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1 Introduction

The partially massless (PM) spin-2 field [1–7] is of special interest in the cosmological context,
since it propagates and is unitary only on the de Sitter (dS4) background relevant to the
inflationary epoch. Since the mass of the PM spin-2 field saturates the Higuchi bound [3, 7],
the PM spin-2 field, if it existed in our early Universe, would have behaved like a light field
during inflation, therefore possibly leaving an imprint on the cosmic microwave background [8–
10]. The mass of the PM spin-2 field is protected by gauge invariance and is uniquely fixed
in terms of the cosmological constant. In fact, the present epoch of our Universe can also
be approximated by a de Sitter phase, with its accelerated expansion [11, 12]. Due to the
smallness of the observed positive cosmological constant [13], the mass for the PM spin-2
field is below the upper-bound on the mass of the graviton deduced from the gravitational
waves detections [14–16]. We will not consider any cosmological application of the PM spin-2
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field in the present paper that will remain at a purely theoretical level. Still, we hope that
our study could be relevant for cosmology, in the future.

Although the partially massless spin-2 field propagates on (anti-) de Sitter (A)dS4
background and not on the Minkowskian background,1 its Stueckelberg off-shell description
admits a flat limit [18–21] that shows that a partially massless spin-2 field propagates the
modes of helicity ±2 for a massless graviton, plus the modes of helicity ±1 for a massless
vector field, in a way that provides an alternative to the original Hamiltonian analysis of [6].
We stress that, in the present paper we will relax the unitarity constraint and consider the
PM spin-2 field around the AdS4 background. Nevertheless, whenever we consider massive
spin-3/2 fields, we also consider the dS4 background where the PM spin-2 field is unitary
and where possible cosmological considerations could be made in the future.

There have been many studies on the self-couplings of a single PM spin-2 field which have
resulted in a series of no-go theorems [20, 22–25]. Note that these no-go results are overcome
by a non-unitary interacting theory for multiple PM spin-2 fields [26]. However, there have
been relatively few analyses of the couplings of the PM spin-2 field with other types of fields,
with the notable exceptions of [27–30] where the gravitational coupling of the PM spin-2 field
was investigated, together with the interactions including massless vectors [31]. In the case
of the gravitational coupling of the PM spin-2 field, the latter work strengthens the no-go
results of [30] and precludes the possibility that the non-geometrical coupling considered
in [30] could be pushed to higher orders in interactions. It was also shown in [31] that the
vectors couple to the massless and partially massless spin-2 fields in a way that reproduces
several copies of conformal gravity coupled to Yang-Mills sectors.

In a previous work [32], we considered the interactions of the partially massless spin-2
field with a massive spin-3/2 field, that together form an on-shell spectrum of particles with
helicities (±2,±1,±3/2,±1/2), thereby (naively) offering of possibility for supersymmetry.
Two consistent couplings were discovered in [32], giving a hope that it might indeed be
possible to find a locally supersymmetric theory with a PM spin-2 field in the spectrum.
One of the couplings in [32] is very similar to the minimal coupling of a massive spin-3/2
field to gravity, except that now the graviton is partially massless. Actually, this spectrum
of fields is too small to carry the action of rigid supersymmetry, as it was shown in [33]
that the shortest partially massless supermultiplet necessitates the adjunction of a pair of
massless fields with helicities (±3/2,±1) to the PM spin-2 and the massive spin-3/2 fields
in AdS4. A natural question that we address in this article is the possibility for couplings
among the four types of fields that constitute the shortest partially massless supermultiplet
of [33]. In particular, in this work we investigate whether interactions among those fields
can make local the global rigid supersymmetry carried by that multiplet. As we show in
this article, the result is negative, unless one adds two extra gauge fields to the spectrum:
the massless graviton plus another massless gravitino. Using the analyses of [34, 35], we
find that the resulting spectrum of fields exactly coincides with the spectrum of N = 1 pure
conformal supergravity around AdS4 [36, 37].

Similarly to the observation that conformal gravity is the only consistent way to couple the
PM spin-2 field to gravity [29–31], it is therefore natural to expect that conformal supergravity

1See ref. [17] for other backgrounds on which a PM spin-2 field can propagate.

– 2 –



J
H
E
P
0
7
(
2
0
2
5
)
1
8
5

(see [34] for a review) should give the only non-Abelian interactions of a PM spin-2 field with
massless spin-3/2 fields around AdS4. The spectrum that consists of a PM spin-2 field and
two massless gravitini is exactly the same as the one of pure N = 2 supergravity around
AdS4, supporting the possibility that there might be consistent non-Abelian interactions
among those fields, viewed as a sub-sector of conformal supergravity.

To summarize, the goal of this paper is twofold: we investigate whether it is possible
to make local the global (i.e., rigid) supersymmetry of [33], and we want to determine the
consistent couplings between a PM spin-2 field and a doublet of massless spin-3/2 fields
around AdS4. We present arguments indicating that pure N = 1 conformal supergravity
solves both problems simultaneously, thereby providing the supersymmetric extension of
the results in [29–31].

More in detail, in this work we first consider a free theory in AdS4 containing a partially
massless spin-2 field, a massive spin-3/2 field, a massless spin-3/2 field and a massless
spin-1 field which enjoys a rigid N = 1 supersymmetry [33]. The massive sector of this
multiplet was already studied in [32] using the Becchi-Rouet-Stora-Tyutin-Batalin-Vilkovisky-
Stueckelberg [38–43] (BRST-BV-Stueckelberg) method developed in [44]. The work [32] led to
the discovery of interaction vertices that do not vanish in the unitary gauge. Here we pursue
this analysis, adding the massless spin-(1, 3/2) sector, and investigate whether it is possible
to make local the rigid (i.e. global) supersymmetry of [33] using the BRST-BV-Stueckelberg
deformation method.

Since two spin-3/2 fields are present in the spectrum, we start with the deformations of
the gauge algebra corresponding to the N = 2 AdS4 superalgebra, taking inspiration from
the study of N = 2 supergravity performed in [45]. We show that there is no non-Abelian
deformation of the rigid susy algebra of [33]. At best, we are able to exhibit two Abelian
couplings between the spin-3/2 sector — where we recall there is one massless and one
massive field with adapted mass — and the vector gauge field, see (3.31) below. These
vertices deform the gauge transformations but leave the gauge algebra Abelian. They are
analogous to couplings present in N = 2 sugra and exist only for a negative cosmological
constant, i.e., in AdS4. We also found a vertex on the de Sitter (dS4) background, that
couples a pair of real, massive spin-3/2 fields of equal mass with a vector field, see (3.37).
These two massive spin-3/2 field form a charged field and the coupling to electromagnetism is
the minimal one, also present in N = 2 sugra around AdS4, but in our case, the cosmological
constant can be positive at the first order in interactions.

Then, we add an extra massless gravitino to the spectrum, and perform a systematic
classification of the possible non-Abelian deformations of the free theory that lead to a
deformation of the Lagrangian. We find that there exists a non-Abelian coupling between
the PM spin-2 field and two massless gravitini in AdS4. For this part of the work, we use the
cohomological method of [46, 47], well-designed for gauge fields. The non-Abelian vertex we
find has recently been obtained by Yu. M. Zinoviev [48] in a different formalism. We show that
the gauge algebra underlying this vertex closely resembles the one of N = 2 pure supergravity,
where the diffeomorphism vector is replaced by the gradient of the PM spin-2 gauge parameter.
In fact, with this relation between the translation generator and the generator of PM spin-2
transformation, we recover all the structures constants of the N = 2 supersymmetry algebra
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on AdS4, with the exception of one structure that is identically zero when the diffeomorphism
vector is a gradient of a scalar. The latter term is responsible for the transformation law
of the supercharges under local Lorentz transformations. Correspondingly, the non-Abelian
cubic vertex that we found is very similar to the one of N = 2 pure supergravity around
AdS4, as a comparison with the analysis of [45] shows.

The plan of the paper is as follows. In the next section 2 we spell out our conventions
and notation. We also give the free action principles for the PM spin-2 field, the massless
and massive spin-3/2 fields around (A)dS4, as well as the vector gauge field. In section 3,
we compute the consistent interactions among the fields of the spectrum given above, using
the BRST-BV-Stueckelberg method proposed in [44] and further developed in [32]. In
section 4, we use the cohomological method of [46, 47] to classify all the possible non-Abelian
deformation of the free theory propagating a PM spin-2 field and two massless gravitini
around the AdS4 background. We present the unique non-Abelian vertex that emerges
from the classification and, using the results of [45], show the close relation between the
corresponding gauge-algebra deformation and the gauge algebra of N = 2 pure supergravity
around AdS4. In section 5 we show the obstruction of the non-Abelian vertex found in the
previous section at the level of the Jacobi identity, keeping the spectrum of fields unchanged.
We then add a massless spin-2 field to the spectrum and show that all but one family of
obstructions to the Jacobi identity can be removed thanks to the diffeomorphism algebra
deformation brought in by the massless spin-2 field [49]. The theory that emerges is N = 1
conformal supergravity, here viewed as the only consistent non-Abelian theory that couples a
partially massless spin-2 field to massless and massive spin-3/2 fields around AdS4, thereby
resolving at the same time the issue of the gauging of the rigid supersymmetry carried by the
PM multiplet of [33] and the issue of the consistent interactions between a PM spin-2 field
and a pair of massless spin-3/2 fields. Finally, we present our conclusions in section 6.

2 Action principles for free fields in (A)dS

In this section, we give our conventions for the (A)dS4 Lorentz-covariant derivatives, and
spell out the action principles for the various fields under consideration.

In our conventions and notation, ḡµν denote the metric components of the (A)dS4
background spacetime with cosmological constant

Λ = −3σλ2 , σ = ±1 , (2.1)

where λ is the inverse radius of the background and the parameter σ = +1 in the AdS4
spacetime, σ = −1 in the dS4 spacetime. On these two backgrounds that we consider in
the present article, the components of the Riemann tensor read

Rµνρσ = −2σλ2ḡρ[µḡν]σ , (2.2)

where we use the strength-one (anti)symmetrisation convention with (square) round brackets
around the corresponding indices to be (anti)symmetrised. For example, Fµν = 2∇[µAν] =
∇µAν − ∇νAµ and 2∇(µξν) = ∇µξν + ∇νξµ .
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Consequently, on a (co)vector and on a spinor, the commutator of (A)dS4 Lorentz-
covariant derivatives with the Levi-Civita connection is given by

[∇µ,∇ν ]Vρ = −2σλ2 ḡρ[µVν] ,

[∇µ,∇ν ]χA = −σ2 λ
2(γµν)A

BχB ,
(2.3)

where we indicated spinor indices with capital Latin indices. In the following, these will be
omitted most of the time. The four Dirac gamma matrices are denoted {γa}a=0,1,2,3 , and
γµ = ēµ

a γa , γµν = γ[µγν] , with ēµ
a the components of the (A)dS4 background vierbeins.

2.1 Partially massless spin-2 field

We consider a symmetric PM spin-2 field in the Stueckelberg formulation. Following the
lines of [50], we allow both signs of the cosmological constant, which makes the AdS4 case
explicitly non-unitary at the classical level:

LPM-St = −1
2∇ρhµν∇ρhµν + ∇ρh

µν∇µh
ρ

ν −∇µh∇νh
µν + 1

2∇µh∇µh+ σ

4FµνF
µν

− 2σλ2hµνh
µν + 1

2σλ
2 h2 + 2λ [h∇µB

µ − hµν∇µBν ] + 3λ2BµBµ ,
(2.4)

where we recall that the parameter σ takes the value +1 in AdS4 , −1 in dS4 , and where
we denoted h = ḡµνhµν .

