity

with massless fields of arbitrary spin. While there are good reasons to expect higher spin states

to play an important role in general, e.g. string theory, the masslessness should imitate the high

energy behavior and, for that reason, HiSGRA can be interesting probes of the quantum gravity

problems since some of the issues can become visible already at the classical level. Indeed, it is

quite challenging to construct HiSGRA due to massless higher spin fields facing numerous issues.

As a result, all concrete HiSGRA’s available at the moment are quite peculiar: topological

models in 3d with (partially)-massless and conformal fields [80–86]; 4d conformal HiSGRA

[79, 157, 158] that is a higher spin extension of Weyl gravity; Chiral HiSGRA [8, 10, 87, 140, 141]

and its truncations [57, 60].1 In this paper we covariantize the interactions of Chiral HiSGRA.

Chiral HiSGRA is easy to describe due to its simplicity — interactions stop at the cubic

level in the action. It is built from the standard cubic interactions, even though the formulation

available before this thesis is in the light-cone gauge. It is advantageous that the light-cone

gauge and the spinor-helicity formalism are closely related [164–168]. As is well-known [62, 169],

the Lorentz invariance fixes cubic amplitudes Vλ1,λ2,λ3 and for any triplet of helicities λ1 +λ2 +

λ3 > 0 there is the unique vertex and the corresponding amplitude:

Vλ1,λ2,λ3

∣∣∣
on-shell

∼ [12]λ1+λ2−λ3 [23]λ2+λ3−λ1 [13]λ1+λ3−λ2 . (3.1.1)

Chiral Theory can be defined as a unique combination of vertices [87, 140, 141] that (a) contains

1There are also other interesting recent ideas, e.g. [159, 160] and [161–163].

71
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at least one nontrivial self-interaction of a higher spin state with itself; (b) leads to a Lorentz-

invariant theory; (c) does not require higher order contact vertices. These assumptions imply

that the spectrum of the theory has to contain massless fields of all spins s = 0, 1, 2, ..., i.e.

helicities λ ∈ (−∞,+∞) and all coupling constants are uniquely fixed to be

VChiral =
∑

λ1,λ2,λ3

Cλ1,λ2,λ3Vλ1,λ2,λ3 , Cλ1,λ2,λ3 =
κ (lp)

λ1+λ2+λ3−1

Γ(λ1 + λ2 + λ3)
. (3.1.2)

Here, lp is a constant of dimension length, e.g. Planck length, and κ is an arbitrary dimensionless

constant. In principle, there exists the ϕ3-vertex, i.e. λi = 0, but it is not present in Chiral

Theory. We also see that the Γ-function restricts the range of summation to λ1 + λ2 + λ3 > 0.

All such vertices are present. For example, one has the half of the usual +2,+2,−2 Einstein-

Hilbert vertex and, provided the Yang-Mills groups are turned on, the Yang-Mills interaction

+1,+1,−1. Importantly, the higher derivative corrections are also needed, e.g. the half of the

Goroff-Sagnotti counterterm [170], which is +2,+2,+2. Such higher derivative terms originate

from string theory as well, e.g. [171].

It was shown that the tree-level amplitudes vanish on-shell [8, 10]. At one-loop there

are no UV divergences and the one-loop amplitudes are proportional to the all helicity plus

amplitudes of QCD or self-dual Yang-Mills (SDYM) at one loop [11]. They also have a higher

spin kinematical factor and a factor of the total number of degree of freedom
∑

λ 1. The latter

is infinite and, as in any QFT with infinitely many fields, see e.g. [172], has to be given a

prescription for. A great deal of vacuum one-loop results [173–182] suggest that this has to be

regularized to zero.

The power of the light-cone gauge is in that it excludes unphysical degrees of freedom and

evades ambiguities of covariant (gauge) descriptions. However, many interesting questions,

e.g. nontrivial backgrounds, exact solutions, higher order quantum corrections, are easier to

tackle within a covariant description. Until recently a subtlety has been that Chiral Theory

requires all vertices (3.1.1), some of which cannot be written locally within the most common

covariant approach to higher spin fields [183], where a massless spin-s field is represented by a

symmetric rank-s tensor Φµ1...µs . This puzzle has been resolved in [60], where it was shown that

the most basic problematic interactions of higher spin fields — Yang-Mills and gravitational —

can easily be constructed by employing the covariant field variables discovered first in Twistor

Theory [184–187]. This should not be surprising since Chiral Theory was shown to admit a

formulation similar to self-dual Yang-Mills and self-dual gravity [57] and Twistor techniques

are most natural for self-dual theories.

In the present paper we extend these results to Chiral Theory and construct its minimal

model or, equivalently, its classical equations of motion as a Free Differential Algebra [99] to

next-to-leading-order (NLO). In other words, Chiral Theory can be written as a sigma-model

dΦ = Q(Φ), where Φ are maps from ΠTM (the algebra of differential forms on a manifold M)

to another supermanifold N equipped with a homological vector field Q, QQ = 0. All essential

information about a given theory, e.g. action, anomalies, etc., is encoded in its minimal model
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as the Q-cohomology [133, 147]. Therefore, the results of the paper can be used to investigate

the quantum properties of Chiral Theory, as well as to construct an action and look for classical

solutions.

The paper is organized as follows. After a brief introduction in section 3.2 into Free Dif-

ferential Algebras (FDA) and minimal models, we give in section 3.3 a concise overview of

[60] where covariant actions for the higher spin extensions of self-dual Yang-Mills and self-dual

Gravity were constructed. These results give important hints on how to extend them to Chi-

ral Theory, which these two classes are contractions of [57]. To find the right gauge algebra

(higher spin algebra) is the first step and it was done in [108]. We then proceed in section 2.2

to the main part and construct L∞-structure maps/interaction vertices. We also check that

some three-point amplitudes (3.1.2) are correctly reproduced. The latter means that the FDA

incorporates all the physically relevant information at next-to-leading order (NLO). There are

still some higher structure maps to be found that are required for the complete covariantization

of Chiral Theory.

3.2 Minimal Models

There is a very useful L∞-algebra, better say a Q-manifold, that can naturally be associated to

any (gauge) theory and encodes all relevant information about it, which is called the minimal

model. As is explained in [129–133, 142, 143, 145], one begins with the jet space BV-BRST

formulation of a given (gauge) theory. This way one gets a huge L∞-algebra which has been

quite useful in the analysis of numerous problems in (quantum) field theories, see e.g. [129, 130].

One can then consider various equivalent reductions of this algebra that are quasi-isomorphic

to it. An important step is to take a usually much smaller equivalent L∞-algebra, called

its minimal model. The minimal model is, in some sense, the smallest possible L∞-algebra

associated to a given field theory. Nevertheless, modulo the usual topological issues, it contains

the full information about invariants, conserved currents, actions, counterterms, anomalies, etc.

of the initial field theory [133, 147].

Given a BRST complex that is non-negatively graded, e.g. the minimal model, one can

consider an associated sigma model whose fields are coordinates on the above Q-manifold [131]:

dΦ = Q(Φ) . (3.2.1)

Here, Φ ≡ Φ(x, dx) are maps ΠTM → N from the exterior algebra of differential forms on a

spacetime manifold M to a supermanifold N that is equipped with a homological vector field

Q, QQ = 0. Equations (3.2.1) and their natural gauge symmetries are equivalent to the initial

field theory,2 thereby providing its reformulation as a Free Differential Algebra.3

2In general, the equations describe the parameterized version of the initial gauge field theory [131].
3Sullivan introduced Free Differential Algebras in [99] together with minimal models in the case of differential

graded Lie algebras. FDA were re-introduced into physics [148, 149] in the supergravity context and a bit later
in the higher spin gravity context in [71].
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If ΦA are coordinates on N , QQ = 0 is equivalent to (3.2.1) being formally consistent (that

is dd = 0 does not lead to any algebraic constraints on the fields), which can be rewritten as

Q2 = 0 ⇐⇒ QB
∂

∂ΦB
QA = 0 . (3.2.2)

The latter condition, when Taylor expanded in Φ, is equivalent to the L∞-relations [126, 188]

that define an L∞-algebra. This shows that FDA, L∞ and Q-manifolds are all closely related.

In many practical applications of minimal models, e.g. gauge field theories including gravity,4

coordinates on the formal graded manifold N consist of two subsets: degree-one and degree-

zero. We denote the coordinates and, then, the corresponding fields ω and C, respectively.

From the spacetime point of view ω becomes a one-form connection of some Lie algebra and

zero-form C becomes a matter field taking values in some representation ρ. The simplest system

one can write

dω = 1
2
[ω, ω] , dC = ρ(ω)C , (3.2.3)

consists of the flatness condition for ω and of the covariant constancy equation on C. These

two equations will describe a background and the physical degrees of freedom propagating on

it. The most general non-linear deformation reads5

dω = l2(ω, ω) + l3(ω, ω, C) + l4(ω, ω, C,C) + . . . ,

dC = l2(ω,C) + l3(ω,C,C) + . . . .
(3.2.4)

This algebraic structure can also be identified as a Lie algebroid. Here the initial data — Lie

algebra and its module — are encoded in the bilinear maps l2(ω, ω) and l2(ω,C), respectively.

The higher spin algebra for Chiral Theory was guessed in [108] based on its truncation to the

self-dual gravity sector. The module structure is easy to identify, see below. The problem is to

find the higher order vertices. In the paper we determine l3(•, •, •).

3.3 HS-SDYM and HS-SDGR

A good starting point is to extract some useful information from the two contractions of Chiral

Theory [57, 60], which can be understood as higher spin extensions of self-dual Yang-Mills

(SDYM) and self-dual gravity (SDGR). We begin by reviewing some necessary facts about free

4For some of the supergravities forms of higher degree need to be introduced.
5It was first proposed in [71] to look for Higher Spin Gravities in the form of an FDA. However, it is

important to constrain the vertices by further conditions: (a) to restrict to a basis of independent interaction
vertices (otherwise one and the same interaction can be present in infinitely many equivalent but differently
looking forms); (b) to impose some form of locality (otherwise any deformation can be completed with higher
orders [70], or, in the light-cone gauge, any function can serve as a Hamiltonian unless we care about locality
of the boost generators). All these issues are present [78, 150] in [71]. Therefore, unless (a) and (b) are taken
into account Q just gives the most general ansatz for interactions consistent with symmetries rather than any
concrete theory. These issues are under control in the present paper.
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fields. Impatient readers familiar with the formalism can skip to section 2.2.

3.3.1 Free fields

Free massless fields of any spin can be described by equations proposed by Penrose [109]6

∇B
A′
ΨBA(2s−1) = 0 , ∇A

B′ ΨB′A′(2s−1) = 0 . (3.3.1)

The equations help to separate helicity eigenstates: one of them describes, say positive, and

another the negative helicity states. Twistor theory is very handy in constructing self-dual

theories. It requires positive and negative helicity states be described asymmetrically [186, 187,

189]

∇A
A′
ΦA,A′(2s−1) = 0 , δΦA,A′(2s−1) = ∇AA′

ξA
′(2s−2) , (3.3.2)

where ΦA1...A2s−1,A′
is a gauge potential. For s = 1 it coincides with the usual one Aµ ∼ ΦA,A′

.

For s = 2 it can be identified with a component of the spin-connection. A bit more geometrically

one can [185] introduce a one-form connection

ωA′(2s−2) = ΦB,A′(2s−2)′B′
dxBB′ . (3.3.3)

It can be decomposed into two irreducible spin-tensors

ωA′(2s−2) ≡ eBB′ΦB,A′(2s−2)B′
+ eB

A′
ΘB,A′(2s−3) , (3.3.4)

where eAA′ ≡ eAA′
µ dxµ is the vierbein one-form. With the help of gauge transformations

δωA′(2s−2) = ∇ξA′(2s−2) + eC
A′
ηC,A′(2s−3) , (3.3.5)

we get (3.3.2) for Φ and can eliminate Θ. Eqs. (3.3.1) and (3.3.2) follow from a simple action

[60, 185]7

S =

∫
ΨA′(2s) ∧HA′A′ ∧∇ωA′(2s−2) . (3.3.6)

Here HA′B′ ≡ eC
A′ ∧eCB′

. For s = 1 we have the action of the free SDYM theory. By replacing

∇ω with F = ∇ω − 1
2
[ω, ω] and promoting ω and Ψ to a Lie-algebra-valued one-form we get

the complete SDYM action [60].

6We also introduce a compact notation for symmetric indices: all indices in which some tensor is symmetric
or to be symmetrized are denoted by the same letter. In addition a group of k symmetric indices A1...Ak can
be abbreviated as A(k).

7This action also can be derived as the presymplectic AKSZ action [156].



76 CHAPTER 3. CUBIC INTERACTIONS IN CHIRAL HISGRA

Free equations of motion as Free Differential Algebra. Let us start8 with the variational

equations of motion, which do not have an FDA-form yet:

∇ΨA′(2s) ∧HA′A′ = 0 , HA′A′ ∧∇ωA′(2s−2) = 0 . (3.3.7)

Indeed, we need ∇Ψ = ... and ∇ω = .... The equations are equivalent to

∇ΨA′(2s) = eBB′ΨB,A′(2s)B′
, ∇ωA′(2s−2) = eB

A′
ωB,A′(2s−3) , (3.3.8)

where we introduced a zero-form ΨA,A′(2s+1) and one-form ωA,A′(2s−3). These fields are known

to be relevant for free higher spin fields since [107].9 Of course, we need to know what ∇ of

these new fields is, which encourages one to introduce other fields and so on. It is clear that

the free equations are easy to write as (note that ∇2 = 0)

∇ωA(i),A′(n−i) = eB
A′
ωA(i)B,A′(n−i−1) , i = 0, ..., n− 1 , (3.3.9a)

∇ωA(n) = HBBC
A(n)BB , (3.3.9b)

∇CA(n+k+2),A′(k) = eBB′CBA(n+k+2),B′A′(k) , k = 0, 1, 2, ... , (3.3.9c)

∇ΨA(k),A′(n+k+2) = eBB′ΨBA(k),A′(n+k+2)B′
, k = 0, 1, 2, ... , (3.3.9d)

where C and Ψ are zero forms and ω are one-forms. Figure 3.1 illustrates the field content for a

fixed spin s. The only dynamical fields are the ones that enter the action. The rest of the fields

are expressed as derivatives of the dynamical ones. It may not seem very useful to introduce

infinitely many fields to encode higher derivatives of the dynamical ones, especially when the

fields are free, but it can be of great help later: interactions of Chiral Theory may have any

number of derivatives (with helicities λi on external legs fixed, the number of derivatives is

λ1 + λ2 + λ3 > 0, hence, finite).

It is convenient to introduce generating functions:

ω(y, y) =
∑
n,m

1
n!m!

ωA(n),A′(m) y
A...yA yA

′
...yA

′
, (3.3.10)

idem. for C, where we pack both CA(k),A′(n+k+2) and ΨA(n+k+2),A′(k) into a single generating

function C(y, y). On top of that C(y, y) contains CA(k),A′(k), which describe a free massless scalar

field. Note that the scalar field is necessarily present in Chiral Theory. We can summarize the

free equations as (recall that ∇2 = 0)

∇ω = eBB′
yB′∂Bω +HBB∂B∂BC(y, y = 0) , ∇C = eBB′

∂B∂B′C . (3.3.11)

8The content of this paragraph has a large overlap with original paper [107]. Apart from the self-dual
subtleties the material is standard and can be found, e.g., in [100].

9Indeed, since [107] introduces fields to parameterize all on-shell nontrivial derivatives of massless fields,
any other covariant formulation has to employ at least some of them. Note, however, that the fields of (3.3.7)
appeared first thanks to the twistor approach [109, 186, 187, 189].
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#A

#A′

one-forms, ω

zero-forms, C

ωA(2s−2)

ΨA(2s), h = −s Weyl tensor

CA′(2s), h = +s Weyl tensor

ωA′(2s−2)

V(e, e, C)-cocycle

Figure 3.1: A diagram to show fields/coordinates involved into the description of higher spin
fields. Along the axes we have the number of unprimed/primed indices on a spin-tensor.
Degree-one coordinates are circles, degree-zero ones are rectangles. The fields that describe a
helicity λ = +s state are green. Those needed to describe helicity λ = −s state are red. The
black square shows a cocycle that links the one-form sector to zero-forms (at the free level it
relates two fields for each spin’s subsystem). The two fields in the rounded rectangle enter
the free action. The rest of the fields encode derivatives thereof in a coordinate invariant and
background independent way. The solid lines link pairwise the fields that ‘talk’ to each other
in the free equations.

These equations form a boundary condition for the non-linear theory.

3.3.2 Initial data for interactions

It can be useful to have a look at the two contractions of Chiral Theory [57, 60] in order to

understand how interactions can be introduced. Both HS-SDYM and HS-SDGR [60] operate

with holomorphic fields ωA′(2s−2) and ΨA′(2s). It is still useful to package them into generating

functions ω(y) and Ψ(y).

HS-SDYM. In order to construct Yang-Mills type interactions of higher spin fields, we pro-

mote ω and Ψ to Lie-algebra-valued fields, e.g. ωA′(k) ≡ ωA′(k);a Ta. It is convenient to realize

Ta as matrices MatN for some N , e.g. ω(y) ≡ ω(y)ij . We will omit the matrix indices and the

only trace they leave is that we cannot swap various ω and Ψ factors, the order is important,

e.g. Ψ ∧ ω ̸= ω ∧Ψ. The action of HS-SDYM can be written as

S =
∑
s=1

1
(2s)!

tr

∫
ΨA′(2s) ∧HA′A′ ∧ FA′(2s−2) , (3.3.12)
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where the curvature is F (y) = ∇ω − ω ∧ ω. Note that indices contracted with yA
′
are sym-

metrized automatically:

ω ∧ ω =
∑

n,m=0

1

2n!m!
[ωA′(n), ωA′(m)] y

A′
1 ... yA

′
n+m . (3.3.13)

The action is invariant under the Yang-Mills transformations:

δω = ∇ξ − [ω, ξ] , δΨ = [Ψ, ξ] . (3.3.14)

It is also invariant under the algebraic symmetries (thanks to eBA′ ∧HA′A′ ≡ 0):

δωA′(k) = eC
A′
ηC,A′(k−1) , (3.3.15)

which is vital for ω to have the right number of degrees of freedom. See [60] for detail and [162]

for the twistor reformulation.

In principle, we can write down the variational equations of motion and try to represent

them as an FDA. Two important hints will play a role in what follows: (a) interactions must

contain (3.3.13), i.e. dω(y) = ω(y)∧ω(y)+ ...; (b) Ψ(y) takes values in the module that is dual

to that of ω, which follows from the structure of the action.

HS-SDGR. Higher spin extension of SDGR [152] is more peculiar [60]. Let us start with its

version on constant (non-zero) curvature spacetimes. The flat-space version [108] is a simple

limit. To proceed we introduce a Poisson structure on the space C[y] of functions in yA′
:10

{f, g} = ∂C
′
f∂C′g =

∑
n,m

1
(n−1)!(m−1)!fA′(n−1)

C′
gA′(m−1)C′ yA

′
... yA

′
. (3.3.16)

Since Poisson implies Lie, we can define a curvature as usual

F = dω − 1
2
{ω, ω} , δω = dξ − {ω, ξ} ≡ Dξ . (3.3.17)

In particular, the Poisson bracket reproduces the standard FAB = dωAB + ωA
C ∧ ωCB in the

spin-two sector. The action reads:

S = 1
2
⟨Ψ | F ∧ F ⟩ =

∑
n,m=0

1

2(n+m)!

∫
ΨA′(n+m) ∧ FA′(n) ∧ FA′(m) . (3.3.18)

It is again important that there is a generalization of the shift symmetry that leaves the full

action invariant [60]. To this effect, one first needs to induce the module structure on Ψ, which

is a module dual to the Poisson algebra as a Lie algebra:

⟨f ; {ξ, g}⟩ := ⟨f ◦ ξ ; g⟩ . (3.3.19)

10This algebra is also know as w1+∞, see e.g. [190] for the latest applications.
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That it is a module structure is manifested by

Rf (Ψ) := −Ψ ◦ f , [Rf ,Rg](Ψ) = R{f,g}(Ψ) . (3.3.20)

The structure of the action and of the gauge symmetries gives a strong support to the idea

that Ψ has to be in the dual (coadjoint) representation of the higher spin symmetry. The flat-

space limit is easy to take: one just needs to drop the {ω, ω}-term in the curvature, which is

equivalent to taking the commutative limit for y. While we could discuss the FDA formulation

of this theory, an example of SDGR gives enough information about the gauge algebra to attack

the main problem.

SDGR in flat space. It may be useful to recall the first few terms of the FDA for self-dual

gravity [134, 135] in flat space [88]. The action reads [108]∫
ΨA′B′C′D′ ∧ dωA′B′ ∧ dωC′D′ . (3.3.21)

The equations of motion are (FA′B′ ≡ dωA′B′
)

F(A′B′ ∧ FC′D′) = 0 , dΨA′B′C′D′ ∧ FA′B′ = 0 . (3.3.22)

The first equation implies that there is no 5-dimensional representation of sl2 in the symmetric

tensor product of two FA′B′
. Therefore, FA′B′

can be represented as eB
A′ ∧ eBA′

for some field

eAA′
. Indeed, it is easy to see that FA′A′ ∧ FA′A′

= 0. Now, it is not surprising that the first

few equations in the FDA read

dωA′A′
= eB

A′ ∧ eBA′
, deAA′

= ωA
B ∧ eBA′

, dωAA = ωA
C ∧ ωCA +HBBC

AABB .

We note that the non-abelian terms with ωA′A′
are missing here-above as compared to the

standard curvature of so(3, 2) ∼ sp(4). However, we do not recognize the curvature of the

Poincare algebra either. As for Ψ, the equation can be rewritten as

dΨA′B′C′D′ ∧HA′B′ = 0 , (3.3.23)

which is equivalent to

∇ΨA′A′A′A′
= eBB′ΨB,A′A′A′A′B′

. (3.3.24)

One can see that we employ exactly the same fields as for the full gravity, but certain structures

’abelianize’. Half of the Lorentz symmetry becomes global rather than originating from a local

gauge symmetry.
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3.4 FDA for Chiral Higher Spin Gravity

After the preliminary steps above we proceed to constructing the Free Differential Algebra of

Chiral Theory. Firstly, we summarize the known initial data and boundary conditions for the

L∞ structure maps.

3.4.1 Initial data

Coordinates/fields, on-shell jet. The coordinates on the Q-manifold or, alternatively, the

fields of the minimal model are exactly the same as for the free fields discussed in Section 3.3.

h = +s : ωA(k),A′(2s−2−k) , CA(2s+i),A′(i) , k = 0, ..., 2s− 2 , i = 0, 1, 2, ... , (3.4.1a)

h = −s : CA(i),A′(2s+i) , i = 0, 1, 2, ... , (3.4.1b)

h = 0 : CA(i),A′(i) , i = 0, 1, 2, ... . (3.4.1c)

As before, it is convenient to keep all components of ω and C confined in generating functions

ω(y, y), C(y, y). Chiral Theory is known to admit Yang-Mills gaugings [10] that, however,

come in a very restricted Chan-Paton-like fashion. To be precise, one can have U(N), O(N)

and USp(N) gaugings. Therefore, we assume that ω and C take values in MatN .
11

General form. Given all the data above, we are looking for Chiral Theory in the form

dω = V(ω, ω) + V(ω, ω, C) + ... , (3.4.2a)

dC = U(ω,C) + U(ω,C,C) + ... . (3.4.2b)

Here, V and U are some L∞ structure maps to be determined. It would be sufficient if the

expansion stops at the quartic terms. This can be justified on the basis of the light-cone action

of Chiral Theory: interactions stop at the cubic level. One might argue that they have to stop

then at quadratic terms for equations. However, this does not have to be the case since the

light-cone gauge theory requires a background, i.e. some specific ω0. Therefore, V(ω, ω, C) is
legit, as well as V(ω, ω, C,C), while higher order terms may not be necessary. One can also see

that V(ω, ω) cannot account for all of the interactions, e.g. ω does not contain the scalar field

at all.

An important subtlety is that covariantization of a given theory (going from the light-cone

gauge to a covariant formulation) may require more terms in the perturbation theory that

are there only for the sake of covariance. Such contact terms will not give any contribution

to physical amplitudes. Another subtlety is due to field redefinitions: it is easy to perform a

nonlinear field redefinition in the cubic theory and generate spurious interactions. Alternatively,

when looking for V ’s and U ’s one can find oneself in an unfortunate field frame with such

11It was shown in [37, 72, 102] that this assumption allows one to reduce a complicated Chevalley-Eilenberg
cohomology problem to a much simpler Hochschild one. In other words, it is important to remember that
usually higher spin algebras originate from associative ones.
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spurious interactions all around. We check in Appendix C.3 that certain cubic amplitudes

are reproduced correctly. Therefore, (3.4.2) contains all the physically relevant information.

Comparing the Chiral Theory FDA to those of SDYM and SDGR [88] we find that the former

contains only the terms essential for consistency, which fixes field redefinitions.

Boundary conditions. There are some boundary conditions for V ’s and U ’s that we learned
from the free equations (3.3.11):

V(e, ω) + V(ω, e) = eCC′
∂CyC′ω , (3.4.3a)

U(e, C) + U(C, e) = eCC′
∂C∂C′C , (3.4.3b)

V(e, e, C) = eCB′ eCB′
∂C∂CC(y, y = 0) . (3.4.3c)

To summarize we are looking for a theory with the spectrum of fields given in (3.4.1), in the

form of FDA (3.4.2) such that it reproduces the boundary conditions (3.4.3), i.e. the free

equations.

3.4.2 FDA

In what follows we will have to write down ansätze for L∞-maps. Given that we have packaged

the coordinates into generating functions ω(y, y) and C(y, y), the L∞-structure maps can be

represented by poly-differential operators:

V(f1, ..., fn) = V(y, ∂1, ..., ∂2) f(y1)...f(yn)
∣∣∣
yi=0

, (3.4.4)

where fi’s are ω’s or C’s and we have explicitly indicated dependence on y, omitting y which can

be treated similarly. With further details on the operator calculus collected in Appendix C.3,

we only note that (i) we abbreviate yA
′ ≡ pA

′
0 , ∂

yi
A′ ≡ piA′ , yA ≡ qA0 , ∂

yi
A ≡ qiA; (ii) contractions

pij ≡ pi · pj ≡ −ϵABp
A
i p

B
j = pAi pjA are done in such a way that exp[p0 · pi]f(yi) = f(yi + y); (iii)

all operators are Lorentz invariant in the most naive sense of having all indices contracted either

with ϵAB or ϵA′B′ ; (iv) we usually omit explicit arguments yi in f ’s, drop |yi=0 and sometimes

write down only the operator itself whenever it is clear what the arguments are. Of course, all

poly-differential operators are assumed to be local, i.e. they map polynomials to polynomials,

which, after Taylor expansion means, that the operators contract a number of Lorentz indices

on the arguments.12 To give a couple of useful examples, the usual commutative product on y

and the Moyal-Weyl star-product on y correspond to the following symbols

exp (y(∂1 + ∂2)) = exp[p0 · p1 + p0 · p2] ≡ exp[p01 + p02] , (3.4.5a)

12Note that this locality is just a requirement for V to imply some contraction of Lorentz indices (hidden by
y) on the arguments, which is a type of locality used in [71]. The locality in the field theory sense is more subtle
— one has to control the number of derivatives in interactions. The interactions in the present paper are local
as in Chiral Theory, i.e. vertices contain a finite number of derivatives provided the helicities of the fields at a
given vertex are fixed.



82 CHAPTER 3. CUBIC INTERACTIONS IN CHIRAL HISGRA

exp (y(∂1 + ∂2) + ∂1∂2) = exp[q0 · q1 + q0 · q2 + q1 · q2] ≡ exp[q01 + q02 + q12] . (3.4.5b)

We also would like to rewrite the boundary conditions (3.4.3) in the operator language:

V(e, ω) + V(ω, e) ∼ p01q12 e
p02+q02 (eCC′

y1Cy
1
C′)ω(y2, y2)

∣∣∣
y1,2=y1,2=0

, (3.4.6a)

U(e, C) + U(C, e) ∼ q12p12 e
p02+q02 (eCC′

y1Cy
1
C′)C(y2, y2)

∣∣∣
y1,2=y1,2=0

, (3.4.6b)

V(e, e, C) ∼ q13q23p12 e
q03 (eBB′

y1By
1
B′)(eCC′

y2Cy
2
C′)C(y3, y3)

∣∣∣
y1,2,3=y1,2,3=0

, (3.4.6c)

where the ∼ sign means that in the actual FDA we only care about reproducing these structures

up to an overall coefficient. The last boundary condition, if satisfied, ensures the nontriviality

of the full vertex. We will also give a rigorous proof of this fact.

Higher spin algebra. The L∞-relations or the formal consistency of (3.4.2) at order ω3

imply the Jacobi identity for V(•, •)

V(V(ω, ω), ω)− V(ω,V(ω, ω)) = 0 . (3.4.7)

The presence of the matrix factors reduces the Jacobi identity to a much simpler and more

restrictive associativity condition, i.e V(a, b) must define an associative product, where a, b ∈
C[y, y]. Given the nonlinear pieces of various (sub)theories there are not so many associative

algebras one can think of. In fact, the only option [108] is to define13

V(f, g) = c exp [q01 + q02 + q12] exp [p01 + p02]f(y1, y1) ∧ g(y2, y2)
∣∣∣
yi=yi=0

≡ f ⋆ g , (3.4.8)

with c an undetermined prefactor. In words V(f, g) ≡ f ⋆ g is the commutative product on y

and the star-product on y. Therefore, as the higher spin algebra hs we take the tensor product

of the Weyl algebra in y and of the commutative algebra of function in y, hs = A1 ⊗ C[y]. In

addition we assume the matrix factor MatN . This choice for V(ω, ω) is also consistent with the

boundary conditions in equation 3.4.6a:

V(e, ω) + V(ω, e) = 2c eBB′
y′B∂Bω , (3.4.9)

which encourages us to set c = 1
2
, so that

V(f, g) = 1
2
exp [q01 + q02 + q12] exp [p01 + p02] (3.4.10)

13A very similar algebra in the same context, but in the light-cone gauge, appeared even before [57].
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Coadjoint module. Similarly, the formal consistency implies that U(•, •) defines a repre-

sentation of the higher spin algebra:

U(V(ω, ω), C)− U(ω,U(ω,C)) = 0 . (3.4.11)

The actions of HS-SDYM and HS-SDGR strongly suggest that C(0, y) lives in the space dual to

ω(0, y). The action on the dual space (dual to the commutative algebra of functions in y) can

be defined via yA → α∂A′ , where α is any number. In other words, the commutative algebra

of functions in y acts on the dual space via differential operators.14 In terms of symbols of

operators we can write

ω(f) = exp [p02 + αp12]ω(y1)f(y2)
∣∣∣
yi=0

. (3.4.12)

With indices explicit we find

ω(f) =
∑
i,n

αi

n!
ωB′(i)fA′(n)B′(i) y

A′
...yA

′
. (3.4.13)

It is plausible to extend the idea with the dual space to the complete space C(y, y), as it is

unclear how to induce the module structure, otherwise. Now it is time to remember about the

matrix factors. We consider functionals based on their ordering of ω and C:

U(ω,C) = U1(ω,C) + U2(C, ω) . (3.4.14)

The consistency condition splits into the following equations.

U1(V(ω, ω), C)− U1(ω,U1(ω,C)) = 0 ,

U2(U1(ω,C), ω)− U1(ω,U2(C, ω)) = 0 ,

U2(U2(C, ω), ω) + U2(C,V(ω, ω)) = 0 .

(3.4.15)

In words, we have a right and a left actions of the higher spin algebra on C(y, y). The actions

must be compatible with each other, which is the middle equation. Given that C should be in

the dual module, the structure maps U1,2 are easy to fix to be:

U1(ω,C) = +1
2
exp [q01 + q02 + q12] exp [p02 + p12]ω(y1, y1)C(y2, y2)

∣∣∣
yi=yi=0

U2(C, ω) = −1
2
exp [q01 + q02 + q12] exp [p01 − p12]C(y1, y1)ω(y2, y2)

∣∣∣
yi=yi=0

(3.4.16)

It is easy to check that boundary condition (3.4.6b) is satisfied with coefficient 1.

14Since understanding that C lives in the dual module has been important for the present paper and this idea
is slightly different from the usual approach in the literature, we elaborate on it more in Appendix C.2.
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Cubic Vertex V(ω, ω,C). As a next step we turn to the cocycle V(ω, ω, C). It has a right

to be called a cocycle. Indeed, the bilinear structure maps of any FDA (more generally, of any

L∞-algebra) define a graded Lie algebra. Let us pack them into Q0, (Q0)
2 = 0. Next we look

for the first order deformation Q1 of Q0. It is clear that Q1 must be in the cohomology of

Q0. The action of Q0 on Q1 is that of the Chevalley-Eilenberg differential, according to which

V(ω, ω, C) is a two-cocycle with values in hs⊗ hs: it takes values in hs and C is in hs∗. To find

the equation for V(ω, ω, C) we evaluate the ω3C terms after applying d to 3.4.2, which leads to

V(V(ω, ω, C), ω)− V(ω,V(ω, ω, C)) + V(V(ω, ω), ω, C)
− V(ω,V(ω, ω), C) + V(ω, ω,U(ω,C)) = 0 . (3.4.17)

Like we did for U(ω,C), we can split V(ω, ω, C) into three vertices, with different ordering of

ω and C:

V(ω, ω, C) = V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω) . (3.4.18)

The consistency condition should now be evaluated for each ordering of ω and C separately,

which leads to

V1(V(ω, ω), ω, C)− V(ω,V1(ω, ω, C)) + V1(ω, ω,U1(ω,C))− V1(ω,V(ω, ω), C) = 0 ,

V(V1(ω, ω, C), ω) + V1(ω, ω,U2(C, ω)) + V2(V(ω, ω), C, ω)− V(ω,V2(ω,C, ω))

− V2(ω,U1(ω,C), ω) = 0 ,

V(V2(ω,C, ω), ω)− V2(ω,C,V(ω, ω))− V2(ω,U2(C, ω), ω)− V(ω,V3(C, ω, ω))

+ V3(U1(ω,C), ω, ω) = 0 ,

V (V3(C, ω, ω), ω)− V3(C, ω,V(ω, ω)) + V3(C,V(ω, ω), ω) + V3(U2(C, ω), ω, ω) = 0 .

(3.4.19)

In Appendix C.4 we rewrite the equations here-above in terms of symbols of operators. In

Appendix C.5 we find a nontrivial solution. The idea is to look for regular vertices in the

form of singular field-redefinitions. In other words, if the cocycle is formally trivial but the

coboundary does not belong to the required functional class, the cocycle is nontrivial. The

final result can be written as

V1(ω, ω, C) : + p12 S

∫
∆2

exp[(1− t1) p01 + (1− t2) p02 + t1p13 + t2p23] ,

V2(ω,C, ω) :

−p13 S
∫
∆2

exp[(1− t2) p01 + (1− t1) p03 + t2p12 − t1p23]+

−p13 S
∫
∆2

exp[(1− t1) p01 + (1− t2) p03 + t1p12 − t2p23] ,

V3(C, ω, ω) : + p23 S

∫
∆2

exp[(1− t2) p02 + (1− t1) p03 − t2p12 − t1p13] .

(3.4.20a)

(3.4.20b)

(3.4.20c)
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Here, ∆n is an n-dimensional simplex t0 = 0 ≤ t1 ≤ ... ≤ tn ≤ 1. The nontriviality of the

solution is proved in Appendix C.5. There is an overall factor S

S = exp[q01 + q02 + q03 + q12 + q13 + q23] (3.4.21)

that computes the star-product over all y variables. In other words, the vertex factorizes

V1(a(y)⊗ a(y), b(y)⊗ b(y), c(y)⊗ c(y)) = a ⋆ b ⋆ c⊗ v1(a, b, c) , (3.4.22)

and similarly for the other vertices.

Remark. As it was pointed out in [191–193], constructing FDA’s of higher spin gravities calls

for an extension of the deformation quantization of Poisson manifolds to Poisson orbifolds, which

is an open problem. Nevertheless, the traces of Kontsevich and of Shoikhet-Tsygan-Kontsevich

formality are sometimes visible [194]. The key point in the proof of the formality theorems is

to find the right configuration space and the right closed form on it, so that the proof amounts

to a simple application of the Stokes theorem. As we show in Appendix C.5, one can find a

closed two-form Ω, dΩ = 0, on ∆3 such that its integral over the four boundaries of the simplex

reduces to the four terms in the equation for V1 and similarly for other vertices. In this regard

let us note that the integral form is not unique. It arises as an integral over the configuration

space of ordered points on a circle. With the help of translation invariance one can (gauge)

fix the times of different points and also use the reflection symmetry of the circle. Altogether

there are six different forms.

Remark. The cubic vertex has an interesting property: if we remove for a moment the

matrix factors MatN , make y commutative (by taking the ℏ = 0 limit after introducing ℏ into

the Moyal-Weyl star-product) and bring ω’s and C to the same ωωC-ordering, we get zero:

V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω)
∣∣∣
ℏ=0 ,N=1

≡ 0 . (3.4.23)

This does not have to be the case. However, erasing matrix factors together with the commuta-

tive limit in y must give a trivial vertex. Indeed, there is no such truncation of Chiral Theory.

Therefore, the vertices we found enjoy some kind of minimality. This is to be expected, since

we are now taking the graded anti-symmetrization of a commutative structure.

Remark. It can be shown that V1,2,3 ̸= 0. In all the cases considered before in the literature

C takes values in the (twisted)-adjoint representation of a higher spin algebra. This allows

one to set V2,3 = 0 and choose V1(a, b, c) = ϕ(a, b) ⋆ c, where ϕ(a, b) is a certain Hochschild

two-cocycle that deforms the higher spin algebra. Indeed, assuming V2,3 = 0 we find

V(V1(a, b, c), d) + V1(a, b,U2(c, d)) = 0 . (3.4.24)

Here, U2(c, d) = −c ⋆ d and V(a, b) = a ⋆ b in the previously studied cases. Therefore, setting

c = 1 leads to V1(a, b, d) = V1(a, b, 1) ⋆ d. Moreover, ϕ(a, b) = V1(a, b, 1) turns out to be a
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Hochschild two-cocycle. For Chiral Theory this cannot be true. Indeed, it is easy to see that

while in the second term of (3.4.24) d has all of its indices contracted with c, the same indices

are free in the first term, i.e. (3.4.24) cannot be satisfied. Therefore, we have to look for a

solution with all V1,2,3 ̸= 0, as we did.

Cubic Vertex U(ω,C,C). The previously found vertex V(ω, ω, C) serves as a source for

U(ω,C,C). As before, we split it according to different orderings:

U(ω,C,C) = U1(ω,C,C) + U2(C, ω, C) + U3(C,C, ω) . (3.4.25)

There are six equations that can be obtained as various ω2C2-terms after applying d to (3.4.2).

We rewrite them in terms of symbols of operators in Appendix C.4 and solve in Appendix C.5.

The final form of the solution reads:15

U1(ω,C,C) : + p01 S

∫
∆2

exp[(1− t2) p02 + t2p03 + (1− t1) p12 + t1p13] ,

U2(C, ω, C) :

−p02 S
∫
∆2

exp[t2p01 + (1− t2) p03 − t1p12 + (1− t1) p23]+

−p02 S
∫
∆2

exp[t1p01 + (1− t1) p03 − t2p12 + (1− t2) p23] ,

U3(C,C, ω) : + p03 S

∫
∆2

exp[(1− t1) p01 + t1p02 + (t2 − 1) p13 − t2p23] ,

(3.4.26a)

(3.4.26b)

(3.4.26c)

where S is the star-product over y’s, (3.4.21).

3.4.3 Summary and Discussion

The main result of this paper are the boxed formulas above that define vertices V(ω, ω), U(ω,C),
V(ω, ω, C), U(ω,C,C). Altogether they satisfy the L∞-relations up to order O(C2). These

vertices determine both the free equations and the essential interactions of Chiral Theory. By

essential we mean those that contribute to the cubic amplitude and which fully determine

Chiral Theory. Let us recall that one can switch on very few higher spin interactions and it is

the consistency of the theory that will enforce the unique completion [87, 140, 141]. However,

the covariantization may require more contact vertices, which is an interesting problem for the

future.

In Chiral Theory there is one dimensionful coupling constant, lP , which is needed to com-

pensate for higher powers of momenta in the vertices. The power of momenta equals the sum

of the helicities, λ1 + λ2 + λ3, of the fields that meet at the vertex. Given that the action of

SDGR (with cosmological constant) contains dωA′B′
+ ωA′

C′ ∧ ωC′B′
, it makes sense to assign

15A resemblance to some of the formulas in the literature [71] is striking, of course. However, as different
from [71], all vertices in the present paper are local and do not contain infinite (divergent) sums over different
representations of the same interactions [78, 150]. Therefore, we are constructing an actual theory rather than
the most general ansatz for interactions compatible with symmetries.
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mass dimension 1 to all ωA′(2s−2) and, hence, mass dimension zero to all ΨA′(2s). Similarly,

eAA′
has dimension one. All ωA′(2s−2−k),A(k) are expressed as derivatives of ωA′(2s−2). It is then

tempting to extend this to the whole ω and C. To recover lP we need to introduce it into eAA′
,

e.g. eAA′
µ ∼ l−1P σAA′

µ in Cartesian coordinates.

The dimensionless coupling κ simply counts the orders of ω and C in the perturbative

expansion. In the light-cone gauge the expansion stops at the cubic terms. This does not have

to be the case after covariantization. Let us compare the general structure of interactions in

the light-cone gauge and in the FDA expanded over Minkowski vacuum ω0 = e. We will be

sketchy here. It is convenient to pack all positive helicity fields into Φ and all negative helicity

fields plus scalar into Ψ. The action reads (very schematically)

L = Ψ□Φ + c+++ΦΦΦ + c++−ΦΦΨ+ c+−−ΦΨΨ , (3.4.27)

where we drop the helicity labels and omit the detailed structure of interactions. The equations

of motion would be

□Φ = c++−ΦΦ + c+−−ΦΨ , □Ψ = c+++ΦΦ + c++−ΦΨ+ c+−−ΨΨ . (3.4.28)

This should be compared with (D ≡ d − ω0 is the background covariant derivative in the

appropriate representations of the higher spin algebra)

Dω = V(ω, ω) + V(ω0, ω, C) + V(ω0, ω0, C, C) , (3.4.29a)

DC = U(ω,C) + U(ω0, C, C) , (3.4.29b)

where we indicated all terms that can potentially contribute to the cubic amplitude. We

recall that ω carries positive helicity and, hence, is a cousin of Φ, while C contains both Ψ

and descendants of ω. We show in Appendix C.1 that V(ω, ω) and U(ω,C) give the correct

amplitudes. There is a unique theory that has such amplitudes, which is a consistency check.

Another valuable consistency check is to restrict interactions to the spin-two and to the

spin-one sectors to reproduce the recently obtained FDA’s of SDYM and SDGR [88]. To be

precise, the restriction has to give FDA’s that are quasi-isomorphic to those of SDYM and

SDGR. Luckily, this exercise directly leads to the interactions of [88]. The latter were found in

the most minimal form, i.e. we have not introduced any nonlinear terms into the FDA beyond

what is necessary, which fixes all field redefinitions. It is encouraging that the FDA of Chiral

Theory is also minimal in this sense.

By the same token the higher spin extensions of SDYM and SDGR [60], which were previ-

ously discovered as contractions of Chiral Theory in [57], must be consistent contractions of the

present FDA as well. We note that in the latter two cases the FDA of this paper should provide

a complete solution of the problem. Indeed, the actions of these two theories are schematically

L = Ψ□Φ + ΦΦΨ , (3.4.30)
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which is much simpler than the structure of interactions of Chiral Theory. Therefore, it is

tempting to argue that we have determined all interaction vertices in these theories since this

is the case for SDYM and SDGR.

A very interesting observation made in [57] is that the coupling constants of Chiral Theory

determine a certain (kinematic) algebra in the light-cone gauge and the product in this algebra

is a remnant of the star-product. This statement covers all vertices. For the FDA at hand, it

is the ΦΦΨ-vertex where the star-product structure is manifest. The other vertices correspond

to the Chevalley-Eilenberg cocycles of the higher spin algebra. Nevertheless, according to [57],

what survives of these vertices in the light-cone gauge is the same star-product. It would be

interesting to clarify this statement.

3.5 Conclusions

The main result of this paper is the covariant form that incorporates some essential interactions

of Chiral Theory which was previously known in the light-cone gauge only. By essential we

mean those interactions that, if present, unambiguously fix the theory. Technically, the result is

the minimal model of Chiral Theory — a Free Differential Algebra consistent to order O(C2).

The FDA of the present paper contains FDA’s of SDYM, SDGR [88] and of the higher spin

extensions thereof [60]. For these four cases the FDA should be complete. For Chiral Theory

certain higher order vertices may still be required for formal consistency and covariantization.

One can also look for supersymmetric extensions that would combine SDYM and SDGR and

higher spin extensions thereof [151] as well as for the full supersymmetric Chiral Theory [195,

196].

Even though we found a covariant form for the essential interactions of Chiral Theory, there

might still be an obstruction to getting the complete theory in a manifestly Lorentz invariant

form if some of the interactions cannot be written with the help of the new field variables

(ωA′(2s−2) and ΨA′(2s) as compared to the old Φµ1...µs) . In Appendix C.1 we also show that

the most problematic V +−− amplitudes can be reproduced. Independently of that, a simple

extension of the cohomological arguments along the lines of [72] indicates that there are no

obstructions to the FDA of this paper. Therefore, the complete Chiral Theory can be written

in a manifestly Lorentz invariant form as an FDA.

As is well-understood [131–133], the minimal model of a (gauge) field theory contains all the

essential information about the theory (local BRST cohomology), e.g. actions/counterterms,

anomalies, conserved charges, deformations, etc. It is a very encouraging statement given that

the differential Q can be extracted from classical field equations rewritten as a Free Differential

Algebra. Therefore, the results of this paper should help to address the problems where having

a covariant form of the theory is an advantage, i.e. all of them. Chiral Theory was shown to

be one-loop finite in the light-cone gauge [8, 10, 11], but extending these results to higher loop

orders should be simpler within a covariant approach. It would also be interesting to look for

exact solutions where generalizations of Ward/Penrose/ADHM [114, 115, 197] constructions to
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Chiral Theory together with its twistor formulation should be of great help.



90 CHAPTER 3. CUBIC INTERACTIONS IN CHIRAL HISGRA



Chapter 4

All order vertices

In this chapter, we obtain all higher order vertices for chiral HiSGRA in any constant curvature

background. The content is entirely based on [90], co-authored with Alexey Sharapov, Evgeny

Skvortsov, and Arseny Sukhanov and published in the Journal of High Energy Physics ; [92],

co-authored by Alexey Sharapov and Evgeny Skvortsov and published in SciPost Physics ; [92],

co-authored by Alexey Sharapov, Evgeny Skvortsov and Arseny Sukhanov and published in

Nuclear Physics B.

4.1 Introduction

In this chapter, the covariant form of Chiral Theory wil be constructed via the standard ho-

mological perturbation theory: there is a differential graded Lie algebra that encodes the free

theory, whereas its simple deformation leads to a nontrivial L∞-algebra L that encodes the

interaction vertices. This L∞-algebra L is obtained by symmetrization of a certain A∞-algebra

Â. It is the latter algebra which structure maps (or products) we compute.

A

B

Figure 4.1: A convex poly-

gon B and a swallowtail A.

Another observation is that all nontrivial algebraic structures

defining the interaction vertices are effectively low-dimensional.

To put it more formally, the A∞-algebra Â is given by a tensor

product of a smaller A∞-algebra A with some associative algebra

B. While B enters trivially and can be replaced with any other

associative algebra, e.g. MatN , the theory based on A is effec-

tively low-dimensional. The effective dimension can be seen from

the functional dimension of the vector space underlying A, which
is 2. By definition, both Â and A have natural pairings that make

them into cyclic A∞-algebras, or more specifically, pre-Calabi–

Yau algebras of degree two [113]. This cyclic structure appears

to be very useful in linking different interaction vertices to each

other.

The vertices that come out of homological perturbation theory can be considerably simpli-

fied by performing a certain change of variables, which, among other things, makes the cyclic

91
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structures of Â and A explicit. Remarkably, the final result is that, pretty much like in Kontse-

vich [34] and Shoikhet–Tsygan–Kontsevich Formality [198], the structure maps can be written

as integrals over a certain configuration space. The configuration space, which will be defined

in detail in Section 4.5, can be described as the space of concave polygons (region A in Fig.

4.1), which we call swallowtails. Alternatively, it is the space of convex polygons with one edge

corresponding to the diagonal of the square, i.e., polygons B inscribed into a protractor triangle

(45◦−90◦−45◦). The area of region A also plays a role and appears in front of the cosmological

constant term in the A∞-structure maps, as we construct the formulation of chiral HiSGRA for

any constant curvature background. The example in Fig. 4.1 corresponds to quintic structure

maps that are given by an integral over the six-dimensional configuration space, the positions

of the three points in between A and B. The compactness of the configuration space implies

that the vertices are formally well-defined. Importantly, the vertices also obey an additional

property that translates into locality from the field theory vantage point. The vertices we found

turn out to be maximally local, which corresponds to a certain distinguished coordinate system

from the A∞/L∞-perspective.

The chapter is structured as follows. In the 4.2, we introduce homological perturbation

theory and in 4.3 we use it to obtain the quartic vertex of chiral HiSGRA. Then, in 4.4, we

derive all higher order vertices for arbitary cosmological constant λ.

4.2 Homological perturbation recipe

As we have seen before, vertices V and U encode certain contractions of indices of their argu-

ments. All vertices have the factorized form

V(f1, . . . , fn) = v(f ′1(y), . . . , f
′
n(y))⊗ f ′′1 ∗ · · · ∗ f ′′n , (4.2.1)

where fi = f ′i(y) ⊗ f ′′i , f
′′
i ∈ B, and ∗ denotes the product in B. In case B = A1 ⊗MatN , all

y-dependent factors are multiplied via the star-product:

f ′′1 (y) ⋆ · · · ⋆ f ′′n(y) = exp

[ ∑
0=i<j=n

qi · qj

]
f ′′1 (y1) · · · f ′′n(yn)

∣∣∣
yi=0

. (4.2.2)

Here q for y is the same as p for y. Due to additional matrix factors, all f ′′i = {f ′′i (y)AB } are

also multiplied as matrices in the same order as with ⋆. In the future, we will choose to write

only the factor of the structure maps that contains the differential operators on y, i.e.

V(f1, . . . , fn) = V(y, ∂1, . . . , ∂n) f1(y1) · · · fn(yn)
∣∣∣
yi=0

. (4.2.3)

Since Chiral Theory is local, there must be certain restrictions imposed on the structure

maps containing more than one C. Indeed, C encodes arbitrarily high derivatives of the dy-

namical fields. Therefore, any harmlessly looking V(..., C, ..., C) can hide an infinite sum in
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derivatives. If we choose V(ω, ω, C, ..., C) and U(ω,C, ..., C) for concreteness, the locality for-

bids infinite tails in pij with 2 < i, j for the first and pij with 1 < i, j for the second.1 For

example, p23 is not found in U1(ω,C,C) at all (having it in the prefactor would still be admis-

sible). In the following, we shall see that the vertices of chiral HiSGRA are indeed constructed

via a procedure that ensures locality.

