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Introduction Integrating machine learning (ML) models into wearable or connected devices to deliver early warning alerts prior to atrial 
fibrillation (AF) onset may represent an effective preventive strategy. Machine learning algorithms applied to two-lead Holter 
electrocardiogram (ECG) recordings can support the development of predictive models capable of detecting imminent par
oxysmal AF episodes within short-term windows. This approach could facilitate a more targeted ‘pill-in-the-pocket’ (PITP)- 
like intervention strategy, potentially enhancing timely therapeutic actions and improving patient outcomes.

Aim This study aimed to identify patients currently in sinus rhythm who will experience an AF episode within the subsequent 
hours by analysing 24-h Holter ECG recordings with ML.

Methods We established a novel database comprising 95 871 manually analysed Holter ECG recordings, identifying 1319 episodes of 
paroxysmal AF from 872 patients. Among these, 835 AF episodes from 506 recordings had more than 60 min of normal 
sinus rhythm prior to AF onset and more than 10 min of sustained AF following onset. Patients were stratified into five 
age groups: all patients combined, under 60 years, 60–70 years, 70–80 years, and over 80 years. Additionally, 365 recordings 
from 347 patients without rhythm abnormalities were identified and classified, from which two ECG segments were se
lected. Two deep learning (DL) models were trained on raw ECG data to predict AF onset. To compare DL models 
with traditional ML approaches using heart rate variability (HRV) parameters, we employed a random forest classifier 
and a gradient-boosted decision tree model (XGBoost, XGB).

Results The decision trees models trained on HRV parameters delivered the best predictive performance. The most significant re
sults were observed for episodes lasting more than 5 min of AF, achieving an area under the receiver operating characteristic 
curve of 0.919 (95% CI: 0.879–0.958) and an area under the precision–recall curve of 0.919 (95% CI: 0.879–0.958) for XGB. 
At a decision threshold of 0.5, accuracy was 84.5% (81.2–87.8), sensitivity was 83.0% (79.5–86.4), specificity was 86.6% 
(79.3–93.9), positive predictive value was 90.2% (85.5–94.9), negative predictive value was 78.4% (74.7–82.1), and the F1 
score was 86.2% (83.5–89.0).

Conclusion These findings indicate that HRV parameters contain crucial information for the short-term prediction of AF onset, support
ing preventive strategies. Integration of such predictive models into wearable mHealth technologies could facilitate a PITP- 
like preventive approach, potentially reducing AF-related morbidity. Prospective studies are warranted to validate these 
promising results further.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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We analysed 24-h Holter ECG recordings from 872 patients with paroxysmal atrial fibrillation (AF) to assess short-term AF risk using only the first hour of 
data in normal sinus rhythm (NSR). As controls, 24-h recordings from 347 patients with NSR were included. We compared four models: two deep learning 
approaches trained on raw ECG signals and two decision tree models based on heart rate variability (HRV) features. The HRV-based models outperformed 
deep learning, with the best decision tree model achieving an area under the receiver operating characteristic (ROC) curve (AUC) of 0.919 [0.879–0.958], 
compared with 0.846 [0.816–0.875] for the top-performing deep learning model. SHapley Additive exPlanations analysis revealed five key HRV features 
driving the predictions. These findings support the potential of early warning alerts and pill-in-the-pocket-like preventive strategies through HRV monitoring 
in wearable devices. RMSSD, root mean square of successive differences; PAS, percentage of alternating segments; SODP Q1, points in the first quadrant of 
the second-order difference plot; SODP CTM100, points within 100 ms radius circle at origin; SD1/SD2, Poincaré plot ratio.

