Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 59-1 (2025) 397402

Mathematical Modeling of Photosynthetic
Eukaryotic Microorganisms Using

Metabolic Networks
M. Maton* A. Vande Wouwer *

* Systems, Estimation, Control and Optimization (SECO) Laboratory,
University of Mons, Mons 7000, Belgium.

Abstract: Metabolic modeling is a powerful tool for understanding microbial metabolism and
is particularly appealing to a wide range of applications, from biotechnology and medicine to
environmental science and sustainability. In that context, the elaboration of metabolic networks
is essential despite the challenges underlying their reconstruction. While the development
of genome-scale networks is computationally costly, small networks are often oversimplified,
limiting their use in industrial applications. For this purpose, this paper suggests a method to
identify metabolic networks of intermediate size by combining biological knowledge and a series
of constraint-based methods in an iterative strategy allowing the refinement of the network
definition. The present study focuses on the mathematical modeling of photosynthetic eukaryotic
organisms and leads to a detailed network including energy aspects such as the proton motive
force. The procedure is effective, yielding promising results while metabolic analyses provide

consistent predictive capabilities of the network, in concordance with existing studies.
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1. INTRODUCTION

Photosynthetic eukaryotic cells are of huge importance
both ecologically and economically and play key roles in
energy production, oxygen generation, carbon cycling, and
supporting biodiversity. For instance, Tisochrysis lutea is
a species of microalgae which is a primary producer in ma-
rine ecosystems ; Chlorella species are green algae widely
recognized for their potential biotechnological applications
and nutritional value (rich in proteins, vitamins, minerals
and essential fatty acids) ; and Botryoccoccus braunii is
a species of green microalgae able to produce renewable
biofuels and other valuable hydrocarbons, making it a key
organism for sustainable energy solutions. With such im-
pressive advantages, photosynthetic eukaryotic organisms
have become one of the preferred choices for a sustainable
photobiological cell factory.

Mathematical modeling of microbial metabolism is a cru-
cial aspect of biotechnology, system biology and medicine
and is extensively used in industrial, environmental and
medical applications. In this context, metabolic modeling
is becoming a powerful tool to understand, predict and
optimize the complex metabolic processes of microorgan-
isms (Stephanopoulos et al., 1998) and the elaboration of
metabolic networks is required. However, the identifica-
tion of such networks is not an easy task since they are
highly interconnected making their reconstruction time-
consuming and their analyses computationally intensive.
Besides, it requires integrating high-quality, reliable and
available data from genomics, transcriptomics, proteomics
and metabolomics and an iterative process of model re-
finement is needed to ensure their accuracy and predictive

capability, comparing model predictions with experimental
observations.

In metabolic modeling, the size of the network is of cru-
cial importance, since it impacts both the model’s overall
complexity and the dimensionality of the solution space.
For this reason, the elaboration of metabolic networks
of appropriate size, that is large enough to cover the
whole metabolism of the cell but small enough to avoid
high computational resources, is still a major research
focus. On the one hand, the advances in sequencing tech-
niques and genome annotation methods have enabled the
development of genome-scale metabolic models (Covert
et al., 2001; Price et al., 2003; Reed and Palsson, 2003).
Nevertheless, to ensure network consistency and compre-
hend metabolic interactions within cellular networks, ex-
amination of the structural and topological properties of
metabolic networks is needed (Klamt et al., 2003). Frame-
works based on convex analyses have been developed and
methods based on a series of constraints that govern the
operation of the network at steady-state have emerged.
Among the realm of methods, flux balance analysis (FBA)
and flux variability analysis (FVA) are popular approaches
as well as techniques relying on extreme pathways and
elementary modes to assess the network robustness (Schus-
ter and Hilgetag, 1994; Schilling et al., 2000; Orth et al.,
2010). The latter methods are effective but can become
computationally costly because of the size of the network.
On the other hand, small-size metabolic networks have
been deduced to facilitate the analyses and the application
of control strategies. These smaller networks are based on
biological knowledge and focus only on the main metabolic
functions of microorganisms (Provost and Bastin, 2004;
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Zamorano et al., 2013; Fernandes de Sousa et al., 2016).
However, such models are often oversimplified and impor-
tant metabolic interactions are omitted.