Ingredients of the Homological Perturbation Theory soup. The main idea is to use

the technique of multiplicative resolutions and homological perturbation theory,2 see [96, 192,

201, 202] for the discussion and applications to higher spin gravity motivated problems. In

a few words, one can try to look for an embedding of the Hochschild complex into a bigger

bicomplex, where one can apply different spectral sequences to get explicit formulas for the

cocycles. Higher order corrections can also be obtained via homological perturbation theory.

A suitable resolution is obtained by extending the commutative algebra C[y] to another

commutative algebra C[y, z] of polynomials in yA and zA equipped with a peculiar product.

Assuming momentarily we are dealing with deformation quantization type problems, a quite

general class of star-products on functions C[Y ] of Y ≡ Y a, a = 1, ..., 2n is determined by

matrices Ωab via

(f ⋆ g)(Y ) = exp [Y a∂1a + Y a∂2a + Ωab∂1a∂
2
b ] f(Y1)g(Y2)

∣∣
Y1,2=0

. (4.2.4)

The symplectic structure Cab is given by the anti-symmetric part of Ωab and the symmetric

part is responsible for the choice of ordering (e.g. normal, anti-normal, totally-symmetric or

Weyl). One can also write down an integral representation of the same star-product, which is

sometimes more useful,3

(f ⋆ g)(Y ) =

∫
dU dV dξ dη f(Y + U)g(Y + V ) exp [Umξm + V mηm − Ωmnξmηn] . (4.2.5)

We choose Ωab to be symmetric matrix of the form

Ω = −

(
λϵ ϵ

−ϵ 0

)
, ϵ ≡ ϵAB , (4.2.6)

where λ =
√
Λ with Λ the cosmological constant. However, we will refer to λ as the cosmological

constant from now on.

1We should recall that there is a silent star-product over y’s. Therefore, all rij ’s are present in the exp [...].

Each pair of contracted derivatives on two fields ...∂AA′ • ∂AA′• comes from rijpij . Given that rij is already
present we have to forbid infinite tails in some pij ’s.

2This is a refinement of the original idea of [199, 200] to introduce additional variables z as to enlarge the field
content and write down certain simple equations constraining the z-dependence in such a way that perturbative
solution to the z-equations would reproduce the sought-for vertices. Since all (hypothetical) 4d HiSGRA can be
cast into the FDA form and, hence, have the same ω and C field content, we will try to use a notation designed
to reveal similarity to [199, 200], stressing the important differences along the way.

3Here and in what follows we assume that the integrals are defined in such a way that
∫
exp[uaξa]du = δ(ξ).

This is the only formula that we will need to use.
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Via the usual formulas this defines a commutative product, whose differential form has

symbol

exp [p01 + p02 + q01 + q02 + p1 · q2 − q1 · p2 + λp12] , (4.2.7)

where we defined zA ≡ qA0 , ∂
zi
A ≡ qiA. The integral representation reads

(f ⋆ g)(y, z) =

∫
du dv dp dq f(y + u, z + v)g(y + q, z + p) exp [v · q − u · p+ λq · u] . (4.2.8)

We will sometimes use notation µ(f, g) ≡ f ⋆ g. The generators y and z act as follows:

yA ⋆ f = (yA − λ∂yA − ∂zA)f , zA ⋆ f = f ⋆ zA = (zA + ∂yA)f ,

f ⋆ yA = (yA + λ∂yA − ∂zA)f .

The star-product has some other interesting properties, the most important being the existence

of the element κ = exp[zCyC ] satisfying the relations

yA ⋆ κ = κ ⋆ yA = zA ⋆ κ = κ ⋆ zA = 0 . (4.2.9)

We will consider an extension of algebra A by the algebra of differential forms in dz with

exterior differential dz and a familiar two-form λ = 1
2
κ dz2. We will also repeatedly use the

Poincare lemma in the form of

f (1) = h[f (2)] = dzA zA

∫ 1

0

t dt f (2)(tz) , f (0) = h[f (1)] = zA
∫ 1

0

dt f
(1)
A (tz) , (4.2.10)

see e.g. [100]. The first part gives a particular solution to dzf
(1) = f (2) for a one-form f (1) ≡

dzAf
(1)
A (z) and a given two-form f (2) ≡ 1

2
f (2)(z)ϵABdz

AdzB. The second part gives a particular

solution to dzf
(0) = f (1) for a closed one-form f (1) and a zero-form f (0) ≡ f (0)(z). We also

complete this definition with h[f (0)] = 0 for any zero-form f (0).

With the definitions above we are ready to present the whole set of U and V vertices

defining Chiral HiSGRA (3.4.2). Both type of vertices are constructed as compositions of

only three operations: the contracting homotopy h, the ⋆-product (4.2.4), called µ, and the

product ⋄ that is required for the C fields to enter the game; the latter will be introduced

shortly. Suitable compositions are conveniently depicted by directed tree graphs, which consist

of trivalent vertices, internal edges, and external edges. Both ends of an internal edge are on

two vertices. Each vertex has two incoming and one outgoing edges. An external edge has

one end on a vertex and another end is free. The graphs are supposed to be connected. All

the vertices correspond to the star product µ, while the internal edges depict the action of the

contracting homotopy h:
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µ
µ

µ

h

The external incoming edges (or leaves) correspond to the arguments ω and C of the interaction

vertices V and U . Therefore, each graph may be decorated with either one or two ω’s, depending

on the type of a vertex. As to the arguments C, all of them enter the interaction vertices through

a special combination Λ[C] = h[C ⋄ λ], where C = C(y) and ⋄ is defined as

C ⋄ g(z, y) ≡ g(z, y + pi)C(yi) .

The expression Λ[C] decorates the remaining leaves. Finally, the only outgoing edge (or root)

of a connected tree corresponds to the value of an interaction vertex. The ⋆-product being

commutative, many trees lead to analytical expressions that differ only by a permutation of

arguments. One should keep in mind that h2 = 0 and forms of degree higher than two vanish

identically. There are also certain classes of trees that vanish due to specific properties of the

resolution.4 All admissible trees that contribute to the interaction vertices are generated via

Homological Perturbation Theory, which is detailed in Appendices D.1 and D.3. It might be

well to point out that the resulting analytical expressions for the vertices V and U do not

depend on z’s as it must if one treats them as elements of the higher spin algebra hs and its

coadjoint module, respectively. Below we present some explicit expressions, but we start by

introducing the bilinear an trilinear structure maps with cosmological constant.

V(ω, ω) and higher spin algebra. In what follows we assume that the higher spin algebra

is of the form hs = Aλ ⊗B. Here, Aλ is the Weyl algebra, that is, the algebra of a polynomial

functions f(ŷ) in the operators ŷA subject to the canonical commutation relations [ŷA, ŷB] =

−2λϵAB. Note that all Aλ are isomorphic to each other whenever λ ̸= 0 and the commutative

limit Aλ=0 coincides with C[yA]. One can also understand Aλ as the result of deformation

quantization of the polynomial algebra A0, the quantum product being the Moyal–Weyl star-

4At this point we can list the crucial similarities/differences as compared to [199, 200]. The spectrum of the
fields (coordinates on N ) is exactly the same. The higher spin algebras are different: star-product in y, y as
compared to star-product in y and commutative algebra in y. This entails the second difference: zero-forms are
no longer in the twisted-adjoint representation [203], but in the coadjoint, and, like the twisted-adjoint, form
a genuine module of the higher spin algebra. The vertices are all, of course, different. The ones in the present
paper are local, those of [199, 200] form a gauge-invariant ansatz where infinitely many copies of the same
interaction are present in different forms (with higher and higher derivatives), field redefinitions are not fixed
and, as a result, there are infinitely many free parameters hidden. For generic choice of these parameters, e.g.
the one made in [199, 200], one gets nonsensical results for correlation functions [78], which is to be expected
and has little to do with the higher spin problem. The whole class of theories sought for in [199, 200] cannot be
constructed with the help of the standard field theory tools due to the non-locality [54–56, 58, 204], which makes
it an interesting challenge to find more general principles to deal with field theories with such non-localities. The
resolution, i.e. the z-extension we use is also different from [199, 200], even though the number of z-variables
is the same (ignoring z that we do not need). At the most basic level the integral form of µ-product contains
two integrals more because matrix Ωab has rank four, while in [199, 200] it has rank two. As a result, there is
a smooth deformation of our µ-product that leads to [199, 200], but not the other way around.
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product. The symbol of the star-product is defined by

V(f, g) = exp [p01 + p02 + λ p12]f(y1) g(y2)
∣∣∣
yi=0

≡ (f ⋆ g)(y) . (4.2.11)

The parameter λ has the meaning of the cosmological constant. All vertices of Chiral Theory

depend smoothly on λ.

U(ω,C) and the dual module. Thanks to the A∞-structure this bilinear vertex splits into

the sum of two vertices5

U(ω,C) = U1(ω,C) + U2(C, ω) (4.2.12)

The A∞-relations imply that U1(ω,C) and U2(C, ω) define an hs-bimodule structure on C.

Action (3.3.12) suggests that zero-forms C take values in the space dual to the space of one-

forms ω, see [60, 90, 205, 206]. Therefore, we define the nondegenerate pairing

⟨ω|C⟩ = −⟨C|ω⟩ = exp[p12]ω(y1)C(y2)
∣∣
yi=0

(4.2.13)

between the hs-bimodule of fields C and the higher spin algebra hs of fields ω. With the help

of this pairing we can define the bimodule structure by the following symbols:

U1(ω,C) = + exp [λ p01 + p02 + p12]ω(y1)C(y2)
∣∣∣
yi=0

,

U2(C, ω) = − exp [p01 − λ p02 − p12]C(y1)ω(y2)
∣∣∣
yi=0

.
(4.2.14)

Consider, for example, the left action. At λ = 0 the symbol corresponds to U1(ω,C)(y) =

ω(∂y)C(y), i.e., the commutative algebra A0 = C[yA] acts on the dual space by differential

operators.6

It is worth noting that the bilinear structure maps defined so far satisfy the boundary

conditions imposed by the free limit (3.3.11). The next vertex will generate the trilinear term

in (3.3.11), thereby, we do reproduce the L∞-algebra determined by the free action (2.3.1).

V(ω, ω,C). Since the A∞-algebra is concentrated in only two degrees, A0 ⊕ A−1, there are

three structure maps hidden in V(ω, ω, C):

V(ω, ω, C) = V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω) . (4.2.15)

5By a slight abuse of notation V(ω, ω,C, . . . , C) and U(ω,C, . . . , C) denote the whole collections of
vertices/A∞-products at a given order that differ by the order of the arguments. When a detailed structure is
discussed we enumerate various orderings by subscripts.

6For λ = 1 one can recognize the twisted-adjoint action [203]. The twisted-adjoint representation, however,
does not admit the flat limit. It is also not very useful for Chiral Theory with cosmological constant: the
zero-form should be treated differently, whereas the twisted-adjoint interpretation suggests to deal with C as
an element of hs and this immediately entails some problems with locality.
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For example, one of the L∞-relations reads

V1(V(ω, ω), ω, C)− V(ω,V1(ω, ω, C)) + V1(ω, ω,U1(ω,C))− V1(ω,V(ω, ω), C) = 0 . (4.2.16)

It originates from the A∞-relation

V1(V(a, b), c, u)− V(a,V1(b, c, u)) + V1(a, b,U1(c, u))− V1(a,V(b, c), u) = 0 , (4.2.17)

where a, b, c ∈ A−1 and u ∈ A0. It is, of course, much more constraining than the one of L∞.

Indeed, in (4.2.16) the ω’s, being one-forms, anti-symmetrize over the first three arguments.

To solve the A∞-relation, it is useful to rewrite it in terms of symbols:

0 = −V1(p0 + λ p1, p2, p3, p4)e
p01 + V1(p0, p1 + p2, p3, p4)e

λ p12

− V1(p0, p1, p2 + p3, p4)e
λ p23 + V1(p0, p1, p2, λ p3 + p4)e

p34

and similarly for the rest of the A∞-relations, some of which mix V with different orderings of

the arguments. The resulting equations are not difficult to solve directly [205]:

V1(ω, ω, C) = +p12

∫
∆2

exp[(1− u) p01 + (1− v) p02 + up13 + vp23 + λ(1 + u− v)p12] ,

V2(ω,C, ω) = −p13
∫
∆2

exp[(1− v) p01 + (1− u) p03 + vp12 − up23 + λ(1− u− v)p13]

− p13

∫
∆2

exp[(1− u) p01 + (1− v) p03 + up12 − vp23 + λ(1− u− v)p13] ,

V3(C, ω, ω) = +p23

∫
∆2

exp[(1− v) p02 + (1− u) p03 − vp12 − up13 + λ(1 + u− v)p23] .

Here ∆2 denotes the 2-simplex 0 ≤ u ≤ v ≤ 1. From the homological perturbation theory point

of view, these vertices correspond to7

V1(ω, ω, C) = ω(y) ⋆ h[ω(y) ⋆ Λ[C]]|z=0 =

µ

ω µ

ω Λ[C]

h

7We refer to Appendix D.2 for basic definitions and to [90, 206] for more details on how homological pertur-
bation theory works.
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its mirror image

V3(C, ω, ω) = h[Λ[C] ⋆ ω(y)] ⋆ ω(y)|z=0 =

µ

µ ω

Λ[C] ω

h

and the middle vertex receives contributions from two graphs

V2(ω,C, ω) = ω(y) ⋆ h[Λ[C] ⋆ ω(y)]|z=0 + h[ω(y) ⋆ Λ[C]] ⋆ ω(y)|z=0 =

=

µ

ω µ

Λ[C] ω

h

⊕
µ

µ ω

ω Λ[C]

h

Let us illustrate the process of evaluation of a tree on the example of V(a, b, c) with a, b ∈ A−1
and c ∈ A0, see also [90]. One begins with (here κ = exp (zAyA))

Λ[c] = dzAzA

∫ 1

0

t dtκ(tz, y + p3) c(y3) . (4.2.18)

Next, we evaluate the star-product:

b(y) ⋆ Λ[c] = dzA(zA + p2A) e
yp2

∫ 1

0

t dtκ(tz + tp2, y + p3 + λ p2) b(y2)c(y3) .

This is a one-form and we apply h to it:

h[b(y) ⋆ Λ[c]] = (z · p2) eyp2
∫ 1

0

dt′ t dtκ(tt′z + tp2, y + p3 + λ p2) b(y2)c(y3) .

In the last step we evaluate one more product and set z = 0 to find

a ⋆ h[b ⋆ Λ[c]]|z=0 = p12 e
yp1+yp2

∫ 1

0

dt′ t dtκ(tt′p1 + tp2, y + p3 + λ p1 + λ p2) a(y1)b(y2)c(y3).

After renaming y → p0 and changing the integration domain to the 2d simplex ∆2, u = tt′,

v = t, we arrive at

V1(a, b, c) = p12 e
p01+p02

∫
∆2

κ(up1 + vp2, p0 + p3 + λ p1 + λ p2) a(y1)b(y2)c(y3)
∣∣
yi=0

.
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This coincides with V1 on the previous page. We will derive the result for an arbitrary tree

later on.

U(ω,C,C). The next group of structure maps is

U(ω,C,C) = U1(ω,C,C) + U2(C, ω, C) + U3(C,C, ω) . (4.2.19)

The A∞-relations can also be written down and solved directly [205, 206]. It is remarkable

that one does not have to do that. There is a canonical way to generate all U -vertices from V-
vertices. We refer to this recipe as a duality map since it relies on the fact that A0 = (A−1)∗, as
hs-bimodules. This is a particular manifestation of a (hidden) cyclicity of the underlying A∞-

algebra Â; we discuss it in Appendix D.4. Given a V-vertex at some order, one can canonically

pair it with C to build a scalar. By cyclicity/duality,

⟨V(ω, ω, C, . . . , C)|C⟩ = ⟨ω|U(ω,C, . . . , C)⟩ . (4.2.20)

A consistent U -vertex can be obtained by peeling off one ω, which is again a canonical operation.

The duality map gives automatically local U -vertices, provided that the V-vertices are local.8

In the simplest case we find

U1(p0, p1, p2, p3) = +V1(−p3, p0, p1, p2) , (4.2.21a)

U2(p0, p1, p2, p3) = −V2(−p1, p2, p3, p0) , (4.2.21b)

U3(p0, p1, p2, p3) = −V3(−p1, p2, p3, p0) . (4.2.21c)

For example, the first one reads

U1 = p01

∫
∆2

exp [λ (1 + u− v) p01 + up02 + (1− u) p03 + vp12 + (1− v) p13] . (4.2.22)

It is a local vertex because no p23 enters the exponent. For completeness, the other two read

U2 = −p02
∫
∆2

exp [(1− v) p01 + vp03 − (1− u) p12 + up23 − λ (1− u− v) p02]

− p02

∫
∆2

exp [(1− u) p01 + up03 − (1− v) p12 + vp23 − λ (1− u− v) p02] ,

U3 = +p03

∫
∆2

exp [(1− u) p01 + up02 − (1− v) p13 − vp23 − λ (1 + u− v) p03] .

8There is another canonical recipe [71] in case A0 ≃ A−1. However, this one gives nonlocal U ’s out of local
V’s. This recipe is built-in into [199] and leads to one of the open problems pointed out in [78].
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4.3 Quartic vertices

V(ω, ω,C,C). The brute-force approach above is less efficient starting from this vertex.

First of all, there are 6 different orderings for ω2C2. Secondly, the defining equations (A∞-

algebra relations) are inhomogeneous w.r.t. the sought-for quartic vertices. A complete all-order

solution follows immediately from homological perturbation theory [90, 206].9 The vertices at

this order read

V1(ω, ω, C,C) = (p12)
2

∫
D1

exp((1− u1 − u2)p01 + (1− v1 − v2)p02 + u1p13 + u2p14 + v1p23 + v2p24+

+ λp12(1 + u1 + u2 − v1 − v2 + u1v2 − u2v1)) ,

V2(ω,C, ω, C) = −(p13)
2

∫
D1

exp(p01(1− u1 − u2) + (1− v1 − v2)p03 + u2p12 + u1p14 − v2p23 + v1p34+

+ λp13(1 + u1 − u2 − v1 − v2 − u1v2 + u2v1))

− (p13)
2

∫
D1

exp(p01(1− u1 − u2) + (1− v1 − v2)p03 + u1p12 + u2p14 − v1p23 + v2p34+

+ λp13(1− u1 + u2 − v1 − v2 + u1v2 − u2v1))+

− (p13)
2

∫
D2

exp((1− uR − vL)p01 + (1− uL − vR)p03 + vLp12 + uRp14 − uLp23 + vRp34

+ λp13(1− uL + uR − vL − vR − uLuR + vLvR)) ,

V3(ω,C,C, ω) = (p14)
2

∫
D1

exp((1− u1 − u2)p01 + (1− v1 − v2)p04 + u2p12 + u1p13 − v2p24 − v1p34+

+ λp14(1− u1 − u2 − v1 − v2 − u1v2 + u2v1))−

+ (p14)
2

∫
D1

exp((1− v1 − v2)p01 + (1− u1 − u2)p04 + v1p12 + v2p13 − u1p24 − u2p34+

+ λp14(1− u1 − u2 − v1 − v2 − u1v2 + u2v1))−

+ (p14)
2

∫
D2

exp((1− uR − vL)p01 + (1− uL − vR)p04 + vLp12 + uRp13 − uLp24 − vRp34

+ λp14(1− uL − uR − vL − vR − uLuR + vLvR)) ,

V4(C, ω, ω, C) = (p23)
2

∫
D2

exp((1− uR − vL)p02 + (1− uL − vR)p03 − vLp12 − uLp13 + uRp24 + vRp34

+ λp23(1 + uL + uR − vL − vR − uLuR + vLvR)) ,

9The light-cone approach operates only with the physical degrees of freedom and, for this reason, may allow
one to see certain structures that are not self-evident in a given covariant approach, see e.g. [24, 87, 140, 141].
It was shown in [63, 140, 141] that the cubic vertices can be split into chiral and anti-chiral ones. The cubic
vertices from the Lagrangian point of view have overlap with a great deal of the vertices, V(ω, ω), U(ω,C),
V(ω, ω,C), U(ω,C,C) and even V(ω, ω,C,C). Indeed, we should be looking at all vertices that have any
number of background insertions ω0 and are bilinear in the fluctuations. For example, V(ω0, ω0, C, C) is a kind
of stress-tensor’s contributions. For all these vertices, it should be possible to find a split into chiral and anti-
chiral ones plus, possibly, other contributions that come from higher orders in the Lagrangian. Therefore, we
expect that various truncations/subsectors like chiral/self-dual/holomorphic are closely related to each other,
if not identical at these orders. In this regard it is worth mentioning some partial low order results in the
literature [207–210].
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V5(C, ω, C, ω) = −(p24)
2

∫
D1

exp((1− v1 − v2)p02 + (1− u1 − u2)p04 − v2p12 − u2p14 + v1p23 − u1p34+

+ λp24(1− u1 + u2 − v1 − v2 + u1v2 − u2v1))+

− (p24)
2

∫
D1

exp((1− v1 − v2)p02 + (1− u1 − u2)p04 − v1p12 − u1p14 + v2p23 − u2p34+

+ λp24(1 + u1 − u2 − v1 − v2 − u1v2 + u2v1))+

− (p24)
2

∫
D2

exp((1− uR − vL)p02 + (1− uL − vR)p04 − vLp12 − uLp14 + uRp23 − vRp34

+ λp24(1 + uL − uR − vL − vR − uLuR + vLvR)) ,

V6(C,C, ω, ω) = (p34)
2

∫
D1

exp((1− v1 − v2)p03 + (1− u1 − u2)p04 − v2p13 − u2p14 − v1p23 − u1p24+

+ λp34(1 + u1 + u2 − v1 − v2 + u1v2 − u2v1)) ,

where we have introduced the integration variables

u1 ≡
t1t2(1− t3)t4
1− t1t2t3

, v1 ≡
t1(1− t2t3)

1− t1t2t3
,

u2 ≡
(1− t1t2)t3t4
1− t1t2t3

, v2 ≡
(1− t1)t3
1− t1t2t3

,

which correspond to the domain of integration D1 and

uL ≡ t1t2(1− t3)

1− t1t2t3t4
, vL ≡ t1(1− t2t3t4)

1− t1t2t3t4
,

uR ≡ (1− t1)t3t4
1− t1t2t3t4

, vR ≡ t3(1− t1t2t4)

1− t1t2t3t4

for the domain D2. All times ti are integrated over [0, 1]. In terms of u’s and v’s the domains

of integration can be found by inverting the above relations. We start with D1:

t1 =
u2v1(1− v1 − v2) + u1v2(v1 + v2)

u1v2 + u2(1− v1 − v2)
, t3 =

v2
1− v1

,

t2 =
u1v2

u2v1(1− v1 − v2) + u1v2(v1 + v2)
, t4 = u1 + u2

1− v1
v2

.

The fact that the ti’s take values in the interval [0, 1] translates into restrictions on the u and

v variables. In Appendix D.6.2, we prove that these variables belong to a subinterval of [0, 1].

Some of these restrictions merely confirm this. The other restrictions

0 ≤ v2 ≤ 1 , 0 ≤ u1 ≤ v1 ≤ 1− v2 ,
u1
v1

≤ u2
v2

≤ 1− u1
1− v1
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define the integration domain as

∫
D1

≡
∫ 1

0

dv2

∫ 1−v2

0

dv1

∫ v1

0

du1

∫ v2
1−u1
1−v1

u1v2
v1

du2 .

For D2 we obtain

t1 =
uLuR − vLvR + vL

1− vR
, t3 =

uLuR − vLvR + vR

1− vL
,

t2 =
uL

uLuR − vLvR + vL
, t4 =

uR

uLuR − vLvR + vR
.

This gives the restrictions

0 ≤ uL ≤ 1 , 0 ≤ uL ≤ vL ≤ 1− uR ,

uL

vL
≤ 1− vR

1− uR
,

uR

vR
≤ 1− vL

1− uL
,

which determine the domain of integration to be

∫
D2

≡
∫ 1

0

duL
∫ 1−uL

0

duR
∫ 1−uR

uL

dvL
∫ 1−uL(1−uR)

vL

uR 1−uL

1−vL

dvR .

Hence, both D1 and D2 are compact and the corresponding integrals converge. In the language

of trees emerging from homological perturbation theory, there are only two nontrivial topologies

given by

G1 = ω ⋆ h[h[ω ⋆ Λ[C]] ⋆ Λ[C]]|z=0 =

µ

ω µ

µ Λ[C]

ω Λ[C]

h

h

and

G2 = h[ω ⋆ Λ[C]] ⋆ h[ω ⋆ Λ[C]]|z=0 =

µ

µ µ

ω Λ[C] ω Λ[C]

h h

All other graphs can be derived from these by swapping incoming edges at any vertex. Eval-

uation of all diagrams leads to the quartic vertices above. For Chiral HiSGRA with vanishing
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cosmological constant all quartic vertices have been written down in [90].

U(ω,C,C,C). This group of structure maps can effortlessly be obtained via the duality

map. For example,

U1(ω,C,C,C)(p0, p1, p2, p3, p4) = G1(−p4, p0, p1, p2, p3) =

= (p01)
2

∫
D1

exp
[
u1p02 + u2p03 + (1− u1 − u2)p04 + v1p12 + v2p13 + (1− v1 − v2)p14

+ λ(1 + u1 + u2 − v1 − v2 + u1v2 − u2v1)p01
]
.

All other U -vertices can be derived in a similar manner. This completes the low order analysis,

which can be useful for a number of reasons: to get an idea of how interaction vertices look

like; to compute low order holographic correlation functions; to be compared with the all order

analysis that follows. The rest of this section is occupied with the evaluation of all trees coming

out of the homological perturbation theory.

4.4 Higher order vertices

4.4.1 All vertices with vanishing cosmological constant

Thanks to the duality map, it suffices to work out vertices of type V(ω,C, . . . , C, ω, C, . . . , C),
but we will provide a complete description of all non-zero vertices. Given the specific nuts and

bolts of homological perturbation theory it can be shown [90] that only a very limited class of

trees makes nonvanishing contributions. They can be described as ‘trees with two branches’.

Either branch has one leaf decorated by an element of A−1 and the other leaves by elements of

A0. Such trees can be depicted as

µ

µ µ

. . . Λ[cm+1] . . . Λ[cm]

µ µ

µ Λ[cm+n−1] µ Λ[c2]

a Λ[cm+n] b Λ[c1]

h h

h h

h h

h h

with ci ∈ A0 and a, b ∈ A−1. As a first step we need to understand what a single branch of

arbitrary length looks like, after which we can join two such branches together to obtain a tree.

In general, leaves with ci can be attached at the left or at the right, which results in a variety of



104 CHAPTER 4. ALL ORDER VERTICES

trees for a certain choice of the length of the branches. Our approach is to construct trees with

all these leaves attached on the right and then find a recipe to derive all permutations from

this. In this section, we are only concerned with integrands and do not care about the domains

of integration in terms of the new variable. We will return to the question of domain in Section

4.5. Otherwise, the initial integration variables that emerge from homological perturbation

theory, ti, are integrated over [0, 1].

A single branch of length n has the form

Bn = h[. . . h[h[a ⋆ Λ[c1]] ⋆ Λ[c2]] ⋆ · · · ⋆ Λ[cn]] =

µ

µ Λ[cn]

. . . Λ[cn−1]

µ Λ[c2]

a Λ[c1]

h

h

h

The low-order considerations suggest that such a branch is evaluated as

Bn =(zp1)
n

∫
exp

[
(1− Vn)(yp1) + Un(zy) +

n∑
i=1

un,i(zpi+1) +
n∑

i=1

vn,ip1,i+1

]
, (4.4.1)

where

Un =
n∑

i=1

un,i , Vn =
n∑

i=1

vn,i ,

and un,i, vn,i are the integration variables with i = 1, . . . , n. To verify this ansatz, we attach

another leaf decorated by cn+1 to the right of the branch, creating a branch of length n + 1,

which then reads

Bn+1 =
t2n+1t

n
2n+2(1− t2n+1)

n(1− Vn)

(1− t2n+1Un)n+3
(zp1)

n+1×

×
∫

exp
[(1− t2n+1)(1− Vn)

1− t2n+1Un

(yp1) +
(1− t2n+1)Un + t2n+1(1− Un)

1− t2n+1Un

t2n+2(zy)+

+
(1− t2n+2)t2n+2

1− t2n+1Un

n∑
i=1

un,i(zpi+1) +
1− Un

1− t2n+1Un

t2n+1t2n+2(zpn+2)+

+
n∑

i=1

(vn,i − un,i
t2n+1(1− Vn)

1− t2n+1Un

)p1,i+1 +
1− Vn

1− t2n+1Un

t2n+1p1,n+2

]
.

(4.4.2)
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One can bring this into much simpler form

Bn+1 = (zp1)
n+1

∫
exp

[
(1− Vn+1)(yp1) + Un+1(zy) +

n+1∑
i=1

un+1,i(zpi+1) +
n+1∑
i=1

vn+1,ip1,i+1

]
,

(4.4.3)

where the new integration variables are given by the recurrence relations

un+1,i ≡
(1− t2n+1)t2n+2

1− t2n+1Un

un,i , i = 0, 1, . . . , n ,

un+1,n+1 ≡
1− Un

1− t2n+1Un

t2n+1t2n+2 ,

vn+1,i ≡ vn,i − un,i
t2n+1(1− Vn)

1− t2n+1Un

, i = 0, 1, . . . , n ,

vn+1,n+1 ≡
t2n+1(1− Vn)

1− t2n+1Un

,

(4.4.4)

where we have to set U0 = V0 = 0 to match our initial values

u1,1 = t1t2 v1,1 = t1 .

All the ti’s run from 0 to 1. In Appendix D.6, we prove that the Jacobian associated with the

change of variables from {un,1, vn,1, . . . , un,n, vn,n, t2n+1, t2n+2} to {un+1,1, vn+1,1, . . . , un+1,n+1, vn+1,n+1}
is exactly the prefactor in (4.4.2). Since (4.4.3) fits the ansatz (4.4.1), we conclude that the

ansatz is correct for all branches. We also make the observation that the variables satisfy the

remarkable chain of inequalities,

un,1
vn,1

≤ un,2
vn,2

≤ · · · ≤ un,n
vn,n

≤ 1− Un

1− Vn
,

which is proven in Appendix D.6.3. This pattern allows one to easily retrieve the domain of

integration associated to this choice of variables.

We can now compute a tree by evaluating the star-product of two branches with length n and

m. In order to obtain the most symmetric form, assume that the left branch contains only zero-

forms attached to the left and we denote this branch by Bn. This does not limit the generality:

for λ = 0 attaching zero-forms to the left or right gives the same result since the product

is commutative. An important remark is that notation eventually becomes very cumbersome

if we want the labels on pij to consistently refer to the position of the elements a, b ∈ A0

and c1, . . . , cn ∈ A−1, read from left to right. Therefore, it is convenient to always assign

p1, p2 and a(y1), b(y2) to the first and second one-form, respectively, and assign p3, . . . , pn+2

and c1(y3), . . . , cn(yn+2) to elements of A0 based on the position on the branches that they

originated from, starting from the bottom of the right branch, to the top and then from the top

of the left branch to the bottom. We then leave the reshuffling of the labels according to the

respective positions as seen in the tree as the last step in the recipe of finding vertices. Vertices
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should be z-independent, so we set z = 0 at the end. This gives

Bn ⋆ Bm|z=0 =
(−1)n(1− V R

m )n(1− V L
n )m

(1− UL
nU

R
m)

n+m+2
pn+m
12 ×

×
∫

exp
[(1− UR

m)(1− V L
n )

1− UL
nU

R
m

p01 +
(1− V R

m )(1− UL
n )

1− UL
nU

R
m

p02

+
1− V L

n

1− UL
nU

R
m

m∑
i=1

uRm,ip1,2+i +
n∑

i=1

(
vLn,i − uLn,i

UR
m(1− V L

n )

1− UL
nU

R
m

)
p1,m+n+3−i

+
m∑
i=1

(
vRm,i − uRm,i

UL
n (1− V R

m )

1− UL
nU

R
m

)
p2,2+i +

1− V R
m

1− UL
nU

R
m

n∑
i=1

uLn,ip2,m+n+3−i

]
.

(4.4.5)

Here we distinguish between variables coming from the left and the right branch by the super-

scripts L and R, as both branches have their own set of recurrence relations (4.4.4), in which

the ti’s in the left branch run from tm+1 to tn+m, going from top to bottom. To simplify (4.4.5)

we introduce new variables

rLn,i ≡
1− V R

m

1− UL
nU

R
m

uLn,i , rRm,i ≡
1− V L

n

1− UL
nU

R
m

uRm,i ,

sLn,i ≡ vLn,i − uLn,i
UR
m(1− V L

n )

1− UL
nU

R
m

, sRm,i ≡ vRm,i − uRm,i

UL
n (1− V R

m )

1− UL
nU

R
m

,

(4.4.6)

which allows us to rewrite (4.4.5) as

Bn ⋆ Bm|z=0 = (−1)npn+m
12

∫
exp

[(
1−

n∑
i=1

sLn,i −
m∑
i=1

rRm,i

)
p01 +

(
1−

m∑
i=1

sRm,i −
n∑

i=1

rLn,i
)
p02+

+
m∑
i=1

rRm,ip1,2+i +
n∑

i=1

sLn,ip1,m+n+3−i +
m∑
i=1

sRm,ip2,2+i +
n∑

i=1

rLn,ip2,m+n+3−i

]
.

(4.4.7)

In Appendix D.6, we show that the Jacobian resulting from the change of variables from

the coordinates {uLn,1, . . . , vLn,n, uRm,1, . . . , v
R
m,m} to {rLn,1, . . . , sLn,n, rRm,1, . . . , s

R
m,m} is exactly the

prefactor in (4.4.5).

In order to specify a domain of integration in (4.4.7), we rename the variables as

{u1, . . . , um, um+1, um+2, . . . , um+n, um+n+1}

= {rRm,1, . . . , r
R
m,m,1−

n∑
i=1

sLn,i −
m∑
i=1

rRm,i, s
L
n,n, . . . , s

L
n,1} ,

{v1, . . . , vm, vm+1, vm+2, . . . , vm+n, vm+n+1}

= {sRm,1, . . . , s
R
m,m,1−

n∑
i=1

rLn,i −
m∑
i=1

sRm,i, r
L
n,n, . . . , r

L
n,1} ,

(4.4.8)

where um+n+1 = 1 −
∑m+n

i=1 ui and vm+n+1 = 1 −
∑m+n

i=1 vi. In Appendix D.6.3, we prove that
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these variables satisfy the inequalities

u1
v1

≤ u2
v2

≤ · · · ≤ um+n

vm+n

≤ um+n+1

vm+n+1

. (4.4.9)

Now (4.4.7) takes the form

Bn ⋆ Bm|z=0 = (−1)n(p12)
n+m

∫
exp

[
um+1p01 + vm+1p02 + (1− Um+n)p1,m+n+

+ (1− Vm+n)p2,m+n +
m∑
i=1

uip1,2+i +
m∑
i=1

vip2,2+i +
n−1∑
i=1

um+1+ip1,m+2+i+

+
n−1∑
i=1

vm+1+ip2,m+2+i

]
.

(4.4.10)

Constructing vertices. There are still a few differences between the trees that we have

constructed above and the vertices that solve for the A∞-relations. Above we associated p1

and p2 with the two leaves decorated by elements of A−1 and the other pi acted on the ci that

were labeled from bottom right to bottom left on the branches. However, in the expressions for

vertices the pi’s are assigned from left to right. Moreover, we have only considered trees with

elements of A0 attached to the left(right) on the left(right) branch. Obviously, general vertices

are not restricted to this choice. As will become clear in the next section, the only change as

compared to (4.4.10) is by relabeling of the pij’s when elements of A0 are attached differently

in the absence of a cosmological term.

cm+1

a c0cm+n cm+n−1c∗ b c1c2 c3c4

T T0

c0

a b c1 c2 cm+n

Figure 4.2: A generic tree T in the left panel with elements of A0 attached left and right
arbitrarily and the ‘base’ tree T0 in the right panel with only elements of A0 attached to the
right on the right branch. T can be obtained form T0 through flipping ci’s to the left of the
right branch and/or shifting them to the left branch.

To simplify the procedure of obtaining expressions for trees, let us consider the trees in

Fig.4.2. We assign vectors a⃗i = (ui, vi), r⃗i = (p1,i, p2,i) to ci and r⃗0 = (p01, p02), a⃗0 = (1 −∑m+n
i=1 ui, 1−

∑m+n
i=1 vi) to c0. We also introduce the matrices

P = (⃗0, 0⃗, r⃗1, . . . , r⃗m+n, r⃗0) , Q = (−e⃗1,−e⃗2, a⃗1, . . . a⃗m+n, a⃗0) , (4.4.11)
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where e⃗1 =

(
1

0

)
, e⃗2 =

(
0

1

)
. The expression for the symbol associated with the basic tree T0

can now be written as

B0 ⋆ Bm+n|z=0 = (p12)
m+n

∫
Vm+n

exp(tr[PQt]);

it is understood to yield the vertex V (ω, ω, C, . . . , C) when acting on

a(y1)b(y2)c1(y3) . . . cm+n(ym+n+2)|yi = 0 . (4.4.12)

The configuration space Vm+n is given by the chain of inequalities in (4.4.9). A generic tree T

can be obtained from T0 through two types of operations: (i) flipping ci to the left of the right

branch and (ii) a counterclockwise shift of all ci’s along the cord connecting a and b. Impor-

tantly, in the latter case c0 also moves along the cord, while another ci takes its place. To ex-

press the symbol corresponding to T we define PT = (⃗0, 0⃗, r⃗1, . . . r⃗m,−r⃗m+1, r⃗m+2, . . . , r⃗n,−r⃗0).
For vertices, the labels on pi and the corresponding arguments yi of a, b and the cj’s are

read off from the tree from left to right. Since we have labeled them from bottom right

to top left, we require a permutation σT that relabels the pi’s and yi’s accordingly. More-

over, σT also shuffles the elements in (4.4.12) corresponding to their respective position in the

tree T . In the absence of a cosmological constant, a generic tree T contributes to the vertex

V(C, . . . , C, ω, C, . . . , C, ω, C, . . . , C) by

sTσT (p12)
m+n

∫
Vm+n

exp(tr[PTQ
t])a(y1)b(y2)c1(y3) . . . cym+n(ym+n+2)|yi=0 .

Here, sT = (−1)k and k is the number of zero-forms C in between the two ω’s. The sign σT

is the combination of the sign factor we get by evaluating the product of two branches with a

sign coming from homological perturbation theory.

4.4.2 All vertices with cosmological constant

All the main properties discussed in the previous section remain true if we turn on the cosmolog-

ical constant, which is a smooth deformation of Chiral Theory in flat space. Most importantly,

the deformation maintains locality. In particular, we have to evaluate exactly the same graphs

as before. It will turn out, as the low order examples illustrate, that switching on the cosmo-

logical constant adds one term to the exponent, e.g. λp12(. . .) for V(ω, ω, C, . . . , C) vertices.

More specifically, a single branch takes the form

Bn = (zp1)
n

∫
exp

[
(1− Vn)yp1 + Un(zy) + λ(zp1)(Un +

n∑
i,j=1

sign(j − i)un,ivn,j)+

+
n∑

i=1

un,i(zpi+1) +
n∑

i=1

vn,ip1,i+1

]
.

(4.4.13)
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In the presence of the cosmological constant the construction of general vertices from the trees

is more complicated than on the flat background. For example, attaching a leaf decorated by

cn+1 to the left of a branch of length n yields

h[Λ[cn+1], Bn] = (zp1)
n+1

∫
exp

[
(1− Vn+1)yp1 + Un+1(zy) +

n+1∑
i=1

un+1,i(zpi+1) +
n+1∑
i=1

vn+1,ip1,i+1+

+ λ(zp1)(
n∑

i=1

un+1,i − un+1,n+1 +
n∑

i,j=1

sign(j − i)un+1,ivn+1,j −
n∑

i=1

un+1,ivn+1,n+1+

+
n∑

j=1

un+1,n+1vn+1,j)
]
,

i.e., the variables un+1,n+1 and vn+1,n+1 enter the cosmological term with a minus sign as opposed

to when the leaf is attached to the right. Otherwise, the expression remains the same. This

coincides with the statement that the ordering of the leaves is irrelevant in the absence of the

cosmological constant. Since the presence of the cosmological constant does not modify the

piece of the expression we found in (4.4.10), we will only consider the cosmological term for

the following discussion. For a branch with leaves attached to the left and right arbitrarily, the

cosmological term reads

λ(Ũn +
n∑

i<j

un,iṽn,j −
n∑

j<i

ũn,ivn,j)(zp1) , (4.4.14)

where x̃ ≡ σix, i corresponds to the label of the element of A0, and

σi ≡

−1 if Λ[Ci] is attached to the left (right) in the right (left) branch ,

+1 if Λ[Ci] is attached to the right (left) in the left (right) branch .

The cosmological term ‘remembers’ how the leaves were attached. In terms of the coordinates

(4.4.6), the cosmological term of a generic tree reads

λ
(
1 +

n∑
i=1

r̃Ln,i +
m∑
i=1

r̃Rm,i −
n∑

i=1

sLn,i −
m∑
i=1

sRm,i −
n∑

i=1

rLn,i

m∑
j=1

rRm,j+

+
n∑

i=1

sLn,i

m∑
j=1

sRm,j +
m∑
i<j

rRm,is̃
R
m,j −

m∑
j<i

r̃Rm,is
R
m,j +

n∑
i<j

rLn,is̃
L
n,j −

n∑
j<i

r̃Ln,is
L
n,j

)
p12 .

(4.4.15)

In order to apply the change of coordinates (4.4.8), we need to differentiate between two cases:

n = 0 and n > 0. In the former case we find the cosmological term to be

λ
(
1 + Ũm − Vm +

m∑
i=1

sign(j − i)σmax{i,j}uivj

)
p12 ,
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where we introduced

σmax{i,j} =

{
σi , if i > j ,

σj , if i < j .

In case n > 0, we obtain

λ
(
σm+n +

m∑
i=1

σiui + um+1 +
n−1∑
i=1

σm+ium+1+i − σm+n

m+n∑
i=1

vi +
m∑

i,j=1

sign(j − i)σmax{i,j}uivj+

+
m∑
i=1

uivm+1 −
m∑
i=1

um+1vi +
n−1∑
i=1

σm+ium+1vm+1+i −
n−1∑
i=1

σm+ium+1+ivm+1+

+
m∑
i=1

n−1∑
j=1

σm+juivm+1+j −
n−1∑
i=1

m∑
j=1

σm+ium+1+ivj +
n−1∑
i,j=1

sign(j − i)σmax{i,j}um+1+ivm+1+j

)
p12 .

At the end of Section 4.4.1, we expressed the contribution to a vertex in terms of the matrices PT

and Q. It turns out that, despite its complicated form, the cosmological term can be expressed

in a similar fashion that is consistent with both aforementioned cases. We define a matrix QT

by filling up its columns, starting with e⃗1, corresponding to a in Fig.4.2 and from there on with

a⃗i following through the tree counterclockwise. As an example, for the tree in the left panel of

Fig.4.2 this looks like

QT = (−e⃗1, a⃗m+n+1, a⃗m+n−1, . . . , a⃗4, a⃗2,−e⃗2, a⃗1, a⃗3, . . . , a⃗m+1, . . . , a⃗m+n) . (4.4.16)

The cosmological term for a generic tree is then given by λp12|QT |, where |QT | is the sum of

minors of QT . A generic tree with cosmological constant contributes to a vertex by

sTσT (p12)
m+n

∫
Vm+n

exp(tr[PTQ
t] + λp12|QT |)a(y1)b(y2)c1(y3) . . . cym+n(ym+n+2)|yi=0 . (4.4.17)

The simplest example is given by a single tree contributing to V(ω, ω, C, . . . , C), see Eq. (4.5.1)
below.

4.4.3 Duality map and homological perturbation theory

A very helpful idea put forward in [90, 206] is that of a duality map. This map allows one to

automatically generate all U -vertices from V-vertices. Moreover, the duality map manifestly

preserves locality. Nevertheless, it is important to check that homological perturbation theory

leads to exactly the same U -vertices as the duality map. Additionally, the duality map also

allows one to relate various V-vertices to each other.

U-vertices. First of all, as it is shown in Appendix D.2, all the trees that contribute to U -
vertices are made up of a single branch (in contrast to the V-vertices that consist of two-branch



4.4. HIGHER ORDER VERTICES 111

trees). According to (D.2.3) the differentials dzA annihilate the module where the zero-forms

C take their values, so that dzA ◦ C ≡ 0 and the module action ◦ can only appear at the very

last step. For example, for the vertex U(ω,C,C) with the symbol (4.2.22) we should have

U(ω,C,C) = h[ω ⋆ Λ[C]] ◦ C . (4.4.18)

The reason is that any expression that acts on the bare C has to be dz-independent to be

different from zero and this can only occur at the end of the branch. The symbol of a branch

Bn of length n is given by (4.4.13). There is a subtlety in computing the module action (D.2.5)

for

Bn ◦ C ≡ (Bn ⋆ C
τ )τ ≡ ezy

[
Bn(y, z) ⋆ e

zyC(z)
]∣∣∣

y↔z
, (4.4.19)

τ being the involution defined by (D.2.4). The point is that the expressions (4.4.19) involve

star-products of nonpolynomial functions like etz·y, which, as is well-known, are ill-defined in

general. For example, the product

etz·y ⋆ esz·y =
e

z·y(t+s−2ts)
1−ts

(1− ts)2

features a singularity as t, s → 1. As a result, the integrals corresponding to the expressions

(4.4.19) are not absolutely convergent. This, however, does not cause much trouble since ◦
appears only in the very last step and can easily be resolved with any simple regularization.

Specifically, we choose the following definition:

Bn ◦ C ≡ (Bn ⋆ C
τε)τε ≡ lim

ε→+0
e(1−ε)zy

(
Bn(y, z) ⋆ e

(1−ε)zyC(z)
)∣∣∣

y↔z
, (4.4.20)

which just modifies the τ -involution (D.2.4). Plugging (4.4.13) into (4.4.20), we get after a

straightforward calculation(
1− ε

1− Un(1− ε)

)2(
ε

1− Un(1− ε)

)n

(p01)
n×∫

exp
[
λ
(1− Vn)(1− ε) + ε(Un +

∑n
i,j=1 sign(j − i)un,ivn,j)

1− Un(1− ε)
p01+

+ ε
n∑

i=1

un,i
1− Un(1− ε)

p0,i+1 +
1− Un

1− Un(1− ε)
p0,n+2+

n∑
i=1

(vn,i − un,i
(1− Vn)(1− ε)

1− Un(1− ε)
)p1,i+1 +

1− Vn
1− Un(1− ε)

p1,n+2

]
.

(4.4.21)



112 CHAPTER 4. ALL ORDER VERTICES

Then, by analogy with the V-vertices, we introduce the new variables

Tn,i ≡ un,i
ε

1− Un(1− ε)
, Sn,i ≡ vn,i − un,i

(1− Vn)(1− ε)

1− Un(1− ε)
,

Tn,n+1 ≡
1− Un

1− Un(1− ε)
, Sn,n+1 ≡

1− Vn
1− Un(1− ε)

.

(4.4.22)

Again, the determinant of the Jacobian corresponding to this change of variables (note that

we do not integrate Tn,n+1, Sn,n+1) cancels the exponential prefactor, see Appendix D.6.1. In

terms of the new coordinates, the symbol (4.4.21) takes the form

(p01)
n

∫
exp

[
λ
(
1 +

n∑
i=1

Tn,i −
n∑

i=1

Sn,i +
n∑

i,j=1

sign(j − i)Tn,iSn,j+

− εSn,n+1

)
p01 +

n+1∑
i=1

Tn,ip0,1+i +
n+1∑
i=1

Sn,ip1,i+1

]
.

(4.4.23)

At the same time, the duality map implies

⟨V1(a, b, c1, . . . , cn)|cn+1⟩ = ⟨a|U1(b, c1, . . . , cn, cn+1)⟩ , (4.4.24)

whence U1(p0, p1, . . . , pn+1) = V1(−pn+1, p0, p1, . . . , pn) with

V1(p0, p1, . . . , pn+2) = (p12)
n exp

[
(1−

n∑
i=1

un,i)p01 + (1−
n∑

i=1

vn,i)p02+

n∑
i=1

un,ip1,i+2 +
n∑

i=1

vn,ip2,i+2 + λ
(
1 +

n∑
i=1

un,i −
n∑

i=1

vn,i +
n∑

i,j=1

sign(j − i)un,ivn,j
)
p12

]
.

We thus conclude that (4.4.23) approaches U1(p0, p1, . . . , pn+1) as ε → +0. Of course, the

domain of integration for the U -vertices is correct and coincides with that for the V-vertices.
In the same way we can evaluate C ◦Bn, which gives almost the same expression as before, up

to a small change in the cosmological term. The final result reads

(p01)
n

∫
exp

[
− λ
(
1−

n∑
i=1

Tn,i −
n∑

i=1

Sn,i −
n∑

i,j=1

sign(j − i)Tn,iSn,j+

− ε(1−
n∑

i=1

Sn,i)
)
p01 +

n+1∑
i=1

Tn,ip0,1+i +
n+1∑
i=1

Sn,ip1,i+1

]
.

In the same way as before, we get rid of the ε-dependent term by setting ε = 0. This coincides

with the result obtained from the duality map, i.e.

⟨V(a, cn+1, b, c1, . . . , cn−1)|cn⟩ = ⟨a|U(cn+1, b, c1, . . . , cn)⟩ .
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To obtain a generic branch, the other elements of A0 could also be attached on the left. Here,

as before, we have adapted the convention of labeling the pi’s from the bottom to the top of the

branch and we need to perform a permutation σT to rearrange them accordingly and shuffle

the elements a(y1)c1(y2), . . . cn(yn+1)|yi=0. In the limit when ε→ +0, a generic contribution to

U -vertex with zero-forms attached left and right arbitrarily approaches

U(ci+1, . . . , cn+1, a, c1, . . . , ci) = σT (p01)
n

∫
exp

[
λ
(
σn+1 +

n∑
i=1

T̃n,i − σn+1

n∑
i=1

Sn,i+

+
n∑

i<j

Tn,iS̃n,j −
n∑

j<i

T̃n,iSn,j

)
p01 +

n+1∑
i=1

Tn,ip0,1+i+

+
n+1∑
i=1

Sn,ip1,i+1

]
× a(y1)c1(y2), . . . cn(yn+1)|yi=0 .

Naturally, a generic U -vertex is related to a class of V-vertices by

⟨V(a, c1, . . . , ci, b, ci+1, . . . , cn)|cn+1⟩ = ⟨a|U(c1, . . . , ci, b, ci+1, . . . , cn)⟩ . (4.4.25)

V-V-duality. The duality map also operates as a map between various V-vertices via

⟨V(cj+1, . . . , cn, a, c1, . . . , ci, b, ci+1 . . . , cj−1|cj⟩ =
⟨V(cj−k+1, . . . , cn, a, c1, . . . , ci, b, ci+1, . . . , cj−k−1|cj−k⟩ ,

where we rotated the arguments by k units and j ≥ i + 1. Through this duality all V-vertices
with the same number of elements of A0 between a and b and the same total number of A0

elements are related to each other, which vastly reduces the number of vertices to be computed.