Keywords Machine learning • Deep learning • Atrial fibrillation • Prediction • Identification • Autonomic nervous system • 
Heart rate variability

Introduction
Recent guidelines from the European Society of Cardiology highlight 
the importance of risk factor management in atrial fibrillation (AF) 
through the implementation of the newly proposed AF-CARE frame
work.1 These factors can be assessed using clinical scores, genetic risk 
scores, and machine learning (ML) algorithms, whose performance var
ies depending on the specific algorithms and databases employed2–9

These methods for identifying at-risk patients enable preventive inter
ventions, including dietary modifications and management of comorbid
ities.9 However, they do not offer precise information regarding the 
timing of AF onset.

Early detection and prediction of the onset of AF could facilitate tar
geted interventions, potentially preventing or mitigating disease pro
gression and improve patient outcomes. Knowing that an episode of 
AF can occur within a few hours may lead to a more selective prevent
ive strategy. Using ML with two-lead Holter allows the development of 
predictive models for paroxysmal AF within such a short window. 
Implementing an ML model in wearables or connected devices may 
prove to be an effective prevention tool, ultimately allowing for an op
timized pill-in-the-pocket (PITP)-like strategy.

This work focused on identifying patients who are still in sinus 
rhythm but will develop an AF episode in the coming hours using 
24-h Holter recordings and ML.

Methods
Dataset construction
We created a new database consisting of Holter recordings from four hos
pitals and one outpatient clinic. A total of 95 871 recordings were manually 
visualized. Recordings with AF (irregular RR intervals [i.e., irregular time be
tween successive R-wave peaks] and absence of P wave recorded for at 
least 30 s) were annotated to serve as ground truth. The Holter recording 
systems used consisted of two-channel SpiderView digital recorders 
(Microport CRM, Clamart, France).

Patient selection and annotation
The inclusion criteria for this study were as follows: adults aged over 35 
years with at least one AF event detected by Holter. The exclusion criteria 
were persistent/permanent and the presence of a cardiac implantable elec
tronic device (CIED) because it is not possible to calculate heart rate 
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variability (HRV) in individuals with electrically paced rhythms. Recordings 
were transferred from the recorders to the Microport analysis software 
SyneScope (version 3.30a, Microport CRM, Bagneux, France) for an initial 
correction to eliminate the coarsest artefacts of the complexes. All record
ings were subsequently edited and visually reanalysed in their entirety to 
search for all AF episodes longer than 30 s. Overall,1319 paroxysmal AF epi
sodes were labelled from 872 patients (Figure 1). All recordings were once 
again reanalysed to determine the exact beginning and end of each paroxys
mal AF episode. This allows for precise analysis of the transition from sinus 
rhythm to AF episodes. Each recording contained both sinus rhythm and 
one or more AF episodes. This process has been described in detail.10

Among these, 835 AF episodes from 506 recordings had more than 
60 min of sinus rhythm before AF onset and more than 10 min of AF after 
onset, and a total of 964 AF episodes had 30 min or more sinus rhythm be
fore AF onset and 5 min or more of AF after onset. Patients with AF epi
sodes lasting more than 30 s, 5 min, or 10 min were considered. The 
patients were divided into five groups: all patients, patients aged younger 
than 60 years, 60–70 years, 70–80 years, and older than 80 years.

A total of 365 recordings from 347 patients without rhythm or excitabil
ity abnormalities were identified in our database and classified (Table 1). To 
increase the amount of data available for model training and increase the 
variability of the data for arrhythmia-free subjects, we included the 12th 
hour, which is the hour in the middle of the recording.

Machine learning model development
Four ML models were used to identify paroxysmal AF patients from the first 
30 min of the electrocardiogram (ECG) in normal sinus rhythm (NSR) 

without signs of AF during the first hour (Figure 2). For arrhythmia-free re
cordings, 30 min of ECGs in the NSR were analysed at the beginning and 
middle of the recordings.

