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Abstract

Over the past decade, multirotor aircraft have gained significant atten-
tion across various industries due to their ability to hover and maneuver
in three-dimensional space. These capabilities make them invaluable for
numerous applications, driving substantial advancements in unmanned
aerial vehicles (UAVs) and contributing to their widespread adoption.

This work focuses on enhancing the flight robustness of small and
medium UAVs, an aspect that is well-established in conventional aerospace
operations but often overlooked in low-computation platforms. To address
this challenge, we develop a multi-layered control structure that integrates
low-level motor control with high-level path planning and collision avoid-
ance.

At the core of our approach, we employ analytical feedback lineariza-
tion to introduce critical linearity to the system, enabling the use of compu-
tationally efficient control techniques. A key contribution of this work is
the utilization of zonotopes, a set-based representation, to perform reacha-
bility analysis. This method allows us to study system dynamics and deter-
mine a safe flight envelope, ensuring that any maneuver can be reversed
to maintain operational safety.

To integrate this analysis into the control framework, we explore two
upper-layer strategies: reference governors and their extension into tube
model predictive control. These approaches enhance robustness against
disturbances, such as wind perturbations, ensuring stable flight under chal-
lenging conditions.

Furthermore, we enhance existing path-planning algorithms by lever-
aging zonotopes to efficiently navigate cluttered environments. By con-
structing an expansive search tree over the available space while account-
ing for obstacles, our method enables reliable motion planning. Finally,
we extend our framework to multi-agent UAV systems by partitioning the
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fleet into smaller groups that communicate through distributed model pre-
dictive control.

Through experiments, we validate the effectiveness of our multi-layered
approach across various real-world scenarios.



Résumeée

Au cours de la derniére décennie, les drones multirotors ont connu un
essor considérable dans de nombreux secteurs grace a leur capacité a sta-
tionner en vol et a évoluer avec précision dans un espace tridimensionnel.
Ces atouts en font des outils incontournables pour diverses applications,
favorisant des avancées majeures dans le domaine des véhicules aériens
autonomes (UAV) et accélérant leur adoption a grande échelle.

Ce travail vise a renforcer la robustesse en vol des UAV de petite et
moyenne taille, un enjeu bien maitrisé dans 'aéronautique traditionnelle,
mais souvent négligé sur des plateformes a faible puissance de calcul. Pour
répondre a ce défi, nous proposons une architecture de contrdle multi-
couche, allant de la gestion des moteurs a bas niveau jusqu’a la planifica-
tion de trajectoire avancée et un systeme d’évitement des collisions.

Au ceeur de notre approche, nous utilisons une technique de linéarisa-
tion analytique pour simplifier le comportement dynamique du drone et
permettre I'application de méthodes de controle efficaces sur le plan com-
putationnel. Une contribution clé de ce travail réside dans I'exploitation
des zonotopes, une représentation par ensembles, afin de réaliser une anal-
yse d’atteignabilité (reachability analysis). Cette approche permet de mod-
éliser la dynamique du systéme et de définir une enveloppe de vol sécurisée,
garantissant que toute manceuvre entreprise peut étre corrigée afin de pré-
server la sécurité opérationnelle.

Pour intégrer cette analyse au sein du controle, nous explorons deux
stratégies : le reference governor et son extension, le controle prédictif
par tube (tube model predictive control). Ces méthodes renforcent la ro-
bustesse du drone face aux perturbations extérieures, comme les rafales de
vent, et assurent un vol stable méme dans des conditions difficiles.

Par ailleurs, nous améliorons les algorithmes de planification de tra-
jectoire existants en utilisant les zonotopes pour naviguer plus efficace-
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ment dans des environnements encombrés. En construisant un arbre de
recherche optimisé tenant compte des obstacles, notre méthode permet
une planification de mouvement fiable et réactive. Enfin, nous étendons
ce cadre aux systemes multi-drones en divisant la flotte en sous-groupes
capables de collaborer via un controle prédictif distribué.

Lefficacité de cette approche multicouche est validée a travers une série
d’expériences en conditions réelles, démontrant son potentiel pour amélio-
rer la sécurité et les performances des UAV autonomes.



Contents

(1.2.3 Reachability] . . ... ... ... ... ........
[1.2.4  Operational Reliability in Aerospace|. . . . ... ..
(1.3 Objectives|. . . . . . . .. ...
1.4 ntributions|. . . . . . ... L Lo

[2.3  Modeling Simplifications and Justifications| . . . . . . . ..

[2.3.1 Complex Aerodynamic Effects| . . . . ... ... ..
[2.4  Case Study: The Experimental DJI F550 Hexacopter| . . . .
[2.5 The Role and Strategy of Numerical Simulation|. . . . . . .

B__Basics of Controll

3.1 Introductionl . ... ... ... ... ... ... ... ...
[3.2 Fundamental Concepts| . . ... ... ... .........
[3.3 Control of a Single-Input Single-Output System|. . . . . . .
[3.4 Estimation of a Single-Input Single-Output System| . . . . .
[3.5 General Structure of Autopilots . . . . ... ... ... ...
[3.6  Application: The Parrot Mambo Minidrone| . . . . . . . ..

[3.6.1 System Overview| . . ... .. ............




XVI CONTENTS

[3.6.3 Attitude Estimation| . . . ... .. ... ... .... 34

[3.6.4 Height and Position Estimation| . .. ... ... .. 35

4 F k Linearizati 39
4.1 Introductionl . ... ... ... ... ... 39
4.2 Classic Approachl. . . . . ... ... ... .. ........ 40
4.3 Incremental Nonlinear Dynamic Inversion| . . . ... ... 43
M4 ResultS . . . .ot 47

| back Linearization and Incremental Nonlinear Dy- |

| namic Inversion under Step Inputs|. . . . . ... .. 47
4.2 Simulations on the Parrot Mambo: Classic PID Struc-

| ture versus Incremental Nonlinear Dynamic Inver- |

| sion under Trajectory Tracking/ . . . . . .. ... .. 47

4.4.3 Real Experimentation on the Parrot Mambo: Clas- |

| sic PID Structure versus Incremental Nonlinear Dy- |

| namic Inversion under Trajectory Tracking . . . . . 49
I5 Set Representation and Reachability Analysis| 53
1 Intr 100 . ... e 53

[5.2 SetOperations| . .. ... ... ... .. ........... 55
[5.2.1 LinearMapping . .. ... ... ........... 55

522 MinkowskiSuml . . .. ................ 55

[5.2.3  CartesianProductl . . . ... ............. 57

524 ConvexHulll . . .................... 57

52,5 TIntersectionl . ............. ... .... 58
munmn' .......................... 58

[5.2.7 Pontryagin Difference| . . . . . .. ... ... .... 58

[5.3 Set Representation: Zonotopes and Extensions| . . . . . . . 61
[5.3.1 Zonotopes| . ... .. ... ... .. 61

[5.3.2 Constrained Zonotopes| . . . . . ... .. ...... 61

[5.3.3  Polynomial Zonotopes|. . . . ... ... ....... 62

[5.3.4 Constrained Polynomial Zonotopes| . . . ... ... 64

[5.3.5 Set Operations on Constrained Polynomial Zonotopes| 65

[5.4 Reachability Analysis| . . ... ... ............. 66
[5.5 Zonotopic Reachability Analysis of the Parrot Mambo| . . . 70
[5.5.1 Linear Model Identificationl. . . . . . ... ... .. 70




CONTENTS XVII

[5.5.3 Monte Carlo Approach and Comparison| . .. . .. 72
6 Reference Governor| 77
6.1 TIntroductionl . ............ ... ... ... ..., 77
............................. 78
6.3  Maximum Admissiblesetl . . . . ... ... . ... ..... 81
6.4 Constraintset Y| . ... . . . . . . . . . 82
6.5 Disturbances . . .. ... ... ... ... 85
[6.6 Safetymargins| . . . ... ... ... ... 86
[6.7 Reference governor design for the Mambo|. . . . . . . . .. 87
6.8 Tests of the control structurel . . .. ... ... ....... 92
-B Model Predicti ntr 99
(71 Introductionl . . ... ... ... ... ... 99
(72 Principle] . . ... ... ... 101
7.3 Theory| . . . . .. . . . 101
[7.4  Safe flight envelope as a constraintset] . . . . ... ... .. 106
(Z4.1 DeterminationofZEand V| ... ... ........ 108
(74.2 Feasibility . ... ... ... ... ... ... 108
[7.5 TImplementationandresults/. . . ... ... ... ...... 109
[7.6 Experimental Validation|. . . . . ... ... ......... 113
[7.6.1 System Overview| . . .. ... .. ... ....... 114
[7.6.2  System Identification| . . . .. ... ... ...... 115
[7.6.3 Implementation of Tube MPC| . . ... ... .... 116
764 ConstraintSetsl. . . . ... .............. 118
Z7 Resulls . .. ..o 119
[7.7.1 Experimental Validation| . ... ... ........ 120
Z8 Conclusion] . . . ... ..... ... . ... .. ... 121
8 Real-Time Path Planning Using Zonotopic Extensions to Rapidly-
[ Exploring Random Trees 125
1 Intr 100 . . .. e 125
[8.2  Rapidly-Exploring Random Tree Algorithm| . . . . . . . .. 127
8.2.1 Algorithm Description| . . .. ............ 127
2.2 Variantsof RRT*. . . ... ... .. .. ....... 129
[8.2.3 Challenges in RRT* Methods|. . . . .. ... .... 130
[8.3 Zonotopes in Random sampling methods . . . .. ... .. 131

[8.3.1 Handlingobstacles] . ... ... ........... 131




XVIII CONTENTS
[8.3.2  Sampling Zonotopes|. . . . . .. .. ... .. ... . 132

[8.3.3  The Nearest Neighbour] . . . ... .......... 134

B34 Steering the Sampled Nodd| . . . . . . ... ... .. 135

8.4 Algorithm Summary|. . . .. ... ... ... .. ...... 136
[8.4.1 Discussion on Convergence and Optimality of the |

| Modified RRT* Algorithm| . . .. .. ........ 139
mericalresults] . . ... ... ... ... .. L. 141

[8.6 Experimental Validation|. . . . . ... ... ......... 147
B7 Conclusion| . . . ... ... ... .. 148

|9 Partitioning and Distributed Tube-MPC for UAV Swarms| 151
0.1 TIntroductionl . .......... ... ... ... ..... 151
(9.2 Partitioning theswarm| . . ... ... ............ 152
[9.2.1 GraphTheoryl . .. ... ... . ... ....... 153

[9.2.2  Partitioning problem| . . . ... ... ........ 156

023 Weighting . ...................... 157

024 Partitioningresults) . . ... ............. 158

0.2.5 Number of Partitions . . ............... 160

[9.2.6  Time-varying partitioningf. . . . . . ... ... ... 160

9.3 Communication between the partition|. . . . . . ... ... 160
[9.3.1 Graph Representation of Partition Communication| 162

[9.3.2 The optimization problem| . ... ... ... .... 162

0.3.3 Resultsl . ... ... ... ... 163

9.4 Distributed Tube Model Predictive Controll . . ... .. .. 163
[9.4.1 Application to a UAV partition| . . . . . .. ... .. 165

[9.4.2 Feasibility] . ........... ... . ..., 168

[9.4.3  Application to one partition| . ... ... ...... 168

0.5 Simulationresults . ... ................... 172
0.6 Conclusion| . . . . ... ... .. ... ... ... 175

10 Conclusion and Perspectives| 177
10.1 Contributionsl. . . . ... ................... 177
102 Limitations . . . . . ... ... ... 178
10.3 Future Work| . . . ... ... ... ... . ... ... ... 179




List of Figures

2.1 A multicopter with fourrotors.| . . . . ... ... ... ... 16
2.2 Inertial and body frames.| . . . . ... ... ... .. .... 16
[2.3  Experimental setup - Hexacopter equipped with a Pixhawk |
| 4, GPS, batteries, camera, LIDAR, and a Raspberry Pi 5. The |
[ main frameusedisa DJIF550) . . . . ... ... ...... 21
3.1 Parrot Mambo minidronel . . . . . ... ... ... ... .. 31
B2 ThoT Nam] id ~ualization] T ] l
| user to observe the simulated flight in real time.| . . . . .. 31
3.3 _Cascade PID Structure in the Parrot Mambo drone. . . . . . 33
4.1 Feedback linearization principle.| . . . . . .. ... ... .. 41
4.2  Firstinner loop: attitude linearization.|. . . . . . . ... .. 46
4.3 Second inner loop: Euler angles linearization.|. . . . . . . . 46
4.4 Third loop: Position control and Euler angles linearization.| 46
4.5 Responses of the Mambo minidrone to step setpoints: clas- |
| sic feedback linearization (dotted lines), INDI (continuous |
| lines), references (dashed lines); purple: p,, blue: p,, or- |
| ange: py,yellow: ) .. ... oo oo 48
4.6 Generated cubic B-spline trajectory from given control points.| 49
4.7 Simulation results: Trajectory following comparison between
he INDI controller an lassic PID control str re on
[ a30secondstimescale) . . ... ............... 50
4.8 Real-life experimental results: Trajectory following com- [
| parison between the INDI controller and a classic PID struc- |
[ ture on a 30 seconds time scale . . . . ... ... ... ... 51

XIX



XX LIST OF FIGURES

[5.1 Linear mapping (orange) of a initial set (blue) by a matrix |

| M=[4 00 4f. ... .. ... ... . ... .. . .. ... 56
[5.2  Minkowski sum (orange) of two sets (blue and red)[. . . . . 56
[5.3 Cartesian product (orange) of two one-dimensional sets (blue |

| andred) . . . ... .. .. ... o 57
[5.4 Convex hull (orange) of two sets (blueand red), . . . . . .. 59
[5.5 Intersection (orange) of two sets (blueand red)] . . . . . . . 59
[5.6 Union (orange) of two sets (blueandred) . ... ... ... 60
[5.7 Pontryagin difference (orange) of two sets: blue set minus |

I redsetl. . . .. ... 60

[5.8 Construction of a constrained zonotope. First, the center |
| is defined and translated along the first generator. Each |
subsequent generator is added through a Minkowski sum,
corresponding to a translation along the new generator. A
constraint can then be applied to restrict the domain of the
| generator coefficients.| . . . . ... ..o oL L 62
[5.9 Examples of zonotopes and constrained zonotopes.

Blue: 2 =([00]%,[1 00 1}),,
Orange: 2 =([00]",[{1 0 10 1 1{),,
Yellow: 2 = ([50]",[1 0 10 1 1]y,

Purple: CZ = ([05],[1L 0 10 1 1]' 111, 1)ez] - - - . 63
[5.10 Safe Flight Envelope Definition)] . ... ........... 68

|5.11 Upper graph: computation of the initial time reachable set
by the CORA toolbox (over-approximation); lower graph:
computation of the initial time interval reachable set by

| under-approximation.| . . . . . ... ... ... .. 70

|5.12 Orange dotted line: Test dataset generated using the Simulink
Support Package for Parrot Minidrones. Blue line: Predic-
- Fihe identificd T on

[5.13 Projection of the zonotopes on the 2-dimensional state-space

¢ — O after 0.01 seconds. Blue: initial zonotope. Red: for-

ward reachable set R;(0.01). Green: backward reachable

set Rp(0.01). . . . . . ... 72
[5.14 Projection of the zonotopes on the 2-dimensional state-space

¢ — ¢ after 0.01 seconds. Blue: initial zonotope. Red: for-

ward reachable set R;(0.01). Green: backward reachable

set R, (0.01). . . . . ... 73




LIST OF FIGURES XXI

[5.15

Projection of the constrained reachable regions on the 2-

dimensional state-space ¢ — 6 after 0.05 seconds. Blue: ini-

tial zonotope. Red: forward reachable set R (0.05). Green:

backward reachable set R,(0.05), . . . . . ... ... .... 73

5.16

Projection of the constrained reachable regions on the 2-

dimensional state-space ¢ — ¢ after 0.05 seconds. Blue: ini-

tial zonotope. Red: forward reachable set R (0.05). Green:

backward reachable set R,(0.05).| . . . . ... ... ..... 74

[5.17

Projection of the unsaturated zonotopes on the 2-dimensional

state-space $—6 after 0.15 seconds. The flight envelope cor-

responds to the forward reachable set. Blue: initial zono-

tope. Red: forward reachable set R,(0.15). Green: back-

ward reachable set R, (0.15).] . ... ... ... ....... 74

[5.18

Blue line: forward zonotopic reachability analysis. Red dot- |

ted line: forward Monte Carlo reachability analysis using |

the linear system. Red dots: endpoints of linear model tra-

jectories. Green dotted line: forward Monte Carlo reacha- |

bility using the nonlinear model. Green dots: endpoints of |

nonlinear model trajectories.| . . . . .. ... ... .. ... 75

6.1

Sate flight envelope protection through the use of a linear |

governor based on the exploitation of zonotopes. The inter- |

nal controller is a feedback linearizing controller that en- [

ables the linear governor,| . . . .. ... ... ... ..... 79
[6.2 UAV in a safe flight envelope with a zonotopic representation.| 79
[6.3 Reference governor structure| . . . . . . ... ... ..... 80
[6.4 Factorization of a zonotope over the Minkowski sum.| . .. 83
[6.5 Numericalexample| . .. ... ... ... .......... 86
[6.6  Projection of the maximum admissible zonotope on several [

2D phase planes - INDIcase| . .. ... ........... 90

6.7

Unconstrained responses of the Mambo mini drone to set- |

oint steps without the reference governor - classic feed-

ack linearization: dotted lines - INDI: continuous lines -

references: dashed lines - purple: p,, blue: p,, orange: p,, |

yellow: . . . . ... 93




XXII LIST OF FIGURES

[6.8 Unconstrained responses of the Mambo mini drone to set- |
point steps with the reference governor - classic feedback
inearization: dotted lines - INDI: continuous lines - ref-
erences: dashed lines - purple: p,, blue: p,, orange: p,, |
yellow: .. . . . . .. 94

6.9 Constrained response (constraint x < 0.5) of the Mambo |
mini drone - Trajectory (INDI - yellow line, classic Feed- |

|

|

back linearization - purple line) of the quadcopter with the
initial reference (blue dotted line) and the updated refer-
ence (orange dotted line)| . . . .. ... ... ... ..... 95

[6.10 Velocities in the x direction without the constraint (red line) |
and with the constraint v, < 0.05 (INDI: orange line and |
| classic feedback linearization: bluelineJ . . . . . ... ... 96

linearization method in ith Tube-MPC - the ref-
| For Teedback T — ] Terati |
| and the references of Tube MPC are the positions p and the |
| yawangled). . .. ... 101

[7.2 Tube-based robust model predictive control principle: the |
computed nominal trajectory (blue line) is the reference of |

|

|

an ancillary controller that drives and encompasses the real
system trajectory (red line) in a tube defined by zonotopic
TEZIONS. . . . . v v i e e e e 102

[7.3 Tube model predictive control with the nominal and ancil- |
| lary controllers| . . . . ... ... .. ... ... ... ... 104

[7.4 2-D projections of the forward and backward reachable sets
using both €% and CPXZ representations. Blue lines corre-
spond to CZ, green lines to CPZ. Continuous lines are the

| forward computation and dotted lines stand for the back- |
| ward computation.| . . . . . ... ... 107

|7.5 Monte-Carlo simulations of the methodology (MPC - CPZ
[ -INDI)under disturbances. Blue lines are the Monte-Carlo
| simulations, black lines show the references and orange |
| lines show the mean trajectory| . . . .. ... ... ..... 111




LIST OF FIGURES

XXIII

[7.6 Monte-Carlo simulations of the methodology (Tube-MPC -

| ©PZ - INDI) under disturbances such as inertia, wind and

internal approximations. Blue lines are the Monte-Carlo

simulations, black lines show the references and orange

lines show the mean trajectory| . . . . ... ... ... ...

[7.7 Data for identification : UAV steps responses for four states

: velocities along x, y and z axis and the yaw angle. | . . . .

[7.8 Validation - Model vs Data - Yellow lines are the input data

provided to the system, blue lines are the validation data

used to measure the identified system performances shown

inorangelines.| . . . . . ... ... ... ...

117

[7.9 Simulation of the system without disturbances using the

Tube-MPC framework (MATLAB). States are shown in blue,

and references are inorange.| . . . . . ... ... ... ...

[7.10 System speed along the x-axis during the four different ex-

periments. . . . ... .. Lo e e e e e

[7.11 Data of the first experiment: nominal states are shown as

dotted blue lines, while the actual states are shown as solid

blue lines. Nominal inputs are represented by dotted red

lines, and the actual inputs are shown as solid red lines.| . .

123

(8.1 TIllustration of the RRT* algorithm. At each iteration, the

algorithm samples a random point in the space and finds |

the closest node in the tree. A collision check is performed

between the new connection (dotted line) and the obsta-

cles. If a collision is detected, the sample is discarded, and

a new one is generated. Otherwise, a new point is created

using a step-size parameter and added to the tree. Finally,

as shown in the rightmost diagram, the tree can be rewired

if a shorter path exists, improving overall path efficiency

. 128

[8.2 TIllustration of the steering method. A reduced reachable

set (light green) is attached to the center of the closest node

in the tree, and a line zonotope (black dotted line) is cre-

ated between the closest node and the sampled zonotope.

This line intersects with the reduced reachable set, which

produces the red line, a constrained zonotope from which

we sample a steered center,| . . . . ... ... ... L.

137



XXIV LIST OF FIGURES

18.3 Zonotopic variant of the RRT* variant. The main steps re-
main similar to the standard RRT* algorithm, but zono-
topes are used for representation and collision checking. At

| each iteration, a random point is sampled, and the nearest |

| e S Tound 11 on I validated |
using zonotope-based collision checking. If a collision is
detected, the sample is discarded. Otherwise, a new point
is generated using a step-size parameter or the reachabil- |
ity analysis and added to the tree. Finally, as shown in the |
rightmost diagram, the tree can be rewired if a shorter path |
exXISES) . .. 138

[8.4 Illustration of the real-time Rapidly-Exploring Random Tree |
| (RRT*) algorithm with zonotopes. The starting point (green), |

goal point (yellow), obstacles (red), agent (blue), and tree

| (gray) are shown. In (a), the tree begins to form, allowing

[ initial movement along collision-free paths. By (b)), thetree |
expands signiﬁcantlz, guiding the agent closer to the goal.

[ In () and (d), the tree fully explores the environment, en-

| abling the agent to reach the goal without collision.| . . . . 143

[8.5 Illustration of the real-time Rapidly-Exploring Random Tree

(RRT*) algorithm with zonotopes in a dense environment.

[ The starting point (green), goal point (yellow), obstacles
| (red), agent (blue), tree (gray), and moving obstacle (pur- |
ple) are shown. In (a)), the tree is finding its way in the
maze. In (b)), the tree is almost reaching the goal point,
but a moving obstacle blocks the path and overlaps with a
branch of the tree. By (c), the tree expands toward the goal
| and prunes itself where the moving obstacle overlapped with |
| the tree, allowing it to reach the goal safely,| . . . . ... .. 145

[8.6 Tree after 10 seconds with medium exploration parameters. |
The sampling region parameter increases from 0.1 to 0.4,
and the reachable set parameter rises from 1.2 to 2. This ad-

| justment enhances the explored space while avoiding col- |

| lisions.) . . . . . . . .. 146




LIST OF FIGURES

8.7

Tree after 10 seconds with large exploration parameters.

| The sampling region parameter increases from 0.1 to 1, and

the reachable set parameter rises from 1.2 to 4. This ad-

Justment significantly enhances the explored space while

avoiding collisions.|. . . . . . .. ... .o L.

B8

Drone Crazyfly 2.1 used for experimental validation.| . . . .

146
147

B9

Indoor operation room setup, featuring an external com-

puter and camera system for precise position feedback.|. . .

148

B.10

Result of the experimental validation: The Crazytly drone

successtully navigates the 2D maze, avoiding obstacles and

reaching the goal. The starting point (green), goal point

(yellow), obstacles (red), agent trajectory (blue), the node

to node trajectory reference provided to the crazy fly (cyan)

and the zonotopic tree (gray) are shown.. . . . . . ... ..

149

[9.1 Algorithm partitioning and communication network (Part I){154

[9.2  Algorithm partitioning and communication network (Part |
................................ 155
[9.3 Partitioning example of a group with 12 agents into four [
| partitions| . . . . . . ... L 159
[9.5 Communication network built between partition. Red lines |
| represent the communicationpath.| . . . ... .. .. ... 164
[9.6  First case: matrices P are null. The three agents rush to |
| their referencepoint.|. . . . . ... ... ... L L. 169
[9.7 Second case: the agents take account of the relative motion [
| in their path to the reference endpoints.| . . . . . ... ... 170
[9.8 Third case: the three agents create a pattern before moving |
[ towardsthereferences] . . .................. 170
[9.9 Fourth case: an agent is a leader (blue) and reaches its ref-
| erence without looking at the formation, while followers
| (red and black) try to manage the formation before going [
| towards their reference endpoints.| . . . . ... ... . ... 171

[9.10 Fith case: velocity uncertainties of 0.2 m/s are introduced. | 172

[9.11 Starting and reference formation| . . . . .. ... ... ... 173
[9.12 Resulting partitioning for the 3D formation provided. Each [
| color represents one partition. The cyan lines represent the |
| communication link between the partitions.,|. . . . . . . .. 174




XXVI LIST OF FIGURES

19.13 Trajectories of the UAVs swarm under the specified starting
| position and the desired formation. The formation is set to
| move 15malongthey-axis,| . . . .. ... .......... 174




List of Tables

[2.1 Multicopter Specifications|. . . . . ... ... ... ..... 21
3.1 Parameters of the MathWorks simulator for the Parrot Mambo.l 30
[5.1 Awvailable Operations for Each Representation.| . . . . . .. 67
(.1 Parameters of the disturbancesl . . . . ... ......... 110
(7.2 Performances of the methodology when varying the param- [
| etersA,and A, . ... Lo 113
(7.3 UAV Specifications|. . . . . . ... ... ... ........ 115
(7.4 RMSE values for different experiments|. . . . . . . ... .. 120
(10.1 Summary of Simulations and Experiments| . ... ... .. 181

XXVII



XXVIII LIST OF TABLES



Nomenclature

X

First component of a vector

Second component of a vector

Third component of a vector

Normalized weight in optimization problem
Zonotope factor

Intersection

Union

Nominal input vector

Vector of angular velocities in the body-frame (rad/s)
Lever arm moment produced by the i’ motor (N-m)
Nominal state vector

Linear constraint matrix

Transition matrix

Adjacency matrix

Input transition matrix

Constraint offset

Zonotope center

XXIX



DL

DP

NOMENCLATURE

Distribution between agent matrix

Distance between agent matrix

Quadcopter geometry matrix

Unit vector along the the third axis in the body-frame
Exponent matrix

Constraint exponent matrix

Perturbations on state matrix

Unit vector along the the third axis in the earth-frame
Force produced by the i'* motor (N)

End of horizon state weight matrix

Force disturbances (N)

Perturbations on output matrix

Matrix of generator

Nonlinear function (in context)

k" generator

Nonlinear function

Ancillary final horizon weight matrix

Nominal final horizon weight matrix

Inertial matrix (kg-m?)

Matrix link between the Euler angles and body-frame angular ve-
locities

Controller/estimator gain

Agent distribution matrix



NOMENCLATURE

Q

Q

ij

ij

Moment produced by the i"” motor (N-m)
Moment disturbances (N-m)

Vector of position in the earth-frame (m)

State weight matrix

Ancillary state weight matrix

Nominal state weight matrix

Exponent matrix

Input weight matrix

Rotation matrix

Ancillary input weight matrix

Nominal input weight matrix

Skew matrix

Input vector

Vector of velocities in the earth-frame (m/s)
Vector of wind velocities in the earth-frame (m/s)
Disturbances vector

State vector

Output vector/measurement vector
Matrix-Zonotope multiplication - generator mapping
Binary variables designing membership of agent in a partition
Set of partition indices

Angular velocity along the third axis (rad/s)

Angular velocity along the second axis (rad/s)

XXXI



XXXII NOMENCLATURE

X Vector of Euler angles (rad)
CPZ Constrained polynomial zonotope
CZ  Constrained zonotope
L Invariant set
PZ  Polynomial zonotope
R Reachable set
R,  Backward reachable set
R;  Forward reachable set
SFE Safe flight envelope
Input constraint set

Nominal input constraint set

u

1%

w Disturbance set
X State constraint set

y Output constraint set
Z Zonotope

Rotor rotationnal speed (rad/s)

RS

Pontryagin difference
Minkowski sum
Linear mapping
Pitch angle (rad)
Yaw angle (rad)

Air density (kg/m?)

@ o e e @ & O

Roll angle (rad)



NOMENCLATURE XXXIII

[1]

Cartesian product

Nominal state constraint set

Angular velocity along the first axis (rad/s)
Acceleration/virtual input (m/s”)

Drag force reference area (m?)

Drag moment reference area (m?)