In particular, it suffices to only determine V-vertices of the type V(a, c1, . . . , ci, b, ci+1, . . . , cn)

and one can relate all V-vertices in the class of vertices characterized by (n, i). In hindsight,

some hints of this duality were hidden in the expression for V-vertices that we presented in

(4.4.17), namely (i) the overall sign is determined by the number of elements of A0 between

a and b, which is an invariant within a class, (ii) the matrix QT in the cosmological term is

constructed similarly for all vertices belonging to the same class and (iii) the configuration

space of trees that share the same number of total elements of A0 is identical.

U-U-dualities. A natural generalization of the idea discussed above is to introduce dualities

between U -vertices themselves. However, this can only be done if a U -vertex is contracted with

an element of A−1 and subsequently the other element of A−1 is stripped off. This leaves only

one duality relation for the U -vertices, namely,

⟨a|Un+2(c1, . . . , cn+1, b)⟩ = ⟨U1(a, c1, . . . , cn+1)|b⟩ = −⟨b|U1(a, c1, . . . , cn+1)⟩ . (4.4.26)
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Consistency of this duality can be checked either using the explicit expressions for the relevant

vertices or through various dualities. The latter method is particularly easy to implement, as

its consistency implies that the following diagram commutes:

V(a, b, c1, . . . , cn) U(b, c1, . . . , cn+1)

V(c1, . . . , cn, a, b) U(c1, . . . , cn+1, b)

V-V

V-U

V-U

U -U

(the type of duality is specified on the arrows).

Z2-transformation. When discussing the duality between V- and U -vertices we only con-

sidered taking out a, while for the duality among V-vertices themselves we always took out a

ci that appeared at the right of b. There is a natural pairing ⟨a(y)|c⟩ = −⟨c|a(−y)⟩ between

a ∈ A−1 and c ∈ A0, which allows us to take out b or ci to the left of a in the aforementioned

cases. As a consequence, some of the dualities can take place through two different routes, e.g.

⟨V2(a, c1, b)|c2⟩ = ⟨a|U2(c1, b, c2)⟩ ,
⟨V2(a, c1, b)|c2⟩ = −⟨U2(c2, a, c1)|b(−y)⟩ .

Both cases evaluate to different expressions, but they are related to each other by a Z2-

transformation that preserves the domain of integration, i.e.,

u1
v1

≤ u2
v2

≤ · · · ≤ un
vn

≤ un+1

vn+1

.

This maps {vn+1, . . . v1} → {u1, . . . , un+1} and {un+1, . . . u1} → {v1, . . . , vn+1}.
To summarize, we have directly checked that our A∞-algebra A has the remarkable property

we called the duality map in [90, 206]. This implies that the A∞-algebra A underlying Chiral

Theory is a pre-Calabi–Yau algebra [113, 211], see Appendix D.4 for more detail. In practical

terms, this implies that there are few independent multi-linear products with a given number

of arguments.

4.5 Configuration space

By construction, each contracting homotopy h entering an interaction vertex brings one inte-

gration variable ti ∈ [0, 1], so that the whole integration domain appears to be the hypercube

[0, 1]2n. However, in terms of ‘times’ ti the ‘propagators’ in front of pij as well as the pre-

exponential factors look ugly (see [90, 206] and the change of variables in the previous section).

In addition, it is not immediately obvious that the integrals converge. In terms of the new vari-

ables u’s and v’s all integrands are obviously smooth functions and the question of convergence
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reduces to the compactness of the new integration domain. In Appendix D.6.2, we prove that

the domain is compact indeed.

With the help of the new integration variables the vertices simplify a lot. In particular,

the propagators are linear except for the only λ-term in the exponent where it is no more

than bilinear and the pre-exponential factor is completely eliminated by the Jacobians of the

coordinate transformations. These drastic simplifications should convince one that the variables

we have chosen above are the preferred ones. It is time to describe the integration domain in

more detail. Let us concentrate on vertices of type V(ω, ω, C, . . . , C), of which the symbol is

given by [206]

G =(p12)
n exp

[
(1−

∑
i

ui)p01 + (1−
∑
i

vi)p02 +
∑
i

uip1,i+2 +
∑
i

vip2,i+2+

+ λ
(
1 +

∑
i

(ui − vi) +
∑
i,j

uivj sign(j − i)
)
p12

]
.

(4.5.1)

We will first consider this family of vertices at lower orders in Section (4.5.1), then provide a

straightforward generalization to all orders with details left to Appendix D.6.3. A more formal

description of the configuration space together with its relation to Grassmannians is presented

in Section 4.5.2.

4.5.1 Order by order analysis

1

1

0v

uA

B

Figure 4.3: Cubic order.

Let us start from the cubic vertex V(ω, ω, C), for which the

integration domain has been identified as the simplex 0 < u <

v < 1 in the Cartesian plane, see Fig. 4.3. The configuration

space is constituted by points lying below the diagonal of the

unit square. A simple plane geometry exercise identifies the

multiplier 1 + u − v of the cosmological constant as twice the

area of the shaded region A. The volume of the configuration

space is 1/2 since any point below the diagonal is admissible.

At the quartic order, V(ω, ω, C,C), the integration domain

is defined by more complicated inequalities:

0 ≤ v2 ≤ 1 , 0 ≤ u1 ≤ v1 ≤ 1−v2 ,
u1
v1

≤ u2
v2

≤ 1− u1
1− v1

.

In order to clarify their geometric meaning it is convenient to introduce the pair of new variables

v3 and u3 subject to the relations

u1 + u2 + u3 = 1 , v1 + v2 + v3 = 1 . (4.5.2)
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With these variables we can rewrite the inequalities above in a more symmetric form:

0 ≤ v2 ≤ 1 , 0 ≤ u1 ≤ v1 ≤ 1− v2 ,
u1
v1

≤ u2
v2

≤ u3
v3
.

The last group of inequalities implies that the corresponding segments, see Fig. 4.4, form a

concave shape (the upper boundary of region A). In other words, the quadrilateral B is convex

and one of its edges coincides with the diagonal of the unit square. Again, the multiplier of the

cosmological constant, 1+u1+u2−v1−v2+u1v2−u2v1, can be recognized as twice the area of

the shaded region A. For an obvious reason we will call such concave polygons A swallowtails.

It is easy to see that the volume of this four-dimensional configuration space is equal to 1/24.

1

v1 + v2 v1

u1

u1 + u2

0

A

B

Figure 4.4: Quartic order.

Now the generalization to all orders is straight-

forward, see Appendix D.6.3 for the proof: vertex

V(ω, ω, C, . . . , C) with n zero-forms C is given by 2n-

tuple integral over the configuration space of swallow-

tails with n+ 3 vertices, three of which are fixed to be

the corners of the unit square. Since the integration do-

main is obviously compact, the interaction vertices are

well-defined at least as A∞ structure maps. The posi-

tions of the n points inside the wedge, which are the

actual degrees of freedom of a swallowtail, correspond

to coefficients in front of p1,i+2 and p2,i+2 that connect

the two one-forms ω to n zero-forms C. In case λ ̸= 0,

the coefficient of the cosmological term λp12 is given by twice the area of the swallowtail. As

discussed at length in [90, 206], the fact that no other differential operators pij appear that

would connect pairs of zero-forms implies spacetime locality.

Regarding trees with other topologies, first of all the configuration space is exactly the

same as above, see Appendix D.6.3. This, among other things, implies that the homological

perturbation theory, even though yielding a solution, does not reveal all hidden symmetries of

the vertices.

Trees with different ordering of zero-forms on either branch within the same topology have

the same configuration space. The term in the exponential proportional to the cosmological

constant changes however by flipping one or more signs. For instance, changing the order of

both zero-forms in V(ω, ω, C,C) gives a tree for the vertex V(ω,C,C, ω). The multiplier of the

cosmological constant reads 1−u1−u2− v1− v2−u1v2+u2v1 and is equal to twice the area of

region ‘+’ minus region ‘−’ in Fig. 4.5. The edges whose coordinates correspond to the flipped

zero-forms create a new structure, which turns out to be a swallowtail itself. Meanwhile, these

vectors are removed from the original swallowtail, which preserves the defining features of a

swallowtail. Thus, for a tree with mixed ordering of its zero-forms, the term proportional to the

cosmological constant is related to the difference between the area of two swallowtails, which is

an oriented area. Also notice that for a mixed ordering this term can become negative. There
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1 = u1 + u2 + u3

v1 + v2 v1

u1

u1 + u2

0

1 = v1 + v2 + v3

A

B

a3

a2

a1

1

1

v2 + v3 v3

u3

0
−u1

−u1 − u2

−1

+

−

a3

a2

a1

1

1

v2 + v3
v2

u2 + u3

0
−u1

u2

−1

+

−

a3

a2

a1

Figure 4.5: Quartic order with various orderings of the zero-forms. On the top panel we have
the swallowtail that determines V(ω, ω, C,C). The coefficient of the cosmological term is twice
the area of region A, which is made of two segments of unit length followed by a1, a2, a3. On
the bottom right panel we flipped the position of two zero forms, which makes a contribution
to V(ω,C,C, ω). Accordingly, the order of the segments is changed: a1 and a2 are inserted
in between the first one and the second one that are of unit length. The coefficient of the
cosmological term is twice the oriented area: the area below the mid-line contributes with
minus sign. Similarly, on the bottom left panel one zero-form is flipped giving a contribution to
V(ω,C, ω, C). The edge a1 is placed in between the segments of unit length and the coefficient
of the cosmological constant again follows from twice the oriented area.
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is a simple algebraic interpretation of these manipulations as the sum |QT | of minors of matrix

QT , (4.4.16), see also below. Now we proceed to a more formal discussion of the configuration

space and its relation to Grassmannians.

4.5.2 Measuring swallowtails

Consider a Euclidean plane E2 with its natural metric topology. It will be convenient on occasion

to forget about Euclidean structure and treat E2 as an affine space with the automorphism group

Aff(2,R) = GL(2,R)⋉R2. By the Jordan curve theorem each simple polygon chain separates

E2 into two disconnected regions, called exterior and interior. Consequently, to each vertex of

a simple polygon one can assign exterior and interior angles. We say that a vertex is convex

(concave) if its interior angle is ≤ π (> π). A polygon is called convex if all its vertices are

convex. By definition, a concave polygon has at least one concave vertex.

A

B
C

Figure 4.6: A simple concave 6-gon. The vertices A, B, and C are convex, the other three are
concave.

It is clear that for a simple concave polygon the minimal number of convex vertices is

equal to 3 (hence, every triangle is convex). We are interested in simple concave polygons with

exactly three convex vertices that go one after another. As in the previous section, these will be

referred to as swallowtails, see Fig.4.6. It is known that convexity is an affine property, meaning

that the affine transformations of Aff(2,R) map swallowtails to swallowtails. We say that two

swallowtails are equivalent to each other if they are related by an affine transformation.

In order to describe the equivalence classes of swallowtails modulo affine transformations

we fix an origin 0 and an orthonormal basis (e1, e2) in E2. Then, we translate the middle of the

three convex vertices to the origin 0 ∈ E2. Finally, applying a linear transformation of GL(2,R),
we can match the edges forming the convex vertex with the (reversed for convenience) unit basis

vectors−e1 and−e2. In such a way each swallowtail appears to be equivalent to one of the forms

depicted in Fig. 4.7. Although the last step does not specify the linear transformation uniquely,

the only ambiguity concerns the permutation of the basis vectors e1 and e2. To fix this ambiguity

one needs to choose an orientation in E2. We will indicate each of two possible orientations

by putting arrows on the edges of polygons as in Fig. 4.8. The affine transformations that

preserve either orientation form a subgroup Aff+(2,R) = GL+(2,R) ⋉ R2 of the full affine
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−10

−e1

−e2

Figure 4.7: A canonical swallowtail with six vertices.

group Aff(2,R). We will denote the space of all nonequivalent oriented swallowtails with n

vertices by Vn.

b1

b2

a6

a5 a4

a3

Figure 4.8: An oriented swallowtail.

Considering now the oriented edges of an n-gon as affine vectors in E2, we can arrange their

coordinates into a 2× n array P ∈ MatR(2, n); in so doing, the order of vectors corresponds to

the order of edges.10 For instance, the array corresponding to the swallowtail in Fig.4.8 looks

as

P = (b1, b2, a3, a4, a5, a6) =

(
b11 b12 a13 a14 a15 a16
b21 b22 a23 a24 a25 a26

)
.

Clearly, each array P determines the corresponding polygon up to translations in E2 and cyclic

permutations of its columns does not affect the polygon. For oriented swallowtails we can fix

the order completely by writing the coordinates of the right edge of the middle convex vertex

in the first column. Applying the transformation

G = −

(
b11 b12
b12 b22

)−1
∈ GL+(2,R)

10By altering the order of vectors/edges one can easily get a polygon with crossed edges as in Fig. 4.5
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brings the matrix P into the canonical form

GP = (−e1,−e2, a3, a4, a5, a6) =

(
−1 0 a13 a14 a15 a16
0 −1 a23 a24 a25 a26

)

that corresponds to the swallowtail in Fig. 4.7. We will refer to such swallowtails as canonical

representatives. Notice that the remaining entries a’s are not arbitrary. First of all, the closeness

of the polygon chain implies that the sum of column vectors is equal to zero, i.e.,

b1 + b2 + a3 + · · ·+ an = 0 . (4.5.3)

This allows us to express one of the vectors ai as the sum of the others. The concavity condition

imposes further restrictions on a’s. Let [a, b] denote the determinant of a 2 × 2-matrix (a, b).

Then an array

P = (b1, b2, a3, . . . , an) ∈ MatR(2, n)

defines a oriented swallowtail iff its entries satisfy Eq.(4.5.3) together with the following in-

equalities:

p12 = [b1, b2] > 0 , p1i = [b1, ai] < 0 , p2i = [b2, ai] > 0 ,

pij = [ai, aj] < 0 , 3 ≤ i < j ≤ n .

(4.5.4)

The introduced variables pij are convenient to express the area of a swallowtail:

Area(P ) =
1

2

∑
i<j

pij .

Eqs. (4.5.3) and (4.5.4) define Vn – the space of all nonequivalent oriented swallowtails with

n > 3 vertices – as a bounded domain in R2(n−3). The space Vn enjoys a natural measure given

by the volume form

ωn =
n−1∏
k=3

da1k ∧ da2k , (4.5.5)

where the coordinates (a1k, a
2
k) correspond to a canonical representative P with b1 = −e1 and

b2 = e2 as in Fig. 4.7. With this measure one can easily find that Vol(V4) = 1/2 and

Vol(V5) = 1/24.

Geometrically, there are two natural ways to look at a 2×n-array: either as a set of n vector

in R2 or as a pair of vectors in Rn. So far we have followed the former interpretation; now let

us try the latter. By definition, taking the quotient of full rank matrices of MatR(2, n) by the

left action of GL+(2;R) gives the oriented Grassmannian G̃R(2, n). It can also be visualized

as the space of all oriented 2-planes in Rn.11 This allows us to think of Vn as a subset of

the oriented Grassmannian G̃R(2, n). The subset is defined by the linear equation (4.5.3) and

11More generally, one defines G̃R(k, n) to be the space of all oriented k-planes in Rn. Topologically, G̃R(k, n)
is just the universal double cover of the Grassmann manifold GR(k, n).
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inequalities (4.5.4). From this perspective the variables {pij}, where i, j = 1, . . . , n and i < j,

are nothing but the Plücker coordinates defining the embedding of G̃R(2, n) into the oriented

projective space P̃N = G̃R(1, N) of dimension N = 1
2
n(n− 1)− 1. (As a smooth manifold P̃N

is diffeomorphic to the standard N -sphere, which is the universal covering space of PN .) It is

known that the image of the Plücker embedding i : G̃R(2, n) → P̃N is given by the intersection

of the projective quadrics

Qijkl : pijpkl − pikpjl + pjkpil = 0 , ∀i < j < k < l . (4.5.6)

These are known as the Plücker relations. Among other things the relations say that the

inequalities (4.5.4), which single out an open domain in the intersection
⋂
Qijk, are highly

redundant. For instance, the relation

p13p24 = p12p34 + p23p14

implies that p13 < 0 whenever

p24 > 0 , p12 < 0 , p23 < 0 , p34 > 0 , p14 > 0 .

The above geometric interpretation in terms of swallowtails suggests that it would be enough

to specify the signs of only consecutive minors pi,i+1 and p1n provided Eq. (4.5.3) holds. As to

the remaining relation (4.5.3), it is clearly equivalent to the pair of linear equations

p12 = −
n∑

i=3

p1i =
n∑

i=3

p2i , (4.5.7)

which define a plane Π of codimension two in P̃N . Summarizing all of the above, we can

identify the space of swallowtails Vn with an open region in the intersection of the projective

codimension-two plane (4.5.7) with the projective quadrics (4.5.6); the region is specified by

prescribing signs (4.5.4) to the Plücker coordinates. In terms of the projective coordinates pij

the volume form (4.5.5) on Vn ⊂ P̃N is obtained as the restriction of the form

Ωn =
n−1∏
i=3

dp1i ∧ dp2i

(p12)
2

of degree 2(n−3) on P̃N . The closure Vn ⊂ P̃N defines the integration domain for the interaction

vertices of order n. Topologically, Vn is a smooth manifold with corners. Hence, it admits a

smooth stratification. For example, the stratum of codimension one corresponds to degenerate

canonical swallowtails where exactly one concave (or convex) internal angle becomes π (or 0).

In the last decade, much attention has been paid to the what is called positive Grassman-

nians because of their remarkable applications in statistical physics, integrable models, and

scattering amplitudes. For a recent account of the subject we refer the reader to [111, 112]. By
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definition, a positive Grassmannians is just an open region of a real Grassmann manifold where

all Plücker coordinates are strictly positive. Our considerations show that other distributions of

signs among the Plücker coordinates may also be of interest, at least for some field-theoretical

problems.

4.6 Discussion and Conclusions

In this paper, we have obtained all vertices of Chiral Theory with and without cosmological

constant. As it was already pointed out in [90, 206] the final form of the vertices is remarkably

simple: the exponents become linear in the new variables (or quadratic for nonzero cosmo-

logical constant) and complicated exponential prefactors are eliminated by the corresponding

Jacobians. Another result is an explicit description of the configuration space. It is given by

what we call swallowtails – concave polygons that have two edges coinciding with two adjacent

edges of the unit square. Another way to describe the same geometric shape is to consider the

space of convex polygons that can be inscribed into a unit square with one edge coinciding with

the diagonal. The area of the swallowtail also has a meaning and determines the coefficient of

the cosmological term.

There is an intriguing relation [193, 194] to the formality theorems, in particular to Shoikhet–

Tsygan–Kontsevich formality [34, 198]. This indicates that with the help of the simple configu-

ration space we have now the A∞/L∞-relations can be proved via Stokes theorem, which we will

address elsewhere. A more intriguing question is whether the configuration space we identified

can be generalized and extended into the ‘bulk’. Indeed, the Poisson structure π we begin with

is just ϵAB, i.e., symplectic and constant. For this reason, all Kontsevich–Shoikhet’s graphs

where π is hit by derivatives disappear. What remains of undifferentiated π is the Moyal–Weyl

star-product and the Feigin–Felder–Shoikhet cocycle [110] that justifies the existence of cubic

vertices as well as higher order vertices. These structures are also closely related to the defor-

mation quantization of Poisson Orbifolds [193, 212]. There should also exist an extension of

our construction to Feigin’s glλ [213]. Another direction is due to a surprising appearance of

pre-Calabi–Yau algebras [113, 211], see Appendix D.4. Eventually, all of this should admit a

description in terms of a certain two-dimensional topological field theory.

Another interesting direction is to uncover what is special about the multi-linear products

we found as compared to other representatives of the same A∞/L∞-algebra. From the viewpoint

of a sigma-model dΦ = Q(Φ), different choices of coordinates for the underlying homological

vector field Q translate into redefinitions of fields Φ, most of which are too nonlocal to give

meaningful interactions. In other words, most of coordinates for Q violate the equivalence

theorem. It is tempting to say that there should always exist a coordinate system that leads

to maximally local interactions. For every field theory, one can think of Q as a deformation of

a ‘free’ homological vector field Q0 that defines a certain graded Lie algebra (via the bilinear

maps of the associated L∞-algebra) and the first order deformation corresponds to a certain

Chevalley–Eilenberg cocycle. Therefore, the maximal locality requirement selects one specific
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representative of the Chevalley–Eilenberg cohomology. It is easy to see that the vertices we

found are maximally local (any field redefinition can only increase the number of derivatives). It

would be interesting to find out exactly which property of the Chevalley–Eilenberg cohomology

is equivalent to maximal locality in the field theory language.

The immediate applications of the obtained results are obvious: (a) it would be interesting

to look for exact solutions building upon the general tools [214–216] worked out in the context

of formal HiSGRA;12 (b) it is important to compute holographic correlation functions as to

compare with (Chern–Simons) vector models (Chiral Theory should be dual to a closed subsec-

tor of Chern–Simons vector models [206]); (c) presymplectic AKSZ actions along the lines of

[156] can be constructed as well as possible counterterms and anomalies can be classified [72];

(d) the study of integrability of Chiral Theory [57] and its relation to twistors [162] should also

be a fruitful direction.

In the regard to item (d) let us point out that the A∞-algebra of Chiral Theory Â naturally

defines a two-dimensional theory, which should be closely related to an important observation

made in [57] that the equations of Chiral Theory in flat space can be cast into the form of

the principal chiral model. Indeed, the higher spin algebra hs is given by the tensor product

Aλ⊗A1⊗MatN , where Aλ is the Weyl algebra, with λ being the parameter of noncommutativity

(effective cosmological constant). Clearly, all the higher products of Â owe their existence to

the first factor Aλ and its bimodule A∗λ, while the rest part, B = A1⊗MatN , enters via the usual

associative product. What makes the system four-dimensional is the functional dimension of hs.

If we simply drop A1 and take B = MatN (or any other associative algebra with zero functional

dimension), we can write the same sigma-model dΦ = Q(Φ), but on a two-dimensional space.13

The factor Aλ implies that AdS2 is a natural vacuum for such a system. According to [57]

this system (as well as the whole Chiral Theory) should be integrable. Its exact solutions

can perhaps be obtained by adapting the techniques from [37] and it would be interesting to

compare it with the standard techniques from integrable models. With B = Mat2 one can

get a 3d interpretation. The functional dimension of Aλ, which is 2, corresponds to off-shell

equations in 2d and to on-shell in 3d, which seem to be the most natural dimensions for the

theory underlying the Chiral one. It would be interesting to uncover the properties of this

parent theory.

Lastly, let us present the Chiral HiSGRA equations of motion in a concise form.14 As it has

12By a formal HiSGRA we mean the sigma-models above, dΦ = Q(Φ), without taking locality into account.
Interestingly, the equations may have nicely looking solutions even for physically nonsensical vertices hidden in
Q.

13The functional dimension of Aλ implies that the theory is off-shell in 2d or, perhaps similarly to [217], can
be understood as an on-shell one for infinitely-many fields. In 3d the theory would be on-shell to begin with.

14In this regard one can mention the very recent Didenko equations [218] that are claimed to give a local
theory in AdS4. Provided the vertices are explicitly extracted from [218] it would be interesting to compare
them with Chiral Theory in AdS4. A closely related interesting open question is whether there are more than
one local higher spin gravity in AdS4. Without taking locality into account there are infinitely many formal
deformations at higher orders [72, 203]. Also, similar ambiguities are present for low spin theories. Therefore,
the question of (non-)uniqueness of local theories remains open, which is also relevant for the study of quantum
consistency of Chiral Theory.
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been discussed, the V-vertices come from trees with two branches and U -vertices originate from
trees with just one branch. The expression for the most general branch Bn[C, . . . , ω, . . . C] is

given in (4.4.17). Let us introduce the sum

B[ω,C] =
∞∑
n=0

Bn[C, . . . , ω, . . . C]

over all possible branches and orderings of zero-forms C therein. With this we can write the

equations of motion as

dω = B[ω,C] ⋆ B[ω,C]
∣∣∣
z=0

, dC = B[ω,C] ◦ C − C ◦B[ω,C] .

As is seen, upon switching on interaction, the one-form field ω on the right is just replaced with

B = ω + O(C). One can regard the full branch B as an effective field ω ‘dressed’ by C. The

equations can also be understood as a Poisson sigma-model, see Appendix D.4.



Chapter 5

A∞-relations from Stokes’ theorem

In this chapter, we prove the A∞-relations underlying chiral HiSGRA using Stokes’ theorem,

which indicates that an extension of the (Shoikhet-Tsygan-)Kontsevich formality theorem ex-

ists. The content is entirely based on [93], co-authored with Alexey Sharapov and Evgeny

Skvortsov, and published in the Journal of High Energy Physics.

5.1 Introduction and summary

The main idea behind ‘higher spins’ is to switch on a consistent interaction with or between

the fields of spin s > 2. For massive higher spin fields effective field theories with a single field

of spin-s are known to be possible and find their applications, for instance, in the gravitational

wave physics, see e.g. [219] and references therein. Theories with massless higher spin fields,

called higher spin gravities (HiSGRA) [1], aim at constructing viable models of quantum gravity.

Each HiSGRA is strongly constrained by a certain higher spin symmetry and incorporates the

graviton as a part of the (usually infinite) symmetry multiplet. Quantum gravity models still

are not easy to construct along these lines: the masslessness, which simulates some features

of the UV-regime already classically and higher spins in the spectrum usually come in tension

with the conventional field theory paradigm, e.g. with the requirement of locality [54–56, 58].

As a result, there are very few perturbatively local theories with massless higher spin fields:

topological 3d models [80–86, 145], conformal higher spin gravity [79, 157, 158, 220], Chiral

Theory [8, 10, 87, 140, 141] and its contractions [57, 60] (see also [162, 221, 222]). Very close to

them is the higher spin IKKT-model, see e.g. [161–163, 223], which is also a noncommutative

field theory.1 There are also incomplete (formal) theories [74, 199, 203, 224–226] that can only

be constructed at the formal level of L∞-algebras with the associated field equations suffering

from nonlocality [78].2 The general problem of constructing formal theories, i.e., L∞-algebras

1Another direction in the context of holographic theories is to derive the bulk dual by massaging the CFT
partition function, see e.g. [159, 160], which, however, leads to higher derivative free equations, has a slightly
different spectrum and nonlocal interactions, the strong point being in that it does reproduce the CFT correlation
functions by construction.

2It should be noted that while every classical field theory (PDE) is defined by some L∞-algebra, e.g. [133],
not every L∞-algebra leads to a well-defined theory. Firstly, one problem is in that any L∞-algebra is defined

125



126 CHAPTER 5. A∞-RELATIONS FROM STOKES’ THEOREM

from any higher spin algebra, was solved in [37].

The Chiral Theory was first found in the light-cone gauge in flat space [87, 140, 141] and

later covariantized at the level of equations of motion and extended to (anti-)de Sitter space

in [90, 91, 205, 206, 228]. The perturbatively local equations of motion have the form of a

nonlinear sigma-model

dΦ = Q(Φ) , d = dxµ ∂µ , (5.1.1)

where the fields Φ are maps from the spacetime Q-manifold (Ω(X ), d) (the differential graded

algebra of forms on X ) to another Q-manifold (M, Q), Q2 = 0. Perturbatively around a

stationary point, Q determines a flat L∞-algebra. Chiral HiSGRA is a happy occasion where

the structure maps of the L∞-algebra can be fine-tuned to maintain locality of (5.1.1). In this

case, the formal approach yields a real field theory.

It was found that the L∞-algebra underlying Chiral HiSGRA originates from an A∞-algebra

through symmetrization. The A∞-algebra is a very special one [91, 228]: it is given by the tensor

product of a pre-Calabi–Yau algebra of degree 2 and an associative algebra. The former can

be viewed as a noncommutative counterpart of a Poisson structure.

It was also known [72, 194] that the first two ‘floors’ of the A∞-algebra are related to the

(Shoikhet–Tsygan–)Kontsevich formality theorem [34, 198, 229]. All vertices of the theory can

be represented [91, 228] as sums over certain graphs Γ,

mn(f1, . . . , fn) =
∑
Γ

wΓWΓ(f1 ⊗ · · · ⊗ fn) , (5.1.2)

where wΓ are certain weights and WΓ are poly-differential operators acting on the fields fi.

The maps mn define the vertices in (5.1.1) via the symmetrization. The graphs are not much

different from the (Shoikhet–)Kontsevich graphs, but the weights are given by the integrals

over the configuration space CΓ of compact concave polygons. The graphs can be summed up

into simple exp-like generating functions, the Moyal–Weyl product being the trivial example.

In this paper, we prove the A∞-relations (aka Stasheff’s identities) the way it is usually

done for the formality theorems [34, 198]. This gives a further evidence that there might be a

bigger formality behind Chiral Theories. The A∞-relations have the form∑
i,j

±mi(•, . . . ,mj(•, . . . , •), . . . , •) = 0 (5.1.3)

and are thus given by the ‘products’ of the vertices. To verify the A∞-relations, for each number

of arguments in (5.1.3), we construct a configuration space C and a closed form Ω on C such

up to canonical automorphisms and the latter correspond to very non-local field redefinitions, in general, which
are not admissible. Secondly, it is not clear how to treat genuinely nonlocal field theories in this language, for
a generic HiSGRA a way out would be to define a set of observables in a more algebraic terms at the level of
the given L∞-algebra, e.g. [72], or to resort to even more general ideas, e.g. [73, 74, 76, 227], that operate with
a differential graded Lie algebra of which a given L∞ is the minimal model.
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that the boundary

∂C =
∑
Γ,Γ′

CΓ × CΓ′

reproduces the various products of the configuration spaces of (5.1.2) and Ω restricted to the

boundary gives all summands in (5.1.3):

0 =

∫
C

dΩ =

∫
∂C

Ω ⇐⇒ A∞-relations . (5.1.4)

The earlier papers [90, 91, 206, 228] rely on homological perturbation theory based on

a certain multiplicative resolution of the higher spin algebra. While giving the interaction

vertices in some form for this specific case, the resolution does not have any invariant meaning

in itself. It is also not clear how to construct such resolutions in general. After certain nontrivial

transformations the vertices were found to have a form reminiscent of formality theorems, to

which the first two structure maps are directly related. This raises several questions. (i) What

are the constructs in the deformation quantization and noncommutative geometry that can

explain the vertices of Chiral Theory without invoking ad hoc resolutions? (ii) Is there a more

general structure (formality) of which (Shoikhet–Tsygan–)Kontsevich ones are particular cases

and that gives the vertices of Chiral Theory? As a step towards the answers we show in this

paper that the A∞-relations can be proved via Stokes theorem.

The outline of the paper is as follows. Sec. 5.2 contains some algebraic background on

A∞-, L∞-, and pre-Calabi–Yau algebras. In Sec. 5.3, we reformulate the vertices of [91, 228]

in a more pre-Calabi–Yau friendly way. The proof via Stokes’ theorem is confined to Sec. 5.4.

Conclusions and discussion can be found in Sec. 5.5.

5.2 Pre-Calabi–Yau algebras

One can think of a pre-Calabi–Yau (pre-CY) algebra of degree 2 as a noncommutative analogue

of a (formal) Poisson structure [113], [211], [230]. With the hope that the algebraic structures

described below may also be relevant to other HiSGRA-type models and beyond we keep our

discussion as general as possible. For their string-theoretic motivations and interpretations, see

[124].

We fix C as the ground field so that all unadorned Hom’s and ⊗ would be over C. Let V be

a complex vector space regarded as a Z-graded space concentrated in degree zero. Define the

direct sum W = V [−1] ⊕ V ∗ where V ∗ is the vector space dual to V and [−1] stands for the

degree shift. In other words, W = W1 ⊕W0 with W1 = V [−1] and W0 = V ∗. We will denote

the degree of a homogeneous element a ∈ W by |a|. The natural pairing between V and V ∗

gives rise to a symplectic structure of degree-one on W :

⟨a, a′⟩ = 0 = ⟨b, b′⟩ , ⟨a, b⟩ = a(b) = −⟨b, a⟩ (5.2.1)
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for all a, a′ ∈ V ∗ and b, b′ ∈ V [−1]. Let TW =
⊕

n>0 T
nW be the (restricted) tensor algebra

of the space W with T nW = W⊗n. Besides the tensor degree, the algebra TW inherits the

Z-grading from W , so that TW =
⊕

n≥0(TW )n. To simplify exposition, we will assume the

vector space V to be finite-dimensional. It should be noted, however, that all the constructions

below extend to the infinite-dimensional case with appropriate modifications, see [113].

We define the space of p-cochains Cp as the dual to the space T p+1W , that is,

Cp = (T p+1W )∗ = Hom(T p+1W,C) . (5.2.2)

The direct product C• =
∏

p≥0C
p contains the subspace of cyclic cochains C•cyc satisfying the

cyclicity condition

f(a0, a1, . . . , ap) = (−1)|a0|(|a1|+···+|ap|)f(a1, . . . , ap, a0) (5.2.3)

for all ai ∈ W and p ≥ 0. Using the symplectic structure (5.2.1), we can write

f(a0, . . . , ap) = ⟨a0, f̂(a1, . . . , ap)⟩ (5.2.4)

for some homomorphism f̂ ∈ Hom(T pW,W ). Since the symplectic structure is nondegenerate,

the last relation determines f̂ unambiguously.

Now we can endow the space C•cyc[1] with the structure of a graded Lie algebra. The Lie

bracket of two homogeneous cochains f ∈ Cp
cyc[1] and g ∈ Cn−p

cyc [1] is given by the necklace

bracket

[f, g](a0, . . . , an) =
n∑

i=0

(−1)κig(f̂(ai+1, . . . , an), a0, . . . , ai) (5.2.5)

=
n∑

i=0

(−1)κi⟨f̂(ai+1, . . . , an), ĝ(a0, . . . , ai)⟩ .

Here summation is over all cyclic permutations of a’s and the Koszul sign is determined by

κi = (|a0|+ · · ·+ |ai|)(|ai+1|+ · · ·+ |an|) .

By construction, the n-cochain [f, g] satisfies the cyclicity condition (5.2.3) and graded skew-

symmetry,

[f, g] = (−1)fg[g, f ] . (5.2.6)

Here f = |f | − 1 is the degree of f as an element of the Lie algebra C•cyc[1].

A pre-CY structure on W is given now by any Maurer–Cartan element S of the graded Lie

algebra C•cyc[1]. By definition,

[S, S] = 0 . (5.2.7)

As an element of C•cyc, S has degree −2. Therefore, one usually refers to the pair (W,S) as a

pre-CY algebra of degree 2. It also follows from the definition that Ŝ defines the structure of a
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cyclic A∞-algebra (see Appendix D.4) on W with the cyclic structure given by the symplectic

form (5.2.1).

By degree reasons and cyclicity, each pre-CY structure of degree 2 defines and is defined by

a sequence of multilinear maps

Sn,m : V [−1]⊗ T nV ∗ ⊗ V [−1]⊗ TmV ∗ → C , (5.2.8)

with n ≥ m. Then S =
∑

n≥m Sn,m. We say that the pre-CY algebra is minimal if S0,0 =

0. It is clear that minimal pre-CY algebras correspond to minimal A∞-algebras, hence the

name. Geometrically, one can think of the A∞-structure Ŝ as a homological vector field on a

noncommutative manifold N associated with W , see [230].

Each multilinear map Ŝn,m has two components Ŝ
(0)
n,m and Ŝ

(1)
n,m taking values in W0 and W1,

respectively. It follows from the MC equation (5.2.7) that the map Ŝ
(1)
1,0 of the minimal pre-CY

algebra gives rise to an associative product on V , namely,

b1 · b2 = Ŝ
(1)
1,0(b1, b2) , ∀b1, b2 ∈ V [−1] . (5.2.9)

Moreover, the map Ŝ
(0)
1,0 makes V ∗ into a bimodule over the associative algebra V :

b · a = Ŝ
(0)
1,0(b, a) , a · b = −Ŝ(0)

1,0(a, b) , ∀b ∈ V [−1], ∀a ∈ V ∗ . (5.2.10)

Regarding the elements of W as ‘coordinates’ on a noncommutative manifold N and C•cyc as a

ring of ‘functions’ on N , one can define a graded-commutative submanifold C ⊂ N by imposing

graded-commutativity conditions. Technically, this implies factorization of the tensor algebra

TW by the two-sided ideal I generated by the commutators:

a⊗ b− (−1)|a||b|b⊗ a , ∀a, b ∈ W . (5.2.11)

This results in the symmetric tensor algebra SW = TW/I of the graded vector space W . The

formula

fsym(a0, a1, . . . , ap) =
1

p!

∑
σ∈Sp

(−1)|σ|f(a0, aσ(1), . . . , aσ(p)) , (5.2.12)

where (−1)|σ| is the Koszul sign associated with the permutations of a’s, defines then a map

from Cp
cyc to Hom(SpW,C). Identifying

∏
p>0Hom(SpW,C) with the ring of functions on C,

one can think of fsym as the restriction to C of the function f on N . Writing (5.2.12) as

fsym(a0, a1, . . . , ap) = ⟨a0, f̂sym(a1, . . . , ap)⟩ , (5.2.13)

we define the map f̂sym : SpW → W by

f̂sym(a1, . . . , ap) =
1

p!

∑
σ∈Sp

(−1)|σ|f̂(aσ(1), . . . , aσ(p)) . (5.2.14)
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The multilinear maps (5.2.12) and (5.2.14), being totally symmetric, are completely determined

through polarization by their restriction on the diagonal, that is, by the nonlinear maps from

W to itself defined as
f(a) = fsym(a, . . . , a) = f(a, . . . , a) ,

f̂(a) = f̂sym(a, . . . , a) = f̂(a, . . . , a) .
(5.2.15)

Geometrically, we can treat f and f̂ , respectively, as a function and a vector field on the (formal)

graded-commutative manifold C associated with W .

It is known that the symmetrization of an A∞-structure gives an L∞-algebra structure on

the same vector space, see e.g. [231]. In particular, Ŝsym makesW into a cyclic L∞-algebra, with

the cyclic structure being given by the natural pairing (5.2.1). The direct sum decomposition

W = V [−1]⊕V ∗ allows for more refined geometric interpretation, namely, one can think of C as

the total space of the shifted cotangent bundle T ∗[−1]V ∗ of the formal manifold M associated

with the space V ∗. Then each function f , defined by (5.2.14), gives rise to a polyvector field

on M. Upon the degree shift, the space of polyvector fields is known to carry the structure of

graded Lie algebra w.r.t. the Schouten–Nijenhuis bracket. Let us denote this Lie algebra by

P . The assignment f 7→ f defines then a homomorphism from C•cyc[1] to P , i.e.,

[f ,g]SN = [f, g](a, . . . , a) (5.2.16)

Here, the l.h.s. is given by the SN bracket of the poly-vector fields f and g, while the r.h.s. is

obtained by the restriction on C of the necklace bracket of their preimages.

The function S corresponding to the minimal pre-CY structure S has the form

S(a, b) =
∞∑
n=1

Sn(b, b, a, . . . , a) =
∑
n≥m

Sn,m(b,

n︷ ︸︸ ︷
a, . . . , a, b,

m︷ ︸︸ ︷
a, . . . , a) (5.2.17)

for all a ∈ V ∗ and b ∈ V [−1]. Being quadratic in b’s, the function S can be considered as a

bivector field on M. Moreover, the Maurer–Cartan equation (5.2.7) implies that the bivector

S is Poisson.

We thus see that every pre-CY structure onW = V [−1]⊗V ∗ gives rise to a Poisson bivector

on the formal manifold associated with V ∗. From this perspective, pre-CY structures of degree

2 extend the notion of a Poisson structure to noncommutative setting.

Finally, let us mention that given any A∞-algebra A on a graded vector space W and any

associative algebra B, one can construct a new A∞-algebra given by the tensor product A⊗B.

Its vector space is the tensor product W ⊗B and the structure maps read

mn(a1 ⊗ b1, . . . , an ⊗ bn) = mn(a1, . . . , an)⊗ (b1 · · · bn) , (5.2.18)

where ai ∈ W , bi ∈ B, and (b1 · · · bn) is the product of bi in B. This construction will be used

below for Chiral Theory where A is a pre-CY algebra.
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5.3 Vertices

As explained in Sec. 5.2, every pre-CY structure of degree 2 is defined by a sequence (5.2.8) of

maps3

SN(α1, . . . , αk, a, αk+1, . . . , αk+m, b, αk+m+1, . . . , αk+m+n+1) , (5.3.1)

where the α’s are elements of V ∗, while the arguments a and b live in V [−1] and k+m+n+1 =

N . We recall that the graded space of a pre-CY algebra associated with Chiral HiSGRA is

given by W = V [−1] ⊕ V ∗, where V = C[yA] is the space of complex polynomials in yA.

Correspondingly, the dual space V ∗ = C[[yA]] is given by formal power series in the same

formal variables. Note that in this section we ignore other factors such as the dependence on

yA
′
and matrix factors since they enter simply via the tensor product.

One can encode each map SN by disk diagrams as depicted in Fig. 5.1. Our disk diagrams

are specific planar graphs with trivalent vertices. By definition, each disk diagram consists of

a circle with a diameter, a set of (nonintersecting) lines connecting vertices on the diameter

to vertices on the circle and an arrow pointing outwards from one of the α’s in the northern

semicircle, or towards the vertices a or b, i.e. one of the points on the boundary is marked

by an arrow and the direction of the arrow depends on whether the argument is in V ∗ or in

V [−1]. The direction of an arrow is to indicate the symplectic structure (5.2.1). No other links

or vertices are allowed. As a result, each diagram is characterized by the number of vertices

on the northern semicircle of the circle to the left and right of the arrow, k and n, respectively,

and the number of vertices on the southern semicircle, m. To avoid ambiguity we denote the

set of all such diagrams by Ok,m,n. The boundary vertices are decorated either by a and b or

by the arguments α’s. The arguments of SN are written in the order the vertices appear on the

boundary of the disk diagram in the counterclockwise direction. The starting point is taken

to be to the left of the arrow. This is called the boundary ordering. Moreover, we will always

consider the semicircle that one finds when traversing from a to b clockwise to be the northern

semicircle and its complement the southern semicircle.

To write down an analytical expression for SN we also need to decorate the red lines with

2-vectors q⃗i = (ui, vi), one for each line. The label i increases from b to a along the diameter.

This is referred to as the bulk ordering. The structure map SN is given then by an integral over

a bounded domain VN−1 ⊂ R2(N−1) parameterized by the u’s and v’s. The definition of the

integration domain involves the bulk ordering, while the definition of the integrand uses the

boundary ordering. Fig. 5.1 shows how labels αi and vectors q⃗i are assigned to a disk diagram.

The straight arrow illustrates the bulk ordering, while the curved arrow displays the boundary

ordering.

Integration domains. To associate an integration domain to a decorated disk diagram of

Ok,m,n, we treat the pairs (ui, vi) as the coordinates of vectors q⃗i on an affine plane. We also

3It is convenient to define a slightly over-complete set of maps that are related to each other via cyclic
symmetry. For example, with the help of the cyclic symmetry we can reach k = 0 and further impose m ≥ n,
cf. discussion around (5.2.8).
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b

⇒ S5(α1, α2, a, α3, α4, b, α5)

a

α2

α1

α5

α4

α3

q⃗1

q⃗2

q⃗3

q⃗4

q⃗5

b ⇒ S5(α1, α2, α3, a, α4, α5, b)a

α3

α2 α1

α5

α4

q⃗1

q⃗2

q⃗3

q⃗4

q⃗5

Figure 5.1: Two disk diagrams that contribute to S5.

add the pair of vectors q⃗a = (−1, 0) and q⃗b = (0,−1) associated with the boundary vertices a

and b. The vectors are assumed to form a closed polygon chain, that is,

q⃗1 + · · ·+ q⃗N + q⃗a + q⃗b = 0 , (5.3.2)

or equivalently,

u1 + · · ·+ uN = 1 = v1 + · · ·+ vN . (5.3.3)

We also require that

ui ≥ 0 and vi ≥ 0 , i = 1, . . . , N . (5.3.4)

Suppose that, moving along the diameter from b to a (bulk ordering) we pass through the

i-th vertex at time ti = ui/vi. Then the chronological ordering implies the following chain of

inequalities:

0 ≤ u1
v1

≤ u2
v2

≤ · · · ≤ uN
vN

≤ ∞ . (5.3.5)
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q⃗a

q⃗b0 1

1

u

v

q⃗1
q⃗2

q⃗3

q⃗4

+

q⃗a

q⃗b

1
0

u

v

q⃗1
q⃗2

q⃗3

q⃗4

+

−

Figure 5.2: Left panel: a swallowtail associated with the disk diagram in Fig. 5.1. The number
1
2
|q⃗a, q⃗b, q⃗1, q⃗2, q⃗3, q⃗4| is the area enclosed by the swallowtail. Right panel: a self-intersecting

polygon (q⃗1, q⃗2, q⃗a, q⃗3, q⃗4, q⃗b) and its oriented area 1
2
|q⃗1, q⃗2, q⃗a, q⃗3, q⃗4, q⃗b|.

This, in turn, implies4

u1 ≤ v1 , vN ≤ uN . (5.3.6)

Together, Eqs. (5.3.3), (5.3.4) (5.3.5), and (5.3.6) define a bounded domain VN−1 ⊂ R2(N−1) for

N ≥ 1. In the special case that N = 0, the domain is empty and there is no integration taking

place. The integration domain admits a nice visualization on the plane. The vectors q⃗i form

a maximally concave polygon inscribed into a unit square, see the left panel of Fig. 5.2. The

two acute angles and the right angle correspond to the fixed unit vectors q⃗a and q⃗b; the other

interior angles of the polygon are concave. In [91, 228], such polygons were called ‘swallowtails’.

We note that VN−1 admits a Z2-symmetry by swapping the variables ui ↔ vi and reversing

their labels. Visually, this can be interpreted as a mirror reflection in the diagonal from (1, 0)

to (0, 1) in Figure 5.2.

Integrands. The integrand associated with a disk diagram of Ok,m,n is given by a family of

polydifferential operators with N + 2 arguments since W = V [−1] ⊕ V ∗, where V = C[yA]
and V ∗ = C[[yA]]. The family is parametrized by the points of the integration domain VN−1.

The poly-differential operators in question are defined through compositions of elementary

endomorphisms of TW :

pij(w1 ⊗ · · · ⊗ wi ⊗ · · · ⊗ wj ⊗ · · · ⊗ wn)

= ϵAB w1 ⊗ · · · ⊗ ∂wi

∂yA
⊗ · · · ⊗ ∂wj

∂yB
⊗ · · · ⊗ wn

(5.3.7)

4To illustrate this, assume u1 > v1. Then, (5.3.5) implies that ui > vi for i = 1, . . . , N , while the closure

constraint (5.3.3) requires
∑N

i=1 ui =
∑N

i=1 vi = 1, which leads to a contradiction. The same logic can be
applied to the last time in the chain.
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for all wi ∈ W and n > 1. By definition, pij = −pji. The operators pij act by partial derivatives

on the tensor factors labelled by i and j. Most often we will use the individual notation for the

elements of V [−1] and write e.g.

pa,2(a⊗ α1 ⊗ b⊗ α2) = ϵAB ∂a

∂yA
⊗ α1 ⊗ b⊗ ∂α2

∂yB
, (5.3.8)

where a, b ∈ V [−1] and α1, α2 ∈ V ∗. Finally, we let µ : TW → C denote the multilin-

ear map that takes each homogeneous element w1 ⊗ w2 ⊗ · · · ⊗ wn to the complex number

w1(0)w2(0) · · ·wn(0), where w(0) is the constant term of the power series w(y). The poly-

differential operators associated with disk diagrams of Ok,m,n have the following general struc-

ture:

Fuv(α1, . . . , αk, a, αk+1, . . . , αk+m, b, αk+m+1, . . . , αk+m+n+1) =

µ ◦ I(pa,b, pa,i, pb,j)(α1 ⊗ · · · ⊗ αn ⊗ a⊗ αn+1 ⊗ · · · ⊗ αn+m ⊗ b⊗ αk+m+1 ⊗ αk+m+n+1) .

Here I is a power series in the p’s, u’s, and v’s. Since the operators (5.3.7) pairwise commute,

there is no ordering ambiguity. Notice that the operator I does not involve elementary operators

pij that hit the pairs of elements αi, αj ∈ V ∗. Otherwise, the operator I would be ill-defined on

the elements of W .5 It remains to describe the construction of the operator I by a given disk

diagram. The construction goes as follows.

It is convenient to organize all the vectors in a single 2 × (N + 2) array, QD, for a disk

diagram D ∈ Ok,m,n. The order of column vectors in the array corresponds to the boundary

ordering. This reads

QD = (q⃗i1 , . . . , q⃗iN+2
) , (5.3.9)

with the labels on the vectors assigned according to the boundary ordering. We will often pro-

vide the matrixQ that corresponds to the canonical ordering associated with SN(a, b, α1, . . . , αN),

given by

Q =

(
−1 0 u1 . . . uN

0 −1 v1 . . . vN

)
= (q⃗a, q⃗b, q⃗1, . . . , q⃗N) . (5.3.10)

From this, one can construct the matrix QD for a particular diagram.

Together with QD, we assign the 2× (N + 2) array

PD = (r⃗1, . . . , r⃗k, r⃗a, r⃗k+1, . . . , r⃗k+m, r⃗b, r⃗k+m+1, . . . , r⃗k+m+n+1) (5.3.11)

to the diagram D ∈ Ok,m,n. Here the r-vectors are assigned according to the boundary or-

dering. Whenever one encounters the vertices a and b, one fills up PD with r⃗a = (0, 0) and

5It may be ill-defined if I depends on pi,j because I is a formal power series and elements from V ∗ are series
as well. That I does not depend on pi,j implies the perturbative locality of Chiral HiSGRA.
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r⃗b = (0, 0), respectively. For the α’s one inserts the vectors r⃗i = (pa,i, pb,i), with i increasing

counterclockwise. Finally, to each matrix QD we assign a quadratic polynomial in the u’s and

v’s defined by the formula

|QD| =
∑
k<l

det(q⃗ik , q⃗il) . (5.3.12)

In other words, |QD| is the sum of all 2 × 2 minors of the matrix QD. Like the integration

domain VN−1, the number |QD| admits a simple visualisation. The column vectors of QD,

ordered from left to right, define a closed polygon chain on the affine plane. In general, the

polygon is self-intersecting and splits into two regions with opposite orientations, see Fig. 5.2.

Then |QD| is nothing but two times the oriented area of the polygon.

With the data above, we define the operator ID as

ID = sD(pa,b)
N−1 exp

(
Tr(PDQ

T
D) + λ|QD|pa,b

)
, (5.3.13)

where λ a free parameter, which is related to the cosmological constant; sD = (−1)m, with m

the number of elements αi found in the southern semicircle of the corresponding disk diagram.

A structure map S(. . .) of the pre-CY algebra with a given ordering of the arguments is defined

by summing operators ID over all disk diagrams with this order of the arguments:

SN(α1, . . . , αk, a, αk+1, . . . , αk+m, b, αk+m+1, . . . , αk+m+n+1) =
∑

D∈Ok,m,n

ID , (5.3.14)

where the arguments a, b and αi are implicit on the right. The argument to the left of the one

marked with an arrow becomes the first argument of S.