The action with Lagrangian (2.4) is invariant under the gauge transformations given by
δ0hµν = 2∇(µεν) + λ ḡµν π ,

δ0Bµ = ∇µπ + 2σλ εµ .
(2.5)

We can define a tensor that is gauge invariant under the Stueckelberg gauge transformations
with parameter εµ:

Hµν = hµν − σ

λ
∇(µBν) . (2.6)

This allows to rewrite the PM spin-2 Lagrangian in the following form, where the Stueckelberg
field Bµ appears only through Hµν ,

LPM-St = −1
2∇ρHµν∇ρHµν + ∇ρH

µν∇µH
ρ

ν −∇µH∇νH
µν + 1

2∇µH∇µH

− 2σλ2HµνH
µν + 1

2σλ
2H2 .

(2.7)

If one sets Bµ = 0 and εµ = − σ
2λ∇µπ in (2.7) and then rescale π 7→ −σλπ, we recover the

usual form for the action of the PM spin-2 field [1, 3, 6], invariant under

δ0hµν = ∇µ∇νπ − σλ2ḡµνπ . (2.8)

It is possible to define an object invariant under the complete gauge transformations (2.5),

Kµνρ = K[µν]ρ := 2∇[µHν]ρ , (2.9)

Using this object, the Lagrangian (2.7) can be written in the manifestly gauge-invariant way

LPM-St = −1
4 Kµνρ Kµνρ + 1

2 Kµ Kµ , (2.10)

where Kµ = ḡνρKµνρ .
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2.2 Massless spin-3/2 field

We describe a Majorana massless spin-3/2 field in AdS4 in terms of a spinor-vector ϕµ = (ϕµA)
and the Rarita-Schwinger Lagrangian

L3/2 = −1
2 ϕ̄µγ

µνρ ∇νϕρ + M

2 ϕ̄µγ
µνϕν , M = ±λ , (2.11)

invariant under the gauge transformations

δ0ϕµ = ∇µρ+ M

2 γµ ρ , (2.12)

where ρ is a Majorana spinor. Note the two possible signs in the definition of the mass
parameter M . This is because the gauge invariance condition is quadratic in M , with
M2 = λ2. It is therefore possible to work with either of the two signs. This fact will be
relevant when coupling a PM spin-2 with an even number of massless spin-3/2 fields. As
a matter of a fact, the vertex we found between these fields in section 4 requires that half
the number of spin-3/2 have M = +λ, the other half having M = −λ, consistently with
the findings of [48]. As explained in [51], it is not possible to define a spin-3/2 field in
dS4 spacetime by imposing the Majorana condition and at the same time giving it a gauge
transformation law of the form originally found in [52]. In simpler terms, Majorana massless
spin-3/2 fields do not exist in dS4 spacetime. Defining the gauge-invariant object

ϕµν = ∇[µϕν] + M

2 γ[µϕν] , (2.13)

the Lagrangian can be rewritten as

L3/2 = −1
2 ϕ̄µγ

µνρ ϕνρ , M = ±λ . (2.14)

2.3 Massive spin-3/2 field

In the Stueckelberg gauge-invariant formulation, we describe a massive spin-3/2 field of mass
parameter ω =

√
σλ2 +m2 with a Majorana vector-valued spinor ψµ and a Majorana spinor

Stueckelberg field χ with Lagrangian

L3/2M = −1
2 ψ̄µγ

µνρ∇νψρ + ω

2 ψ̄µγ
µνψν − 3

4 χ̄ γ
µ∇µχ− 3ω

2 χ̄ χ− 3m
2 ψ̄µγ

µχ , (2.15)

which is invariant under the Stueckelberg gauge transformations
δ0ψµ = ∇µθ + ω

2 γµ θ ,

δ0χ = mθ .
(2.16)

Note that, when the mass m parameter is non-zero, the massive spin-3/2 field can be defined
with the two signs of the cosmological constant σ = ±1, thus in both AdS4 and dS4 . In the
dS4 case, the massless limit m→ 0 renders ω imaginary, in clash with the Majorana reality
condition. This is consistent with the fact that Majorana massless spin-3/2 field cannot be
defined in dS4, as recalled earlier. Defining the gauge invariant field

Ψµ = ψµ − 1
m
∇µχ− ω

2mγµ χ , (2.17)
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the Lagrangian for the massive spin-3/2 field can be rewritten as

L3/2M = −1
2Ψ̄µγ

µνρ∇νΨρ + ω

2 Ψ̄µγ
µνΨν . (2.18)

It is possible to set a gauge, named unitary gauge, where χ is set to zero using the form
of its gauge transformation with parameter θ. Once this is done, the gauge invariant field
Ψµ coincides with the field ψµ .

In the unitary gauge, the equations of motion obtained by taking the Euler-Lagrange
derivative of the Lagrangian (2.18) are γµνρ∇νψρ − ωγµνψν = 0. Using gamma matrices
identities and commutators of covariant derivatives of the (A)dS4 background, one can
verify that this implies:

(□− ω2 + 4σλ2)ψµ = 0 , ω =
√
σλ2 +m2 . (2.19)

In AdS4, when setting the mass parameter m to zero, we recover the gauge-fixed equation
of motion of a massless spin-3/2 field (□ + 3λ2)ϕµ = 0. This equation can be obtained
from the massless spin-3/2 Lagrangian (2.11) in the same way, after a gauge fixing. In AdS4
spacetime, note that the parametrisation ω =

√
σλ2 +m2 does not allow to set ω to zero

with a real value of the mass parameter m. This expresses the fact that the massive spin-3/2
with ω = 0 is non-unitary in AdS. Indeed, in Anti-de Sitter background, the unitarity bound
for the squared mass appearing in the D’Alembert-like gauge fixed equation □ϕµ = M2ϕµ

for a Rarita-Schwinger potential is M2 ⩾ −3λ2 . Setting ω to zero gives □ϕµ = −4λ2ϕµ,
which is below the unitarity bound.

In more general terms, for a spin-s field propagating in AdS4, the mass-like term M2

appearing in the D’Alembert-like equation (□−M2λ2)ϕs = 0 is a quadratic function of the
conformal dimension ∆ = E0, the minimal energy of the corresponding so(2, 3) module. For a
bosonic spin-s field, one has M2

∆,s = ∆(∆ − 3) − s , while for a fermionic spin-s field, one has
M2

∆,s = ∆(∆−3)−s− 1
4 . Massless, propagating spin-s fields in AdS4 have ∆ = s+1 , be them

bosonic or fermionic [53–55]. These are the propagating Fronsdal and Fang-Fronsdal fields.
The unitarity bound on the conformal dimension is ∆ ⩾ s+ 1 for a propagating spin-s field.
It is saturated by the massless fields.2 Note that, for s = 0, the unitary conformally-coupled
scalar field with M2 = −2 admits not only ∆ = s+ 1 = 1, but also ∆ = 2, corresponding to
two different boundary conditions [57, 58]. The mass-squared M2 is bounded from below
by the value taken by the massless field.

In this work, we will need a description of the non-unitary massive spin-3/2 field with ω = 0
in AdS4, as it is part of the shortest partially massless supermultiplet [33] that will be studied
in the following. We therefore introduce a new parametrisation ω̃ =

√
σ(λ2 −m2). In AdS4,

this parametrisation permits to reach only the non-unitary region between □ϕµ = −3λ2ϕµ

and □ϕµ = −4λ2ϕµ. If m2 > λ2, ω̃ becomes imaginary. In de Sitter spacetime, ω̃ matches
with ω, and therefore also describes a unitary field, where m can take arbitrary values larger
than or equal to λ2. The Lagrangian consistent with ω̃ =

√
σ(λ2 −m2) is

L3/2M̃ = −1
2 ψ̄µγ

µνρ∇νψρ + ω̃

2 ψ̄µγ
µνψν + 3σ

4 χ̄ γµ∇µχ+ 3ω̃σ
2 χ̄ χ+ 3mσ

2 ψ̄µγ
µχ . (2.20)

2The spin-1/2 and spin-0 singletons, called Di and Rac, respectively [56], are unitary irreducible so(2, 3)
modules with conformal weights ∆Di = 1 and ∆Rac = 1/2 , respectively, that correspond to fields that
propagate on the conformal boundary of AdS4.
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It is unvariant (up to total derivatives) under the gauge transformations
δ0ψµ = ∇µθ + ω̃

2 γµ θ ,

δ0χ = mθ .
(2.21)

The gauge-invariant Stueckelberg field-strength is

Ψµ = ψµ − 1
m
∇µχ− ω̃

2mγµ χ . (2.22)

2.4 Massless spin-1 field

We describe a massless spin-1 field by a vector field Aµ with curvature Gµν = ∇µAν −∇νAµ .
We recall the expression of the Maxwell Lagrangian,

L = −1
4GµνG

µν , (2.23)

which is invariant under the gauge transformation

δAµ = ∇µα . (2.24)

3 Cubic deformations using the BRST-BV-Stueckelberg formalism

In this section, we briefly summarize the BRST-BV-Stueckelberg method proposed in [44],
further developed in [32], in the context where the set of fields contains a massive spin-3/2
field and a partially massless spin-2 field, among others. More specifically, we consider the
fields that build up the shortest partially massless supermultiplet of [33] and investigate
the possible couplings among those fields.

3.1 Set-up

We follow the notation of [33] as much as possible and recall the action of the shortest
supermultiplet in AdS4 with two extra parameters σ and σ′, as compared to what was given
in [33]. The first parameter was already introduced above and allows choosing the sign of the
cosmological constant, while the parameter σ′ gives us the freedom to change the sign of the
kinetic terms for the massless spin-3/2 ϕµ and the vector gauge field Aµ. The supermultiplet
of [33] is only defined in AdS4 because there is no massless spin-3/2 fields in dS4 obeying the
Majorana reality condition [51], as we recalled above. Explicitly, the complete free action in
the Stueckelberg formulation takes the form S0 =

∫
d4x

√
−ḡ L0 with

L0 = −1
2∇ρhµν∇ρhµν + ∇ρh

µν∇µh
ρ
ν −∇µh∇νh

µν + 1
2∇µh∇µh+ σ

4FµνF
µν

− 2σλ2hµνh
µν + 1

2σλ
2 h2 + 2λ [h∇µB

µ − hµν∇µBν ] + 3λ2BµBµ

− 1
2 ψ̄µγ

µνρ∇νψρ + ω̃

2 ψ̄µγ
µνψν + σ

3ω̃
2 χ̄χ+ σ

3
4 χ̄γ

µ∇µχ+ σ
3m
2 ψ̄µγ

µχ

+ σ′

2 ϕ̄µγ
µνρ∇νϕρ −

σ′

2 λ ϕ̄µγ
µρϕρ + σ′

4 G
µνGµν .

(3.1)
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One recovers the action presented in [33] by taking σ′ = 1 = σ, ω̃ = 0, and setting all the
Stueckelberg fields to zero. We recall the gauge transformations under which the free action
is invariant, up to boundary terms that we neglect in this work:

δ0hµν = 2∇(µεν) + λ ḡµν π

δ0Bµ = ∇µπ + 2σλ εµ

, (3.2)


δ0ψµ = ∇µθ + ω̃

2 γµ θ

δ0χ = mθ
,


δ0ϕµ = ∇µρ+ λ

2γµρ

δ0Aµ = ∇µα
. (3.3)

For each gauge parameter, we introduce a ghost field with opposite Grassmann parity:

• For εν , we introduce the Grassmann-odd vector field ξν , and for π, we introduce the
Grassmann odd scalar field C ;

• For θ we introduce the Grassmann-even Majorana spinor ζ ;

• For ρ we introduce the Grassmann-even Majorana spinor τ ;

• For α we introduce the Grassmann-odd scalar field ϵ .