Cosinus function

Non-dimensional aerodynamic moment coefficient
Non-dimensional aerodynamic force coefficient
Non-dimensional drag force coefficient
Non-dimensional drag moment coefficient
Number of disturbances

Number of outputs

Gravitational acceleration (m/sz)

Rotor height (m)

Discrete increment value

Arm length (m)

Mass / Number of partitions (kg)
Disturbing moments (N-m)

Horizon

Number of states/system dimensions
Number of constraint

Number of zonotope generators



XXXIV NOMENCLATURE

Number of polynomial factors in a zonotope
Number of constraint polynomial factors in a zonotope
Position along the first axis (m)

Position along the second axis (m)

Position along the third axis (m)

Number of inputs

Rotor radius (m)

Sinus function

Area covered by the blades of a rotor (m?)
Time (s)

Thrust (N)

Velocity along the first axis (m/s)

Velocity along the second axis (m/s)
Velocity along the third axis (m/s)

Weight in optimization problem



Chapter 1

Motivation and Contribution

1.1 Introduction

Unmanned Aerial Vehicles (UAVs), particularly multirotor aircraft like
quadcopters, have emerged as transformative technologies over the past
decade. Their inherent ability to hover, take off and land vertically, and
navigate with high agility in three-dimensional space has unlocked a wide
array of applications across numerous domains. These range from critical
infrastructure inspection, aerial photography and videography, and pre-
cision agriculture to search and rescue operations, package delivery, and
surveillance. This rapid proliferation is a testament to the versatility and
increasing reliability of these platforms.

However, despite their widespread adoption and remarkable capabil-
ities, the control of quadcopters presents significant challenges. These
challenges stem primarily from their underactuated and highly nonlin-
ear dynamics, susceptibility to external disturbances such as wind gusts,
and the inherent need for safe and reliable operation, especially when op-
erating in complex or uncertain environments. Ensuring robust perfor-
mance, guaranteed safety, and efficient navigation while operating with
limited computational resources, often found on small and medium-sized
platforms, remains a critical area of research.

Traditional control approaches for quadcopters often rely on simplified
linear models or require significant computational power for nonlinear
model predictive control. While effective in ideal conditions, these meth-
ods can struggle to provide strong guarantees on system behavior when

1
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faced with uncertainties or disturbances. Furthermore, ensuring that the
vehicle always operates within safe limits and can avoid collisions, partic-
ularly in dynamic or cluttered spaces, requires sophisticated techniques
that can reason about the set of possible future states the system might
occupy.

This thesis addresses these challenges by proposing a comprehensive,
multi-layered control framework for quadcopters that leverages the power
of set-based methods, specifically zonotopes, to enhance robustness and
planning capabilities. Zonotopes, as convex hulls of a finite number of vec-
tors, offer a computationally efficient way to represent and propagate sets
of states, making them particularly well-suited for real-time applications
on platforms with limited processing power. By integrating zonotope-based
reachability analysis throughout the control architecture, this work aims
to bridge the gap between theoretical guarantees provided by set-theoretic
methods and their practical implementation in complex robotic systems.

The proposed control structure is designed as a hierarchy, starting from
a fundamental layer responsible for stabilizing the nonlinear dynamics
and extending to higher layers that handle robust trajectory tracking, col-
lision avoidance, and cooperative control for multi-agent systems. At the
core of the low-level stabilization, we employ feedback linearization. This
technique transforms the nonlinear quadcopter dynamics into an equiv-
alent linear system through a change of variables and input transforma-
tion. This linearization simplifies the subsequent controller design signif-
icantly, allowing the use of well-established linear control techniques and
reducing the computational burden compared to directly controlling the
nonlinear system. Critically, we demonstrate how zonotopic representa-
tions can be integrated even at this foundational level to reason about the
effects of uncertainties or unmodeled dynamics on the linearized system.

Building upon the stabilized dynamics, the thesis develops strategies
for robust trajectory tracking and constraint satisfaction. A key contribu-
tion is the integration of zonotope-based reachability analysis into the con-
trol loop. Reachability analysis computes the set of all possible states that
a system can reach from a given initial state set, considering bounded dis-
turbances and uncertainties. By representing state and input uncertain-
ties as zonotopes, we can efficiently compute reachable sets. This analysis
provides crucial safety guarantees by allowing us to check for potential
constraint violations or collisions before they occur.

We explore two specific methodologies for incorporating this reach-
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ability information into a robust control framework. Firstly, we investi-
gate the use of Reference Governors (RGs). An RG is a supervisory control
scheme that modifies the reference signal sent to a base controller to en-
sure that state and input constraints are never violated, even in the pres-
ence of disturbances. By using zonotopes to represent the predicted future
states of the system and its safe operating region, the RG can quickly de-
termine if the current reference will lead to a constraint violation and, if
so, compute the necessary modification to the reference.

Secondly, we extend this concept to the framework of Tube Model Pre-
dictive Control (Tube-MPC). Tube-MPC is a powerful technique for ro-
bust control where the controller aims to keep the actual system trajec-
tory within a predefined tube around a nominal, disturbance-free trajec-
tory. The size and shape of this tube are determined by the reachable
sets of the system under disturbances. By using zonotopes to compute
these reachable tubes, the Tube-MPC can optimize control inputs over a
receding horizon while guaranteeing that the actual system state remains
within a tube around the undisturbed trajectory, thus ensuring robustness
against disturbances and strict adherence to constraints.In the linear case,
this tube can be quantified, but its design remains complex for nonlinear
systems.

Beyond robust tracking, safe navigation in environments containing
obstaclesis paramount for practical UAV deployment. This thesis enhances
existing path planning algorithms by integrating zonotope-based collision
checking. Specifically, we develop a Rapidly-exploring Random Tree (RRT)
algorithm that utilizes zonotopes to represent the vehicle’s swept volume
or its predicted future occupied space. By growing the RRT using zono-
topic state representations and performing collision checks between these
zonotopes and obstacle representations, the planner can efficiently find
collision-free paths in cluttered environments while implicitly account-
ing for the vehicle’s size and potential uncertainties. This approach of-
fers more robust collision avoidance guarantees compared to point-based
planning methods.

Finally, the thesis extends the developed framework to the challeng-
ing problem of coordinating multiple UAVs. By partitioning the fleet into
smaller groups, we explore strategies for distributed control where each
group or agent computes its control actions based on local information
and limited communication with neighboring agents.

In summary, this thesis presents a novel and comprehensive approach
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to quadcopter control that integrates set-based methods, particularly zono-
topes and reachability analysis, into a multi-layered control architecture.
By combining feedback linearization for base stability with zonotope en-
hanced robust control (Reference Governors and Tube MPC) for distur-
bance rejection and constraint satisfaction, and a zonotope-based RRT for
safe path planning, this work provides a powerful framework for robust
and safe autonomous flight of quadcopters in complex and uncertain en-
vironments. The effectiveness of the developed techniques is validated
through simulations and experiments.

1.2 A review of the literature

1.2.1 Introduction to unmanned aerial vehicles

Unmanned Aerial Vehicles (UAVs), and particularly multi-copters, have
experienced an unprecedented surge in popularity and utilization across
diverse sectors in recent years. This rapid development can be attributed to
a confluence of technological advancements, economic factors, and evolv-
ing societal needs.

One key element has been the significant improvement in electronics.
Sophisticated sensors (e.g., Inertial Measurement Units (IMUs), GPS mod-
ules), powerful microprocessors, and reliable communication systems have
become significantly smaller, lighter, and more affordable. These advances
have enabled the construction of compact and capable flight controllers
and navigation systems suitable for small-scale UAVs [1]]. Moreover, im-
provements in battery energy density and power output—especially with
Lithium Polymer (LiPo) batteries—have drastically increased the flight en-
durance and operational capabilities of multi-copters, which is crucial for
enabling longer missions and carrying heavier payloads.

The accessibility of open-source software and hardware platforms (e.g.,
ArduPilot, PX4) has further democratized access to advanced flight con-
trol technologies. This openness has fostered rapid innovation and proto-
typing within the community, significantly reducing acquisition and op-
erational costs compared to manned aircraft or fixed-wing drones [2]. In
particular, the vertical take-off and landing (VTOL) capability of multi-
copters eliminates the need for runways or specialized launch infrastruc-
ture, while their maneuverability and ability to hover make them ideally
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suited for operations in confined or complex environments.

UAVs benefit not only from these core design advancements but also
from their versatility across various domains. For instance, in agriculture,
multi-copters equipped with multispectral or infrared cameras play a cru-
cial role in crop monitoring, disease detection, and irrigation optimization
[3]]. In the construction industry, UAVs facilitate the inspection of sites, in-
dustries, and power lines—minimizing manual inspection needs and en-
suring compliance with design models [4]]. In cinematography, they pro-
vide unique aerial perspectives, and emerging drone-based delivery sys-
tems are being explored for last-mile logistics in urban and remote areas
[5].

However, while these technological improvements have transformed
UAV design and expanded their applications, they also pose new chal-
lenges. The development of potent algorithms is essential to effectively
manage the diverse applications and uncertainties inherent in UAV oper-
ations. Simplistic models may overlook critical dynamics, whereas more
intricate models require detailed aerodynamic knowledge and come at a
higher cost. Moreover, UAVs must operate reliably under varying environ-
mental conditions—such as wind, rain, and extreme temperatures—which
can significantly affect their behavior. These factors underscore the need
for robust control methodologies to ensure flight stability and robustness.

Overall, the evolution in UAV technology not only enables a broader
range of applications but also sets the stage for advanced research in robust
control systems—a key focus of this thesis.

1.2.2 Nonlinear control in multi-rotor aircraft

In the last decade, a wide range of control techniques have been employed
for the control of multicopters. For instance, [6] demonstrates a back-
stepping control method for enabling accurate trajectory tracking in quad-
copters, while [7] implements feedback linearization by creating a lin-
earized closed-loop model. Lyapunov-based control approaches are also
explored, as highlighted in [[8]], and model predictive control is readily ap-
plied to multi-rotor aircraft in [9]. This list is not exhaustive; numerous
other control methods have been reviewed in [[10], which provides a com-
prehensive overview of the various techniques applied to multicopters.
These control methods can broadly be categorized into two groups.
The first group comprises analytical techniques, which, despite their math-
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ematical complexity in deriving input equations, offer the advantage of
fast computation during flight. In contrast, the second group consists of
optimization-based controllers that systematically accommodate various
constraints, albeit with higher computational demands.

In addition to these conventional approaches, robust control techniques
have been extensively employed to manage the inherent disturbances en-
countered by multicopters. For example, [11]] implements an H_, control
strategy on a load-carrying quadcopter, aiming to minimize the worst-case
impact of uncertainties on the system’s performance. Similarly, [12] uti-
lizes Linear Parameter-Varying (LPV) control to accommodate multiple
dynamic behaviors, while [13] employs sliding mode control to steer the
system toward desired behaviors. Handling disturbances through a differ-
ent paradigm, [14] adopts a neuro-fuzzy control approach. Furthermore,
[15]] demonstrates a tube model predictive control that confines the multi-
rotor’s trajectory within a predefined tube to ensure robust performance.

These methods have been validated experimentally in both simulation
and real-flight tests, confirming their effectiveness in enhancing the sta-
bility and performance of multicopters under varying conditions.

1.2.3 Reachability

The concept of reachability analysis aims to ascertain whether a system
state can be reached within a finite time, given specific initial conditions.
This concept is highly useful in formal verification, controller synthesis,
and related applications. In the comprehensive review presented in [16]],
a state-of-the-art examination within the set propagation framework is es-
tablished. In this framework, initial conditions are embedded in a set rep-
resentation, which is then used in propagation algorithms to derive the
solution of the dynamical equation. The resulting solution encompasses
all states that can be reached from the specified initial conditions.

For example, in [17]], reachability analysis is applied to evaluate the op-
erational performance of autonomous cars, demonstrating its relevance in
aerospace systems as well, as further illustrated in [18], where reachability
plays a critical role in controller synthesis.

In addition to propagation methods, the choice of set representation
directly influences the accuracy of the computed reachable set. Basic rep-
resentations, such as intervals [19], while straightforward, tend to yield
conservative results. Another widely recognized family of representations
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involves ellipsoids [20], which offer the advantage of a convex structure
that facilitates rapid optimization processes, albeit at the cost of conser-
vatism in complex systems.

Convex polytopes—whether through H-representation (using linear
inequalities) or V-representation (using vertices) [21} 22 —also introduce
conservatism, similar to ellipsoids. A recently introduced representation,
known as constraint zonotopes, adopts a generator-based approach (Z-
representation) inspired by zonotopes, a category of symmetric convex poly-
topes. This approach, introduced in [23], enables set-theory operations
such as Minkowski addition, linear mapping, and intersection, thereby
significantly enhancing reachability algorithms and reducing their com-
putational complexity to polynomial time.

Notably, recent extensions to nonconvex polytopes, namely polyno-
mial zonotopes and constrained polynomial zonotopes, have been intro-
duced in [24, 25]. These extensions allow for more accurate reachability
computations for nonlinear systems, showcasing the ongoing evolution of
reachability analysis methodologies. For instance, in [26], reachable sets
are computed to ensure that the states of nonlinear systems under con-
trol inputs remain within acceptable operational bounds and avoid critical
phenomena.

Overall, these advancements in reachability analysis contribute signif-
icantly to the development of robust control strategies for multicopters by
providing comprehensive insights into the system dynamics and perfor-
mance limits.

1.2.4 Operational Reliability in Aerospace

One of the foremost concerns in aviation is the potential for any aerial
vehicle to pose significant risks to itself, its potential occupants, and sur-
rounding structures. Consequently, extensive research on possible failure
modes, threats, and operational challenges has been undertaken within
the aircraft domain [27, 28, 29]. While UAVs currently do not transport
people and typically operate with lighter payloads, their flights at lower
altitudes—coupled with an increasing number of operations and beyond-
line-of-sight missions—introduce notable risk factors.

It is crucial to recognize that risk mitigation measures must also be
developed for UAVs, given their expanding presence in the airspace. Al-
though UAVs may not carry passengers at present, their operations con-
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tribute to airspace congestion and potential hazards. Drawing inspiration
from the protocols established in conventional aviation becomes impera-
tive in managing the unique challenges posed by unmanned aerial vehi-
cles. This proactive approach ensures that operational standards are not
only maintained but also adapted to address these challenges.

For instance, innovative approaches have been explored to enhance
protective measures in UAV operations. In studies such as [30, 31]], tools
known as safe flight envelopes are meticulously computed using Hamilton-
Jacobi methods. These safe flight envelopes play a critical role in ensuring
the revertibility of input actions and are seamlessly integrated into control
strategies to ensure that a UAV operates within prescribed boundaries. An-
other avenue for determining safe flight envelopes involves the application
of Monte Carlo techniques, as demonstrated in [32] for quadcopters. Al-
though this technique proves accurate with a large sample size, it demands
substantial computational power.

Moreover, advancements in reachability analysis using set propagation
techniques based on zonotopes have been employed for risk management
considerations. In [33]], this method is applied to Kalman filtering, ensur-
ing a robust tube of trajectory. Additionally, [34] explores the impact of
icing conditions on system performance by evaluating reachable sets un-
der specific environmental constraints. These diverse methodologies con-
tribute to the proactive establishment of measures that address a spectrum
of potential challenges in UAV operations.

1.3 Objectives

The primary objectives of this research are to develop and validate a robust
control architecture for unmanned aerial vehicles, with a strong focus on
integrating zonotopic tools and real-time implementation, from high-level
planing to low-level motor speeds control. To this end, the research aims
to achieve the following:

1. Design a Robust Control Architecture: Develop a control frame-
work for UAVs that integrates a incremental nonlinear dynamic in-
version for feedback linearization. This cascaded control approach
will facilitate the transition from high-level position control down to
low-level motor speed commands, ensuring robustness against un-
certainties.
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2. Perform Zonotopic Reachability Analysis: Utilize zonotopic set
representations to perform reachability analysis on multi-rotors. This
objective is critical for developing a systematic approach to handling
uncertainties.

3. Develop Robust-Constrained Control Methods: Implement a
strategy for enforcing constraints through optimization to ensure that
the UAV’s trajectory remains within defined operational limits.

4. Path planning and collision Avoidance: Develop a path planning
algorithm enhanced with zonotope sampling for effective region ex-
ploration and collision avoidance with an extension to the approach
for multi-agent scenarios.

5. Prototyping and Experimental validations: To validate the pro-
posed control strategies through real-world experiments on a suite of
hardware platforms, each chosen to rigorously test different layers of
the control stack, from the lab to the field.

(a) Initial Low-Level Validation (Parrot Mambo): Our initial
exploration into low-level control, such as the Incremental Non-
linear Dynamic Inversion (INDI) strategy, was conducted on
the Parrot Mambo minidrone. Its accessible firmware provided
a straightforward entry point for testing custom controllers that
require direct access to the motors.

(b) High-Level Outdoor Demonstration (Hexacopter): Our cus-
tom built hexacopter, equipped with a Pixhawk 4 autopilot run-
ning the PX4 flight stack, was used as a high-level autonomy
demonstrator. For this complex platform, we intentionally re-
tained the underlying closed-loop controllers. This platform
was crucial for validating our supervisory algorithms like Tube-
MPC in a real-world scale, where the goal is to provide robust
guidance to a competent, off-the-shelf autopilot.

(c) High-Fidelity Indoor Validation (Crazyflie): While the Mambo
was suitable for initial proofs-of-concept, its limited robustness
led us to adopt the Crazyflie 2.1 platform for more rigorous in-
door testing. Integrated within a motion capture system pro-
viding high-precision, ground-truth state feedback. This setup
was essential for easier and faster validation.
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These objectives collectively aim to bridge the gap between advanced
theoretical control design and its practical deployment in UAV systems,
thereby contributing to the broader adoption of robust, and efficient au-
tonomous aerial vehicles.

1.4 Contributions

The primary contributions of this doctoral thesis lie in the development
and experimental validation of advanced robust control technoiques for
Unmanned Aerial Vehicles (UAVs). These contributions are presented in
a series of peer-reviewed publications and a book chapter, each building
upon the previous one. Specifically, this work introduces novel applica-
tions of zonotopic reachability analysis to address key challenges in UAV
autonomy, including robust control, safe navigation, and real-time path
planning.
The main contributions can be summarized as follows:

Original Contributions

« A Framework for Safe Control Using Zonotopic Reachability:
This thesis introduces a method for ensuring robust control of UAVs
by integrating a high-fidelity feedback linearization scheme (INDI)
with a constrained reference governor. The key innovation is the use
of computationally efficient zonotopic reachability analysis to deter-
mine the maximum admissible set of states, thereby guaranteeing
that the UAV always operates within safe constraints.

« Experimental Validation of Zonotopic Tube-MPC: We present
experimental validation of a tube-based Model Predictive Control
(MPC) strategy that uses zonotopic reachability for a multirotor air-
craft. This contribution demonstrates the practical feasibility this
approach in handling real-world disturbances and uncertainties.

« Path Planning Algorithm: This research proposes a novel exten-
sion of the Rapidly-exploring Random Trees (RRT) algorithm, known
as Zonotopic RRT*. This new approach integrates zonotopic repre-
sentations to provide robust, collision-free paths in uncertain envi-
ronments. Unlike traditional RRT methods, this algorithm accounts



1.4. CONTRIBUTIONS 11

for the system’s dynamics and uncertainties, ensuring that the planned
trajectory is not only collision-free but also dynamically feasible and
safe to execute.

Conference Papers

« Zonotopic Reachability Analysis of Multirotor Aircraft
Delansnay Gilles; Vande Wouwer Alain; Harno G. Hendra et al. (2021,
40th Benelux Meeting on Systems and Control; 25th International
Conference on System Theory, Control and Computing): This work
introduces the novel use of zonotopic reachability analysis for multi-
rotor systems, demonstrating its computational efficiency and accu-
racy for future state prediction compared to traditional Monte Carlo
simulations.

« Implementation and Tests of an INDI Control Strategy with
the Parrot Mambo Minidrone
Delansnay Gilles; Vande Wouwer Alain (2022, 41st Benelux Meeting
on Systems and Control; International Conference on Unmanned
Aircraft Systems): This paper presents the first implementation of a
robust feedback linearization method for the Parrot Mambo minidrone,
validating its effectiveness in a practical, cascade control structure.
It sets the foundation for integrating reachability-based constraints.

« Reference Governor in the Zonotopic Framework Applied to
a Quadrotor under an INDI Control Strategy
Delansnay Gilles; Vande Wouwer Alain (2023, 42nd Benelux Meet-
ing on Systems and Control): This work integrates a reference gover-
nor with our zonotopic reachability framework, ensuring the safety
of the quadrotor by keeping it within a predefined admissible set.

« Experimental Validation of Zonotopic Tube-MPC Applied to a
Hexacopter
Delansnay Gilles, Dewasme Laurent, Vande Wouwer Alain (2025,
European Control Conference) : This paper presents an experimen-
tal validation of the proposed zonotopic tube-MPC method on a hex-
acopter, showcasing its ability to ensure robust, safe flight in real-
world scenarios.
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Journal Papers

« Design of a Reference Governor in a Zonotopic Framework
Applied to a Quadrotor under Feedback Linearization Control
Strategies
Delansnay Gilles; Vande Wouwer Alain (2023, Journal of Intelligent
and Robotic Systems) : This journal paper extends our conference
work by providing a detailed theoretical and practical design of a
zonotopic reference governor, with a specific focus on computing the
maximum admissible sets for safe control.

« Partitioning and Distributed Tube-MPC for UAV Swarms
Delansnay Gilles, Ocampo-Martinez Carlos, Vande Wouwer Alain
(2025, Journal of Intelligent and Robotic Systems) [Submitted]: This
submitted work introduces a method for handling multi-agent sys-
tems by combining graph partitioning with distributed tube-MPC,
paving the way for scalable swarm control.

« Real-Time Path Planning Using Zonotopic Extensions to Rapidly-
Exploring Random Trees
Gilles Delansnay, Vande Wouwer Alain (2025, IEEE/CAA Journal
of Automatica Sinica) [Submitted] : This paper presents a general-
ization and improvement of the RRT* algorithm, using zonotopes to
guarantee robust and dynamically feasible paths for UAVs in real-
time, uncertain environments.

Book Chapter

« Tube-Based Nonlinear Model Predictive Control of Multiro-
tor Aircraft Using a Polynomial Zonotopic Framework
Delansnay Gilles, Dewasme Laurent, Vande Wouwer Alain (2025,
Nonlinear and Constrained Control - Applications, Synergies, Chal-
lenges and Opportunities) : This chapter provides a comprehensive
overview of our simulation-based work on a complex nonlinear tube-
MPC, detailing the use of constrained polynomial zonotopes to en-
sure safety and robust control.
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1.5 Thesis Structure

This thesis is organized as follows:

« Chapter 2: Details the modeling of multirotor aircraft, with a focus
on quadcopters.

« Chapter 3: Introduces fundamental concepts of control and state
estimation for dynamical systems.

« Chapter 4: Discusses a nonlinear control strategy : feedback lin-
earization application for multirotors.

« Chapter 5: Explores set representations—particularly zonotopes—and
their application in reachability analysis.

« Chapters 6 and 7: Investigate the integration of zonotopic methods
within optimization-based control frameworks to enhance robust-
ness.

« Chapter 8: Presents high-level planning and collision avoidance
strategies leveraging zonotopic constructs.

« Chapter 9: Examines multi-agent systems, focusing on decentral-
ized control schemes and communication strategies.

« Chapter 10: Concludes with a summary of contributions and out-
lines future research directions.
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Chapter 2

Multicopter Modeling

2.1 Introduction

In this chapter, we seek to understand how a multicopter works. We ask
ourselves: how can such devices fly and maneuver? We introduce the
states and the primary equations governing the system, based on New-
ton’s laws, to model the dynamics of a multicopter. Although additional
side effects exist in real systems, we will not consider them here.

2.2 Mechanistic Nonlinear Model

Most popular UAVs are multicopters which have the ability to move in any
direction and rotate independently around each of its axes. It has six de-
grees of freedom and is equipped with an even number of rotors at the
end of each arm (Fig. in a symmetric disposition. The multicopter’s
physical parameters include the arm length, denoted as [,, and the rotor
height, h.. Each rotor i (where i = 1, 2, 3,4) operates at a speed w;, which
generates a force f; and a drag moment m,. Figure [2.2|illustrates the two
reference frames used to describe the multicopter’s position and veloci-
ties. The inertial frame is attached to the Earth and is used to describe the
drone’s movement from an external perspective, whereas the body frame
is attached to the multicopter’s center of gravity and describes the mea-
surements collected by the on-board sensors [35]. The multicopter’s ori-
entation in the inertial frame is given by the Euler angles x = (¢,0, )7,
while its angular velocities in the body frame are denoted by w, = (¢, ¢, y)’.

15
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Dy

Figure 2.2: Inertial and body frames.
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The forces and moments produced by each rotor can be computed in
the body frame using aerodynamic models [36,[37]. The rotation and shape
of the blades induce airflow through the rotor area, generating a force in
the opposite direction. The force is directly proportional to the square of
the blade velocity, while the resulting moment is caused by the drag on
the blade. In addition, each rotor rotates in the opposite direction of their
adjacent rotors to cancel out the natural drag:

£ = Conrivle, 1)
m,; = C ps,r;w;|wle,, i=1,2,3,..,n (2.2)

In these expressions, e, is a unit vector along the p,;, axis of the body
frame. C, and C, are non-dimensional aerodynamic coefficients for rotor
thrust and torque, r, is the rotor radius, p is the air density, s, is the area
covered by the blades, and D is a matrix that defines the positions of each
rotor relative to the multicopter’s center of mass, n is the even number of
rotors.

Each rotor is placed away from the center of gravity, creating a moment
due to the lever arm effect. Given the rotor position (see Fig. [2.1)), its height
h,, and arm length [, the torque is given by:

where D encompass the position of all the rotors. The multicopter ori-
entation is described by the Euler angles x = (¢,6,%)", and the angular
velocities in the body frame (Fig. are given by w, = (¢,1,7)". The
equations of motion are derived from Newton’s law, and the relationship
between the Euler angular rates and the body-frame angular velocities is
obtained as in [35, 38, [39]]:

Xx=J00 - w, (2.4)

Cbb =I! (—wb X Iwb) + I Z [m,- + Ti] (25)

i=1

where I is the multicopter’s inertial matrix and J(x) is the projection ma-
trix that relates the angular velocities in the body frame to the Euler angu-
lar rates:
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1 s()t(6) c(p)(d)
JoOo=[0 <) —s(¢) (2.6)
0 s(¢)/c(8) c(¢)/c(6)

The positions and velocities of the multicopter are expressed in the in-
ertial frame as p = (p,, p,, p,)" and v = (v,,v,,v,)". They are obtained
directly from Newton’s principle [35,[38,39]:

p=v (2.7)

V=g e + RGN, (28)

i=1

where m is the mass of the multicopter and g is the gravitational accelera-
tion. The forces f;, expressed in the body frame, must be projected into the
inertial frame. The matrix R()) is a rotation matrix that links both frames
by rotating the body frame into the inertial frame [39]]:

R(0 = R,(¥)R,($)R,(6)

c(@)c(@) c()s(@)s()—c(@)s(®) s(d)s(P)+c(P)e()s(6)
= | c(®)s®) c(P)e@)+s(@)s®)s(6) c($)s(@)s()—s($)c(®) | . (2.9)
—s(6) c(®)s($) c(0)c(¢)

It is important to note that this representation exhibits a singularity at
0 = /2. To avoid the singularity, an alternative coordinate system such as
quaternions can be used. However, this work does not consider acrobatic
maneuvers within the angular range of the singularity.

2.3 Modeling Simplifications and Justifications

The quadcopter dynamic model presented in this thesis is a deliberate
simplification of the true physical system, tailored for the design and im-
plementation of a real-time control system. While this model captures
the dominant rigid-body dynamics, several higher-order aerodynamic and
mechanical effects are consciously neglected. This section details these
simplifications and provides the rationale for their omission.
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2.3.1 Complex Aerodynamic Effects

The aerodynamic forces and moments generated by the propellers are highly
complex and nonlinear. For our control-oriented model, we simplify these
relationships, with the main assumptions being [40, 41]]:

Thrust and Inflow Velocity The generated thrust of a propeller is not
solely a function of its angular velocity (w?). In reality, it is also signifi-
cantly affected by the axial airflow through the rotor disc, which includes
the vehicle’s own velocity v, and the propeller’s induced velocity (v;). A
more complete expression for thrust (T) is of the form T = K(w — (v; +
v,)-k)?, where k is a constant related to the propeller pitch. This effect be-
comes prominent during fast vertical or forward flight. However, for near-
hover conditions and maneuvers at low to moderate speeds, which consti-
tute the primary operational envelope for this work, the simpler quadratic
relationship provides a sufficiently accurate approximation.

Asymmetrical Blade Loading During forward flight, the advancing
blade (moving in the direction of flight) and the retreating blade experi-
ence different relative airspeeds. Due to the nonlinear relationship be-
tween airspeed and drag, the resulting forces are not perfectly compen-
sated between the two sides of the rotor disc. This asymmetry can induce
flapping and generate moments on the airframe. These effects are most
significant at high speeds and are therefore considered negligible for the
scope of this research, which focuses on control strategies robust to such
unmodeled dynamics.