Vertices. In order to write the equations of motion we need the expression for the components

of the structure maps Ŝ = (V ,U) defined by Eq. (5.2.4), using the natural pairing

⟨•, •⟩ : V [−1]⊗ V ∗ → C ,

which is given by

⟨f(y1), g(y2)⟩ = −⟨g(y2), f(y1)⟩ = exp[p1,2]f(y1)g(y2)|y1=y2=0 , (5.3.15)
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for f(y1) ∈ V [−1] and g(y2) ∈ V ∗. The argument on the boundary marked with an arrow is

the one to be removed via the nondegenerate symplectic structure. We then find

− SN−1(α1, . . . , αm, b, αm+1, . . . , αm+n, a) =

= −⟨U(α1, . . . , αm, b, αm+1, . . . , αm+n), a⟩ = ⟨a,U(α1, . . . , αm, b, αm+1, . . . , αm+n)⟩ ,
SN−1(α1, . . . , αk, a, αk+1, . . . , αk+m, b) =

= ⟨U(α1, . . . , αk, a, αk+1, . . . , αk+m), b⟩ = −⟨b,U(α1, . . . , αk, a, αk+1, . . . , αk+m)⟩ ,
SN(α1, . . . , αk, a, αn+1, . . . , αk+m, b, αk+m+1, . . . , αk+m+n+1) =

⟨V(α1 . . . , αk, a, αk+1, . . . , αk+m, b, αk+m+1, . . . , αk+m+n), αk+m+n+1⟩ ,

(5.3.16)

where we suppressed the y-dependence of the vertices. Notice that the minus sign was added in

the first line, as to compensate for the swapping of a and b. Using these relations, the U -vertex
and V-vertex can be extracted by replacing

pa → p0 or pb → p0 and pk+m+n+1 → −p0 ,

respectively, where pA0 ≡ yA is the output argument. This yields

U(α1 . . . , αm, b, αm+1, . . . , αm+n) ∋ sD

∫
Vm+n−1

pm+n−1
0,b exp

(
Tr(PDQ

T
D) + λ|QD|p0,b

)
,

U(α1 . . . , αm, a, αm+1, . . . , αm+n) ∋ (−1)m+nsD

∫
Vm+n−1

pm+n−1
0,a exp

(
Tr(PDQ

T
D) + λ|QD|p0,a

)
,

V(α1 . . . , αk, a, αk+1, . . . , αk+m, b, αk+m+1, . . . , αk+m+n) ∋

∋ sD

∫
Vk+m+n

pk+m+n
a,b exp

(
Tr(PDQ

T
D) + λ|QD|pa,b

)
,

(5.3.17)

where we relabeled the α’s in the U -vertices for convenience. Note that we used ∋ instead of =

to indicate that what is on the r.h.s. is a specific contribution to a given vertex, while the vertex

is a sum over all contributions with the same order of the arguments. The matrices PD for

the U - and V-vertices are constructed according to the boundary ordering of the corresponding

diagram from the P matrices(
0 0 p0,1 . . . p0,n+m

0 0 pb,1 . . . pb,n+m

)
and

(
0 0 pa,1 . . . pa,k+n+m p0,a

0 0 pb,1 . . . pb,k+n+m p0,b

)
,

respectively, and QD constructed from

Q = (q⃗a, q⃗b, q⃗1, . . . , q⃗N) ,

for N = n + m and N = k + n + m + 1, respectively. Notice that we provided two ways to

extract a U -vertex. Obviously, they should be identical, while at first sight they seem different.
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For instance, the matrix QD is constructed differently in both cases, as the arrow is placed in

a different position and therefore they have a different boundary ordering. However, if we find

two diagrams that produce the same U -vertex, while using the different methods, it is easy

to see that they are just the reversed versions of each other. After renaming b → a, we see

that the matrix PD only differs by swapping the rows. The Z2-transformation on the domain

allows one to exactly identify both realizations, as this is equivalent to swapping the rows in

PD and reversing the order of the entries in QD. However, when N = 1, there is no integration

domain and this identification fails. Therefore, the vertices U(a, α) and U(α, a) are in fact

different, see the examples below. This procedure of extracting vertices can also be represented

diagrammatically as in Figs. 5.5 and 5.6, where an element α or a, corresponding to the vertex

the arrow is attached to, is removed. We refer to this arrow as the output arrow, as it is now

related to the output variables p0 = y. Although not necessary for most considerations, we will

implicitly assume that the closure constraint is solved for the variables assigned to the output

arrow. Note that while SN is a scalar, the U - and V-vertices are valued in V ∗ and V [−1],

respectively.

Remark. The vertices have an interesting property. If we symmetrize the vertices, i.e. we

ignore additional tensor factors responsible for yA
′
-dependence and for matrix extensions, and

bring them to the same ordering, they satisfy∑
k+m+n=N

V(α1 . . . , αk, b, αk+1, . . . , αk+m, a, αk+m+1, . . . , αk+m+n) = 0 , for N ≥ 1 ,∑
m+n=N

U(α1 . . . , αm, b, αm+1, . . . , αm+n) = 0 , for N ≥ 2 ,

for λ = 0. Here, the sum is over all vertices that take the same total number of arguments. In

other words, if the pre-CY algebra of this section is A and B is any associative commutative

algebra then for λ = 0 the structure maps L∞-algebra obtained from A⊗ B all vanish, except

for V(ω, ω) and U(ω,C), which describe the free theory.

It is easy to see why this is the case for V-vertices: after symmetrizing, the expression for

zero cosmological constant changes only by a sign when flipping a red line from the northern

to the southern hemisphere and vice versa. As each red line connected to an element of V ∗ can

be flipped, there are as many positive as negative equal contributions, which proves the above

relation. Since the U -vertices can be derived from the V-vertices through (5.3.16) using the

cyclic property of S, the relation is easily seen to hold for them too.

Examples. Let us illustrate the general recipe above with a few examples. We start with

some lowest order vertices that will be used in Sec. 5.4.2 to prove the A∞-relations with zero
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or one α. Fig. 5.3 shows the disk diagrams contributing to the expressions

V(a, b) = exp[p0,a + p0,b + λpa,b] ,

U(b, α) = exp[p0,1 + pb,1 + λp0,b] ,

U(α, a) = − exp[pa,1 + p0,1 − λp0,a] .

(5.3.18)

In order to write these vertices as in (5.3.17), one associates to them the matrices

QD =

(
−1 0 1

0 −1 1

)
, PD =

(
0 0 p0,a

0 0 p0,b

)
,

QD =

(
0 1 −1

−1 1 0

)
, PD =

(
0 p0,1 0

0 pb,1 0

)
,

QD =

(
1 −1 0

1 0 −1

)
, PD =

(
pa,1 0 0

p0,1 0 0

)
,

respectively. The sign in the formula for U(α, a) consists of two factors: (−)m+n = −1, where

m = 1, n = 0, see the second line of (5.3.17); sD = 1, which is the number of red lines in the

southern semicircle (none).

a b

α

b a

α

Figure 5.3: Disk diagrams contributing to V(a, b), U(b, α) and U(α, a), from left to right.

The disk diagram relevant for the V-vertices at the next order are given in Fig. 5.4 and

correspond to the expressions

V(a, b, α) =
∫
V1

pa,b exp[u2p0,a + v2p0,b + u1pa,1 + v1pb,1 + λA1pa,b] ,

V(a, α, b) = −
∫
V1

pa,b exp[u2p0,a + v2p0,b + u1pa,1 + v1pb,1 + λA2pa,b]+

−
∫
V1

pa,b exp[u1p0,a + v1p0,b + u2pa,1 + v2pb,1 + λA3pa,b] ,

V(α, a, b) =
∫
V1

pa,b exp[u1p0,a + v1p0,b + u2pa,1 + v2pb,1 + λA4pa,b] ,

(5.3.19)
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with

A1 =1 + u1 + u2 − v1 − v2 + u1v2 − u2v1 , A2 =1− u1 + u2 − v1 − v2 + u1v2 − u2v1 ,

A3 =1 + u1 − u2 − v1 − v2 − u1v2 + u2v1 , A4 =1 + u1 − u2 − v1 + v2 − u1v2 + u2v1 .

To these vertices one associates the matrices

QD =

(
−1 0 u1 u2

0 −1 v1 v2

)
, PD =

(
0 0 pa,1 p0,a

0 0 pb,1 p0,b

)
,

QD =

(
−1 u1 0 u2

0 v1 −1 v2

)
, PD =

(
0 pa,1 0 p0,a

0 pb,1 0 p0,b

)
,

QD =

(
−1 u2 0 u1

0 v2 −1 v1

)
, PD =

(
0 pa,1 0 p0,a

0 pb,1 0 p0,b

)
,

QD =

(
u2 −1 0 u1

v2 0 −1 v1

)
, PD =

(
pa,1 0 0 p0,a

pb,1 0 0 p0,b

)
,

respectively. Here, the second and third line contribute to V(a, α, b). The integration domain,

V1, is the 2-simplex, which is described by

0 ≤ u1, u2, v1, v2 ≤ 1 , 0 ≤ u1
v1

≤ u2
v2

≤ ∞ , u1 + u2 = 1 = v1 + v2 .

The ‘hidden constraints’ are

0 ≤ u1 ≤ v1 ≤ 1 , 0 ≤ v2 ≤ u2 ≤ 1 (5.3.20)

and can be equivalently used to describe the domain V1.

a b

α

a b

α

a b

α

a b

α

Figure 5.4: Disk diagrams contributing to V(a, b, α), V(a, α, b) and V(α, a, b), from left to right.
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Figs. 5.5 and 5.6 show some more involved examples, yielding the expressions

U(α1, α2, b, α3, α4, α5) ∋
∫
V4

p40,b exp[Tr[PDQ
T
D] + λp0,b|QD|] ,

with

PD =

(
p0,1 p0,2 0 p0,3 p0,4 p0,5 0

pb,1 pb,2 0 pb,3 pb,4 pb,5 0

)
, QD =

(
u3 u1 0 u2 u4 u5 −1

v3 v1 −1 v2 v4 v5 0

)

and

V(α1, a, α2, α3, b, α4) ∋
∫
V4

p4a,b exp[Tr[PDQ
T
D] + λpa,b|QD|] ,

with

PD =

(
pa,1 0 pa,2 pa,3 0 pa,4 p0,a

pb,1 0 pb,2 pb,3 0 pb,4 p0,b

)
and QD =

(
u5 −1 u3 u1 0 u2 u4

v5 0 v3 v1 −1 v2 v4

)
.

The integration domain V4 is described by

0 ≤ ui, vi ≤ 1 , 0 ≤ u1
v1

≤ u2
v2

≤ u3
v3

≤ u4
v4

≤ 1 ,
4∑

i=1

ui =
4∑

i=1

vi = 1 .

⇒ U(α1, α2, b, α3, α4, α5)

α5

α4 α3

α2

α1

b

Figure 5.5: A disk diagram that contributes to U .

A more general formality? The above construction of interaction vertices is a piece of

clear evidence that (Shoikhet–Tsygan–)Kontsevich’s formality can be extended further. We

could only see a small piece of this hypothetical extension because our Poisson structure ϵAB is

constant, nondegenerate and two-dimensional. Therefore, genuine bulk vertices of Kontsevich-

like graphs are absent and all vertices have legs on the boundary. In addition, the graphs can be

resumed into simple exp-like generating functions V and U defined above. A generic A∞-map
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a

b

α1

α4

α3α2

⇒ V(α1, a, α2, α3, b, α4)

Figure 5.6: A disk diagram for V .

mn, i.e. V or U , can be Taylor-expanded to reveal

mn(f1, . . . , fn) =
∑
Γ

wΓWΓ(f1 ⊗ · · · ⊗ fn) , fi ∈ W , (5.3.21)

where the sum is over certain graphs Γ, wΓ are weights associated to Γ and WΓ are certain

poly-differential operators (Taylor coefficients of various ID, (5.3.13)). Similar to the Moyal–

Weyl case, the graphs Γ are built from simple ’wedges’ that represent p•,•, see Fig. 5.7. What

∂D
α3α2α1ba

pa,3 pb,3

pa,b

Figure 5.7: A typical Kontsevich-like graph contributing to S(a, b, α1, α2, α3). D is the upper
half-plane and ∂D is its boundary.

is different from the Moyal–Weyl case are the weights that are given by the integrals over the

configuration space of concave polygons. The integrands are polynomials in ui and vi. Also,

there are no contractions between α’s.

5.4 A proof via Stokes’ theorem

With the tools introduced in the previous section, the master equation (5.2.7) can be depicted

as in Fig. 5.8. Here, the blue (red) vertices represent the blue (red) lines from the previous

diagrams. The summation symbol accounts for collecting contributions from cyclic permuta-

tions of both disk diagrams, where we only allow a red and blue vertex to be connected to each

other by the arrow between the disks. It also sums over the number of elements of red vertices

in the disk diagrams. The master equation [S, S] = 0 looks as Fig. 5.8 and
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[S, S] = 0 ⇔ Σ Un Vm = 0

Figure 5.8: Graphical representation for the master equation.

[S, S](a, . . . , b, . . . , c, . . .) =
∑

±S(. . . ,U , . . .)± S(. . . ,V , . . .) . (5.4.1)

Using the natural pairing (5.3.15), one can extract the A∞-relations that describe Chiral HiS-

GRA as

[S, S](w, . . .) = ⟨w, J(. . .)⟩ = 0 ⇒ J(. . .) = 0 . (5.4.2)

Choosing w to be an element of V , we get an infinite set of A∞-relations of the form:

JN+3(•, . . . , •, a, •, . . . , •, b, •, . . . , •, c, •, . . . , •) =

=
∑

V(•, . . . , •,V(•, . . . , •, a, •, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •)+

−
∑

V(•, . . . , •, a, •, . . . , •,V(•, . . . , •, b, •, . . . , •, c, •, . . . , •), •, . . . , •)+

+
∑

V(•, . . . , •,U(•, . . . , •, a, •, . . . , •), •, . . . , •, b, •, . . . , •, c, •, . . . , •)+

−
∑

V(•, . . . , •, a, •, . . . , •,U(•, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •)+

+
∑

V(•, . . . , •, a, •, . . . , •, b, •, . . . , •,U(•, . . . , •, c, •, . . . , •), •, . . . , •) = 0 .

(5.4.3)

Here a, b, c ∈ V [−1] and bullets stand for N elements αi ∈ V ∗. The summations are over

all possible combinations of vertices in each term, i.e., all ordered distributions of the α’s in

the arguments and contributions from all corresponding disk diagrams. A single A∞-relation

consists of all terms with the same number of elements α before, between and behind a, b, c,

i.e., with the same ordering and same total number of the α’s, N . For w ∈ V [−1], the same

Eq. (5.4.2) yields one more set of A∞-relations:

JN+2(•, . . . , •, a, •, . . . , •, b, •, . . . , •) =

=
∑

U(•, . . . , •,U(•, . . . , •, a, •, . . . , •), •, . . . , •, b, •, . . . , •)+

+
∑

U(•, . . . , •,V(•, . . . , •, a, •, . . . , •, b, •, . . . , •), •, . . . , •)+

+
∑

U(•, . . . , •, a, •, . . . , •,U(•, . . . , •, b, •, . . . , •), •, . . . , •) = 0 .

(5.4.4)

The A∞-relations for V-vertices (5.4.3) will be proven via Stokes’ theorem in the next section,

which also implies the A∞-relations for the U -vertices (5.4.4) through the master equation

(5.4.1). Therefore, we will only focus on the former from now on. The proof will follow the
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scheme

0 =
∑∫

Wk,l,m,n

dΩa
k,l,m,n(y) + dΩc

k,l,m,n(y) =
∑∫

∂Wk,l,m,n

Ωa
k,l,m,n(y) + Ωc

k,l,m,n(y)

⇕
A∞-relations

(5.4.5)

where k+m+l+n = N . Ωa
k,l,m,n(y) and Ωc

k,l,m,n(y) are closed differential forms, called potentials,

with values in multilinear maps

Ωa,c
k,l,m,n(y) : T

kV ∗ ⊗ V [−1]⊗ T lV ∗ ⊗ V [−1]⊗ TmV ∗ ⊗ V [−1]⊗ T nV ∗ → V [−1] .

In what follows, we will suppress the y-dependence of the potentials. Similar to the A∞-relation,

the summation in (5.4.5) is over the total number of elements of V ∗ and ways of distributing

them, as we will see shortly. Apart from the potentials Ωa
k,l,m,n and Ωc

k,l,m,n, we must consider

bounded domains Wk,l,m,n ⊂ R2N+1 with dim(Wk,l,m,n) = 2N + 1. In Sec. 5.4.1, we will

explain how the potentials and domains can be constructed from disk diagrams and how to

evaluate the potentials on the boundary of the domains. We will also present expressions and

disk diagrams for the A∞-relations. A couple of lowest order examples of (5.4.5) follow in Sec.

5.4.2, while in Sec. 5.4.3 we provide a proof for all orders in a particular ordering, the what is

called left-ordered case. Left-ordered means that the arguments, e.g. in a disk diagram or in

an A∞-relation are ordered as a, b, c, α1, . . . , αN , a, b, c ∈ V [−1], αi ∈ V ∗. Sec. 5.4.4 contains

the proof for a generic ordering.

The idea of the proof follows the formality theorems: since the potentials Ω are closed forms,

the l.h.s. of (5.4.5) obviously vanishes. At the same time, the r.h.s. of (5.4.5) is given by the

sum of potentials evaluated at the boundaries of Wk,l,m,n. Domain Wk,l,m,n and potentials Ω

are carefully designed in such a way that this sum gives the A∞-terms plus certain other terms

that vanish by themselves. The genuine A∞-terms contain vertices nested into each other.

Therefore, some boundaries of Wk,l,m,n reduce to the products of two configuration spaces that

define vertices and Ω evaluated on such boundaries give exactly the nested vertices.

5.4.1 Recipe

The data Ωa
k,l,m,n, Ω

c
k,l,m,n, and Wk,l,m,n, entering (5.4.5), can all be encoded by disk diagrams

decorated by the variables ui, vi, and wi that coordinatize Wk,l,m,n. To understand these disk

diagrams and their properties, let us first consider disk diagrams for the scalars

⟨Ωa
k,l,m,n, αk+1⟩ and ⟨Ωc

k,l,m,n, γm+1⟩ , (5.4.6)

with αk+1, γm+1 ∈ V ∗ and the natural pairing defined in (5.3.15). From here the disk diagrams

for the potentials can be extracted in a similar fashion as before. These disk diagrams are

constructed as follows:
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• Consider a circle. The interior will be referred to as the bulk and the circle as the boundary.

• Choose three distinct points on the boundary and label them a, b, c counterclockwise.

Consider the point at the center of the bulk, now called junction, and connect this to

each of the points a, b, c. These points correspond to elements of V [−1]. The lines are

called a-leg, b-leg and c-leg, correspondingly.

• Draw any number of lines connecting these legs to the boundary at either side of the

legs. Lines are not allowed to intersect. Their endpoints at the boundary correspond to

elements of V ∗.

• Connect an arrow to one of the vertices on the boundary of the disk between a and c,

pointing away from the disk, i.e. there has to be one marked point on the boundary. If

the arrow is connected to a vertex connected to the a-leg by a red line, the potential that

can be extracted using (5.4.6) is Ωa
k,l,m,n, while Ω

c
k,l,m,n can be found when it is connected

to the c-leg.

• Label the points at the boundary that are connected to red lines αi, βi, γi, δi if the lines

emanate from the a-leg, b-leg, c-leg or are in between the red line connected to the arrow

and the junction, respectively, and i increases from the boundary to the junction. This

way if the arrow is attached to an argument belonging to the a-leg, the arguments after

the arrow are labelled δi and those in between a and including the arrow are named

αi. The subscripts k, l,m, n on the potentials count the number of points with labels

αi, βi, γi, δi, respectively, disregarding the label associated with the arrow.

• The diagram must contain at least one element of V ∗, connected to the piece of the

boundary between a and c, which can be attached to either the a-leg or the c-leg. If the

diagram contains more than one element of V ∗, they have to be attached to at least two

different legs.

a c

b

δ1
γ3

γ1

γ2

β1

α1

β2

α2

a

c

b

α1

δ1

γ1

γ2

β1α1

β2

α3

Figure 5.9: The disk diagrams for ⟨Ωa
1,2,3,1(a, α1, δ1, β2, b, β1, γ3, γ1, c, γ2), α2⟩ and

⟨Ωc
3,2,1,1(α3, α1, a, α2, β2, b, β1, δ1, γ1, c), γ2⟩ on the left and right, respectively.

Fig. 5.9 shows two examples of such disk diagrams. The disk diagrams corresponding to the

potentials Ωa
k,l,m,n and Ωc

k,l,m,n are now obtained by removing the element αk+1 or γm+1 in
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(5.4.6). This is visualized in the disk diagrams by removing the corresponding label, see Fig.

5.10.

The arrow also induces an ordering on the elements of W , which is counterclockwise around

the circle starting from to the left of the arrow. Again, we will refer to this as the bound-

ary ordering. The potentials Ωa,c
k,l,m,n are poly-differential operators acting on elements of W .

These should be read off according to the boundary ordering. Moreover, the elements of

W are generated by the yi’s. For a, b, c we write ya, yb, yc, respectively and for elements of

V ∗ they are just yi with i = 1, . . . , N , assigned counterclockwise. Lastly, while it is cum-

bersome to specify the ordering of the elements of W for generic potentials Ωa,c
k,l,m,n, we do

specify the ordering with respect to the boundary ordering when we consider a particular po-

tential. For general potentials we prefer to use canonical ordering, see below. The examples

in Fig. 5.10 correspond to poly-differential operators Ωa
1,2,3,1(a, α1, δ1, β2, b, β1, γ3, γ1, c, γ2) and

Ωc
3,2,1,1(α3, α1, a, α2, β2, b, β1, δ1, γ1, c) acting on

a(ya)α1(y1)δ1(y2)β2(y3)b(yb)β1(y4)γ3(y5)γ1(y6)c(yc)γ2(y7)|y•=0 ,

α3(y1)α1(y2)a(ya)α2(y3)β2(y4)b(yb)β1(y5)δ1(y6)γ1(y7)c(yc)|y•=0

for the left and right disk diagrams, respectively. The A∞-relations also consist of poly-

differential operators acting on elements of W . The names and labels we assigned to elements

of V ∗ here are not the same as for the A∞-terms. This was done simply because it will be

useful to keep track of what leg an element is attached to in the potentials. To relate the po-

tentials to A∞-terms, one should rename and relabel the elements of V ∗ accordingly. We now

claim that an A∞-relation of a particular ordering can be rewritten as (5.4.5) by considering

contributions from all potentials of the same ordering, i.e. the same number of elements of V ∗

before, between and after a, b, c. Therefore, we will no longer write the elements of W as part

of the expressions; they will be implied.

The procedure laid out in this section leads to two different types of disk diagrams: the

arrow can be attached to the a-leg or c-leg, given rise to the disk diagrams for Ωa
k,l,m,n or Ωc

k,l,m,n,

respectively, and we refer to the diagrams as a-diagrams and c-diagrams. It is easy to see that

following an a-diagram in the opposite boundary ordering, i.e. clockwise, and relabeling a↔ c

yields a c-diagram. We may write

Ωa
k,l,m,n ↔ Ωc

m,l,k,n , with a↔ c (5.4.7)

and consequently, the potential Ωc
m,l,k,n is accompanied by the same integration domain Wk,l,m,n

as Ωa
k,l,m,n. A proper relabeling of the elements of V ∗ according to which leg they are attached

is also implied. Due to this relation between the diagrams, it will be possible to extract c-

diagrams from a-diagrams and therefore we will focus mainly on the latter in the remainder of

the text. We will make the above transformation more concrete, when we have all the necessary

tools.

We will sometimes refer a special class of potentials as left/right-ordered. These are the



146 CHAPTER 5. A∞-RELATIONS FROM STOKES’ THEOREM

a c

b

δ1
γ3

γ1

γ2

β1

α1

β2

a

c

b

α1

γ3

γ1

β1α2

β2

α3

Figure 5.10: On the left a disk diagrams corresponding to Ωa
1,2,3,1(a, α1, δ1, β2, b, β1, γ3, γ1, c, γ2)

and on the right a disk diagram corresponding to Ωc
3,2,1,1(α3, α1, a, α2, β2, b, β1, δ1, γ1, c).

a

b

c a

b

c a

b

c

Figure 5.11: Paths 1 - 3 from left to right, leading to the time ordering of times tuvi , tuwi and
tvwi , respectively.

potentials with all elements of V [−1] appearing before/after the elements of V ∗ and they are

given by Ωa
0,0,m,n and Ωc

k,0,0,n with the appropriate ordering, respectively. (5.4.5) relates these

potentials to left/right ordered A∞-terms, which are similarly defined as A∞-terms with all

elements of V [−1] appearing before/after the elements of V ∗.

Domain. When k + l +m + n = N > 0, the domain Wk,l,m,n ⊂ R2N+1 can be read off from

the disk diagrams, e.g. Fig. 5.10. For this purpose, one assigns a vector of variables q⃗a,i =

(uai , v
a
i , w

a
i ), q⃗b,i = (ubi , v

b
i , w

b
i ) and q⃗c,i = (uci , v

c
i , w

c
i ) to the red lines connected to the a-, b- and

c-leg, respectively, and to the arrow, with i increasing from boundary to junction. Additionally,

we assign vectors q⃗a = (−1, 0, 0), q⃗b = (0,−1, 0), q⃗c = (0, 0,−1) to a, b, c accordingly. Then

one introduces the times tuvi = u•i /v
•
i , t

uw
i = u•i /w

•
i and tvwi = v•i /w

•
i and imposes chronological

orderings along three different paths in the bulk to formulate the domain.

• Path 1: one starts at b and moves to c and then from c to a. This imposes a chronological

ordering on the times tuvi .

• Path 2: one starts at c and moves to b and then from b to a. This imposes a chronological

ordering on the times tuwi .

• Path 3: one starts at c and moves to a and then from a to b. This imposes a chronological

ordering on the times tvwi .
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As an additional condition, all u-, v- and w-variables take values between 0 and 1. The

domain Wk,l,m,n is then described by

0 ≤u•i , v•i , w•i ≤ 1 ,
∑

(u•i , v
•
i , w

•
i ) = (1, 1, 1) ,

vai
wa

i

wb
i

ubi

uci
vci

= 1 ,

0 ≤u
b
1

vb1
≤ · · · ≤ ubl

vbl
≤ ucm
vcm

= · · · = uc1
vc1

≤
uak+n+1

vak+n+1

≤ · · · ≤ ua1
va1

≤ ∞ ,

0 ≤ uc1
wc

1

≤ · · · ≤ ucm
wc

m

≤ ubl
wb

l

= · · · = ub1
wb

1

≤
uak+n+1

wa
k+n+1

≤ · · · ≤ ua1
wa

1

≤ ∞ ,

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

≤ ∞ .

(5.4.8)

Note that the paths described above run over some legs twice. This leads to the equalities in

(5.4.8), since for example

ucm
vcm

≤ · · · ≤ uc1
vc1

≤ uc1
vc1

≤ · · · ≤ ucm
vcm

⇒ ucm
vcm

= · · · = uc1
vc1
.

The second equation in the first line of (5.4.8) is called the closure constraint and explicitly it

reads

k+n+1∑
i=1

q⃗a,i +
l∑

i=1

q⃗b,i +
m∑
i=1

q⃗c,i + q⃗a + q⃗b + q⃗c = (0, 0, 0) .

This condition allows one to solve for one vector q⃗•,i in terms of the other vectors. The third

equation in the first line deserves some further explanation. To the equalities in the chains of

(in)equalities one can ascribe

α =
uci
vci
,

1

β
=
vai
wa

i

, γ =
ubi
wb

i

.

The vectors q⃗a,i, q⃗b,i, q⃗c,i ∈ R3 are then restricted to planes characterized by α, 1
β
, γ, as for

example one may write q⃗c,i = (αvci , v
c
i , w

c
i ) for i = 1, . . . ,m. The constraint in (5.4.8) tells us

that the planes are related by

γ =
α

β
. (5.4.9)

However, this relation is only valid when m, l, k + n ̸= 0. Otherwise, α, β, γ are independent.

In practice, we will have

α =
uc1
vc1
, β =

1−
∑l

i=1w
b
i −

∑m
i=1w

c
i

1−
∑l

i=1 v
b
i −

∑m
i=1 v

c
i

, γ =
ub1
wb

1

.
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The second relation is obtained from the closure constraint for the v and w coordinates:

∑
v•i = 1 ⇒

k+n+1∑
i=1

vai = 1−
l∑

i=1

vbi −
m∑
i=1

vci ,

k+n+1∑
i=1

βvai +
l∑

i=1

wb
i +

m∑
i=1

wc
i = 1 ⇒ β =

1−
∑l

i=1w
b
i −

∑m
i=1w

c
i∑k+n+1

i=1 vai
=

1−
∑l

i=1w
b
i −

∑m
i=1w

c
i

1−
∑l

i=1 v
b
i −

∑m
i=1 v

c
i

.

The domain (5.4.8) contains a couple of ‘hidden’ constraints on the variables. To illustrate

this, suppose ub1/v
b
1 > 1 and consider the first chain of (in)equalities, the uv-chain. This implies

that u•i > v•i . Then, the closure constraint requires
∑
v•i = 1 and we find

∑
u•i > 1, so the

closure constraint cannot be satisfied for the u-variables. The same logic applied to the start

and to the end of all three chains of (in)equalities leads to the additional constraints

0 ≤ub1 ≤ vb1 ≤ 1 , 0 ≤ uc1 ≤ wc
1 ≤ 1 , 0 ≤ vc1 ≤ wc

1 ≤ 1 ,

0 ≤va1 ≤ ua1 ≤ 1 , 0 ≤ wa
1 ≤ ua1 ≤ 1 , 0 ≤ wb

1 ≤ vb1 ≤ 1 .
(5.4.10)

However, one must be careful, as the domain changes significantly whenever l = 0, in which

case the first and last inequality are replaced by

0 ≤uc1 ≤ vc1 ≤ 1 , 0 ≤ wa
1 ≤ va1 ≤ 1 ,

where in the latter we had some freedom to choose in which variables we express the inequalities.

It turns out that the domain takes this form for left/right ordered A∞-relations, although not

exclusively for this class. Since the start and end of the chains of (in)equalities yields constraints,

the domain also takes a different form whenm = 0, in which case the second and third inequality

in (5.4.10) are replaced by

0 ≤ubl ≤ wb
l ≤ 1 , 0 ≤ vak+n+1 ≤ wa

k+n+1 ≤ 1 . (5.4.11)

In the special case N = 0, the disk diagrams corresponding to Ωa,c
0,0,0,0(a, b, c) contain no

elements of V ∗ and the above prescription for the domain breaks down. We manually define

the domain W0,0,0,0 ⊂ R to be described by

0 ≤ t ≤ 1 .

Furthermore, we note that the integration domain has a Z2-symmetry under swapping the

v and w variables together with the labels b and c on all variables. Graphically, this means

that swapping the b- and c-leg, together with all the lines attached to them, and renaming

the elements, again yields a disk diagram to which a domain can be ascribed. This relates

integration domains Wk,l,m,n and Wk,m,l,n by a coordinate transformation.

A quick check shows that dim(Wk,l,m,n) = 2N + 1. The domain is described in (5.4.8) by

a total of 3N + 3 coordinates. Not all coordinates are independent, as the description consists
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of some equalities; the chains of (in)equalities contain in total N − 2 equalities, the closure

constraint subtracts 3 variables and, lastly, (5.4.9) adds 1 more equality, which justifies the

dimension. In case m = 0 or l = 0, the chains of (in)equalities yield N − 1 equalities, the

closure constraint adds 3 and (5.4.9) is absent and again the right dimension is found. As

the last remark, we note that the integration domain has a nice visual representation in the

left-ordered case. This will be explained in Sec. 5.4.3.

Potential. The potentials Ωa,c
k,l,m,n are most conveniently defined through a slight detour. It

is natural to define them first on a higher dimensional space and then get the actual potentials

upon restricting them to Wk,l,m,n. Let us first focus on the potentials Ωa
k,l,m,n. Consider a

subspace UN ⊂ R3N that is defined by

0 ≤ ui, vi, wi ≤ 1 ,
N+1∑
i=1

(ui, vi, wi) = (1, 1, 1) . (5.4.12)

In principle, any subspace that contains all Wk,l,m,n with dimension 2N + 1 fixed would work.

We define the potential Ωa
N on UN by

Ωa
N = µID ,

where µ is the measure and ID is the integrand. The measure reads

µ =µ1 ∧ · · · ∧ µN ,

µi =pa,bdui ∧ dvi + pa,cdui ∧ dwi + pb,cdvi ∧ dwi ,
(5.4.13)

and the integrand is given by

ID = sD exp[Tr[PDQ
T
D] + λ(pa,b|Q12

D |+ pa,c|Q13
D |+ pb,c|Q23

D |)] . (5.4.14)

Here, sD is a sign that will be discussed at the end of this section. The matrix QD is an array

filled with the q-vectors according to the boundary ordering of the disk diagram. For example,

the matrix QD corresponding to the left disk diagram in Fig. 5.10 reads

QD =(q⃗a, q⃗8, q⃗6, q⃗5, q⃗b, q⃗4, q⃗3, q⃗1, q⃗c, q⃗2, q⃗7) .
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|Qij
D| denotes the sum of all 2× 2 minors composed of the i-th and j-th row of the matrix QD.

A more explicit expression yields

|Q12
D | = 1 +

N+1∑
i=1

(σb,iui − σa,ivi +
N+1∑
j=1

σi,juivj) ,

|Q13
D | = 1 +

N+1∑
i=1

(σc,iui − σa,iwi +
N+1∑
j=1

σi,juiwj) ,

|Q23
D | = 1 +

N+1∑
i=1

(σc,ivi − σb,iwi +
N+1∑
j=1

σi,jviwj) .

(5.4.15)

Here, σI,J = +1 when the J-th element of W appears before the I-th element in the boundary

ordering and σI,J = −1 otherwise, for I, J ∈ {a, b, c, 1, . . . , N + 1}. The matrix PD is an array

composed of the r-vectors in the following manner: going around the circle counterclockwise,

starting to the left of the arrow, one fills PD with r⃗i for every element of V ∗ or the arrow, with

i increasing counterclockwise, or with r⃗a = (−1, 0, 0), r⃗b = (0,−1, 0), r⃗c = (0, 0,−1) for the

corresponding element of V [−1]. For example, the matrix PD corresponding to the left diagram

in Fig. 5.10 reads

PD =(r⃗a, r⃗1, r⃗2, r⃗3, r⃗b, r⃗4, r⃗5, r⃗6, r⃗c, r⃗7, r⃗8) .

We will often present a matrix Q when considering potentials with an unspecified ordering. We

say that the entries of the matrix Q are in the canonical ordering. This means that the first

three entries are the vectors q⃗a, q⃗b, q⃗c, and then we insert the vectors q⃗i in the order visualized

in Fig. 5.12. The matrix reads

Q =(q⃗a, q⃗b, q⃗c, q⃗1, . . . , q⃗N) .

This canonical ordering has the advantage to reduce to the matrix QD for D being a left ordered

disk diagram with k = l = 0. From Q any matrix QD may be constructed when the ordering

is specified.

The potential Ωa
k,l,m,n is now found by restricting Ωa

N to Wk,l,m,n ⊆ UN , i.e.,

Ωa
k,l,m,n = Ωa

N

∣∣∣
Wk,l,m,n

.

Explicitly, this is achieved by renaming

u1, . . . , um → uc1, . . . , u
c
m , um+1, . . . , um+l → ubl , . . . , u

b
1 ,

um+l+1, . . . , uk+l+m+n+1 → uak+n+1, . . . , u
a
1 ,
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a

b

c a

b

c

Figure 5.12: Canonical ordering for a potentials Ωa
k,l,m,n and Ωc

k,l,m,n on the left and right,
respectively.

and similarly for the v- and w-coordinates, and setting

uc1
vc1

= · · · = ucm
vcm

= α ,
ub1
wb

1

= · · · = ubl
wb

l

= γ ,

va1
wa

1

= · · · =
vak+n+1

wa
k+n+1

=
1

β
.

(5.4.16)

Thus, for a potential Ωa
k,l,m,n the matrix Q reads

Q =(q⃗a, q⃗b, q⃗c, q⃗c,1, . . . , q⃗c,m, q⃗b,l, . . . , q⃗b,1, q⃗a,k+n+1, . . . , q⃗a,1) ,

with the variables satisfying (5.4.16). As an example, the left diagram in Fig. 5.10 yields a

potential described by the matrix

QD =(q⃗a, q⃗a,1, q⃗a,3, q⃗b,2, q⃗b, q⃗b,1, q⃗c,3, q⃗c,1, q⃗c, q⃗c,2, q⃗a,2) ,

again with variables satisfying (5.4.16). Using (5.4.15) and the anti-symmetric property

σi,j = −σj,i ,

together with the closure constraint and the Fierz identity, the potential Ωa
N can easily be

shown to be closed on UN , thus Ω
a
k,l,m,n is automatically closed too:

dΩa
N = 0 =⇒ dΩa

k,l,m,n = 0 , dΩc
k,l,m,n = 0 . (5.4.17)

As was briefly mentioned in (5.4.7), one can extract Ωc
m,l,k,n from Ωa

k,l,m,n by reversing the

boundary ordering and swapping a ↔ c on a disk diagram that is associated to Ωa
k,l,m,n. The

latter implies that one has to swap pa ↔ pc and q⃗a ↔ q⃗c too. Reversing the boundary ordering

negates the effect of swapping q⃗a and q⃗c, while swapping pa and pc can be replaced by swapping

the u and w coordinates. This tells us all we need to know to construct potentials Ωc
m,l,k,n from
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their disk diagrams: the only difference is that the vectors

q⃗a,i → q⃗
′

c,i = (wc
i , v

c
i , u

c
i) , q⃗b,i → q⃗

′

b,i = (wb
i , v

b
i , u

b
i) , q⃗c,i → q⃗

′

a,i = (wa
i , v

a
i , u

a
i )

and that the canonical ordering for the matrix Q is reversed, as can be seen in Fig. 5.12, but

we keep q⃗a, q⃗b, q⃗c as its first entries. Thus, for Ω
c
m,l,k,n the matrix reads

Q′ =(q⃗a, q⃗b, q⃗c, q⃗
′

c,1, . . . , q⃗
′

c,m, q⃗
′

b,l, . . . , q⃗
′

b,1, q⃗
′

a,k+n+1, . . . , q⃗
′

a,1, ) (5.4.18)

and the matrix Q′D for the right disk diagram in Fig. 5.10 is

Q′D = (q⃗
′

c,3, q⃗
′

c,1, q⃗a, q⃗
′

c,2, q⃗
′

b,2, q⃗b, q⃗
′

b,1, q⃗
′

a,3, q⃗
′

a,1, q⃗c, q⃗
′

a,2) .

Then, the expression for the potentials Ωc
N becomes

Ωc
N = µ′I ′D ,

with

µ′ =µ′1 ∧ · · · ∧ µ′N ,
µ′i =pb,cdui ∧ dvi + pa,cdui ∧ dwi + pa,bdvi ∧ dwi ,

and

I ′D = s′D exp[Tr[PDQ
′T
D ] + λ(pa,b|Q′ 12D |+ pa,c|Q′ 13D |+ pb,c|Q′ 23D |)] . (5.4.19)

One obtains a potential Ωc
m,l,k,n through

Ωc
m,l,k,n = Ωc

N |Wk,l,m,n
.

Signs. The signs sD and s′D in the expression for the potentials (5.4.14) and (5.4.19) are

determined by the orientations of the red lines, like for the vertices, where we counted the

number of red lines in the southern semicircle. Here the counting rule is a bit more involved:

for potentials Ωa
k,l,m,n, one sums the number of red lines attached to b- and c-leg in the clockwise

direction and to the a-leg in the anticlockwise direction, see Fig. 5.13. For potentials Ωc
k,l,m,n

this is mirrored. We call the sum M and the sign is

sD = (−1)M and s′D = (−1)M+1

for the potentials Ωa
k,l,m,n and Ωc

k,l,m,n, respectively. Note that throughout the text the red lines

of diagrams are not always drawn precisely in the shaded regions as in Fig. 5.13 for the sake

of convenience, but it should be clear from the context which region they belong to. To avoid

cluttering the text with minus signs, we will discuss the proof of the A∞-relations up to a sign.
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a c

b

a c

b

Figure 5.13: The sign sD of Ωa
k,l,m,n and Ωc

k,l,m,n is determined by the number of red lines in the
shaded regions in the left and right diagram, respectively.

However, with the conventions discussed here, (5.4.5) yields the correct signs.

Boundaries. Stokes’ theorem requires one to evaluate the potentials at the codimension-one

boundary (just the boundary) of the domain Wk,l,m,n. This boundary, ∂Wk,l,m,n is the union

of many boundary components Pi, i.e., ∂Wk,l,m,n = ∪iPi. Each Pi is obtained by saturating an

inequality in (5.4.8)-(5.4.11). However, sometimes saturating an inequality results in a higher

codimension component. By abuse of nomenclature we also refer to these as boundaries and

include them into the set of Pi. Each boundary may have interesting characteristics, together

with the potential evaluated on the boundary. In the subsequent section, we will categorize the

various types of boundaries. They belong to the following classes:

• At some boundaries one finds, after a change of variables, A∞-terms contributing to the

proof of (5.4.5). The change of variables is necessary to recognize the vertices as described

in Section 5.3.

• The potentials may also yield nonzero results at certain boundaries, without contributing

to A∞-relations. Fortunately, this does not spoil the proof, as these terms always come in

pairs and consequently cancel each other. The pairs are always formed by terms arising

from different potentials and the terms are therefore called gluing terms as they ‘glue’

together different potentials.

• Since potentials are differential forms, they consist of a measure and an integrand. When

the measure evaluates to zero at a boundary, we refer to this as a zero measure term.

• As mentioned above, we describe boundaries of Wk,l,m,n simply by saturating inequalities

in (5.4.8). However, this will sometimes give rise to a higher codimension boundary, as

saturating one inequality requires other inequalities to be saturated at the same time.

This yields a boundary that is parameterized by less than 2N variables. As Stokes’

theorem only requires codimension-one boundaries, higher codimension boundaries do

not contribute to the proof.
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γ1

β1α2
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α3
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Figure 5.14: Disk diagrams that show which line segments correspond to boundaries that
yield non-zero expressions for potentials of the type Ωa

k,l,m,n and Ωc
k,l,m,n on the left and right,

respectively. The diagrams also show the signs that the boundaries are accompanied with.

So far we have established a visual representation for the potentials and their corresponding

domains through disk diagrams. With some amount of hindsight, we will provide a way to

visualize the evaluation of the potentials on the boundaries throughout the later sections. It is

known from earlier work [228] that a parameter is associated with all line segments in the disk

diagrams, except the line connected to the arrow and the segments of the legs that are directly

connected to the points a, b, c. These parameters are coordinates of a hypercube and are related

to the u, v, w coordinatizing Wk,l,m,n by a smooth coordinate transformation. In fact, Wk,l,m,n

is a subspace of the hypercube. We will not use the exact coordinate transformations. Still, we

borrow this knowledge to realize that evaluating potentials at a boundary of Wk,l,m,n coincides

with evaluating them at the upper and lower bound of these parameters. We will visualize this

by drawing a green/red region on the line under evaluation for the upper/lower bound.

The final result is easy to formulate. Fig. 5.14 shows on which lines in disk diagrams

a boundary leads to a non-vanishing expression. These are the line segments connected to

the junction and the bulk-to-boundary lines closest to the junction on the legs that are not

connected to output arrow. The color of the line refers to type of boundary that yields this

result and each line is accompanied by a sign that should be taken into account when considering

the boundary. Throughout the following sections, we will show how these disk diagrams can

be understood as A∞-terms or other terms.

Let us note that the pictures below are to display which part of the analytical expression for

potential Ω is being affected by evaluating it at a certain boundary, i.e. the pictures are only

to help visualize certain analytical manipulations. Given a disk diagram, there are, roughly

speaking, two boundaries per each line.

A∞-terms. So far we have sketched the picture of how to employ Stokes’ theorem to prove

the A∞-relations. It only remains to provide a recipe for constructing the A∞-terms. As can

be seen from (5.4.3), the A∞-terms are nested vertices, so they can be visualized using the disk

diagrams for vertices introduced in section 5.3. Examples of the different types of A∞-terms

found in (5.4.3) are given in Fig. 5.16. Here we visualize the nesting of vertices by inserting
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a

b

α1

α2

α3

c

α4

α5

Figure 5.15: The nested boundary ordering for the diagram corresponding to the A∞-term
V(V(α1, a, α2, α3, b), α4, c, α5). One follows the arrow, starting from the ouput arrow. When
the nesting arrow is reached, one follows the arrows around the nested vertex and when the
nesting arrow is reached again, the path around the outer disk diagram is continued.

one vertex into the other through a nesting arrow.

To relate an expression with a nested disk diagram, one assigns vectors q⃗a = (−1, 0, 0), q⃗b =

(0,−1, 0), q⃗c = (0, 0,−1) to a, b, c ∈ V [−1], q⃗ 1
i = (u1i , v

1
i , w

1
i ) to αi ∈ V ∗ in the inner vertex and

q⃗ 2
i = (u2i , v

2
i , w

2
i ) to αj ∈ V ∗ in the outer vertex and to the output arrow according to the bulk

ordering for the two vertices separately, as was explained in section 5.3. For the moment, we

leave the values of these vectors undefined. One also assigns vectors r⃗a = r⃗b = r⃗c = (0, 0, 0)

to the elements a, b, c and r⃗i = (pa,i, pb,i, pc,i) to αi ∈ V ∗ and to the output arrow. This is

done according to the nested boundary ordering, just like the labeling of the α’s. This ordering

starts to the left of the output arrow, follows around the circle counterclockwise until it hits

the nesting arrow. It then follows the nested circle counterclockwise, after which it completes

the counterclockwise path around the outer circle, see Fig. 5.15 for an example. We then

construct the 3× (N +4) matrices QD and PD by filling it up with the vectors q- and r-vectors,

respectively, according to the nested boundary ordering. Like before, for the matrix PD this

means that one enters the vectors r⃗i in increasing order, while one inserts r⃗a, r⃗b, r⃗c for the

elements a, b, c, respectively.

To determine the vectors q⃗ 1
i and q⃗ 2

i , let us demonstrate how to insert vertices into each

other at the level of expressions. Remember that V(•, . . . , •, a, •, . . . , •, b, •, . . . , •) ∈ V [−1] and

U(•, . . . , •, a, •, . . . , •) ∈ V ∗. This means that an element of V [−1] or V ∗ can be replaced by a

V- or U -vertex. For example, one can use the vertices in (5.3.18) and (5.3.19) to compute

V(V(a, b), c) = exp[p0,d + p0,c + λpd,c] exp[ydpa + ydpb + λpa,b] =

= exp[p0,a + p0,b + p0,c + λ(pa,b + pa,c + pb,c)]

and (here and below, yd is an auxiliary variable to deal with the insertion of one vertex into
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another one, which is set to zero in the end)

V(a,V(b, c, α1), α2) =

∫
V1

pa,d exp[u
2
2p0,a + v22p0,d + u21pa,2 + v21pd,2 + λpa,dA2]×

×
∫
V1

pb,c exp[u
1
2ydpb + v12ydpc + u11pb,1 + v11pc,1 + λpb,cA1] =

=

∫
V1

∫
V1

(u12pa,b + v12pa,c)pb,c exp[u
2
2p0,a + v22u

1
2p0,b + v22v

1
2p0,c + u21pa,2+

+ u11pb,1 + u12v
2
1pb,2 + v11pc,1 + v12v

2
1pc,2 + λ(u12A2pa,b + v12A2pa,c + A1pb,c)] ,

with Ai = 1+ui1+u
i
2− vi1− vi2+u

i
1v

i
2−ui2v

i
1. The five different types of A∞-terms are given by

V(•, . . . , •,V(•, . . . , •, a, •, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •) =

= sD1sD2

∫
Vs

∫
Vr

pra,b(u
1
tpa,c + v1t pb,c)

sI1 ,

V(•, . . . , •, a, •, . . . , •,V(•, . . . , •, b, •, . . . , •, c, •, . . . , •), •, . . . , •) =

= sD1sD2

∫
Vs

∫
Vr

(u1tpa,b + v1t pa,c)
sprb,cI2 ,

V(•, . . . , •,U(•, . . . , •, a, •, . . . , •), •, . . . , •, b, •, . . . , •, c, •, . . . , •) =

= (−1)r−1sD1sD2

∫
Vs+1

∫
Vr−1

(u2tpa,b + v2t pa,c)
r−1ps+1

b,c I3 ,

V(•, . . . , •, a, •, . . . , •,U(•, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •) =

= sD1sD2

∫
Vs+1

∫
Vr−1

ps+1
a,c (u

2
tpa,b − v2t pb,c)

r−1I4 ,

V(•, . . . , •, a, •, . . . , •, b, •, . . . , •,U(•, . . . , •, c, •, . . . , •), •, . . . , •) =

= sD1sD2

∫
Vs+1

∫
Vr−1

ps+1
a,b (u

2
tpa,c + v2t pb,c)

r−1I5 ,

(5.4.20)

where r and s are the total number of elements of V ∗ in the inner and outer vertex, respectively,

and t is the label of the q-vector corresponding to the line connected to the nesting arrow. sD1

and sD2 are the signs associated to the inner and outer vertex, respectively. The functions Ii

read

Ii =exp[Tr[PD(Q
i
D)

T ] + λ(pa,b|(Qi
D)

12|+ pa,c|(Qi
D)

13|+ pb,c|(Qi
D)

23|)] .

Like for the potentials, we provide matrices

Qi =(q⃗a, q⃗b, q⃗c, q⃗
1
1 , . . . , q⃗

1
r , q⃗

2
1 , . . . , q⃗

2
s )

that are said to be in the canonical ordering. For diagrams that admit a left-ordering, the

matrices Qi reduce to the matrices Qi
D for left-ordered diagrams D. These matrices Q are
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given by

Q1 =

−1 0 0 u11 . . . u1t−1 u1t+1 . . . u1r+1 u1tu
2
1 . . . u1tu

2
s+1

0 −1 0 v11 . . . v1t−1 v1t+1 . . . v1r+1 v1t u
2
1 . . . v1t u

2
s+1

0 0 −1 0 . . . 0 0 . . . 0 v21 . . . v2s+1

 ,

Q2 =

−1 0 0 0 . . . 0 0 . . . 0 u21 . . . u2s+1

0 −1 0 u11 . . . u1t−1 u1t+1 . . . u1r+1 u1tv
2
1 . . . u1tv

2
s+1

0 0 −1 v11 . . . v1t−1 v1t+1 . . . v1r+1 v1t v
2
1 . . . v1t v

2
s+1

 ,

Q3 =

−1 0 0 u11 . . . u1r 0 . . . 0 0 . . . 0

0 −1 0 u2tv
1
1 . . . u2tv

1
r u21 . . . u2t−1 u2t+1 . . . u2s+2

0 0 −1 v2t v
1
1 . . . v2t v

1
r v21 . . . v2t−1 v2t+1 . . . v2s+2

 ,

Q4 =

−1 0 0 u2tu
1
1 . . . u2tu

1
r u21 . . . u2t−1 u2t+1 . . . u2s+2

0 −1 0 v11 . . . v1r 0 . . . 0 0 . . . 0

0 0 −1 v2t u
1
1 . . . v2t u

1
r v21 . . . v2t−1 v2t+1 . . . v2s+2

 ,

Q5 =

−1 0 0 u2tu
1
1 . . . u2tu

1
r u21 . . . u2t−1 u2t+1 . . . u2s+2

0 −1 0 v2t u
1
1 . . . v2t u

1
r v21 . . . v2t−1 v2t+1 . . . v2s+2

0 0 −1 v11 . . . v1r 0 . . . 0 0 . . . 0

 .

(5.4.21)

5.4.2 First examples

To get acquainted with the methods used in the proof that is going to follow, let us start with

the lowest order examples, i.e., N = 0 and N = 1.