The set of all the fields and ghosts will be denoted by {ΦI} . With each field or ghost
ΦI , one introduces a corresponding BV antifield Φ̃⋆

I canonically conjugated to ΦI through
the BV antibracket

(A,B) = δRA

δΦI

δLB

δΦ̃∗
I

− δRA

δΦ̃∗
I

δLB

δΦI
, (3.4)

for any local functionals A and B, and where we use De Witt’s condensed notations for
summations over repeated indices that imply integration over spacetime.

The BV functional for the free theory is given by

W0[Φ,Φ⋆] = S0 +
∫
d4x

√
−ḡ

(
h⋆µν(2∇(µξν) +λḡµνC)+B⋆µ(∇µC+2σλξµ) (3.5)

+ ψ̄⋆µ

(
∇µζ+ ω̃

2 γµζ

)
+mχ̄⋆ ζ+ ϕ̄⋆µ

(
∇µτ+ 1

2λγµ τ

)
+A⋆µ ∇µϵ

)
.

Note that, in our conventions for W0 , we considered the antifields Φ∗
I as tensors and not

as tensorial densities Φ̃∗
I as is understood implicitly in (3.4). Therefore, by defining the

BRST differential s for the free theory through the BV bracket s • := (W0, •) , we have
sΦI(x) = − δRW0

δΦ̃∗
I (x)

= − 1√
−ḡ(x)

δRW0
δΦ∗

I (x)
and s Φ̃∗

I(x) = δRW0
δΦI(x) =

√
−ḡ(x) (sΦ∗

I(x)) , hence

sΦ∗
I(x) = 1√

−ḡ(x)
δRW0
δΦI(x) .

In the case of a free theory, the BRST differential can be written as the sum of two
differentials s = γ + δ , where δ is the Koszul differential that implements the field equations
into the BRST cohomology, see e.g. the book [59] for a complete presentation. The action of
these two differentials on the complete BV spectrum is given in table 1, where we also list the
Grassmann parity, ghost number, antifield number and pureghost number of all the fields. The
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problem of perturbative deformation of a free theory, in the antifield reformulation of [46, 47],
consists in solving the BV master equation (W,W ) = 0 perturbatively around the free solution
W0, for the deformed BV-functional W = W0 + gW1 + O(g2) . The descent equations issued
from the equation sW1 = 0 at first order in the formal deformation parameters g, with
W1 =

∫
d4x

√
−ḡ (a0 + a1 + a2) and antifield(ai) = i , take the form

δa1 + γa0 = ∇µj
µ
0 , (3.6)

δa2 + γa1 = ∇µj
µ
1 , (3.7)

γa2 = 0 . (3.8)

Importantly, the cochains a0 , a1 , a2 , as well as jµ
0 and jµ

1 , are all assumed to be local. All
the cohomologies H∗(s|d) that we will be computing are in the space of local forms, with
representatives that depend on the fields and their derivatives up to a finite, but arbitrary,
order. We refer to section 2 of [49] for a detailed presentation of the deformation procedure
that we follow. The term a2 in antifield number two encodes the deformations of the Abelian
gauge algebra of the free theory, the term a1 in antifield number one encodes the deformations
of the gauge transformations, and the antifield number zero part a0 encodes the deformation of
the quadratic Lagrangian, i.e., the first-order vertices. We will make the abuse of terminology
of designating by a “total derivative” a term ∇µj

µ, it being understood the multiplication
with the density

√
−ḡ will effectively transform ∇µj

µ into a total derivative.

3.2 Cohomology of γ

The usual procedure is to start computing the cohomology H∗(γ) of the differential γ , the
differential along the gauge orbits. One finds

H∗(γ) =
{
f
(
[Φ⋆

I ], [Kµνρ], [Ψµ], [ϕµν ], [Gµν ], C,∇µC, ξµ,∇(µξν), τ, ϵ
)}

, (3.9)

where the notation [Φ] means the field Φ and all its derivatives up to some finite, but arbitrary,
order, so as to ensure the locality of the function f . The quantities in the argument of
the function f in the above expression are not all independent. First of all, the members
of each pair (∇(µξν), C) and (∇µC, ξµ) belong to the same cohomology class, as we discuss
below, and the differential Bianchi identities give relations among the derivatives [Kµνρ],
[Ψµ] , [ϕµν ] , and [Gµν ] .

Details on the calculation of H∗(γ) in the sector of the massless spin-1 and spin-3/2 fields
around AdS4 can be found in [45], for example. In the following, we detail the contribution of
the massive spin-3/2 field and of the partially massless spin-2 field, both in the Stueckelberg
formulation. It is direct to see that the gauge invariant objects constructed out of the
fields hµν , ψµ and their Stueckelberg companions are Kµνρ and Ψµ , respectively defined in
equations (2.9) and (2.17). Therefore, functions of these gauge invariant objects and their
derivatives are part of the cohomology of γ: f([Kµνρ], [Ψµ]) ∈ H∗(γ).

The ghost fields require further discussion. In the sector of the partially massless field
hµν , there are two ghost fields. One can see in table 1 that both C and ξµ are elements of the
cohomology group. Indeed, they are γ-closed and there is no way to express them as γ-exact
objects. Let us focus on the derivatives of C. Because of the relation ∇µC = γBµ − 2σλξµ,
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| · | gh antfld puregh γ δ

hµν 0 0 0 0 2∇(µξν) + λ ḡµν C 0

ψµ 1 0 0 0 −∇µζ − 1
2 ω̃ γµ ζ 0

ϕµ 1 0 0 0 −∇µτ − 1
2λ γµ τ 0

Aµ 0 0 0 0 ∇µϵ 0

Bµ 0 0 0 0 ∇µC + 2σλ ξµ 0

χ 1 0 0 0 −m ζ 0

ξµ 1 1 0 1 0 0

C 1 1 0 1 0 0

ζ 0 1 0 1 0 0

τ 0 1 0 1 0 0

ϵ 1 1 0 1 0 0

h⋆µν 1 −1 1 0 0 ∇ρK
ρ(µν) − ḡµν∇ρK

ρ + ∇(µKν)

ψ̄⋆µ 0 −1 1 0 0 −∇νΨ̄λγ
νλµ − ω̃Ψ̄λγ

µλ

ϕ̄⋆µ 0 −1 1 0 0 σ′ϕ̄νλγ
µνλ

A⋆µ 1 −1 1 0 0 −σ′∇νG
νµ

B⋆µ 1 −1 1 0 0 −2λKµ

χ̄⋆ 0 −1 1 0 0 3σm
2 Ψ̄µγ

µ

ξ⋆µ 0 −2 2 0 0 −2∇αh
⋆µα + 2σλB⋆µ

C⋆ 0 −2 2 0 0 λh⋆ −∇µB
⋆µ

ζ̄⋆ 1 −2 2 0 0 −∇αψ̄
⋆α + 1

2 ω̃ ψ̄
⋆
α γ

α +mχ̄⋆

τ̄⋆ 1 −2 2 0 0 −∇µϕ̄
⋆µ + 1

2λ ϕ̄
⋆µγµ

ϵ⋆ 0 −2 2 0 0 −∇µA
⋆µ

Table 1. Properties and BRST differentials of every field and antifield.

we see that ∇µC is an element of the cohomology in the same class as ξµ. At higher orders
in derivatives we have the relation ∇α∇µC = γ∇(αBµ) − σλγhαµ + σλ2ḡαµC indicating that
∇α∇µC is in the same cohomology class as C. Let us pursue with the derivatives of the ghost
ξµ. When taking the antisymmetric part of the relation ∇α∇µC = γ∇αBµ − 2σλ∇αξµ, one
obtains 0 = γ∇[αBµ] − 2σλ∇[αξµ]. This shows that the antisymmetrized covariant derivative
of ξµ is γ-exact, as well as all the derivatives thereof. For the symmetric part, the relation
γhµν = 2∇(µξν) + λ ḡµνC indicates that ∇(µξν) is in the same cohomology class as C. Taking
the covariant derivative of γhµν , one can show that ∇α∇(µξν) is equivalent to ξµ up to γ-exact
terms. As a conclusion, in the PM spin-2 sector we have two cohomology classes given by
(∇(µξν), C) and (∇µC, ξµ), respectively, as announced above. It will be convenient to take
one or another representative of each class, depending on the context.
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In the sector of the massive spin-3/2 field ψµ, one can see in table 1 that ζ is γ-exact,
and thus it is not an element of the cohomology group, as it should for a Stueckelberg field.
Moreover, because of the relation ∇µζ = −γψµ − 1

2 ω̃γµζ, ζ and ∇µζ are related by a γ-exact
term. Thus, neither ζ nor its derivatives belong to the cohomology of γ. This is the typical
situation of a massive field theory, as detailed in [44]. The contributions of the ghost fields
to the cohomology of γ therefore only come from the sectors of the PM spin-2 field hµν , of
the massless spin-3/2 field ϕµ, and of the vector gauge field Aµ.

Ambiguity relations. In a massive theory, the Stueckelberg fields transform under the
differential γ into the ghost fields. We have an example here with the massive spin-3/2
field whose Stueckelberg field transforms as γχ = −mζ. As a consequence, the ghost ζ
is not an element of the cohomology group and this gives an ambiguity in the expression
of ∇µζ as a γ-exact object:

∇µζ = γ

(
− 1
m
∇µχ

)
, ∇µζ = γ

(
−ψµ + ω̃

2mγµχ

)
, (3.10)

as a direct consequence of the gauge invariance of the quantity Ψµ defined in (2.17). Note
that, while the second equality of (3.10) is similar to the case of a massless spin-3/2 field,
the first equality above exists only because of the presence of the Stueckelberg field that
transforms into the ghost field ζ.

While we work here in the Stueckelberg formulation, recall that the partially massless
spin-2 field has a gauge symmetry (2.8) in the unitary gauge. Consequently, the ghost fields
ξµ , C, and the derivatives ∇(µξν) and ∇µC, are in the cohomology of γ. Next, we note that
one can build an ambiguity relation for ∇ρ∇[µξν] as a γ-exact quantity, from the very fact
that the quantity Kµνρ defined in (2.9) is gauge invariant:

∇ρ∇[µξν] = γ

( 1
4σλ∇ρFµν

)
, ∇ρ∇[µξν] = γ(∇[µhν]ρ + λ gρ[µBν]) . (3.11)

This ambiguity (3.11) has the same structure as (3.10), one expression only in terms of the
Stueckelberg field and one expression in terms of the field and its Stueckelberg partner.

We make use of these ambiguity relations in the derivation of the cubic vertices, so as to
ensure that they have a non-singular massless limit m→ 0 in the unitary gauge. The general
strategy in the derivation of vertices involving massive fields in the Stueckelerg formulation
is detailed in [44]. It amounts to building cubic vertices that retain the information of the
cubic vertices of the massless theory.