Blade Flapping Beyond the asymmetrical loading, blade flexibility leads
to flapping, particularly during translational movements. This phenomenon,
as described by [36], can be modeled as:

—sin(a;,)
f; = C,pAr*w? | cos(ay) sin(by;) (2.10)
cos(by;) sin(ay;)

where a; and by; are the small longitudinal and lateral flapping angles. Al-
though present, this effect is not directly considered in the control design.
The flapping angles are small in magnitude and are themselves dependent
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on vehicle velocities and additional aerodynamic parameters. Incorporat-
ing these dynamics would introduce substantial complexity for a marginal
improvement in model fidelity within our flight envelope.

Motor Time Constant Each motor-propeller combination possesses a
mechanical time constant, originating from the rotational inertia of the
motor and propeller, which dictates the time required to change rotational
speed. While these actuator dynamics can be modeled as a first-order sys-
tem, they are neglected in our model. This simplification is justified by the
very fast response of modern brushless DC motors, whose time constants
are typically an order of magnitude smaller than the dominant rigid-body
dynamics of the quadcopter. Omitting these fast actuator states is a com-
mon practice that reduces the overall order of the system, which is highly
beneficial for the design of the controller and its implementation on an
embedded system with limited computational resources.

2.4 Case Study: The Experimental DJI F550
Hexacopter

The theoretical model is parameterized using our custom-built experimen-
tal platform, shown in Figure The system is built on a DJI F550 hex-
acopter frame and serves as the primary testbed for the control strategies
developed in this thesis.

The core components include a Pixhawk 4 flight controller, a Rasp-
berry Pi 5 for high-level processing, and a suite of sensors for navigation
and perception. The physical parameters of the drone, which are criti-
cal for an accurate simulation, were measured and are listed in Table
These values for mass (m), arm length (l,, derived from wingspan), and
inertia (I, which can be estimated or identified experimentally) are used
to instantiate the dynamic model described in the previous section.
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Figure 2.3: Experimental setup - Hexacopter equipped with a Pixhawk 4,
GPS, batteries, camera, LiDAR, and a Raspberry Pi 5. The main frame used
is a DJI F550.

Table 2.1: Multicopter Specifications

Parameter Value

Type Hexarotor

Mass (m) 3.37kg

Height 37.5cm

Wingspan 55 cm

Rotor radius 11.68 cm (Assuming 9.2 x 4.5 inch props)

Motor’s speed constant (KV) 1000 KV

2.5 The Role and Strategy of Numerical Sim-
ulation

While physical experimentation provides the ultimate validation, numer-
ical simulation was an indispensable tool throughout this research. It of-
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fered a safe, repeatable and cost-effective environment for developing, test-
ing and refining our control algorithms. Our simulation strategy was tai-
lored to the specific goals of this thesis, leveraging state-of-the-art tool-
boxes to accelerate development while focusing on novel algorithmic ap-
plications.

Our primary simulation environment was MATLAB/Simulink, chosen
for its powerful capabilities in control systems design and analysis. The
specific tools we used were key to our progress:

« Forlow-level controller development, we utilized the official Simulink
Support Package for Parrot Minidrones. This toolbox provided a
seamless interface between the Simulink environment and the Par-
rot Mambo, enabling the direct deployment and testing of our con-
trol laws on the hardware from the design environment. This greatly
accelerated our initial validation cycles.

« For the core of our set-based analysis, we leveraged the CORA (COn-
tinuous Reachability Analyzer) toolbox for MATLAB. CORA is a state-
of-the-art tool for formal verification and reachability analysis. Us-
ing this well-validated toolbox allowed us to focus on the novel ap-
plication of zonotopes to drone control rather than spending effort
re-implementing the complex underlying computational geometry
and set-based arithmetic.

The typical research workflow involved designing and validating a con-
ceptin the MATLAB/Simulink/CORA ecosystem, followed by implement-
ing the final algorithm in Python for integration with our other hardware
platforms (the Crazyflie and the Pixhawk hexacopter). This transition re-
quired careful verification to ensure the Python code was a faithful repre-
sentation of the validated simulation models.

A fair question is why a high-fidelity physics simulator like Gazebo was
not a central tool. Gazebo excels at simulating the entire robotic system,
including realistic sensors and environmental interactions. However, the
primary focus of this thesis was on the mathematical guarantees of the
control and planning algorithms themselves. The MATLAB/CORA en-
vironment was the most suitable for this purpose. Therefore, our use of
Gazebo was confined to initial setup and code validation, rather than the
rigorous, closed-loop dynamic simulations where the formal properties
of our algorithms were the main subject of investigation. This deliberate
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choice of tools allowed us to concentrate our efforts on the novel control
and planning aspects of this research.
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Chapter 3

Basics of Control

3.1 Introduction

Once a model of the system is established, we explore the fundamentals
of controlling it. In this chapter, we first present how to control systems,
then we show a general overview of autopilot architectures—the standard
structures before focusing on a central example: the Parrot Mambo mini-
drone. We discuss methods for control design [42,/43,/44]] and state estima-
tion [45},146], and we briefly illustrate quantitative aspects such closed-loop
dynamics, robustness, stability, and linearization [47].

3.2 Fundamental Concepts

Every real-world system can be described by a set of state variables, x,
whose evolution is governed by a dynamical equation:

x = f(x). (3.1)

Often, the system also includes actuators that can be triggered by external
actions. These control inputs are denoted by u, and the dynamics become

x = f(x,u). (3.2)

A primary goal in control engineering is not only to understand the sys-
tem dynamics but also to influence them to achieve a desired objective. As

25
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operators, we wish to manipulate the inputs so that the states reach speci-
fied target values (for example, a driver accelerates a car to reach a desired
speed). However, manually adjusting inputs is both time-consuming and
impractical for high-dimensional or highly nonlinear systems. To enable
automatic control, we develop controllers and closed-loop control archi-
tectures. In doing so, we define a reference signal r, representing the de-
sired state, and design a control law, denoted by ¢, such that

u = e(x,r). (3.3)

In practice, more common formulations directly specify u as a function of
x and r; however, dynamic controllers with internal states (or integrators)
are also widely used in autopilot design.

3.3 Control of a Single-Input Single-Output Sys-
tem

Controlling a nonlinear system can be complex and may require advanced
mathematical tools. Nevertheless, a decent control strategy can often be
achieved using simple methods. Consider a single-input, single-output
(SISO) system described by

x = f(x,u). (3.4)

A straightforward approach is to select an operating point (x,, u,)—the
nominal condition around which the system is expected to operate—and
then linearize the dynamics around this point. The nonlinear function is
approximated by its first-order Taylor expansion:

of of
fO,u) =~ f(xg,uy) + a—x‘OAx + a—u‘OAu, (3.5)
of of
Af ~ a'OAx + E‘()Au, (3.6)

where Ax = x — x,, Au = u — u,,, and the derivatives are evaluated at the
operating point. This yields the linearized dynamics:

AX = A;Ax + BAu, (3.7)
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with

LMyl

dxlo Jdulo
The eigenvalue of A; determine the stability of the system. In continuous
time, if the eigenvalue has a negative real parts, the system is stable; if any
have positive real parts, the system is unstable. For simplicity, we omit the
A notation in subsequent discussions while remembering that the linear
model is valid near the operating point.
A well-known and widely used controller for SISO systems is the Propor-

tional Integral Derivative (PID) controller:

t
u=KPe+K,-f edt + K, (3.8)
0

de
E,
where the error is defined as e = r — x. The proportional term drives
the error toward zero, the integral term eliminates any steady-state error,
and the derivative term improves the transient response by damping the
system. The design of the gains is a key factor influencing the entire dy-
namics of the closed-loop system. Various techniques can be used for tun-
ing, ranging from trial-and-error and empirical methods such as Ziegler-
Nichols to analytical approaches like Bode or Black-Nichols analysis, as
well as optimization-based methods.

Such a control approach is effective for linear systems; however, in
nonlinear systems, it requires the system to remain close to the operating
point. If this condition is not met, performance degradation occurs, ro-
bustness decreases, and the risk of instability arises, making control guar-
antees difficult to uphold.

3.4 Estimation ofa Single-Input Single-Output
System

Although state estimation is not the primary focus of this thesis, it is an
essential component of a complete control scheme. In many practical sys-
tems, not all state variables are directly measurable. Instead, sensors pro-
vide measurements y that are functions of the state:

y = h(x). (3.9)
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For example, accelerometers and gyrometers provide information about a
drone’s motion but not the full state.

A standard approach to estimating the state is to use an observer such
as a Kalman filter. For a linearized system, the dynamics and measure-
ment model are

X = Arx + Bu, (3.10)
y =Cx, (3.11)

and the corresponding observer is given by
£=A2+Bu+K,(y—CR), (3.12)

where X denotes the estimated state and K|, is the observer gain, typically
computed from a Riccati equation. With an appropriate choice of K, the
estimate X converges to the true state x.

As with control, linearization affects the performance of state estima-
tion, with accuracy deteriorating as the system deviates further from the
operating point. This can lead to major issues, as incorrect state estimates
resultin incorrect control inputs, further degrading the overall control per-
formance. For further reading on dynamical systems, control, and state
estimation, we refer the reader to [48], 149, 50]].

3.5 General Structure of Autopilots

Autopilots are widely used to achieve safe and reliable control of complex
systems such as drones. In typical autopilot architectures, the overall con-
trol structure is divided into several layers:

« Innerloop: Often dedicated to stabilizing the vehicle’s attitude (roll,
pitch, yaw) by quickly rejecting disturbances. A common inner-loop
design uses a high-bandwidth controller based on a linearized model
of the attitude dynamics.

« Outer loop: Controls the overall position or velocity of the drone.
The outer loop typically has lower bandwidth and relies on the inner-
loop controller to provide a stable platform. The outer loop is often
design by neglecting the inner loop control assuming some order of
magnitude in time constant differences between the two loops.
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« State Estimation: Since not all states are directly measurable, sen-
sor fusion (often via a Kalman filter) is employed to estimate the state
vector x from available measurements y. These estimated states are
then used in the control laws. The bandwidth of the state estimation
algorithm is a critical design parameter, as it dictates how quickly
the filter can track changes in the system state, which in turn affects
the performance of the control loops. As a general rule, the state
estimator must be faster than the control loops’ bandwidth.

The design of these control layers involves questions of robustness,
how the system behaves under disturbances, and stability, ensuring the
closed-loop system converges to desired values. Stability and robustness
can be ensured through two main approaches. The first, more rigorous
but complex, involves analytical study by formally proving stability and
robustness conditions through mathematical analysis. However, this ap-
proach is often overlooked in open-source applications due to the advanced
mathematical knowledge required and the significant gap between theo-
retical models and real-world implementation. The second, more practical
but less rigorous, relies on numerical simulations, where various scenar-
ios, system limits, and behaviors are tested to evaluate performance.

In many applications the system is designed to operate close to a nom-
inal equilibrium, making such linear approximations effective.

3.6 Application: The Parrot Mambo Minidrone

We now apply these basic principles of control and state estimation to
a more complex, multi-input multi-output (MIMO) system: the Parrot
Mambo minidrone. Although the drone has multiple inputs and outputs,
its control design can be simplified by decoupling it into several single-
input single-output (SISO) subsystems. This is made possible by the in-
herent structure of the vehicle dynamics.

3.6.1 System Overview

The Parrot Mambo minidrone is a small UAV (see Fig. that weighs
63 g and measures 18 X 18 cm. A complete list of the Parrot Mambo pa-
rameters is provided in Table It embeds a microprocessor, an iner-
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tial measurement unit (IMU) that provides linear acceleration and angu-
lar speed measurements, an ultrasonic sensor for obstacle detection, and a
pressure sensor for altitude evaluation. A ground-looking camera is used
to estimate the relative coordinates via optical flow. The Parrot Mambo
minidrone can be directly controlled using a dedicated smartphone ap-
plication. Additionally, Mathworks, in collaboration with Parrot, has de-
veloped a dynamic simulator that incorporates a six-degree-of-freedom
model, the blade flapping effect, and simulated sensors. The simulator
comes with a cascade PID flight controller, a state estimator (including
the bias), and a visualization tool (see Fig. . This user-friendly tool can
be used for educational purposes and rapid controller prototyping, and it
will be employed in the following to design and test an INDI flight con-
trol structure. In this context, it is assumed that the states are provided;
a full explanation of how the Parrot Mambo obtains these states through
Kalman filtering is provided.

Parameter (Symbol) Value (Units)
Mass (m) 0.063 kg

Inertia along x (I,.) 5.829 x 107° kgm?
Inertia along y () 7.169 x 107> kgm?
Inertia along z (I,) 1.0 X 10~* kgm?

Aerodynamic coefficient (Thrust) (C;)  0.0107 (dimensionless)
Aerodynamic coefficient (Torque) (C,)  7.8264 X 10~* (dimensionless)

Air density (p) 1.293kg/m?
Surface covered by the blades (s;) 0.0034 m?
Rotor radius (r,) 0.0330m
Arm length (1) 0.0624 m
Rotor height (h,) 0.0159m
PSD of white noise (IMU x-axis) 0.2183m/s?
PSD of white noise (IMU y-axis) 0.1864 m/s?
PSD of white noise (IMU z-axis) 0.3725m/s?

Table 3.1: Parameters of the MathWorks simulator for the Parrot Mambo.
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Figure 3.1: Parrot Mambo minidrone

ST » ™ |1 2| d d| e [E@| »

Pos:[57.23 0.17 95 25] Dir[-0.61 -0.41 -0 68]

Figure 3.2: The Parrot Mambo minidrone visualization box allows the user
to observe the simulated flight in real time.
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3.6.2 Cascade PID Control Structure

To control the Parrot Mambo minidrone, a cascade PID control structure
is implemented. The control inputs are redefined as

with:

4
th = Z fi,z’
i=1

u=[t,7,7,7,]", (3.13)
(3.14)
4
Tx = Z (ml"x + Ti,x N (315)
i=1
4
Ty = Z (mi,y + Ti,y) , (3.16)
i—1
(3.17)

4
T, = Z (mi,z + Ti,z .
i=1

The system is linearized around an equilibrium point defined by:

A,

B

_f

_ A

P.
OZz:Z , (3.18)
| O1x6
- (';:i ] (3.19)
, (3.20)
_—
ul, . (3.21)

An important property of the linearized model is that its eigenvalues deter-
mine the system’s stability. In our case, the eigenvalues are all at zero, in-
dicating that, in the absence of additional control, the system behaves like
an inertial body—moving with constant velocity upon any input. More-
over, the linearized dynamics decouple into independent subsystems: the
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Figure 3.3: Cascade PID Structure in the Parrot Mambo drone.

roll and pitch as inputs., yaw (¥), and height (p,) depend solely on z,, 7,
7,, and ¢, respectively. This decoupling allows for a single-input single-
output (SISO) design for each state. Once designed, an outer loop is cre-
ated to control positions p, and p, using the roll and pitch as inputs, see
Fig.

As the control is computed on a discrete device, we must express the
control law in discrete form, the PID controller is then expressed as:

u(k) = K, e(k) + K,

k
ek) Aegk D) +K, Z e()At, (3.22)
i=0
where the errorise(k) = r(k)—x(k). The proportional term drives the state
toward the reference, the integral term eliminates steady-state error, and
the derivative term improves transient behavior by damping the response.
PID parameters are tuned using optimization techniques (in our case, a
genetic algorithm) to minimize a cost function such as

N
Jin EO(x(k) —r(k))’, (3.23)

where x(k) and r(k) are the state and reference at time step k, and N is the
horizon.
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The cascade PID structure is widely adopted in UAV autopilots due
to its simplicity and modularity. The decoupling of dynamics into sepa-
rate SISO channels for altitude, yaw, roll, and pitch not only simplifies the
controller design but also enables independent tuning for each subsystem.
Under nominal conditions, this structure offers robust performance in the
presence of moderate modeling uncertainties and sensor noise. However,
its performance is highly dependent on the accurate tuning of the PID
gains. Suboptimal tuning may lead to issues such as excessive overshoot,
oscillatory behavior, or sluggish transient responses.

Moreover, the discrete implementation of the PID controller requires
careful handling of the derivative term, especially when sensor noise is
significant. In practice, filtering techniques are often employed to mitigate
the amplification of noise, ensuring that the derivative action contributes
positively to system damping without inducing jitter.

While the cascade PID controller provides a robust and easily imple-
mentable baseline, it may not fully address the challenges posed by the
highly nonlinear and coupled dynamics of UAVs under external perturba-
tions or rapid maneuvering. For instance, the drone will often operate at
an inclined attitude, which deviates from the linearized equilibrium point,
leading to performance degradation in the control and can lead to instabil-
ity. This limitation motivates the exploration of advanced control strate-
gies, such as feedback linearization, which are discussed in subsequent
chapters.

Feedback linearization explicitly cancels the non-linearities in the sys-
tem dynamics to achieve a linear input-output relationship, allowing the
application of linear control design methods to a broader operational regime.
This approach offers potential improvements in terms of response speed,
precision, and robustness against large disturbances and model uncertain-
ties. In this context, the cascade PID controller serves as a benchmark,
highlighting the trade-offs between simplicity and optimal performance.
The insights gained from the analysis of the PID cascade control provide
a solid foundation for understanding and appreciating the benefits of the
more advanced control methods developed later in this thesis.

3.6.3 Attitude Estimation

The estimation process fuses data from several sensors to obtain accurate
state estimates [51]]. For instance, the roll and pitch angles are computed
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from the accelerometer measurements as follows:

ay,m(k) ax,m(k)

, 0,,(k)=arcsin , 3.24
2. (0) (k) 2 (3.24)

where the subscripts x, y, and z refer to the measurement components and
the index m denotes a measured value.

These measurements are combined with rotational speeds data to pre-
dict the attitude:

¢,,(k) = arctan

$(k) = p(k — 1) + At¢,,(k) — AtBiasy(k), (3.25)
0(k) = 8(k — 1) + Att,,(k) — AtBiasy(k), (3.26)

where At represents the time interval and Bias is the inherent bias in the
gyroscopic measurement. The update step is computed as:

Bifzg:gk) = Bifz(s?k) + K, (K)(@m (k) — $(K)), (3.27)
Bifgzzk) = Bii(slzzk) + Ky (k)(On(k) — 6(k)), (3.28)

where K, (k) and K,(k) are the Kalman gains. The yaw angle 1 is obtained
by integrating the rotationnal rate:

P(k) = Pk — 1) + Aty (k). (3.29)
Similarly, the body angular rates are estimated as:
¢(k) = ¢,u(k) — Biasy(k), (3.30)
i(k) = ,,(k) — Biasg(k), (3.31)
7(k) = ym(k). (3.32)

3.6.4 Height and Position Estimation

Height estimation relies on the sonar sensor measurement, p, ,,(k), and
acceleration data transformed from the body frame to the inertial frame
using a rotation matrix R(}):

a, = R@)a,. (3.33)
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A simple kinematic model is then used:

[vz(k)]_ 0 1||o.k=1|T|ar]%m0 (3.34)
with an update step:
[ﬁ§£§]=[ﬁ§,’§§ PO - p ). (339)

Position estimation employs optical flow from a ground-facing camera.
Since the field of view is proportional to the altitude, the initial measure-
ments v, ,, and v, , are calibrated:

vx,fc(k) = 1-15pz(k)vx,m(k), (3.36)
Uy, £e(K) = 1.15p,(K)vy, 5 (K), (3.37)

and further corrected for the drone’s rotation:

Vyse(k) = Uy (k) — Po(R)E(K), (3.38)
v, (k) = v, (k) = p,(K)ik). (3.39)

The corrected measurements are then used in Kalman filtering. The pre-
diction step is given by:

o.0] [1 0 ar o][o.(k=1)
o, | o1 0 ar||ok-1)
a)|[=lo o 1 o|lak-1
a,k]| o0 o 1]||ak-1)
At 0
0 At||ayn.(k)
tlo o ay,m(k)] : (3.40)
0 0

and the update step is:

6.00] [v.00)
(8 (k) _ v (k) Ux,sc(k) - vx(k)
0,0 | = [ a0 | K [vy,scac) - vy<k>]'
a,k) | |a,k)

(3.41)



3.6. APPLICATION: THE PARROT MAMBO MINIDRONE 37

Once the velocities are filtered, the position can be computed by simple
integration:

b(k) = p.(k —1) + Ato,(k), (3.42)
py(k) = py(k — 1) + Atv, (k). (3.43)

In the Mathworks simulator, the sensors and estimators are assumed to
be perfectly designed so that the estimates match the actual states. This
assumption does not hold in reality and is the major source of discrepancy
between simulation tests and real-life experiments.
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Chapter 4

Feedback Linearization

4.1 Introduction

Once the fundamental system dynamics have been highlighted, we can
focus on advanced control strategies for quadcopters. A key challenge for
small and medium-sized Unmanned Aerial Vehicles (UAVs) is the limited
computational power of embedded systems, which necessitates the use of
fast and efficient control methods. A natural approach is to rely on either
linear methods or analytical computations. The Parrot Mambo minidrone,
for instance, has gained significant popularity in both educational settings
and as a versatile platform for testing various control paradigms. Pre-
vious research on similar platforms has explored a range of control ap-
proaches, including classic PID and fuzzy PID controllers [52},53],/54], non-
linear adaptive control techniques [55,(56]], and various model-based con-
trol strategies [57].

In general, a wide spectrum of control strategies can be employed for
developing quadcopter flight controllers. Classical linear control techniques,
such as PID and Linear Quadratic Regulator (LQR) control [58], are of-
ten considered. These methods can effectively manage quadcopter dy-
namics under specific assumptions, particularly near hovering conditions.
However, many contemporary applications, including complex trajectory
tracking, real-time collision avoidance, and robust wind perturbation re-
jection, demand control performance across a wider envelope of flight con-
ditions. This necessity has driven the development and application of ad-
vanced nonlinear control techniques, such as gain scheduling control [59],
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backstepping methods [60]], feedback linearization [61]], and nonlinear model
predictive control (NMPC) [62]].

Among these, Nonlinear Dynamic Inversion (NDI) stands out as a promi-
nent feedback linearization method. Its primary advantage lies in its abil-
ity to yield partially or entirely linearized closed-loop dynamics, thereby
allowing the application of well-established linear control techniques for
controller design. A particularly robust variant, INDI, further enhances
robustness by significantly reducing model dependency. The INDI con-
troller achieves this by solving the incremental form of the equations of
motion using acceleration feedback, thus circumventing the need for de-
tailed and often uncertain models, particularly those describing complex
aerodynamic phenomena [63}64]].

In this chapter, we present and develop two feedback linearization strate-
gies: the classic approach and the Incremental Nonlinear Dynamic Inver-
sion (INDI) method. These techniques are specifically chosen for their
computational efficiency and their ability to provide a linearized closed-
loop system, which is a highly desirable property for subsequent analysis
and embedded implementation on resource-constrained platforms like the
Parrot Mambo minidrone. We then compare these methods through com-
prehensive simulations and demonstrate their practical performance with
an experimental validation against a classic PID controller on the Parrot
Mambo drone. This work extends to discussing the specific implemen-
tation and validation steps, both in simulation using the Matlab/Simulink
platform and through real-life tests, thereby providing an educational con-
text for the INDI control technique.

4.2 Classic Approach

The underlying principle of feedback linearization [63] is to design a non-
linear control law such that the closed-loop system becomes linear (see

Fig. [4.1).
If we consider a nonlinear system:
X = g(x, u) (4.1)
y =h(x) (4.2)

where x represents the state vector, u the input vector, and y the output
vector (the measurements), with g and h being nonlinear vector functions
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Linear closed-loop system

r Linear a - Feedback u Nonlinear y
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X

Figure 4.1: Feedback linearization principle.

describing the dynamics, the idea is to differentiate the output with respect
to time:

d_y _dh(x) dh(x)%
dt ~ dt  dx dt

which corresponds to the Lie derivative of h along g. This process is re-
peated until the Lie derivative can be expressed in an affine input form:

= Vhg(x,u) = L,h(x) (4.3)

. _d”h(X)dx . o, )
V=g ar = Lyh®) =Lh&) + LhG)u (4.4)

A reference model then imposes the output dynamics through the se-
lection of the coefficients §;, j = 1,...,7:

d(r; — d'(ry —
b -y + TN g TEY)

Equations (4.4) and (4.5)) allow us to define the manipulated input u
that must be applied to achieve the desired linear reference dynamics in
closed-loop:

=0 4.5)

. B dry d'r, .
u = (Lh()) ™| Bo(rg—h(0) + B, (7 ~Lrh(0) +...+B,( = ~LIh() |
(4.6)
The method, however, requires the estimation of an augmented state,
as in [[66]], where yaw acceleration, the three translation accelerations, and
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the three translation jerks must be taken into account. Let us derive the
method using our model. First, consider the yaw dynamics:

_ [0 sin(¢) cos(¢)

¢
cos(6) cos(e)] L= Ry (4.7)

14

For this equation, the inputs are the angular velocities. Let us differ-
entiate this dynamics with respect to time:

P =Rya, + Ryw, (4.8)
4
= Rz,b(I_l( — wp, X Leopy) + 17 Z [mi + Ti]) + Ry, (4.9)

This expression is affine in the inputs w;. A similar procedure is applied
for the velocity dynamics, and one obtains the acceleration dynamics:

1< 1<,
V=R, 2 £+ RGO 2, (4.10)

Differentiating again to obtain the jerk dynamics, and considering the
SO, group that gives the dynamics of the rotation matrix via the skew-
symmetric matrix SK, where R(}) = R(y)SK(w),), we have:

1 < 1 <, 1w
V= R(X)%Zfi +2R(X)Ezfi +R(X)szi (4.11)
4
= (ROOSK(@,)SK (@) + ROOSK(@,))-- D

4 4
1 . 1 "
+2ROOSK (@) D £ + RGO D f
i=1 i=1
The jerk, representing the derivative of acceleration, is formulated as

an affine function of a newly defined input, specifically the second deriva-
tive of the rotor speed w;. Through these derivations, an input-affine model
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emerges, facilitating the application of equation to develop the de-
sired closed-loop dynamics. This approach aims to control four outputs:
the heading direction 3 and the quadcopter position p. However, a notable
drawback is the introduction of additional states, including acceleration,
jerk, heading velocity, and input derivatives. Estimating these variables
requires more complex observers and additional sensors, adding to the sys-
tem’s intricacy.

4.3 Incremental Nonlinear Dynamic Inversion

The Incremental Nonlinear Dynamic Inversion (INDI) controller builds
upon feedback linearization [67,63,64]. Instead of differentiating the out-
put multiple times until the Lie derivative can be expressed in an affine
input form, the dynamics are expanded using a first-order Taylor series
expansion, neglecting higher-order terms:

y = Vhg(x,u)

Jdg(x,u)  Jg(x,u)
0x X+ ou u]
dg(x, og(x,

_ Vhg(0) + Vh B | vpBEW,

0x ou

= L,h(x) + L h(x)x + L, h(x)u (4.12)

~ Vh[g(O) +

so that an input-affine term readily appears. The output behavior can
then be imposed according to a lower-order reference model, i.e., y = a,
so that the corresponding actual input is given by

u= (Luh(x))‘l(a — Loh(x) - Lh(x)x). (4.13)

Note that the pseudo-inverse of L, can be computed if its inverse does
not exist. The virtual input a can be expressed as a linear state feedback
law

v = —-Kx, (4.14)

The selection of the gain matrix K imposes the dynamics of the lin-
ear closed-loop system. Equation (4.14) defines the NDI outer loop, while
equation (4.13)) defines the inner loop.
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The main drawback of the feedback linearization methods is that they
require accurate knowledge of the model, which is not guaranteed in prac-
tical applications, as a detailed and reliable aerodynamic model is often
difficult to establish. To alleviate this issue, an incremental version (INDI)
has been proposed in [67] based on a time-scale separation between fast
and slow phenomena. The fast time scale is related to the actuation of
the UAV, whereas the slow time scale is related to the body aerodynamic
effects.

Returning to equation (4.12), and considering a small time interval At
with the corresponding variations in the input and output signals, we as-
sume that

Ay ~ L ,h(x)Au, (4.15)

neglecting the dynamics that are not directly induced by the actuators. The
control move can thus be obtained via

Au = (L,h(x))"!Aa. (4.16)

This formulation lends itself to a discrete-time implementation, which
will be adopted for the remainder of this study. The control law only in-
volves the Lie derivative associated with the input and is therefore inde-
pendent of much of the aerodynamic model and its associated uncertain-
ties [[67]. The past virtual input can be evaluated using the measurements:

Aa=a-y. (4.17)

This method offers the advantage of avoiding the introduction of aug-
mented states. A critical aspect of the INDI control framework is the na-
ture of its linearization error. The primary source of linearization error in
INDI arises from the first-order Taylor series expansion used to approxi-
mate the system dynamics over a single discrete time step, At. The control
law assumes that the incremental change in the state derivative is linearly
proportional to the incremental change in the control input, thereby ne-
glecting the higher-order terms of the expansion. The magnitude of this
transient error is therefore not dependent on a detailed a priori model of
the system’s nonlinearities, but is instead contingent upon two key fac-
tors: the sampling rate of the controller and the rate of change of the sys-
tem dynamics. For sufficiently high sampling rates, the time increment
At is small, ensuring that the system state does not deviate significantly



4.3. INCREMENTAL NONLINEAR DYNAMIC INVERSION 45

from the point of expansion. Consequently, the contribution of the ne-
glected higher-order terms becomes negligible, and the linear approxima-
tion holds with high fidelity. This characteristic is the principal reason
for INDI’s acclaimed robustness to model uncertainties and external dis-
turbances, as the error is inherently transient and manageable through
hardware selection (i.e., fast sensors and computation) rather than exhaus-
tive system identification. However, it requires the explicit inclusion of in-
puts in the output expression. This characteristic poses a challenge for our
quadcopter, given its cascade structure. In this configuration, the inputs
w; first influence the dynamics of angular velocities, which subsequently
drive the Euler angles, and these Euler angles in turn determine the UAV’s
position. Consequently, the INDI procedure is applied to each loop within
this hierarchical structure.