Deep learning models
Two deep learning (DL) models were utilized to make predictions from the 
raw ECG data. The first model was a deep neural network (DNN), which 
corresponds to the model used in several state-of-the-art studies.5 The se
cond model used was a ResNet convolutional neural network (CNN-RNN) 
using one-dimensional data.11

Decision tree-based models
To compare the performance of our DL models with that of two decision 
trees using HRV parameters as features, we selected a random forest (RF) 
classifier and a gradient-boosted decision tree XGBoost (XGB) model. 
These models used short- and long-term HRV parameters and fragmenta
tion indices as inputs. These were used as follows: 

• Sixteen time domain features: mean heart rate, average heart rate in 
beats per minute (b.p.m.); SDNN [standard deviation of normal-to 
normal (NN) intervals], standard deviation of all NN intervals; a glo
bal measure of HRV; RMSSD (root mean square of successive differ
ences), square root of the mean of the squared differences between 
successive RR intervals; reflects short-term HRV; SDSD (standard 
deviation of successive differences), standard deviation of successive 
RR interval differences; CVNN (coefficient of variation of NN 

Figure 1 Flowchart of Holter ECG recordings selection.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Number of patients, recordings, and windows according to age groups (with AF recordings > 5 minutes)

Age Patients Recordings 1-h windows
All AF NSR All AF NSR All AF NSR

<60 255 78 177 266 86 180 476 116 360

60–70 238 142 96 252 154 98 397 199 198

70–80 210 145 65 222 155 67 337 199 138
>80 136 116 20 139 119 20 180 140 40

Short-term atrial fibrillation onset prediction using machine learning                                                                                                                       3
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intervals), relative variation of NN intervals (SDNN divided by mean 
NN interval); CVSD (coefficient of variation of successive differ
ences), relative variation of successive RR interval differences 
(SDSD divided by mean NN interval); pNN10, pNN20, and 
pNN50, percentage of successive NN interval pairs differing by 
more than 10, 20, and 50 ms, respectively; minNN/maxNN, min
imum and maximum values of NN intervals; medianNN, median va
lue of NN intervals; prc20NN/prc80NN, 20th and 80th percentiles 
of the NN interval distribution; TINN (triangular interpolation of 
NN interval histogram), baseline width of the NN interval histo
gram; a global HRV index; HRVi (HRV triangular index); and total 
number of NN intervals divided by the height of the histogram of 
all NN intervals.

• Five frequency domain features: total power, power low frequency 
[LF: (0.04–0.15 Hz)] band, power high frequency (HF: (0.15–0.4 Hz) 
band, normalized values of LF and HF bands, and LF/HF ratio.

• Thirteen  nonlinear features: Poincaré plot features, SD1 (standard 
deviation perpendicular to the line of identity), SD2 (standard devi
ation along the line of identity), and the SD1/SD2 ratio; the cardiac 
sympathetic index (CSI); the cardiac vagal index (CVI); and modified 
CVI. Second-order difference plot (SODP) features: the number of 
ΔRR in Q1 to Q4 (number of RR interval differences in each of the 
four quadrants of the SODP), the central tendency measure 
(CTM)20, the CTM50, and the CTM100 (proportion of SODP points 
within a circle of radius 20, 50, or 100 ms centred at the origin).

• Five long-term variability features: acceleration (AC), deceleration 
(DC), AC-modified, DC-modified, Ack (Variant of the acceleration 
parameter), and dDCk (variant of the deceleration parameter).

• Four parameters were calculated from the heart rate fragmentation 
(HRF) indices: percentage of inflection points (PIP), inverse of the 
average length of the acceleration/deceleration segments (IALS), per
centage of short segments (PSS), and percentage of alternating seg
ments (PAS).

Data preparation and input strategy
A single 5-min window was used as input for window-level predictions, and 
all 5-min windows were averaged for hourly recording-level predictions, 
allowing us to evaluate performance at two different levels: 5 min or 1 h. 
Because 1-h windows were too large for direct use by the models, they 

were divided into overlapping 5-min segments. This approach substantially 
increased the number of usable data points in the final dataset.