3.3 Cubic deformations of the gauge algebra

In this section, we select the cubic deformations of the gauge algebra that are relevant for
a localisation of the rigid N4 = 1 supersymmetry of [33]. First, let us describe a similar
theory with which the comparison will be useful.

Pure N4 = 2 supergravity expanded around AdS4 is a theory that, in the BRST spectrum,
contains a massless graviton with its diffeomorphism Grassmann-odd ghost parameter ξµ,
two massless gravitini with Grassmann-even ghost fields τ∆ (∆ = 1, 2) associated with the
Grassmann-odd gauge parameters ρ∆ for local supersymmetry, and one vector gauge field Aµ
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with ghost ϵ. The gauge transformations on the fields of the spectrum close, on-shell, to form
the N4 = 2 anti-de Sitter superalgebra. This theory has been studied using the BRST-BV
deformation method in [45]. Starting from the free action, it was shown in [45] that the cubic
deformation of the Abelian algebra leading to N4 = 2 pure supergravity theory in AdS4 is
encoded, in the BRST-BV formalism, in the following expression at antifield number two,

asugra
2 = α3/2

(1
4k∆Ωξ

⋆µτ̄∆γµτ
Ω + k∆Ωτ̄

⋆∆γµντΩ∇[µξν] − 2λk∆Ωτ̄
⋆∆γµτΩξµ

)
+ y

(
t∆Ωϵ

⋆τ̄ [∆τΩ] − 2λt∆Ωτ
⋆∆τΩϵ

)
, t∆Ω = −tΩ∆, kΣΩ = kΩΣ .

(3.12)

By comparing with the PM supermultiplet of [33], one can remark that, apart from the fact
that the graviton is partially massless and that one of the gravitini is massive, there is still
one spin-2, two spin-3/2 and one spin-1 field. This permits to take advantage of the analysis
done in [45] in the selection of the deformations of the gauge algebra we will consider. Indeed,
in the PM supermultiplet, there are also two fermionic gauge parameters that we shall denote
by {ρ, θ}: the parameter ρ for the massless spin-3/2 field ϕµ, while θ is associated, in the
Stueckelberg formulation, with the massive spin-3/2 field ψµ . The analysis presented in
the present section consists in the search for deformations of the Abelian gauge symmetries,
that would correspond to a localisation of the N4 = 1 rigid supersymmetry of the model.
Although there are two fermionic gauge parameters, θ is a Stueckelberg gauge parameter
that represents an artificial gauge symmetry that vanishes in the unitary gauge. Therefore, it
is expected that, if a localisation of the N4 = 1 rigid supersymmetry is possible, the gauge
parameter can only be ρ, the gauge parameter of the massless spin-3/2 field ϕµ.

To make the analysis as complete as possible, we use as starting point the same defor-
mations of the gauge algebra as in (3.12) for the analysis of the N4 = 2 supergravity. In
doing so, the two gauge parameters ρ and θ with corresponding Grassmann-even ghosts
τ and ζ are treated equally, which allows for a clarification of their roles in the possible
gauging. The differences with (3.12) is that we do not assume the symmetry properties
t∆Ω = −tΩ∆, kΣΩ = kΩΣ provided by the analysis of [45], and we allow the presence of a γ5
matrix as it is present in the global supersymmetry transformations of [33]. We consider
the following list of terms:

aTotal
2 = k1 a

(1)
2 +k2 a

(2)
2 +k3 a

(3)
2 +k4 a

(4)
2 +k5 a

(5)
2 +k6 a

(6)
2 +k7 a

(7)
2 +k8 a

(8)
2 +k9 a

(9)
2

+k10 a
(10)
2 +k11 a

(11)
2 +k12 a

(12)
2 +k12′ a

(12′)
2 +k13 a

(13)
2 +k14 a

(14)
2 +k15 a

(15)
2 , (3.13)

with

a
(1)
2 = ξ⋆µζ̄γµζ ,

a
(2)
2 = ξ⋆µζ̄γµτ ,

a
(3)
2 = ξ⋆µτ̄ γµτ ,

a
(4)
2 = ζ̄⋆γµνζ∇[µξν] ,

a
(5)
2 = ζ̄⋆γµντ∇[µξν] ,

a
(6)
2 = τ̄⋆γµνζ∇[µξν] ,

a
(7)
2 = τ̄⋆γµντ∇[µξν] ,

a
(8)
2 = ζ̄⋆γµζξµ ,

a
(9)
2 = ζ̄⋆γµτξµ ,

a
(10)
2 = τ̄⋆γµζξµ ,

a
(11)
2 = τ̄⋆γµτξµ ,

a
(12)
2 = ϵ⋆ζ̄τ ,

a
(12′)
2 = ϵ⋆ζ̄(iγ5)τ ,

a
(13)
2 = ζ̄⋆ζϵ ,

a
(14)
2 = ζ̄⋆τϵ ,

a
(15)
2 = τ̄⋆ζϵ .

(3.14)
In this list, the deformations a(1)2 , a(4)2 , and a(8)2 are γ-exact, hence, cannot deform the gauge
algebra. These were the deformations studied in [32], that led to two cubic vertices coupling
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the PM spin-2 field to the massive spin-3/2 field. Note that there are only four candidates
in the above list that are in the cohomology of γ : a(3)2 , a(9)2 , a(11)2 , and a

(14)
2 . All the other

ones are γ-exact terms, and thus can be canceled out by field dependent redefinitions of
the gauge parameters. They do not deform the gauge algebra. Nevertheless, in accordance
with the strategy explained in [44], which allows to take the massless limit for the vertices
in the unitary gauge, the γ-exact candidates are considered.

3.4 Deformations of the gauge transformations a1

In this section, we present our results for the solving of the descent equation (3.7) using the
deformations a2 of the gauge algebra as sources. Two cases are possible. The first case is
when the a2 is part of the cohomology of γ. In that case, either we obtain a solution a1 of
the descent equation, or either we obtain an obstruction and the deformation computation
stops. An obstruction is manifest if δa2 gives an element of the cohomology of γ. The second
case is when a2 = γA. In that case there always exists a trivial solution at

1 = δA with at
0 = 0.

Such a solution is not interesting because the theory is not really deformed, a2 and at
1 can

always be canceled out by field dependent redefinitions of the gauge parameters and quadratic
redefinitions of the fields in the quadratic Lagrangian.

However, since we work with massive and partially massless fields in the Stueckelberg
formulation, it is in general possible to obtain an alternative solution a1 that differs from
at
1 by a γ-exact term γc1 plus a term ā1 in the cohomology of γ :

a1 − at
1 = γc1 + ā1 , ā1 ∈ H(γ) . (3.15)

These non-trivial solutions a1 are obtained by making use of the right-hand sides of the
ambiguity relations (3.11) and (3.10), as well as a certain number of integrations by parts.
The term ā1 is a non-trivial deformation of the gauge transformations, that cannot be
removed by field-dependent redefinition of the gauge parameters, and that could lead to
a non-trivial interaction vertex.

At this stage, we obtain that all the non-trivial deformations of the gauge algebra, a(3)2 ,
a
(9)
2 , a(11)2 and a

(14)
2 , are obstructed. Apart from a

(3)
2 , a(9)2 , a(11)2 and a

(14)
2 , all the other

candidates that survive are γ-trivial, hence do not deform the gauge algebra. This means
that, if we find vertices at the next stage, they will be Abelian. Therefore, we can already
conclude that there is no way to localise the rigid supersymmetry carried by the shortest
PM supermultiplet of [33], without adding any extra fields to the spectrum.

As an example, starting from the γ-exact deformation a
(12)
2 = ϵ⋆ ζ̄ τ = γ

(
− 1

mϵ
⋆ χ̄ τ

)
,

we obtain the results

a
(12)
1 = A⋆µ

(
−ψ̄µτ + ϕ̄µζ −

(
ω̃ − λ

2m

)
χ̄γµτ

)
, (3.16)

c
(12)
1 = − 1

m
A⋆µ χ̄ ϕµ, ā

(12)
1 = A⋆µ τ̄ Ψµ . (3.17)

3.5 Non-trivial cubic interaction vertices a0

In this section, we pursue the deformation procedure with the a1 terms that appeared at
the previous stage, coming form the surviving a2 candidates. These a1’s are now used as
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sources for the a0 in equation (3.6). At this level, we can add deformations of the gauge
transformations ā(I)1 solutions of γā(I)1 = 0. Only those ā(I)1 that are nontrivial representatives
of H(γ) will be considered. Such deformations solve (3.7) with an a2 = 0.

For each candidate a1 obtained at the previous section, with ā1 ≠ 0, the goal is to find
a combination α(A)ā

(A)
1 + α(B)ā

(B)
1 + α(C)ā

(C)
1 + . . . of elements ā(I)1 in the cohomology of

γ with coefficients α(I) such that

δ(āT ot
1 ) + γa0 = t.d. ,

āT ot
1 = ā1 + α(A)ā

(A)
1 + α(B)ā

(B)
1 + α(C)ā

(C)
1 + . . . .

(3.18)

Then, to obtain the final result, we define aT ot
1 , which is just a1 but with ā1 substituted

with āT ot
1 ,

aT ot
1 = at

1 + γc1 + āT ot
1 . (3.19)

Injecting aT ot
1 in the descent equation (3.6), we obtain the complete vertex

aT ot
0 = a0 + δc1 . (3.20)

This solution aT ot
0 is a non-trivial deformation provided that a0 ̸= δb. Indeed, if a0 = δb

for some local function b, this means that āT ot
1 = γc. Although āT ot

1 is a sum of elements,
each of which non-trivial in the cohomology of γ, it may happen that the sum is trivial in
the cohomology, because of some cancellations. Therefore, in that case where a0 = δb, the
deformation is trivial and can be removed by field redefinitions.

In the following, we present our results for the only candidates a1 that lead to interaction
vertices a0. We found three vertices denoted a

(12)
0 , a(12

′)
0 and a

(30)
0 .

3.5.1 Interaction vertex a
(12)
0

Starting with the trivial deformation of the gauge algebra a(12)2 = ϵ⋆ ζ̄ τ , we find a deformation
a

T ot(12)
1 of the gauge transformations that gives rise to a vertex a

(12)
0 provided that ω̃ =√

σ(λ2 −m2) vanishes. Explicitly, we have

a
T ot(12)
1 = A⋆µ

(
−ψ̄µ τ + ϕ̄µ ζ + λ

2m χ̄ γµ τ

)
+ ψ̄⋆µ

(
σ′

4 γµρσ τ G
ρσ − σ′

2 γβ τ Gµβ − σ′

6λ ∇µ(γρσ τ Gρσ)
)
,

(3.21)

and
a
(12)
0 = σ′Ψ̄β

(
Gαβ − iγ5(∗G)αβ

)
ϕα + σ′

m
∇νG

νµ χ̄ ϕµ , (3.22)

where we have used that γµνρσ = −iγ5ϵµνρσ and (∗G)µν = 1
2ϵ

µνρσGρσ. This is a new nontrivial
vertex involving a massless spin-3/2 field, a massive spin-3/2 field of mass parameter ω̃ = 0
and a massless spin-1 field. The gauge transformations are deformed, but the gauge algebra
is not. This reproduces a vertex of the N4 = 2 supergravity theory in AdS4, except that here
one of the two spin-3/2 fields is massive — see equation (3.48) of [45].
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3.5.2 Interaction vertex a
(12′)
0

Starting with the candidate a(12
′)

2 = ϵ⋆ζ̄(iγ5)τ , we obtain a consistent vertex, provided that
the mass parameter ω̃ =

√
σ(λ2 −m2) vanishes. Explicitly,

a
T ot(12′)
1 = A⋆µ

(
−ψ̄µ(iγ5)τ + ϕ̄µ(iγ5)ζ −

λ

2mχ̄γµ(iγ5)τ
)

− σ′

2

{
ψ̄⋆ρ

(
γβ(iγ5)τGρβ − 1

2γρ
αβ(iγ5)τGαβ

)
+ χ̄⋆

(
σλ

3mγαβ(iγ5)τGαβ

)}
,

(3.23)

and
a

T ot(12′)
0 = σ′Ψ̄σ(iγ5)

[
Gρσ − iγ5(∗G)ρσ

]
ϕρ + σ′

m
∇νG

νµχ̄(iγ5)ϕµ (3.24)

This is a new non-trivial vertex involving a massless spin-3/2 field, a massive spin-3/2 field with
mass parameter ω̃ = 0 and a massless spin-1 field. The gauge transformations are deformed,
but the gauge algebra is not. The vertex is very similar to the vertex a

(12)
0 above in (3.22).