The first loop, illustrated in Fig. is dedicated to linearizing the dy-
namics of angular velocities @, and the z-axis velocity v,. This process in-
volves considering the four inputs—the motor rotational speeds w;—and
reformulating them into an affine form. Subsequently, a linear control law
is developed to ensure tracking of a predefined reference in both angular
velocities and z-axis velocity.

A secondary loop, as depicted in Fig. is devised to linearize the
dynamics of the Euler angles y, which are directly influenced by the body-
frame angular velocities w,. A control law is then formulated to facilitate
the tracking of the referenced Euler angles. The output of this second loop
is an angular velocity, which becomes the target for the first loop to track.
For this control structure, the inner loop dynamics are neglected to sim-
plify the design of the outer loop. This approach is acceptable when the
inner dynamics are significantly faster than the outer loop. The reference
for the velocity along the z-axis will be determined in the third loop.

Finally, the third loop, illustrated in Fig. is dedicated to linearizing
the dynamics of velocities v driven by the Euler angles x. A linear control
law is formulated to supply the desired acceleration to the INDI controller
based on the desired position. Simultaneously, a desired heading is di-
rectly fed into the second loop.
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Figure 4.4: Third loop: Position control and Euler angles linearization.
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4.4 Results

4.4.1 Simulations on the Parrot Mambo: Classic Feed-
back Linearization and Incremental Nonlinear Dy-
namic Inversion under Step Inputs

First, we compare the results of the two feedback linearization methods
on the Mathworks simulator of the Parrot Mambo drone. The results are
shown in Fig. The yaw angle 1 reaches its setpoint in about 2 seconds,
while the elevation setpoint is reached in about 3 seconds. The positions
px and p, take longer to settle, as they are regulated in a second control
layer. Both methods are able to control the UAV as desired; additional
tuning can be performed to improve performance and meet specific user
needs. In the classic approach, derived states are estimated through a sim-
ple differentiation of the filtered (from the Kalman filter) measurements.
For the remainder of this work, we will use the incremental structure as it
provides greater robustness through the natural cascade structure.

4.4.2 Simulations on the Parrot Mambo: Classic PID
Structure versus Incremental Nonlinear Dynamic
Inversion under Trajectory Tracking

A circular trajectory is generated, including take-off and landing, to test
controller performance under a realistic trajectory tracking scenario.

Cubic B-spline interpolation [[68] is used to define the trajectory. Given
several control points, the algorithm creates a control polygon within which
the trajectory is built. The trajectory is then sampled uniformly (see Fig.

4.6).

The INDI controller is compared against the classic cascade-PID struc-
ture for circular trajectory following (see Fig. [4.7). These simulation re-
sults show that the PID control scheme allows the specified trajectory to
be followed, although it is affected by increasing tracking errors. In con-
trast, the INDI controller performs significantly better, ensuring a return
to the initial point.
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States and References

Time [s]

Figure 4.5: Responses of the Mambo minidrone to step setpoints: classic
feedback linearization (dotted lines), INDI (continuous lines), references
(dashed lines); purple: p,, blue: p,, orange: p,, yellow: 3.
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Figure 4.6: Generated cubic B-spline trajectory from given control points.

4.4.3 Real Experimentation on the Parrot Mambo: Clas-
sic PID Structure versus Incremental Nonlinear
Dynamic Inversion under Trajectory Tracking

To evaluate the performance of the proposed controller in a real-world
scenario, we conducted experiments using the Parrot Mambo minidrone.
Both the Incremental Nonlinear Dynamic Inversion (INDI) and a classic
PID controller were implemented and compiled for the drone’s on-board
processor.

Our test setup relied on the drone’son-board state estimator, which
fuses data from the Inertial Measurement Unit (IMU) and a downward-
facing camera using optical flow. This method provides position estimates
in a local frame, which are used as feedback for the control loops. While
this setup does not use an external motion tracking system, the on-board
estimator is representative of a typical consumer-grade drone’s capabilities
and allows for a direct evaluation of the controllers under realistic condi-
tions.
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Figure 4.7: Simulation results: Trajectory following comparison between
the INDI controller and a classic PID control structure on a 30 seconds
time scale.
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Figure 4.8: Real-life experimental results: Trajectory following compari-
son between the INDI controller and a classic PID structure on a 30 sec-
onds time scale.

To ensure the statistical relevance of our findings, each experiment was
repeated 10 times for both control strategies, and the results presented here
are representative of the average performance. Fig. shows the experi-
mental results for a single representative trial of the same trajectory track-
ing problem. A deviation appears in the early stage of both strategies, just
after take-off; this is due to the convergence of the optical flow, as the on-
board estimator initializes.

We compute the RMS value between the reference and the obtained
trajectory for both control strategies:

N 3
1
RMS = | | & D =1 (4.18)
k=0 j=0

k=1,2,..,N, j=1,2,3

where x represents the state vector, r the reference, j the vector element,
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and k the time step. The INDI controller can track the reference with a
lower error (RMS;yp; = 0.091) compared to the PID structure (RMSp;p, =
0.302), which deviates from the trajectory intermittently. The difference
between the two RMS values is explained by the lag of the PID structure
relative to the reference. In addition, the INDI controller demonstrates
more robust behavior in real-life experiments.



Chapter 5

Set Representation and
Reachability Analysis

5.1 Introduction

In our previous chapter, we defined a control strategy for our Unmanned
Aerial Vehicles (UAVs) that yields a linear closed-loop model. Building
upon this, the current chapter goes deeper into the analysis of this closed-
loop behavior to enhance control performance and ensure safe operation.
Safety is paramount in aviation, and preventing hazardous events such
as Loss of Control in-Flight (LOC-I) remains a crucial concern for both
manned and unmanned aircraft [69,[70]. LOC-I can be triggered by vari-
ous preceding events, highlighting the complexity of mitigating its severe
consequences [71]]. To properly address this, it is essential not only to focus
on recovery from upset flight conditions but also to enhance awareness of
situations that may lead to LOC-I.

Enhancing situational awareness, particularly regarding upset flight
conditions, is critical for reducing the chance of LOC-I occurrence. A key
element in achieving this is the estimation of safe boundaries for the air-
craft’s maneuvering envelope over a given time horizon, integrating this
information into the decision-making process. Such schemes can be re-
alized through various methods, including region-of-attraction analysis
[72]], path-planning optimization [73]], robust-tracking analysis [74]], and
system-model identification [75,76]. Other prominent approaches include
Monte Carlo simulation [77, 78] and differential-manifold stability analy-

53
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sis [[79, 180]].

Among these approaches, reachability analysis has emerged as partic-
ularly appealing for control system analysis and synthesis [81), 182} [83]]. It
provides reachable sets that contain all possible state trajectories for given
time horizons, initial states, and control inputs [84, 85]]. These reachable
sets are invaluable as they allow for the prediction of aircraft dynamics
without exhaustive simulations and enable the estimation of boundaries
within which flight safety is guaranteed. Information derived from reach-
able sets is therefore essential for both manned and unmanned flights, es-
pecially when aircraft encounter upset flight conditions [86), 82, [83]].

Reachability analysis can be performed based on optimal control meth-
ods [84, 87, 188, 189] or set-propagation methods [90} 91,92} 93] 94]]. While
optimal control methods can yield precise estimates in terms of level sets
by solving Hamilton-Jacobi-Isaac partial differential equations, their com-
putational cost escalates significantly with the dimension and complexity
of the dynamical model [85}83]]. Conversely, set-propagation methods of-
fer a more computationally efficient alternative for models with a larger
number of state variables. The efficiency of these methods is largely de-
termined by the choice of set representation. Common representations in-
clude intervals [19], ellipsoids [92], and polytopes [21]], or, more recently,
through generator-based representations like zonotopes [95].

In this chapter, we employ tools from set theory, focusing on zonotopes,
which are a core element of this thesis. Zonotopes provide a powerful and
reliable set representation in high-dimensional spaces while remaining in-
tuitive and computationally efficient. Their inherent mathematical prop-
erties, such as closure under linear transformations and Minkowski sum-
mation [96, 91} 97], make them particularly suitable for efficient compu-
tation of reachable sets without significant wrapping effects [96]. While
conventional methods like Monte Carlo analysis have been traditionally
used for safety assessments [98]], recent research demonstrates that reach-
ability analysis with set representations like zonotopes often outperforms
Monte Carlo techniques in terms of both accuracy and computational effi-
ciency [99]. Moreover, extensions such as polynomial zonotopes and con-
strained polynomial zonotopes [24] have further enriched the capabilities
for representing non-convex sets, offering improved accuracy and broader
applicability. These advancements enable the precise computation of a
safe flight envelope to ensure secure aircraft maneuvering.

This chapter is organized as follows. First, we present the fundamental
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set operations that underpin the zonotopic framework. Next, we introduce
zonotopes and their extensions, detailing their properties and representa-
tions. Finally, we discuss reachability analysis methods using zonotopes,
demonstrating how these techniques can be applied to compute safe flight
envelopes for our UAVs, building upon previous studies where zonotopic
reachability analysis was applied to linear models of multi-rotor aircraft.

5.2 Set Operations
In this section, we review some common operations, which will be useful

in this work, in set theory and provide formal definitions along with 2D
illustrations for intuitive comprehension.

5.2.1 Linear Mapping

Linear mapping consists of multiplying matrix to each element of a set.

Definition 5.2.1 (Linear map). Given a set 8 C R" and a matrix M €
Rv*" the linear mapping is defined as:

MQ®S:={Ms|seE S}

This operation is illustrated in Fig.

5.2.2 Minkowski Sum

The Minkowski sum adds every element of one set to every element of
another set.

Definition 5.2.2 (Minkowski sum). Given two sets 8;,8, C R”, their
Minkowski sum is defined as:

8,08, :=1{s;+5s,|8 €8, 8, €8,}.

Fig. [5.2illustrates the Minkowski sum.
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Figure 5.1: Linear mapping (orange) of a initial set (blue) by a matrix M =

o

Figure 5.2: Minkowski sum (orange) of two sets (blue and red)
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Figure 5.3: Cartesian product (orange) of two one-dimensional sets (blue
and red)

5.2.3 Cartesian Product

The Cartesian product combines two sets of given dimensions into a set of
higher dimensions.

Definition 5.2.3 (Cartesian product). Given two sets 8; C R" and 8, C
RY, the Cartesian product is defined as:

8§ X8 :={[s;s,]" |s; €8, 5, € 8,1
Fig. [5.3]illustrates the Cartesian product.

5.2.4 Convex Hull

The convex hull of two sets is the set of all convex combinations of points
taken from either set. It is analogous to drawing the line segment between
two points and generalizes this concept to sets.

Definition 5.2.4 (Convex Hull). Given two sets §;, S, C R", their convex
hull is defined as:

CH(S]_, 82) = {/181 + (1 - /1)S2 I S]_, S2 S 81 U 82, /1 S [0, 1]}.
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Fig. [5.4]illustrates the convex hull operation.

5.2.5 Intersection

The intersection operation returns the set of points that are common to
both sets, analogous to the logical and’ operator.

Definition 5.2.5 (Intersection). Given two sets 8;,8, C R”", their inter-
section is defined as:

8§;NS,:={s|se S ands € S,}.

Fig. [5.5]illustrates the intersection operation.

5.2.6 Union

The union of two sets gathers all elements that belong to either set, analo-
gous to the logical ‘or’ operator.

Definition 5.2.6 (Union). Given two sets 8;, S, C R", their union is de-
fined as:

S;US8, :={s|se 8 orseSs,}

Fig. [5.6]illustrates the union operation.

5.2.7 Pontryagin Difference

The Pontryagin difference is defined based on the Minkowski sum and is
used to determine the set of all points which, when added to a given set,
remain within another set.

Definition 5.2.7 (Pontryagin Difference). Given two sets §;, S, C R”, the
Pontryagin difference is defined as:

81982 :={SER”|SEBSZQSI}.

Fig. [5.7]illustrates the Pontryagin difference.
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Figure 5.4: Convex hull (orange) of two sets (blue and red)

Figure 5.5: Intersection (orange) of two sets (blue and red)
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Figure 5.7: Pontryagin difference (orange) of two sets: blue set minus red
set
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5.3 SetRepresentation: Zonotopes and Exten-
sions

Having established the fundamental set operations, we now introduce the
specific set representations used in this work. Our primary focus is on
zonotopes and their extensions, namely constrained zonotopes, polyno-
mial zonotopes, and constrained polynomial zonotopes. These represen-
tations support various operations essential for reachability analysis.

5.3.1 Zonotopes

We begin with the definition of a zonotope.

Definition 5.3.1 (Zonotope [25]). Provided a center ¢ € R" and a matrix
of generators G € Rz, a zonotope is defined as:

ng
Z:=Jc+ ) Big® | B €[-1;1] (5.1)
k=1

Here, G contains the generators g®. A shorthand notation is given by
z = (C, G>Z'

A zonotope is constructed as a linear combination of its generators with
the scalar coefficients j, restricted to the interval [—1;1], resulting in a
centrally symmetric polytope. This Z-representation is preferred over half-
space or vertex representations because it maintains polynomial complex-
ity in reachability algorithms [[100] and is readily extendable. Figure
illustrates the step-by-step construction of a zonotope; each new generator
is incorporated via a Minkowski sum, effectively translating the zonotope
along that generator.

5.3.2 Constrained Zonotopes

The first extension is the constrained zonotope.

Definition 5.3.2 (Constrained zonotope [101]). Provided a center ¢ € R",
a matrix of generators G € R"™", a constraint generator matrix A, €
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Figure 5.8: Construction of a constrained zonotope. First, the center is de-
fined and translated along the first generator. Each subsequent generator
is added through a Minkowski sum, corresponding to a translation along
the new generator. A constraint can then be applied to restrict the domain
of the generator coefficients.

R"*P_and a constraint offset b € R", a constrained zonotope is defined
as:

I’lg ne
ez :=1c+ ), Bg® | D) A, (LK) =b, B, € [-1;1]
k=1 k=1
A shorthand notation is

GZ = (C, G’, AC’ b)ez.

A constrained zonotope is formed similarly to a zonotope, but with addi-
tional linear constraints imposed on the coefficients. Note that a zonotope
is a special case of a constrained zonotope with empty constraints:

Z =(c,G); =(c,G,[],[Dez-

Figure|5.9/shows examples of zonotopes and constrained zonotopes.

5.3.3 Polynomial Zonotopes

The zonotope concept can be further extended to represent more complex
shapes by allowing nonlinear combinations of the coefficients with the
generators.
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Z1

Figure 5.9: Examples of zonotopes and constrained zonotopes.

10
Blue: Z = ([00]", 0 1])2,
o |1 01
Orange: Z = ([0 0] ’[O 1 1]>z,

e 11 01
Yellow: 2 = ([50] ,[0 1 1]>z,

Purple: €2 = ([0 5], [(1) (1) }] ,[111],1)ey.
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Definition 5.3.3 (Polynomial zonotope [24]). Provided a center ¢ € R",
a matrix of generators G € R™", and an exponent matrix E € NZ" " a
polynomial zonotope is defined as:

) (H 65"”’) g” | Brel-1; 1]}

i=1 \k=1

PZ =

A shorthand notation is
Pz = <ca Ga E),’PZ'

In this framework, the coefficients undergo polynomial transformations,
allowing a more versatile representation. When the exponent matrix is the
identity, the polynomial zonotope reduces to a zonotope:

Z = <C7 G>Z = <C, G’ I>.’PZ'

5.3.4 Constrained Polynomial Zonotopes

Finally, polynomial constraints can be applied to the generators, leading
to a general nonconvex representation known as a constrained polynomial
zonotope.

Definition 5.3.4 (Constrained Polynomial zonotope [24]). Provided a cen-
ter c € R", a matrix of generators G € R™"z, an exponent matrix E €
Ng"xng, a constraint generator matrix A, € R"*", a constraint offset b €

R", and a constraint exponent matrix R € NZ"X"‘], a constrained polyno-
mial zonotope is defined as:

ng [ np ng [ np
E(.i i Ry, .
CPZ = C+Z<I I ﬁk(k‘))g() | Z(I I ,Bk(k)>A(-,i) =b, B, €[-1;1]
i=1 \k=1 j=1 \k=1

A reduced notation is given by
@?Z = <C, G’, E, AC’ b, R>@:pz.

It is easy to observe that a zonotope can be expressed as a constrained poly-
nomial zonotope:

2= <C, G)z = <C, G, I, []s []’ [])C’?Z'
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While polynomial zonotopes enable complex representations with sparse
parameterizations, they still lack certain operations and are difficult to de-
pict graphically since their boundaries are not described by a simple ana-
lytical expression. Moreover, when only a few values appear in the differ-
ent matrices, the resulting shape may become unclear.

5.3.5 Set Operations on Constrained Polynomial Zono-
topes

Constrained polynomial zonotopes (CPZ) serve as a versatile tool in com-

putational mathematics, offering a wide range of set operations dedicated

to reachability analysis. In this section, we define the operations for CPZ

and explain how the resulting sets are obtained. Let us define specific op-
erations for constrained polynomial zonotopes:

Definition 5.3.5 (Linear map of a CPZ [25]]). Givena CPZ = (c,G,E,A,,b,R)eps
C R" and a matrix M € R"", the linear mapping is obtained as:

M ® e.'PZ .= (MC, MG, E, AC’ b, R>@?Z
Definition 5.3.6 (Minkowski sum of two CPZ [25]). Given two CPZ,
C'g)'zl = <cl’ Gl’ El’Al’bl’ R1>(?.'PZ C R"

and
CPZ, =(c,, Gy, Ey, Ay, by, Ry)epy CRY,
their Minkowski sum is defined as:

E, 0
0 E,

A 0
0 A,

b

e?zl @ C?ZZ = <c1 + cz, [Gl GZ]’

’ bz ’ 0 R2
Definition 5.3.7 (Cartesian product of two CPZ [25]). Given two CPZ,

CPZ; =(¢;,Gy,E;,ALb, Ry )epy CR”

and

their Cartesian product is defined as:
0 A,I’|b[’| 0 R,

%)

G, 0
0 G,

E, 0
0 E,

b b

CPZ, X CPZ, 1= <[
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Definition 5.3.8 (Intersection of two CPZ [25]). Given two CPZ,
CPZy =(c;, Gy, E;, Ay, by, Ry)epy CR”

and
G:PZZ = <CZ, G2, Ez,Az, bz, Rz)eg)z C Rn,

their intersection is given by:

E, A, 0 0 0O b, R, 0 E 0
<C1, Gl’ 0 5 0 A2 O 0 5 b2 5 0 R O E >
0 0 Gl _G’2 Cz - Cl 2 2

Definition 5.3.9 (Emptiness of a CPZ [23]). Given a
G?Z = (C, G, E, A, b, R)C’_’PZ C RVL’

the set is non-empty if:

nq

CP2 =0 < min{||Blle: D, (H ﬁ,ﬁ(k”)Am =b}<1  (52)
k=1

Additionally, C2PZ possesses convex hull and union operations; how-
ever, their expressions are considerably more involved. We refer the inter-
ested reader to [25] for further details.

Table[5.1]summarizes the operations available for each set representa-
tion.

5.4 Reachability Analysis

In this section, we recall the notion of reachability for linear systems and
describe how to compute reachable sets using zonotope representations.
Consider a set of initial conditions X, and an input trajectory u(-) taken
from the input set U,. Let X' (¢, X,, u(-)) denote the set of solutions of our
system at time ¢, for an initial condition x,. The forward reachable set
R([0,,]) is defined as:

R([0,£,]) = {X([0, £5], x0,u(-)) € R™ | x5 € Xy, V2 © u(-) € U([0, 7]}
(5.3)
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Table 5.1: Available Operations for Each Representation.

Rep. Linear Mink. Cart. Conw. Intgrsec— Union Nonconvex
Map Sum Product Hull tion Rep.

Z v v v o 0 0 X

(6p4 v v v v v 0 X

Pz v v v v X X v

CPZ v v v v v v v

Legend: v/ = exact operation, o = over-approximated, X= not possible.

The computation of the reachable set can be decomposed into the homo-
geneous (unforced) solution and the non-homogeneous (forced) solution:

Each term can be evaluated by subdividing the time interval [0, ;] into
sufficiently short subintervals of duration 7:
Ry([kt, (k + Dz]) = A R, ([(k — D, kz]) (5.5)
R,([kt, (k + Dr]) = A R,([(k — D)7, kt]) @ R, (1) (5.6)

where A. is the system matrix used to compute the transition matrix eA<
and k denotes the time step. The final reachable set is obtained as:

tr/t
R0, 1) = [ (Rl = )z, ke])
k=1
® R,([(k - D7, ke]) © R, (7)) (57)

where R,(7) is evaluated through a Taylor series expansion. For more de-
tails about the algorithm, the reader is referred to [102]].

We define the safe flight envelope as an envelope within which the ve-
hicle is able to exit its nominal condition and return to a hovering state
within a finite time horizon [77] (see Fig. [5.10). In other words, the safe
flight envelope is the intersection between the forward reachable set and
the backward reachable set at a given time instant. For a closed-loop, sta-
bilized system, the safe flight envelope converges to the forward reachable
set as time increases.
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Forward Reachable set

Safe Flight Envelope

Backward Reachable set
Figure 5.10: Safe Flight Envelope Definition.

It is important to note that the fidelity of the safe flight envelope is
directly dependent on the accuracy of the system model, the resulting safe
flight envelope is only as reliable as the model used to compute it.

The CORA toolbox [100] offers the possibility to compute a tight over-
approximation of the zonotopic forward reachable set from given zono-
topes. The algorithm can also compute the zonotopic backward reachable
set by simply reversing time (i.e., replacing t by T = —t in the system equa-
tions).

However, the over-approximation inherent in the algorithm may not
fully address our concerns. It is therefore of interest to compute an under-
estimation of both sets. To this end, we implemented in the CORA tool-
box the under-approximation provided by the standard and wrapping-free
algorithms proposed in [103]]. Figure compares the over- and under-
approximations.

In the CORA toolbox, the over-approximation of R([0, ¢,]) is achieved
by over-approximating the initial homogeneous reach set R,,([0, 7]) through
the following three stages:

1. An initial homogeneous solution is computed as:
Rp(7) = 7 X, (5.8)

after which both the initial condition set X, and R, (7) are enclosed
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by a global zonotope.

2. An error term derived from the input set is computed and added to
the enclosure [102]].

3. The resulting zonotope is over-approximated by a lower-order zono-
tope to avoid excessive zonotope order and reduce computational
time.

Our proposed extension for the under-approximation of R([0, t¢]) also
proceeds in three stages:

1. Asin stage 1 above, we compute R, (7) (5.8)) and enclose it together
with the initial condition set X, by a global zonotope.

2. A security factor is applied to shrink the resulting zonotope. A di-
agonal matrix of security factors S is defined, which depends on the
model confidence and safety levels. The safety matrix is applied only
to the generators:

S-2=(c, s; gV, .., sngg(”g)) (5.9)
where

S — ... e Rngxng ,

Sng
with s; < 1 for alli. This step does not increase the order of the zono-
tope; however, further order reduction may be necessary to maintain
tractable computations.

3. The zonotope order is reduced by an under-approximation method
[103] (see Chapter 5.1 and the implementation available in the CORA
toolbox).
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Figure 5.11: Upper graph: computation of the initial time reachable set by
the CORA toolbox (over-approximation); lower graph: computation of the
initial time interval reachable set by under-approximation.

5.5 Zonotopic Reachability Analysis of the Par-
rot Mambo

5.5.1 Linear Model Identification

The nonlinear dynamics of the quadcopter are characterized by twelve
states (including positions, Euler angles, velocities, and rotational veloc-
ities). The incorporation of control and state estimation imparts an al-
most linear behavior to the closed-loop system under hovering conditions.
Thus, we derive a linear model using classical identification techniques
(employing the subspace method provided in the Matlab Identification
Toolbox). The linear model is reduced to focus on the states for which
safety concerns are most critical: the roll angle ¢, pitch angle 6, and their
respective body-frame angular velocities ¢ and ¢. The considered inputs
are the three Euler angle references and the elevation reference.

Training and test data are generated using a multirotor aircraft simu-
lator. Twenty random inputs are applied over 60 seconds for training, and
three random inputs are applied over 8 seconds for testing, with a time
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Figure 5.12: Orange dotted line: Test dataset generated using the Simulink
Support Package for Parrot Minidrones. Blue line: Prediction of the iden-
tified linear model.

step of 0.005 seconds. The identified square system (four inputs and four
states) accurately describes the closed-loop multi-rotor aircraft, as shown

in Fig.

5.5.2 Parrot Mambo Reachable Sets

The under-approximation algorithm is applied to the identified model to
obtain the zonotopic forward and backward reachable sets. Figures|5.13
and[5.14 show these sets for a time horizon of 0.01 seconds.

We observe that the safe flight envelope is quite large, as both reach-
able regions exhibit similar shapes and sizes. In practice, it may also be de-
sirable to account for certain nonlinear constraints (expressed as bounds
on the state variables) that are not captured by the linear approximation.
When these bounds are violated, the drone is considered to be in a critical
state. The final reachable set is obtained by applying these bound con-
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0 [rad]

5 0 5
¢ [rad] 107

Figure 5.13: Projection of the zonotopes on the 2-dimensional state-space
¢ — O after 0.01 seconds. Blue: initial zonotope. Red: forward reachable
set R,(0.01). Green: backward reachable set R,,(0.01).

straints. Note that zonotopes are not closed under intersection, and so the
intersection of the forward and backward reachable sets (which defines
the safe flight envelope) should be represented as a constrained zonotope.

Figures and show the reachable regions under constraints at
0.05 seconds. In these figures, the original backward reachable sets exceed
the saturation limits: |{| < 2.5 rad/s and [t| < 2.5 rad/s.

Since a stable linear model approximation is used, the backward sys-
tem is unstable, and its reachable set grows exponentially. Thus, for longer
time periods, the forward reachable set becomes a subset of the backward
reachable set, and the flight envelope corresponds to the forward reach-
able set (see Fig. [5.17). The analysis is focused on short time intervals
corresponding to the controller sampling time.

5.5.3 Monte Carlo Approach and Comparison

To validate our approach, the results are compared with a Monte Carlo
method. In the Monte Carlo approach, a random initial condition is se-
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Figure 5.14: Projection of the zonotopes on the 2-dimensional state-space
¢ — 1 after 0.01 seconds. Blue: initial zonotope. Red: forward reachable set
R(0.01). Green: backward reachable set R,(0.01).
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Figure 5.15: Projection of the constrained reachable regions on the 2-
dimensional state-space ¢ — O after 0.05 seconds. Blue: initial zono-
tope. Red: forward reachable set R;(0.05). Green: backward reachable
set R, (0.05).
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Figure 5.16: Projection of the constrained reachable regions on the 2-
dimensional state-space ¢ — ¢ after 0.05 seconds. Blue: initial zonotope.
Red: forward reachable set R,(0.05). Green: backward reachable set
R, (0.05).
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Figure 5.17: Projection of the unsaturated zonotopes on the 2-dimensional
state-space ¢ —6 after 0.15 seconds. The flight envelope corresponds to the
forward reachable set. Blue: initial zonotope. Red: forward reachable set
R(0.15). Green: backward reachable set R,(0.15).
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Figure 5.18: Blue line: forward zonotopic reachability analysis. Red dot-
ted line: forward Monte Carlo reachability analysis using the linear sys-
tem. Red dots: endpoints of linear model trajectories. Green dotted line:
forward Monte Carlo reachability using the nonlinear model. Green dots:
endpoints of nonlinear model trajectories.

lected and the input space is sampled. Repeated simulations over a speci-
fied time span yield trajectories whose endpoints approximate the forward
reachable set. An advantage of this method is that it does not require a
linear approximation of the system. However, drawbacks include the dif-
ficulty of performing backward integration in a complex simulator and the
high computational cost required for accurate results.

Figure compares the forward reachability analysis based on the
zonotopic approach with Monte Carlo simulations using, on one hand, the
approximate linear model and, on the other hand, the complete nonlinear
model. These results confirm that the implemented techniques yield ac-
curate reachable sets and safe flight envelopes. To compute the zonotopic
reachable set, a safety matrix § with all coefficients equal to 0.95 is used.