N = 0. This first example is perhaps a bit too simple, but it allows us to get a feel for some

of the methods used for higher orders. The A∞-relation reads

V(V(a, b), c)− V(a,V(b, c)) = 0

and the only relevant vertex is the star-product V(a, b) ≡ a ⋆ b, given by

V(a, b) = exp[p0,a + p0,b + λpa,b] .

The A∞-relation is diagrammatically represented in Fig. 5.17. The relevant potentials are

Ωa
0,0,0,0(a, b, c) = −Ωc

0,0,0,0(a, b, c) = exp[p0,a + p0,b + p0,c + λ(pa,b + pa,c + pb,c)] (5.4.22)

and their disk diagrams are shown in Fig. 5.18. The forms are closed, as they are constants.

By definition, W0,0,0,0 = [0, 1] and the boundary ∂W0,0,0,0 = {0, 1} consists of the pair of points.
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a

b

α1

α2

α3

c

α5

α4

V(V(α1, a, α2, α3, b), α4, c, α5) ∋

a

α5

α1

c

b

α4

α2

α3

V(a, α1,V(b, α2, α3, c, α4), α5) ∋

a

α1

α2

V(U(α1, a, α2), b, α3, α4, c, α5) ∋

c

b

α5

α3

α4

c

a

α4

α1

α3

α2

b

V(a, α1,U(α2, b, α3), c, α4) ∋

a

b

α1

α2

α3

α5

α4

c

V(α1, a, α2, α3, b,U(α4, c, α5)) ∋

Figure 5.16: Examples of nested disk diagrams for each type of A∞-terms.

a

b

c − a

b

c

= 0

Figure 5.17: The disk diagram representation of the A∞-relation for N = 0.

This can also be written as

∂W0,0,0,0 = (V0 × V0) ∪ (V0 × V0) ,

V0 being a one-point set. We stressed that the boundary components are the products of the

configuration spaces of vertices involved. The A∞-relation can now be recast in terms of Stokes’

theorem (5.4.5) through

0 =

∫ 1

0

(dΩa
0,0,0,0(a, b, c) + dΩc

0,0,0,0(a, b, c)) = [Ωa
0,0,0,0(a, b, c) + Ωc

0,0,0,0(a, b, c)]
1
0 . (5.4.23)
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a

b

c a

b

c

Figure 5.18: On the left the disk diagram corresponding to the potential Ωa
0,0,0,0(a, b, c) and on

the right the one that corresponds to Ωc
0,0,0,0(a, b, c).

a

b

c

−→
a

b

c

=⇒ Ωa
0,0,0,0(a, b, c)|t=1

a

b

c

−→ a

b

c

=⇒ Ωa
0,0,0,0(a, b, c)|t=0

Figure 5.19: Ωa
0,0,0,0(a, b, c) evaluated at its boundaries. The green region highlights the bound-

ary t = 1, while the red region exhibits the boundary t = 0.

This ’too simple’ example may look confusing since identical contributions are assigned differ-

ent meaning and the integrand vanishes identically. Nevertheless, it showcases various features

of the general proof. For instance, the last expression in (5.4.23) consists of four terms, while

the A∞-relation contains only two terms. It turns out that whenever the proof requires contri-

butions from multiple potentials, in this case Ωa
0,0,0,0 and Ωc

0,0,0,0, we find more terms than one

would expect from the A∞-relation, but the extra terms from different potentials cancel each

other. These are the gluing terms that were mentioned above.

Although the analytic expression (5.4.23) still looks manageable, the proof becomes increas-

ingly more complicated at higher orders. It will be invaluable to have a visual representation

of what happens to the disk diagram when the potentials are evaluated at a boundary. This

will provide a quick way of identifying which A∞-term or gluing term is generated. Figs. 5.19

and 5.20 display how the disk diagrams can be interpreted as A∞-terms or gluing terms. The

green boundary on the blue line shrinks the line to a point, giving rise to a disk diagram with

a four-point vertex. This is a gluing term. The red boundary on the blue line separates the

disk diagram in two disk diagrams with the blue line replaced by the nesting arrow. This is

recognized as an A∞-term. Figs. 5.19 and 5.20 allow one to immediately observe that the
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a

b

c

−→
a

b

c

=⇒ Ωc
0,0,0,0(a, b, c)|t=1

a

b

c

−→

a

b

c =⇒ Ωc
0,0,0,0(a, b, c)|t=0

Figure 5.20: Ωc
0,0,0,0(a, b, c) evaluated at its boundaries. The green region highlights the bound-

ary t = 1, while the red region exhibits the boundary t = 0.

gluing terms are identical and they will cancel each other. The remaining terms are easily read

off to be the A∞-terms V(a,V(b, c)) and V(V(a, b), c).

N = 1. At this order there are four A∞-relations: one for each ordering of the elements of

V [−1] and V ∗. However, some of these are related by the natural pairing and only two orderings

are independent, i.e., the left-ordered case a, b, c, α and the almost-left-ordered case a, b, α, c.

The vertices relevant to the A∞-relations for N = 1 are given in (5.3.18) and (5.3.19), while

the domain is described in (5.3.20). The recipe of Sec. 5.4.1 tells us to use the vectors q⃗a,1, q⃗b,1

and/or q⃗c,1 to construct expressions for the potentials. However, for notational simplicity, we

will replace

q⃗b,1, q⃗c,1 → q⃗1 = (u1, v1, w1) , q⃗a,1 → q⃗2 = (u2, v2, w2) .

The former makes sense, since every potential contains q⃗b,1 or q⃗c,1 and not both. Also note that

this example will not show the full behaviour of (5.4.21), as either the inner or the outer vertex

has no integration domain for N = 1, such that u11 = v11 = 1 or u21 = v21 = 1. As a result, the

fact that some entries of the Q-matrices are composed of products of variables, is not visible in

this example.

Left-ordering. The A∞-relation for this ordering reads

V(V(a, b), c, α)− V(a,V(b, c), α)− V(a,V(b, c, α)) + V(a, b,U(c, α)) = 0 . (5.4.24)

This is an example of a left-ordered A∞-relation, i.e., all elements of V [−1] appear before

the element of V ∗. A visualization in terms of disk diagrams is given in Fig. 5.21. The order in
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a

b

−c

α

− a

α c

b

+

a−

c

b

α

+

a

b

α

c = 0

Figure 5.21: Graphical representation of the left-ordered A∞-relations for N = 1.

which the elements of W appear in the A∞-terms coincides with the nested boundary ordering

in the disk diagram. The left-ordered disk diagram for a potential with N = 1 is shown in Fig.

5.22. The potential Ωa
0,0,1,0(a, b, c, γ) and domain W0,0,1,0 can be constructed from this diagram.

We introduce the 3× 5 matrices

Q =

−1 0 0 u1 u2

0 −1 0 v1 v2

0 0 −1 w1 w2

 , P =

0 0 0 pa,1 p0,a

0 0 0 pb,1 p0,b

0 0 0 pc,1 p0,c


according to the recipe in section 5.4.1. We also define the integrand

I =exp[Tr[PQT ] + λ(pa,b|Q1,2|+ pa,c|Q1,3|+ pb,c|Q2,3|)]

and the measure

µ = pa,bdu1 ∧ dv1 + pa,cdu1 ∧ dw1 + pb,cdv1 ∧ dw1 .

The potential Ωa
0,0,1,0(a, b, c, γ) is then given by

Ωa
0,0,1,0(a, b, c, γ) =[pa,bdu1 ∧ dv1 + pa,cdu1 ∧ dw1 + pb,cdv1 ∧ dw1]×

× exp[Tr[PQT ] + λ(pa,b|Q1,2|+ pa,c|Q1,3|+ pb,c|Q2,3|)] .

After solving the closure constraint for q⃗2, i.e., q⃗2 = 1− q⃗1, we see that the potential is a closed

form, since

dΩa
0,0,1,0(a, b, c, γ) = (pa,bpc,1 − pa,cpb,1 + pb,cpa,1 − p0,cpa,b + p0,bpa,c − p0,apb,c)×

× du1 ∧ dv1 ∧ dw1I = 0 ,
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a

b

c
γ

Figure 5.22: Disk diagram corresponding to Ωa
0,0,1,0(a, b, c, γ).

where in the last step the Fierz identity is used twice:

pa,bpc,1 − pa,cpb,1 + pb,cpa,1 = 0 , p0,cpa,b − p0,bpa,c + p0,apb,c = 0 .

The terms in the A∞-relation (5.4.24) are now conveniently written as

V(V(a, b), c, α) =
∫
V1

(pa,c + pb,c)I|u•=v• , V(a,V(b, c), α) =
∫
V1

(pa,b + pa,c)I|v•=w• ,

V(a,V(b, c, α)) =
∫
V1

pb,cI|u1=0,u2=1 , V(a, b,U(c, α)) =
∫
V1

pa,bI|w1=1,w2=0 .

(5.4.25)

Here, u• = v• means that the equality holds for all u’s and v’s, i.e., u1 = v1 and u2 = v2.

The domain W0,0,1,0 is parameterized by the variables ui, vi, wi, for i = 1, 2, that satisfy

0 ≤ u1
v1

≤ u2
u2

≤ ∞ , 0 ≤ u1
w1

≤ u2
w2

≤ ∞ , 0 ≤ v1
w1

≤ v2
w2

≤ ∞ ,

0 ≤ u1, u2, v1, v2 ≤ 1 , u1 + u2 = v1 + v2 = w1 + w2 = 1 .

This is a 3-simplex and can equivalently be described by its ‘hidden constraints’

0 ≤u1 ≤ v1 ≤ w1 ≤ 1 , 0 ≤w2 ≤ v2 ≤ u2 ≤ 1 , (5.4.26)

together with the closure constraint. The boundary of a 3-simplex is composed of four 2-

simplices:

∂W0,0,1,0 ∼
4⋃

i=1

V1 × V0 . (5.4.27)

The boundaries of W0,0,1,0 are reached by saturating the inequalities in (5.4.26). Due to the

closure conditions, saturating an inequality in the first chain of inequalities forces an inequality
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in the second chain to be saturated at the same time. Explicit evaluation shows∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, c, γ)|u1=0,u2=1 =

∫
V1

pb,cI|u1=0,u2=1 ∼ V(a,V(b, c, α)) ,

∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, c, γ)|u•=v• =

∫
V1

(pa,c + pb,c)I|u•=v• ∼ V(V(a, b), c, α) ,

∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, c, γ)|v•=w• =

∫
V1

(pa,b + pa,c)I|v•=w• ∼ V(a,V(b, c), α) ,

∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, c, γ)|w1=1,w2=0 =

∫
V1

pa,bI|w1=1,w2=0 ∼ V(a, b,U(c, α)) .

For each term it is indicated which A∞-term it corresponds to, up to possible a change of

integration variables and a change of the elements of V ∗, as the labeling for potentials differs

from the labeling for A∞-terms. The latter means in this case that γ is replaced by α. This

proves that all A∞-terms (5.4.25) are correctly recovered using Stokes’ theorem (5.4.5).

The above evaluation has been visualized in Fig. 5.23. Please note that the labeling of

elements of V ∗ is different for potentials and A∞-terms. Therefore, we change the labeling

when considering a boundary, which in this case means that we replace the γ by an α. In the

first row we again observe that a red boundary on a blue line separates the disk diagram into

two disks, with the nesting arrow replacing this blue line. In the second row the green boundary

shrinks the blue line to a point, like before. However, we then observe that if two legs with

no red lines connected to them meet, they can be split off in a separate disk diagram. This

interpretation arises from the fact that the expression for the potential produces the depicted

A∞-term at this boundary. The same happens in the third row: the green boundary shrinks

the blue line to a point and the b- and c-leg split off in a separate disk diagram. The red line

connected to γ is connected to the junction in the intermediate diagram and then migrates to

the a-leg. As we will see more often, two legs with no red lines attached to them will split off

as its own disk diagram. In the last row we encounter a combination we have not seen before:

a green boundary on a red line. This splits off the entire leg to which this red line is attached

and creates two disk diagrams, with the nesting arrow at the end of the leg in question. As

turns out later, this may only happen to the last red line on a leg.

Almost-left-ordered. The A∞-relation for this ordering reads

V(V(a, b), α, c) + V(V(a, b, α), c)− V(a,V(b, α, c))− V(a,U(b, α), c) + V(a, b,U(α, c)) = 0

(5.4.28)
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a

b

c
γ

−→a

c

b

α

=⇒ Ωa
0,0,1,0(a, b, c, γ)|u1=0,u2=1

a

b

c
γ

−→
a

b

c
γ

−→

a

b

c

α

=⇒ Ωa
0,0,1,0(a, b, c, γ)|u•=v•

a

b

c
γ

−→
a

b

c

γ

−→a

α c

b

=⇒ Ωa
0,0,1,0(a, b, c, γ)|v•=w•

a

b

c
γ

−→

a

b

α

c =⇒ Ωa
0,0,1,0(a, b, c, γ)|w1=1,w2=0

Figure 5.23: Visual representation of Ωa
0,0,1,0(a, b, c, γ) evaluated at the boundaries of W0,0,1,0.

and are visualized in Fig. 5.24. We introduce the 3× 5 matrices

Q1 =

−1 0 u1 0 u2

0 −1 v1 0 v2

0 0 w1 −1 w2

 , Q2 =

−1 0 w1 0 w2

0 −1 v1 0 v2

0 0 u1 −1 u2

 ,

P =

0 0 pa,1 0 p0,a

0 0 pb,1 0 p0,b

0 0 pc,1 0 p0,c


and define

Ii =exp[Tr[PQT
i ] + λ(pa,b|Q1,2

i |+ pa,c|Q1,3
i |+ pb,c|Q2,3

i |)] .
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a

b

−c

α

+

a

b

−c

α

+

a

b

α
+ c − a

c

b
α

+

− a

c

b

α −

a

c

− b

α

a

c

− b

α

+

a

b

c

α

= 0

Figure 5.24: Graphical representation of the almost-left-ordered A∞-relations for N = 1.

The A∞-terms take the form

V(V(a, b), α, c) =− (pa,c + pb,c)(

∫ 1

0

dw1

∫ w1

0

du1I1|u•=v• +

∫ 1

0

dv1

∫ v1

0

du1I2|v•=w•) ,

V(V(a, b, α), c) =pa,b
∫ 1

0

dv1

∫ v1

0

dw1I2|u1=0,u2=1 ,

V(a,V(b, α, c)) =− pb,c(

∫ 1

0

dw1

∫ w1

0

dv1I1|u1=0,u2=1 +

∫ 1

0

dv1

∫ v1

0

dw1I1|u1=0,u1=2) ,

V(a,U(b, α), c) =− pa,c(

∫ 1

0

dw1

∫ w1

0

du1I1|v1=1,v2=0 +

∫ 1

0

dw1

∫ w1

0

du1I2|v1=1,v2=0) ,

V(a, b,U(α, c)) =− pa,b

∫ 1

0

dv1

∫ v1

0

du1I1|w1=1,w2=0 .

(5.4.29)
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Here, the Z2-symmetry of the domain Vn was used in several terms. The disk diagrams corre-

sponding to potentials with the almost-left-ordering are shown in Fig. 5.25. Please note that

only one disk diagram is included with the arrow connected to the c-leg. Indeed, diagrams with

all lines connected to a single leg are prohibited. The expressions corresponding to the disk

diagrams in Fig. 5.25 are∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, γ, c) =

∫
∂W0,0,1,0

(pa,bdu1 ∧ dv1 + pa,cdu1 ∧ dw1 + pb,cdv1 ∧ dw1)I1 ,∫
∂W0,1,0,0

Ωa
0,1,0,0(a, b, β, c) =

∫
∂W0,1,0,0

(pa,bdu1 ∧ dv1 + pa,cdu1 ∧ dw1 + pb,cdv1 ∧ dw1)I1 ,∫
∂W0,1,0,0

Ωc
0,1,0,0(a, b, β, c) =

∫
∂W0,1,0,0

(−pb,cdu1 ∧ dv1 − pa,cdu1 ∧ dw1 − pa,bdv1 ∧ dw1)I2 ,

(5.4.30)

from left to right. The domain W0,0,1,0 is given in (5.4.26) and the closure constraint, while

W0,1,0,0 is described by

0 ≤ u1
v1

≤ u2
v2

≤ ∞ , 0 ≤ u1
w1

≤ u2
w2

≤ ∞ , 0 ≤ v2
w2

≤ v1
w1

≤ ∞ ,

0 ≤ u1, u2, v1, v2 ≤ 1 , u1 + u2 = v1 + v2 = w1 + w2 = 1 ,
(5.4.31)

which simplifies to

0 ≤u1 ≤ w1 ≤ v1 ≤ 1 , 0 ≤v2 ≤ w2 ≤ u2 ≤ 1 .

At this point, one has to be careful when describing the boundaries of W0,1,0,0. If one considers

the boundary u1 = 0, (5.4.31) reduces to

0 ≤ v2
w2

≤ v1
w1

≤ ∞ , u1 + u2 = v1 + v2 = w1 + w2 = 1 ,

which is not the 2-simplex in the way we usually describe it: one has to swap v1 ↔ v2 and

w1 ↔ w2 to restore the correct description of the domain, which is with the labels in increasing

order from left to right in the chain of inequalities and with the numerator and denominator in

alphabetical order. This is related to the fact that the q-vectors were assigned differently for

potentials than for nested vertices. Moreover, the potentials can be checked to be closed in a

similar way as in the left-ordering.
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a

b

c

γ

a

b

c

β

a

b

c

β

Figure 5.25: The disk diagrams corresponding to Ωa
0,0,1,0(a, b, γ, c), Ωa

0,1,0,0(a, b, β, c) and
Ωc

0,1,0,0(a, b, β, c), respectively.

Finally, evaluating Stokes’ theorem yields the A∞-terms through∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, γ, c)|u1=0,u2=1 = pb,c

∫ 1

0

dw1

∫ w1

0

dv1I1|u1=0,u2=1 ∼ V(a,V(b, α, c)) ,∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, γ, c)|u•=v• = (pa,c + pb,c)

∫ 1

0

dw1

∫ w1

0

du1I1|u•=v• ∼ V(V(a, b), α, c) ,∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, γ, c)|w1=1,w2=0 = pa,b

∫ 1

0

dv1

∫ v1

0

du1I1|w1=1,w2=0 ∼ V(a, b,U(α, c)) ,∫
∂W0,1,0,0

Ωa
0,1,0,0(a, b, β, c)|u1=0,u2=1 = pb,c

∫ 1

0

dv1

∫ v1

0

dw1I1|u1=0,u2=1 ∼ V(a,V(b, α, c)) ,∫
∂W0,1,0,0

Ωa
0,1,0,0(a, b, β, c)|v1=1,v2=0 = pa,c

∫ 1

0

dw1

∫ w1

0

du1I1|v1=1,v2=0 ∼ V(a,U(b, α), c) ,∫
∂W0,1,0,0

Ωc
0,1,0,0(a, b, β, c)|u1=0,u2=1 = −pa,b

∫ 1

0

dv1

∫ v1

0

dw1I2|u1=0,u2=1 ∼ V(V(a, b, α), c) ,∫
∂W0,1,0,0

Ωc
0,1,0,0(a, b, β, c)|v•=w• = −(pa,c + pb,c)

∫ 1

0

dv1

∫ v1

0

du1I2|v•=w• ∼ V(V(a, b), α, c) ,∫
∂W0,1,0,0

Ωc
0,1,0,0(a, b, β, c)|v1=1,v2=0 = −pa,c

∫ 1

0

dw1

∫ w1

0

du1I2|v1=1,v2=0 ∼ V(a,U(b, α), c) .

On the remaining boundaries, one finds the gluing terms∫
∂W0,0,1,0

Ωa
0,0,1,0(a, b, γ, c)|v•=w• = (pa,b + pa,c)

∫ 1

0

dw1

∫ w1

0

du1I1|v•=w• ∼

∼
∫
∂W0,1,0,0

Ωa
0,1,0,0(a, b, β, c)|v•=w• ,∫

∂W0,1,0,0

Ωa
0,1,0,0(a, b, β, c)|u•=w• = (pa,b − pb,c)

∫ 1

0

dv1

∫ v1

0

du1I1|u•=w• ∼

∼ (pa,b − pb,c)

∫ 1

0

dv1

∫ v1

0

du1I2|u•=w• =

∫
∂W0,1,0,0

Ωc
0,1,0,0(a, b, β, c)|u•=w• .

All boundaries are visualized in Figs. 5.26 - 5.28. It is easy to see that all A∞-terms in (5.4.29)

are produced, together with gluing terms that cancel each other.



168 CHAPTER 5. A∞-RELATIONS FROM STOKES’ THEOREM

a
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γ

−→ a

c

b

α =⇒ Ωa
0,0,1,0(a, b, γ, c)|u1=0,u2=1

a

b

c

γ

−→
a

b

c
γ −→

a

b

c

α

=⇒ Ωa
0,0,1,0(a, b, γ, c)|u•=v•

a

b

c
γ −→

a

b

c

α

=⇒ Ωa
0,0,1,0(a, b, γ, c)|v•=w•

a

b

c
γ −→

a

b
α

c =⇒ Ωa
0,0,1,0(a, b, γ, c)|w1=1,w2=0

Figure 5.26: The disk diagrams of Ωa
0,0,1,0(a, b, γ, c) evaluated at the boundaries of W0,0,1,0.



5.4. A PROOF VIA STOKES’ THEOREM 169
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−→ a

c

b
α

=⇒ Ωa
0,1,0,0(a, b, β, c)|u1=0,u2=1

a

b

c

β

−→
a

b

c

α

=⇒ Ωa
0,1,0,0(a, b, β, c)|u•=w•

a

b

c

β

−→
a

b

c

α

=⇒ Ωa
0,1,0,0(a, b, β, c)|v•=w•

a

b

c

β

−→

a

c

b

α

=⇒ Ωa
0,1,0,0(a, b, β,c)|v1=1,v0=0

Figure 5.27: The disk diagrams of Ωa
0,1,0,0(a, b, β, c) evaluated at the boundaries of W0,1,0,0.

5.4.3 All order generalization: left-ordered

It was already mentioned that the left and right-ordered cases are special: the domain is

different and, in particular, for N = 1 there are no gluing terms. Although gluing terms will

appear for higher orders, there will be fewer for the left and right-ordered cases, making them

easier to evaluate. In this section, we prove the A∞-relations through Stokes’ theorem at all

orders in the left-ordered case, from which the right-ordered case can easily be inferred.

A∞-terms. The left-ordered A∞-relations for r + s = N ≥ 1 read

V(V(a, b), c, α1, . . . , αN)−
∑

r+s=N

V(a,V(b, c, α1, . . . , αr), αr+1, . . . , αr+s)+

+
∑

r+s=N

V(a, b,U(c, α1, . . . , αr), αr+1, . . . , αr+s) = 0 .
(5.4.32)
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a
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c
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−→

a

b

α
c =⇒ Ωc

0,1,0,0(a, b, β, c)|u1=0,u2=1

a
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c

β

−→
a
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c

α

=⇒ Ωc
0,1,0,0(a, b, β, c)|u•=w•

a
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c

β

−→
a
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c

α

−→

a
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c

α

=⇒ Ωc
0,1,0,0(a, b, β, c)|v•=w•

a
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c

β

−→

a

c
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α

=⇒ Ωc
0,1,0,0(a, b, β, c)|v1=1,v2=0

Figure 5.28: The disk diagrams of Ωc
0,1,0,0(a, b, β, c) evaluated at the boundaries of W0,1,0,0.
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a

b
c

δ1
δ2

γ1
γ2

γ3

Figure 5.29: Disk diagram corresponding to Ωa
0,0,3,2(a, b, c, γ1, γ2, γ3, δ2, δ1).

The individual A∞-terms then read

V(V(a, b), c, α1, . . . , αN) =

∫
VN

(pa,c + pb,c)
NI1 ,

V(a,V(b, c, α1, . . . , αr), αr+1, . . . , αr+s) =

∫
Vs

∫
Vr

(u1tpa,b + v1t pa,c)
sprb,cI2 ,

V(a, b,U(c, α1, . . . , αr), αr+1, . . . , αr+s) =

∫
Vs+1

∫
Vr−1

ps+1
a,b (u

2
tpa,c + v2t pb,c)

r−1I3 ,

(5.4.33)

where

Ii =exp[Tr[PQT
i ] + λ(|Q12

i |pa,b + |Q13
i |pa,c + |Q23

i |pb,c)]

and

Q1 =

−1 0 0 u21 . . . u2N+1

0 −1 0 u21 . . . u2N+1

0 0 −1 v21 . . . v2N+1

 ,

Q2 =

−1 0 0 0 . . . 0 u21 . . . u2s+1

0 −1 0 u11 . . . u1r u1r+1v
2
1 . . . u1r+1v

2
s+1

0 0 −1 v11 . . . v1r v1r+1v
2
1 . . . v1r+1v

2
s+1

 ,

Q3 =

−1 0 0 u21u
1
1 . . . u21u

1
r u22 . . . u2s+2

0 −1 0 v21u
1
1 . . . v21u

1
r v22 . . . v2s+2

0 0 −1 v11 . . . v1r 0 . . . 0

 ,

P =

0 0 0 pa,1 . . . pa,N p0,a

0 0 0 pb,1 . . . pb,N p0,b

0 0 0 pc,1 . . . pc,N p0,c

 . (5.4.34)



172 CHAPTER 5. A∞-RELATIONS FROM STOKES’ THEOREM

q⃗a

q⃗b

q⃗c
q⃗c,1

q⃗c,2

q⃗a,2

q⃗a,1

u

v

w

Figure 5.30: A visual representation of the left-ordered integration domain W0,0,2,1. The vectors
(q⃗a, q⃗b, q⃗c, q⃗c,1, q⃗c,2, q⃗a,2, q⃗a,1) form a maximally concave polygon.

Domain. An example of a disk diagram for a potential with a left-ordering is shown in Fig.

5.29. The relevant potentials and domain form+n = N are Ωa
0,0,m,n(a, b, c, γ1, . . . , γm, δn, . . . , δ1)

and W0,0,m,n, respectively. The domain W0,0,m,n is described by

0 ≤ u•i , v
•
i , w

•
i ≤ 1 ,

∑
i

(u•i , v
•
i , w

•
i ) = (1, 1, 1) ,

0 ≤ uc1 ≤ vc1 ≤ wc
1 ≤ 1 , 0 ≤ wa

1 ≤ va1 ≤ ua1 ≤ 1 ,

0 ≤ ucm
vcm

= · · · = uc1
vc1

≤
uan+1

van+1

≤ · · · ≤ ua1
va1

≤ ∞ ,

0 ≤ uc1
wc

1

≤ · · · ≤ ucm
wc

m

≤
uan+1

wa
n+1

≤ · · · ≤ ua1
wa

1

≤ ∞ ,

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
van+1

wa
n+1

= · · · = va1
wa

1

≤ ∞ .

(5.4.35)

and has a special visualization in R3 in terms of the vectors q⃗a, q⃗b, q⃗c and q⃗•,i. In Fig. 5.30

we see that they form a closed polygon in R3. The domain is described by three chains of

(in)equalities that obey the same chronological ordering, as the uv-chain starts with equalities.

Therefore, the projection of the closed polygon on the uv-, uw- and vw-plane are swallowtails,

each described by one of these chains, as shown in Fig. 5.30. We refer to these polygons

(q⃗a, q⃗b, q⃗c, q⃗c,1, . . . , q⃗c,m, q⃗a,n+1, . . . , q⃗a,1) in R3 as maximally concave polygons. The equalities in

the uv-plane ensure that the vectors q⃗c,i and q⃗c,j are coplanar, whereas the equalities in the

vw-chain imply that vectors q⃗a,i and q⃗a,j are coplanar. This is depicted in Fig. 5.31 for the

domain W0,0,2,2. The blue arrows q⃗c,1 and q⃗c,2 lie in the same plane, highlighted by the blue

shaded region, while the vectors q⃗a,1, q⃗a,2 and q⃗a,3 are coplanar in the red shaded plane.

Potential. Following the recipe in section 5.4.1, we construct a 2N -form

Ωa
m+n(a, b, c, γ1, . . . , γm, δn, . . . , δ1)
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q⃗a

q⃗b

q⃗c

q⃗c,1

q⃗c,2

q⃗a,3

q⃗a,2

q⃗a,1

q⃗a

q⃗b

q⃗c

q⃗c,1

q⃗c,2

q⃗a,3

q⃗a,2

q⃗a,1

Figure 5.31: On the left (right) the blue (red) shaded region depicts the plane in which the
vectors q⃗c,i (q⃗a,i) lie in W0,0,2,2. The scale in the v-direction was doubled to accentuate the
details in the pictures.

on the space Um+n ⊇ W0,0,m,n. We construct a potential that reads

Ωa
m+n(a, b, c, γ1, . . . , γm, δn, . . . , δ1) =µIm+n ,

with

Im+n =exp[Tr[PQT ] + λ(|Q12|pa,b + |Q13|pa,c + |Q23|pb,c)] (5.4.36)

and

Q =(q⃗a, q⃗b, q⃗c, q⃗c,1, . . . , q⃗c,m, q⃗a,n, . . . , q⃗a,1) . (5.4.37)

The measure µ is given in (5.4.13). The restriction of the potential to W0,0,m,n is effectuated

by requiring

u1, . . . , um → uc1, . . . , u
c
m , um+1, . . . , um+n+1 → uan+1, . . . , u

a
1

and

α =
uc1
vc1

= · · · = ucm
vcm

,
1

β
=
van+1

wa
n+1

= · · · = va1
wa

1

. (5.4.38)

Requiring that no obvious singularities arise,6 we choose

uci = αvci , wa
i = βvai . (5.4.39)

6As an example, W0,0,m,n contains the subspace attained by setting uc
1 = 0. We can solve (5.4.38) by

vci =
vc
1

uc
1
uc
i , but this looks singular at u

c
1 = 0, while uc

i =
uc
1

vc
1
vci behaves nicely as 0 ≤ uc

1 ≤ vc1 ≤ 1.
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Explicitly, we write

α =
uc1
vc1
, β =

1−
∑m

i=1w
c
i

1−
∑m

i=1 v
c
i

.

Finally, the potential we are interested in reads

Ωa
0,0,m,n(a, b, c, γ1, . . . , γm, δn, . . . , δ1) = Ωa

m+n(a, b, c, γ1, . . . , γm, δn, . . . , δ1)
∣∣∣
W0,0,m,n

= µm,nIm,n ,

with

µm,n = µ
∣∣∣
W0,0,m,n

, Im,n = Im+n

∣∣∣
W0,0,m,n

.

Solving the closure constraint for q⃗a,1, i.e.

q⃗a,1 = 1−
m∑
i=1

q⃗c,i −
n∑

i=1

q⃗a,i ,

yields the measure

µm,n = (αpa,c + pb,c)
m−1(pa,b + βpa,c)

n

[ n+1∑
j=2

1− va1
va1v

c
1

vaj

× (pa,cdu
c
1 ∧ dvc1 ∧ dwc

1 ∧ · · · ∧ d̂vcj ∧ . . . dvcm ∧ dwc
m ∧ dua2 ∧ dva2 ∧ · · · ∧ duan+1 ∧ dvan+1+

+ pb,cdu
c
1 ∧ dvc1 ∧ dwc

1 ∧ · · · ∧ d̂ucj ∧ . . . dvcm ∧ dwc
m ∧ dua2 ∧ dva2 ∧ · · · ∧ duan+1 ∧ dvan+1)+

+ pb,cdv
c
1 ∧ dwc

1 ∧ . . . dvcm ∧ dwc
m ∧ dua2 ∧ dva2 ∧ · · · ∧ duan+1 ∧ dvan+1

]
,

where the symbol .̂ denotes omission and

Im,n =exp[Tr[PQT
m,n] + λ(|Q12

m,n|pa,b + |Q13
m,n|pa,c + |Q23

m,n|pb,c)] ,

for

Qm,n =

−1 0 0 αvc1 . . . αvcm uan+1 . . . ua1
0 −1 0 vc1 . . . vcm van+1 . . . va1
0 0 −1 wc

1 . . . wc
m βvan+1 . . . βva1

 (5.4.40)

and P as defined in (5.4.34). From now on we will omit the arguments of Ωa
0,0,m,n, as they

should be clear from the subscript.

The domain W0,0,m,n (5.4.35) is vastly more complicated than the domains discussed in the

lower order examples. In particular, the chains of (in)equalities introduce new types of bound-

aries. In the following, we will categorize the boundaries according to whether the differential
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form Ωa
0,0,m,n evaluates to an A∞-term, gluing term, zero, or the boundary turns out to be a

higher codimension boundary. Of course, the latter does not play a role in Stokes’ theorem and

therefore does not contribute to the proof. In principle, saturating any inequality in (5.4.35)

leads to a boundary, but some inequalities might seem to be missing in this categorization.

This is simply because they are already accounted for in some other boundary. For example,

the uw-chain can almost entirely be derived from the uv- and vw-chain.

A∞-terms. The same boundaries that were present in the left-ordered N = 1 example yield

A∞-terms, with the boundary wc
1 = 1 taking a more general form, see boundary 5.

• Boundary 1: At this boundary

u•i = 0 .

If uai = 0, the uv-chain becomes

a

b

c

δ1
γ1

γ2

−→ a

α3 c

b

α1
α2

Figure 5.32: An example of boundary 1 contributing to V(a,V(b, c, α1, α2), α3).

0 ≤ ucm
vcm

≤ · · · ≤ uc1
vc1

≤
uan+1

van+1

≤ · · · ≤ 0

vai
≤ · · · ≤ ua1

va1
≤ ∞ ,

which forces ucj = 0 for j = 1, . . . ,m and uaj = 0 for j ≥ i. This leads to a higher

codimension boundary. However, if uci = 0 for i = 1, . . . ,m, leading to α = 0, and the

other u-variables nonzero, we find an A∞-term. After the change of coordinates

vci → u1i , wc
i → v1i , for i = 1, . . . ,m ,

uai → u2n+2−i , vai → u1m+1v
2
n+2−i , wa

i → v1m+1v
2
n+2−i , for i = 1, . . . , n+ 1 ,

this boundary is identified as Vn × Vm and∫
∂W0,0,m,n

Ωa
0,0,m,n|uc

i=0 ∼ V(a,V(b, c, α1, . . . , αm), αm+1, . . . , αm+n)

on this boundary, with the exception of V(a,V(b, c), α1, . . . , αn), since the recipe required

at least one element of V ∗ to be attached to the c-leg. An example of a disk diagram at

this boundary is shown in Fig. 5.32.
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• Boundary 2: At this boundary

uc1 = vc1 .

The uv-chain of (in)equalities then becomes

1 ≤
uan+1

van+1

≤ · · · ≤ ua1
va1

≤ ∞

and the closure constraint requires uci = vci for i = 1, . . . ,m and uai = vai for i = 1, . . . , n+1.

However, this describes a higher codimension boundary, except for n = 0. In this case,

we find, after the change of coordinates

vci → u2i , wc
i → v2i , for i = 1, . . . ,m ,

ua1 → u2m+1 , va1 → u2m+1 , wa
1 → v2m+1 ,

that the boundary is identified as Vm × V0 and∫
∂W0,0,m,0

Ωa
0,0,m,0|uc

1=vc1
∼ V(V(a, b), c, α1, . . . , αm)

on this boundary. An example of a disk diagram at this boundary is shown in Fig. 5.33.

a

b

c
γ1

γ2

−→

a

b

c
γ1

γ2

−→

a

b

c

α1

α2

Figure 5.33: An example of boundary 2 contributing to V(V(a, b), c, α1, α2).

• Boundary 3: At this boundary

vc1 = wc
1 .

The vw-chain of (in)equalities then becomes

1 ≤ vc2
wc

2

≤ · · · ≤ vcm
wc

m

≤
van+1

wa
n+1

= · · · = va1
wa

1

≤ ∞

and the closure constraint requires vci = wc
i for i = 1, . . . ,m and vai = wa

i for i =

1, . . . , n+1. However, this describes a higher codimension boundary, except when m = 1.
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In that case, we find after the change of coordinates

uc1 → u21 , vc1 → v21 , wc
1 → v21 ,

uai → u2n+3−i , vai → v2n+3−i , for i = 1, . . . , n+ 1 ,

that the boundary is identified as Vn+1 × V0 and∫
∂W0,0,1,n

Ωa
0,0,1,n|vc1=wc

1
∼ V(a,V(b, c), α1, . . . , αn+1)

on this boundary. An example of a disk diagram at this boundary is shown in Fig. 5.34.

a

b

c

δ1 γ1

−→
a

b

c

δ1 γ1

−→ a

α1

α2 c

b

Figure 5.34: An example of boundary 3 contributing to V(a,V(b, c), α1, α2).

• Boundary 4: At this boundary

w•i = 1 .

If wa
i = 1, this requires both β = 1 and vai = 1 and yields a higher codimension boundary.

Next, we consider wc
i = 1. Then, the closure condition requires all other w variables to

be zero, which leads to β = 0. This yields a higher codimension boundary, except for

m = 1. After the change of coordinates

uc1 → u21 , vc1 → v21 ,

uai → u2n+3−i , vai → v2n+3−i , for i = 1, . . . , n+ 1 ,

the boundary is identified as Vn+1 × V0 and∫
∂W0,0,1,n

Ωa
0,0,1,n|wc

1=1 ∼ V(a, b,U(c, α1), α2, . . . , αn+1)

on this boundary. An example of a disk diagram at this boundary is shown in Fig. 5.35.

• Boundary 5: At this boundary

w•i = 0 .
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a

b

c

δ1 γ1

−→

a

b

α2

α1

c

Figure 5.35: An example of boundary 4 contributing to V(a, b,U(c, α1), α2).

a

b

c

δ1
γ1

γ2

−→

a

b

α3 α1

α2

c

Figure 5.36: An example of boundary 5 contributing to V(a, b,U(c, α1, α2), α3).

If wc
i = 0, the uw-chain is equivalent to

∞ ≥ wc
1

uc1
≥ · · · ≥ 0+

uci
≥ · · · ≥ wc

m

ucm
≥
wa

n+1

uan+1

≥ · · · ≥ wa
1

ua1
≥ 0 ,

which forces wc
j = 0 for j ≤ i and wa

j = 0 for j = 1, . . . , n + 1. This leads to a higher

codimension boundary. Next we consider wa
i = 0, which leads to β = 0. For m = 1 this

is equivalent to boundary 4. After the change of coordinates

uc1 → u21u
1
1 ,

vci → v21u
1
i , wc

i → v1i , for i = 1, . . . ,m ,

uai → u2n+3−i , vai → v2n+3−i , for i = 1, . . . , n+ 1

the boundary is identified as Vn+1 × Vm−1 and∫
∂W0,0,m,n

Ωa
0,0,m,n|wa

i =0 ∼ V(a, b,U(c, α, . . . , αm), αm+1 . . . , αm+n)

on this boundary, with the exception of V(a, b,U(c, α1), α2, . . . , αn+1). An example of a

disk diagram at this boundary is shown in Fig. 5.36.

Gluing terms.

• Boundary 6: At this boundary

vcm
wc

m

=
van+1

wa
n+1

.
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For m = 1 the vw-chain becomes

0 ≤ vc1
wc

1

=
van+1

wa
n+1

= · · · = va1
wa

1

≤ ∞ .

The closure constraint then requires v•i = w•i , so this boundary is equivalent to boundary

a

b

c

δ1
γ1

γ2

−→

a

b

c

α3
α1

α2

Figure 5.37: An example of boundary 6 contributing to a gluing term.

3 when m = 1. For m ̸= 1,
∫
∂W0,0,m,n

Ωa
0,0,m,n does not yield a familiar A∞-term and it

does not vanish either. An example of a disk diagram at this boundary is shown in Fig.

5.37.

• Boundary 7: At this boundary

uc1
vc1

=
uan+1

van+1

.

For n = 0 the uv-chain becomes

0 ≤ uc1
vc1

= · · · = ucm
vcm

=
ua1
va1

≤ ∞ .

The closure constraint then requires u•i = v•i , so this boundary is equivalent to boundary

2 when n = 0. For n ̸= 0,
∫
∂W0,0,m,n

Ωa
0,0,m,n does not yield a familiar A∞-term and it does

not vanish either. An example of a disk diagram at this boundary is shown in Fig. 5.38.

a

b

c

δ1
γ1

γ2

−→

a

b

c

α3
α1

α2

Figure 5.38: An example of boundary 7 contributing to a gluing term.

Fortunately, it turns out not to be necessary to explicitly evaluate Ωa
0,0,m,n on boundary

6 and 7, as the contributions can be seen to cancel each other by construction. Ωa
0,0,m,n on
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boundary 6 is found by restricting Ωa
m+n to a submanifold by requiring

uc1
vc1

= · · · = ucm
vcm

,
vcm
wc

m

=
van+1

wa
n+1

= · · · = va1
wa

1

,

while on boundary 7 one invokes

uc1
vc1

= · · · = ucm
vcm

=
uan+1

van+1

,
van+1

wa
n+1

= · · · = va1
wa

1

.

Clearly, boundary 6 is equivalent to boundary 7 after the shift m→ m+ 1 and n→ n− 1 and

relabeling of the variables. Since (5.4.5) sums over all m,n, such that m + n = N , all gluing

terms cancel pairwise.

Zero measure terms. Remember the definition q⃗•,i = (u•i , v
•
i , w

•
i ) for the vectors that fill up

the matrix QD. From (5.4.13) it is clear that if two q-vectors are colinear , e.g. q⃗c,i = ξq⃗c,j,

with ξ ∈ R, then µc
i ∧ µc

j = 0.

• Boundary 8: At this boundary

vci
wc

i

=
vci+1

wc
i+1

, for i = 1, . . . ,m− 1 ,

which makes the vectors q⃗c,i and q⃗c,i+1 colinear and the measure in Ωa
0,0,m,n vanishes on

this boundary.

• Boundary 9: At this boundary

uai
vai

=
uai+1

vai+1

for i = 1, . . . , n ,

which makes the vectors q⃗a,i and q⃗a,i+1 colinear. As a result the measure in Ωa
0,0,m,n

vanishes on this boundary.

Higher codimension boundaries. Some types of boundaries are necessarily higher codi-

mension boundaries: saturating one inequality leads to saturation of more inequalities and

hence the resulting submanifold is parameterized by less than 2(m + n) independent coordi-

nates. We have seen examples of this for the boundaries that also produce A∞-terms for specific

values of m and n. Here we present the higher codimension boundaries that are not discussed

yet.

• Boundary 10: At this boundary

v•i = 0 .
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The vw-chain becomes

0 ≤ vc1
wc

1

≤ · · · ≤ 0

wc
i

≤ · · · ≤ vcm
wc

m

≤
van+1

wa
n+1

= · · · = va1
wa

1

≤ ∞ , or

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
van+1

wa
n+1

= · · · = 0

wa
i

= · · · = va1
wa

1

≤ ∞ ,

which implies vcj = 0 for j < i or all v-variables zero, respectively. In both cases one finds

a higher codimension boundary. Only for vc1 = 0, the vw-chain is not responsible for a

higher codimension boundary, but the condition

0 ≤ uc1 ≤ vc1 ≤ wc
1 ≤ 1

is, as it imposes uc1 = vc1 = 0.

• Boundary 11: At this boundary

u•i = 1 .

The closure constraint implies that all other u-variables vanish. If m = 1 and n = 0 and

the boundary is given by uc1 = 1, the condition

0 ≤ uc1 ≤ vc1 ≤ wc
1 ≤ 1

implies uc1 = vc1 = wc
1 = 1.

• Boundary 12: At this boundary

v•i = 1 .

The closure constraint implies that all other v-variables vanish. If m = 1 and n = 0 and

the boundary is given by vc1 = 1, the condition

0 ≤ uc1 ≤ vc1 ≤ wc
1 ≤ 1

implies vc1 = wc
1 = 1.

• Boundary 13: At this boundary

ucm
wc

m

=
uan+1

wa
n+1

.

Since

ucm
vcm

vcm
wc

m

=
ucm
wc

m

≤
uan+1

wa
n+1

=
uan+1

van+1

van+1

wa
n+1
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c

b

a

α1

δ1
β1β2

γ1

γ2

Figure 5.39: A disk diagram that corresponds to Ωa
1,2,2,1(a, α1, δ1, β2, b, β1, γ1, c, γ2).

and

ucm
vcm

≤
uan+1

van+1

,
vcm
wc

m

≤
van+1

wa
n+1

,

this boundary implies uc
m

vcm
=

ua
n+1

van+1
and vcm

wc
m

=
van+1

wa
n+1

and thus yields a higher codimension

boundary.

With the above categorization of boundaries, we have established the equivalence of Stokes’

theorem for Ωa
0,0,m,n on W0,0,m,n and the left-ordered A∞-relation, (5.4.5), that is,

0 =
∑

m+n=N

∫
W0,0,m,n

dΩa
0,0,m,n =

∑
m+n=N

∫
∂W0,0,m,n

Ωa
0,0,m,n ⇐⇒ A∞-relations . (5.4.41)

The same proof for the right-ordered A∞-relations can easily be inferred from (5.4.7), which

relates potentials of the type Ωa
k,l,m,n with Ωc

k,l,m,n. The disk diagram of the potential Ωc
m,0,0,n

is just the mirror image of the disk diagram for Ω0,0,m,n. It is easy to see from (5.4.20) that

the right-ordered A∞-terms can be obtained from the left-ordered ones by mirror symmetry as

well.

5.4.4 All order generalization: arbitrary ordering

In the previous section, we considered the A∞-relations with a specific ordering. Now we turn

to the A∞-relations with arbitrary ordering. These A∞-relations are given in (5.4.3) and the

A∞-terms are presented in (5.4.20). The corresponding Q matrices are given in (5.4.21). As we

explained in Sec. 5.4.1, there are two types of diagrams and potentials: the a- and c- diagrams

that correspond to potentials Ωa
k,l,m,n and Ωc

k,l,m,n, respectively. Two examples of these types of

diagrams are shown in Fig. 5.10. We also illustrated how the potentials related to the latter

type of diagram can be obtained from the former in (5.4.7). Hence, we will thoroughly discuss

the a-diagrams, after which we only state the results for the c-diagrams that contribute to the

proof.
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We consider the potentials Ωa
k,l,m,n that we constructed in Sec. 5.4.1. We note that the

restriction (5.4.16) to Wk,l,m,n ⊂ UN can be solved in a multitude of ways. It will be a matter

of convenience. In the left-ordered case, we required the coordinates to be nonsingular on all

of W0,0,m,n, but it turns out that there is not a single chart that covers all of Wk,l,m,n. This is

easy to see from the equalities in the uw-chain that allows one to solve, for instance, ubl =
α
β
wb

l

or wb
l =

β
α
ubl , which both can become singular. Therefore, we will have to use various charts to

describe the boundaries. The charts are constructed by choosing

uci = αvci or vci =
uci
α
, for i = 1, . . . ,m ,

ubi =
α

β
wb

i or wb
i =

β

α
ubi , for i = 1, . . . l ,

wa
i = βvai or vai =

wa
i

β
, for i = 1, . . . , k + n+ 1 .

It will be clear from the context which chart was chosen.

Like in the left-ordered case, here follows a categorization of the potentials evaluated on all

boundaries of Wk,l,m,n. Remember that for the left-ordered case k = l = 0. These cases will

be included in the following discussion, but not only as the left-ordered case: potentials with

no lines attached to the a- and b-leg can still contribute to different orderings. One difference

with the left-ordered case is that on the boundaries where we find A∞-terms, we find gluing

terms as well, depending on the orientation of the red lines in the diagrams. Moreover, in the

following categorization of a-diagrams we only consider potentials Ωa
k,l,m,n and it is therefore not

sufficient to prove (5.4.5). This categorization, however, is followed by a recipe for extracting

the same information for the potentials Ωc
k,l,m,n and a brief categorization of the c-diagrams

that contribute to Stokes’ theorem. This completes the proof.

a-diagrams. The boundaries that yield A∞-terms are a bit more subtle than before. Namely,

some boundaries that produce A∞-terms equally produce gluing terms, depending on the ori-

entation of a particular line attached to one of the legs. This happens for boundaries where

the green region is drawn on either one of the legs near the junction and for those diagrams we

will show both options.

• Boundary 1: At this boundary

u•i = 0 .

If uai = 0, the uv-chain becomes

0 ≤u
b
1

vb1
≤ · · · ≤ ubl

vbl
≤ ucm
vcm

= · · · = uc1
vc1

≤
uak+n+1

vak+n+1

≤ · · · ≤ 0

vai
≤ · · · ≤ ua1

va1
≤ ∞ ,

which leads to ucj = 0 for j = 1, . . . ,m, ubj = 0 for j = 1, . . . , l and uaj = 0 for j ≥ i.

This yields a higher codimension boundary. Next we consider uci = 0 for i = 1, . . . ,m and
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ubi = 0 for i = 1, . . . , l, which leads to α = 0. After the change of coordinates

vci → u1i , wc
i → v1i , for i = 1, . . . ,m ,

vbi → u1m+l+2−i , wb
i → v1m+l+2−i , for i = 1, . . . , l ,

uai → u2n+k+2−i , vai → u1m+1v
2
n+k+2−i , wa

i → v1m+1v
2
n+k+2−i , for i = 1, . . . , k + n+ 1 ,

the boundary is identified as Vk+n × Vm+l and∫
∂Wk,l,m,n

Ωa
k,l,m,n|uc

i=ub
i=0 ∼

∼ V(•, . . . , •, a, •, . . . , •,V(•, . . . , •, b, •, . . . , •, c, •, . . . , •), •, . . . , •)

on this boundary, with the exception of V(•, . . . , •, a, •, . . . , •,V(b, c), •, . . . , •). An exam-

ple of a disk diagram at this boundary is shown in Fig. 5.40.

c

b

a

α1

δ1 β1β2

γ1

γ2

−→ a

α1 α2

c

b

α5

α6

α3

α4

Figure 5.40: An example of boundary 1 contributing to V(a, α1, α2,V(α3, b, α4, α5, c, α6)).

• Boundary 2: At this boundary

uc1 = vc1 .

This is only a boundary if l = 0, in which case it is a higher codimension boundary unless

a

b

c
γ1

γ2

−→

a

b

c
γ1

γ2

−→

a

b

c

α1

α2

Figure 5.41: An example of boundary 2 contributing to V(V(a, b), α1, c, α2).

k = n = 0, like in the left-ordered case. The uv-chain then reads

1 =
ucm
vcm

≤ · · · ≤ uc1
vc1

≤ ua1
va1
.
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The closure constraint now forces u•i = v•i . Then, after a change of coordinates

vci → u2i , wc
i → v2i , for i = 1, . . . ,m ,

ua1 → u2m+1 , wa
1 → v2m+1 ,

the boundary is identified as Vm × V0 and∫
∂W0,0,m,0

Ωa
0,0,m,0|uc

1=vc1
∼ V(V(a, b), •, . . . , •, c, •, . . . , •)

on this boundary. Since the line connected to the output arrow can only have one orien-

tation, there is only one disk diagram at this boundary shown in Fig. 5.41.

• Boundary 3: At this boundary

vc1 = wc
1 .

The vw-chain becomes

a

b

c
γ1

α1

δ1

−→
a

b

c
γ1

α1

δ1

−→ a

α2

α3

α1

c

b

Figure 5.42: An example of boundary 3 contributing to V(a, α1, α2,V(b, c), α3).