3.5.3 Interaction vertex a
(30)
0

In this section, we allow several massive spin-3/2 fields to couple to a gauge vector. Such
states can generically appear in the supermultiplets of [35, 60], for example. We therefore
consider the free Lagrangian for N > 1 massive, Majorana spin-3/2 fields ψΩ

µ (Ω = 1, . . . , N)
with diagonal mass matrix ω∆Ω, added to the Lagrangian for a gauge field Aµ with field
strength Gµν :

L0 = −1
2Ψ̄∆

µ γ
µνρ∇νΨΩ

ρ δ∆Ω + 1
2ω∆ΩΨ̄∆

µ γ
µνΨΩ

ν + σ′

4 G
µνGµν . (3.25)

We will not need to impose the mass parameters on the diagonal of ω∆Ω to vanish, therefore
we use the parametrisation that describes the unitary region in AdS4 spacetime: ω∆∆ =√
σλ2 +m2

∆∆ , where the index ∆ is fixed. We consider the following trivial deformation of
the gauge algebra, which is a generalization of a(13)2 in (3.14):

a
(30)
2 = ζ̄⋆

∆ ζΩ ϵ t
∆Ω . (3.26)

This deformation a
(30)
2 can be lifted to a deformation of the gauge transformations, that in

turn can be integrated to a consistent vertex provided ω∆Ω = ωδ∆Ω and t∆Ω = t[∆Ω] . The
resulting deformation of the gauge transformations and the corresponding cubic vertex read

a
(30)
1 = ψ̄⋆α

∆ (ψΩα ϵ t
∆Ω − ζΩAα t

∆Ω) + χ̄⋆
∆ χΩ ϵ t

∆Ω , (3.27)

a
(30)
0 = − 1

m
AαΨ̄∆µνγ

αµνχΩ t
∆Ω − 1

2AνΨ̄∆λγ
ανλΨΩαt

∆Ω . (3.28)

where we recall that Ψ∆
µ = ψ∆

µ − 1
m∇µχ

∆ − ω
2mγµ χ

∆ , and Ψ∆
µν = ∇[µΨ∆

ν] + ω
2 γ[µΨ∆

ν] .
This is, in the Stueckelberg formalism, the well-known minimal coupling of massive

spin-3/2 fields to electromagnetism. The simplest case is N = 2 , where the pair of Majorana
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Rarita-Schwinger field forms a U(1) doublet, a complex Rarita-Schwinger field, and where
one can take the matrix t∆Ω = ϵ∆Ω , the so(2)-invariant symbol.

This problem has an old story, of course [61, 62]. Let us only mention the analyses [63, 64]
that went beyond formal consistency, looking at causality of the models, in particular. There,
general Pauli-type non-minimal couplings of the type (3.22) are added, on top of the minimal
couplings, to ensure the correct number of propagating degrees of freedom. It is of course not
a surprise that, among the 5-parameter family of non-minimal vertices considered in [63, 64],
precisely the ones corresponding to (3.22) (but for equal-mass spin-3/2 fields) emerge on the
account of counting of degrees of freedom. In the Stueckelberg formalism, we see that these
non-minimal couplings appear automatically. It is one of the advantages of the Stueckelberg
formalism, that it naturally account for the correct propagation of degrees of freedom. Note
that in flat space, this coupling was also studied in [65].

3.6 Final results

In this section, we present our final results outside the BRST-BV formalism and in the
unitary gauge, where all the Stueckelberg fields have been eliminated. The procedure to
reach the unitary gauge at first order in deformation is detailed in [32].

3.6.1 Vertices a
(12)
0 and a

(12′)
0

Our two results, applying to the free supermultiplet of [33], and that exist only when ω̃ = 0
are the following. Consider a model composed of one massive spin-3/2 field with mass
parameter ω̃ = 0, one massless spin-3/2 field and one massless spin-1 field, in AdS4 spacetime.
The Lagrangian takes the form

L0 = −1
2 ψ̄µγ

µνρ∇νψρ + σ′

2 ϕ̄µγ
µνρ∇νϕρ −

σ′

2 λ ϕ̄µγ
µρϕρ + σ′

4 G
µνGµν . (3.29)

The action is invariant under the gauge transformations

δ0ϕµ = ∇µρ+ λ

2γµρ , δ0Aµ = ∇µα , δ0ψµ = 0 . (3.30)

Our result is that the deformed action with Lagrangian L0 + L1,

L1 = g(12)σ′ψ̄β

[
Gαβ − iγ5(∗G)αβ

]
ϕα + g(12

′)σ′ψ̄σ(iγ5)
[
Gρσ − iγ5(∗G)ρσ

]
ϕρ , (3.31)

is invariant under the deformed gauge transformations δ0 + δ1, with

δ1Aµ = −g(12)ψ̄µρ− g(12
′)ψ̄µ(iγ5)ρ , (3.32)

δ1ψµ = σ′g(12)
[1

4γµνρ ρG
νρ − 1

2γ
νρGµν − 1

6λ∇µ

(
γρσρGρσ

)]
+ σ′g(12

′)
[1

4γµ
αβ(iγ5)ρGαβ − 1

2γ
ν(iγ5)ρGµν + σ

6λ∇µ

(
γαβ(iγ5) ρGαβ

)]
, (3.33)

δ1ϕµ = 0 . (3.34)

The gauge algebra remains Abelian.
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3.6.2 Vertex a
(30)
0

Consider a model composed of an even number N of massive spin-3/2 fields ψΩ
µ , Ω = 1, . . . , N

of same mass ω and a massless spin-1 field Aµ. This model is defined in (A)dS4. The free
Lagrangian takes the form

L0 = −1
2 ψ̄

Ω
µ γ

µνρ∇νψ
∆
ρ δΩ∆ + ω

2 ψ̄
Ω
µ γ

µνψ∆
ν δΩ∆ + σ′

4 G
µνGµν . (3.35)

The action is invariant under the free gauge transformations

δ0Aµ = ∇µα . (3.36)

Our result is that the action with deformed Lagrangian L0 + L1,

L1 = −g(30) 1
2Aνψ̄∆λγ

ανλψΩαt
∆Ω , t∆Ω = t[∆Ω] , (3.37)

is invariant under the deformed gauge transformations δ0 + δ1 with

δ1ψ
∆
µ = g(30)ψΩµαt

∆Ω , δ1Aµ = 0 . (3.38)

The gauge algebra remains Abelian. We recover of course the well known minimal coupling
between a doublet of Majorana massive spin-3/2 fields and a massless spin-1 field [63–65].

4 Partially massless supergravity vertex

In this section, we push further the analogy with N = 2 pure supergravity around AdS4
by adding at least one extra massless gravitino to the spectrum. We will classify all the
possible deformations of the gauge algebra and obtain a non-Abelian vertex that bears striking
resemblance with the gravitational minimal coupling in N = 2 sugra, except that the role
of the graviton is taken over by the PM spin-2 field.

4.1 Set-up

We consider a free theory consisting of a PM spin-2 field hµν in the unitary gauge and an
unspecified number of massless spin-3/2 fields ϕ∆µ , ∆ = 1, . . . , N , with N > 1 so that at
least two massless gravitini are present, which ensures that one can extract the spectrum of
N = 2 pure supergravity from the total spectrum, recalling that a partially massless spin-2
field decomposes into a massless spin-2 and a massless spin-1 fields in the flat spacetime
limit. The total, free Lagrangian, takes the form

L0 = −1
4KµνρK

µνρ + 1
2K

µKµ − 1
2 ϕ̄

∆
µ γ

µνρ∇νϕ
Σ
ρ δ∆Σ + λ

2 ϕ̄
∆
µ γ

µρϕΣρM∆Σ , (4.1)

where Kµνρ = 2∇[µhν]ρ and Kµ = ḡνρKµνρ , with gauge transformations

δ0hµν = ∇µ∇νπ − σλ2ḡµνπ , (4.2)

δ0ϕ
∆
µ = ∇µρ

∆ + λ

2γµρ
ΣMΣ

∆ . (4.3)
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The mass matrix M∆Σ = diag(±1,±1, . . . ,±1), M∆ΓM
Γ
Σ = δ∆Σ, allows for massless spin-

3/2 fields with opposite mass-like terms. We note that, in order to have an invariance under
the R-symmetry group O(N), one needs M∆Σ to correspond to an invariant tensor of O(N).
The only possibility is M∆Σ = ±δ∆Σ. Therefore, in the case M∆Σ ̸= ±δ∆Σ, the R-symmetry
O(N) is explicitly broken from the start. Note also that for N > 2, say N = 4, we can
construct an M∆Σ ̸= ±δ∆Σ breaking O(4), but that is a direct sum of invariant tensors of
O(2): M∆Σ = ±diag(−1,−1,+1,+1).

As in the previous section, we introduce a ghost field τ∆ associated to each gauge
parameter ρ∆ and a ghost field C associated with the PM gauge parameter π. The set
of all fields and ghost fields is denoted ΦI . To each field ΦI is associated an antifield Φ̃⋆

I

canonically conjugated to ΦI by the BV antibraket defined at (3.4). The complete list of
fields and antifields as well as their BRST differentials are summarized in table 2. The BV
functional of the free theory takes the form

W0[Φ,Φ⋆] = S0 +
∫
d4x

√
−ḡ

(
h⋆µν(∇µ∇νC − σλ2ḡµνC) + ϕ̄⋆µ

∆

(
∇µτ

∆ + λ

2γµτ
ΣMΣ

∆
))

.

(4.4)
The cohomology group of the differential along the gauge orbits γ is

H∗(γ) =
{
f
(
[Φ⋆

I ], [Kµνρ], [ϕ∆µν ], C,∇µC, τ
∆)}

. (4.5)

As already discussed in subsection 3.1, we search for perturbative deformations of the BV
functional at first order, W = W0 + gW1 +O(g2), W1 =

∫
d4x

√
−ḡ (a0 + a1 + a2), by solving

classical master equation (W,W ) = 0 to first order that take form of the descent of equations

δa1 + γa0 = ∇µj
µ
0 , (4.6)

δa2 + γa1 = ∇µj
µ
1 , (4.7)

γa2 = 0 . (4.8)

We recall that the terms of antifield number 2, a2, are deformations of the gauge algebra,
terms of antifield number 1, a1, deformations of the gauge transformations, and terms of
antifield number 0, a0, deformations of the free action.