The resulting safe flight envelope closely approximates the forward reach-
able set at any given time and converges to it as the final time increases.
This is due to the efficiency of the closed-loop system, which remains sta-
bilized over a wide operational range. The primary interest of the current
analysis is in the short time scale for transition performance evaluation.
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Chapter 6

Reference Governor

6.1 Introduction

Building on the computation of safe flight envelopes for our system, we
now seek to integrate these tools into our control strategies to ensure that
the UAV always remains within a defined safe region. Beyond the pri-
mary flight controller, various techniques are employed to enhance overall
system safety. For instance, envelope protection algorithms are designed
to prevent loss of control by ensuring the system remains within its op-
erational limits [104]. Similarly, collision avoidance systems manage in-
teractions with fixed and moving obstacles, facilitating efficient decision-
making [105,106]]. Another crucial intermediary layer, particularly rele-
vant for ensuring safe maneuvers and compatibility with closed-loop dy-
namics, is provided by reference governors [107]. These governors act be-
tween a high-level guidance system and the flight controller, modulating
commands to prevent hazardous conditions.

Many of these advanced techniques, including reference governors, are
set-oriented approaches. The traditional and well-established method for
computing admissible sets in this context relies on polyhedral representa-
tions, such as half-space (H-representation) or vertex (V-representation)
descriptions. While exact for linear systems, polyhedral methods suffer
from the "curse of dimensionality”: the number of facets or vertices re-
quired to describe a set can grow exponentially with the state-space di-
mension. Consequently, core operations for reachability analysis, such
as the Minkowski sum (crucial for propagating uncertainties) and linear

77
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mapping, become computationally intractable for systems of even moder-
ate complexity, hindering their application to complex, high-dimensional
problems.

To address this scalability challenge, our approach leverages zonotopes
as an alternative set representation [[108,101]]. A zonotope is defined com-
pactly by a center vector and a set of generator vectors, offering a signifi-
cant computational advantage because fundamental operations for reach-
ability are remarkably efficient. For instance, the linear mapping of a
zonotope and the Minkowski sum of two zonotopes are computed through
simple, low-complexity matrix-vector operations on their generators. The
complexity of these operations scales polynomially with the state dimen-
sion, in stark contrast to the exponential complexity associated with poly-
hedra. It enables the tractable analysis of higher-dimensional systems and
opens the door to online implementations, which would be infeasible us-
ing conventional polyhedral techniques.

In this chapter, we present a reference governor that specifically guar-
antees the transient response of the closed-loop system remains within
bounds and does not violate the pre-defined safe envelope constraints.
This work builds upon preliminary results in the thesis. A key novelty
of our current approach is the computation of the maximum admissible
set using reachability analysis, which enables the construction of a ro-
bust safe flight envelope. The proposed reference governor is designed
within a linear framework, leveraging the linearized closed-loop dynam-
ics provided by the INDI flight controller (see Figure [6.1). It employs a
set-oriented technique with a zonotopic representation (see Figure to
accelerate computations, a procedure that can be effectively implemented
using available software tools such as CORA [100]]. Finally, the proposed
reference governor strategy, integrated with the cascade INDI flight con-
trol, is validated using the MathWorks Parrot Mambo flight simulator.

6.2 Theory

To introduce the concept of a reference governor, a discrete-time linear
system representing the closed-loop dynamics is considered:

x(k +1) = A;x(k) + Bu(k)
y(k) = Cx(k) + Du(k), (6.1)
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Figure 6.1: Safe flight envelope protection through the use of a linear gov-
ernor based on the exploitation of zonotopes. The internal controller is a

feedback linearizing controller that enables the linear governor.

Figure 6.2: UAV in a safe flight envelope with a zonotopic representation.
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Figure 6.3: Reference governor structure

where x(k) € R" is the states vector, u(k) € R" the input vector of the
closed-loop system (the reference), and y(k) € R™ the output. It is as-
sumed that the closed-loop system is stable, i.e., the eigenvalues of A} are
inside the unit circle. This assumption generally holds as controllers are
designed, on the one hand, to ensure system stability, and the other hand,
to provide good performance.

The reference governor [109] is an outer layer of control that trans-
forms a reference r(k) generated by a high-level guidance system into a
new reference u(k) which is more suitable with respect to the dynamics
of the closed-loop system and the constraints imposed on the system, as

shown in Fig.
The governor is based on an optimization problem:

; Q
min (k) —u(k)||; (6.2)

s.t. (uk),y(k+1)) e O,

The governor looks for a reference u(k) which is the closest possible
to r(k) € R™, the high-level reference, while ensuring that both u(k) and
y(k) belong to the maximum admissible set O,. This set corresponds to
all the admissible trajectories originating from given initial conditions x(0)
that lead under constant inputs g to outputs y(k) inside a constraint set ¥:

O, ={(u,x) : y(k | u,x(0)) € Y,Vk € 71}, (6.3)

with y(k | u, x(0)) the prediction of the output using the model in (6.1)). In
the general case, the constraint set Y is not convex and is computed using
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Monte Carlo techniques [109]. This is why it is proposed to compute a
convex tighten sub-set @, C O, in order to alleviate the computational
burden. As the input u and the initial states x(0) are bounded and model
is stable, one can find a value k* for which y(k* | u,x(0)) = y(co |
u, x(0)).

6.3 Maximum Admissible set

The prediction of the system output can be systematically and efficiently
computed using zonotopic reachability. Consider CZ,, the constrained
zonotope of initial conditions and CZ,, the constrained zonotope of inputs.
A reachability algorithm ([[100], [110]) can be used to compute the reach
set CZyk+) and CZy )

k*—1
* e .
CZyi) = AK €2, ® D, ALBCZ, (6.4)
i=0

If the predicted set CZy k) is a subset of the constraint set Y, the maxi-
mum admissible set is represented by both CZy . and CZ,, i.e.,

u(k) € €2,

(u(k)’ Y(k + 1)) € Ooo - y(k + 1) e Gzy(k*)

(6.6)

As the operations performed with the zonotopes tend to increase the
number of generators, reducing the order of the resulting zonotopes may
be necessary. Reduction techniques are available in the CORA toolbox
[100]. This toolbox is a useful library for reachability analysis, which cov-
ers different types of set representations for both linear and nonlinear sys-
tems, conversion methods, and several reachability techniques.

Thanks to the use of the reachability algorithm, the definition of the
admissible set is extended. In the initial definition, the input is considered
constant along the trajectory, while in the reachability analysis, the zono-
tope CZ, is constant, so that, for a given trajectory, the inputs contained
in this set at each time step can vary.
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6.4 Constraint set Y

A linear constraint can be imposed on the output set, reducing the max-
imum admissible set. The admissible output is given by the intersection
of the constraint set Y/ and output prediction CZy.,. Constraint sets Y are
generally expressed as linear constraints: h'y < £, and in this case, Theo-
rem 1 from [111]] allows computing the intersection between a half-space
and a constrained zonotope (or a zonotope).

Definition 6.4.1. [111]][Constrained zonotope-Half space intersection| Let
a constrained zonotope CZ = {c,G, A, b} C R" intersects a half-space
H = {y € R" | hly < f.} then their intersection CZ, = CZ N K is a
constrained zonotope of the form:

ez, =1c,[G 0],

A, 0 b
h'G dm/z] : [fc _hlc— dm/ZH 6.7
wheredm = f, — h'c + Z:;gl | hTg, |.

Alternatively, the convex set Y can be expressed in a zonotopic form.
The admissible output is easily computed by an intersection i.e.,

C’Zy = C’Zy(k*) N y, (68)
and
u(k) € €z,

This definition is however not sufficient. Indeed, the reference gover-
nor looks one step ahead in time, and the UAV may arrive near the con-
straint limit, in a way that no control action in the next time step could
avoid a constraint violation. Therefore, it would be interesting to reduce
CZ, with respect to the constraint set Y.

From expressions and (6.5)), it is possibly to write:

k*—1

CZ.yur = CA¥ €2, ® Z CA.BCZ,, ® DCZ,,, (6.10)

i=0
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Figure 6.4: Factorization of a zonotope over the Minkowski sum.
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where the output set CZ, ., and the initial set CZ, are known. How-
ever, computing the corresponding set CZ_, is not an easy task as zono-
topes cannot be factorized over the Minkowski sum (see Fig. [6.4)).

To overcome this problem, it is proposed to build an approximate input
constraint hjg < f,, from the constraint on the output h’y < f,. To
this end, the individual impact of each input j on the output is evaluated
through a reachability analysis:

k*—1

N (ng))
CZy;=CY, AIBCZ,; ®DCZ,; ={c,; (g g, LI} (6.11)
i=0

where CZ, ; has its center at the origin and a generator of the form g, ; =
[0...1...0]" where only the j'* element is non zero. The resulting matrix
of generators of the output set gives information about the maximum out-
put value reached by the system for a unit input. This information can be
compiled into a matrix P;:

Ng.j

P = gl (6.12)
i=1

This matrix links the outputs to the j* input. In first approximation,
it is possible to write

Ay ~ PAu, P= [P, ..P,] (6.13)

The constraint on the input is computed as:

h'y <f. &< h'Ay <f, —hTy,
< h'PAu < f, — hly,
< h’Pu < f, — h'y, + h'Pu,, (6.14)

with y, and u, a steady-state point of the system.

If the constraint set Y is given in a zonotopic form, the same matrix P
can be used to compute a zonotope which will intersect CZ,,.

Consider a numerical example to illustrate the concepts, e.g.,
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(2 1 2 1
3 =2 2 6|
1 0 0 0
C_O 1]’ D_[O 0]’
which represents a discrete-time system with a sampling period of 1 sec-
ond. The zonotopic reachability is computed up to 3 seconds, according
to equation ((6.4]) with zero initial condition and the input set €Z,, shown

in Fig. [6.5b|(blue zonotope). The resulting zonotope CZ, is shown in Fig.
(blue zonotope). A constraint h on the output is considered:

T
-1
[1] y <5.

This constraint corresponds to the hyperplane ¥ (red in subfigure a) and
intersects €2, to produce the admissible set €2, , (green constrained zono-
tope in subfigure a). Applying the above-mentioned procedure, a projec-
tion matrix P is constructed, and a constraint on the input u:

10 22 4
14 45| |23
The hyperplane V intersects the initial zonotope CZ, and produces the
constrained input zonotope CZ,,, (green in Fig. [6.5b).

, B=

T

P= u<>.

6.5 Disturbances

The reference governor allows introducing bounded disturbances in the
strategy quite easily:

x(k +1) = Ayx(k) + Bu(k) + E,w(k)
y(k) = Cx(k) + Du(k) + F,w(k), (6.15)
with unknown bounded disturbance w(k). The maximum admissible set

accepts the same definition but includes disturbances in the predicted out-
put:
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0.4 0.2 0 0.2 0.4 0.6
Uy

(a) Intersection CZ, , (green line) of a (b) Initial input constrained zonotope
constrained zonotope CZy (blue line) €Z,, (blue line) and constraint input
with a hyper-plan Y (red). CZ. 4 (green line).

Figure 6.5: Numerical example

O, ={w,x) : y(k | u,x(0),w) € Y,Vk € CZ"}, (6.16)

and the zonotopic reachability is extended as

k*—1 k*—1
. o . o .
CZyuey = AL CZ,® ), ALBCZ, @ ). ALE,CZ, (6.17)
i=0 i=0
@Zy(k*) = C@ZX(k*) @ DGZu @ FPGZw, (618)

with €Z, the zonotope set of bounded disturbances.

6.6 Safety margins

To account for the modeling simplifications and uncertainties inherent in
the system model, the pre-computed maximum admissible set is reduced
using safety factors. The selection of these factors is a critical step to bridge
the gap between the idealized model and the physical system’s behavior.
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A practical and effective method for tuning these margins is to analyze the
closed-loop system’s performance empirically.

Specifically, the maximum observed overshoot in the output and input
signals during operation near the original constraint boundaries serves as
a direct indicator of the potential for constraint violation. This overshoot
encapsulates the effects of unmodeled dynamics, delays, and disturbances
not captured during the set’s computation. By choosing safety factors that
create a margin slightly larger than the maximum anticipated overshoot,
a robust buffer is established:

GZQY = {CY’ Sy’ Gys Ay’ by} (619)
GZC,H = {Cu, Su(;u’ Au’ bu} (620)

where S, € R™" and S, € R™*" are diagonal with each element com-
prised between 0 and 1, i.e., 0 < Sy <1,0<8,;; <L Vi=1,..,n, Vj=
1,..,n,.

6.7 Reference governor design for the Mambo

Feedback linearization controllers provide a linear closed-loop structure
(basically a set of integrators) that decouples the dynamics of each state
of the drone. In this section, we show how the design of the reference
governor can be achieved when the INDI strategy is considered for the
baseline control. The model used for the reachability analysis is restricted
to references specified by the user and their associated states.

x(k +1) = Arx(k) + Bu(k) + E,w(k)

y(k) = Cx(k) + Du(k) + F,w(k) (6.21)
px,k
py,k
px,ref,k pz,k fx,k
_ | Pyrefik | ¥ N ok
uwk)=1|" , x(k) = , W, =[°7 6.22
( ) pz,ref,k ( ) vx,k k fz,k ( )
z1bref,k vy,k mZ,k
Uz,k
| Yk |
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Moreover, it is assumed that all the states are available through mea-
surements or observers. Therefore, the C matrix is an identity matrix and
D is a zero matrix.

In UAVs, the primary disturbances originate from wind and aerody-
namic effects. Wind can be seen as a set of forces and torques that apply
to the drone structure, while aerodynamic effects are linked to the high-
speed rotation of rotor blades. As shown in [112], those effects are nonlin-
ear and impact each rotor-produced trust. Accordingly, the disturbances
are defined as follows

04i><1 04><1 O4><1 04)(1
20 0 0
m 1
E, =0 - 0 0 (6.23)
o o0 < o
n 1
o 0 0 —,
L IZZ -

and F is a zero-matrix. For computer implementation, these equations are
expressed in discrete time.

To compute the admissible set, it is required to define bounds on the
initial conditions, the inputs, and the disturbances. In our implementa-
tion, the initial conditions are restricted to the origin. Indeed the closed-
loop system is stable, and the effect of the initial conditions vanishes over
time. The inputs, i.e., the references for the spatial location and the ori-
entation along the z-axis, have no physical limits in an open environment.
However, the controller is designed for responses to unitary step inputs,
and the reference variations are limited accordingly:

pxref Px +1
py ref py +1
pz - 1 j 2 ref p: + 1 (624)

17b ¢ref ¢+1

This procedure allows the input of the INDI controller to stay within the
design range, and in turn, avoid input saturation. The zonotope of input
is expressed in variations with respect to the actual states, i.e.,
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0 1 000
0 0100
eza={[ollo 0 1 of-0:0) (6.25)
0 0 001
(64

Knowing the initial set and the set of inputs, equations (6.4) and (6.5
can be used to compute the output zonotope CZ,,.
The maximum admissible set is updated online:

px,k
py,k
px,k pzk
CZy = CZuy + gy’; , €2y = CZyy + i"k (6.26)
i Uyk
Uz,k
| Vi

Finally, a zonotope can be built for the disturbances and since the drone
is flying indoors, only small perturbations can occur.

The projection of the maximum admissible set on several 2D phase
planes is shown in Fig.

A similar approach can be followed in the case of classic feedback lin-
earization. The only differences are the matrices of the closed-loop model.

Optimization problem

The optimization problem [6.2] is now expressed in matrix form, consid-
ering the use of zonotopes. First, the input u(k) must stay inside a con-
strained zonotope CZ., = {¢y, Gy, Acy, by}

_ IBugilleo <1
U(k) =Cy + Guﬁu(k) (S @Zc,u — Ac’uﬁu(k) — bu (627)

If one considers B, as a new optimization variable, then linear equal-
ity constraints and box constraints are added to the quadratic optimization
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Figure 6.6: Projection of the maximum admissible zonotope on several 2D
phase planes - INDI case
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problem:
—Gy | [ulk) c
n,xXn u u
o = : (6.28)
lonc,uxnu Acsu ﬁu(k)] [bu]
—1L, a1 <Bu < Ly (6.29)

Second, the output prediction at the next time step y(k + 1) must lie inside
a constrained zonotope CZ., = {cy, Gy, A.y, by}

y(k + 1) = CA;x(k) + CBu(k) + Du(k) (6.30)

||ﬁ (k+1)||oo <1
=c,+G ﬁ € CZ = y 6.31
y yPy(k+1) c,y I Ac,yﬁy(k+1) — by ( )

x(k) is known as it is provided by measurements or state observers. Again,
By (1) is considered as a new optimization variable and

CB+D) -G —
(0 +D) N u(k)lz[cy CATX(k)], 632
T,y X1y cy 6y(k+1) by
L, a1 <Bywsn) <Ly (6.33)

Introducing new variables in the optimization problem makes it com-
putationally more expensive. Itis therefore essential to consider their num-
ber, which is given by the generators of the resulting constrained zono-
topes, and the number of constraints applied to those generators. Tech-
niques for reducing the order or the number of constraints of such rep-
resentations are available in [113]], [101]. Moreover, the weight given to
those new variables in the optimization problem can modify the reference
governor dynamics.

Eventually, we can discuss the feasibility of the optimization problem
by asking whether a solution always exists and what the requirements are.
In the case of the reference governor, it is clear that the necessary condition
is the non-emptiness of the two zonotopes; that is, there must exist a non-
empty set from which the optimization variables can be selected. This
non-emptiness condition can be easily verified through (5.2).
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6.8 Tests of the control structure

In this section, the zonotopic reference governor is tested using the Math-
works simulator for the Mambo mini drone in indoor conditions with noisy
measurements. Both feedback linearization strategies are considered and
compared. Fig. [6.7|recalls the system response under reference steps with-
out reference governor for both feedback linearization methods. The yaw
angle ¥ reaches the setpoint in about 2 seconds while the elevation set-
point is reached in about 3 seconds. The positions p,, and p, take a longer
time to settle, as they are regulated in a second control layer. Fig. [6.8|shows
the system responses with the reference governor. Note that the reference
gOVernor acts on Py .¢, Py oy a0d p, . in order to comply with the admis-
sible set, whereas 1, is not affected. As the quadcopter moves the refer-
ences are adapted to eventually reach the initially targeted position. This
results into a smooth, somewhat slower transient. Note that both methods
provide equivalent results, as performances are mostly determined by the
tuning of the linear controllers in cascade with feedback linearization.

Considering the same reference trajectory, constraints are now intro-
duced. First, a constraint on the p, axis is considered:

p, <05 (6.34)

The 3D trajectory is shown in Fig. While a projection in the p, —p,
plane is shown in Fig. The reference governor adapts the reference
so as to ensure the respect of the constraint considering the system dy-
namics. The new reference is close to the constraint but not equal to it, as
overshooting or disturbances could push the system over the admissible
bound.

Velocity constraints can also be considered:

v, <0.05 (6.35)

Fig. shows the time evolution of the velocities (for the same tra-
jectory tracking problem) in three cases: (a) no constraint and the velocity
evolves freely, (b) a constraint is applied limiting the velocity amplitude in
the INDI case, (c) a constraint is applied limiting the velocity amplitude
in the classic feedback linearization case. The latter case displays a more
oscillating velocity, due to the use of the jerk in the linear control.

The main contribution of this work is the development of a reference
governor scheme using zonotopic sets. This strategy is applied to a mini
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Figure 6.7: Unconstrained responses of the Mambo mini drone to setpoint
steps without the reference governor - classic feedback linearization: dot-
ted lines - INDI: continuous lines - references: dashed lines - purple: p,,
blue: p,, orange: p,, yellow: 1.
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Figure 6.8: Unconstrained responses of the Mambo mini drone to setpoint
steps with the reference governor - classic feedback linearization: dotted
lines - INDI: continuous lines - references: dashed lines - purple: p,, blue:

Dx, orange: p,, yellow: .
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(b) Projection in the x — y plane.

Figure 6.9: Constrained response (constraint x < 0.5) of the Mambo mini
drone - Trajectory (INDI - yellow line, classic Feedback linearization - pur-
ple line) of the quadcopter with the initial reference (blue dotted line) and
the updated reference (orange dotted line).
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Figure 6.10: Velocities in the x direction without the constraint (red line)
and with the constraint v, < 0.05 (INDI: orange line and classic feedback

linearization: blue line.
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drone whose flight controller is designed using two feedback linearization
techniques, e.g., a classic approach, leading to an augmented system that
requires the estimation of additional variables (jerks), and an incremental
nonlinear dynamic inversion technique that requires high sampling rate
to achieve robustness. Both provide a linear closed-loop system and the
reference governor can therefore be developed in a linear framework.

Simulation tests demonstrate the feasibility of the approach and promis-
ing results, with the satisfaction of the imposed constraints.

In terms of performance, both linearization techniques come in a close
match, but our preference goes to the INDI controller as it avoids the bur-
den of considering the jerks. The INDI controller provides partial lin-
earization, depending on the quality of the underlying dynamic model and
the sampling rate of the measurement units. Possible synchronization is-
sues have been reported in [114] but we have not observed such issues in
the Parrot Mambo evaluation.

The definition of the reference governor could be extended to multiple
prediction steps, and, as a further extension, linear robust model predic-
tive control will be considered, to enable multistep prediction and enhance
robustness linked to partial linearization in the inner loop.
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Chapter 7

Tube-Based Model Predictive
Control

7.1 Introduction

In this chapter, we aim to develop a robust control methodology for multi-
rotor aircraft, specifically addressing the challenges posed by external dis-
turbances and model uncertainties. After the application of robust feed-
back linearization to create an approximately linearized model, which in-
herently introduces model uncertainties, the focus shifts to designing a
resilient outer-loop control strategy.

To robustly address the pivotal issue caused by disturbances and model
uncertainties, research has increasingly turned toward robust control method-
ologies. In the realm of MPC, three primary deterministic formulations
have been developed to handle bounded uncertainties: minimax MPC,
multi-stage MPC, and tube-based MPC.

Minimax MPC is a worst-case approach that aims to minimize the per-
formance cost under the most unfavorable realization of uncertainty over
the prediction horizon [115,116]. This formulation guarantees robust sta-
bility and constraint satisfaction but often leads to highly conservative and
computationally intractable problems, as the optimization needs to ac-
count for all possible disturbance sequences.

Multi-stage MPC (also known as scenario-based MPC) handles uncer-
tainties by modeling their evolution as a discrete tree of scenarios [117,
118]. At each stage, the control action is optimized for a set of possible

99
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future uncertainty realizations. While this approach can be less conser-
vative than minimax MPC, its computational complexity grows exponen-
tially with the length of the prediction horizon and the number of uncer-
tain parameters, making it challenging for real-time applications with con-
tinuous disturbances.

Tube-based MPC offers a practical alternative to these methods by de-
coupling the complex robust control problem into two computationally
efficient components. It achieves this by defining a tube of trajectories
around a nominal, disturbance-free trajectory. This tube encapsulates all
possible real system trajectories under the influence of bounded distur-
bances. This approach [119,[120,121], effectively balances robustness with
computational tractability, making it well-suited for systems with fast dy-
namics like UAVs.

Tube MPC has found diverse and growing applications across vari-
ous domains. For instance, it has been successfully employed in the de-
sign of automotive cruise control systems [122], for the robust control of
spacecraft [123]], and in managing electrical vehicle safety systems [124]].
Within the realm of Unmanned Aerial Vehicles (UAVs), Tube MPC has
been utilized to handle uncertain linear dynamics [125] and to manage
UAVs carrying payloads, which can be modeled as disturbances [126]]. Be-
yond robotics and aerospace, recent original studies have also explored
Tube MPC applications in fields such as pharmaceutical production, par-
ticularly for bioprocess models exhibiting large uncertainties [127]].

The implementation of these robust MPC techniques often relies on
the concept of invariant sets. In this chapter, a tube-based control strat-
egy is implemented as an outer loop controller, utilizing constrained poly-
nomial zonotopes as state and input constraint sets. The reachability ap-
proach, using this same advanced representation, is exploited to determine
the safe flight envelope, which serves as a primary constraint within the
tube-based control framework. This approach specifically addresses the
application of Tube MPC to an approximately linearized model that ac-
counts for internal uncertainties and disturbances, while effectively inte-
grating computationally efficient zonotopic reachable sets.
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Reachability Analysis

,L SFE

Py a @j
—>| Tube MPC ——> Caflila[;jled —> Quadcopter

t 1

Figure 7.1: Embedded control of the multirotor aircraft: A feedback lin-
earization method in cascade with Tube-MPC - the references for feedback
linearization are the accelerations a and the references of Tube MPC are
the positions p and the yaw angle .

7.2 Principle

The control scheme should optimally track a predefined aircraft trajectory
under constraints while being robust to disturbances. To achieve these
objectives, adapted to the constraints of an embedded multirotor aircraft
system, a multi-layered control approach is adopted, as shown in Fig.
The procedure is divided into two parts. A robust feedback linearization
aims to establish an almost linear closed-loop system, as shown in pre-
vious chapter, onto which a Tube MPC is applied to face various chal-
lenges, including constraint handling and robustness to external distur-
bances, model uncertainties, and partial linearization.

7.3 Theory

The tube paradigm is the conceptualization of the robust MPC objective:
finding an invariant set of the error system defined by the difference be-
tween the nominal system and its true disturbed realization. Tube-based
MPC therefore aims to maintain the real system subject to disturbances in
abounded vicinity of an assumed optimal nominal trajectory, as illustrated
in Fig. [7.2} [119, 121].

The system to be controlled is modeled by the following discrete-time
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Figure 7.2: Tube-based robust model predictive control principle: the
computed nominal trajectory (blue line) is the reference of an ancillary
controller that drives and encompasses the real system trajectory (red line)
in a tube defined by zonotopic regions.
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nonlinear time-invariant dynamics subject to disturbances:
x(k + 1) = f(x(k),u(k), w(k)) (7.1)

where f : R" x R™ x R? — R" is a continuous function representing
the system dynamics, x(k) € X C R" is the state vector belonging to the
corresponding closed set X', u(k) € U C R"is the input vector belonging to
the closed set U and w(k) € W C R? is the model unknown disturbance
vector, assumed to be bounded by the vertices of the closed set W. The
sets X', U and W are compact and W contains zero.
A nominal, disturbance-unaffected, model is associated with system
(7.1)):
&k + 1) = £(&(k), v(k), 0) (7.2)

where §(k) € R" is the nominal state vector and v(k) € R" the nominal in-
put vector. The ancillary controller computes the closed-loop control law
u(k) using the optimal state §(k) and input trajectories v(k) as references
and considering the available disturbed state x(k), e.g.,

u(k) = e(x(k), §(k), »(k)) (7.3)

in such a way that the real system trajectory remains in a sufficiently close
neighborhood of the nominal system trajectory, i.e. the following error
system remains in a set £:

et+1)=x(t+1)—&t+1) (7.4)
= f(x(k),u(k), w(k)) — f£(§(k), v(k),0) (7.5)
= £ (x(k), p(x(k), §(k), v(k)), w(k)) — £(§(k),»(k),0)  (7.6)
el (7.7)

where £ is a robust controllable invariant set [121]].

Additional constraint sets = and V for the nominal system can be con-
sidered to enforce and modulate the size of the resulting tube around the
nominal trajectory.

Figure [7.3| sketches the overall structure with the nominal controller
working as an open-loop optimal controller, which computes ideal trajec-
tories feeding the ancillary controller which drives the real system close to
the ideal path.
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Figure 7.3: Tube model predictive control with the nominal and ancillary
controllers

Application to the aircraft system

To implement Tube MPC, the discrete-time representation of the linear
system resulting from the application of feedback linearization to the air-
craft dynamics

Ek +1) = Ar§(k) + Bu(k) (7.8)

with & = [p, p, p, ¥ v, v, v, ]" and v = [a, a, a, a,]" is used by the
nominal controller. It is important to note that this model considers only
7 state variables instead of the 12 variables in the original model as the
application of cascaded INDI makes the angular velocities (w,) and the two
Euler angles (¢, 0) fast variables, whose dynamics can be neglected in the
design of the outer loops. We solve the following nonlinear programming
problem:

N-1

min 2, (B — E()"Qu(E() — E(D) + (D) — v.(D)) R, (¥(E) — v,.(0)

i=1
+ () — &, (N))H,,(§(N) — §.(N)) (7.9)
s.t. E(i + 1) = AzE>D) + Bv(i),
Ei)eZ, vi)eV,
g(O) EXDE
where &, and v, are respectively the state and input reference trajectories.

Q.. R,, H, are the weight matrices and E and V are respectively the nom-
inal state and input compact sets.
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The state and input sequences resulting from the nominal optimal prob-
lem resolution read:

g = {£(0), (D)., EE(ND}, v* 1= p*(0), " (D)., v(N)}.  (7.10)

The ancillary MPC aims to maintain the real system states and inputs as
close as possible to the nominal optimal trajectories £&* and v*. The corre-
sponding cost criterion is minimized in the following nonlinear program-
ming problem:

N-1

min 2, (x(0) — £ (D) Qu(x(i) — (1)) + (u(i) — v* () R, (u(i) — v*(D))
i=1

+ (x(N) — §*(N) H,(x(N) — §*(N)) (7.11)
s.t. x(i+ 1) = Apx(i) + Bu(i),
x(i) e X, u(i) € U,
x(0) = x,
with x and u being the real system state and input vectors. Q,, R,, H, are
the weight matrices, which may differ from the one used in the nominal
control problem, enabling to restrain the tube around specific state/input
variables (or conversely, to widen the tube). The compact sets X and U

are assumed to respectively include the sets E and V. [119] proposes the
following simple procedure to define the tightened constraint sets:

ALX (7.12a)
LU (7.12b)

where 4, and 4, are contained in [0 1].