1 =
vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

≤ ∞ .

and implies v•i ≥ w•i . The closure constraint then leads to v•i = w•i , which gives a higher

codimension boundary, except for l = 0,m = 1. Then after the change of coordinates

uc1 → u21 , vc1 → v21 ,

uai → u2k+n+3−i , vai → v2k+n+3−i , for i = 1, . . . , k + n+ 1 ,

the boundary is identified as Vk+n+1 × V0 and∫
∂Wk,0,1,n

Ωa
k,0,1,n|vc1=wc

1
∼ V(•, . . . , •, a, •, . . . , •,V(b, c), •, . . . , •)

on this boundary. An example of a disk diagram at this boundary contributing to the

A∞-term is shown in Fig. 5.42, while Fig. 5.43 shows a disk diagram contributing to a

gluing term.
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a

b

c
γ1α1

δ1

−→
a

b

c

α3

α1

α2

Figure 5.43: An example of boundary 3 contributing to a gluing term.

• Boundary 4: At this boundary

vb1 = wb
1 .

The vw-chain becomes

c

b

a

α1

δ1
β1

−→
c

b

a

α1

δ1
β1

−→ a

α2

α3
α1

c

b

Figure 5.44: An example of boundary 4 contributing to V(a, α1, α2, α3,V(b, c)).

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

= 1

and implies v•i ≤ w•i for i = 1, . . . , N + 1. The closure constraint then leads to v•i = w•i ,

which leads to a higher codimension boundary, except for l = 1, m = 0. Then, after the

change of coordinates

ub1 → u21 , vb1 → v21 ,

uai → u2k+n+3−i , vai → v2k+n+3−i , for i = 1, . . . , k + n+ 1 ,

the boundary is identified as Vk+n+1 × V0 and∫
∂Wk,1,0,n

Ωa
k,1,0,n|vb1=wb

1
∼ V(•, . . . , •, a, •, . . . , •,V(b, c), •, . . . , •)

on this boundary. An example of a disk diagram at this boundary contributing to the

A∞-term is shown in Fig. 5.44, while Fig. 5.45 shows a disk diagram contributing to a

gluing term.



5.4. A PROOF VIA STOKES’ THEOREM 187

c

b

a

α1

δ1
β1

−→
c

b

a

α1

α2
α3

Figure 5.45: An example of boundary 4 contributing to a gluing term.

• Boundary 5: At this boundary

w•i = 1 .

The closure constraint forces all other w-variables to be zero. This yields a higher codi-

menion boundary, except for m = 1 and wc
1 = 1, which leads to β = 0. After the change

of coordinates

uc1 → u2l+1 , vc1 → v2l+1 ,

ubi → u2i , vbi → v2i , for i = 1, . . . , l ,

uai → u2k+n+l+3−i , vai → v2k+n+l+3−i , for i = 1, . . . , k + n+ 1 .

the boundary is identified as Vk+l+n+1 × V0. The canonical ordering of the q-vectors in

Q in the resulting nested disk diagram is different than the canonical ordering of the

corresponding A∞-term. We therefore rewrite the matrix Q as

Q = (q⃗a, q⃗b, q⃗c, q⃗c,1q⃗b,1 , . . . , q⃗b,l, q⃗a,k+n+1, . . . , q⃗a,1) .

It can now be seen that∫
∂Wk,l,1,n

Ωa
k,l,1,n|wc

1=1 ∼ V(•, . . . , •, a, •, . . . , •, b, •, . . . , •,U(c, •), •, . . . , •)

and ∫
∂Wk,l,1,n

Ωa
k,l,1,n|wc

1=1 ∼ V(•, . . . , •, a, •, . . . , •, b, •, . . . , •,U(•, c), •, . . . , •)

on this boundary. An example of a disk diagram at this boundary is shown in Fig. 5.46.

• Boundary 6: At this boundary

w•i = 0 .

Form = 1 and wc
1 = 1, this is the same as boundary 5. Otherwise, if wc

i = 0, the uw-chain
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c

b

a

α1

δ1 β1β2

γ1−→

a

b
α2

α1

α3

α4

α5

c

Figure 5.46: An example of boundary 5 contributing to V(a, α1, α2, α3, b, α4,U(α5, c)).

is equivalent to

0 ≥w
a
1

ua1
≥ · · · ≥

wa
k+n+1

uak+n+1

≥ wb
1

ub1
= · · · = wb

l

ubl
≥ wa

m

ucm
≥ · · · ≥ 0+

uci
≥ · · · ≥ wc

1

uc1
≥ ∞ ,

which forces wc
j = 0 for j > i and wa

k = wb
k = 0 for any k. This leads to a higher

codimension boundary. Only when we consider wa
i = 0 for i = 1, . . . , k+n+1 and wb

i = 0

for i = 1, . . . , l, we find an A∞-term. Then, after the change of coordinates

uc1 → u2l+1u
1
1 ,

vci → v2l+1u
1
i , wc

i → v1i , for i = 1, . . . ,m

ubi → u2i , vi → v2i , for i = 1, . . . , l ,

uai → u2k+l+n+3−i , vai → v2k+l+n+3−i , for i = 1, . . . , k + n+ 1

the boundary is identified as Vk+l+n+1 × Vm−1. We also change the matrix Q, such that

it corresponds to the canonical ordering for nested vertices. It then reads

Q = (q⃗a, q⃗b, q⃗c, q⃗c,1, . . . , q⃗c,m, q⃗b,1, . . . , q⃗b,l, q⃗a,k+n+1, . . . , q⃗a,1) .

It can now be seen that∫
∂Wk,l,m,n

Ωa
k,l,m,n|wa

i =wb
i=0 ∼ V(•, . . . , •, a, •, . . . , •, b, •, . . . , •,U(•, . . . , •, c, •, . . . , •), •, . . . , •)

on this boundary, with the exception of V(•, . . . , •, a, •, . . . , •, b, •, . . . , •,U(c, •), •, . . . , •)
and V(•, . . . , •, a, •, . . . , •, b, •, . . . , •,U(•, c), •, . . . , •). An example of a disk diagram at

this boundary is shown in Fig. 5.47.

• Boundary 7: At this boundary

v•i = 1 .

The closure constraint forces all other v-variables to be zero. This yields a higher codi-
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c

b

a

α1

δ1 β1β2

γ1

γ2

−→

a

b
α2

α1

α3

α4

α5

α6

c

Figure 5.47: An example of boundary 6 contributing to V(a, α1, α2, α3, b, α4,U(α5, c, α6)).

c

b

a

α1

δ1 β1

γ1

γ2

−→

a

c

α1

α2

α4

α5

b

α3

Figure 5.48: An example of boundary 7 contributing to V(a, α1, α2,U(b, α3), α4, c, α5).

mension boundary, except for l = 1 and vb1 = 1. Then, after the change of variables

uci → u2i , wc
i → v2i , for i = 1, . . . ,m ,

ub1 → u2m+1 , wb
1 → v2m+1 ,

uai → u2k+m+n+3−i , wa
i → v2k+m+n+3−i , for i = 1, . . . , k + n+ 1

the boundary is identified as Vk+m+n+1 ×V0. We also change the matrix Q, such that it

corresponds to the canonical ordering for nested vertices. It then reads

Q = (q⃗a, q⃗b, q⃗c, q⃗b,1, q⃗c,1, . . . , q⃗c,m, q⃗a,k+n+1, . . . , q⃗a,1) .

It can now be seen that∫
∂Wk,1,m,n

Ωa
k,1,m,n|vb1=1 ∼ V(•, . . . , •, a, •, . . . , •,U(b, •), •, . . . , •, c, •, . . . , •)

and ∫
∂Wk,1,m,n

Ωa
k,1,m,n|vb1=1 ∼ V(•, . . . , •, a, •, . . . , •,U(•, b), •, . . . , •, c, •, . . . , •)

on this boundary. An example of a disk diagram at this boundary is shown in Fig. 5.48.

• Boundary 8: At this boundary

v•i = 0 .
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The vw-chain becomes

c

b

a

α1

δ1 β1β2

γ1

γ2

−→

a

c

α1

α2

α5

α6

b

α3

α4

Figure 5.49: An example of boundary 8 contributing to V(a, α1, α2,U(α3, b, α4), α5, c, α6).

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = 0+

wa
i

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

≤ ∞ ,

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ 0+

wb
i

· · · ≤ vb1
wb

1

≤ ∞

if vai = 0 and vbi = 0, respectively. This forces all vai = 0 and vci = 0 in both cases, while

in the latter we also have vbj = 0 for j > i. This leads to a higher codimension boundary.

It is only when vci = 0 for i = 1, . . . ,m and vai = 0 for i = 1, . . . , k + n+ 1, that one finds

an A∞-term. After the change of variables

uci → u2i , wc
i → v2i , for i = 1, . . . ,m ,

ubi → u2m+1u
1
i , vbi → v1i , wb

i → v2m+1u
1
1 , for i = 1, . . . , l ,

uai → u2k+m+n+3−i , wa
i → v2k+m+n+3−i , for i = 1, . . . , k + n+ 1 ,

the boundary is identified as Vk+m+n+1 × Vl−1. We also change the matrix Q, such that

it corresponds to the canonical ordering for nested vertices. It then reads

Q = (q⃗a, q⃗b, q⃗c, q⃗b,1, . . . , q⃗b,l, q⃗c,1, . . . , q⃗c,m, q⃗a,k+n+1, . . . , q⃗a,1) .

It can now be seen that∫
∂Wk,l,m,n

Ωa
k,l,m,n ∼ V(•, . . . , •, a, •, . . . , •,U(•, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •)

on this boundary, with the exception of V(•, . . . , •, a, •, . . . , •,U(b, •), •, . . . , •, c, •, . . . , •)
and V(•, . . . , •, a, •, . . . , •,U(•, b), •, . . . , •, c, •, . . . , •). An example of a disk diagram at

this boundary is shown in Fig. 5.49.

Gluing terms.

• Boundary 9:
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At this boundary

ucm
vcm

=
ubl
vbl
.

∫
∂Wk,l,m,n

Ωa
k,l,m,n does not yield a familiar A∞-term on this boundary and it does not

c

b

a

α1

δ1 β1β2

γ1

γ2

−→
c

b

a

α1

α2 α4α3

α5

α6

c

b

a

α1

δ1 β1
β2

γ1

γ2

−→
c

b

a

α1

α2 α3

α4

α5

α6

Figure 5.50: Two examples of boundary 9 contributing to a gluing term, with both orientations
of β2.

vanish either. An example of a disk diagram at this boundary is shown in Fig. 5.50.

• Boundary 10: At this boundary

uc1
vc1

=
uak+n+1

vak+n+1

.

For k = l = n = 0 the uv-chain becomes

0 ≤ ucm
vcm

= · · · = uc1
vc1

=
ua1
va1

≤ ∞ .

The closure constraint then gives u•i = v•i , so this boundary is equivalent to boundary

2 when k = l = n = 0 and does not yield a gluing term, but an A∞-term instead.

Otherwise,
∫
∂Wk,l,m,n

Ωa
k,l,m,n does not yield a familiar A∞-term on this boundary and it

does not vanish either. An example of a disk diagram at this boundary is shown in Fig.

5.51. Gluing terms corresponding to the same type as the left diagram cancel with gluing

terms belonging to the type of diagrams on the left of Fig. 5.50. A special type of gluing

term with no elements between the junction and the output arrow, i.e. n = 0, is shown

in Fig. 5.52. This is the only type of gluing term that does not cancel with any other

gluing term from the potential Ωa
k,l,m,n, but rather from the type Ωc

k,l,m,n, ‘gluing’ them

together.

• Boundary 11: At this boundary

vcm
wc

m

=
vak+n+1

wa
k+n+1

.
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c

b

a

α1

δ1 β1β2

γ1

γ2

−→
c

b

a

α1

α2

α4α3

α5

α6

c

b

a

α1

δ1

β1β2

γ1

γ2

−→
c

b

a

α1

α6

α3α2

α4

α5

Figure 5.51: Two examples of boundary 10 contributing to a gluing term, with both orientations
of δ1.

c

b

a

α1

β1β2

γ1

γ2

−→
c

b

a

α1

α3α2

α4

α5

Figure 5.52: Special case of a gluing term coming from boundary 10. This gluing term is
cancelled by a gluing term coming from a potential of the type Ωc

k,l,m,n.

For l = 0, m = 1 the vw-chain reads

0 ≤ vc1
wc

1

=
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ ∞ .

The closure constraint then gives v•i = w•i , so this boundary is equivalent to boundary

3 when l = 0 and m = 1, producing either a gluing term or an A∞-term. Otherwise,∫
∂Wk,l,m,n

Ωa
k,l,m,n does not yield a familiar A∞-term on this boundary and it does not

vanish either. An example of a disk diagram at this boundary is shown in Fig. 5.53.

Gluing terms corresponding to the type of diagrams on the left cancel with gluing terms

belonging to the type of diagrams on the right of Fig. 5.51, while the type of diagrams

on the right cancel with the diagrams of the type on the right of Fig. 5.50.

c

b

a

α1

δ1 β1β2

γ1

γ2

−→
c

b

a

α1

α2 α4α3

α5

α6

c

b

a

α1

δ1 β1β2

γ1
γ2

−→
c

b

a

α1

α2 α4α3

α6

α5

Figure 5.53: Two examples of boundary 11 contributing to a gluing term, with both orientations
of γ2.
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• Boundary 12: At this boundary

va1
wa

1

=
vbl
wb

l

.

This implies wb
l = βvbl and from

ubl
wb

l

=
1

β

ubl
vbl

=
α

β

we get
ub
l

vbl
= α = uc

m

vcm
, so we find that this boundary is equivalent to boundary 9. It

is only when m = 0 that boundary 9 does not exist and we have to consider this one.∫
∂Wk,l,m,n

Ωa
k,l,m,n does not yield a familiar A∞-term on this boundary and it does not

vanish either. The disk diagrams at this boundary resemble the ones in Fig. 5.50 when

there are no lines attached to the c-leg. An example of a disk diagram at this boundary

is shown in Fig. 5.54. Gluing terms corresponding to the type of diagrams on the right

cancel with gluing terms belonging to the type of diagrams on the right of Fig. 5.53.

c

b

a

α1

δ1 β1β2

−→
c

b

a

α1

α2 α4α3

c

b

a

α1

δ1 β1
β2

−→
c

b

a

α1

α2 α3

α4

Figure 5.54: Two examples of boundary 12 contributing to a gluing term, with both orientations
of β2.

• Boundary 13: At this boundary

ub1
wb

1

=
uak+n+1

wa
k+n+1

.

This implies wa
k+n+1 =

β
α
uak+n+1 and from

vak+n+1

wa
k+n+1

=
α

β

vak+n+1

uak+n+1

=
1

β

we get
ua
k+n+1

vak+n+1
= α =

uc
1

vc1
, so we find that this boundary is equivalent to boundary 10.

It is only when m = 0 that boundary 10 does not exist and we have to consider this

one.
∫
∂Wk,l,m,n

Ωa
k,l,m,n does not yield a familiar A∞-term on this boundary and it does not

vanish either. The disk diagrams at this boundary resemble the ones in Fig. 5.51 when

there are no lines attached to the c-leg. An example of a disk diagram at this boundary

is shown in Fig. 5.55. Gluing terms corresponding to the type of diagrams on the left
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cancel with gluing terms belonging to the type of diagrams on the left of Fig. 5.54, while

the type of diagrams on the right cancel with gluing terms corresponding to the left of

Fig. 5.53.

c

b

a

α1

δ1 β1β2

−→
c

b

a

α1

α2

α4α3

c

b

a

α1

δ1

β1β2

−→
c

b

a

α1

α4

α3α2

Figure 5.55: Two examples of boundary 13 contributing to a gluing term, with both orientations
of δ1.

• Boundary 14: At this boundary

ucm
wc

m

=
ubl
wb

l

.

This implies ucm = α
β
wc

m and from

ucm
vcm

=
α

β

wc
m

vcm
= α

we get vcm
wc

m
= 1

β
=

vak+n+1

wa
k+n+1

, so we find that this boundary is equivalent to boundary 11.

Boundary 11 does not exist when m = 0, but neither does this one. This means that this

boundary is always equivalent to boundary 11.

Zero measure terms.

• Boundary 15: At this boundary

vci
wc

i

=
vci+1

wc
i+1

, for i = 1, . . . ,m− 1 ,

which makes the vectors q⃗c,i and q⃗c,i+1 colinear and the measure in Ωa
k,l,m,n vanishes on

this boundary.

• Boundary 16: At this boundary

vbi
wb

i

=
vbi+1

wb
i+1

, for i = 1, . . . , l − 1 ,

which makes the vectors q⃗b,i and q⃗b,i+1 colinear and the measure in Ωa
k,l,m,n vanishes on

this boundary.
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• Boundary 17: At this boundary

vai
wa

i

=
vai+1

wa
i+1

, for i = 1, . . . , k + n ,

which makes the vectors q⃗a,i and q⃗a,i+1 colinear and the measure in Ωa
k,l,m,n vanishes on

this boundary.

Higher codimension boundaries.

• Boundary 18: At this boundary

u•i = 1 .

The closure constraint implies that all other u-variables are zero. If m = 1 and k = l =

n = 0, the boundary is given by uc1 = 1, which implies vc1 = wc
1 = 1 through

0 ≤ uc1 ≤ vc1 ≤ wc
1 ≤ 1 .

• Boundary 19: At this boundary

uc1 =w
c
1 .

The uw-chain becomes

1 =
uc1
wc

1

≤ · · · ≤ ucm
wc

m

≤ ubl
wb

l

= · · · = ub1
wb

1

≤
uak+n+1

wa
k+n+1

≤ · · · ≤ ua1
wa

1

.

The closure constraint implies that this is a higher codimension boundary, except when

m = 1 and k + n = 0, in which case u•i = w•i . The uv-chain and vw-chain then read

0 ≤ ub1
vb1

≤ · · · ≤ ubl
vbl

≤ uc1
vc1

≤ ua1
va1

≤ ∞ ,

0 ≤ vc1
wc

1

≤ va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

≤ ∞

and contradict each other when setting u•i = w•i , thus we find a higher codimension

boundary.

• Boundary 20: At this boundary

ubl =w
b
l .
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This is only a boundary when m = 0. The uw-chain becomes

1 =
ubl
wb

l

= · · · = ub1
wb

1

≤
uak+n+1

wa
k+n+1

≤ · · · ≤ ua1
wa

1

≤ ∞ ,

This yields a higher codimension boundary, unless k = n = 0, in which case this boundary

is equivalent to boundary boundary 13.

• Boundary 21: At this boundary

ub1 = vb1 .

The uv-chain becomes

1 =
ub1
vb1

= · · · = ubl
vbl

≤ ucm
vcm

= · · · = uc1
vc1

≤
uak+n+1

vak+n+1

≤ · · · ≤ ua1
va1

≤ ∞ .

which implies u•i ≥ v•i . The closure constraint leads to a higher codimension boundary,

except when l = 1, k = n = 0. However, in this case the uw-chain and vw-chain become

0 ≤ uc1
wc

1

≤ · · · ≤ ucm
wc

m

≤ ub1
wb

1

≤ ua1
wa

1

≤ ∞ ,

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤ va1
wa

1

≤ vb1
wb

1

≤ ∞

and contradict each other when setting u•i = v•i . Thus, we find a higher codimension

boundary.

• Boundary 22: At this boundary

ucm
wc

m

=
uak+n+1

wa
k+n+1

.

This is a boundary only if l = 0. Since

ucm
vcm

vcm
wc

m

=
ucm
wc

m

≤
uak+n+1

wa
k+n+1

=
uak+n+1

vak+n+1

vak+n+1

wa
k+n+1

and

ucm
vcm

≤
uak+n+1

vak+n+1

,
vcm
wc

m

≤
vak+n+1

wa
k+n+1

,

this implies uc
m

vcm
=

ua
k+n+1

vak+n+1
and vcm

wc
m
=

vak+n+1

wa
k+n+1

and thus yields a higher codimension boundary.



5.4. A PROOF VIA STOKES’ THEOREM 197

• Boundary 23: At this boundary

ubl
vbl

=
uak+n+1

vak+n+1

.

This is only a boundary for m = 0. Since

ubl
wb

l

/
vbl
wb

l

=
ubl
vbl

≤
uak+n+1

vak+n+1

=
uak+n+1

wa
k+n+1

/
vak+n+1

wa
k+n+1

and

ubl
wb

l

≤
uak+n+1

wa
k+n+1

,
vak+n+1

wa
k+n+1

≤ vbl
wb

l

,

this implies
ub
l

wb
l
=

ua
k+n+1

wa
k+n+1

and
vak+n+1

wa
k+n+1

=
vbl
wb

l
and thus yields a higher codimension boundary.

As can be seen from the disk diagrams for A∞-relations in Fig. 5.16 or in the corresponding

expression (5.4.20), (5.4.21),

V(•, . . . , •,V(•, . . . , •, a, •, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •)

and

V(•, . . . , •, a, •, . . . , •,V(•, . . . , •, b, •, . . . , •, c, •, . . . , •), •, . . . , •)

are related to each other by reversing the nested boundary ordering and swapping a ↔ c and

so are

V(•, . . . , •, a, •, . . . , •, b, •, . . . , •,U(•, . . . , •, c, •, . . . , •), •, . . . , •)

and

V(•, . . . , •,U(•, . . . , •, a, •, . . . , •), •, . . . , •, b, •, . . . , •, c, •, . . . , •) .

One can take the vectors q⃗ 1
i = (q1u,i, q

1
v,i, q

1
w,i) and q⃗

2
i = (q2u,i, q

2
v,i, q

2
w,i) from the first A∞-term of

both of the pairs mentioned and replace them by q⃗
′1
i = (q1w,1, q

1
v,i, q

1
u,i) and q⃗

′2 = (q2w,i, q
2
v,i, q

2
u,i).

The expressions for the entries of these vectors can be found in (5.4.21). Since, after reversing

the nested boundary ordering, the labeling of the vectors q⃗
′1 and q⃗

′2 does not match the

ordering of the corresponding A∞-terms in the matrix Q, the ordering needs to be adjusted.

The matrix becomes

Q = (q⃗a, q⃗b, q⃗c, q⃗
′1
r , . . . , q⃗

′1
1 , q⃗

′2
s , . . . , q⃗

′2
1 ) .

Lastly, one applies the Z2-transformation on both u1 and v1 and u2 and v2 variables in the first
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pair, while in the second pair one only applies the transformation on the u2 and v2 variables.

One could say that the A∞-terms in these pairs are mirror images of each other. Similarly,

V(•, . . . , •, a, •, . . . , •,U(•, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •)

simply returns to an A∞-term of the same type after applying these operations, so these A∞-

terms are mirror images of themselves.

The potentials Ωa
k,l,m,n and Ωc

m,l,k,n are related through almost the same operations: one

reverses the boundary ordering and swaps a ↔ c and q⃗a,i ↔ q⃗c,i. This is not yet the same as

for the A∞-terms, but after evaluating the potentials on the boundary, one can apply a Z2-

transformation on the variables u1, v1 and/or u2, v2. It is now easy to see that the boundaries

in the categorization above that gave A∞-terms, will give the A∞-terms related by the above

relation on the same boundaries, but for the potential Ωc
m,l,k,n. Moreover, the gluing terms

coming from Ωc
m,l,k,n can be related in a similar way and can be easily seen to vanish among

themselves or with the gluing terms from Ωa
k,l,m,n. The boundaries that yielded zero measure

terms and higher codimension boundary terms will do so again and they will therefore not

contribute. We will now list the boundaries that produce A∞-terms and gluing terms for

Ωc
m,l,k,n. For this, remember that the matrix Q is given by (5.4.18) for these potentials.

c-diagrams.

• Boundary 1: At this boundary

u•i = 0 .

This leads to a higher codimension boundary, except when uci = 0 for i = 1, . . . ,m and

ubi = 0 for i = 1, . . . , l, in which case it leads to α = 0. After the change of coordinates

vci → u1i , wc
i → v1i , for i = 1, . . . ,m ,

vbi → u1m+l+2−i , wb
i → v1m+l+2−i , for i = 1, . . . , l ,

uai → u2n+k+2−i , vai → u1m+1v
2
n+k+2−i , wa

i → v1m+1v
2
n+k+2−i , for i = 1, . . . , k + n+ 1 ,

and a Z2-transformation on both integration domains, the boundary is identified as Vk+n×
Vm+l. We also change the matrix Q,such that it corresponds to the canonical ordering

for nested vertices. It then reads

Q =(q⃗a, q⃗b, q⃗c, q⃗
′

b,1, . . . , q⃗
′

b,l, q⃗
′

c,m, . . . , q⃗
′

c,1, q⃗
′

a,1, . . . , q⃗
′

a,k+n+1) .
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It can now be seen that∫
∂Wm,l,k,n

Ωc
m,l,k,n|uc

i=ub
i=0 ∼

∼ V(•, . . . , •,V(•, . . . , •, a, •, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •)

on this boundary, with the exception of V(•, . . . , •,V(a, b), •, . . . , •, c, •, . . . , •). An exam-

ple of a disk diagram at this boundary is shown in Fig. 5.56.

c

b

a

α1

α3
β1β2

γ1

α2

−→

a

b

α1

α2

α3

α4

α5

c

α6

Figure 5.56: An example of boundary 1 contributing to V(V(α1, a, α2, α3, α4, b, α5), α6, c).

• Boundary 2: At this boundary

uc1 = vc1 .

This is only a boundary if l = 0, in which case it is a higher codimension boundary unless

a

b

c

γ1

α1

α2

−→

a

b

c
α1

α1

−→ a

α1

α2

c

b

Figure 5.57: An example of boundary 2 contributing to V(α1, a, α2,V(b, c)).

k = n = 0, like in the left-ordered case. The uv-chain then reads

1 =
ucm
vcm

≤ · · · ≤ uc1
vc1

≤ ua1
va1
.

The closure constraint now forces u•i = v•i . Then, after a change of coordinates

vci → u2i , wc
i → v2i , for i = 1, . . . ,m ,

ua1 → u2m+1 , wa
1 → v2m+1 ,

and a Z2-transformation on the remaining variables, the boundary is identified as Vm×V0

. We also change the matrix Q, such that it corresponds to the canonical ordering for



200 CHAPTER 5. A∞-RELATIONS FROM STOKES’ THEOREM

nested vertices. It then reads

Q =(q⃗a, q⃗b, q⃗c, q⃗
′

a,1, q⃗
′

c,m, . . . , q⃗
′

c,1) .

It can now be seen that∫
∂W0,0,m,0

Ωc
m,0,0,0|uc

1=vc1
∼ V(a, •, . . . , •,V(b, c), •, . . . , •)

on this boundary. Since the line connected to the output arrow can only have one orien-

tation, there is only one disk diagram at this boundary shown in Fig. 5.57.

• Boundary 3: At this boundary

vc1 = wc
1 .

The vw-chain becomes

a

b

c

α1

γ1−→
a

b

c

α1

α2−→

a

b

c

α2

α1

Figure 5.58: An example of boundary 3 contributing to V(α1,V(a, b), α2, c).

1 =
vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

≤ ∞ .

and implies v•i ≥ w•i . The closure constraint then leads to v•i = w•i , which gives a higher

codimension boundary, except for l = 0,m = 1. Then after the change of coordinates

uc1 → u21 , vc1 → v21 ,

uai → u2k+n+3−i , vai → v2k+n+3−i , for i = 1, . . . , k + n+ 1 ,

and a Z2-transformation on the remaining variables, the boundary is identified as Vk+n+1×
V0. We also change the matrix Q, such that it corresponds to the canonical ordering for

nested vertices. It then reads

Q =(q⃗a, q⃗b, q⃗c, q⃗
′

a,1, . . . , q⃗
′

a,k+n+1, q⃗
′

c,1) .
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It can now be seen that∫
∂W1,0,k,n

Ωc
1,0,k,n|vc1=wc

1
∼ V(•, . . . , •,V(a, b), •, . . . , •, c, •, . . . , •)

on this boundary. An example of a disk diagram at this boundary contributing to the

A∞-term is shown in Fig. 5.58, while Fig. 5.59 shows a disk diagram contributing to a

gluing term.

a

b

c

α1 α2−→
a

b

c

α1

α2

Figure 5.59: An example of boundary 3 contributing to a gluing term.

• Boundary 4: At this boundary

vb1 = wb
1 .

The vw-chain becomes

c

b

a

β1

γ1

δ1

−→
c

b

a

β1

γ1

δ1

−→

a

b

c

α3α2

α1

Figure 5.60: An example of boundary 4 contributing to V(V(a, b), α1, α2, α3).

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

= 1

and implies v•i ≤ w•i . The closure constraint then leads to v•i = w•i , which leads to a higher

codimension boundary, except for l = 1, m = 0. Then, after the change of coordinates

ub1 → u21 , vb1 → v21 ,

uai → u2k+n+3−i , vai → v2k+n+3−i , for i = 1, . . . , k + n+ 1 ,

and a Z2-transformation on the remainging coordinates, the boundary is identified as

Vk+n+1 × V0. We also change the matrix Q, such that it corresponds to the canonical
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ordering for nested vertices. It then reads

Q =(q⃗a, q⃗b, q⃗c, q⃗
′

a,1, . . . , q⃗
′

a,k+n+1, q⃗
′

b,1) .

It can now be seen that∫
∂W0,1,k,n

Ωc
0,1,k,n|vb1=wb

1
∼ V(•, . . . , •,V(a, b), •, . . . , •, c, •, . . . , •)

on this boundary. An example of a disk diagram at this boundary contributing to the

A∞-term is shown in Fig. 5.60, while Fig. 5.61 shows a disk diagram contributing to a

gluing term.

c

b

a

β1

γ1

δ1

−→
c

b

a

α1

α3

α2

Figure 5.61: An example of boundary 4 contributing to a gluing term.

• Boundary 5: At this boundary

w•i = 1 .

The closure constraint forces all other w-variables to be zero. This yields a higher codi-

menion boundary, except for m = 1 and wc
1 = 1, which leads to β = 0. After the change

of coordinates

uc1 → u2l+1 , vc1 → v2l+1 ,

ubi → u2i , vbi → v2i , for i = 1, . . . , l ,

uai → u2k+n+l+3−i , vai → v2k+n+l+3−i , for i = 1, . . . , k + n+ 1 .

and a Z2-transformation on both integration domains, the boundary is identified as

Vk+l+n+1 × V0. We also change the matrix Q, such that it corresponds to the canon-

ical ordering for nested vertices. It then reads

Q =(q⃗a, q⃗b, q⃗c, q⃗
′

c,1, q⃗
′

a,1, . . . , q⃗
′

a,k+n+1, q⃗b,l, . . . , q⃗
′

b,1) .

It can now be seen that∫
∂W1,l,k,n

Ωc
1,l,k,n|wc

1=1 ∼ V(•, . . . , •,U(a, •), •, . . . , •, b, •, . . . , •, c, •, . . . , •)
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and ∫
∂W1,l,k,n

Ωc
1,l,k,n|wc

1=1 ∼ V(•, . . . , •,U(•, a), •, . . . , •, b, •, . . . , •, c, •, . . . , •)

on this boundary. An example of a disk diagram at this boundary is shown in Fig. 5.62.

c

b

a

α1

β1β2

γ1−→ a

α1

c

b

α2

α3

α4

Figure 5.62: An example of boundary 5 contributing to V(U(a, α1), α2, b, α3, α4, c).

• Boundary 6: At this boundary

w•i = 0 .

Form = 1 and wc
1 = 1, this is the same as boundary 5. Otherwise, if wc

i = 0, the uw-chain

is equivalent to

0 ≥w
a
1

ua1
≥ · · · ≥

wa
k+n+1

uak+n+1

≥ wb
1

ub1
= · · · = wb

l

ubl
≥ wa

m

ucm
≥ · · · ≥ 0+

uci
≥ · · · ≥ wc

1

uc1
≥ ∞ ,

which forces wc
j = 0 for j > i and wa

k = wb
k = 0 for any k. This leads to a higher

codimension boundary. Only when we consider wa
i = 0 for i = 1, . . . , k+n+1 and wb

i = 0

for i = 1, . . . , l, we find an A∞-term. Then, after the change of coordinates

uc1 → u2l+1u
1
1 ,

vci → v2l+1u
1
i , wc

i → v1i , for i = 1, . . . ,m

ubi → u2i , vi → v2i , for i = 1, . . . , l ,

uai → u2k+l+n+3−i , vai → v2k+l+n+3−i , for i = 1, . . . , k + n+ 1

and a Z2-transformation on the remaining variables, the boundary is identified as Vk+l+n+1×
Vm−1. We also change the matrix Q, such that it corresponds to the canonical ordering

for nested vertices. It then reads

Q =(q⃗a, q⃗b, q⃗c, q⃗
′

c,m, . . . , q⃗
′

c,1, q⃗
′

a,1, . . . , q⃗
′

a,k+n+1, q⃗
′

b,l, . . . , q⃗
′

b,1) .



204 CHAPTER 5. A∞-RELATIONS FROM STOKES’ THEOREM

It can now be seen that∫
∂Wm,l,k,n

Ωc
m,l,k,n|wa

i =wb
i=0 ∼ V(•, . . . , •,U(•, . . . , •, a, •, . . . , •), •, . . . , •, b, •, . . . , •, c, •, . . . , •)

on this boundary, with the exception of V(•, . . . , •,U(a, •), •, . . . , •, b, •, . . . , •, c, •, . . . , •)
and V(•, . . . , •,U(•, a), •, . . . , •, b, •, . . . , •, c, •, . . . , •). An example of a disk diagram at

this boundary is shown in Fig. 5.63.

c

b

a

α1

α2
β1β2

γ1−→ a

α1 α2

c

b

α3

α4

α5

Figure 5.63: An example of boundary 6 contributing to V(V(a, α1, α2), α3, b, α4, α5, c).

• Boundary 7: At this boundary

v•i = 1 .

c

b

a

α1

α2
β1

γ1

γ2

−→

a

c

α1 α2

α4
b

α3

Figure 5.64: An example of boundary 7 contributing to V(a, α1, α2,U(b, α3), α4, c).

The closure constraint forces all other v-variables to be zero. This yields a higher codi-

mension boundary, except when l = 1 and vb1 = 1. Then, after the change of variables

uci → u2i , wc
i → v2i , for i = 1, . . . ,m ,

ub1 → u2m+1 , wb
1 → v2m+1 ,

uai → u2k+m+n+3−i , wa
i → v2k+m+n+3−i , for i = 1, . . . , k + n+ 1

and after a Z2-transformation on the remaining variables, the boundary is identified as

Vk+m+n+1 ×V0. We also change the matrix Q, such that it corresponds to the canonical
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ordering for nested vertices. It then reads

Q =(q⃗a, q⃗b, q⃗c, q⃗
′

b,1, q⃗
′

a,1, . . . , q⃗
′

a,k+n+1, q⃗
′

c,m, . . . , q⃗
′

c,1) .

It can now be seen that∫
∂Wm,1,k,n

Ωc
m,1,k,n|vb1=1 ∼ V(•, . . . , •, a, •, . . . , •,U(b, •), •, . . . , •, c, •, . . . , •)

and ∫
∂Wm,1,k,n

Ωc
m,1,k,n|vb1=1 ∼ V(•, . . . , •, a, •, . . . , •,U(•, b), •, . . . , •, c, •, . . . , •)

on this boundary. An example of a disk diagram at this boundary is shown in Fig. 5.64.

• Boundary 8: At this boundary

v•i = 0 .

The vw-chain becomes

c

b

a

α1

α2
β2β1

γ1

γ2

−→

a

c

α1 α2

α5
b

α4

α3

Figure 5.65: An example of boundary 8 contributing to V(a, α1, α2,V(α3, b, α4), α5, c).

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = 0+

wa
i

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ vb1
wb

1

≤ ∞ ,

0 ≤ vc1
wc

1

≤ · · · ≤ vcm
wc

m

≤
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ vbl
wb

l

≤ · · · ≤ 0+

wb
i

· · · ≤ vb1
wb

1

≤ ∞

if vai = 0 and vbi = 0, respectively. This forces all vai = 0 and vci = 0 in both cases, while

in the latter we also have vbj = 0 for j > i. This leads to a higher codimension boundary.

It is only when vci = 0 for i = 1, . . . ,m and vai = 0 for i = 1, . . . , k + n+ 1, that one finds

an A∞-term. After the change of variables

uci → u2i , wc
i → v2i , for i = 1, . . . ,m ,

ubi → u2m+1u
1
i , vbi → v1i , wb

i → v2m+1u
1
1 , for i = 1, . . . , l ,

uai → u2k+m+n+3−i , wa
i → v2k+m+n+3−i , for i = 1, . . . , k + n+ 1 ,
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and a Z2-transformation on the u2- and v2-variables, the boundary is identified as Vk+m+n+1×
Vl−1. We also change the matrix Q, such that it corresponds to the canonical ordering

for nested vertices. It then reads

Q =(q⃗a, q⃗b, q⃗c, q⃗
′

b,1, . . . , q⃗
′

b,l, q⃗
′

a,1, . . . , q⃗
′

a,k+n+1, q⃗
′

c,m, . . . , q⃗
′

c,1) .

It can now be seen that∫
∂Wm,l,k,n

Ωc
m,l,k,n ∼ V(•, . . . , •, a, •, . . . , •,U(•, . . . , •, b, •, . . . , •), •, . . . , •, c, •, . . . , •)

on this boundary, with the exception of V(•, . . . , •, a, •, . . . , •,U(b, •), •, . . . , •, c, •, . . . , •)
and V(•, . . . , •, a, •, . . . , •,U(•, b), •, . . . , •, c, •, . . . , •). An example of a disk diagram at

this boundary is shown in Fig. 5.65.

Gluing terms.

• Boundary 9:

At this boundary

ucm
vcm

=
ubl
vbl
.

∫
∂Wk,l,m,n

Ωc
k,l,m,n does not yield a familiar A∞-term on this boundary and it does not

c

b

a

α1

α3
β1β2

γ1

α2

−→
c

b

a

α2

α3 α5α4

α6

α1

c

b

a

α1

α3
β1
β2

γ1

α2

−→
c

b

a

α2

α3 α4

α5

α6

α1

Figure 5.66: Two examples of boundary 9 contributing to a gluing term, with both orientations
of β2.

vanish either. An example of a disk diagram at this boundary is shown in Fig. 5.66.

• Boundary 10: At this boundary

uc1
vc1

=
uak+n+1

vak+n+1

.

For k = l = n = 0 the uv-chain becomes

0 ≤ ucm
vcm

= · · · = uc1
vc1

=
ua1
va1

≤ ∞ .
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The closure constraint then gives u•1 = v•1, so this boundary is equivalent to boundary

2 when k = l = n = 0 and does not yield a gluing term, but an A∞-term instead.

Otherwise,
∫
∂Wm,l,k,n

Ωc
m,l,k,n does not yield a familiar A∞-term on this boundary and it

does not vanish either. An example of a disk diagram at this boundary is shown in Fig.

5.67. Gluing terms corresponding to the type of diagrams on the right cancel with gluing

terms belonging to the type of diagrams on the right of Fig. 5.66. A special type of gluing

term with no elements between the junction and the output arrow, i.e. n = 0, is shown

in Fig. 5.68. This is the only type of gluing term that does not cancel with any other

gluing term from the potential Ωc
m,l,k,n, but rather from the type Ωa

k,l,m,n, ‘gluing’ them

together. In particular, it cancels with the type of diagrams depicted in Fig. 5.52.

a

b

c

α6

α5

α3 α4

α2

α1

a

b

c

γ1

δ1β1 β2

α1

α2

−→
a

b

c

α6

α1

α4 α5

α3

α2

a

b

c

γ1

δ1

β1 β2

α1

α2

−→

Figure 5.67: Two examples of boundary 10 contributing to a gluing term, with both orientations
of δ1.

a

b

c

α5

α3 α4

α2

α1

−→
a

b

c

γ1

β1 β2

α1

α2

Figure 5.68: Special case of a gluing term coming from boundary 10. This gluing term is
cancelled by a gluing term coming from a potential of the type Ωa

k,l,m,n.

• Boundary 11: At this boundary

vcm
wc

m

=
vak+n+1

wa
k+n+1

.

For l = 0, m = 1 the vw-chain reads

0 ≤ vc1
wc

1

=
vak+n+1

wa
k+n+1

= · · · = va1
wa

1

≤ ∞ .

The closure constraint then gives v•i = w•i , so this boundary is equivalent to boundary

3 when l = 0 and m = 1, producing either a gluing term or an A∞-term. Otherwise,∫
∂Wm,l,k,n

Ωc
m,l,k,n does not yield a familiar A∞-term on this boundary and it does not vanish
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either. An example of a disk diagram at this boundary is shown in Fig. 5.66. Gluing

terms corresponding to the type of diagrams on the left cancel with gluing terms belonging

to the type of diagrams on the left of Fig. 5.69, while gluing terms corresponding to the

type of diagrams on the right cancel with gluing terms belonging to the type of diagrams

on the left of Fig. 5.67.

c

b

a

α6

α5α3 α4

α2

α1

a

b

c

γ1

δ1β1 β2

α1

α2

−→
a

b

c

α6

α5α3 α4

α1

α2

a

b

c

γ1

δ1β1 β2

α1

α2

−→

Figure 5.69: Two examples of boundary 11 contributing to a gluing term, with both orientations
of γ2.

• Boundary 12: At this boundary

va1
wa

1

=
vbl
wb

l

.

This implies wb
l = βvbl and from

ubl
wb

l

=
1

β

ubl
vbl

=
α

β

we get
ub
l

vbl
= α = uc

m

vcm
, so we find that this boundary is equivalent to boundary 9. It

is only when m = 0 that boundary 9 does not exist and we have to consider this one.∫
∂Wm,l,k,n

Ωc
m,l,k,n does not yield a familiar A∞-term on this boundary and it does not

vanish either. The disk diagrams at this boundary resemble the ones in Fig. 5.66 when

there are no lines attached to the c-leg. An example of a disk diagram at this boundary

is shown in Fig. 5.70. Gluing terms corresponding to the type of diagrams on the left

cancel with gluing terms belonging to the type of diagrams on the left of Fig. 5.69.

a

b

c

α4

α3α1 α2

a

b

c

γ1

δ1β1 β2

−→
a

b

c

α4

α3α2

α1

a

b

c

γ1

δ1β1
β2

−→

Figure 5.70: Two examples of boundary 12 contributing to a gluing term, with both orientations
of β2.
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• Boundary 13: At this boundary

ub1
wb

1

=
uak+n+1

wa
k+n+1

.

This implies wa
k+n+1 =

β
α
uak+n+1 and from

vak+n+1

wa
k+n+1

=
α

β

vak+n+1

uak+n+1

=
1

β

we get
ua
k+n+1

vak+n+1
= α =

uc
1

vc1
, so we find that this boundary is equivalent to boundary 10.

It is only when m = 0 that boundary 10 does not exist and we have to consider this

one.
∫
∂Wm,l,k,n

Ωc
m,l,k,n does not yield a familiar A∞-term on this boundary and it does not

vanish either. The disk diagrams at this boundary resemble the ones in Fig. 5.67 when

there are no lines attached to the c-leg. An example of a disk diagram at this boundary

is shown in Fig. 5.71. Gluing terms corresponding to the type of diagrams on the left

cancel with gluing terms belonging to the type of diagrams on the right of Fig. 5.69,

while gluing terms corresponding to the type of diagrams on the right cancel with gluing

terms belonging to the type of diagrams on the right of Fig. 5.70.

a

b

c

α4

α3

α1 α2

a

b

c

γ1

δ1β1 β2

−→
a

b

c

α4

α1

α2 α3

a

b

c

γ1

δ1

β1 β2

−→

Figure 5.71: Two examples of boundary 13 contributing to a gluing term, with both orientations
of δ1.

• Boundary 14: At this boundary

ucm
wc

m

=
ubl
wb

l

.

This implies ucm = α
β
wc

m and from

ucm
vcm

=
α

β

wc
m

vcm
= α

we get vcm
wc

m
= 1

β
=

vak+n+1

wa
k+n+1

, so we find that this boundary is equivalent to boundary 11.

Boundary 11 does not exist when m = 0, but neither does this one. This means that this

boundary is always equivalent to boundary 11.
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5.5 Conclusions and discussion

It has already been understood that there are tight links between higher spin gravities and de-

formation quantization. The first link is obvious: higher spin algebras are associative algebras

resulting from deformation quantization of coadjoint orbits that correspond to irreducible rep-

resentations of the spacetime symmetry algebras (often-times, so(d, 2)). Therefore, the product

is given by the Kontsevich formula (in fact, Fedosov’s construction suffices since the coadjoint

orbits are symplectic manifolds).

The second link to deformation quantization is more subtle. Any higher spin algebra deter-

mines the free equations of motion. The interactions are due to a certain Hochschild cohomology

group being nontrivial and the next one, which contains obstructions, being trivial. In the sim-

plest case of the Weyl algebra A1, it is the group HH2(A1, A
∗
1) that leads to Chiral Theory.

The group HH2(A1, A
∗
1) is one dimensional and the cocycle can be obtained from Shoikhet–

Tsygan–Kontsevich’s formality [34, 198, 229]. However, a nontrivial cocycle is not yet a vertex,

it only justifies its existence. There does not seem any simple way to generate any vertices

directly from the formality.7

Another link to formality is the very form of the vertices: they are represented by graphs

similar to Kontsevich’s ones with certain weights. Since the Poisson structure ϵAB is constant for

our case, there are no genuine bulk vertices and all the graphs have legs on the boundary. These

graphs can be re-summed to give the final result presented in Sec. 5.3, see also [91, 206, 228].

Lastly, in this paper, we managed to prove the A∞-relations via the Stokes theorem, which is

a method typical for formality theorems thanks to Kontsevich.

The arguments here and above suggest that there is a bigger picture where (Shoikhet–

Tsygan–)Kontsevich formality occupies the first two floors. While this structure is yet to

be found, a more specific problem is to construct new theories (or recast the old ones, e.g.

conformal higher spin gravity) along the lines of this paper, i.e., to find appropriate configuration

spaces for vertices and A∞-relations.

The observation [91, 228] that Chiral Theory is essentially a Poisson sigma-model8 – de-

termined by a (noncommutative) Poisson structure – may also lead to new insight into the

problem of higher spin theories. It is plausible that all of them are Poisson sigma-models too,

at least at the formal level. In this regard let us note that Poisson sigma-models of a different

kind have already appeared in the higher spin literature, see e.g. [232–234].

Thus, the main conclusions of the paper are: (i) there has to exist a formality that extends

(Shoikhet–Tsygan–)Kontsevich formality; (ii) Chiral Theory’s vertices are its elementary con-

7The cubic vertex can formally be written in a factorized form with the help of the cocycle [37], but this
form is forbidden by additional physical assumptions, e.g. the existence of the smooth flat limit.

8That the A∞-algebra of Chiral theory is a pre-Calabi-Yau one implies that its symmetrization (essentially,
by inserting the fields ω and C into the structure maps) is a usual commutative Poisson structure (note that pre-
Calabi-Yau structure is a noncommutative analog of the Poisson structure, see e.g. [113, 211]). Therefore, the
equations of motion have automatically the form of those of a Poisson sigma-model, i.e. dωk = 1

2∂kπ
ij(C)ωi ωj ,

dCi = πij(C)ωj , where we introduced notation ωk and Ci for the fields, which also stresses that they live in
the spaces dual to each other.
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sequences; (iii) there should exist a two-dimensional topological model that explains all of the

above at the physics’ level of rigour, similar to how the Poisson sigma-model is related to the

Kontsevich formality theorem [235]. It would be interesting to give these observations more

solid support in the future.
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Chapter 6

Conclusion

The first part of this thesis presented the construction of chiral Higher Spin Gravity (HiSGRA):

the first Lorentz covariant and coordinate-independent formulation of a HiSGRA with massless

propagating degrees of freedom in both flat space and (A)dS backgrounds. This was achieved by

deriving the equations of motion from the underlying L∞-algebra structure. The same formula-

tion was also constructed independently for self-dual Yang–Mills (SDYM) and self-dual gravity

(SDGRA), which are embedded as closed subsectors of chiral HiSGRA, and was shown to be

consistent with the full L∞-algebra. Furthermore, the covariant formulation reproduces known

flat-space amplitudes obtained in light-cone gauge. Through the AdS/CFT correspondence,

the existence of this formulation establishes that the O(N) vector models – including notable

examples such as the Ising model – contain a well-defined chiral and anti-chiral subsector.

A remarkable feature of the formulation is that the resulting n-point vertices are manifestly

local for all n ≥ 2. These vertices are expressed as integrals of simple exponential functions over

a class of configuration spaces referred to as swallowtails, which correspond to convex polygons

in R2. This points to a surprising connection between chiral HiSGRA, convex geometry, and

positive Grassmannians. The underlying L∞-algebra is derived from an A∞-algebra of the form

Â = A⊗B, where A = Aλ[−1]⊕A⋆
λ and B = A1 ⊗MatN is associative. This A∞-algebra is of

pre-Calabi–Yau type of degree 2, suggesting that chiral HiSGRA may admit a description as a

two-dimensional topological field theory [113].

The second line of research explored the connection between chiral HiSGRA and the cele-

brated (Shoikhet–Tsygan-)Kontsevich formality theorems. We showed that the A∞-relations

underlying chiral HiSGRA can be derived via an application of Stokes’ theorem — a hallmark

feature of known formality proofs. To this end, we introduced a class of carefully constructed

configuration spaces whose boundaries decompose into products of swallowtails. These spaces

generalize convex polygons to three dimensions and can be viewed as higher-dimensional ana-

logues in R3. The resulting Stokes-based proof hints at an extension of formality in the frame-

work of non-commutative deformation quantization.

A notable observation is that among all quasi-isomorphic A∞-algebras, the minimal model

produces vertices that are manifestly local. A quasi-isomorphism will typically induce a non-

local field redefinition of the vertices. In a sense, this suggests that A∞/L∞-algebra that
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represent field theories have preferred bases where the vertices are maximally local. It would

be interesting to find how locality is exactly tied to a choice of representative in an equivalence

classes of quasi-isomorphic A∞-algebras.

Another surprising feature is that the most economical representation of the vertices is

through integrals over convex polygons and that the Stokes-based proof requires a generalization

of these objects, wherein the boundaries of the configuration spaces are themselves products

of convex polygons. This leads to the question whether other HiSGRAs – or field theories in

general – may be constructed from similar vertices with associated configuration spaces. The

requirement of a Stokes-based proof might offer a set of conditions, e.g. the existence of spaces

with boundaries that share the same structural properties, that allows one to obtain HiSGRAs

in a completely novel way.

Ongoing work is focused on computing the three- and four-point correlation functions for

SDYM and its higher spin extension in AdS4. This will provide a novel realization of AdS/CFT

in terms of first-order theories and it aims to carefully study the results in various gauges and

compare them to known results in Yang-Mills. This work will be extended to a series of projects,

in which the same will be computed for SDGR and its higher spin extension and finally for chiral

HiSGRA. This long-term goal is to obtain all higher order correlation functions by identifying

all higher spin invariants.

The results obtained in this thesis give rise to many more interesting research questions

for future work. On the more mathematical side, for instance, one might study (i) how the

(Shoiket-Tsygan-)Kontsevich can be extended in light of the chiral HiSGRA construction, (ii)

what topological model describes chiral HiSGRA, (iii) what is the exact relation between chi-

ral HiSGRA and positive Grassmanians (also including the larger configuration spaces in the

Stokes-based proof), (iv) can the admissible configuration spaces be classified to generate other

field theories?

Leaning more towards the physics side of the spectrum, it would be interesting study chiral

HiSGRA on twistor space by (i) using HPT to transfer the A∞-algebra of chiral HiSGRA to

twistor space and construct its equations of motion on twistor space, (ii) constructing a parity-

invariant extension of chiral HiSGRA, perhaps following the recently found HS Yang-Mills

extension of HS-SDYM on twistor space [222], (iii) constructing an action for chiral HiSGRA,

(iv) proving that chiral HiSGRA is integrable.