4.2 Cubic deformations of the gauge algebra

As a starting point, we consider the list of all candidate deformations of the gauge algebra in
the cohomology of γ at pureghost number 2, H2(γ), mixing the PM spin-2 parameter with
the spin-3/2 parameters. The only restriction is that we exclude candidates involving a γ5
matrix that would break parity. There are only three independent terms:

a
(1)
2 = k

(1)
∆Σ τ̄

⋆∆γµτΣ∇µC ,

a
(2)
2 = k

(2)
∆Σ τ̄

⋆∆τΣC ,

a
(3)
2 = k

(3)
[∆Σ]C

⋆τ̄∆τΣ .

(4.9)
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|.| gh afld puregh γ δ

hµν 0 0 0 0 ∇µ∇νC − σλ2ḡµνC 0

ϕ∆
µ 1 0 0 0 −∇µτ

∆ − λ
2 γµτ

ΩMΩ
∆ 0

C 1 1 0 1 0 0

τ∆ 0 1 0 1 0 0

h⋆µν 1 −1 1 0 0 ∇ρK
ρ(µν) − ḡµν∇ρK

ρ + ∇(µKν)

ϕ̄⋆µ
∆ 0 −1 1 0 0 −ϕ̄∆νλγ

µνλ

C⋆ 0 −2 2 0 0 ∇µ∇νh
⋆µν − σλ2h⋆

τ̄⋆
∆ 1 −2 2 0 0 −∇µϕ̄

⋆µ
∆ + λ

2 ϕ̄
⋆µ
Ω γµM

Ω
∆

Table 2. Properties and BRST differentials of every field and antifield.

4.3 Deformations of the gauge transformations

The next step is to use the candidates (4.9) as source for the equation (4.7). We obtain
a solution

a
(1−2−3)
1 = k

(3)
∆Σ

(
2∇µh

⋆µν τ̄∆ϕΣν + λh⋆µν ϕ̄∆µ γντ
ΩMΩ

Σ + λh⋆µν τ̄∆γµϕ
Ω
ν MΩ

Σ
)

+ k
(1)
∆Σ

(
ϕ̄⋆∆

µ γνϕΣµ∇νC − ϕ̄⋆∆
µ γντ

Σhµν + λMΩ
Σ ϕ̄⋆∆

µ ϕΩµC
) (4.10)

under the constraints

{k(1),M} = 0 ,
{k(3),M} = 0 ,

k
(2)
∆Σ = λ k

(1)
∆ΩMΣ

Ω .

(4.11)

This imposes that the matrix M should take the form

M = ±diag(−1, . . . ,−1, 1, . . . , 1) , (4.12)

with an equal number of −1’s and +1’s eigenvalues, with ∆ = 1, . . . , 2n, providing the
matrices k1 and k3 are anti-diagonal. Already, after solving this first equation, we see that
the case M∆Σ = ±δ∆Σ is excluded. In particular, in the case n = 1 (∆ = 1, 2), this means the
R-symmetry is explicitly broken. A consequence of these constraints is also that the minimal
number of spin-3/2 fields is two, thereby excluding any non-Abelian coupling involving one
PM spin-2 and one Majorana massless spin-3/2 field. This result is consistent with the
result obtained in the previous section; it is not possible to render the supersymmetric
transformations of [33] local without introducing additional fields.

4.4 Cubic vertex

We pursue by using the result (4.10) as source for the next equation in the descent (4.6).
In solving (4.6), the solution a1 to the previous equation (4.7) can always be combined
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with deformations ā1 solutions to γā1 = 0 that do not contribute to the gauge algebra.
We find a solution

δ
(
a
(1−2−3)
1 + ā1

)
+ γaPM sugra

0 = t.d. , (4.13)

with
ā1 = b∆Ωϕ̄

⋆∆ργµντΩKµνρ + d∆Ωϕ̄
⋆∆νϕΩµν∇µC , (4.14)

under the constraints

b∆Ω = b(∆Ω) , d∆Ω = −8b∆Ω ,

k
(1)
∆Σ = k

(1)
[∆Σ] = −2λb(∆Ω)MΣ

Ω ,

b(∆Ω) = λk
(3)
[∆Σ]MΩ

Σ .

(4.15)

The resulting interaction vertex is

aPM sugra
0 = b∆Ω

{
− 1

2 ϕ̄
∆
µ γ

µνργαβϕΩρKαβν

− 2ϕ̄∆µ γνδρϕΩδρh
µ

ν − 4ϕ̄∆µ γµνρϕΩδρh
νδ + 2ϕ̄∆µ γµνρϕΩνρh

}
.

(4.16)

Using the symmetry properties of the matrices b∆Ω, this result can be rewritten as

aPM sugra
0 = b∆Ω

{
− 1

2 ϕ̄
∆
µ γ

µνργαβϕΩρKαβν (4.17)

− 2ϕ̄∆µ γνδρ∇δϕρ
Ω hµ

ν − 4ϕ̄∆µ γµνρ∇[δϕρ]
Ω hνδ + 2ϕ̄∆µ γµνρ∇νϕρ

Ω h

}
.

The final deformation of the gauge transformations is

aPM sugra
1 = b∆Γ

{
h⋆µν

(
∇µ

(
− 2
λ
τ̄∆ϕΣν MΣ

Γ
)

+ 2ϕ̄∆ν γµτ
Γ
)

+ ϕ̄⋆∆
ν

(
− 2λγµϕΣν∇µCMΣ

Γ − 2λ2ϕΓνC + 8ϕΓνµ∇µC

+ 2λγµτΣhν
µMΣ

Γ + γµδτΓKµδ
ν
)}

,

(4.18)

and the final deformation of the gauge algebra is

aPM sugra
2 = −2λb∆ΩMΣ

Ωτ̄⋆∆γµτΣ∇µC − 2λ2b∆Στ̄
⋆∆τΣC + 1

λ
b∆ΩMΣ

ΩC⋆τ̄∆τΣ . (4.19)

Comparison with N4 = 2 supergravity Let us compare the PM supergravity cubic
interacting model obtained in this section to the N4 = 2 supergravity model studied in [45]
that shares the same spectrum of helicities (±2,±3/2,±3/2,±1). In subsection 2.1, we
have presented the Stueckelberg formulation of the PM spin-2 field allowing to introduce
a Stueckelberg gauge parameter εµ playing the role of linearised diffeomorphisms. In the
unitary gauge where the Stueckelberg fields are set to zero, εµ is fixed to εµ = − σ

2λ∇µπ,
where π is the gauge parameter of the PM spin-2 field. In the following, we are going
to compare the deformations of the gauge algebra, gauge transformations, and finally the
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interaction vertex of N4 = 2 supergravity obtained in [45] with the results of the present
paper. In light of the Stueckelberg formulation of the PM spin-2 field, we identify ∇µC in
the partially massless case as a diffeomorphism ghost ξµ in N4 = 2 supergravity. The ghost
field C in the partially massless case is now replaced by the U(1) ghost ϵ for the massless
vector gauge field in N4 = 2 supergravity.

We begin by the deformation of the gauge algebra (4.19) that we compare to the
corresponding gauge algebra of N4 = 2 supergravity given at equation (3.12). The three
algebra terms of the PM supergravity algebra (4.19) are present in (3.12), but asugra

2 has two
supplementary terms. In one term the diffeomorphism BV-antifield ξ⋆

µ appears, and in the
other the diffeomorphism ghost appears through ∇[µξν]. The first represents the commutator
of two gauge supersymmetry transformations that gives a local diffeomorphism, and the
second represents the commutator of a supersymmetry transformation and a local Lorentz
transformation. The first term is absent because there is no way to represent ξ⋆

µ within the
PM supergravity framework. The second term is absent because ∇[µξν] vanishes identically
when ξµ is interpreted as ∇µC. Therefore, we conclude that the PM supergravity gauge
algebra (4.19) is as close as possible to (3.12).

Let us rewrite the cubic results obtained in [45] for the gauge transformations of the
N4 = 2 supergravity in AdS4 with the same method:

asugra
1 = α3/2 k∆Ω

[
− h⋆µν ϕ̄∆µ γντ

Ω + ϕ̄⋆∆ργµνϕ
Ω
ρ ∇[µξν] − ϕ̄⋆∆ργµντΩ∇[µhν]ρ

+ λ ϕ̄⋆∆µγντΩhµν − 2λϕ̄⋆∆µγνϕ
Ω
µ ξ

ν − 8ϕ̄⋆∆µϕΩµνξ
ν
]

+ y t∆Ω

[
− 2A⋆µϕ̄∆µ τ

Ω − 2λϕ̄⋆∆µ(ϕΩµ ϵ− τΩAµ) − 1
2 ϕ̄

⋆∆
µ Fρσγ

ρσγµτΩ
]
.

(4.20)

Here, the two spin-3/2 fields denoted ϕ∆µ have a trivial mass matrix M∆Ω = ±diag(1, 1), hµν

stands for a massless spin-2 field with diffeomorphism ghost ξµ, and Aµ stands for a massless
vector field with ghost ϵ. In light of the Stueckelberg formulation of the PM spin-2 field, we
recall that we identify a ξµ in supergravity as a ∇µC in the partially massless case. All terms
in the first and second lines of (4.20) are present in (4.18), except the term in ∇[µξν] that
is identically zero in the partially massless case where ξµ is identified a ∇µC. In the last
line of (4.20), the only term in which the massless spin-1 is not involved is present in (4.18).
In fact, the only term present in the PM supergravity model and not in (4.20) is the first
term on the first line of (4.18). Notice that this term has the form ∇(µξ̃ν) of a particular
linearised diffeomorphism transformation of parameter ξ̃µ = − 2

λb∆Γτ̄
∆ϕΣµMΣ

Γ.
We pursue by comparing the PM supergravity interaction vertex (4.17) with the interac-

tion vertex of N4 = 2 supergravity obtained in [45]. The interaction vertices are very similar,
but there are three main differences. First, in (4.17), the helicity-1 modes are enclosed in the
PM spin-2 field. Then, the PM sugra vertex in (4.17) does not contain any term proportional
to λ. Finally, the symmetric matrix that contracts the ∆ indices of the spin-3/2 fields is differ-
ent. In the case of N4 = 2 supergravity in AdS4, this matrix is proportional to the Kronecker
delta δ∆Ω, while in (4.17) the matrix b∆Ω is symmetric and anti-diagonal. This means that the
partially massless supergravity vertex (4.17) contains only cross terms of the type “ϕ1ϕ2h”,
while the supergravity vertex contains only diagonal terms of the type “ϕ1ϕ1h+ ϕ2ϕ2h”.
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4.5 Final result

In this subsection, we rewrite and comment the obtained results without reference to the
BRST-BV formalism. The Lagrangian at first order in deformation reads

LPM sugra = L0 + L1 , (4.21)

with

L0 = −1
4KµνρK

µνρ + 1
2K

µKµ − 1
2 ϕ̄

∆
µ γ

µνρ∇νϕ
Σ
ρ δ∆Σ + λ

2 ϕ̄
∆
µ γ

µρϕΣρM∆Σ , (4.22)

and

L1 = b∆Ω

{
− 1

2 ϕ̄
∆
µ γ

µνργαβϕΩρKαβν

− 2ϕ̄∆µ γγβρ∇βϕρ
Ωhµ

γ − 4ϕ̄∆β γβγρ∇[δϕρ]
Ωhδ

γ + 2ϕ̄∆β γβγρ∇γϕρ
Ωh

}
.