The resulting tube set £ is not defined explicitly in the MPC problem
because its determination is unfortunately difficult in the case of nonlinear
control problems [119]]. The size of the tube set therefore remains unde-
termined but can be approximated, for adequately chosen sets E and V,
following a Monte-Carlo analysis. It is also important to mention that a
wrong choice of these sets, i.e. the violation of these soft constraints, does
not prevent Tube MPC from converging to a specific tube set even if it may
however affect the ancillary controller performance. The following sec-
tion provides a better insight into how these state and input sets can be
judiciously designed in the specific case of aircraft path tracking.

<S [
1]
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7.4 Safe flight envelope as a constraint set

Interestingly, in the context of aircraft path tracking, SFEs may be part
of the state variable constraints of the Tube-MPC problem. In the fol-
lowing, we proceed with the computation of the safe flight envelope of
the multirotor aircraft under feedback linearization. Considering the full
nonlinear model defined previously, the constraint set on the inputs u =
la,, a,, a,, a,]" reads:

u= <04><1a Lixas Laxas [], [], [])e?z (7.13)

This CPZ corresponds to a 4-dimensional box with unit length in each
dimension. We further establish a feasible set of initial conditions which
are reachable from any position in time. To this end, a reachability algo-
rithm is first executed using the input sets defined in and a limited
set of initial conditions. This iterative procedure runs until the following
set of initial conditions encompasses a significant fraction of the feasible
state space (see Algorithm [1)):

Lotk +1) = {£(t;, X0, u() € R" | xy € Lo(k), Ve s u(.) € U (7.14)

Algorithm 1 Safe flight envelope computation

Require: S,, U, tp, N
Lo(1) < &
fork=1: Ndo
Lok +1) « R([0,t,], Lo(k), U)
end for
Rp < Rp([0,87], Lo(N + 1), U)
Rp < Rp([0,t¢], Lo(N + 1), U)
SFE — RpNRy

The resulting safe flight envelope is represented in Figure It is
worth noting that the defined inputs can also be represented as a CZ. As
a result, we perform a comparative analysis of the outcomes from both set
representations, highlighting a discernible disparity in the results. This
discrepancy stems from the fact that the CPZ representation, being more
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Figure 7.4: 2-D projections of the forward and backward reachable sets us-
ing both €Z and CPZ representations. Blue lines correspond to CZ, green
lines to CPZ. Continuous lines are the forward computation and dotted
lines stand for the backward computation.
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versatile, requires fewer approximation operations than the €< represen-
tation.

Furthermore, the S € could be intersected with appropriate state con-
straints ¥ C R™ such as regulatory speed limits or obstacles (to avoid col-
lisions):

X=8FENY (7.15)

7.4.1 Determination of = and V

Determining both sets, 2 C X and V C U, is inherently intricate, particu-
larly due to the necessity of computing robust sets. This task, even when
feasible, is quite complex and often necessitates substantial approxima-
tions. In addressing this challenge, a straightforward approach proposed
by [119] entails imposing relations (7.12a). This simplification streamlines
the problem to the determination of 4, and 4,, contingent upon the degree
of encountered disturbances. These factors are subsequently incorporated
as additional parameters within the MPC framework, enhancing its adapt-
ability and robustness.

7.4.2 Feasibility

By design, the constraint sets are constructed using reachability analysis
under the same system dynamics that govern the MPC optimization. This
is crucial in guaranteeing that if the initial state lies within the constraint
set, the entire nominal trajectory remains feasible over time.

Let X, denote the initial state constraint set obtained via reachability
analysis. Assuming that the initial condition satisfies x, € X, the nomi-
nal dynamics used in both the reachability analysis and the optimization
ensure that any computed future state x;,; will remain within the appro-
priate constraint set, provided that x;, € X. In essence, the use of con-
sistent dynamics across both analyses implies that the set X} is forward
invariant. Thus, if the optimization is feasible at time k, it will remain
feasible at time k + 1, leading to recursive feasibility.

Thus, by ensuring that the initial state is contained within the appro-
priate tightened constraint set and by using an ancillary control law to han-
dle perturbations, the Tube MPC scheme guarantees that every computed
point in the optimization remains feasible.
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7.5 Implementation and results

Additionally, the system is influenced by external disturbances represented
by vectors f; and m, expressed as follows:

1
fd = EPCFdAF(Vwind - V)2 (716)

1
m, = zpCMdAMcoi (7.17)

With the square operation being element-wise in those two equations.
Modeling these external disturbances involves simplified drag forces and
moments [128]] under nominal wind conditions described by v,;,4. These
drag forces are associated with drag coefficients, Cpy and Cjy.

Additionally, uncertainties on the inertial parameters will be consid-
ered further in this study.

The Tube-based methodology is now applied to a Parrot Mambo minidrone
whose parameters are reported in Table

The results are computed using the MATLAB platform using the Casadi
toolbox [129] to solve the optimization problems with an i5-10210U pro-
cessor at 1.60GH z. To assess the disturbance effects, a Monte-Carlo anal-
ysis is achieved and the overall performance is quantified using root mean
square error (RMSE) criteria. The mean RMSE is used to assess the aver-
age trajectory tracking performance while the variance characterizes the
robustness. These criteria read as follows:

1 1 W1, . >
Meangysg = Z i Z (& k() — &jer (D) (7.18)
Nt Nsim ; 4 .
k=1 i=1 j=1
1 & Noim ¢ 2 - 2
Vargyse = o+ Z Z 1 Z (gk(l) — 'g’ref(i)) MeanRMS (7.19)
[k 1 Niim =1 " j=1

The tilde variables indicate the end-user variables for the performance
evaluation: & = [p,, Py, P I

UAVs are frequently subject to various disturbances during their oper-
ations, with the most notable being the influence of wind, which has the
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potential to displace the drone from its designated position. Other disrup-
tive factors include suboptimal parameterization and inherent noise in the
system inputs and outputs.

Table 7.1: Parameters of the disturbances

Parameter (symbol) Value (units)

Norm of the wind speed (||vinql) [0, 0.5] m/s
Translational drag coefficient (Cy;) 0.1
Moment drag coefficient (C,,,) 0.001
Inertia uncertainties 20%

Referring to equations and the values in Table the drone
is exposed to forces within the nominal range of [0,0.0323] N. During
horizontal motion, the minidrone tilts at a modest angle of approximately
0.3491rad (20 degrees), generating forces of around 0.2114 N. Consequently,
disturbances in force amount to approximately 15%. Additionally, distur-
bances on moments and an additional 20% uncertainty introduced in the
inertia values are considered.

A standard MPC is compared to the tube-MPC strategy. For the sake
of fairness, identical disturbance conditions and parameters are applied.
The trajectories of the standard MPC, shown in Fig. predominantly
remain close to the desired path, with a few instances of larger deviations
due to the effect of the disturbances. A clear contrast can be observed with
the results reported in Fig. In the Tube-MPC scenario, a tight corri-
dor encompasses the distributed trajectories, reducing the impact of model
disturbances. The error quantification in Table|7.2|supports this visual in-
terpretation. Additionally, we illustrate the influence of the parameters
A, and 4,, setting the constraint sets, on the control performance. A dis-
cernible trend emerges, revealing that a lower 4, value ensures robust and
high-performance behavior, while 4, appears to have a less pronounced
impact. However, it is imperative to remember that A, serves as a critical
link between the nominal set = and the constraint set X. If 4, is set too
low, it drastically reduces the size of E, potentially resulting in conserva-
tive constraint enforcement. Therefore, a delicate balance must be found,
preventing constraint violation while avoiding conservatism. Notice that
the magnitude of the disturbances has been selected such that the standard
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Figure 7.5: Monte-Carlo simulations of the methodology (MPC - CPZ -
INDI) under disturbances. Blue lines are the Monte-Carlo simulations,
black lines show the references and orange lines show the mean trajectory

MPC keeps the system stable in all the Monte Carlo simulations. However,
Tube MPC can handle more severe disturbances.

The application of tube-based model predictive control combined with
incremental nonlinear dynamic inversion to achieve path tracking of a
multirotor aircraft with rotary wings in a polynomial zonotopic framework
yields promising results. In particular, this study demonstrates the poten-
tial of this control strategy for effectively managing disturbances and ro-
bust operations of multirotor aircraft.

The control strategy relies on a multi-layered control framework that
employs robust feedback linearization in the inner loop. The outer loop
then exploits Tube-MPC, which itself builds upon two controllers, a nom-
inal controller and an ancillary controller. Constrained polynomial zono-
topes are conveniently used to represent state and input constraints.

One of the noteworthy contributions of this chapter is the introduc-
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Figure 7.6: Monte-Carlo simulations of the methodology (Tube-MPC -
CPZ - INDI) under disturbances such as inertia, wind and internal approx-
imations. Blue lines are the Monte-Carlo simulations, black lines show the
references and orange lines show the mean trajectory



7.6. EXPERIMENTAL VALIDATION 113

Table 7.2: Performances of the methodology when varying the parameters
Ay and 4,.

Method Meangys Vargys 4 4,

MPC 1.6 X107 73x107%2 / /

1.2x107! 6.7x107° 0.1 0.1
1.3x107! 2.6x10™ 0.1 0.5
1.3x107' 3.7x10°° 0.1 0.9

1.2x1071 1.2x10™* 0.5 0.1
1.3x107! 21x10 0.5 0.5
1.2x1071 21x107* 0.5 0.9

Tube MPC

48%x107! 48x107' 09 0.1
52x107t 3.1x107! 09 0.5
52x1071 2.4x107' 09 0.9

tion of constrained polynomial zonotopes in the form of safe flight en-
velopes, also standing as state and input constraints in the Tube-MPC for-
mulation. This representation offers a significant advantage, enabling the
application of standard operations based on set theory. Moreover, the re-
search demonstrates that non-convex representations improve accuracy
and broaden the applicability of control strategies. This is particularly
valuable for critical applications, where the computation of a safe flight
envelope is essential for secure aircraft maneuvering. Additionally, our
study reveals that, with carefully chosen parameters, Tube MPC outper-
forms standard constraint-tightened MPC.

7.6 Experimental Validation

In this section, we describe the experimental validation of our Tube-MPC
approach. In simulation, we demonstrated the full potential of our con-
trol scheme by implementing a Tube-MPC architecture that employs two
MPC layers together with polynomial zonotopes. However, when transi-
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tioning to an experimental setup on an embedded UAV platform, practi-
cal constraints—most notably limited computational power—necessitate
a simplified implementation.

To address these constraints, the experimental validation relies on the
use of zonotopes and constrained zonotopes, along with a linear repre-
sentation of the closed-loop system dynamics. Moreover, we replace the
ancillary MPC controller with a state-feedback law to further reduce the
computational load.

Additionally, the inner loop of the Tube-MPC does not include position
tracking, as the position is measured solely by GPS sensors. Due to the
inherent inaccuracy of GPS for exact positioning, this modification allows
us to focus on the control of other critical states while ensuring robust and
computationally efficient performance.

Overall, this experimental setup illustrates how the advanced control
concepts developed in simulation can be adapted to meet the practical lim-
itations of real-time, embedded UAV control.

7.6.1 System Overview

The experimental setup consists of a hexacopter built on a DJI F550 frame
with six DC brushless motors, as shown in Figure The primary flight
controller is a Pixhawk 4, equipped with an IMU and a GPS, which is con-
nected to a Raspberry Pi 5 via the RX interface. The Raspberry Pi is respon-
sible for gathering data from additional sensors, including a LiDAR and a
stereo camera. The LiDAR provides accurate distance measurements for
obstacle detection, while the stereo camera is used for depth perception
and visual data, aiding in more precise navigation. The Raspberry Pi pro-
cesses sensor data and computes the control strategy in real-time, lever-
aging the Tube-MPC approach. It then transmits command messages to
the Pixhawk 4 using the MAVLink protocol. The goal is to achieve fully
autonomous control, where the external computer only needs to send an
initial goal, after which the UAV navigates independently. However, dur-
ing the experiments, a master radio command is kept in the loop in case of
malfunctions or unexpected behavior. This allows for manual intervention
if necessary, providing an additional layer of security during real-world
testing.

The system operates with a sampling time of 0.2 seconds, and the real-
time data processing on the Raspberry Pi allows for rapid adjustments to
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the UAV’s trajectory. The UAV is powered by a 4-cell Li-ion battery (14.8v).
Table [7.3]gives more information about the setup.

Table 7.3: UAV Specifications

Parameter | Value
Type Hexarotor
Weight 3.37kg
Height 37.5cm
Wingspan | 55cm
Rotor radius | 2.2x 1.2 cm
KV 1000

7.6.2 System Identification

The system we aim to control is the closed-loop setup, where the Pixhawk
4 serves as the base controller to stabilize the UAV. Our goal is to enhance
the robustness of this setup using Tube-MPC. Real experimental data was
gathered by applying multiple-step inputs to the system. The system has
four control inputs: the desired speeds along the three axes of the NED
frame (which we associate with the xyz axes) and the yaw angle, mea-
sured relative to the z-axis (down axis). The outputs are the corresponding
speeds and yaw angle. Figure[7.7]shows a sample of the data gathered dur-
ing the step response experiments.

At first glance, linear dynamics predominantly drive the system’s be-
havior. While noise and wind disturbances affect the output responses, the
system follows the step inputs in a first-order fashion for the three speeds.
However, the yaw angle exhibits slight oscillations. These observations are
essential, as they will guide our control design, ensuring that the methods
can run efficiently on embedded hardware at high frequencies.

The gathered data was split into training and testing sets for the iden-
tification process. We used MATLAB’s System Identification Toolbox and
applied subspace methods to identify a linear model with four states. Dur-
ing the identification, we ensured that the outputs remained independent,
as intended by the base controller. Figure|7.8/shows the validation of the
identified model compared to the experimental data.
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Figure 7.7: Data for identification : UAV steps responses for four states :
velocities along x, y and z axis and the yaw angle.

Overall, the system’s dynamics are well represented. Some overshoots
are observed in the speed responses, and oscillations in the yaw response
were not fully captured. However, the control methods we will employ,
particularly Tube-MPC, are designed to handle disturbances inherently.
Therefore, we can consider these slight discrepancies between the model
and real-world experiments as additional disturbances that the control strat-
egy will compensate for.

7.6.3 Implementation of Tube MPC

In the practical implementation, the Tube MPC is designed with a linear
MPC for the nominal controller, using an augmented model obtained from
the system identification process. The model is augmented by incorporat-
ing the dynamics of the position states x, y, and z, achieved by adding three
integrators to the system. This augmentation simplifies reference tracking
for position inputs, allowing the user to directly set references for X,ef, Yrets
Zyes, and yaw .. The nominal control is expressed as:
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Figure 7.8: Validation - Model vs Data - Yellow lines are the input data
provided to the system, blue lines are the validation data used to measure
the identified system performances shown in orange lines.

N-1

minivmize Z (g(k) - gref(k))TQ(g(k) - gref(k))

k=1
+ (k) = e p (k) R(OW(K) — v, (k)
+ (EWN) = &, (N))'FEWN) — &..,(N)) (7.20)
subject to &(k + 1) = Ay &(k) + Bv(k),
Ek)e &, »k)eV,

where &, and v,,, are the state and input reference trajectories, respec-
tively. The matrices A;; and B; represent the linear dynamics of the aug-
mented model. Q, R, and F are weight matrices that adjust the closed-loop
behavior, while E and V are constraint sets that ensure feasibility. N de-
notes the receding horizon. This study utilizes the do-mpc library [130]
in conjunction with the IPOPT solver to address the MPC problem. We
expect the computational time to be less than half of the sampling time,
given that this will constitute the primary computational burden.

The ancillary controller, responsible for ensuring the real system re-
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mains close to the nominal trajectory, is implemented as a state feedback
controller. This controller operates based on the identified dynamics with-
out the augmented integrators because the position estimates from the real
system are subject to inaccuracies due to the reliance on GPS data. The an-
cillary controller receives the optimal nominal inputs from the linear MPC
and computes the actual control inputs for the system.

The state feedback controller calculates the real control inputs using
the following law:

u=v+K(x-¥&) (7.21)

where v* represents the optimal inputs from the nominal controller, and
&* represents the optimal velocities and yaw angle. The gain matrix K is
designed using the Linear Quadratic Regulator (LQR) method.

This architecture allows the nominal controller to focus on trajectory
optimization, while the ancillary controller ensures the real system re-
mains within the desired "tube” around the nominal trajectory. A linear
MPC simplifies the optimization problem, while the state feedback con-
troller compensates for the actual system dynamics and disturbances in
real time.

7.6.4 Constraint Sets

In our Tube MPC formulation, constraints play a crucial role in the control
strategy. These constraints are applied to the nominal model and account
for the disturbances that affect the real system, ensuring that the nominal
trajectory remains within a defined region. Specifically, we impose state
and input constraints on the nominal system:

Ek)eE, vk eV (7.22)

where £ C R" is the set of allowable states, and V C R’ represents the
set of allowable control inputs. These constraints ensure that the system
operates within physical and performance limits, such as actuator satura-
tion.

To account for disturbances, the constraints are tightened by incorpo-
rating a robust invariant set £ around the nominal trajectory. We could
rely on the same approach as in the previous section; however, since the

system is completely linear and the ancillary controller is implemented as
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a state-feedback, the constraint tightening can be determined by another
formula. Mathematically, we define the tightened constraints as:

E=X0L V=UOKL (7.23)

where © denotes Minkowski subtraction, and K is the state feedback gain.
The set £ represents the bounds on the error between the actual and nom-
inal trajectories, ensuring that the real system remains within the desired
bounds X C R”" despite disturbances, as well for the control input & C R”
and it is computed as shown in Section (7.4

7.7 Results

The results of the method were validated through a series of experiments.
For this purpose, reference steps were applied to the four outputs of the
SYStem: Xief, Vrefs Zrer» and yaw .. Each step change was introduced se-
quentially to test the controller’s ability to track setpoint changes in real
time, while compensating for external disturbances.

Figure [7.9|illustrates a MATLAB simulation of the system under the
Tube-MPC framework, showing the expected output of the system without
disturbances.

To assess consistency and robustness, the actual experiment was re-
peated four times under the same reference steps as in the simulations.
The tests were performed outdoors, where the UAV was subject to envi-
ronmental disturbances like wind.

Figure illustrates the UAV’s speed along the x-axis. Despite exter-
nal disturbances, the UAV consistently followed the path induced by the
nominal controller, demonstrating the efficacy of the ancillary feedback
controller in compensating for deviations from the nominal trajectory. The
Root Mean Squared Error (RMSE) between the nominal trajectories and
the system states is computed in Table The consistency across the
runs highlights the reliability of the proposed control scheme for UAV ap-
plications in dynamic environments. A larger error is observed in the yaw
angle, as discussed in the identification section.

Figure shows the evolution of the nominal states, the states, the
nominal inputs, and inputs in the first experiment, with the same refer-
ences as in simulations. The nominal speed generated by the MPC layer
is followed tightly by the ancillary, which aims to drive the system toward
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Figure 7.9: Simulation of the system without disturbances using the Tube-
MPC framework (MATLAB). States are shown in blue, and references are
in orange.

Table 7.4: RMSE values for different experiments

RMSE U, vy v, ()

Exp1 | 0.1267 | 0.1549 | 0.1078 | 7.5205
Exp 2 | 0.1583 | 0.1317 | 0.0970 | 6.0900
Exp 3 | 0.1334 | 0.1431 | 0.0991 | 6.3427
Exp4 | 0.1094 | 0.1307 | 0.1106 | 6.3947

the nominal behavior. The main difference appearing is the magnitude of
the states, which may come from identification issues, as well as the yaw
dynamics, which has been simplified to a one-order system. However, the
control can handle disturbances, both wind and dynamic uncertainties.

7.7.1 Experimental Validation

One of the key objectives of this work is to develop a control strategy that
is not only robust but also computationally efficient for real-time applica-
tion on embedded systems. To achieve this, the overall control structure
was designed to distribute the computational load across different com-
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ponents, leveraging their respective strengths. The control loop consists
of a fast low-level controller (in milliseconds), a state feedback computa-
tion (also in milliseconds), and alinear MPC with linear constraints. This
MPC is specifically tuned to be computationally light, typically completing
in less than 100 ms.

The average computation time for the entire control loop on the Rasp-
berry Pi 5 is 0.052 seconds, with an upper limit observed of 0.077 sec-
onds for a horizon of 10 steps. This respects the imposed sampling time
and leaves additional room for other computations, such as path plan-
ning or high-level decision-making. These results demonstrate that the
proposed controller architecture successfully achieves its goal of reducing
the computational burden, making it suitable for deployment on resource-
constrained platforms.

7.8 Conclusion

This work introduces a robust control approach for UAVs under distur-
bances by combining Tube-MPC and a zonotopic framework with reach-
ability analysis. The integration of zonotopes to compute robust invariant
sets ensures that the actual UAV trajectory remains close to the nominal
trajectory, despite disturbances. The real-time implementation of the con-
trol strategy was demonstrated on a UAV platform using the Pixhawk 4
and Raspberry Pi 5, validating the effectiveness of the method in an out-
door environment subject to external disturbances. The experiments show
that the system can achieve robust trajectory tracking, highlighting the
strength of the proposed approach in maintaining robust operation and
effective disturbance rejection.
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Figure 7.10: System speed along the x-axis during the four different exper-
iments.
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Figure 7.11: Data of the first experiment: nominal states are shown as dot-
ted blue lines, while the actual states are shown as solid blue lines. Nom-
inal inputs are represented by dotted red lines, and the actual inputs are
shown as solid red lines.
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Chapter 8

Real-Time Path Planning Using
Zonotopic Extensions to
Rapidly-Exploring Random
Trees

8.1 Introduction

While exploring UAV control, several fundamental questions remain unan-
swered: What about the environment in which the UAV operates? How
should we generate reference trajectories for the control scheme? And cru-
cially, how can we ensure that the planned trajectory accounts for obsta-
cles and environmental constraints?

Collision avoidance and path planning are critical capabilities for au-
tonomous robots operating in dynamic and unstructured environments.
Efficient navigation while avoiding both static and dynamic obstacles is
essential for applications ranging from service robotics to autonomous ve-
hicles and industrial automation. Over the years, numerous approaches
have been developed for collision avoidance, each with its own strengths
and limitations.

Traditional methods include heuristic-based approaches, such as rule-
based systems and navigation functions [[131},[132], and potential field meth
ods [133]. While computationally efficient, these methods often suffer
from limitations such as local minima issues and may fail in complex en-

125
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vironments.

Sampling-based approaches, including probabilistic roadmaps (PRM)
and rapidly exploring random trees (RRT), have revolutionized motion
planning by enabling robots to explore high-dimensional spaces efficiently
[134]. These methods are particularly well-suited for scenarios where a
complete map is unavailable or computational constraints prohibit exhaus-
tive searches.

RRTs, introduced by LaValle [134], incrementally build a tree rooted
at the start position, expanding towards random samples to explore the
space. Their simplicity and scalability have led to widespread adoption in
robotics. The RRT* variant [135], an extension of the original algorithm,
guarantees asymptotic optimality by rewiring the tree to optimize paths
during the sampling process. Beyond RRT*, several variants have been
proposed to enhance performance, including informed RRT* [136], which
biases sampling towards the goal to accelerate convergence, or batch pro-
cessing methods [137], which improve computational efficiency.

However, conventional RRT-based methods face significant challenges,
particularly in efficiently exploring high-dimensional state spaces and adapt-
ing to dynamic environments. Traditional RRT and its variants may suf-
fer from suboptimal exploration due to random sampling, leading to in-
creased computational burden and potential convergence issues, especially
when navigating non-convex and cluttered spaces. Furthermore, a com-
mon limitation among these approaches is their reliance on primitive ob-
stacle representations, such as bounding boxes or spheres, which may not
accurately capture the true geometry of obstacles in complex environments.

In this chapter, we address these challenges by leveraging zonotopes
for path planning and obstacle representation which provide a powerful
mathematical construct for representing regions in motion planning. De-
fined as affine transformations of hypercubes, zonotopes offer computa-
tionally efficient operations for collision checking, set containment, and
uncertainty representation. A major benefit of zonotopes is their low com-
putational complexity as dimensions increase [[138]], making them partic-
ularly powerful for high-dimensional spaces where other shape represen-
tations can become prohibitively complex. While their use in robotics has
been explored in the context of reachability analysis [139] and control syn-
thesis, their specific potential for sampling-based motion planning, partic-
ularly within RRT algorithms, remains underexplored. By leveraging the
algebraic properties of zonotopes, not only individual obstacles but also re-



8.2. RAPIDLY-EXPLORING RANDOM TREE ALGORITHM 127

gions of the state space can be precisely represented, enabling novel sam-
pling strategies that operate on regions instead of discrete points. Such
region-based sampling allows for more efficient exploration and facilitates
better integration with collision-checking procedures.

This chapter introduces a novel application of zonotopes in real-time
RRT* algorithms, addressing key limitations in existing methods. Specif-
ically, we propose a zonotopic representation of obstacles, enabling accu-
rate modeling of complex geometries and dynamic scenarios. Further-
more, we replace traditional point-based sampling with zonotopic region
sampling, leveraging the associated algebra for efficient collision checking
and path refinement. By integrating these innovations, our method aims
to achieve robust and computationally efficient motion planning for UAVs
in dynamic and cluttered environments.

8.2 Rapidly-Exploring Random Tree Algorithm

The Rapidly-Exploring Random Tree (RRT) algorithm, first introduced by
LaValle [134], is a sampling-based method for solving motion planning
problems. RRT incrementally builds a tree in the configuration space by
randomly sampling points and connecting them to the nearest node in the
tree, prioritizing rapid exploration of the space. While RRT is highly ef-
fective for finding feasible paths, it does not guarantee optimality, Fig[8.1]

RRT* [135], introduced by Karaman and Frazzoli, is an extension of
RRT that ensures asymptotic optimality, meaning that as the number of
samples increases, the solution converges to the optimal path. RRT* mod-
ifies the original algorithm by incorporating two key steps: rewiring and
local optimization, enabling the tree to improve its structure as new sam-
ples are added.

8.2.1 Algorithm Description

The RRT* algorithm operates iteratively by sampling points in the con-
figuration space, connecting them to the tree, and optimizing the tree’s
structure to reduce the cost of the solution. Its main steps are as follows:

1. Sampling: A random point is sampled in the configuration space.
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Figure 8.1: Illustration of the RRT* algorithm. At each iteration, the al-
gorithm samples a random point in the space and finds the closest node
in the tree. A collision check is performed between the new connection
(dotted line) and the obstacles. If a collision is detected, the sample is dis-
carded, and a new one is generated. Otherwise, a new point is created
using a step-size parameter and added to the tree. Finally, as shown in the
rightmost diagram, the tree can be rewired if a shorter path exists, improv-

ing overall path efficiency.
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2. Nearest Neighbor: The nearest node in the tree to the sampled
point is identified based on a distance metric.

3. Steering: A new node is created by moving from the nearest node
toward the sampled point, typically within a predefined step size.

4. Collision Checking: The connection between the nearest node and
the new node is checked for collision with obstacles. If a collision
occurs, the algorithm returns to the sampling phase.

5. Rewiring: The algorithm considers all nodes within a given radius
of the new node and rewires the tree if connecting through the new
node reduces the cost to reach those nodes.

The combination of these steps ensures both exploration and exploita-
tion of the configuration space, balancing feasibility and optimality.

8.2.2 Variants of RRT*

Several variants of the RRT* algorithm have been proposed to address its
computational challenges and improve its performance:

Informed RRT™ is a variant of the RRT* algorithm that enhances its
efficiency by focusing the sampling process on a subset of the search space
where the optimal path is more likely to be found. Introduced by Gam-
mell et al. [136]], this method significantly improves convergence towards
the optimal solution, especially in high-dimensional and constrained en-
vironments.

The key insight behind Informed RRT* is the use of an informed sam-
pling space that excludes regions that cannot improve the current solution.
Once an initial feasible path is found, Informed RRT* defines an ellipsoidal
sampling space centered on the start and goal locations, where the cost of
any new path is guaranteed to be better than the current solution.

Batch RRT* was proposed by Arslan and Tsiotras [137] and intro-
duces a batch-processing approach to reduce the computational overhead
of iterative rewiring in RRT*. Instead of processing samples one by one,
this variant collects multiple samples in a batch and performs rewiring col-
lectively. This allows the algorithm to globally optimize the tree structure
over multiple samples, rather than incrementally. The batch-based ap-
proach also facilitates parallel processing, which can significantly speed
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up computation. Batch RRT* is particularly advantageous in scenarios
where computational resources are constrained, and frequent tree updates
may not be feasible. By using a relaxed dynamic programming formula-
tion, Batch RRT* ensures that paths converge to the optimal solution more
efficiently compared to the standard RRT*.