Cross-validation strategy
The models were evaluated using temporal 10-fold cross-validation at the pa
tient level. The recordings were ordered by their recording date and divided 
into 10 groups. In turn, each of the 10 groups was used as a test set, and the 
remaining nine groups were used as a training set, corresponding to a 90– 
10% training-to-test ratio. If a validation procedure was useful during model 
training, a validation set was also set aside, and the model was trained on the 
remaining eight groups, i.e. an 80–10–10% train–validation–test ratio. Note 
that the separation was performed at the patient level to avoid any data con
tamination between the training and test sets. If a patient had more than one 
recording, the first recording was used as the reference date, and all the re
cordings of that patient were in the same group. If multiple recordings from 
the same patient were selected, those recordings were assigned to the same 
split to avoid contamination of the data in the training–testing process.

Preprocessing
For the correct use of HRV parameters in the decision tree-based models, we 
used cubic spline interpolation. Premature atrial contractions (PACs) were 
not taken into account12 in decisions trees because inferences about the 
role of the autonomic nervous system (ANS) only make sense in sinus rhythm.

Performance evaluation
The area under the receiver operating characteristic curve (AUROC) was 
calculated, and since the different age groups were not balanced and the 
incidence of AF varied with age, area under the precision–recall curve 
(AUPRC) analysis was used to evaluate the ML-based AF prediction models. 
The sensitivity, specificity, positive predictive value (PPV), negative predict
ive value (NPV), F1 score, and accuracy were also evaluated to analyse the 
performance of the models. When the model used windows smaller than 
1 h, we first evaluated the window level and then aggregated all the win
dows for a single recording and evaluated the model at the recording level.

To interpret the contribution of each feature to the predictions made by 
the decision tree models, we used SHapley Additive exPlanations (SHAP) 
scores.13 Normally, distributed data are presented as the mean ± SD.

Figure 2 Temporal selection of analysis windows: each arrow represents a 24-h holter recording. One-hour window of interest  was selected after 
the beginning of the recording, either during normal sinus rhythm (top) or preceding an atrial fibrillation event (bottom). Only atrial fibrillation events 
occurring at least 2 h after the start of the recording were included in the analysis.
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Ethics approval
This study was approved by the ethical committees of Erasme, Brugmann, 
Ambroise Paré University Hospitals and Europe Hospitals in Belgium and by 
the Luxembourg National Research Ethics Committee.

Results
For all patients included, the mean age at the time of Holter monitoring 
was 64.9 years (± 13.9). Table 1 shows the results by age group for pa
tients, recordings, and windows. Patients with AF had a mean of 2.3 ±  

2.2 (range 1–11) episodes. The CHA2DS2-VASc score was 2.9 ± 1.7 
(range 1–9), which was derived from only two centres, as it was not 
possible to retrieve all clinical data for the other centres due to the anon
ymization process. The mean duration of AF events was 3H32 ± 5H58, 
occurring 15H08 ± 13H05 after the start of recording.

The most significant results were obtained from recordings with 
more than 5 min of AF episodes (Table 2). We compared the perform
ance of the decision tree models with that of the two DL models 
(Figure 3). The best performance was achieved by the models using 
HRV features. When evaluated at the recording level, the XGB model 
achieved an AUROC of 0.919 (95% CI: 0.879–0.958) (Figure 4) and an 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Model performances assessed at both the window and recording levels for atrial fibrillation episodes lasting 
more than 5 min

Input Model Window size (seconds) AUROC (windows) AUPRC (windows) AUROC (recording) AUPRC (recording)

HRV RF 300 0.866 (0.818–0.913) 0.863 (0.818–0.908) 0.917 (0.877–0.956) 0.947 (0.923–0.971)
HRV XGB 300 0.864 (0.815–0.913) 0.864 (0.818–0.909) 0.919 (0.879–0.958) 0.949 (0.925–0.972)

ECG CNN-RNN 30 0.754 (0.701–0.807) 0.696 (0.624–0.769) 0.801 (0.750–0.849) 0.834 (0.787–0.881)