(4.23)

We have shown that this interaction vertex is equivalent to the one obtained at equation (74)
of [48]. At this order, this interacting model is invariant under gauge transformations

δhαβ = ∇α∇βπ − σλ2ḡαβπ

+ b(∆Γ)

(
∇(α

(
− 2
λ
ϕ̄∆β)ρ

ΣMΣ
Γ
)

+ 2ϕ̄∆(αγβ)ρ
Γ
)
, (4.24)

δϕ∆β = ∇βρ∆ + λ

2γ
βρΣMΣ

∆

+ b∆Γ
(
− 2λγαϕΣβ∇απMΣ

Γ − 2λ2ϕΓβπ + 8ϕΓβα∇απ

+ 2λγαρΣhβ
αMΣ

Γ + γαγρΓKαγ
β
)
. (4.25)

The gauge algebra takes the form

[δρ⃗, δζ⃗
]hαβ = ∇α∇βπ̃ − λ2ḡαβπ̃ + O(b2) , (4.26)

[δπ, δρ⃗]ϕ∆α = ∇αρ̃
∆ + λ

2γαρ̃
ΣMΣ

∆ + O(b2) , (4.27)

[δπ, δρ⃗]hαβ = O(b2) , [δρ⃗, δζ⃗
]ϕ∆α = O(b2) , (4.28)

with

π̃ = 2
λ
ζ̄∆ρΣb∆ΓMΣ

Γ , (4.29)

ρ̃∆ = b∆Γ(2λγαρΣ∇απMΣ
Γ + 2λ2ρΓπ) . (4.30)

Rather suggestively, after a rescaling b∆Ω → −1
8b∆Ω, the action with quadratic and cubic

terms can be rewritten as the truncation up to (and including) the cubic order of

SPM sugra =
∫
d4x ē

(
−1

4KµνρK
µνρ + 1

2K
µKµ

)
+

∫
d4xE∆

Ω
(
−1

2 ϕ̄
∆
µ γ

abcϕ̃νρΠ

)
(Eµ

a )ΩΘ(Eν
b )ΘΓ(Eρ

c )ΓΠ ,
(4.31)
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with
(Gµν)Ω∆ ≡ (Ea

µ)ΩΘ(Eaν)Θ∆ = ḡµνδΩ
∆ + hµνbΩ

∆ ,

(Ea
µ)Ω∆ = ēa

µδΩ
∆ + 1

2 ē
aνhνµbΩ

∆ ,

(Ea
µ)Ω∆ = ēa

µδΩ
∆ − 1

2 ēaνh
νµbΩ

∆ ,

EΩ
∆ = ēδΩ

∆ + 1
2 ēhbΩ

∆ ,

ϕ̃∆µν = ∇̃[µϕν]
∆ + λ

2γc(Ec
[µ)ΓΩ ϕΓν]MΩ

∆ ,

∇̃µϕ
∆
ν = ∇µϕν

∆ − 1
4∇αhβµγ

αβϕΩν bΩ
∆ .

(4.32)

This first order interacting model has the form of a gravitational minimal coupling, but
where the role of the graviton is taken over by the partially massless spin-2 field. Compared
to conventional minimal coupling in General Relativity, the partially massless spin-2 field
is accompanied by the symmetric anti-diagonal matrix bΩ

∆ such that all the first order
interactions terms are cross terms. Remark that (4.31) contains all the corrections analogous
to the gravitational minimal coupling, including corrections to the mass-like part of the spin-
3/2 Lagrangian proportional to λ. However, the sum of all the first-order terms proportional
to λ is identically zero using the symmetry properties of the matrices bΩ∆ and bΩ

ΓMΓ
∆,

in agreement with (4.23).

4.6 Global symmetries of the free model

From the result of this first-order deformation computation, we can deduce global symmetries
of the free Lagrangian. Consider global parameters π̌∆ and ρ̌ solutions to δ0ϕ

∆
µ = 0 and

δ0hµν = 0:

∇β ρ̌∆ + λ

2γ
β ρ̌ΣMΣ

∆ = 0 , (4.33)

∇α∇βπ̌ − λ2ḡαβπ̌ = 0 . (4.34)

Equation (4.33) defines Killing spinors of the AdS4 background. Moreover, if π̌ is a solution
to (4.34), then ξ̌µ = ∇µπ̌ satisfies the conformal Killing equation [1, 66, 67]

∇µξ̌ν + ∇ν ξ̌µ = 1
2 ḡµν∇ρξ̌ρ , (4.35)

and defines ξ̌µ as a conformal Killing vector of the AdS4 background. Evaluating the first
order gauge invariance equation

δ0L1 + δ1L0 = 0 , (4.36)

on global parameters π̌ and ρ̌∆, we obtain δ̌1L0 = 0, meaning that the first-order gauge
transformations evaluated on global parameters define new symmetries of the free action
with Lagrangian (4.22). First, we obtain global fermionic transformations that mix the
bosonic and fermionic sectors:

δ̌ρ̌hαβ = b∆Γ

(
− 2
λ
∇(α(ϕ̄∆β)ρΣMΣ

Γ) + 2ϕ̄∆(αγβ)ρ
Γ
)
, (4.37)

δ̌ρ̌ϕ
∆β = b∆Γ

(
+ 2λγαρ̌Σhβ

αMΣ
Γ + γαγ ρ̌ΓKαγ

β
)
. (4.38)
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As expected, these transformations are very similar to the N4 = 1 supersymmetry transfor-
mations obtained in [33] at equation (5.18) with a different spectrum. Second, we obtain a
symmetry that mixes the spin-3/2 sector of (4.22) along a conformal Killing vector ξ̌µ = ∇µπ̌.
Up to a free gauge transformation δ̃0ϕ

∆β of free gauge parameter ρ̃∆ = b∆Γϕ
Γαξ̌α, this

symmetry takes the form

δ̌π̌ϕ
∆
µ = b∆Γ

(
− ξ̌ν∇νϕ

Γ
µ − λ ξ̌νγνϕ

Σ
µMΣ

Γ + λ γµξ̌
νϕΣν MΣ

Γ − 3
2 λ

2 ϕΓµπ̌

)
+δ̃0ϕ∆µ . (4.39)

This is very close to the recently derived conformal-like symmetry of the massless Dirac
spin-3/2 field in dS4 spacetime, see equation (6.21) of [68].3 We leave the study of the
commutators of these global symmetries for future work.

5 Obstruction to second order, a road to conformal supergravity

At this stage, we have obtained a consistent cubic deformation WPM sugra
1 of the BV functional

W [ΦI ,Φ∗
I ] = W0 + W1 + W2 + . . . up to first order in the coupling constants. The local

functional we obtained, WPM sugra
1 =

∫
d4x

√
ḡ (a0 + a1 + a2), satisfies (W0,W1) ≡ sW1 = 0

and is not s-exact in the space of local functionals.
To second order in the deformation, the BRST-BV master equation (W,W ) = 0 takes

the form

sW2 = −1
2(W1,W1) . (5.1)

Once W2 is expanded in antifield number, W2 =
∫
d4x

√
ḡ (b0 + b1 + b2), one obtains the

descent of equations

δb1 + γb0 = −(a1, a0) + ∇µt
µ
0 , (5.2)

δb2 + γb1 = −1
2(a1, a1) − (a2, a1) + ∇µt

µ
1 , (5.3)

γb2 = −1
2(a2, a2) + ∇µt

µ
2 . (5.4)

To solve this descent of equations for the triplet (b0, b1, b2), one starts with (5.4) to be solved
for b2, using as a source the quantity a2 that was obtained at previous order. In the particular
case of the final a2 of this section, see (4.19), the computation of the antibracket (a2, a2)
leads to obstructions Oi to the existence of b2, in the form

O1 = 8λ2b∆ΩMK
ΩbΓ

KMΘ
Γτ̄⋆∆γµντΘ∇µC∇νC , (5.5)

O2 = 16λ3b∆ΩMΠ
ΩbΣ

Πτ̄⋆∆γµτΣ∇µCC , (5.6)
O3 = −8b∆ΩMΠ

ΩbΓ
ΠMΣ

ΓC⋆τ̄ (∆γµτΣ)∇µC , (5.7)
O4 = −4λb∆ΣbΓΩMΘ

Ωτ̄⋆∆τΣτ̄ΓτΘ , (5.8)
O5 = 4λbΓΘb∆ΩMΣ

Ωτ̄⋆∆γµτΣτ̄Γγµτ
Θ . (5.9)

Unless one trivially sets the deformation structures b∆Ω to zero, thereby setting W1 to
zero, there is no way to make these obstructions vanish. This implies that the first-order

3The authors thank Vasileios Letsios for fruitful discussions on this subject.
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deformation cannot be pushed to the next order in interactions. These obstructions signal a
failure to the Jacobi identity for the gauge algebra to be satisfied.

The model considered so far contains the same spectrum of fields as the one of N4 = 2
pure supergravity in AdS4, a theory that has been studied in [45] with the same cohomological
techniques as the ones we have been following here. We recall that the on-shell spectrum of
helicity modes of this model is {±2,±3/2,±3/2,±1} . This is a remarkable point indeed, that
motivated our investigations of the couplings between a PM spin-2 field with two massless
gravitini around AdS4. We recall that the PM spin-2 field contains, in his decomposition in
helicity modes in the flat limit λ → 0, a massless spin-2 field as well as a massless spin-1
field, accounting for the helicity modes (±2,±1) .

A noticeable difference between N4 = 2 pure sugra and the PM model we found up to
cubic order is that, in the latter, the coupling between the spin-1 and the spin-3/2 modes is
fixed by the coupling of the spin-2 modes with the spin-3/2 modes, while in the perturbative
reconstruction of N4 = 2 pure sugra around the free model around AdS4, at cubic order one
still has the freedom in the coupling constants between the gauge vector and the rest of the
spectrum. In other words, all the coefficients in the vertex (4.23) are already fixed at cubic-
order, which means that the spin-1 modes are fixed to interact with the other modes, in a way
that is not free to choose. By contrast, in N4 = 2 supergravity the coefficients in the vertices
involving the spin-1 sector are fixed by the consistency relations imposed at second order.