Real-Time RRT* (RT-RRT*) was introduced to address the need for
real-time motion planning in dynamic and partially known environments,
such as those encountered in robotics and autonomous vehicles [140]. RT-
RRT* modifies the RRT* framework to operate within strict time con-
straints by maintaining a tree that adapts dynamically as new information
about the environment becomes available. Instead of aiming for global
optimality, RT-RRT* focuses on providing feasible, suboptimal solutions
within a limited time window, ensuring that the robot can continuously
operate without delays. The algorithm prioritizes computational efficiency
by limiting the extent of rewiring and tree exploration in each iteration. A
notable feature of RT-RRT™ is its use of a replanning mechanism, where
the algorithm updates the tree whenever new obstacles or constraints are
detected. This makes it particularly suitable for real-time applications where
the environment changes rapidly. While it sacrifices some degree of op-
timality compared to standard RRT*, it ensures consistent performance
under time-critical conditions, making it a practical choice for real-world
deployments.

8.2.3 Challenges in RRT* Methods

Despite its strengths, RRT* has limitations, particularly in handling com-
plex environments with obstacles. Most implementations lack a mathe-
matical representation for obstacles, relying on computationally expensive
collision-checking procedures or inaccurate representations. This work
addresses this limitation by leveraging zonotopes and polynomial zono-
topes to represent obstacles, enabling efficient and algebraic collision check-
ing.
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8.3 Zonotopes in Random sampling methods

8.3.1 Handling obstacles
Bounding box as zonotopes

Bounding boxes are often used to describe the minimal enclosing box around
an object in a given coordinate system. A bounding box is typically defined
by two points: the minimum corner (Xpin, Ymins Zmin) @nd the maximum
corner (Xpaxs Ymax» Zmax)> Which represent the extents of the box along each
axis.

To convert a 3D bounding box into a zonotope, we first need to compute
the center and extents of the bounding box. The center c of the bounding
box is the midpoint of the three corners:

Xmin + xmax Ymin + Ymax Zmin + Zmax)
Cc= , , , 8.1
( 2 2 2 (8.1)
and the extents along the x, y, and z axes are:
fx — Xmax — Xmin £ = Ymax — Vmin fz — Zmax — Zmin. (8.2)

2 R 2 ’ 2
The generator matrix G for the zonotope representation of the bound-
ing box is formed by the extents along each axis. This gives the following

generator matrix for a 3D bounding box:

tx

0 0
G=|0 ¢, o], (8.3)
0 ¢

0 ¢,
Ellipsoids to Zonotopes

An ellipsoid is a common geometric representation that can be converted
into a zonotope. It is mathematically described by a quadratic form:

&= {x ER"| (x—¢)'P(x—c) < 1}, (8.4)

where ¢ € R”" is the center, and P € R™" is a positive definite ma-
trix defining the shape and orientation. [141]] proposes an efficient over-
approximation method based on a desired number of generators. A key
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consideration is the trade-off between zonotopes and traditional models
like ellipsoids, particularly regarding modeling precision. Unlike ellip-
soids, which are restricted to representing elliptical shapes, zonotopes—being
convex polytopes—can approximate any convex object with arbitrary pre-
cision. Increasing the number of generators can reduce the approximation
error to a small €, making zonotopes highly adaptable to a wide range of
convex shapes encountered in real-world environments, where objects are
rarely perfectly ellipsoidal. For instance, a complex convex obstacle can be
closely matched by a zonotope with sufficient generators. In contrast, an
ellipsoid might overestimate or poorly fit the same shape, leading to larger
approximation errors. However, both zonotopes and ellipsoids introduce
errors for non-convex objects due to their convex nature. To address this,
non-convex objects can be decomposed into multiple overlapping convex
zonotopes, offering a piecewise approximation that is more precise than a
single ellipsoid, albeit at the cost of increased collision-checking compu-
tations. Alternatively, polynomial zonotopes could represent non-convex
shapes, but this approach incurs significant computational overhead due
to the nonlinear optimization required for collision detection.

Vertex Sets to Zonotopes

Another frequent scenario involves converting a set of vertices into a zono-
tope. Given a set of points {v;, U,, ..., U} C R", the convex hull of these
points can be enclosed by a zonotope. Tools such as the CORA toolbox
[100] provide functions to perform this operation efficiently. The key steps
involve determining the center as the mean of the vertices and construct-
ing the generators based on the relative positions of the vertices to the
center. This representation allows leveraging zonotope-based operations
while preserving the geometric structure of the original vertex set.

8.3.2 Sampling Zonotopes

In random sampling-based methods, such as those used in Rapidly ex-
ploring Random Tree (RRT) algorithms, the initial step involves sampling
the configuration space. Traditionally, this is achieved by defining the
boundaries of the workspace and uniformly sampling individual points
within this defined space. While effective, this method often fails to fully
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exploit the spatial information of the environment, especially in higher-
dimensional spaces. In some advanced approaches, sampling is biased
by using additional metrics or incorporating prior knowledge about the
workspace to guide exploration more effectively.

The use of zonotopes for sampling provides an alternative paradigm.
Instead of sampling discrete points, zonotope sampling involves selecting
entire regions of the configuration space in one step. This approach can
be particularly beneficial in dynamic or uncertain environments, where
representing regions rather than single points offers improved robustness
and computational efficiency.

For example, in a 2D environment, a sampled zonotope would include
a center, a defined number of generators, and associated generator mag-
nitudes. Similarly, in 3D spaces, a sampled zonotope would represent a
volumetric region that could adapt to the environment’s complexity. The
key steps for sampling zonotopes involve:

1. Center Sampling: The center of the zonotope is sampled using con-
ventional methods, such as uniform random sampling, guided sam-
pling, or biasing techniques.

2. Generator Configuration: The generators of the zonotope, which de-
fine its shape and extent, are then sampled. This includes selecting
the number of generators, their orientation, and their magnitude.

To ensure computational feasibility, constraints are often imposed on
the sampling process. For instance, the number of generators can be fixed
to match the dimensionality of the space. In a 3D workspace, a straight-
forward approach is to construct cubic-like zonotopes with diagonalized
generator matrices, such as:

g 0 0
G=|0 g O], (8.5)
0 0 g

where g;, g,, and g; are tunable parameters that determine the zonotope’s
size along each axis. These parameters can be chosen randomly or based
on predefined exploration strategies.

The advantage of zonotope sampling lies in its ability to explore larger
regions of the configuration space in fewer iterations. This can lead to im-
proved efficiency in tree expansion for RRT* algorithms, especially when
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dealing with high-dimensional or complex environments. However, se-
lecting the appropriate zonotope parameters is critical. Excessively large
zonotopes may lead to poor resolution in sampling, while overly small
zonotopes may revert the method to point-based sampling.

In practice, the choice of zonotope shapes and sizes can depend on
the specific application and the workspace’s geometric constraints. For
instance, in structured environments, elongated or directional zonotopes
may be more effective, whereas isotropic shapes like cubes may suffice
for unstructured, open spaces. Further research and experimentation are
needed to establish optimal zonotope sampling strategies for various sce-
narios.

8.3.3 The Nearest Neighbour

Selecting the nearest neighbor is a fundamental step in the RRT algorithm,
as it determines the node to which the sampled point (zonotope in our
case) will be connected. This requires defining a suitable metric for eval-
uating proximity.

Metrics for Distance Calculation

In classical approaches, the metric typically employed is the Euclidean dis-
tance between the sampled point and the nodes of the tree. This is straight-
forward and computationally efficient for point representations. However,
when working with sets such as zonotopes, the problem becomes more
complex.

For sets, the ideal metric would involve calculating the smallest dis-
tance between two sets, defined as:

d(Zy, Z;) = min{||z, — z,|| | 2, € 21,2, € Z,}. (8.6)

While this approach is theoretically optimal, finding the minimum dis-
tance between two zonotopes is computationally intensive. It involves
solving a constrained optimization problem, which is not suitable for real-
time applications like RRT.
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Approximating the Nearest Neighbour

To simplify the computation while maintaining practicality, we approxi-
mate the distance by comparing the centers of the zonotopes:

dapprox(zlazz) = ”Cl - CZH’ (87)

where ¢, and c, are the centers of the zonotopes Z; and Z,, respectively. If
all zonotopes have similar dimensions, the center-to-center distance closely
reflects the actual spatial relationship between the sets. By constraining
the number and size of the generators, the variability in zonotope dimen-
sions is minimized, further validating the use of this approximation.

Although this approximation is less precise than the set-based distance,
it significantly reduces computational overhead and aligns well with the
primary goal of efficient tree expansion.

8.3.4 Steering the Sampled Node

Once a node has been linked to the tree, the RRT algorithm typically cre-
ates a new node along the line segment between the sampled node and the
nearest tree node. The position of this new node is determined by a pre-
defined step size along this line. While this approach is straightforward,
it does not leverage system dynamics or the underlying structure of the
reachable space, which could result in inefficient exploration.

For the zonotopic approach, this corresponds to creating a line segment
between the centers of two zonotopes and defining a new center along
this line at a fixed step size. However, we propose enhancing this process
by incorporating reachability analysis to steer the new zonotopes within a
reachable region around the closest tree node.

In the context of the RRT algorithm, we replace the fixed step size with
the reachable set computed for a chosen time step. This ensures that each
node added to the tree is physically realizable by the system within the
specified time.

To reduce computational complexity, we steer the center of the sam-
pled zonotope into a reduced reachable set obtained using the Minkowski
difference.

The goal of this operation is to ensure that selecting any center into
the reduced set will ensure that the whole zonotope is contained in the
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initial reachable set. While constrained zonotopes are not closed under
the Minkowski difference, approximations can be computed [142,[100].

The new center is then selected as a point within the reduced reach-
able set, ensuring the resulting zonotope remains inside the full reachable
set. Moreover, we always like to have the steering point in the direction of
the sampled zonotope. This can be achieved by creating a line zonotope
between the tree node and the sampled node:

L= <C1, (Cz - cl)a []’ [])CZ (88)

where ¢, and c, are the centers of the tree node and sampled node, respec-
tively. By intersecting this line with the reduced reachable set, we generate
a constrained zonotope corresponding to a line from which the vertices can
be extracted to obtain the center of the steered zonotope, as illustrated in
Figure The corresponding corridor, free of obstacles, can be built as
well.

8.4 Algorithm Summary

This section provides a concise summary of the algorithm’s key steps as
well with Fig. [8.3]illustrating the tree build with zonotopes.

1. Initialization: Define the start point x;, goal point X,, zonotopic
obstacles O;, sampling region 8, and reachable set R. Augment ob-
stacles with the agent’s size and uncertainty using the Minkowski
sum:

AO0; =0, A (8.9)

2. Sampling: Instead of sampling individual points, generate zono-
topes within the defined sampling region S8, represented as:

Zsample = <Csample’ S>Z9 (810)
where ¢,y 1S the center.

3. Nearest Neighbor Selection: Identify the nearest tree node 2., s
to the sampled zonotope L, by approximating the center-to-center
distance:

dapprox = ”csample - Cnearest” (8-11)
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Sampled zonotope

Line zonotope -~

‘¥—)Steermg region for the new center

/

Closest node

Reduced Reachable set

Figure 8.2: Illustration of the steering method. A reduced reachable set
(light green) is attached to the center of the closest node in the tree, and a
line zonotope (black dotted line) is created between the closest node and
the sampled zonotope. This line intersects with the reduced reachable set,
which produces the red line, a constrained zonotope from which we sam-
ple a steered center.
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(b) Once a new node is added, the al-
gorithm start searching for a new one
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(d) At some point a rewiring operation
is applied to redefine the tree with ex-
isting node

Figure 8.3: Zonotopic variant of the RRT* variant. The main steps remain
similar to the standard RRT* algorithm, but zonotopes are used for rep-
resentation and collision checking. At each iteration, a random point is
sampled, and the nearest node in the tree is found. The new connection
is validated using zonotope-based collision checking. If a collision is de-
tected, the sample is discarded. Otherwise, a new point is generated using
a step-size parameter or the reachability analysis and added to the tree.
Finally, as shown in the rightmost diagram, the tree can be rewired if a

shorter path exists.
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4. Collision Checking: Use zonotopic algebra to verify CH(Z g pies Znearest)
does not collide with any augmented obstacle AQO;. If not feasible,
return to step 2.

5. Steering: Compute a new zonotope along the line segment between
Znearest aNd Zgmpre- Intersect the line segment with a reduced reach-
able set and select a point along this line:

Chew € Zline N (‘R © Gsample) (8-12)

6. Remaining steps in RRTs algorithm (rewiring, path construc-
tion, etc..)

8.4.1 Discussion on Convergence and Optimality of the
Modified RRT* Algorithm

In this section, we examine the convergence and optimality properties of
the modified RRT* algorithm. We compare these properties to those of the
standard RRT* algorithm and discuss their implications for path planning
in environments with geometric constraints and uncertainties.

Convergence Properties

In the standard RRT* algorithm, convergence is guaranteed because dense
sampling allows the tree to approximate any feasible path with sequences
of short line segments. In our modified RRT*, convergence is reinter-
preted in terms of finding a feasible corridor — a sequence of convex hulls
(derived from zonotopes) that are entirely obstacle-free.

Specifically, if a feasible corridor exists (i.e., there is a sequence of con-
vex hulls between zonotopes that avoids obstacles), the modified RRT*
will find it with probability approaching one as the number of samples in-
creases, provided that the sampling is sufficiently dense. When the genera-
tor matrix is chosen to be null, the zonotopes reduce to points, and the con-
vex hulls reduce to line segments, thereby recovering the standard RRT*
behavior. Thus, the modified RRT* generalizes the standard RRT™.

However, when the generator matrix G is non-null, the algorithm may
fail to find a corridor in environments with narrow passages that are smaller
than the size of the zonotopes or their convex hulls, even if a feasible path
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exists for a point robot. This is not a limitation in practice, as the zono-
topes are intended to represent the robot’s physical size or the required
safety margins. In such cases, the absence of a feasible corridor correctly
indicates that no safe path exists for the robot.

Thus, the modified RRT* retains a form of convergence: it finds a feasi-
ble corridor if one exists under the given zonotopic constraints, analogous
to the standard RRT* finding a feasible path when one exists.

Optimality Properties

In the standard RRT*, asymptotic optimality ensures that the algorithm

converges to the globally optimal path as the number of samples tends to

infinity. In the modified RRT*, the notion of optimality is more nuanced.
Key points include:

« The modified RRT* can be designed to find an “optimal corridor”
based on a cost function defined for sequences of convex hulls. How-
ever, this optimal corridor does not necessarily contain the globally
optimal path. In particular, the globally optimal path may lie out-
side the corridor if it traverses narrow passages that the convex hulls
cannot accommodate due to their predetermined size.

Therefore, while the modified RRT* can be tuned to find an optimal
corridor according to a specified cost, it does not guarantee convergence
to the globally optimal path. This distinction is crucial: in many applica-
tions, such as planning under uncertainty or with strict safety constraints,
the primary goal is to find a robust, safe corridor rather than the shortest
possible path.

Practical Implications and Applications

Despite the differences in optimality, the modified RRT* offers significant
advantages in practical scenarios:

+ Robust Planning: By planning with corridors, the algorithm inher-
ently accounts for uncertainties in state, control, or the environment,
ensuring that the entire corridor remains free of obstacles.
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« Safety Margins: The use of zonotopes allows the algorithm to model
the robot’s physical footprint or enforce required safety buffers, mak-
ing the approach particularly suitable for real-world applications where
collision avoidance is critical.

+ Generalization: Since setting G = 0 recovers the standard RRT*,
the modified RRT* provides a flexible framework that can be tuned
to balance robustness and performance based on specific application
requirements.

In scenarios where ensuring safety and robustness is more critical than
finding the globally optimal path, the modified RRT* serves as a practi-
cal and effective solution for autonomous navigation in cluttered environ-
ments.

8.5 Numerical results

We consider a two-dimensional environment where an agent starts at a
designated initial position, x; = [—3,0.5]7, and aims to reach a target goal
point, x, = [7, 2]". The environment contains two obstacles represented
as zonotopes that block the straight-line path between the start and goal
positions. The zonotopes for the obstacles are defined as:

(1 0
O, =(¢;,Gy)cz, € =11, 1]7, G, = ],

01
(05 0
0, =(¢;,Gy)cz, € =13, 3], G, = 0 0-5].

We define an additional zonotope to account for the agent’s physical
size and uncertainties in its displacement. The center of this zonotope is
determined dynamically by the algorithm, while the generator matrix is
predefined:

A=(c3,Gs)czn €3 =[0,0]", Gy=|""

0.1 0]
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The combined effects of the agent size and displacement uncertainties
are integrated into the algorithm through augmented obstacles, which are
computed as:

AOi == Oi @Jq, (8.13)

where @ denotes the Minkowski sum.
The sampling region for the path-planning algorithm is also defined as
a zonotope:

S = <c4’G4>CZ’ C4 = [0’ O]T’ G4 =

20
0 2|

Additionally, the agent’s reachable set at any given time is represented
by another zonotope:

R ={cs5,Gs)cz, ¢s=1[0,0]", Gs= 0 12

1.2 0]

The primary objective is to compute a feasible path from x; to x, that
avoids obstacles while respecting reachability constraints, vehicle dimen-
sions, displacement uncertainties, and zonotopic sampling considerations.

Figure illustrates the path generated by the algorithm at various
time instances as the agent navigates the environment. The resulting zono-
topic corridor provides a feasible region of states for further optimization
using approaches such as Model Predictive Control (MPC). The zonotopic
representation enables efficient collision checking and constraint handling.

The zonotopic framework can further enhance exploration by adjust-
ing the sampling region and reachable set parameters. Figures[8.6/and[8.7]
demonstrate the algorithm’s performance with increased values for these
parameters. Each parameter influences the algorithm differently. Choos-
ing a higher step size (or a larger reachable set) results in greater spac-
ing between nodes, potentially creating longer branches. Conversely, in-
creasing the sampled region makes each branch broader. Selecting opti-
mal parameters largely depends on the specific characteristics of the en-
vironment. The expanded sampling region and reachable set allow the
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(d) Tree after 10 seconds.

Figure 8.4: Illustration of the real-time Rapidly-Exploring Random Tree
(RRT*) algorithm with zonotopes. The starting point (green), goal point
(vellow), obstacles (red), agent (blue), and tree (gray) are shown. In (a)), the
tree begins to form, allowing initial movement along collision-free paths.
By (b), the tree expands significantly, guiding the agent closer to the goal.
In () and (d), the tree fully explores the environment, enabling the agent

to reach the goal without collision.
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algorithm to explore almost the entire environment, leaving only the ar-
eas contained within the augmented obstacles unexplored. Figure |8.5|il-
lustrates a denser environment, similar to a maze, where the algorithm
finds its way toward the final goal. In this specific example, a moving ob-
stacle is represented in purple. The real-time version of the RRT* [[140]]
algorithm is capable of handling such cases, where if the moving obsta-
cle enters into collision with the existing tree, the affected branches are
pruned and rewired if possible. Dense environments inherently increase
collision risks due to the proximity of obstacles, a problem that becomes
particularly pronounced in narrow passages. In the context of the zono-
topic RRT* algorithm, which samples entire regions (zonotopes) rather
than individual points, a significant challenge arises when these sampled
regions are too large to fit through tight spaces. If the sampled zonotope
exceeds the width of a narrow passage, it will intersect with obstacles, pre-
venting the algorithm from expanding the tree through that region and
tracking a feasible path. This limitation can be adjusted by setting the di-
mensions of the sampled region to be smaller or even set to zero (which
would return to the standard algorithm).

These simulations showcase the robustness of the proposed method
in generating collision-free paths in environments with obstacles. The re-
sults highlight how parameter tuning can balance exploration and colli-
sion avoidance, particularly in dense environments where careful adjust-
ments are essential for constructing non-colliding zonotopes.

Traditional RRT* variants typically rely on point-based sampling and
simplified obstacle representations (e.g., bounding boxes or spheres), which
can limit their efficiency and accuracy in complex, non-convex environ-
ments. In contrast, our method employs zonotopes to model both obsta-
cles and sampling regions, enabling more precise geometric representa-
tions and efficient collision checking through algebraic operations. For ex-
ample, in the dense, maze-like environment with a moving obstacle (Fig-
ure[8.5)), our algorithm successfully generated a collision-free path, demon-
strating its robustness in dynamic and cluttered scenarios. The use of
zonotopic corridors further provides a compact and feasible representa-
tion of the state space, which is advantageous for real-time applications
requiring rapid decision-making.

However, our approach is not without limitations. The computational
complexity of zonotopic operations may increase in high-dimensional spaces
or with a large number of generators, potentially offsetting some efficiency
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(a) Tree after 15 seconds.

(c) Tree slightly pruned after the moving obstacle
pass through a branch.

Figure 8.5: Illustration of the real-time Rapidly-Exploring Random Tree
(RRT™) algorithm with zonotopes in a dense environment. The starting
point (green), goal point (yellow), obstacles (red), agent (blue), tree (gray),
and moving obstacle (purple) are shown. In (a)), the tree is finding its way
in the maze. In (b)), the tree is almost reaching the goal point, but a moving
obstacle blocks the path and overlaps with a branch of the tree. By (c]), the
tree expands toward the goal and prunes itself where the moving obstacle
overlapped with the tree, allowing it to reach the goal safely.
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Figure 8.6: Tree after 10 seconds with medium exploration parameters.
The sampling region parameter increases from 0.1 to 0.4, and the reachable
set parameter rises from 1.2 to 2. This adjustment enhances the explored
space while avoiding collisions.

Figure 8.7: Tree after 10 seconds with large exploration parameters. The
sampling region parameter increases from 0.1 to 1, and the reachable set
parameter rises from 1.2 to 4. This adjustment significantly enhances the
explored space while avoiding collisions.
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gains compared to simpler methods. Additionally, the approximation used
in nearest neighbor selection, based on center-to-center distances, may
occasionally lead to suboptimal tree expansions, as it does not fully cap-
ture the true proximity between zonotopes. Importantly, the variants of
RRT*—including ours—are not mutually exclusive; rather, some can be
combined together to achieve synergistic improvements.

8.6 Experimental Validation

The proposed algorithm is rigorously validated through an experimental
setup designed to assess its performance in a controlled indoor environ-
ment. The chosen platform for these experiments is the Crazyfly 2.1 drone,
depicted in Figure This drone operates within a dedicated indoor fa-
cility, as shown in Figure which is equipped with a high-precision
camera detection system for accurate position feedback. A central control
computer manages the experimental process, executing the path planning
algorithm and transmitting real-time commands directly to the Crazyfly
drone. To facilitate clear visualization and analysis of the algorithm’s be-
havior, the experimentation was conducted using a series of static obsta-
cles, configured to form a two-dimensional maze.

Figure 8.8: Drone Crazyfly 2.1 used for experimental validation.

Several key factors were considered and controlled during the exper-
imentation to ensure a consistent and representative validation. Firstly,
the physical dimensions of the Crazyfly drone were bounded by a box of
12 cm X 12 cm X 10 cm. Secondly, the camera-based position feedback
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i

Figure 8.9: Indoor operation room setup, featuring an external computer
and camera system for precise position feedback.

system exhibited high precision, with an estimated upper bound for po-
sitional uncertainty set at +5 cm. Furthermore, the sampling parameter
for the environment exploration was set to 0.05 s, corresponding to sam-
pled squares with side lengths of 0.1 m. Finally, the drone’s control loop
operated with a sampling time of 0.1 seconds, ensuring timely command
execution.

Figure[8.10illustrates the drone’s successful navigation within the small
maze, effectively identifying a collision-free path to reach the designated
goal point while actively avoiding obstacles. The visualization further demon-
strates that the underlying tree structure, generated by the algorithm, ef-
fectively captures the available free space for the drone’s movement, high-
lighting the efficacy of the proposed path planning approach.

8.7 Conclusion

This chapter proposes extending the Rapidly-Exploring Random Tree (RRT)
algorithm by incorporating a zonotopic framework to enhance path plan-
ning in complex environments. By leveraging the mathematical proper-
ties of zonotopes and constrained zonotopes, we demonstrated how this
approach could be incorporated into RRT algorithm and can effectively
navigate non-convex spaces.

Using zonotopic sampling regions allows for greater exploration of the
search space, enabling the generation of large corridors even in crowded
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Figure 8.10: Result of the experimental validation: The Crazyfly drone
successfully navigates the 2D maze, avoiding obstacles and reaching the
goal. The starting point (green), goal point (yellow), obstacles (red), agent
trajectory (blue), the node to node trajectory reference provided to the
crazy fly (cyan) and the zonotopic tree (gray) are shown.

environments with obstacles. Simulations illustrated the versatility of the
proposed method, showing that with appropriate parameter adjustments,
the algorithm can balance exploration and constraint satisfaction. Fur-
thermore, the generated zonotopic corridors provide a feasible and com-
pact representation of the state space for integration with optimization-
based controllers such as Model Predictive Control.
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Chapter 9

Partitioning and Distributed
Tube-MPC for UAV Swarms

9.1 Introduction

Thus far, our research has concentrated on controlling a single UAV. How-
ever, as robotic systems evolve and their applications expand—ranging
from disaster response to planetary exploration—swarms of robots are in-
creasingly integral to these processes. This fundamental shift necessitates
scalable methods to address the inherent challenges of swarm robotics.
Controlling a large swarm of UAVs remains a formidable task due to the
high dimensionality of the problem and the demand for real-time compu-
tation [143]. Many different approaches have been used to address these
challenges, often in a multi-layered [144]] and application-oriented man-
ner.

One of the main features of these swarm applications is formation con-
trol, a type of multi-agent control strategy that involves coordinating the
movements of a group of agents to maintain a specific geometric shape
or formation while performing a task [145]. A common consensus-based
approach for maintaining formation control involves the exchange of po-
sitional information among agents [146]]. Alongside this, collision avoid-
ance [147] is a critical consideration to ensure the safety of each agent
within the swarm. Formation control strategies can be broadly classified
based on their underlying principles. These include force field methods,
where agents interact based on repulsive fields to achieve emergent for-
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mations [148]]; model predictive control (MPC), which allows for defin-
ing hierarchical formations and optimizing trajectories [[149]; and leader-
follower methods, which simplify the control problem by designating a
leader for the rest of the agents [150]. While leader-follower approaches
reduce complexity, they may introduce issues such as single-point failures
and limited formation flexibility. Other approaches to formation control
encompass behavior-based methods and virtual structure methods.

As the size of the UAV formation grows, so does the complexity of the
control problem. This escalating complexity renders a centralized control
approach computationally intensive for each agent to solve independently,
making real-time implementation impractical or even infeasible for real-
world deployment in large swarms. To address this critical hurdle, par-
ticularly in the context of large-scale formations, this chapter proposes a
partitioning method rooted in graph theory. This approach divides the
swarm into smaller, more manageable subgroups, thereby significantly re-
ducing the dimensionality of the formation control problem for each sub-
set of agents. Similar partitioning strategies have been explored for various
applications, such as regrouping wind turbines based on wind conditions
to enhance efficiency in wind farms [151]], or event-triggered partitioning
for non-centralized MPC strategies [152], 153]].

The focus of this chapter is to develop a robust solution for forma-
tion control in UAV swarms. Our proposed methodology involves parti-
tioning the swarm into smaller subgroups, each governed by a distributed
Tube Model Predictive Control (Tube-MPC) strategy. This approach is
augmented with a communication network between partitions, ensuring
the exchange of critical information between subgroups. This strategy en-
ables each subgroup to maintain its formation while coordinating with
others, thereby ensuring cohesive swarm behavior.

9.2 Partitioning the swarm

When designing control strategies for multi-agent systems, one quickly re-
alizes that the number of variables involved can become very large, lead-
ing to significant optimization problems. These large-scale problems are
generally unsuitable for real-time applications as they require fast com-
putation. A partitioning approach allows us to tackle the overall control
problem in a more efficient manner as illustrated in Fig. |9.1|and Fig.
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9.2.1 Graph Theory

We begin by reviewing some concepts of graph theory [154]]. A graph G is
a mathematical structure consisting of a set of nodes # and a set of edges
& that connect them. Formally, &€ C F X &, where an edge (i,j) € &
indicates that node i receives information from node j.

In our problem, we consider a set of indices X = {1, ..., m}, represent-
ing the m € Z; possible partitions to which each agent can belong. We
define the partitioning ? = {#! : | € X}, each partition F' forms a sub-
graph where the nodes within the same partition communicate directly
with each other. The partitioning is generated such that each node be-
longs to exactly one partition, i.e., | J, e T '= # and N, v I = ¢, there-
fore there is no overlapping among the resultant subsystems.

To specify whether a node i € F belongs to a partition ,1 € X, we
define the function 6§ : F X F! — {0, 1} as follows:

1, ifi e F!

- 0, otherwise. ©.1

O
This function will be useful in defining the partitioning algorithm in the
next section.