ECG CNN 30 0.809 (0.780–0.838) 0.760 (0.724–0.796) 0.846 (0.816–0.875) 0.881 (0.858–0.903)

Figure 3 Comparison of model performance for heart rate variability-based (RF and XGB) and ECG-based (CNN-RNN and CNN) models. Mean 
area under the receiver operating characteristic curve and area under the precision–recall curve values at the recording level are shown with their 95% 
confidence intervals. Heart rate variability-based models (RF and XGBoost) demonstrate consistently higher performance than ECG-based models 
(ResNet convolutional neural network and convolutional neural network).
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AUPRC of 0.919 (0.879–0.958) (Figure 5). A threshold of 0.5 was used, 
which corresponded to an accuracy of 84.5% (81.2–87.8), a sensitivity 
of 83.0% (79.5–86.4), a specificity of 86.6% (79.3–93.9), a PPV of 90.2% 
(85.5–94.9), an NPV of 78.4% (74.7–82.1), and an F1 score of 86.2% 
(83.5–89.0) for the all-patient group. The RF model yielded similar per
formance metrics.

Including age and sex as input variables did not provide any additional 
benefit in tree-based models (Table 3).

For all the input sizes, we observed an improvement when the 
model was evaluated at the recording level rather than at the window 
level. For both the RF and XGB models, we observed an increase in 
performance for both the AUROC and AUPRC with longer windows. 
For the recording-level evaluation, the 5-min window yielded the best 
results, outperforming the 1-h window (Table 4). We observed the 
same increase in performance between the window evaluation and 
the recording evaluation for the DL models, but the performance 
was lower than that of the RF and XGB models. The CNN model per
forms better than the CNN–RNN model using the same input 
window.

Using the XBG models on HRV features from 5-min ECG windows, 
we evaluated the performance of the model using the four selected age 
groups. The best performance was obtained in the >80 group, with an 
AUROC of 0.983 and an AUPRC of 0.997. The AUPRC was lower for 
the <60 years group because the prevalence was lower in this group. 
The accuracy reflects the performance of the AUROC and AUPRC, 
with a lower performance in the 70–80 years age group. The sensitivity 
and PPV increase with age, with a 98% sensitivity and 95% PPV for pa
tients aged 80 and older (Table 5).

We used a beeswarm plot to summarize the entire distribution 
of SHAP values for each feature (Figure 6). SHapley Additive 
exPlanations decomposes the output of the model by the sum of the 
impacts of each feature and allows interpretation of the predictive 
ML model in search for causal insights. The parameters used by our 
XGB model were in the order of importance: RMSSD, PAS, SODP 
Q1, SODP CTM, and SD1/SD2 before the next 45 dependent features. 

Thus, most of the information derived from the decision tree was con
tained in the short-term indices of HRV.

Discussion
Our results indicate that it is possible to identify patients who will de
velop AF <24 h before event onset. In our retrospective analysis, the 
PPV was 90.2% overall and increased to 94.6% for patients aged over 
80 years, who represent the highest-risk group for developing AF. 
Notably, our models demonstrated higher sensitivity in older patients 
and higher specificity in younger patients, which is clinically beneficial. 
Furthermore, most predictive information was derived from the analysis 
of HRV. Neither age nor sex was included in our models, confirming that 
the integration of demographic variables, such as age and sex, into ML 
models does not provide any significant benefit in terms of predictive 
performance. This suggests that these variables may be redundant with 
features already extracted from the ECG signals.14,15 To date, there is 
no evidence that HRV parameters can reliably be used to infer age and 
sex, as suggested by our tree-based models. However, it is well estab
lished that HRV does vary with both age and sex.16–19

An important point concerns PACs, whose frequency increases prior 
to AF20 episodes. Although they were included in the input data for the 
DL models, they were excluded from the data used as input for the de
cision tree-based models as they distort the calculation of HRV para
meters.12 Premature atrial contractions are essential triggers for 
initiating AF episodes, and the increase in their frequency is preceded 
by modulations of the ANS.20 Our results suggest that the decision trees 
rely on ANS modulations to make their predictions and that the pres
ence of premature beats is not required for accurate prediction.