Quantum effects of the theory can also be studied. This includes (i) computing quantum

corrections to two-point and three-point functions and studying the anomalous dimensions of

dual operators and their OPE coefficients, (ii) proving that chiral HiSGRA is UV-finite at

loop-level by extending the results obtained in [8, 10] to all n-point functions.

In addition, it would be interesting to study chiral HiSGRA in relation to broader formalisms

such as the double copy and soft theorems in celestial holography.



Appendix A

Notation and conventions

The most important conventions and definitions that were used in the main text are introduced

here. A short discussion on the spinor formalism is given, a more elaborate treatment can be

found in [105].

It is useful for 4d theories to express all spacetime indices in terms of spinor indices, using

so(3, 1) ∼ sl(2,C). This isomorphism allows to map 4-dimensional spacetime vectors to 2 × 2

Hermitian matrices, which can be extended to tensors. As basis for the 2 × 2 Hermitian

matrices in flat spacetime we choose the Pauli matrices and the unit matrix σµ
AB′ = (11, σi). The

Greek letters run over spacetime indices, whereas the lower case Latin letters are space indices

and capitals are the matrix indices. The Pauli matrices satisfy Trσi = 0 and {σµ, σν}AA′ =

2ηµν11AA′ , with ηµν = diag(−1, 1, 1, 1) the Minkowski metric. We define

xAA′ = xµ(σµ)AA′ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

which is Hermitian. We also introduce a dual set (σµ)AA′
= (1,−σi), such that

vµ = −1
2
xAA′σµA′A .

The two sets are related by σAA′
µ = σA′A

µ . We also introduce raising and lowering rules for the

primed (and similarly for unprimed indices):

yA = yBϵBA, yA = ϵAByB .

The inner product in spinor indices is defined as (xy) = xAyBϵAB = xAy
A = −xAyA. We define

the ϵ’s as

ϵAB = ϵA
′B′

= i(σ2)AB =

(
0 1

−1 0

)

and their inverse −ϵAB = (−σ2)−1 = −iσ2. ϵAB is anti-symmetric and ϵACϵ
BC = δ B

A . Inner
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products in spinor indices look slightly different from inner products in spacetime indices:

xAA′yAA′
= −2xµy

µ , zAz
A = zAzBϵAB = 0 .

Any bi-spinor TAB can be decomposed into symmetric and anti-symmetric parts:

TAB = 1
2
(TAB + TBA + TAB − TBA) = T(AB) +

1
2
ϵABT

C
C , (A.0.1)

where T(AB) =
1
2!
(TAB+TBA) denotes the symmetric part of TAB. From now on, we will use the

convention that if a tensor carries identical indices, it is implied that the tensor is symmetric in

them, e.g. TAA = 1
2!
(TA1A2 + TA2A1) and in a more condensed notation, TA(n) is symmetrized

over the n indices in a similar fashion. Tensors can carry two types of unrelated indices, primed

and unprimed. In the most general case we write TA(m),A′(n) = 1
m!n!

∑
permutations T

A1...Am,A′
1...A

′
n .

An object that we will often use is the vierbein eAA′ ≡ eAA′
µ dxµ, which is a one-form. A direct

consequence of the decomposition of (A.0.1) leads to the important identity

eAA′ ∧ eBB′ = 1
2
(ϵA′B′HAB + ϵABHA′B′) , (A.0.2)

where HAB = eAC′ ∧ eBC′
and HA′B′ = eCA′ ∧ eCB′ . This identity allows one, for example, to

rewrite the Yang-Mills field strength in terms of its (anti)-self-dual parts

F = FAA′|BB′eAA′ ∧ eBB′
= HBBFBB +HB′B′

FB′B′ ,

with FAB = 1
2
FAC′|B

C′
and FA′B′ = 1

2
FCA′|

C
B′ .

Another useful feature of the spinor formalism is the Fierz identity. Given three spinors, ϕA,

χB, ψC , the anti-symmetrization over their indices equals zero, as their indices only run over

two values A,B,C = 0, 1. The Fierz identity is obtained by contracting this anti-symmetrized

product with ϵBC , which leads to

3ϵBCϕ[AχBψC] = ϕA(χψ) + χA(ψϕ) + ψA(ϕχ) ≡ 0 . (A.0.3)
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Self-dual theories

B.1 Technicalities: SDYM

The calculations in the main text have been highly compacted for the sake of brevity. In this

appendix we aim to present some proofs and additional details to the reader.

B.1.1 Ψ-sector

The calculations of the Ψ-sector have been moved to this appendix as they are very much

similar to the F -sector. The approach is as follows: we apply a covariant derivative to the

ansatz (2.3.20) and we also contract eBB′
with ΨA(k+1),A′(k+3) as to obtain two expressions for

eBB′
DΨA(k)B,A′(k+2)B′ , which we then compare. The former yields

D2ΨA(k),A′(k+2) =−HBB[FBB,ΨA(k),A′(k+2)] = −eCC′ ∧DΨA(k)C,A′(k+2)C′

− eCA′ ∧
k−1∑
n=0

βnk[DFA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

− eCA′ ∧
k−1∑
n=0

βnk[FA(n+1)C,A′(n), DΨA(k−n−1),A′(k−n+1)]

− eCA′ ∧
k−1∑
n=0

γnk[DFA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)]

− eCA′

k−1∑
n=0

γnk[FA(n+2),A′(n), DΨA(k−n−2),A′(k−n+1)] .

(B.1.1)
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Considering only quadratic terms in the fields gives

eBB′ ∧DΨA(k)C,A′(k+2)C′ = HBB[FBB,ΨA(k),A′(k+2)]

−
k∑

n=1

β(n−1)k

2
HBB[FA(n)BB,A′(n),ΨA(k−n),A′(k−n+2)]

−
k∑

n=0

βnk+γ(n−1)k

2
HBB[FA(n+1)B,A′(n),ΨA(k−n−1)B,A′(k−n+2)]

−
∑
n=0

γnk

2
HBB[FA(n+2),A′(n),ΨA(k−n−2)BB,A′(k−n+2)]

+
k∑

n=0

γ(n−1)k

2
HA′

B′
[FA(n+1)

B
,A′(n−1)B′ ,ΨA(k−n−1)B,A′(k−n+2)]

−
k∑

n=0

βnk

2
HA′

B′
[FA(n+1)

B
,A′(n) ,ΨA(k−n−1)B,A′(k−n+1)B′ ] .

(B.1.2)

We have renamed the dummy indices in some terms in order to match the summation limits with

the expression for eBB′
ΨA(k)B,A′(k+2)B′ that we will derive next. This makes some coefficients

show up that were not present in the minimal ansatz, so we have to set them to zero by hand:

βkk = 0, γ(−1)k = 0. Contracting eBB′
with DΨA(k),A′(k+4) gives

eBB′ ∧DΨA(k)B,A′(k+2)B′ =

−
k∑

n=0

(n+1)(k+4)
(k+1)(k+3)

βn(k+1)

2
HBB[FA(n)BB,A′(n),ΨA(k−n),A′(k−n+2)]

−
k∑

n=0

( (k−n)(k+4)
(k+1)(k+3)

βn(k+1)

2
+ (n+2)(k+4)

(k+1)(k+3)

γn(k+1)

2
)HBB[FA(n+1)B,A′(n),ΨA(k−n−1)B,A′(k−n+2)]

−
k∑

n=0

( n(k−n)
(k+1)(k+3)

βn(k+1)

2
− n(n+2)

(k+1)(k+3)

γn(k+1)

2
)HA′

B′
[FA(n+1)

B
,A′(n−1)B′ ,ΨA(k−n−1)B,A′(k−n+2)]

−
k∑

n=0

( (k−n)(k−n+2)
(k+1)(k+3)

βn(k+1)

2
− (n+2)(k−n+2)

(k+1)(k+3)

γn(k+1)

2
)HA′

B′
[FA(n+1)

B
,A′(n) ,ΨA(k−n−1)B,A′(k−n+1)B′ ]

−
k∑

n=0

(k−n−1)(k+4)
(k+1)(k+3)

γn(k+1)

2
HBB[FA(n+2),A′(n),ΨA(k−n−2)BB,A′(k−n+2)] .

Comparing this expression to (B.1.2), one obtains the recurrence relations

0 = β0k +
2k(k+2)
k+3

,

0 = (n+2)(k+4)
(k+1)(k+3)

β(n+1)(k+1)

2
− βnk

2
,

0 = (k−n)(k+4)
(k+1)(k+3)

βn(k+1)

2
+ (n+2)(k+4)

(k+1)(k+3)

γn(k+1)

2
− βnk+γ(n−1)k

2
,

0 = (k−n)(k−n+2)
(k+1)(k+3)

βn(k+1)

2
− (n+2)(k−n+2)

(k+1)(k+3)

γn(k+1)

2
− βnk

2
,
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0 = (k−n−1)(n+1)
(k+1)(k+3)

β(n+1)(k+1)

2
− (n+3)(n+1)

(k+1)(k+3)

γ(n+1)(k+1)

2
+ γnk

2
,

0 = (k−n−1)(k+4)
(k+1)(k+3)

γn(k+1)

2
− γnk

2
.

The system is solved by

βnk = − 2
(n+1)!

k−n+2
k+3

k!
(k−n−1)! , γnk =

2
(n+2)!

n+1
k+3

k!
(k−n−2)! .

B.1.2 Absence of higher order corrections

In section 2.3.2 it was mentioned that the obtained solutions forDFA(k+2),A′(k) andDΨA(k),A′(k+2)

ensured that no higher order corrections were needed. This result is equivalent to the consis-

tency of the L∞-relation in (2.3.9c) and (2.3.9f). Here we shall present the proof.

F -sector. As a starting point we take the solution from (2.3.19) and plug it into (2.3.16),

from which we only consider only the cubic terms. This gives us the l.h.s. of the L∞-relation

(2.3.9c):

l3(e, l3(e, F, F ), F ) + l3(e, F, l3(e, F, F )) =

− 1
2
HA′A′

k−1∑
n=1

n−1∑
m=0

n−m+1
n+2

αnkαmn[FA(k−n+1),A′(k−n−1), [FA(m+1)B,A′(m), FA(n−m)
B
,A′(n−m−1) ]]

+ 1
2
HA′A′

k−2∑
n=0

k−n−2∑
m=0

αnkαm(k−n−1)[FA(n+1)
B
,A′(n) , [FA(m+1)B,A′(m), FA(k−n−m),A′(k−n−m−2)]]

= −1
2
HA′A′

k−1∑
n=1

n−1∑
m=0

n−m+1
n+2

αnkαmn[FA(m+1)
B
,A′(m) , [FA(n−m)B,A′(n−m−1), FA(k−n+1),A′(k−n−1)]]

− 1
2
HA′A′

k−1∑
n=1

n−1∑
m=0

n−m+1
n+2

αnkαmn[FA(n−m)
B
,A′(n−m−1) , [FA(m+1)B,A′(m), FA(k−n+1),A′(k−n−1)]]

+ 1
2
HA′A′

k−2∑
n=0

k−n−2∑
m=0

αnkαm(k−n−1)[FA(n+1)
B
,A′(n) , [FA(m+1)B,A′(m), FA(k−n−m),A′(k−n−m−2)]] ,

where we applied the Jacobi identity on the very first term. In order to compare the three

terms on the r.h.s., the nested commutators must be cast into the same form, which can be

achieved by renaming the dummy indices. The final result allows all terms to be collected into

one and evaluates to

1
2
HA′A′

k−2∑
n=0

(
n∑

m=0

αmkα(n−m)(k−m−1) − m+2
n+3

α(n+1)kα(n−m)(n+1) − n−m+2
n+3

α(n+1)kαm(n+1))

× [FA(m+1)
B
,A′(m) , [FA(n−m+1)B,A′(n−m), FA(k−n),A′(k−n−2)]] = 0 ,

for which the solution for αnk was used. This proves the L∞-relation (2.3.9c).
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Ψ-sector. We isolate the terms cubic in the fields in (B.1.1) and we plug in (2.3.19) and

(2.3.21), which yields the l.h.s. of L∞-relation (2.3.9f) and reads

l3(e, l3(e, F, F ),Ψ) + l3(e, F, l3(e, F,Ψ)) =

HA′A′

k−1∑
n=1

n−1∑
m=0

αmnβnk

2
n−m+1
n+2

[[FA(m+1)B,A′(m), FA(n−m)
B
,A′(n−m−1) ],ΨA(k−n−1),A′(k−n+1)]

+HA′A′

k−2∑
n=0

k−n−2∑
m=0

βm(k−n−1)βnk

2
[F (n+1)

B
,A′(n) , [FA(m+1)B,A′(m),ΨA(k−n−m−2),A′(k−n−m))]]

+HA′A′

k−3∑
n=0

k−n−3∑
m=0

βnkγm(k−n−1)

2
[FA(n+1)

B
,A′(n) , [FA(m+2),A′(m),ΨA(k−n−m−3)B,A′(k−n−m)]]

+HA′A′

k−2∑
n=1

n−1∑
m=0

αmnγnk

2
[[FA(m+1)B,A′(m), FA(n−m+1),A′(n−m−1)],ΨA(k−n−2)

B
,A′(k−n+1) ]

−HA′A′

k−2∑
n=0

k−n−3∑
m=0

(
βm(k−n−1)γnk

2
k−n−m−2
k−n−1 − γm(k−n−1)γnk

2
m+2

k−n−1)

× [FA(n+2),A′(n), [FA(m+1)
B
,A′(m) ,ΨA(k−n−m−3)B,A′(k−n−m)]].

Our approach is similar to the one for the F -sector: we aim to reduce the equations as much

as possible by casting the nested commutators into a similar form. A particular technicality

in this case is that a contraction can be either between two F ’s or between F and Ψ. The

Fierz identity is used to convert all contractions into the latter type. However, one must be

careful, as the Fierz identity requires some free indices on the available spinors, which might

not be present in all terms of the summation. Hence we isolate these cases and check that their

contribution vanishes.

HA′A′

k−2∑
n=0

β(k−1)kαn(k−1)

2
k−n
k+1

[[FA(n+1)B,A′(n), FA(k−n−1)
B
,A′(k−n−2) ],ΨA′A′ ]

+HA′A′

k−2∑
n=0

βnkβ(k−n−2)(k−n−1)

2
[FA(n+1)

B
,A′(n) , [FA(k−n−1)B,A′(k−n−2),ΨA′A′ ]]

= HA′A′

k−2∑
n=0

(−β(k−1)kαn(k−1)

2
k−n
k+1

+
βnkβ(k−n−2)(k−n−1)

2
− β(k−1)kα(k−n−2)(k−1)

2
n+2
k+1

)

× [FA(n+1)
B
,A′(n) , [FA(k−n−1)B,A′(k−n−2),ΨA′A′ ]] = 0 ,

where we used the solution for βnk and αnk. Finally, applying the Fierz identity, Jacobi identity

and renaming of dummy indices allows one to cast the remaining terms into a more practical
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form that reads

HA′A′

k−3∑
n=0

n∑
m=0

(
β(n+1)kαm(n+1)

2
n−m+2
n+3

+
β(n+1)kα(n−m)(n+1)

2
m+2
n+3

+
βmkβ(n−m)(k−m−1)

2

+
βmkγ(n−m)(k−m−1)

2
− γ(n+1)kαm(n+1)

2
)[FA(m+1)

B
,A′(m) , [FA(n−m+2),A′(n−m),ΨA(k−n−3)B,A′(k−n)]]

+HA′A′

k−3∑
n=0

n∑
m=0

(
β(n+1)kα(n−m)(n+1)

2
m+2
n+3

+
β(n+1)kαm(n+1)

2
n−m+2
n+3

− βmkβ(n−m)(k−m−1)

2

+
γ(n+1)kα(n−m)(n+1)

2
− γmkβ(n−m)(k−m−1)

2
k−n−2
k−m−1 +

γmkγ(n−m)(k−m−1)

2
n−m+2
k−m−1 )

× [FA(m+2),A′(m), [FA(n−m+1)
B
,A′(n−m) ,ΨA(k−n−3)B,A′(k−n)]] = 0 ,

which is obtained by plugging in the solutions for αnk, βnk and γnk were used. This implies the

consistency of L∞-relation (2.3.9f).

B.1.3 Higher gravitational corrections

In section 2.3.3 we mentioned that the correction due to the constant gravitational background

to the linear term in DFA(k+2),A′(k) and DΨA(k),A′(k+2) does not propagate to the quadratic term

or higher. This appendix is dedicated to prove this.

F -sector. The L∞-relations are modified on a constant curvature background according to

(2.3.24). It was mentioned in (2.3.24) that the gravitational contribution decouples and vanishes

independently. We shall present a proof here.

We are interested in checking consistency of L∞-relation (2.3.24a). We do so by taking the

covariant derivative of (2.3.25a), which gives

D2FA(k+2),A′(k) = −HBB[FBB, FA(k+2),A′(k)] + (k + 2)HA
B FA(k+1)B,A′(k)

+ kHA′
B′
FA(k+2),A′(k−1)B′ = −eBB′ ∧DFA(k+2)B,A′(k)B′

− eBA′ ∧
k−1∑
n=0

αnk[DFA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)]

− eBA′ ∧
k−1∑
n=0

αnk[FA(n+1)B,A′(n), DFA(k−n+1),A′(k−n−1)]

− k(k + 2)eAA′DFA(k+1),A′(k−1) .

(B.1.4)

Considering only the terms coming from gravitational contributions gives the l.h.s of L∞-
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relation (2.3.24a) and reads after introducing fk = k(k + 2):

l̃2(e, l3(e, F, F )) + l3(e, l̃2(e, F ), F ) + l3(e, F, l̃2(e, F )) =

HA′A′

k−2∑
n=0

1
2
n+2

n+3
fn+1α(n+1)k[FA(n+2),A′(n), FA(k−n),A′(k−n−2)]

+HA′A′

k−2∑
n=0

αnk

2
fk−n−1[FA(n+2),A′(n), FA(k−n),A′(k−n−2)]

−HA′A′

k−2∑
n=0

αn(k−1)

2
fk[FA(n+2),A′(n), FA(k−n),A′(k−n−2)]

=
k−2∑
n=0

1
2
HA′A′(

1
2
n+2

n+3
fn+1α(n+1)k −

1
2
(k−n)+1

k−n+1
fk−n−1α(k−n−1)k +

αnk

2
fk−n−1 −

α(k−n−2)k

2
fn+1

− αn(k−1)

2
fk +

α(k−n−2)(k−1)

2
fk)[FA(n+2),A′(n), FA(k−n),A′(k−n−2)] = 0 ,

where the anti-symmetry of the commutator has been made explicit and the solution for αnk was

applied. Thus, the modification to the second L∞-relation of the F -sector vanishes, which means

that the gravitational background only modifies DFA(k+2),A′(k) on the linear level, identically

to the free equations. This is equivalent to the consistency of (2.3.24a).

Ψ-sector. The second L∞-relation for Ψ on a gravitational background is modified according

to (2.3.24b). This gives

D2ΨA(k),A′(k+2) =−HBB[FBB,ΨA(k),A′(k+2)] + kHA
B ΨA(k−1)B,A′(k+2)

+ (k + 2)HA′
B′

ΨA(k),A′(k+1)B′ = −eCC′ ∧DΨA(k)C,A′(k+2)C′

− eCA′ ∧
k−1∑
n=0

βnk[DFA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

− eCA′ ∧
k−1∑
n=0

βnk[FA(n+1)C,A′(n), DΨA(k−n−1),A′(k−n+1)]

− eCA′ ∧
k−1∑
n=0

γnk[DFA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)]

− eCA′

k−1∑
n=0

γnk[FA(n+2),A′(n), DΨA(k−n−2),A′(k−n+1)]

− k(k + 2)eAA′DΨA(k−1),A′(k+1) .

(B.1.5)
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Considering only the terms containing a gravitational contribution, one obtains the l.h.s. of

the L∞-relation (2.3.24b):

l̃2(e, l3(e, F,Ψ)) + l3(e, l̃2(e, F ),Ψ) + l3(e, F, l̃2(e,Ψ))

= HA′A′

k−2∑
n=0

(fn+1β(n+1)k

1
2
n+2

n+3
+ 1

2
βnkfk−n−1 +

1
2
fn+1γ(n+1)k

+
1
2
k−1

2
n

k−n−1 γnkfk−n−1 − fk
βn(k−1)

2
− fk

γn(k−1)

2
)[FA(n+2),A′(n),ΨA(k−n−2),A′(k−n)] = 0 ,

(B.1.6)

which we obtain by plugging in the solutions for αnk, βnk and γnk. This proves the consistency

of (2.3.24b).

The results in this appendix prove that the gravitational contribution to the L∞-relations

in both sectors decouples and vanishes independently, which is equivalent to consistency of

(2.3.24a) and (2.3.24b). Thus, the gravitational background only modifies DFA(k+2),A′(k) and

DΨA(k),A′(k+2) on the linear level, identically to the free equations.

B.2 Technicalities: SDGR

Several technicalities have been left out from the main text. In this section we aim to present

the calculation of the Ψ-sector, as well as the proofs of the truncation of ∇C and ∇Ψ, as

promised in section 2.4.2

B.2.1 Ψ-sector

We have left the details of the calculation of the Ψ-sector of section 2.4.2 to this appendix, as

it bears a lot of resemblance to the C-sector.

The approach is similar to before: we take the covariant derivative of the ansatz (2.4.12)

and we also contract eBB′
with ∇ΨA(k+1),A′(k+5) as this will give two expressions for eBB′ ∧

∇ΨA(k)B,A′(k+4)B′ , so we can compare them. This will unveil its structure. The former yields

∇2ΨA(k),A′(k+4) = kHBBCABB
D ΨA(k−1)D,A′(k+4) = −eCC′ ∧∇ΨA(k)C,A′(k+4)C′

− eCA′ ∧
k∑

n=0

bnk∇CA(n+2)C
D
,A′(n) ΨA(k−n−2)D,A′(k−n+3)

− eCA′ ∧
k∑

n=0

bnkCA(n+2)C
D
,A′(n) ∇ΨA(k−n−2)D,A′(k−n+3)

− eCA′ ∧
k∑

n=0

cnk∇CA(n+3)
D
,A′(n)ΨA(k−n−3)CD,A′(k−n+3)

− eCA′ ∧
k∑

n=0

cnkCA(n+3)
D
,A′(n) ∇ΨA(k−n−3)CD,A′(k−n+3) .

(B.2.1)
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Isolating the terms quadratic in the fields gives

eBB′ ∧∇ΨA(k)C,A′(k+4)C′ = −kHBBCABB
D ΨA(k−1)D,A′(k+4)

− 1

2
HBB

k∑
n=0

bnkCA(n+2)BB
D
,A′(n+1)ΨA(k−n−2)D,A′(k−n+3)

− 1

2
HBB

k∑
n=0

(bnk + c(n−1)k)CA(n+2)B
D
,A′(n) ΨA(k−n−2)BD,A′(k−n+4)

+
1

2
HA′

B′
k∑

n=0

bnkCA(n+2)
BD

,A′(n) ΨA(k−n−2)BD,A′(k−n+3)B′

− 1

2
HA′

B′
k∑

n=0

cnkCA(n+3)
BD

,A′(n)B′ ΨA(k−n−3)BD,A′(k−n+3)

− 1

2
HBB

k∑
n=0

cnkCA(n+3)
D
,A′(n) ΨA(k−n−3)BBD,A′(k−n+4) ,

whereas the latter gives

eBB′ ∧∇ΨA(k)B,A′(k+4)B′ = −HBBb0(k+1)
k+6

(k+1)(k+5)
CABB

D ΨA(k−1)D,A′(k+4)

− 1

2
HBB

k∑
n=0

b(n+1)(k+1)
(k+6)(n+3)
(k+1)(k+5)

CA(n+2)BB
D
,A′(n+1) ΨA(k−n−2)D,A′(k−n+3)

− 1
2
HBB

k∑
n=0

(bn(k+1)
(k+6)(k−n−1)
(k+1)(k+5)

+ cn(k+1)
(k+6)(n+3)
(k+1)(k+5)

)

× CA(n+2)B
D
,A′(n)ΨA(k−n−2)BD,A′(k−n+4)

+
1

2
HA′

B′
k∑

n=0

(b(n+1)(k+1)
(n+1)(k−n−2)
(k+1)(k+5)

− c(n+1)(k+1)
(n+1)(n+4)
(k+1)(k+5)

)

× CA(n+3)
BD

,A′(n)B′ ΨA(k−n−3)BD,A′(k−n+3)

+
1

2
HA′

B′
k∑

n=0

(bn(k+1)
(k−n+4)(k−n−1)

(k+1)(k+5)
− cn(k+1)

(k−n+4)(n+3)
(k+1)(k+5)

)

× CA(n+2)
BD

,A′(n) ΨA(k−n−2)BD,A′(k−n+3)B′

− 1

2
HBB

k∑
n=0

cn(k+1)
(k+6)(k−n−2)
(k+1)(k+5)

CA(n+3)
D
,A′(n)ΨA(k−n−3)BBD,A′(k−n+4) .

Comparing them gives the system of recurrence relations

0 = k+6
(k+1)(k+5)

b0(k+1) − k ,

0 = bnk − b(n+1)(k+1)
(k+6)(n+3)
(k+1)(k+5)

,

0 = bnk + cnk − bn(k+1)
(k+6)(k−n−1)
(k+1)(k+5)

− cn(k+1)
(k+6)(n+3)
(k+1)(k+5)

,
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0 = bnk − bn(k+1)
(k−n+4)(k−n−1)

(k+1)(k+5)
+ cn(k+1)

(k−n+4)(n+3)
(k+1)(k+5)

,

0 = cnk + b(n+1)(k+1)
(n+1)(k−n−2)
(k+1)(k+5)

− c(n+1)(k+1)
(n+1)(n+4)
(k+1)(k+5)

,

0 = cnk − cn(k+1)
(k+6)(k−n−2)
(k+1)(k+5)

,

which is solved by

bnk =
2

(n+2)!
k!

(k−n−2)!
k−n+4
k+5

cnk = − 2
(n+2)!

k!
(k−n−3)!

n+1
(k+5)(n+3)

.

B.2.2 Absense of higher order corrections

C-sector. We consider (2.4.9) and isolate the terms cubic in C. Plugging in the solution

from (2.4.11) yields the l.h.s. of the L∞-relation (2.4.7b) given by

l3(e, l3(e, C, C), C) + l3(e, C, l3(e, C, C)) =

1
2
HA′A′

k−1∑
n=1

n−1∑
m=0

ankamn
n−m+2
n+4

m+2
n+3

CA(m+1)B
DE

,A′(m)CA(n−m+1)E
B
,A′(n−m−1)CA(k−n+2)D,A′(k−n−1)

+ 1
2
HA′A′

k−1∑
n=1

n−1∑
m=0

ankamn
n−m+2
n+4

n−m+1
n+3

× CA(m+2)B
E
,A′(m)CA(n−m)E

BD
,A′(n−m−1)CA(k−n+2)D,A′(k−n−1)

+ 1
2
HA′A′

k−2∑
n=0

k−n−2∑
m=0

ankam(k−n−1)
m+2

k−n+3

CA(n+2)
BD

,A′(n)CA(m+1)BD
E
,A′(m)CA(k−n−m+1)E,A′(k−n−m−2)

+ 1
2
HA′A′

k−2∑
n=0

k−n−2∑
m=0

ankam(k−n−1)
k−n−m+1
k−n+3

× CA(n+2)
BD

,A′(n)CA(m+2)B
E
,A′(m)CA(k−n−m)DE,A′(k−n−m−2) .

(B.2.3)

The first three terms can be collected into

1
2
HA′A′

k−1∑
n=1

n−1∑
m=0

(ankamn
n−m+2
n+4

m+2
n+3

+ anka(n−m−1)n
m+3
n+4

m+2
n+3

− a(n−m−1)kam(k−n+m)
m+2

k−n+m+4
)

× CA(m+1)B
DE

,A′(m)CA(n−m+1)
B
,A′(n−m−1)CA(k−n+2)D,A′(k−n−1) = 0 ,
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for which the solution for ank is applied. The last term in (B.2.3) may be rewritten as

1
2
HA′A′

k−2∑
n=0

n∑
m=0

amka(n−m)(k−m−1)
k−n+1
k−m+3

CA(m+2)
BD

,A′(m)CA(n−m+2)B
E
,A′(m)CA(k−n)DE,A′(k−n−2)

= 1
4
HA′A′

k−2∑
n=0

n∑
m=0

(amka(n−m)(k−m−1)
k−n+1
k−m+3

− a(n−m)kam(k−n+m−1)
k−n+1

k−n+m+3
)

× CA(m+2)
BD

,A′(m)CA(n−m+2)B
E
,A′(m)CA(k−n)DE,A′(k−n−2) = 0 ,

where again we used the solution for ank. This proves that the C-sector truncates at quadratic

order. This confirms the consistency of (2.4.7b).

Ψ-sector. We consider the cubic terms in (B.2.1) and we assume the solutions (2.4.11) and

(2.4.13). This gives the l.h.s. of the L∞-relation in (2.4.7d) and reads

l3(e, l3(e, C, C),Ψ) + l3(e, C, l3(e, C,Ψ)) =

1
2
HA′A′

k−3∑
n=0

n∑
m=0

(am(n+1)b(n+1)k
(n−m+3)(m+2)

(n+5)(n+4)
+ a(n−m)(n+1)b(n+1)k

(m+3)(m+2)
(n+5)(n+4)

− bm(k−n+m−1)b(n−m)k
m+2

k−n+m−1)

× CA(m+1)B
DE

,A′(m)CA(n−m+2)E
B
,A′(n−m) ΨA(k−n−3)D,A′(k−n+2)

+ 1
4
HA′A′

k−4∑
n=0

n∑
m=0

(b(n−m)(k−m−1)bmk
k−n−3
k−m−1 + c(n−m)(k−m−1)bmk

n−m+3
k−m−1

− am(n+1)c(n+1)k
n−m+3
n+5

− bm(k−n+m−1)b(n−m)k
k−n−3

k−n+m−1

− cm(k−n+m−1)b(n−m)k
m+3

k−n+m−1 + a(n−m)(n+1)c(n+1)k
m+3
n+5

)

× CA(m+2)
BD

,A′(m)CA(n−m+2)B
E
,A′(n−m) ΨA(k−n−4)DE,A′(k−n+2)

+ 1
2
HA′A′

k−4∑
n=0

n∑
m=n

(b(n−m)(k−m−1)cmk
(k−n−3)(n−m+2)
(k−m−1)(k−m−2)

− c(n−m)(k−m−1)cmk
(n−m+3)(n−m+2)
(k−m−1)(k−m−2) − a(n−m)(n+1)c(n+1)k

n−m+2
n+5

)

× CA(m+3)
D
,A′(m)CA(n−m+1)BD

E
,A′(n−m) ΨA(k−n−4)E

B
,A′(k−n+2)

+ 1
2
HA′A′

k−5∑
n=0

n∑
m=0

(cm(k−n+m−1)b(n−m)k
k−n−4

k−n+m−1

− b(n−m)(k−m−1)cmk
(k−n−3)(k−n−4)
(k−m−1)(k−m−2) + c(n−m)(k−m−1)cmk

(n−m+3)(k−n−4)
(k−m−1)(k−m−2))

CA(m+3)
C
,A′(m)CA(n−m+2)

BD
,A′(n−m) ΨA(k−n−5)BDE,A′(k−n+2) = 0 ,

which is obtained by plugging in the results for ank, bnk and cnk. This proves consistency of

(2.4.7d).
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Cubic interactions

C.1 Cubic Amplitude

A useful check for a given interaction is to compute the amplitude. The amplitudes of Chiral

HiSGRA are known up to one-loop [8, 10, 11]. We do not have to go that far and should just

check if the cubic amplitude is nontrivial. Let us first construct the plane wave solutions. We

recall that the free equations in Minkowski space read

dω = eBB′
yB′∂Bω +HBB∂B∂BC(y, y = 0) , dC = eBB′

∂B∂B′C , (C.1.1a)

where Ψ(0, y) = C(0, y) describes negative helicity and ω(0, y) describes positive helicity:1

ΨA′(2s) = a−s k
A′
...kA

′
exp [±xAA′

kAkA′ ] , (C.1.2)

ωA′(2s−2) = a+s
1

(qC′kC′)2s−1
eBB′

kBqB′qA
′
...qA

′
exp [±xAA′

kAkA′ ] . (C.1.3)

Here aλ is a normalization factor. Eq. (C.1.1) is solved by

ω(x|y, y) = eBB′ kBq
′
B

qk + yq
exp(±xAA′

kAk
′
A + yk) , C(x|y, y) = 1

2
exp(±xAA′

kAk
′
A + yk + yk) .

Laplace transform allows us to rewrite the solution for ω(x|y, y) as

ω(x|, y, y) = eBB′
kBq

′
B

∫ ∞
0

dω exp(±xAA′
kAk

′
A + yk − (qk + y q)ω) .

In order to compute cubic amplitudes we can isolate the equation for ωA′(2s−2) and ΨA′(2s):

Dω = V(ω, ω)
∣∣∣
y=0

, DC = U(ω,C)
∣∣∣
y=0

. (C.1.4)

1Note that we use the Moyal-Weyl star-product without i. Therefore, the fields need to obey less natural
reality conditions. This is not an obstacle to compute the amplitude. In particular, the plane wave exponents
are taken without i (for appropriate x). What matters is the helicity structure.

227
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Let us have a look at the first term V (ω, ω) contracted with ΨA′(2s1−2)HA′A′ to get an on-shell

cubic vertex:

1

l!

∫
ΨA′(2s1)H

A′A′
ωB(l),A′(n) ∧ ωB(l)

,A′(m) . (C.1.5)

Here we assume l+n = 2s2−2, m+ l = 2s3−2 and, of course, m+n = 2s1−2. The coefficient

in front of the action originates from the star-product. Plugging in the on-shell plane-wave

values for Ψ and ω we find

V−s1,+s2,+s3 ∼
1

Γ[−s1 + s2 + s3]
[12]−s1+s2−s3 [23]s2+s3+s1 [13]−s1+s3−s2 , (C.1.6)

which, up to normalization of each of the plane-waves, is the right structure for Chiral Theory.

It corresponds to ΨΦΦ-vertex of sketch (3.4.27). The presence of the simplest self-interaction

V−s,+s,+s leads unambiguously to the Chiral Theory class since it requires all other spins (at

least even) together with all other possible interactions that enter with weight 1/Γ[λ1+λ2+λ3].

Similarly, we can extract the amplitudes corresponding to ΦΦΦ and ΦΦΨ vertices from

U(ω,C). Note that since C contains both positive and negative (as well as zero) helicities, we

get an access to two types of vertices. The final amplitude is

V+s1,λ2,+s3 ∼
1

Γ[s1 + λ2 + s3]
[12]s1+λ2−s3 [23]−s1+λ2+s3 [13]s1−λ2+s3 .

Let us also comment on the possibility to reproduce V+s1,−s2,−s3 amplitudes, s1 − s2 − s3 > 0.

From the standard covariant approach vantage point, where the dynamical variables are Φµ1...µs ,

these vertices are the most problematic ones [183]. They cannot be written at all as local

expressions. Fortunately, it is easy to write down the candidate on-shell cubic vertices in terms

of the new variables, where the dynamical fields are ωA′(2s−2) and ΨA′(2s). For example, any of

the following two expressions

ωA′(s1−2)ΨA(k)B,A′(m),B′ΨA(k)
A′(n) ĥ

BB′
, ωA′(s1−2)ΨA(k)B,A′(m)Ψ

A(k)
A′(n)B′ ĥBB′

,

leads to the correct amplitude

[12]s1−s2+s3 [13]s1+s2−s3 [23]−s1−s2−s3 .

Therefore, all possible types of cubic vertices/amplitudes present in Chiral Theory can be

written in a manifestly Lorentz invariant way. This eliminates the very last obstruction and we

can claim that Chiral Theory admits a manifestly Lorentz invariant formulation.
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C.2 Coadjoint vs. twisted-adjoint

Let us make a historical remark on representations of higher spin symmetries. It was known

since [107] that the FDA of free massless fields in (anti)-de Sitter space contains the following

subsystem

∇C = eAA′
(yAyA′ − ∂A∂A′)C(y, y) . (C.2.1)

It splits according to spin into an infinite set of (still infinite) subsystems. For a given s > 0

the subsystem splits further into one for helicity +s and another one for helicity −s. The very
first equations in these subsystems are equivalent to [109]

∇B
A′
CBA(2s−1) = 0 , ∇A

B′ CB′A′(2s−1) = 0 . (C.2.2)

Operator PAA′ = (yAyA′ − ∂A∂A′) realizes the action of (A)dS4 translations, which commute

to a Lorentz transformation. Since the equations are assumed to be derived by linearizing a

nonlinear theory, where the higher spin symmetry is manifest, it is important to understand

where such PAA′ can come form. It originates from the twisted-adjoint action [203]:

a(f) = a ⋆ f − f ⋆ ã , (C.2.3)

where ã is an automorphism of the Weyl algebra that flips the sign of y, ã(y) = a(−y). In fact,

the action arises as a typical coadjoint action. Indeed, there is a nondegenerate pairing between

A1 and A⋆
1: ⟨a|f⟩ = str[a ⋆ f ] = str[f ⋆ ã], where str[a] = a(y = 0) is a supertrace, see also

[236]. The canonical bimodule structure of the higher spin algebra on itself (left/right actions)

induces the twisted-adjoint representation (C.2.3) on the dual module. What the results of

the present paper show is that the coadjoint interpretation seems to be correct even for such a

strange case as Chiral Theory, while the twisted-adjoint interpretation is no longer valid.2

C.3 Operator calculus

As was already sketched at the beginning of Section 3.4, we work with poly-differential operators

that are represented as symbols. Let us illustrate all operations with y and ∂
yi
A′ ≡ piA′ . The

translation operator is exp [y · pi]f(yi) = f(yi + y). Operators acting on n functions ai(y) are

understood as functions of p0 = y, p1 = ∂1, ..., pn = ∂n:

V (a1, ..., an) = v(y, ∂1, ..., ∂2)a1(y1)...an(yn)
∣∣∣
yi=0

(C.3.1)

2In AdS, the coadjoint and twisted-adjoint representation yield the same equations. It is only in flat space
where the latter fails to describe the correct FDA.
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Therefore, the commutative product f(y)g(y) and the Moyal-Weyl star-product f(y) ⋆ g(y) are

represented by the following symbols:

exp[p0 · p1 + p0 · p2] ≡ exp[p01 + p02] , (C.3.2a)

exp[q0 · q1 + q0 · q2 + q1 · q2] ≡ exp[q01 + q02 + q12] . (C.3.2b)

Then we need the following identifications for symbols of the operators:

a1 ⋆ V (a2, ..., an+1) → v(q0 + q1, q2, ..., qn+1)e
+q0·q1 ,

V (a1, ..., an) ⋆ an+1 → v(q0 − qn+1, q1, ..., qn)e
+q0·qn+1 ,

V (a1, ..., ak ⋆ ak+1, ..., an+1) → v(q0, ..., qk−1, qk + qk+1, qk+2, ..., qn+1)e
+qk·qk+1 ,

a1V (a2, ..., an+1) → v(p0, p2, ..., pn+1)e
+p0·p1 ,

V (a1, ..., an)an+1 → v(p0, p1, ..., pn)e
+p0·pn+1 ,

V (a1, ..., akak+1, ..., an+1) → v(p0, ..., pk−1, pk + pk+1, pk+2, ..., pn+1) ,

u1(a1, V (a2, ..., an+1)) → v(p0 + p1, p2, ..., pn+1) ,

u1(V (a1, ..., an), an+1) → v(−pn+1, p1, ..., pn)e
+p0·pn+1 ,

V (a1, ..., u1(ak, ak+1), ..., an+1) → v(p0, ..., pk−1, pk+1, pk+2, ..., pn+1)e
+pk·pk+1 ,

u2(a1, V (a2, ..., an+1)) → v(−p1, p2, ..., pn+1)e
+p0·p1 ,

u2(V (a1, ..., an), an+1) → v(p0 + pn+1, p1, ..., pn) ,

V (a1, ..., u2(ak, ak+1), ..., an+1) → v(p0, ..., pk−1, pk, pk+2, ..., pn+1)e
−pk·pk+1 ,

where we defined

u1(a, b) = exp [p02 + p12] , u2(a, b) = exp [p01 − p12] . (C.3.3)

C.4 Cochain complex

For completeness let us rewrite the L∞-relations in terms of symbols of operators. We do so
for the y-part only since the dependence on y is captured by the star-product and factorizes
out. The l.h.s. of the equations for V1,2,3 read:

− ep01V1 (p0, p2, p3, p4)− V1 (p0, p1, p2 + p3, p4) + V1 (p0, p1 + p2, p3, p4) + ep34V1 (p0, p1, p2, p4) ,

− ep01V2 (p0, p2, p3, p4) + ep04V1 (p0, p1, p2, p3)− e−p34V1 (p0, p1, p2, p3) + V2 (p0, p1 + p2, p3, p4)− ep23V2 (p0, p1, p3, p4) ,

− ep01V3 (p0, p2, p3, p4) + ep04V2 (p0, p1, p2, p3)− V2 (p0, p1, p2, p3 + p4) + e−p2·p3V2 (p0, p1, p2, p4) + ep12V3 (p0, p2, p3, p4) ,

ep04V3 (p0, p1, p2, p3)− e−p12V3 (p0, p1, p3, p4)− V3 (p0, p1, p2, p3 + p4) + V3 (p0, p1, p2 + p3, p4) .
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Similarly, for U1,2,3 we find

U1 (p0, p1 + p2, p3, p4)− U1 (p0 + p1, p2, p3, p4)− ep23U1 (p0, p1, p3, p4) + ep04V1 (−p4, p1, p2, p3) ,

e−p23U1 (p0, p1, p2, p4)− U2 (p0 + p1, p2, p3, p4)− ep34U1 (p0, p1, p2, p4) + ep12U2 (p0, p2, p3, p4) + ep04V2 (−p4, p1, p2, p3) ,

e−p34U1 (p0, p1, p2, p3)− U1 (p0 + p4, p1, p2, p3)− U3 (p0 + p1, p2, p3, p4) + ep12U3 (p0, p2, p3, p4) ,

− e−p12U3 (p0, p1, p3, p4) + e−p34U2 (p0, p1, p2, p3)− U2 (p0 + p4, p1, p2, p3) + ep23U3 (p0, p1, p3, p4)− ep01V2 (−p1, p2, p3, p4) ,

− e−p12U2 (p0, p1, p3, p4) + U2 (p0, p1, p2 + p3, p4)− ep34U2 (p0, p1, p2, p4)− ep01V1 (−p1, p2, p3, p4) + ep04V3 (−p4, p1, p2, p3) ,

− e−p23U3 (p0, p1, p2, p4) + U3 (p0, p1, p2, p3 + p4)− U3 (p0 + p4, p1, p2, p3)− ep01V3 (−p1, p2, p3, p4) .

When looking for nontrivial solutions, it is important to understand which ones are trivial. The

latter are given by field redefinitions that act as follows on V1,2,3

δV1 = ep01g1 (p0, p2, p3)− g1 (p0, p1 + p2, p3) + ep23g1 (p0, p1, p3) ,

δV2 = ep01g2 (p0, p2, p3) + ep03g1 (p0, p1, p2)− e−p23g1 (p0, p1, p2)− ep12g2 (p0, p2, p3) ,

δV3 = ep03g2 (p0, p1, p2) + e−p12g2 (p0, p1, p3)− g2 (p0, p1, p2 + p3) ,

and on U1,2,3

δU1 = h (p0 + p1, p2, p3)− ep12h (p0, p2, p3) + ep03g1 (−p3, p1, p2) ,
δU2 = e−p12h (p0, p1, p3)− ep23h (p0, p1, p3)− ep01g1 (−p1, p2, p3) + ep03g2 (−p3, p1, p2) ,
δU3 = e−p23h (p0, p1, p2)− h (p0 + p3, p1, p2)− ep01g2 (−p1, p2, p3) ,

It can easily be checked that the redefinitions lead to solutions of the equations. The expressions

above define a particular realization of the Chevalley-Eilenberg complex, but we do not extend

the action of the differential to cochains with more arguments. At the bottom level we find

δg1 = ep12ξ (p0, p2)− ep01ξ (p0, p2) ,

δg2 = ep02ξ (p0, p1)− e−p12ξ (p0, p1) ,

δh = ep02ξ (−p2, p1)− ep01ξ (−p1, p2) ,

which leads to redefinitions that yield vanishing vertices.

C.5 Vertices

In order to find nontrivial cubic vertices we employ a number of ideas, see also [71, 194] that were

used for inspiration. Firstly, Lorentz symmetry has to be preserved, i.e., in practice, we cannot

mix primed and unprimed indices. The higher spin algebra is the tensor product of two algebras,

which via the Künneth theorem suggests to look for the two-cocycle as a tensor product of two,

one of them being trivial. The free equations, in particular the boundary condition for V(e, e, C),
reveal that something interesting should happen on the y side. Therefore, for homogeneous

arguments a(y, y) = a(y) ⊗ a(y), etc. we assume that all vertices have the star-product over
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the y-dependent factors:

V1(a(y)⊗ a(y), b(y)⊗ b(y), c(y)⊗ c(y)) = a ⋆ b ⋆ c⊗ v1(a, b, c) . (C.5.1)

As a result, all terms in the cocycle equations have the same overall factor for the y-dependence

and we can concentrate on y only. The cocycle conditions for the y-part are collected in

Appendix C.4.

Now, we need to solve the equations in Appendix C.4. It is clear that the solution should

contain some exp[pij]-factors, otherwise they cannot cancel the exp [pij] already present in the

cocycle condition. The boundary condition for V(ω, ω, C) restrict the exponents a little bit.

For example, we cannot allow for exp p03 in V1(ω, ω, C). The crucial step is to look for V and

U as singular field redefinitions, i.e. we look for g1,2 and h, see Appendix C.4. For any g1,2

and h, the vertices solve the cocycle equations. We just need to make sure that (i) the vertices

are regular, i.e. Taylor expandable in pij; (ii) the redefinitions themselves, i.e. g1,2 and h, are

irregular. Irregular field redefinitions are not allowed. Therefore, if (i) and (ii) are satisfied,

we have a nontrivial cocycle. Let us note that the singularity of g1,2 and h must be essential

and cannot be removed with the help of ”redefinitions for redefinitions” with ξ. Looking for

singular redefinitions is more economic than looking for nontrivial vertices since they depend

on less arguments. Long story short, we arrived at the following redefinitions:

g1 =
p01e

p12

p02 (p01 − p12)
− ep01p01
p02 (p01 − p12)

, (C.5.2a)

g2 =
ep02p02

p01 (p02 + p12)
− p02e

−p12

p01 (p02 + p12)
, (C.5.2b)

h =
ep01p01

p12 (p01 − p02)
− ep02p02
p12 (p01 − p02)

. (C.5.2c)

The vertices, which we do not write here as fractions, have a similar structure and their reg-

ularity is not obvious. It is very important to take advantage of the Fierz/Schouten/Plücker

identities

(a · b)(c · d) + (b · c)(a · d)− (a · c)(b · d) = 0 , (C.5.3)

which are a consequence of the fact that any three vectors in two dimensions are linearly

dependent. Still, the regularity is not manifest. One can prove it by showing that the numerator

and denominator have the same zeros.

A more convenient way to make the regularity manifest to write the vertices as integrals

over the 2d-simplex, as in the main text. The nontriviality of the cocycles is then less obvious.

A simple way to check if the cocycle is nontrivial is to extract the boundary condition V(e, e, C)
since this part cannot be redefined away. Therefore, once the boundary condition is satisfied

we can be certain that the cocycle is worthy. It would be interesting to compute the Chevalley-

Eilenberg cohomology following the techniques of [72], which would give a rigorous answer

regarding the number of independent vertices within the covariant approach.
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Given the relation between the algebraic structures of higher spin gravities and deformation

quantization and formality, it is also possible to recast the proof into the familiar language of

Stokes theorem. For example, to check that the equation for V1 is satisfied we can construct a

closed two-form Ω1

Ω1 = (p12 dt1 ∧ dt2 + p23 dt2 ∧ dt3 + p13 dt1 ∧ dt3)F1 ,

F1 = exp [(1− t1) p01 + (1− t2) p02 + (1− t3) p03 + t1p14 + t2p24 + t3p34] .
(C.5.4)

With the help of Stokes theorem we get

0 =

∫
∆3

dΩ1 =

∫
∂∆3

Ω1 . (C.5.5)

There are four boundaries that correspond to ”collisions of points” on the circle: t1 = 0, t1 = t2,

t2 = t3 and t3 = 1. It can be seen that Ω1 at these boundaries reduces to exactly the four terms

in the equation for V1. Similar arguments are true for the rest of the equations. The closed

two-form for the other equations are

Ω2 = (p12 dt1 ∧ dt2 + p14 dt1 ∧ dt3 + p24 dt2 ∧ dt3)F2+

− (p14 dt1 ∧ dt2 + p12 dt1 ∧ dt3 − p24 dt2 ∧ dt3)F3+

− (p14dt1 ∧ dt2 + p24 dt1 ∧ dt3 − p12 dt2 ∧ dt3)F4 ,

F2 = exp [(1− t1) p01 + (1− t2) p02 + (1− t3) p04 + t1p13 + t2p23 − t3p34] ,

F3 = exp [(1− t1) p01 + (1− t3) p02 + (1− t2) p04 + t1p13 + t3p23 − t2p34] ,

F4 = exp [(1− t2) p01 + (1− t3) p02 + (1− t1) p04 + t2p13 + t3p23 − t1p34] ,

(C.5.6a)

for the second and for the third we need

Ω3 = −(p34 dt1 ∧ dt2 + p14 dt1 ∧ dt3 + p13 dt1 ∧ dt3)F5+

+ (−p34 dt1 ∧ dt2 + p13 dt1 ∧ dt3 + p14 dt2 ∧ dt3)F6+

+ (−p13 dt1 ∧ dt2 + p34 dt1 ∧ dt3 + p14 dt2 ∧ dt3)F7 ,

F5 = exp [(1− t3) p01 + (1− t2) p03 + (1− t1) p04 + t3p12 − t2p23 − t1p24] ,

F6 = exp [(1− t3) p01 + (1− t1) p03 + (1− t2) p04 + t3p12 − t1p23 − t2p24] ,

F7 = exp [(1− t2) p01 + (1− t1) p03 + (1− t3) p04 + t2p12 − t1p23 − t3p24] .

(C.5.6b)

Note that the 2nd and 3rd equations have more terms since they mix vertices with different

orderings and for this reason three closed forms are required. There is some mutual cancellation

between them. For the last equation we have

Ω4 = −(p34 dt1 ∧ dt2 + p24 dt1 ∧ dt3 + p23 dt2 ∧ dt3)F8 ,

F8 = exp [(1− t3) p02 + (1− t2) p03 + (1− t1) p04 − t3p12 − t2p13 − t1p14] .
(C.5.6c)

The two-forms show some similarities: Ω1 and Ω4 are related by swapping 1234 → 4321, i.e.
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they are each other’s mirror image. The same holds for Ω2 and Ω3. Additionally, the terms in Ω2

are also obtained from Ω1 by permutations of 1234. This can be understood from the different

orderings of ω, ω, ω, C in the equations. The signs are chosen such that the L∞-relations come

out correctly.