The graph G possesses a few characteristics that define it and will help
decide the partitioning. Consider that each node i has a position in space
p; € R™*. A distance function is built to evaluate the distances between
the nodes in the graph asdp : F x ¥ — R and the resulting application
of this function to all the nodes is contained in a distance matrix DP, where
each element dp;; = dp(i, j) and defined as:

dp;; = |lpi — pjll (9.2)

||-||, denotes the Euclidean norm (2-norm). Let us define a second function
dl . ¥ xF — R that represents the distribution of the agents respective
to a center, a chosen parameter such as the central position of the swarm.
The application of this function to all the nodes yields a distance matrix
DL where each element dl;; = dI(i, j):

dlyj = |lllpi — ¢ll. — [Ip; — ¢ll2l2 9:3)
The number of nodes in a partition as na : § — Z;, defined by:
na; =Y, & (9.4)

ieF
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(a) Original swarm with fifteen agents, each agent is a node of the graph.

(b) The partition algorithm regroups the agents considering the optimal cost.

Figure 9.1: Algorithm partitioning and communication network (Part I)
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- N

—

(a) Each partition is a complete graph and has a distributed controller.

(b) A communication graph between partitions is established.

Figure 9.2: Algorithm partitioning and communication network (Part IT)
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Avoiding large disparities in the number of nodes in a partition will be
useful.

9.2.2 Partitioning problem

Now consider the graph G and define its partitioning through the following
optimization problem:

rr;;lngwekfk(aio (9.52)
dioy=1, VieX (9.5b)
ieF
> 6=1 ViesF (9.5¢)
lex

In (9.5)), the variable § enables the creation of different subsystems. The
objective function is a weighted sum of several components, which are
defined below. The weights we, and functions f, are designed to reflect
the desired properties of the partitions, such as minimizing the distance
between agents, their distribution, and the number of agents in each par-
tition. Constraint ensures that each partition is non-empty, while
constraint guarantees that each node is assigned to exactly one par-
tition, with no overlapping between partitions.

First, the agents that are close to each other can be grouped into the
same partition:

fr=2.>>dp;8ub;. (9.6)

leX ieF jeF

Second, a layered partition can be created by grouping agents at the same
distance of a chosen center:

f2=2000 > dl;6,8;. (9.7)

leX ie¥ jeF

Third, it is preferable if the agents equidistribute in the several partitions:

m

fs=20 25 1228u= 2 8l (9.8)
=11

*=l+1 ieF JEF
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|.| denotes the absolute value. The optimization problem in is nonlin-
ear due to quadratic terms in the first two components of the cost functions
and absolute values in the third component. By introducing new binary
variables and constraints, we can transform the nonlinear problem into a
linear one, which can be solved more efficiently [155]. To this end, let us

introduce a new binary variable 6;;; = 6;6;;, so that:

fi= Z Z Z dijaijl (9.9)

leX ieF jeF
—6,+6;;<0, Vi,jeF,VieX (9.10)
-0, +6;; <0, Vi,jeF VleX (9.11)
Su+6;—6;;<1, Vi,jeF,Vie X. (9.12)

The expression of f, has been linearized by introducing the new variables
and additional constraints, ensuring that the equality between the vari-
ables holds in the binary case (this transformation comes at the cost of
introducing additional variables and constraints). The same strategy can
be applied to linearize the second component of the cost function, f,.

Furthermore, introducing a slack variable can transform a problem
containing absolute values into a linear problem [156]. In this case, the
slack variable, denoted as p;;., represents the absolute difference between
two sums of decision variables, §; and § ;.. The slack variable can take any
value, except that when it is positive, it must not exceed the actual differ-
ence, and when it is negative, it must not fall below the negative value of
the difference. This is enforced by the following constraints:

m-1 m
fi= Z P (9.13)
1=1 I=l+1
251'1—25]1*3;011*, 1<l<m-1 (9.14)
ieF jeF
S =D S = —pyp, 1<I<m—1. (9.15)
ieF JEF

9.2.3 Weighting

The weights assigned to each term in an optimization problem play a cru-
cial role in determining the optimal solution. In this section, we provide
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some guidance on how to choose the tuning parameters.
Firstly, we normalize the different costs by adjusting the weights. For
the first component, we set the weight as

Zief Zjesr dpij

we, (9.16)

This normalization ensures that the first component is adjusted with re-
spect to the distances between the agents, and the same configuration of
agents results in the same value for the first component, regardless of the
unit length chosen.

Similarly, we normalize the second component f, by setting the weight

as
a

2
zie? Zjef dlij

Additionally, we tune the third term by dividing it by the total number of
nodes in the graph. It is important to note that our goal is to partition the
swarm to avoid excessive computational effort for the controller of each
partition. Therefore, the third component must be highly weighted to pre-
vent inefficient partitioning.

The choice of the weights «a;, a,, and «; depends on the specific prob-
lem and the desired trade-off between the different components of the cost
function. A sensitivity analysis can be performed to study the effect of the
weights on the optimal solution and to choose appropriate values.

(9.17)

we2 =

9.2.4 Partitioning results

We apply the partitioning algorithm to a group of 12 agents that must be
divided into four partitions. The results are presented in Fig. for var-
ious values of «,, a,, and ;. In particular, we focus on the impact of the
third component of the cost function, which significantly affects the parti-
tioning results. By adjusting the weight of this component, we can create
circular partitions. The center, represented by a cross in the figure, can
be chosen arbitrarily; here, it has been placed in the middle of the swarm.
This flexibility allows us to adapt the partitioning strategy to different sce-
narios and requirements.
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(@) ¢y =100, o, = 1 and a3 =
1. The partitioning focuses on
regrouping the agents close to
each other.

() a; =1, o, = 100 and a4
= 1. The partitioning focuses
on regrouping agents that are at
the same distance with respect
to the cross + point.

(©)a; =1,a, =1 and a3 = 100.
The partitioning focuses on bal-
ancing the number of agents in
each group.

Figure 9.3: Partitioning example of a group with 12 agents into four parti-
tions
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9.2.5 Number of Partitions

One fundamental parameter of the algorithm is the number of partitions to
choose. This number can be easily bounded by an upper and lower limit.
First, it is clear that the maximum number of partitions is equal to the
number of agents in the swarm, as this would correspond to each agent
being alone in its partition. Adding more partitions would only create
empty partitions, as no overlapping is allowed in the optimization prob-
lem. A lower bound for this parameter is determined by the computa-
tional capabilities of the agents in the swarm. Initially, agents are grouped
into smaller clusters since they have finite resources and cannot commu-
nicate with or consider the entire network in their computations and con-
trol scheme. By defining a maximum number of agents that can be han-
dled within a single system, we can effectively determine the minimum
required number of partitions. This minimum is given by the total num-
ber of agents divided by the maximum number of agents that a single agent
can manage.

Figures and illustrate the results of partitioning with differ-
ent numbers of partitions. When too many partitions are chosen, compro-
mises must be made, leading to partitions that appear unnecessary, such
as the pink partition in Figure

9.2.6 Time-varying partitioning

Time-varying partitioning with event triggering is an effective way to adapt
the partition of a group of agents in response to changing conditions or
requirements. For instance, if a new formation is required or a higher
command instructs the agents to go around an object, the partitioning al-
gorithm would be re-executed to generate a new partition that satisfies
the new requirements. This time-varying partitioning strategy enables the
agents to quickly and efficiently adapt to changing circumstances, improv-
ing the overall performance and flexibility of the system.

9.3 Communication between the partition

The partitioning strategy aims to build efficient distributed controllers for
each subgroup. However, it is crucial to maintain information sharing be-
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(a) Partionning into 5 partitions.

(b) Partionning into 6 partitions.
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tween partitions to ensure overall swarm coherence and coordination. In
this section, we present an approach to establishing a partition commu-
nication network that optimizes information flow while maintaining con-
nectivity across the entire swarm.

9.3.1 Graph Representation of Partition Communica-
tion

Consider a graph G = (¥, &), where F is the set of m nodes representing

partitions, and £ is the set of edges representing communication links be-

tween partitions. The adjacency matrix A; € {0, 1}"™ defines the graph
structure, with elements a;; such that

C_fitapee
Y lo  otherwise.

We define the graph to be undirected, ensuring a;; = a;; for all i,j €
{1, ..., m}. The adjacency matrix takes the form:

0 ap - ap
0 .-
A= T B (9.18)
Ay Ay o 0

To model the practical constraints of the communication network, we in-
troduce a distance function d, : ¥ x ¥ — R;. This function represents
the minimum distance between any two agents from different partitions,
ie.,

d,(i,j) = min dp(u,v), (9.19)
uel,vel*

where | and I* are two different partitions, and dp(u, v) is the Euclidean
distance between agents u and v.

9.3.2 The optimization problem

Our goal is to find the optimal communication network that balances a
distance cost. We formulate this problem as the following binary integer
programming problem:
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minz Z a;;d,(, J) (9.20a)

%=1 j=i+l

subject to i a;>1, Vie {1,...,m} (9.20b)
j=1
a; =a, Vi,j € {1,...,m} (9.20¢)
a; =0, Vie{l,.., m} (9.20d)
i(AZ)U >1, Vi,j€{l,...,m}i#]j (9.20e)
k=1
a; €{0,1}, Vi,j €{l,..,m}. (9.20f)

Constraint imposes that all partitions must have at least one
active communication with any other partition in the network to avoid
partition isolation. Constraint imposes that a path always exists
between two partitions in the network so that no sub-group of partition is
isolated from the rest of the network [157]].

9.3.3 Results

Using the third case generated by the partitioning algorithm in Fig
the communication network between the partitions is built as shown in
Fig We clearly see that the constraints are respected: the closest dis-
tances between partitions with respect to agent positions are well applied
through the d,(i, j) function. Moreover, every partition is linked to the
network, allowing access to all other partitions.

9.4 Distributed Tube Model Predictive Con-
trol

Distributed Tube Model Predictive Control extends the principles of Tube-
MPC to large-scale systems composed of interconnected subsystems. This
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+

Figure 9.5: Communication network built between partition. Red lines
represent the communication path.

approach is particularly useful for complex systems where centralized con-
trol might be impractical due to computational limitations and/or commu-
nication constraints.

The overall system is decomposed into multiple subsystems, each with
its own local controller. These local controllers cooperate to achieve global
control objectives while respecting individual constraints. The large-scale
system is divided into N, subsystems such that i € {1,..., N}, each de-
scribed by

x;(k +1) = fi(x;(k), w;(k), w;(k)), (9.21)

where x;, u;, and w; are the state, input, and disturbance vectors of sub-
system i, respectively.

Each subsystem implements its own Tube MPC, maintaining a local
invariant set for its error system. This localized approach allows for robust
control at the subsystem level, with the error system constrained within a
local invariant set £, i.e.,

ek+1)=x;(k+1)—-&k+1) € L, (9.22)

where & represents the nominal state of subsystem i. The interconnected
nature of the subsystems necessitates the consideration of coupling con-
straints. These constraints, expressed as g;;(X;,X;) < 0, are incorporated
into each local MPC problem, ensuring that the actions of one subsystem
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do not adversely affect its neighbors. The process involves iterative com-
munication and optimization among local controllers to solve the global
control problem.

9.4.1 Application to a UAV partition

Consider n, UAV agents equipped with an inner controller for which the
whole dynamics are given by

pi=pi+wWp; (9.23)
Vi - lll- + WU,i’ (9.24)

where p; describes the three-dimensional position of agent i along three
reference axes, v; represents the 3 velocities along that same axes, both of
them are contained in a vector x; = [p;,v;] € R®1. The dynamics are
driven by the inputs u;. The system can be under disturbances that are
applied to either positions w,,; and velocities w,, ;. The nominal dynamics
of the system are considered disturbance-free, i.e.,

Ep,i = gv,i (9-25)

gU,l' = 1)l-, (9.26)

with &, ; the nominal position of the agent, unaffected by the disturbances,
g,; the nominal velocities and v; the nominal inputs. The whole states
vectoris & = [§,;,&,;] € R

The formation and a main reference are considered known a priori,
leading to the direct computation of references ,; for each agent in the
swarm.

In each partition, a distributed Tube MPC is used to control the agents.
The first layer of the control methods for each agent, the nominal con-
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troller, is defined as a model predictive control:
Np—1

min ) [(E(k) — & (k) (DQ; n(&i(k) — & (k)
k=1

LY;

+ (vl(k) - ue)TRi,n(vi(k) - ue)

+ Z(gz(k) - ge,j(k) + dij)TPij,n(gi(k) - ge,j(k) +d;;)]

j=1
+ (&IN) — &, (N)H, ,(§(N) — & ,(N)) (9.27a)
&k +1) = £i(§(k), »(k), &0)=2§& (9.27b)
(k) € &, (9.27¢)
v,(k) € V; (9.27d)
g(&.&)<0. (9.27¢)

The parameter N, defines the prediction horizon, m; defines the number
of agents in the actual partitions, and matrices Q; ,,R; ,,,P;; ,,H; ,, are the
weight matrices of the optimization problem. Besides &, is the initial con-
ditions of the problem, §,; and , ; are the tracking references of both agent
iand j and u, the input setpoint. Eventually, d;; is the distance to be main-
tained between two agents in each dimensions, Z; and V; are constrained
sets applied to the nominal states and inputs, respectively.

In this cost function, the first term penalizes the deviation of the nom-
inal state (k) from the reference trajectory & ;. It aims to keep the UAV
as close as possible to its desired path. The second term penalizes the de-
viation of the nominal input v;(k) from a setpoint u,. It encourages the
controller to use inputs close to a desired equilibrium or operating point.
The third term considers the relative positions of UAV i with respect to all
other UAVs j in the same partition (total of m; UAVs). It helps maintain de-
sired formations by penalizing deviations from planned relative positions.

The cost of those terms can be tuned through the weight matrices,
which create behavior such as, for instance, a leader-follower strategy, where
the leader receives more weight in the scheme. Eventually, a terminal cost
is used, penalizing the state error at the end of the prediction horizon,
which helps ensure stability and performance over a longer time scale.

Constraint enforces the nominal system dynamics,i.e., it en-
sures that the predicted states follow the system model f;, starting from
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the initial condition &,. The second constraint and the third con-
straint ensure that the nominal states and inputs remain within the
feasible set. This set might represent the physical limitations of the UAV,
desired operating regions, and obstacle avoidance mechanism. A more
detailed approach for computing those sets is shown in [158, 159]]. Even-
tually, a collision avoidance constraint is ensured in the nominal controller
and embedded in the convex set E,.

Once the problem is solved, an optimal trajectory for both states & and
inputs v; is available and can be fed to a second layer, the ancillary con-
troller. We define it as a model predictive controller:

min 3 [(x,0) — £ (DQy0 (k) — EK))
k=1

U;

+ (i (k) — v} (k)R 4 (u;(k) — v} (k))

+ Z(Xi(k) - ’g’j(k) + dij)TPi,j,a(Xi(k) - ’g’j(k) +d;;]

J=1

+ (x,(N) — §/(N)) (NH, o (x,(N) — §(N)) (9.28a)

x(k +1) = fi(x,(k), w;(k),0), x(0) = x,, (9.28b)

m, defines the number of agents in the actual partition and matrices Q; ,,
R, P ., H; ; are the weight matrices of the optimization problem. More-
over, ¢, is the initial condition of the problem.

The feasibility of the Tube-MPC scheme can be analyzed: Initial fea-
sibility can be assumed if the constraints are satisfied at the start of the
optimization process and a feasible solution exists for the first time step.

The terminal cost, H; ,,, is chosen by solving an unconstrained Linear
Quadratic Regulator (LQR) for the nominal system from step N to infinity.
This approach ensures that the terminal cost reflects the optimal behavior
of the system beyond the prediction horizon, driving the system toward a
stable state [[160].

The terminal set Z is computed through a reachability analysis, which
involves calculating the set of all possible trajectories that can lead the sys-
tem into the desired terminal region. By ensuring that the predicted state
ends in this terminal set, we guarantee that the system will remain feasible
for all subsequent time steps.
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Finally, the ancillary controller operates without explicit constraints.
As it aims to correct deviations from the nominal trajectory provided by
the first MPC layer, it will always find a feasible solution, as no constraints
are imposed. This inherent flexibility ensures that the ancillary controller
will not violate any state or input bounds, and thus, the overall Tube-MPC
scheme remains feasible at all times.

9.4.2 Feasibility

In a multi-agent system, individual feasibility does not guarantee collec-
tive feasibility because agents’ trajectories are interdependent; a change
in one trajectory may compromise another agent’s constraints. In a dis-
tributed Tube-MPC framework, the use of tubes as buffers helps accom-
modate slight deviations and enhances collision avoidance robustness.

Feasibility is maintained if all agents begin within their respective fea-
sible sets and the overall configuration satisfies the collision avoidance
constraints. Under these conditions, the framework can sustain feasibility
over time. However, if agents are initialized too closely or uncertainties
exceed expected bounds, the tubes may not ensure sufficient separation,
risking collisions. Moreover, in highly dynamic environments, communi-
cation delays or errors in trajectory sharing may further undermine con-
straint satisfaction.

The study of such feasibility and its guarantee remains one of the chal-
lenges that should be further investigated.

9.4.3 Application to one partition

To evaluate the effectiveness of our proposed distributed Tube-MPC ap-
proach, we conducted a series of simulations involving a group of three
agents located in a single partition. The simulations explore various sce-
narios, each highlighting different aspects of the control strategy. The re-
sults are presented in five cases where 3 agents start in line and must form
a triangular formation.

In the first scenario, Fig. we observe the behavior of agents without
consideration for other agents in the partition. The results show that each
agent moved directly towards its reference point, following a straight-line
trajectory. This case serves as a baseline, demonstrating the default behav-
ior of agents when formation control is not weighted in the problem.
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e I

Figure 9.6: First case: matrices P are null. The three agents rush to their
reference point.

The second scenario, Fig. introduces a slight weighting for for-
mation control. The results indicate that the agents no longer follow the
straight-line trajectories observed in case 1. This adaptation demonstrates
the initial impact of formation control as agents begin to consider their
positions relative to other swarm members while still prioritizing their in-
dividual reference points.

In the third scenario, Fig the weighting for formation control is
significantly increased. The results show a marked change in agent be-
havior compared to the previous cases. Agents quickly form the desired
pattern before collectively moving towards their reference points. This be-
havior highlights the effectiveness of our approach in prioritizing swarm
cohesion when formation parameters are given higher importance.

The fourth scenario, Fig. explores leader-follower dynamics by as-
signing different weights to different agents. One agent is given a high
weight, effectively designating it as the leader, while others are assigned
lower weights, making them followers. The results demonstrate this hier-
archy: The leader agent moves directly towards its reference point, similar
to the behavior observed in Case 1. Follower agents prioritize maintaining
formation with the leader, adjusting their trajectories accordingly. This
case showcases the flexibility of our approach in implementing various
swarm behaviors through weight adjustments.
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Figure 9.7: Second case: the agents take account of the relative motion in
their path to the reference endpoints.

0.8 -

Figure 9.8: Third case: the three agents create a pattern before moving
towards the references.
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e I

Figure 9.9: Fourth case: an agent is a leader (blue) and reaches its refer-
ence without looking at the formation, while followers (red and black) try
to manage the formation before going towards their reference endpoints.

In the final scenario, Fig. the robustness of our control strategy
is tested by introducing velocity uncertainties of 0.2 m/s in every direc-
tion while maintaining equal, low formation weights for all agents. The
results demonstrate that the agents successfully maintain their formation
despite the introduced uncertainties. The overall swarm behavior remains
stable, with agents effectively compensating for the velocity disturbances.
This case validates the robustness of our distributed Tube-MPC approach
in handling real-world uncertainties while maintaining desired swarm be-
havior.

Our results demonstrate the versatility and effectiveness of the pro-
posed distributed Tube-MPC approach for UAV swarm control. The method
allows for flexible control of swarm behavior by adjusting formation weights.
It successfully implements various swarm configurations, from indepen-
dent agent behavior to tight formations. The approach can create leader-
follower dynamics within the swarm by assigning different weights to agents.
Most importantly, the control strategy shows robust performance despite
uncertainties, maintaining stable swarm behavior under realistic condi-
tions.
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Figure 9.10: Fith case: velocity uncertainties of 0.2 m/s are introduced.

9.5 Simulation results

Consider a swarm of twelve UAVs that have just taken off from the ground.
Initially, they were aligned in a grid formation. They have to obey a spe-
cific formation given by a higher architecture level, Fig. and to move
towards the y-axis direction to clear the take-off platform.

To achieve this objective, the partition and network communication is
established for the desired reference, Fig. [9.12} then, the distributed Tube-
MPC algorithm takes over to guide the swarm into the desired formation,

Fig.

Notice that the partitions are assigned to the swarm at the initial time.
Specifically, from the grid-like formation, we assign a partition number to
each UAV in an ordered manner. Then, the swarm moves to reach the for-
mation and advances towards the y-axis direction. The collision avoidance
mechanism is also employed, and we can see how each trajectory avoids
colliding with others. The results demonstrate the ability to handle larger
swarms of UAVs effectively.
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(b) Reference formation to reach.

Figure 9.11: Starting and reference formation
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Figure 9.12: Resulting partitioning for the 3D formation provided. Each
color represents one partition. The cyan lines represent the communica-
tion link between the partitions.

Figure 9.13: Trajectories of the UAVs swarm under the specified starting
position and the desired formation. The formation is set to move 15 m
along the y-axis.
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9.6 Conclusion

This chapter presents a distributed control strategy for managing large
UAV swarms by partitioning the collective into smaller, more manageable
subgroups. The core contribution is a framework that leverages a graph-
theory-based partitioning algorithm, alongside dedicated communication
protocols to ensure robust control. By structuring the swarm into these
independent yet coordinated units, we transform an otherwise intractable
large-scale control problem into a set of localized, solvable ones. Simula-
tion studies demonstrate the effectiveness of this approach in maintaining
formation control. The key outcome is the ability to impose a structured
optimization problem to redefine a large swarm into a practical and man-
ageable groups.

Future work will focus on extending this partitioning concept to han-
dle more complex, multi-layered command scenarios. The logical next
step is to validate the proposed subgroup management and control strate-
gies through real-life hardware experiments.
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Chapter 10

Conclusion and Perspectives

This thesis has navigated the complex domain of autonomous UAV con-
trol, from low-level stabilization to high-level multi-agent planning. We
have argued that the integration set-based methods, particularly zonotopes,
into a multi-layered control architecture is a critical step toward achieving
robust autonomy. This concluding chapter summarizes the core contri-
butions, provides a critical reflection on the limitations of this work, and
outlines promising directions for future research.

10.1 Contributions

The primary contribution of this thesis is a comprehensive, multi-layered
framework designed to guarantee robust UAV operation in uncertain en-
vironments. At the foundational level, we developed a novel feedback lin-
earization strategy that simplifies the control problem without augment-
ing the system’s state, thereby reducing computational overhead.
Building on this, we successfully integrated zonotopic reachability anal-
ysis to provide formal guarantees. Validated against Monte Carlo simula-
tions, this approach proved to be significantly more computationally effi-
cient. We further enhanced robustness through a zonotopic reference gov-
ernor for adaptive constraint management and a Tube-MPC implementa-
tion using polynomial zonotope* to mitigate residual nonlinearities. For
high-level autonomy, this culminated in a path planner capable of deter-
mining optimal, collision-free trajectories in cluttered environments. Fi-
nally, the framework was extended to multi-agent systems, demonstrating
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the feasibility of decentralized, coordinated swarm behavior through par-
titioned communication and optimization-based control.

The table summarizes the various simulations and experiments
conducted throughout this work. It highlights the diverse platforms used
and the evolution of the control methodologies applied. From validating
classic controllers like PID and INDI, the work progressed to implement-
ing more advanced solutions, including Tube-MPC and RRT*, to ensure
system robustness, safety, and autonomy. These experiments and simula-
tions represent the core contributions of this project.

10.2 Limitations

While the results presented are promising, a critical perspective is essential
to understand the boundaries of the proposed methods and the challenges
encountered during implementation.

A primary challenge of the zonotopic framework is the inherent trade-
off between representation accuracy and computational complexity. While
zonotopes are less conservative than many other set-based methods, their
conservatism still restricts reachable sets of highly nonlinear systems or
non-convex safe regions, potentially preventing the drone from entering a
valid, safe state. The use of polynomial zonotopes mitigates this but at a
much higher computational cost. Furthermore, scalability remains a con-
cern; the complexity of zonotope operations for long prediction horizons
or in high-dimensional state spaces can become a bottleneck for real-time
implementation on computationally constrained hardware. The number
of generators can grow exponentially in some scenarios if not carefully
managed through order-reduction techniques, which themselves introduce
further approximation errors. A fundamental computational challenge
also arises from the generator-based definition of zonotopes: unlike sim-
pler sets, there is no straightforward analytical solution for the zonotope
membership problem, and obtaining an explicit description of its bound-
ary is computationally prohibitive. This means operations requiring such
adescription, like precise collision checking against arbitrary non-zonotopic
obstacles or verifying containment within a general safe region, can be
very slow and often rely on simpler, more conservative outer approxima-
tions.

The two-platform experimental strategy (Parrot Mambo and custom
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hexacopter) was a deliberate choice to validate different layers of the con-
trol stack, but it also highlighted key implementation gaps. We success-
fully validated the feedback linearization and INDI control on the Parrot
Mambo due to its accessible firmware. However, implementing this cus-
tom low-level controller on the Pixhawk-based hexacopter proved infeasi-
ble due to the deeply integrated nature of the PX4 flight stack. While the
hexacopter served as an excellent demonstrator for high-level algorithms
like Tube-MPC and the RRT planner, which command an existing autopi-
lot, this approach meant our high-level controller was blind to the true
state of the internal PID loops of the autopilot. Unmodeled delays or sat-
uration within the PX4 stack could, in some cases, degrade performance
in ways our model did not predict, representing a gap between simulation
and reality.

10.3 Future Work

The limitations and insights gained from this work open up several excit-
ing avenues for future research.

A significant opportunity lies in bridging the gap between our model-
based methods and data-driven machine learning techniques. While this
thesis assumed a simplified model, future work could employ Gaussian
Processes or Physics-Informed Neural Networks to learn complex, unmod-
eled aerodynamic effects from flight data. The key challenge is to then
bound the prediction error of these learned models within a zonotope, cre-
ating a "safe learning” framework that combines the accuracy of ML with
the formal guarantees of reachability analysis.

Our work on multi-agent systems laid a foundation for decentralized
control, and the next steps involve tackling more complex and realistic
swarm scenarios. Future research should investigate how zonotopic pre-
dictions can be used to maintain safety during communication dropouts.
If an agent loses contact, its neighbors could propagate its last known state
and control input forward in time using a reachable set, ensuring collision
avoidance with a guaranteed "ghost" tube until contact is re-established.

The most forward-looking research direction involves integrating our
robust, low-level autonomy with emerging large-scale Al, such as Vision-
Language Models (VLMs). Currently, a human operator defines mission
goals. In the future, a user could issue a complex, natural-language com-



180 CHAPTER 10. CONCLUSION AND PERSPECTIVES

mand like, "Safely inspect the facade of that building for cracks, avoiding
the trees." A VLM could parse this command, identify the building and
obstacles from visual input, and translate the abstract goal into a series of
waypoints, safe zones, and constraints that our zonotope-based planner
can then execute with formal safety guarantees. This would represent a
true leap in cognitive autonomy for robotics.

10.4 Concluding Remarks

The rapid proliferation of autonomous drones from research labs into our
daily lives marks a pivotal moment in robotics. Their potential for positive
impact, in logistics, safety, and data gathering, is immense. However, this
potential can only be fully realized if these systems are trusted to operate
safely and reliably. The core of this trust lies not just in performance, but
in predictability and guarantees.
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Table 10.1: Summary of Simulations and Experiments

Platform & Vali-
dation

Control Method

Additional Features

Simulation & Ex- Cascade PID Controller N/A
perimental (Parrot
Mambo)
Simulation & Ex- INDI Controller N/A
perimental (Parrot
Mambo)
Simulation (Parrot Classic Feedback Lin- N/A
Mambo) earization
Simulation (Parrot Classic Feedback Lin- Reference Governor
Mambo) earization
Simulation (Parrot INDI Controller Reference Governor
Mambo)
Simulation  (DIY INDI + TubeMPC (Both Constrained Polynomial Zono-
Multicopter) MPC) topes (safe set)
Simulation = (DIY Cascade PID (Px4) + Zonotopes (safe set)
Multicopter) TubeMPC (State Feed-
back + MPC)
Experimental (DIY Cascade PID (Px4) N/A

Multicopter)

Experimental (DIY
Multicopter)

Cascade PID (Px4) +
TubeMPC (State Feed-
back + MPC)

Zonotopes (safe set)

Simulation (Multi-
copter)

INDI + TubeMPC (Both
MPC)

Constrained Polynomial Zono-
topes (safe set) + Real-time
RRT*

Simulation (Multi-
copter)

Cascade PID (Px4) +
TubeMPC (State Feed-

Zonotopes (safe set) + Real-
time RRT*

back + MPC)
Experimental Base Controller Real-time RRT* Algorithm
(Crazyflie)
Simulation  (Dis- Partitioning Distributed TubeMPC

tributed System)
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