According to the SHAP score, the parameters used by the decision 
trees are, in the order of importance, RMSSD, PAS, SODP Q1, SODP 
CTM, and SD1/SD2. This means that the model identified these 

Figure 4 Area under the receiver operating characteristic curve of 
the XGBoost model (all atrial fibrillation patients; 1-H window; atrial 
fibrillation duration > 5 min).

Figure 5 Precision–recall curves for the different age classes and at
rial fibrillation durations > 5 min. The area under the precision–recall 
curve allows for better differentiation between age categories and 
shows that the algorithms achieve higher performance in age groups 
above 60 years.
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parameters as the ones that make the best prediction. Note that many 
of the parameters entered into the model are correlated; however, the 
model has made the most appropriate selection, and these first five 
parameters are uncorrelated or weakly correlated.

The RMSSD parameter ranked by our model is a statistical temporal 
HRV parameter calculated over 5-min periods and is an indicator of 
short-term vagal activity.21 Thus, XGB indicates vagal activity (for 300 
beats) as the primary culprit.22 The second parameter ranked by our 
model is PAS. It is a fragmentation index that calculates the percentage 
of NN intervals in alternation segments. An alternation segment is a se
quence of at least four NN intervals for which heart rate acceleration 
changes sign every beat. This phenomenon must be distinguished from 
SODP, as it is more of a high short-term HRV consistent with the 
breakdown of the neuroautonomic-electrophysiological control sys
tem associated with ageing and the onset of cardiovascular disease.23,24

This fragmentation parameter is associated with abnormal ANS func
tion, possibly in the context of sick sinus disease, which in turn is asso
ciated with AF.25 The third-ranked parameter is the first quadrant of 

the SODP of the interval variation diagram, which is composed of 
the differences in the RRs compared with the previous differences. 
This quadrant shows the slowing of the heart rate over three consecu
tive RR intervals, revealing the very short-term vagal influence.26 This 
highlights the importance of very rapid, very short-term vagal activity, 
as evidenced by the differences in RR intervals over three beats, whose 
meaning is different from that of the variations in RR intervals over 300 
beats for the RMMSD parameters. The fourth-ranked parameter, the 
SODP CTM, is a parameter adopted to quantify the degree of variability 
in an SODP. It is a measure of the total variability of the signal: short- 
term, long-term, and non-linear components.27 This suggests that 
some non-linear effects may also be at play. The fifth factor is the rela
tionship between the short- and long-term variabilities in RR intervals. 
The width (SD1) of the Poincaré plot corresponds to the level of short- 
term HRV, while the length (SD2) of the plot corresponds to the level 
of long-term variability. Although these plots were originally con
structed to measure non-linearities, the SD1/SD2 ratio correlates 
with linear temporal measures of variability.27 All these findings confirm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Comparison of model performance using heart rate variability features alone vs. heart rate variability features 
combined with age and sex, for 300-s analysis windows

Input Model Windows AUROC  
(95% CI)

Windows AUPRC  
(95% CI)

Recording AUROC  
(95% CI)

Recording AUPRC  
(95% CI)

HRV RF 0.866 (0.818–0.913) 0.863 (0.818–0.908) 0.917 (0.877–0.956) 0.947 (0.923–0.971)

HRV + A + S RF 0.862 (0.798–0.927) 0.861 (0.824–0.938) 0.918 (0.872–0.964) 0.954 (0.926–0.971)

HRV XGB 0.864 (0.815–0.913) 0.858 (0.810–0.910) 0.911 (0.879–0.949) 0.949 (0.925–0.972)
HRV + A + S XGB 0.904 (0.853–0.955) 0.903 (0.848–0.958) 0.950 (0.905–0.981) 0.948 (0.916–0.981)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Performance of the XGBoost model using heart rate variability parameters computed on 5-min and 1-h 
windows according to age categories