Appendix D

All order vertices

D.1 Homological perturbation theory

In this section, we show how to obtain all the interaction vertices of Chiral HiSGRA by means of

homological perturbation theory (HPT). A detailed account of the theory can be found in [237],

[238], [239] (see also [96] for a similar discussion of HPT in the context of formal HiSGRA).

As in the main text, we start with the cochain complex A = C[y, z, dz] of differential forms

with polynomial coefficients. The coboundary operator dz : An → An+1 is given by the usual

exterior differential on z’s. Combining the exterior product of the basis differentials dzA with

the ⋆-product

a ⋆ b = a(y, z) exp
( ←
∂

∂zA

→
∂

∂yA
−

←
∂

∂yA

→
∂

∂zA

)
b(y, z) (D.1.1)

of polynomials in the y’s and z’s, we get a commutative dg-algebra (A, dz). Actually, the

⋆-product above is equivalent to the conventional (dot) product on polynomials:

a ⋆ b = e−∆
(
(e∆a) · (e∆b)

)
, ∆ =

∂2

∂yA∂zA
.

The dual space A∗ carries the canonical structure of a graded bimodule over A. In particular,

A∗0 is clearly isomorphic to the space of formal power series C[[y, z]]. The left/right action of A

on A∗0 is given by

a ◦m = m ◦ a = (e∆a)(∂y, ∂z, 0)m(y, z) , ∀a = a(y, z, dz) ∈ A, m ∈ A∗0 .

Indeed,

(a ⋆ b) ◦m = e−∆
(
(e∆a) · (e∆b)

)
◦m

=
(
(e∆a) · (e∆b)

)
(∂y, ∂z, 0)m(y, z) = a ◦ (b ◦m) ,

and the same for the right action. The bimodule A∗0 is too big and highly reducible. In the

following we will deal with its submodule M = C[[y]] ⊂ A∗0 constituted by formal power series

in y’s. Extending the action of dz to M by zero, we can think of M as a differential bimodule

235
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over A. Furthermore, it is convenient to combine the differential bimodule structure into a

single dg-algebra A = A⊕M for the following ∗-product and differential:

(a,m) ∗ (a′,m′) = (a ⋆ a′, a ◦m′ + a′ ◦m) , dz(a,m) = (dza, 0) .

By definition, the degree of an elements a of A coincides with its form-degree, while all the

elements of M have degree 1.

In addition to dz we can endow the algebra A with one more differential δ of degree 1. This

is defined as

δ(a,m) =
(
m(−z)ezAyAdzB ∧ dzB, 0

)
, ∀ (a,m) ∈ A . (D.1.2)

(Notice the change of the argument in m.) It is clear that δ2 = 0. The differential δ will be a

derivation of the ∗-product above if and only if the following identities hold:

δ(a ◦m) = (−1)|a|a ⋆ δm , δm ◦m′ = m ◦ δm′ .

The first equality is enough to check only for the generators yA, zA’s and dzA. We find

yA ⋆ δm = (yA − ∂Az )m(−z)ezByBdzC ∧ dzC = ey
BzB(−∂Az m(−z))dzC ∧ dzC = δ(yA ◦m) ,

zA ⋆ δm = (zA + ∂Ay )m(−z)ezByBdzC ∧ dzC = 0 = δ(zA ◦m) ,

dzA ⋆ δm = m(−z)ezByBdzA ∧ dzC ∧ dzC = 0 = −δ(dzA ◦m) .

The second identity is also satisfied because δm is a two-form and (δm)(y, z, 0) = 0.

Since the differentials trivially commute to each other, dzδ+ δdz = 0, we can combine them

into the total differential D = dz + δ of degree 1. Given now a dg-algebra (A, D), one can

ask about its minimal model. In general, constructing a minimal model of a dg-algebra is

quite a difficult problem. What helps us a lot are two things: (i) the differential dz, being the

exterior differential on polynomial forms, admits an explicit contracting homotopy h and (ii)

one may regard D as a ‘small perturbation’ of dz by δ. Under these circumstances, homological

perturbation theory offers the most efficient way to build the minimal model in question. As

we will see, this minimal model yields exactly the A∞-algebra defining the r.h.s. of the field

equations in Chiral HiSGRA. Below we recall some basic definitions and statements.

Definition D.1.1 A strong deformation retract (SDR) is given by a pair of complexes (V, dV )

and (W,dW ) together with chain maps p : V → W and i : W → V such that pi = 1W and ip is

homotopic to 1V . The last property implies the existence of a map h : V → V such that

dV h+ hdV = ip− 1V .

Without loss in generality, one may also assume the following annihilation properties:

hi = 0 , ph = 0 , h2 = 0 .
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All the data above can be summarized by a single diagram

(V, dV )h 77

p
// (W,dW )

i
oo . (D.1.3)

Let us mention a special case of this construction where W = H(V, dV ) is the cohomology

group of the complex (V, dV ) and dW = 0.

The main concern of HPT is transferring various algebraic structures form one object to

another through a homotopy equivalence. Whenever applicable, the theory provides effective

algorithms and explicit formulas, as distinct from classical homological algebra. The cornerstone

of HPT is the following statement, often called the Basic Perturbation Lemma.

Lemma D.1.2 ([240]) For any SDR data (D.1.3) and a small perturbation δ of dV such that

(dV + δ)2 = 0 and 1− δh is invertible, there is a new SDR

(V, dV + δ)h′
77

p′
// (W,d′W )

i′
oo ,

where the maps are given by

p′ = p+ p(1− δh)−1δh , i′ = i+ h(1− δh)−1δi ,

h′ = h+ h(1− δh)−1δh , d′W = dW + p(1− δh)−1δi .

One can think of the operator A = (1− δh)−1 as being defined by a geometric series

A =
∞∑
n=0

(δh)n . (D.1.4)

In many practical cases its convergence is ensured by a suitable filtration on V .

We are concerned with transferring A∞-structures on V to its cohomology spaceW . To put

this transference problem into the framework of HPT one first applies the tensor-space functor

T to the vector spaces V and W . Recall that, in addition to the associative algebra structure,

the space T (V ) =
⊕

n≥1 V
⊗n carries the structure of a coassociative coalgebra with respect to

the coproduct

∆ : T (V ) → T (V )⊗ T (V ) ,

∆(v1 ⊗ · · · ⊗ vn) =
n−1∑
i=1

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vn) .

Coassociativity is expressed by the relation (1⊗∆)∆ = (∆⊗ 1)∆. A linear map F : T (V ) →
T (V ) is called a coderivation, if it obeys the co-Leibniz rule

∆F = (F ⊗ 1 + 1⊗ F )∆ .

The space of coderivations is known to be isomorphic to the space of linear maps Hom(T (V ), V ),
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so that any homomorphism f : T (V ) → V induces a coderivation f̂ : T (V ) → T (V ) and vice

versa: if f ∈ Hom(Tm(V ), V ), then

f̂(v1 ⊗ · · · ⊗ vn) =
n−m+1∑

i=1

(−1)|f |(|v1|+···+|vi−1|)v1 ⊗ · · · ⊗ vi−1

⊗f(vi ⊗ · · · ⊗ vi+m−1)⊗ vi+m ⊗ · · · ⊗ vn

(D.1.5)

for n ≥ m and zero otherwise.

The notion of a coderivation provides an alternative definition of an A∞-algebra: An A∞-

algebra structure on a graded vector space V is given by an element m ∈ Hom(T (V ), V ) of

degree one such that the corresponding coderivation m̂ squares to zero. Every such m̂ is called

a codifferential. The condition m̂2 = 0 is equivalent to the equation m ◦m = 0, where ◦ stands

for the Gerstenhaber product

f ◦ g =
∑
i

(−1)κf(a1, . . . , ai, g(ai+1, . . . , ai+kg), ai+kg+1, . . . , akf+kg−1) . (D.1.6)

Here κ is the usual Koszul sign: κ = |g|(|a1| + · · · + |ai|). Expanding m into the sum m =

m1 + m2 + · · · of homogeneous multi-linear maps mn ∈ Hom(T n(V ), V ) and substituting it

back into m ◦ m = 0 gives an infinite sequence of homogeneous relations on m’s, known as

Stasheff’s identities [241]. In particular, the first structure map m1 : Vl → Vl+1 squares to zero,

m2
1 = 0, making V into a complex of vector spaces. An A∞-algebra is called minimal if m1 = 0.

For minimal algebras the second structure map m2 : V ⊗ V → V makes the space V [−1] into

a graded associative algebra with respect to the ∗-product1

a ∗ b = (−1)|a|m2(a⊗ b) . (D.1.7)

Associativity is encoded by the Stasheff identity m2 ◦m2 = 0. From this perspective, a graded

associative algebra is just an A∞-algebra with m = m2. More generally, an A∞-algebra with

m = m1+m2 is equivalent to a differential graded algebra (V [−1], ∗, d) with the product (D.1.7)

and the differential d = m1. Again, the Leibniz rule

d(a ∗ b) = da ∗ b+ (−1)|a|−1a ∗ db

is equivalent to the Stasheff identity m1 ◦m2 +m2 ◦m1 = 0.

The next statement, called the tensor trick, allows one to transfer SDR data from spaces to

their tensor (co)algebras.

Lemma D.1.3 ([242]) With any SDR data (D.1.3) one can associate a new SDR

(ĥ 99 T (V ), d̂V )
p̂
// (T (W ), d̂W )

î

oo ,

1By definition, V [−1]n = Vn−1. On shifting degree by one unit, the ∗-product acquires degree 0.
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where the new differentials d̂V and d̂W are defined by the rule (D.1.5),

p̂ =
∞∑
n=1

p⊗n , î =
∞∑
n=1

i⊗n ,

and the new homotopy is given by

ĥ =
∞∑
n=1

n−1∑
k=0

1⊗k ⊗ h⊗ (ip)⊗n−k−1 .

After reminding the basics of HPT let us return to our deformation problem. Consider

first the case of dg-algebra A with respect to the unperturbed differential dz. By the algebraic

Poincaré Lemma, H(A, dz) ≃ C[y]⊕ C[[y]]. Here the first summand corresponds to the differ-

ential forms of A that are independent of z’s and dz’s, while the second summand is given by

the elements of the module M . To streamline our notation we will write H for the algebra of

cohomology H(A, dz). Clearly, the natural inclusion i : H → A is an algebra homomorphism.

This leads us immediately to SDR (D.1.3) with

V = A[1] , W = H[1] , dV = dz , dW = 0 ,

p(a,m) = (a(y, 0, 0),m) , h(a,m) = (h(a), 0) ,

and h(a) was defined in (4.2.10) as the standard contracting homotopy for the de Rham complex.

Applying the tensor trick yields then an SDR for the corresponding tensor (co)algebras

(ĥ 99 T (A[1]), d̂z)
p̂
// (T (H[1]), 0)

î

oo .

Let µ denote multiplication (the ∗-product) in A. It defines the coderivation2 µ̂ such that

(d̂z + µ̂)2 = 0.3 This allows us to treat µ̂ as a small perturbation of the differential d̂z. By

making use of the Basic Perturbation Lemma D.1.2, we obtain the new SDR

(ĥ′
99 T (A[1]), d̂z + µ̂)

p̂′
//
(
T (H[1]), m̂2

)
î′
oo ,

where the codifferential on the right is given by

m̂2 = p̂(1− µ̂ĥ)−1µ̂î . (D.1.8)

Notice that ĥµ̂î = 0, because h vanishes on the subalgebra i(H) ⊂ A. Hence, m̂2 = p̂µ̂î and the

dg-algebra (A, dz) is formal: its minimal model H involves no higher multiplication operations

in addition to the ∗-product (D.1.7).

2A coderivation Q on S
c
(g[1]) satisfying Q2 = 0 encodes an L∞-structure, c.f. [243].

3A coderivation that squares to zero yields an A∞-algebra. In our case, the latter contains the star-product.
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Finally, let us turn to the dg-algebra (A, D = dz + δ). This yields the SDR data

(ĥ′
99 T (A[1]), d̂z + δ̂ + µ̂)

p̂′
//
(
T (H[1]), m̂

)
î′
oo .

Again, we can regard the sum µ̂+ δ̂ as a small perturbation of the basic differential d̂z. Lemma

D.1.2 gives then the formal expression for the codifferential m̂ on the right:

m̂ = p̂
(
1− (µ̂+ δ̂)ĥ

)−1
(µ̂+ δ̂)̂i = m̂2 + p̂

(
1− (µ̂+ δ̂)ĥ

)−1
δ̂î . (D.1.9)

One can simplify various terms of this formula by noting that p̂δ̂ = 0 and δh = 0. Using

(D.1.4), one can also find that the deformed codifferential starts as

m̂ = m̂2 + p̂µ̂ĥµ̂ĥδ̂î+ · · · .

The second term on the right defines the third structure map m3 of the A∞-algebra H[1]. Thus,

the dg-algebra (A, D) is not formal. The diagrams in the main text and Appendices give just

a pictorial representation for various terms of the perturbation series (D.1.9); in so doing, the

inclusion and projection maps i and p correspond to incoming and outgoing edges, respectively.

D.2 Homological perturbation theory: a recipe

We recall that the Poincaré Lemma gives solutions to the equations dzf
(1) = f (2) and dzf

(0) =

f (1) for any closed one-form f (1) = dzAf
(1)
A (z) and a two-form f (2) = 1

2
ϵABf

(2)(z)dzAdzB. They

read

f (1) = h[f (2)] = dzAzA

∫ 1

0

tdtf (2)(tz) , f (0) = h[f (1)] = zA
∫ 1

0

dtf
(1)
A (tz) .

We also set h[f (0)] = 0 for any zero-form f (0). These relations define h as the standard con-

tracting homotopy for the de Rham complex of polynomial differential forms:4

dzh+ hdz = 1− π , (D.2.1)

π being the natural projection onto the subspace of z independent zero-forms. The form

degree and the exterior differential dz give R the structure of a differential graded algebra (or

dg-algebra for short). Rel. (D.2.1) implies that the cohomology of the dg-algebra (R, dz) is

concentrated in degree zero and is described by z- and dz-independent polynomials. Hence,

H(R, dz) ≃ Aλ and (R, dz) define a multiplicative resolution (aka model) of the algebra Aλ.

Starting with the differential graded algebra R one can systematically construct resolutions for

many other algebras. For example, taking the tensor product of R with an associative algebra

4See for example (1.4.74).
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B yields the dg-algebra R⊗B, where dz extends to B by zero. The algebra R⊗B defines then

a model of the tensor product algebra Aλ ⊗ B. Another possibility is to consider the trivial

extension of R by a differential R-bimodule M concentrated in a single degree. The result is

given by a dg-algebra R⊕M with the product

(b, a)(b̃, ã) = (bb̃, bã+ ab̃) ∀b, b̃ ∈ R, ∀a, ã ∈M . (D.2.2)

Since the differential necessarily annihilates M , the algebra R ⊕ M defines a model for the

trivial extension Aλ ⊕M . In application to Chiral Theory we combine both the operations ⊗
and ⊕. Specifically, we take B = A1 ⊗MatN and define the bimodule structure on the space

of formal power series M = C[[yA]] by setting5

yA ◦ a = (−∂Ay + λyA)a , zA ◦ a = a ◦ zA = 0 ,

a ◦ yA = (−∂Ay − λyA)a , dzA ◦ a = a ◦ dzA = 0
(D.2.3)

for all a ∈ M . As is seen the left and right actions of R on M are different unless λ ̸= 0. The

quickest way to check the bimodule axioms is with the τ -involution introduced in [206, App.

A]. For any function a(y, z) we set

aτ (y, z) = a(z, y)ez
AyA . (D.2.4)

Clearly, τ 2 = 1. Then one can equivalently define the above ◦-product by the relation

b ◦ a ◦ b̃ = (b ⋆ aτ ⋆ b̃)τ , ∀b, b̃ ∈ R, a ∈M , (D.2.5)

and the condition that dzA ◦ a = 0 = a ◦ dzA. In this form, the bimodule axioms for the

◦-product hold due to the associativity of the star-product.

The elements of the bimodule M are assigned the degree one. Then the differential graded

algebra

R = (R⊕M)⊗ A1 ⊗MatN = R⊗ A1 ⊗MatN
⊕

M ⊗ A1 ⊗MatN = R
⊕

M

defines a multiplicative resolution of the algebra

A = H(R, dz) = Aλ ⊗ A1 ⊗MatN
⊕

M ⊗ A1 ⊗MatN = A
⊕

M . (D.2.6)

The left summand A is given by the matrix extension of the higher spin algebra hs = Aλ ⊗A1,

the algebra where the one-form field ω assumes its values. The right summand M defines then

a bimodule over the algebra hs⊗MatN , the target space of the zero-form field C. Recall that

the differential in the algebra R is given by the trivial extension of the exterior differential dz.

As observed in [206], the differential dz admits a nontrivial perturbation by another differential

5The quickest way to check the bimodule axioms is with the τ -involution introduced in [206, App. A].
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δ of degree one. The latter is defined as

δ(b, a) = (δa, 0) , δa = aτdz1dz2 ∀b ∈ R, ∀a ∈ M . (D.2.7)

It is clear that δ2 = 0 and dzδ = −δdz = 0. Eq. (4.2.9) ensures the graded Leibniz identity for

the differential (D.2.7) and the product (D.2.2). Therefore, the sum D = dz + δ endows the

algebra R with a new differential of degree one. It is not hard to see that the cohomology of the

perturbed differential is given by the same algebra (D.2.6), that is, H(R, D) ≃ H(R, dz) = A.

Having the same cohomology, the dg-algebras (R, dz) and (R, D) are not quasi-isomorphic to

each other: the former algebra is formal, i.e. it is quasi-isomorphic to it cohomology with trivial

differential, whereas the latter is not – although their cohomologies are isomorphic, the canonical

map of underlying graded vector spaces does not define a morphism of dg-algebras. This fact

implies that in addition to the binary product m2 (induced by that in R) the cohomology

space H(R, D) enjoys higher multi-linear products mk making it into an A∞-algebra. (For

the definition of an A∞-algebra see e.g. [244], [211].) This A∞-algebra, let us denote it by Â,
is called the minimal model of the dg-algebra (R, D). By definition, the binary product m2

coincides with the associative product in A and the triple product m3 is given by a nontrivial

Hochschild cocycle representing a class of HH3(A,A).

Homological perturbation theory (which details can be found in Refs. [237, 238, 245])

provides explicit formulas for the multi-linear products m2,m3,m4, . . . of the A∞-algebra Â.
All the products are constructed as compositions of two basic operations: the contracting

homotopy h and the associative product in the multiplicative resolution R. The latter gives

rise to the coderivation µ defined by

µ(b, b̃) = (−1)deg b−1b ⋆ b̃ , µ(b, a) = (−1)deg b−1b ◦ a , µ(a, b) = −a ◦ b ,

for all b, b̃ ∈ R and a ∈ M. Suitable compositions are conveniently depicted by rooted planar

trees. Each such a tree graph consists of vertices, internal edges, and external edges. Both ends

of an internal edge are on two vertices. All edges are oriented and orientation is indicated by

an arrow. Each vertex has two incoming and one outgoing edge. An external edge has one end

on a vertex and another end is free. The graphs are supposed to be connected. All the vertices

correspond to the product µ, whereas the internal edges depict the action of the contracting

homotopy h:

µ
µ

µ

h

By definition, the algebra A and the A-bimoduleM have degrees−1 and 0, respectively, whereas

all the products mk of the A∞-algebra Â are of degree one6. By degree considerations, each

nonzero product mk may have either one or two arguments in A and the other in M. In the first

6In [91] we used a different convention according to which all mk’s are of degree −1. In that case, the
elements of M have still degree 0, whereas A is placed in degree 1.
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µ

µ µ

Λ[a1] b1 µ Λ[a3]

b2 Λ[a2]

h h

h

µ

µ a3

Λ[a1] µ

Λ[a2] b

h

h

Figure D.1: A planar rooted tree on the left panel corresponds to the analytical expression
h(hδa1 ⋆ b1) ⋆ h(h(b2 ⋆ hδa2) ⋆ hδa3)|z=0 contributing to m5(a1, b1, b2, a2, a3); here b1, b2 ∈ A and
a1, a2, a3 ∈ M. The right panel shows a planar tree for the expression h(hδa1⋆h(hδa2⋆b))◦a3|z=0,
which contributes to m4(a1, a2, b, a3); here b ∈ A and a1, a2, a3 ∈ M. Notice the ‘bare’ argument
a3.

case the image of mk belongs to the algebra A, whereas in the second to the bimodule M. In

field-theoretical terms, these two components of the product mk correspond to the interaction

vertices of V and U types. Let us consider them separately.

Two arguments in A. The corresponding component of mk is described by the sum of

trees with two branches, see left panel in Fig. D.1. The incoming external edges (or leaves)

correspond to the arguments of mk. More precisely, the arguments b1, b2 ∈ A may decorate only

the four end leaves on different branches. The other leaves are decorated by the expressions

Λ[ai] = hδai for ai ∈ M. The only outgoing external edge (or root) corresponds to the value

of the product mk(a1, . . . , b1, . . . , b2, . . . , ak−2) that arises after setting z = 0. The order of

arguments is determined by the natural order of incoming edges at each vertex of a planar tree.

The contributions of different trees are added up (with unit weight) to obtain the desired mk.

One argument in A. The product mk(a1, . . . , b, . . . , ak−1) is obtained by summing up the

one-branch trees; an example of such a tree is shown in the right panel of Fig. D.1. The only

argument b of A decorates one of the two end leaves, whereas the leaf incoming the root vertex

is decorated by a ‘bare’ element a ∈ M. As above, the order of arguments is determined by the

natural order of incoming edges at each vertex and the root edge symbolizes setting z = 0 in

the final expression for mk. Unlike the previous case, the integrals defining the corresponding

analytical expressions require a minor regularization as explained in the main text.

Finally, performing graded symmetrization of the arguments of the products mk makes

our A∞-algebra Â into a minimal L∞-algebra L. At the level of interaction vertices such

symmetrization is automatically achieved by substituting the form fields ω and C instead of

the arguments b’s and a’s. It is the L∞-algebra L that governs the interaction in Chiral Theory.
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D.3 Higher orders

Let us elaborate a bit more on the structure of HPT under consideration. Notice that the

image of the differential (D.1.2) is not a polynomial function and the ⋆-product (D.1.1) of non-

polynomial functions in y’s and z’s is ill-defined. Therefore, one needs to make sure that the

perturbation series (D.1.9) does make sense when applied to polynomial functions.

As it was already mentioned, there are many symmetries in flat space thanks to the com-

mutativity of the ⋆-product (we denote it µ), if λ = 0, that the resolution is based on. The

permutation symmetry over the legs attached to µ-vertices is obvious. We would like to show

that all nontrivial trees that contribute can be depicted as

µ

µ µ

. . . Λ[ui] . . . Λ[un−2]

µ µ

µ Λ[u2] µ Λ[ui+2]

a Λ[u1] b Λ[ui+1]

h h

h h

h h

h h

In words, the tree consists of two branches, each having one leaf with an argument from the

algebra A1, a or b here. Apart from a, or b each of the two branches has only simple leaves

with Λ[ui] = hδui, where ui belong to the module A0. The branches may have different lengths.

The graph above is a contribution to the A∞-map mn with n arguments in total:

m(a, u1, . . . , ui, b, ui+1, . . . , un−2) . (D.3.1)

There is a number of simple observations that reduce the variety of trees to the class we

described (we introduce one-form A in z-space as A = Λ[ui]): (i) h cannot be the last operation

on a tree since we can set z = 0 at the end and h has z-factor; (ii) h2 ≡ 0 is obvious; (iii) there

are no three-forms, hence, A ⋆A ⋆A ≡ 0; (iv) one can also see that h(A ⋆A) ≡ 0; (v) it follows

from (i) that the final result should be the product µ(T1, T2) of two sub-trees T1,2, each of which

being zero-form. In particular, each Ti must have all A balanced by h. Given the rules above,

it is impossible to construct a zero-form tree only with A’s. Therefore, each Ti must have one

and only one of the arguments in the algebra, e.g. a belongs to T1 and b belongs to T2. Let us

zoom in on one of the two sub-trees. We could see two pictures:
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. . .

µ

f(a, . . . ) A

h

. . .

µ

f(a, . . . ) µ

A A

h

In fact, the second option is inconsistent. It gives a one-form and we have to find a way to

make the whole sub-tree be zero-form at the end. We cannot attach a zero-form sub-tree (and

apply h afterwards) since b is in another sub-tree. We can only attach A or any other one-form

sub-tree, but this leads to a two-form, i.e. to the original problem we are trying to solve. We

are in a vicious circle. Therefore, the second option cannot be realized. ■

Locality. It is important to prove that the vertices are local in the sense of not having pij in

the exponent that contract some of the zero-form arguments. Given the result above, we can

have a look at the general structure of one of the branches. It is easy to see that it has the

following general form:

h (· · ·h (a ⋆ Λ[c2]) · · · ⋆ Λ[cn]) =
= η (zp1)

n−1 exp [γ0zy + γ1yp1 + γ2zp2 + · · ·+ γnzpn + ζ2p12 + · · ·+ ζnp1n]× (D.3.2)

× a (y1) c2 (y2) · · · cn (yn) ,

where η, γi and ζi are certain functions of the integration variables tk that originate from

multiple applications of h. The integral sign is omitted. Indeed, we begin with the lowest

possible expression to start the induction

h (a ⋆ Λ[c]) =

∫ 1

0

dt1

∫ t1

0

dk1 (zp1) exp [yp1 (1− t1) + zyk1 + zp2k1 + p12t1] a (y1) c (y2) .

Assuming the structure is as in (D.3.2) we attempt to proceed to the next order to find

(D.3.2) ⋆ Λ[cn+1] = dzA η′ (zp1)
n−1 (α0zA + α1p

1
A

)
×

× exp
[
γ′0zy + γ1yp1 + γ′2zp2 + · · ·+ γ′nzpn + γ′n+1zpn+1+

+ ζ ′2p12 + · · ·+ ζ ′np1n + ζ ′n+1p1 n+1

]
× a (y1) c2 (y2) · · · cn (yn) cn+1 (yn+1) .

Applying h to the expression here-above we clearly reproduce (D.3.2). Now, we can compute

the µ-product of two expressions of type (D.3.2) to see that the final answer has the desired

property of being local. ■

D.4 Pre-Calabi–Yau algebras and duality map

The above construction of the A∞-algebra Â by means of homological perturbation theory is

absolutely insensitive to the choice of the tensor factor B = A1 ⊗ MatN . For any associative
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algebra B we get Â = A⊗B, where the minimal A∞-algebra A extends the binary product in

Aλ ⊕M . Furthermore, the Aλ-bimodule M is actually dual to the algebra Aλ viewed as the

natural bimodule over itself, i.e., M ≃ A∗λ. The corresponding nondegenerate pairing is given

by

⟨a|u⟩ = ep12a(y1)u(y2)|yi=0 , ∀a ∈ Aλ , ∀u ∈M . (D.4.1)

One can easily verify that ⟨b ⋆ a ⋆ c|u⟩ = ⟨a|c ◦ u ◦ b⟩. Recall that the elements of the algebra

Aλ are prescribed, by definition, the degree −1, whereas the elements of the bimodule M live

in degree 0. With this convention all the products mk in A have degree one. By the above

isomorphism, we can write7 Aλ⊕M ≃ Aλ⊕A∗λ[1]. The pairing (D.4.1) gives rise to a canonical

symplectic form ω on the graded vector space Aλ ⊕ A∗λ[1]. This is defined as

ω(a+ u, ã+ ũ) = ⟨a|ũ⟩ − ⟨ã|u⟩ . (D.4.2)

Clearly, degω = 1. Define the sequence of multi-linear forms

Sk(α0, α1, . . . , αk) = ω
(
α0,mk(α1, . . . , αk)

)
, k = 2, 3, . . . , (D.4.3)

where α = a+ u ∈ Aλ ⊕ A∗λ[1]. By definition, the A∞-algebra A is called cyclic (w.r.t. ω) if

Sk(α0, α1, . . . , αk) = (−1)α0(α1+···+αk)Sk(α1, . . . , αk, α0) , (D.4.4)

where α = degα− 1. A direct verification shows that the above identities are indeed satisfied.

Hence, A is a cyclic A∞-algebra. The other two properties of A – shifted duality M = A∗λ[1]

and the fact that Aλ is a subalgebra of A – allows us to classify A as a 2-pre-Calabi–Yau algebra

[211], [113]. The general definition is as follows.

Definition D.4.1 A d-pre-Calabi–Yau structure on an A∞-algebra A is a cyclic A∞-structure

on A ⊕ A∗[1 − d], associated with the natural pairing between A and A∗[d − 1], such that A is

an A∞-subalgebra in A⊕ A∗[1− d].

In our case, d = 2 and the role of an A∞-algebra A is played by the associative algebra Aλ.

The latter is clearly a subalgebra in A. The cyclicity property (D.4.4) relates various structure

maps mk among themselves. In particular, it connects the components of the mk’s with one

and two arguments in Aλ:

⟨a1|mk+1(u1, . . . , a2, . . . , uk)⟩ = −⟨mk+1(u2, . . . , a2, . . . , uk, a1)|u1⟩ .

In the main text, we use these relations to express the U -vertices via V-vertices.
In the case that the associative algebra B enjoys a trace, one can easily extend the 2-pre-

Calabi–Yau structure from A to the tensor product Â = A ⊗ B. The symplectic structure

7Dualization inverts the Z-degree, while the symbol [1] shifts the degree of the dual module by one.
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extends as

Ω(α⊗ b, α̃⊗ b̃) = ω(α, α̃)Tr(bb̃) ∀α, α̃ ∈ A , ∀b, b̃ ∈ B , (D.4.5)

and the multi-linear functions (D.4.3) take the form

Sk(α0 ⊗ b0, . . . , αk ⊗ bk) = Sk(α0, . . . , αk)Tr(b0 · · · bk) . (D.4.6)

The cyclic invariance (D.4.4) of the Sk’s is obvious.

Following the ideas of noncommutative geometry [230], one can regard the cyclic forms

(D.4.6) as functions on a noncommutative manifold associated with Â. The constant symplectic

structure (D.4.5) gives then rise to a kind of Gerstenhaber bracket on the space of such functions,

called necklace bracket [113]. This can be viewed as a noncommutative counterpart of the

Schouten–Nijenhuis bracket on polyvector fields. It is convenient to combine the functions

(D.4.6) into a single non-homogeneous function S =
∑∞

k=2 Sk. With the help of the necklace

bracket all A∞-structure relations for Â can be compactly encoded by the equation [S,S]nec = 0 .

On passing from the A∞-algebra Â to the associated L∞-algebra L, the last equation turns into

the Batalin–Vilkovisky equation for the ‘classical master action’ S(ω,C) of ghost number 2 on

the target space of form fields ω and C. Geometrically, one can regard S(ω,C) as a Poisson

bivector on the space of fields C. Upon this interpretation the field equations (1.3.19) define a

Poisson sigma-model in four dimensions. Schematically,

dCi = πij(C)ωj , dωk =
1
2
∂kπ

ij(C)ωi ωj , (D.4.7)

where the Poisson bivector πij(C) is read off from S = πij(C)ωiωj.

D.5 Consistency at NNLO

It is reassuring to check the consistency of the quartic vertices directly, which, in particular,

makes sure that the signs/coefficients are correct. We add the quartic term to dω and dC:

dω = V (ω, ω) + V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω) + V1(ω, ω, C,C) + V2(ω,C, ω, C) ,

+ V3(ω,C,C, ω) + V4(C, ω, C, ω) + V5(C, ω, ω, C) + V6(C,C, ω, ω)

dC = U1(ω,C) + U2(C, ω) + U1(ω, ω, C) + U2(ω,C, ω) + U3(C, ω, ω) + U1(ω,C,C,C)

+ U2(C, ω, C,C) + U3(C,C, ω, C) + U4(C,C,C, ω) .

The consistency condition 0 ≡ d2ω can be split into 10 equations for different ordering of

ωωωCC. Let us have a look at some of them. We begin with the final answer — expressions

for the vertices in terms of the two graphs G1 and G2 that contribute at the second order:

V1(ω, ω, C,C) = G1(ω, ω, C,C) ,

V2(ω,C, ω, C) = −(σ(423)G1)(ω,C, ω, C)− (σ(23)G1)(ω,C, ω, C) +G2(ω,C, ω, C) ,
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V3(ω,C,C, ω) = (σ(24)G1)(ω,C,C, ω) + (σ(1432)G1)(ω,C,C, ω)− (σ(34)G2)(ω,C,C, ω) ,

V4(C, ω, C, ω) = −(σ(124)G1)(C, ω, C, ω)− (σ(1243)G1)(C, ω, C, ω) + (σ(12)(34)G2)(C, ω, C, ω)

V5(C, ω, ω, C) = −(σ(12)G2)(C, ω, ω, C) ,

V6(C,C, ω, ω) = (σ(14)(23)G1)(C,C, ω, ω) ,

where σ(...)...(...) is the standard notation for the decomposition of a given permutation into

disjoint cycles. The U -vertices can be obtained via the duality. For example,

U1(ω,C,C,C) = G1(ω,C,C,C)(−p4, p0, p1, p2, p3) .

Now let us check directly that some of the A∞-relations must be satisfied. One of the

simplest integrability conditions reads

−ωV1(ω, ω, C,C) + V1(ω
2, ω, C, C)− V1(ω, ω

2, C, C) + V1(ω, ω,U(ω,C), C)
+V1(ω, ω,U1(ω,C,C))− V1(ω,V1(ω, ω, C), C) = 0 ,

which can be rewritten in terms of symbols as

− exp(p01)V1(p0, p2, p3, p4, p5) + V1(p0, p1, p2, p6)U1(y6, p3, p4, p5)− V1(p0, p1, p2 + p3, p4, p5)

+ exp(p34)V1(p0, p1, p2, p4, p5)− V1(p0, p1, p6, p5)V1(y6, p2, p3, p4) + V1(p0, p1 + p2, p3, p4, p5) = 0 .

Nesting one vertex into another is easy to evaluate thanks to the exponential form of the

vertices. We find

V1(p0, p1, p2, p6)U1(y6, p3, p4, p5) =

∫ 1

0

dt2

∫ t2

0

dt1

∫ 1

0

ds2

∫ s2

0

ds1p12(t1p13 + t2p23)

× exp((1− t1)p01 + (1− t2)p02 + t1(1− s2)p14 + t1s2p15 + t2(1− s2)p24 + t2s2p25 + (1− s1)p34 + s1p35),

V1(p0, p1, p6, p5)V1(y6, p2, p3, p4) =

∫ 1

0

dt2

∫ t2

0

dt1

∫ 1

0

ds2

∫ s2

0

ds1p23((1− s1)p12 + (1− s2)p13)

× exp((1− t1)p01 + (1− t2)(1− s1)p02 + (1− t2)(1− s2)p03 + t1p15 + t2(1− s1)p25 + t2(1− s2)p35

+ s1p24 + s2p34).

It is now easy to see that the consistency condition is satisfied order by order with V1(ω, ω, C,C) =

G1(ω, ω, C,C). In particular, the integrals, after Taylor expansion, can easily be done and lead

to simple rational numbers. We have checked enough consistency relations to support the

expressions for the vertices.
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D.6 All order vertices

D.6.1 Jacobians

Here we compute the Jacobians introduced in sections 4.4.1 and 4.4.3.

Single branch. Eqs. (4.4.2) and (4.4.3) are related by a change of variables

{un,1, vn,1, . . . , un,n, vn,n, t2n+1, t2n+2} to {un+1,1, vn+1,1, . . . un+1,n+1, vn+1,n+1} with the Jacobian

|Jn| =

∣∣∣∣∣∣∣∣∣∣

(1−t2n+1)t2n+2

1−t2n+1Un
δij 0 0 un,iδjj

− t2n+1(1−Vn)
1−t2n+1Un

δij δij 0 0
t2n+1t2n+2(t2n+1−1)

(1−t2n+1Un)2
δjj 0 t2n+2(1−Un)

(1−t2n+1Un)2
t2n+1(1−Un)
1−t2n+1Un

t22n+1(1−Vn)

(1−t2n+1Un)2
δjj − t2n+1

1−t2n+1Un
δjj

1−Vn

1−t2n+1Un
0

∣∣∣∣∣∣∣∣∣∣
, (D.6.1)

where i, j = 1, . . . , n. Keeping in mind that some entries are vectors or matrices, Gaussian

elemination allows one to find a diagonal form. To give an example of the steps taken during

this process, one can multiply the matrix in the second row of (D.6.1) by t2n+1

1−t2n+1Un
and add

each of its rows to the last row in (D.6.1). After a few manipulations, one arrives at

|Jn| =
∣∣∣diag( (1−t2n+1)t2n+2

1−t2n+1Un
δij +

(1−t2n+1)t2n+1t2n+2

(1−t2n+1Un)2
un,iδjj, δij +

t2n+1

1−t2n+1Un
un,iδjj,

1−Vn

1−t2n+1Un
, t2n+1

)∣∣∣ .
Notice that the matrix is not completely diagonal as not all of its blocks are proportional to

δij. We obtain

|Jn| =
t2n+1(1− Vn)

1− Un

det
(

(1−t2n+1)t2n+2

1−t2n+1Un
δij +

(1−t2n+1)t2n+1t2n+2

(1−t2n+1Un)2
un,iδjj

)
det
(
δij +

t2n+1

1−t2n+1Un
un,iδjj

)
.

Applying Sylvester’s determinant theorem, det(I + xyT ) = 1 + xTy, gives

|Jn| =
t2n+1

(1− t2n+1Un)2

(
(1− t2n+1)t2n+2

1− t2n+1Un

)n
1− Vn

1− t2n+1Un

,

which is exactly the prefactor in (4.4.2).

Two branches. Another change of coordinates was applied to go from (4.4.5) to (4.4.7). Here

the coordinates {uLn,1, . . . , vLn,n, uRm,1, . . . , v
R
m,m} were replaced with {rLn,1, . . . , sLn,n, rRm,1, . . . , s

R
m,m}.

The corresponding Jacobian reads

|Jn| =

∣∣∣∣∣∣∣∣∣∣

1−Vm

1−UmUn
δij +

(1−Vm)Um

(1−UmUn)2
un,iδjj 0 (1−Vm)Un

1−UmUn
un,iδjj − un,iδjj

1−UmVn

−Um(1−Vn)
1−UmUn

δij δij 0 0
Um(1−Vn)
(1−UmUn)2

um,iδjj − um,iδjj
1−UmUn

1−Vn

1−UmUn
δij +

Un(1−Vn)
(1−UmUn)2

um,iδjj 0

0 0 −Un(1−Vm)
1−UmUn

δij δij

∣∣∣∣∣∣∣∣∣∣
.
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Gaussian elimination allows one to rewrite this as

|Jn| =

∣∣∣∣∣∣∣∣∣
A 0 0 0

B C 0 0

0 0 D 0

0 0 E F

∣∣∣∣∣∣∣∣∣ = |A||C||D||F | ,

where

A =
1− Vm

1− UmUn

δij +
(1− Vm)Um

(1− UmUn)2
un,iδjj , D =

1− Vn
1− UmUn

δij +
Un(1− Vn)

(1− UmUn)2
um,iδjj ,

B = −Um(1− Vn)

1− UmUn

δij , E = −Un(1− Vm)

1− UmUn

δij ,

C = δij , F = δij .

Sylvester’s determinant theorem now states that

|Jn| = |A||D| = 1

(1− UmUn)2

(
1− Vm

1− UmUn

)n(
1− Vn

1− UmUn

)m

,

which is the prefactor in (4.4.5) up to the alternating minus sign.

U-vertices. The determinant of the Jacobian corresponding to the change of variables (4.4.22)

reads

|J | =

∣∣∣∣∣ + ϵ
1−Un(1−ϵ)δij +

ϵ(1−ϵ)
(1−Un(1−ϵ))2un,iδjj 0

− (1−Vn)(1−ϵ)
1−Un(1−ϵ) δij −

(1−Vn)(1−ϵ)2
(1−Un(1−ϵ))2un,iδjj δij +

1−ϵ
1−Un(1−ϵ)un,iδjj

∣∣∣∣∣ .
Using Sylvester’s determinant theorem yields |J | = ( 1

1−Un(1−ϵ))
2( ϵ

1−Un(1−ϵ))
n. This is identified

with the prefactor in (4.4.21) in the limit ε→ 0.

D.6.2 Compactness of integration domain

Single branch. The change of variable (4.4.4) determines the domain of integration in (4.4.3).

We are interested in knowing if this domain is compact or not. It is useful to start with deriving

some properties of Un and Vn. The ti’s run from 0 to 1, hence

1− Un+1 ≥
(1− t2n+1)(1− Un)

1− t2n+1Un

≥ 0

whenever Un ≤ 1. Since U1 = t1t2 ≤ 1, it follows that Un ≤ 1 for all n ≥ 1. Using this result,

we find

Un+1 =
(1− t2n+1)Un + (1− Un)t2n+1

1− t2n+1Un

t2n+2 ≥ 0 .
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Similarly,

1− Vn+1 =
(1− Vn)(1− t2n+1)

1− t2n+1Un

≥ 0

if Vn ≤ 1. Since V1 = t1, we conclude that Vn ≤ 1 for all n ≥ 1.

Vn+1 =
Vn(1− t2n+1) + t2n+1(1− Un)

1− t2n+1Un

≥ 0

for Vn ≥ 0. As V1 = t1 we conclude that Vn ≥ 0 for all n ≥ 1. Using the above result we see

that

Vn+1 − Un+1 =
(Vn − Unt2n+1)(1− t2n+1) + t2n+1(1− Un)(1− t2n+2)

1− t2n+1Un

≥ 0

provided that Vn ≥ Un. Since U1 = t1t2, V1 = t1, and V1 ≥ U1, we conclude by induction that

Vn ≥ Un for all n ≥ 1.

Now the restrictions on the individual variables should be more obvious. It is useful to think

of the variable un+m,n, with m ≥ 1, as originating from un,n when the first relation in (4.4.4)

is applied m times. The same is true for vn+m,n. It is therefore convenient to first study the

properties of un,n and vn,n. It is easy to see that

0 ≤ un+1,n+1 =
1− Un

1− t2n+1Un

t2n+1t2n+2 ≤ 1

and

0 ≤ vn+1,n+1 =
1− Vn

1− t2n+1Un

t2n+1 ≤ 1 .

Then

0 ≤ un+m,n =
1− Un+m−1

1− t2(n+m)−1Un+i−1
un+m−1,n ≤ 1

whenever 0 ≤ un+m−1,n ≤ 1. By induction we find that 0 ≤ un+m,n ≤ 1, as 0 ≤ un,n ≤ 1. As a

result all u variables belong to the interval [0, 1]. For the v variables we find

vn+m,n = vn+m−1,n − un+m−1,n
t2(n+m)−1(1− Vn+m−1)

1− t2(n+m)−1Un+m−1
≤ vn+m−1,n .

Again, proceeding by induction and using the fact that vn,n ≤ 1 we conclude that vn+m,n ≤ 1.

To prove that these variables are also nonnegative requires a bit more work. We will use the

relation

1− Un

1− Un−1
≥ 1− t2n−1

1− t2n−1Un−1
=

1− Vn
1− Vn−1

. (D.6.2)
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We have

vn+m,n ≥ vn+m−1,n − un+m−1
1− Vn+m−1

1− Un+m−1
=

= vn+m−2,n − un+m−2(
t2(n+m)−3(1− Vn+m−2)

1− t2(n+m)−3Un+m−2
+

(1− t2(n+m)−3)t2(n+m)−2

1− t2(n+m)−3Un+m−2

1− Vn+m−1

1− Un+m−1
) ≥

≥ vn+m−2,n − un+m−2,n
1− Vn+m−2

1− Un+m−2
≥ · · · ≥ vn,n − un,n

1− Vn
1− Un

.

The equalities arise from setting ti = 1 for even i and going from the second to the third line

we used (D.6.2). It only remains to show that

vn,n − un,n
1− Vn
1− Un

≥ t2n−1(1− Vn−1)

1− t2n−1Un−1
(1− t2n+2) ≥ 0 ,

which proves that vn+m,n ≥ 0. Ultimately, we have shown that all u and v variables belong

to the interval [0, 1], although they obey even stricter restrictions, which will be discussed in

the next section. Moreover, the Un and Vn are restricted to the interval [0, 1] as well and the

domain of integration for a single branch is thus a subspace of the hypercube [0, 1]2n.

Trees. Another change of variables is proposed in (4.4.6). As we know that all u and v

variables and their sums Un and Vn belong to the interval [0, 1] and that Vn ≥ Un, it is not hard

to see that

0 ≤ rLn,i =
1− V L

n

1− UL
nU

R
m

uLn,i ≤ 1

and

sLn,i ≤ vLn,i ≤ 1 .

We also find that

sLn,i ≥ vLn,i − uLn,i
1− V L

n

1− UL
n

≥ 0 ,

where the latter relation coincides with vn+1,i ≥ 0 for a single branch. Obviously, the same

properties hold for rRm,i and s
R
m,i and consequently the domain of integration for a tree consisting

of two branches with length n and m belongs to the interval [0, 1]2(n+m).

D.6.3 Full domain of integration

We will establish an analogous configuration space for branches of arbitrary length and even-

tually for all trees.
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A single branch. Let us start by considering Rel. (4.4.4). Keeping in mind that all u and v

variables and their sums Un and Vn belong to the interval [0, 1], some relations may be derived.

It is, however, hard to prove any relations between the variables at the same level n. It is

therefore useful to think of un,i as originating from ui,i and having moved up n− i levels using

the first relation in (4.4.4). The same is true for vn,i. Thus, we first start by evaluating

un+1,n+1

vn+1,n+1

=
t2n+2(1− Un)

1− Vn
≤ 1− Un

1− Vn
≤ 1− Un+1

1− Vn+1

,

where we have used (D.6.2) and equality is obtained for t2n+2 = 1. Next, we consider

vn+1,i

un+1,i

=
1− t2n+1Un

(1− t2n+1)t2n+2

vn,i
un,i

− t2n+1(1− Vn)

1− t2n+1Un

≥ 1

t2n+2

vn,i
un,i

(D.6.3)

and inverting this gives

un+1,i

vn+1,i

≤ t2n+2
un,i
vn,i

≤ un,i
vn,i

.

By induction we find

un+1,i

vn+1,i

≤ t2n+2
un,i
vn,i

≤ · · · ≤ t2n+2
ui,i
vi,i

≤

≤ t2n+2
1− Ui−1

1− Vi−1
≤ t2n+2

1− Un

1− Vn
=
un+1,n+1

vn+1,n+1

,

where again we made use of (D.6.2). Equality is obtained if t2k+1 = 0 and t2k = 1 for all

k ∈ [i, n]. Now we consider the relation between
un+1,i

vn+1,i
and

un+1,j

vn+1,j
for i < j < n + 1. Following

(D.6.3) we can bring the latter down to the level where it emanated from, which can be written

schematically as

vn+1,j

un+1,j

= A
vj,j
uj,j

−B =
A

t2j

1− Vj−1
1− Uj−1

−B , (D.6.4)

with A ≥ 1 and B ≥ 0. We then bring the former to the same level, which reads

vn+1,i

un+1,i

= A
vj,i
uj,i

−B . (D.6.5)

Since i < j, we have not reached the lowest level yet, so continuing this process yields

vj,i
uj,i

≥ 1

t2j

vi,i
ui,i

≥ 1

t2j

1− Vi−1
1− Ui−1

≥ 1

t2j

1− Vj−1
1− Uj−1

,

and altogether

vn+1,i

un+1,i

≥ A

t2j

1− Vj−1
1− Uj−1

−B =
vn+1,j

un+1,j

.
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Thus, we find

un+1,i

vn+1,i

≤ un+1,j

vn+1,j

, i < j .

In particular, the equality sign occurs when t2k = 1 and t2k+1 = 0 for all k ∈ [i, j − 1].

Summarizing the above results, we can write

un+1,1

vn+1,1

≤ un+1,2

vn+1,2

≤ · · · ≤ un+1,n

vn+1,n

≤ un+1,n+1

vn+1,n+1

≤ 1− Un+1

1− Vn+1

.

Lastly, we derive a relation between the first u and v variable at each level. Consider

vn+1,i − un+1,i = vn,i − un,i(
t2n+1(1− Vn)

1− t2n+1Un

+
(1− t2n+1t2n+2)

1− t2n+1Un

) ≥ (D.6.6)

≥ vn,i − un,i
1− t2n+1Vn
1− t2n+1Un

≥ vn,i − un,i . (D.6.7)

Hence, if vn,i ≤ un,i, then vn+1,i ≥ un+1,i. From the initial values we know that v1,1 ≥ u1,1,

which then extends through first terms to all orders, i.e., un+1,1 ≤ vn+1,1. Together with (D.6.6)

this determines the domain of integration for a branch of arbitrary length.

Trees. For the construction of trees we performed the coordinate transformation (4.4.6). In

the following discussion the statements for rLn,i, s
L
n,i and r

R
m,i, s

R
m,i are mostly the same. When

both sets of variables obey a similar relation, we will mention only the former. In Appendix

D.6.2, we have already shown that rLn,i ≤ 1 and sLn,i ≤ 1, so we can introduce new variables

rLn , s
L
n that satisfy

n∑
i=1

rLn,i + rLn = 1 ,
n∑

i=1

sLn,i + sLn = 1 .

From the analysis of a single branch we know that
vn,i

un,i
≥ vn,j

un,j
if i < j. Hence

sLn,i
rLn,i

=
1− UL

nU
R
m

1− V R
m

vLn,i
uLn,i

− UR
m

1− V L
n

1− V R
m

≥
sLn,j
rLn,j

, if i < j ,

with equality occurred for
vn,i

un,i
=

vn,j

un,j
. Setting v0 ≡ rLns

R
m, u0 ≡ rRms

L
n , we find

sLn,n
rLn,n

=
1− UL

nU
R
m

1− V R
m

1

t2n

1− V L
n−1

1− UL
n−1

− UR
m

1− V L
n

1− V R
m

≥ 1− UL
nU

R
m

1− V R
m

1− V L
n

1− UL
n

− UR
m

1− V L
n

1− V R
m

=

=
(1− UR

m)(1− V L
n )

(1− UL
n )(1− V R

m )
=

1−
∑m

i=1 r
R
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1−
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i=1 s
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,
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with equality for t2n = 1, and

sRm,m

rRm,m

≥
1−

∑m
i=1 r

R
m,i −

∑n
i=1 s

L
n,i

1−
∑m

i=1 s
R
m,i −

∑n
i=1 r

L
n,i

.

Combining the above results yields

u1
v1

≤ u2
v2

≤ · · · ≤ um+n

vm+n

≤ um+n+1

vm+n+1

. (D.6.8)

where we used the variables defined in (4.4.8). Moreover, u1 = rRm,1, v1 = sRm,1, so we have

sRm,1

rRm,1

=
1− UL

nU
R
m

1− V L
n

vRm,1

uRm,1

− UL
n (1− V R

m )

1− V L
n

≥ 1− UL
n (1 + UR

m − V R
m )

1− V L
n

≥ 1− UL
n

1− V L
n

≥ 1 ,

where in the first inequality we used that uRm,1 ≤ vRm,1 and in the second we used V R
m ≥ UR

m, which

were both previously derived. This leads to the inequalities 0 ≤ u1 ≤ v1 ≤ 1. This collection of

inequalities defines the configuration space for a tree. Notice that the configuration space of a

general tree looks very similar to the configuration space of a ‘single-branch’ tree. In fact, up

to relabeling, the configuration space of a ‘two-branch’ tree with the lengths of branches n1 and

n2 coincides with the configuration space of a single branch of length n1 + n2. It follows that

the domain of integration of trees can be related between different topologies by relabeling of

variables.
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