A possible way out to cure the obstructions (5.5)–(5.9) we encountered in building a
partially massless supergravity theory is the addition of a massless spin-2 field and a massless
spin-1 field to the spectrum, that bring respectively the diffeomorphism ghost ξµ and the U(1)
ghost ϵ into the BRST spectrum. The total deformation a2 of the gauge algebra now reads

a2 = aPM Sugra
2 + aEH

2 + aWeyl
2 + asugra

2 + aR
2 , (5.10)

where the algebra deformation aPM Sugra
2 is given in (4.19) and with

aEH
2 = κ ξ⋆µξν∇[µξν] , (5.11)

aWeyl
2 = αWeyl (2C⋆∇µC ξµ − λ2

2 ξ
⋆µC∇µC) , (5.12)

asugra
2 = 1

4k
1
∆Ωξ

⋆µτ̄∆γµτ
Ω + k2∆Ωτ̄

⋆∆γµντΩ∇[µξν] − 2λk3∆Ωτ̄
⋆∆γµτΩξµ , (5.13)

aR
2 = q1∆Ωϵ

⋆τ̄∆iγ5τ
Ω + 2λq2∆Ωτ̄

⋆∆iγ5τ
Ωϵ . (5.14)

The term aEH
2 is the Einstein-Hilbert cubic deformation of the diffeomorphism algebra that

uniquely leads to General Relativity [49]. The second deformation, aWeyl
2 , is the cubic

deformation that mixes the gauge parameters of the massless and partially massless spin-
2 fields. This deformation leads to conformal gravity at cubic order around the AdS4
background. Indeed, the spectrum of conformal gravity linearised around (A)dS4 spacetime
is a massless spin-2 with a relatively ghostly partially massless spin-2 field [1]. In [31], it
is proved that the relative sign and coefficients between aEH

2 and aWeyl
2 are fixed by the

consistency conditions at second order.
The third deformation asugra

2 is a supergravity gauge algebra deformation that leads to
cubic interactions between the massless spin-2 field and the two massless gravitini. Finally,
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the deformation aR
2 is an algebra deformation that leads to cubic interactions between the

massless spin-1 and spin-3/2 fields.
Considering that the two massless gravitini have opposite signs in front of their respective

mass-like terms in the quadratic Lagrangian, we showed that the deformations asugra
2 and aR

2
are consistently giving rise to linear (in the fields) gauge transformation laws, and to cubic
vertices. The details of the complete analysis of the gauge algebra deformations (5.11)–(5.14)
to cubic and quartic order will be presented elsewhere, together with the values of the
constants k1∆Ω, k

2
∆Ω, k3∆Ω, q1∆Ω, and q2∆Ω.

The structure of the candidate asugra
2 is based on the general form of the gauge algebra

deformation (3.12) leading to N4 = 2 pure supergravity [45]. One observes that algebra
deformation candidate (5.10) contains the structures for all the commutators and anticom-
mutators of the N4 = 1 superconformal algebra su(2, 2|1), see for instance [34, 37]. We have
shown, in the case ∆ = 1, 2, that they produce obstruction terms in (a2, a2) that combine
with (5.5)–(5.9). In fact, the more than thirty obstruction terms in (a2, a2) remarkably
cancel if a set of four independent quadratic equations on the four free constants b∆Ω, κ,
k1∆Ω and q1∆Ω are satisfied. However, these four equations cannot all be satisfied at the same
time, and a family of obstructions always survives. Therefore, the cubic PM supergravity
model remains obstructed at quartic order.

This result contrasts with a consistent non-Abelian theory around AdS4 that involves
a PM spin-2 field and spin-3/2 fields that we expected to recover: N4 = 1 pure conformal
supergravity [36, 37]. The spectrum of this theory expanded around AdS4 is

• one massless spin-2 field,

• one partially massless spin-2 field,

• two massless, real spin-3/2 fields,

• one massive, real spin-3/2 field, and

• one massless vector.

Remarkably, this spectrum is the same as the one considered to cure the obstructions (5.5)–
(5.9). The spectrum of conformal (Weyl) gravity around AdS4 had already been found in [1]
while the fermionic sector of N4 = 1 pure conformal supergravity can be found in [34, 35].
From section 4 and appendix C of [35] where N = 2 conformal supergravity is considered,
discarding the Yang-Mills, matter supermultiplets and extra smax = 3/2 multiplets that
appear once coupled to gravity when N > 1, see e.g. [69] section 6, one can retrieve4 the
spectrum and conformal dimensions of the various fields of pure N4 = 1 conformal supergravity
expanded around AdS4. The result is summarized in table 3 where we added in the last line
the number of physical degrees of freedom of the corresponding fields.

4From the Lagrangian and tables 1 and 2 of [35], where the Einstein-Hilbert sector was added, one should
formally take the limit GN → ∞ in their parameter δ = 1

2 + 1
2

√
1 + L2

8πGN (c1−c2) so as to decouple the
Einstein-Hilbert sector and only consider the higher-derivative terms (with coefficient c1 − c2 therein) of pure
conformal supergravity.
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s 2 2 3/2 3/2 3/2 1
∆ 3 2 5/2 5/2 3/2 2

#d.o.f. 2 4 2 2 4 2

Table 3. Set of fields of pure conformal supergravity expanded around AdS4, with the conformal
dimensions and number of physical degrees of freedom

Considering the gauge-fixed equation (□− λ2m2)φs = 0 around AdS4, where one has
the mass formula m2

∆,s = ∆(∆ − 3) − s for bosonic fields and m2
∆,s = ∆(∆ − 3) − s − 1

4
for fermionic fields,5 one can see that

• the field of spin-2 and conformal dimension ∆ = 3 in table 3 satisfies the linearised
gauge-fixed field equation (□ + 2λ2)φµν = 0. This is the massless graviton with its two
physical degrees of freedom;

• the field of spin-2 and conformal dimension ∆ = 2 in table 3 satisfies the linearised
gauge-fixed field equation (□ + 4λ2)hµν = 0. This is the partially massless spin-2 field
with its four physical degrees of freedom;

• the two fields of spin-3/2 and conformal dimension ∆ = 5/2 in table 3 satisfy the
linearised gauge-fixed field equation (□ + 3λ2)ϕµ = 0. These are two massless gravitini
with their two physical degrees of freedom, where the field equation is recovered
from (2.19) with m2 = 0;

• the field of spin-3/2 and conformal dimension ∆ = 3/2 in table 3 satisfies the linearised
field equation (□ + 4λ2)ψµ = 0 which coincides with the equation (2.19) when ω = 0,
the massive fields ψµ that enter the vertex (3.31). This is a massive gravitino with its
four physical degrees of freedom with helicities (±3/2,±1/2) in the flat limit;

• finally, the field of spin-1 and conformal dimension ∆ = 2 in table 3 satisfies the
linearised gauge-fixed field equation (□ + 3λ2)Aµ = 0. This is a massless vector field
with its two physical degrees of freedom.

It was found in [1] that the first two spin-2 fields in the list above make up the spectrum of
Weyl (conformal) gravity around AdS4. At the level of the linearised Lagrangian around AdS4
background, suitable field redefinitions allow one to decompose the action of a Weyl-invariant
spin-2 field into the sum of the Fierz-Pauli Lagrangian for a massless spin-2 field minus
the Lagrangian for a PM spin-2 field, with the relative sign expressing the non-unitarity
of the model [27, 28, 74, 75].

In the case of the Weyl invariant spin-3/2 field that is part of the spectrum of N4 = 1
conformal supergravity [34], it is not known whether it is possible to decompose the linearised
Lagrangian around AdS4 into a sum or difference of ordinary Rarita-Schwinger Lagrangians
for the spin-3/2 helicity modes in table 3. This question has been addressed in flat spacetime

5A complete analysis in arbitrary dimension is given in [70–72], together with original references for the
special case of so(2, 3) that we consider here. See also [73] for a review in both de Sitter and anti de Sitter.
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in [74], but not in AdS background, to the best of our knowledge. We hope to return to
this question in the near future.

We recall that the cubic PM supergravity vertex (4.23) is based on the sum of two
Rarita-Schwinger Lagrangian densities with opposite mass-like terms (4.22). Therefore, this
vertex can only be part of conformal supergravity if one assumes that the Lagrangian of a
conformal spin-3/2 field can be decomposed into a sum or a difference of Rarita-Schwinger
Lagrangians such that (4.22) describes the two massless spin-3/2 modes of table 3. However,
whether this decomposition is possible or not around the AdS background has not yet been
studied, to the best of our knowledge. If this decomposition is not possible, this would mean
that our vertex (4.23) cannot be part of the conformal supergravity Lagrangian, in agreement
with the inconsistency of our vertices at quartic order.

6 Conclusions

In this paper, we have made a detailed study of the possible interactions between a partially
massless spin-2 field and spin-3/2 fields, massless and massive. The motivation behind our
work is partly based on the paper [33] where a minimal partially massless supermultiplet
around AdS4 was found that contains the three types of fields cited above, plus a gauge vector.
The findings of [33] stimulates the search for a partially massless supergravity model that
would gauge the rigid supersymmetry carried by the supermultiplet. Our results show that
the presence of the massless spin-3/2 field of the PM supermultiplet is not enough to localise
the rigid supersymmetry: there is no way to make local the global supersymmetry algebra
represented on the minimal PM supermultiplet of [33] without introducing extra fields. On
the way to this result, we found two vertices that couple the massive and massless spin-3/2
fields to the gauge vector of the PM supermultiplet, in a way that deforms the Abelian gauge
transformations of the free theory, but not the gauge algebra that remains Abelian.

In order to search for a non-Abelian model where the PM spin-2 field would not remain
sterile, we took advantage of the observation that the spectrum of N = 2 pure supergravity
around AdS4 is identical to the set of fields {hµν , ϕ

∆
µ }, ∆ = 1, 2, where hµν is the partially

massless spin-2 field and {ϕ∆µ }, ∆ = 1, 2 a doublet of massless gravitini, and classified all
the possible non-Abelian deformations of the gauge algebra which can lead to a deformation
of the Lagrangian. We found the existence of a single non-Abelian vertex, that coincides
with the vertex recently presented in [48], in a different formalism and using different field
representations. In the representation we use where the two massless gravitini are Majorana
spinors, we showed a very suggestive analogy between this vertex and the minimal coupling
in N = 2 pure supergravity, except that now, the role of the graviton is taken over by the
partially massless spin-2 field. This vertex is a candidate for a partially massless supergravity.

We pushed our analysis to second order in deformation, at the level of the Jacobi identity
for the gauge algebra, and showed that the non-Abelian partially massless supergravity
vertex (4.23) is obstructed. We then added a massless graviton to the spectrum with
its corresponding diffeomorphism gauge parameter, and argued that this addition could
potentially be sufficient to cure the obstruction to the Jacobi identity of the resulting gauge
algebra, that now includes diffeomorphisms. The final spectrum of fields coincides with the
spectrum of N = 1 pure conformal supergravity around AdS4, therefore viewed as the only
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consistent (although non-unitary at the classical level) and non-Abelian theory for what one
could call partially massless supergravity. However, the complete analysis at quartic order,
that will be presented elsewhere, reveals that the model is still obstructed at quartic order
with the free Lagrangian considered in section 4.1, where the two gravitini are decoupled.
We are therefore unable to recover N = 1 pure conformal supergravity starting from the
free Lagrangian and mass-like matrix used in section 4.1. We intend to study the consistent
interactions between a PM spin-2 and a conformal spin-3/2 field in the future to clarify
this point and to uncover the form of the PM supergravity model enclosed in N = 1 pure
conformal supergravity.

In this work, as long as there was at least one massless Majorana spin-3/2 field in the
spectrum, the background considered was AdS4 with its negative cosmological constant. On
the other hand, the results we obtained on the coupling of massive spin-3/2 fields with a
vector gauge fields were valid in both AdS4 and dS4 backgrounds. The relations we made
with conformal supergravity stimulates us to consider an expansion of that theory around
dS4, using the recent findings and spinor field representations of [68, 76, 77]. In fact, it is
probably not a coincidence that we recuperated the rigid conformal transformation of one
of these works, as our findings suggest that the closure of the transformations laws (4.39),
very close to those found in [68], should lead to a representation of the superconformal
algebra. We hope to pursue our investigations along those lines in the future, and investigate
to which extend and with which field representation for the spinor fields one can expand
N = 1 conformal supergravity around dS4.
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