Age group One single window One single window Averaged windows Averaged windows

AUROC AUPRC AUROC AUPRC
HRV 5 min <60 0.850 (0.799–0.901) 0.688 (0.588–0.789) 0.904 (0.850–0.959) 0.866 (0.796–0.937)

60–70 0.844 (0.810–0.877) 0.844 (0.800–0.887) 0.933 (0.891–0.975) 0.957 (0.929–0.985)

70–80 0.784 (0.720–0.848) 0.848 (0.798–0.898) 0.845 (0.770–0.920) 0.934 (0.901–0.967)
>80 0.893 (0.857–0.929) 0.965 (0.953–0.977) 0.983 (0.962–1.004) 0.997 (0.994–0.999)

HRV 1 h <60 0.888 (0.835–0.941) 0.745 (0.646–0.844) 0.898 (0.846–0.949) 0.846 (0.768–0.924)

60–70 0.877 (0.845–0.909) 0.872 (0.826–0.919) 0.911 (0.869–0.952) 0.948 (0.924–0.972)
70–80 0.840 (0.778–0.902) 0.878 (0.823–0.932) 0.860 (0.779–0.941) 0.943 (0.908–0.977)

>80 0.907 (0.861–0.952) 0.970 (0.951–0.990) 0.963 (0.923–1.004) 0.994 (0.988–0.999)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Metrics of the XGBoost model according to age for an atrial fibrillation duration > 5 min

Age group Accuracy Sensitivity Specificity PPV NPV F1

<60 0.835 (0.772–0.897) 0.582 (0.415–0.749) 0.956 (0.910–1.001) 0.882 (0.764–0.999) 0.834 (0.774–0.895) 0.668 (0.516–0.820)

60–70 0.849 (0.792–0.907) 0.813 (0.729–0.897) 0.906 (0.836–0.975) 0.935 (0.894–0.976) 0.771 (0.679–0.862) 0.866 (0.811–0.920)

70–80 0.770 (0.685–0.855) 0.845 (0.769–0.920) 0.595 (0.417–0.774) 0.833 (0.768–0.899) 0.625 (0.472–0.779) 0.836 (0.775–0.898)
>80 0.935 (0.906–0.964) 0.984 (0.960–1.008) 0.650 (0.409–0.891) 0.946 (0.910–0.982) 0.926 (0.813–1.039) 0.963 (0.947–0.979)
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the already known role of the ANS in the initiation of AF, both in nor
mal and dysfunctional states.20,28,29 Therefore, short-term HRV indices 
associated with vagal tone were the most informative predictors in this 
dataset. Note that 5 min of recording already gives very acceptable pre
dictive performance (Table 5), that 5 min accounts for short-term HRV, 
and that this is all consistent.

Of particular interest is the fact that RR intervals are more relevant 
when time series are used. In this case, the key information is con
tained in the timing of the R-waves. Therefore, you do not need to 
have all 12 leads, and even a single lead contains useful information. 
Moreover, a photoplethysmography (PPG) could be used to calculate 
important indices since perfect equivalence can be achieved with the 
variability calculated from RR intervals or pulse waves.30 With the 
emergence of mHealth techniques, the ability to derive relevant infor
mation from a single-lead ECG or a PPG device to make predictions 
on the order of the day is becoming increasingly appropriate.31 A re
cent study indicated that large-scale screening for AF is feasible using 
only a smartphone with a dedicated application based on PPG tech
nology.32 A ML model for real-time prediction of AF has been devel
oped and validated in a population at very high risk of developing AF 
using PPG.33

Our results offer hope for the development of short-term prevent
ive therapeutic strategies in which patients can be alerted to take medi
cation before an AF crisis based on the predicted onset of an AF 
episode. A nasal spray has recently been shown to be effective and 
could be prescribed for this purpose in view of the need for fast ac
tion.34 In this case, the patient would take their medication while still 
in sinus rhythm. This approach could help prevent the infrequent in
stances of adverse reactions associated with the current PITP strategy, 
which is implemented when the patient is already in AF.35 The PITP 
strategy refers to the use of a Class 1c antiarrhythmic drug when the 
patient experiences palpitations but is not systematically used.36

Nevertheless, a PITP-like strategy could be considered for patients still 
in sinus rhythm. A potential application could involve the use of a con
nected watch or wearable device that can alert the patient when a signal 
indicating an incoming AF episode is received. In such cases, the patient 
can be prompted to take appropriate medication to prevent an AF epi
sode. In the current context, there is no clinical proof of this concept, 
and this justifies the need for studies to prospectively validate these ini
tial results and confirm that an ML-PITP-like strategy based on 
ANS modulations is feasible for short-term AF prevention using our 
model. This strategy warrants further discussion; however, combining 

a fast-acting flecainide nasal spray with oral propafenone could re
present a promising approach to optimize both rapid onset and sus
tained antiarrhythmic effects. In this case, the goal is to reduce the 
AF burden in patients who are already receiving anticoagulant therapy 
in the hope of slowing the progression to long-term permanent AF. 
However, although the models showed promising results on the test 
set, the lack of rigorous internal or external validation means that their 
generalizability to other datasets or clinical settings remains uncertain. 
We would like to emphasize that the use of such ML models still needs 
to be established and prospectively confirmed.

Study limitations
This was a retrospective study based primarily on Holter data from 
mixed patients, some of whom were receiving antiarrhythmic therapy. 
This introduces relative heterogeneity into our sample, but on the 
other hand, it is more in line with the real clinical situation that our 
model will have to address. Although we were particularly careful in 
the selection of patients considered normal and without arrhythmia, 
the Holter recordings labelled as arrhythmia-free could have had other 
pathologies because clinical characteristics were not available for all 
subjects, introducing some bias. However, it is likely that the results 
would have been even better if healthy volunteers had been recruited 
for the study. In fact, it is not easy to obtain arrhythmia-free data retro
spectively, especially for individuals older than 80 years. In addition, to 
balance the database of patients with AF and patients without AF, we 
selected two 1-h windows from among subjects without AF. This could 
also introduce bias into the analysis. Moreover, the reported perform
ance metrics are based solely on the test set, with neither proper in
ternal nor external validation performed, an important limitation to 
consider when interpreting our results. Although this is the largest 
Holter database regarding paroxysmal AF episodes recorded, the over
all number of episodes remains limited. Additionally, only the first hour 
of each paroxysmal AF recording and two one-hour segments of NSR 
were included. To make the data suitable for the models, these 1-h win
dows were divided into overlapping 5-min segments, thereby increasing 
the number of usable data points.

Conclusions
Machine learning techniques using Holter ECG recordings can identify 
patients who develop AF episodes a few hours before they occur. The 

Figure 6 Beeswarm plot of the five most significant SHapley Additive exPlanations values, allowing US to rank the importance of the HRV features 
used by our XGBoost model. The red dots indicate higher feature values, and the blue dots indicate lower feature values. RMSSD, root mean square of 
successive differences; PAS, percentage of alternating segments; SODP Q1, points in the first quadrant of the second-order difference plot; SODP 
CTM100, points within 100 ms radius circle at origin; SD1/SD2, Poincaré plot ratio.
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best results were achieved with our decision tree-based models. A 
comparison of the results obtained by two different ML techniques, 
namely interpretable decision trees and the a posteriori explicable 
DNNs, suggested that the important information enabling the predic
tion of AF onset is contained in HRV. This finding reinforces the role 
of ANS modulation in the initiation of AF episodes and that HRV can 
be used to make the predictions that allow a preventive strategy. 
This opens up perspectives that can be exploited by wearables in 
mHealth, and in this context, the use of a PITP-like preventive strategy 
to reduce the burden of AF. Prospective studies are needed to confirm 
the encouraging potential of these findings.
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