Regarding the modeling of photosynthetic eukaryotic cells,
genome-scale metabolic models have been reconstructed in
the recent years (Zuniga et al., 2016; Loira et al., 2017)
and smaller models have emerged (Baroukh et al., 2014,
2017; Assis Pessi et al., 2023). However, while the genome-
scale networks are difficult to manage (several thousand
reactions), the smaller networks (around a hundred reac-
tions) lack of biological realism and have a limited predic-
tive power. In such cases, the development of a mid-size
network is attractive, so that the metabolic model can be
applied to a wider range of biological questions (broader
scope of applications).

For this purpose, this study proposes a method for the
elaboration of a mid-size metabolic network structure,
typically comprised of a couple hundred reactions, which
is detailed enough to capture the complexity of the cel-
lular metabolism, yet remains straightforward to analyze
at the process level. The methodology is iterative and
consists of combining biological knowledge and mathemat-
ical methods, using in-silico data to quantify intracellular
mechanisms and refine the network definition. The original
aspect of this study lies in the combination and sequential,
iterative exploitation of mathematical methods, as illus-
trated in Fig. 1, which will be detailed in the sequel of the
article. The procedure leads to a metabolic network com-
posed of 166 metabolites and 192 reactions that includes
energy aspects, barely outlined in existing studies.

The paper is organized as follows. Sec. 2 presents the mod-
eling procedure and details the algorithmic scheme of the
mathematical methods. Sec. 3 focuses on the modeling of
photosynthetic eukaryotic organisms. Sec. 4 discusses the
results using in-silico data under different light regimes.
Finally, conclusions are drawn in Sec. 5.

2. METHOD

The modeling procedure is depicted in Fig. 1. First, an ini-
tial set of metabolic reactions must be selected. The main
metabolic pathways are common for most microorganisms
and can be found in literature and biochemistry textbooks
(Nelson and Cox, 2008). At this point, genomic studies
may be very useful to detect specific metabolic functions
and identify the corresponding intracellular reactions, if
available. However, to reduce the network’s dimensionality
and complexity, lumping techniques must be applied. In
this case, lumping involves nothing but grouping similar
chemical species or reactions into a single entry to simplify
the mathematical modeling (Martinez, 1990).

Furthermore, the reversibility of chemical reactions needs
to be analyzed to ensure the consistency of the network.
This issue is often bypassed in most studies dealing with
mathematical modeling. However, as it will be discussed
in the following sections, reactions reversibility can have
a massive influence on metabolic analyses’ outcomes. De-
termining whether a reaction is reversible involves several
considerations, such that thermodynamics, kinetics and
physiological context. In this study, the standard free en-
ergy change AG is used and depends on the actual concen-
trations of reactants and products as well as the temper-
ature prevailing during the reaction. In that respect, the
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Fig. 1. Methodology and algorithmic scheme of the math-
ematical methods to get mid-size metabolic networks

reaction tends to proceed in the forward direction when
AG is large and negative, in the reverse direction when
AG is large and positive and the reaction is considered as
reversible if this quantity is small and close to zero. In this
work, reactions reversibility is stated on the basis of AG
but also on the enzyme regulation, i.e. the enzymes capa-
bility to catalyze a reaction in both directions depending
on cellular conditions. The latter information can be found
using the enzyme database BRENDA.

At this stage, a first set of metabolic reactions is gathered
into a matrix representation /N defining the stoichiometric
matrix of the metabolic network. It is a m X n matrix
where m represents the number of metabolites and n
corresponds to the number of metabolic reactions ; N;;
is related to the stoichiometry of the metabolite i taking
part in the j** reaction.

As mentioned previously, the original aspect of the pro-
cedure lies in the use of mathematical methods in a se-
quential and iterative way while ensuring the consistency
of the network. The latter are explained below and then,
an application of the workflow is proposed in Sec. 3. Note
that the use of the lumping techniques and the study of
reactions reversibility are not the main focus of this article
and will be described in future research papers.

2.1 Elementary Mass Conservation

Network consistency involves elementary mass conserva-
tion. For this purpose, a variable z is defined and rep-
resents the total number of relevant atoms involved in
the metabolic reactions and taking part in the cellular
metabolism. Based on the mass balance principle and
considering the influence of dilution due to cell growth
is negligible, the general equation of internal metabolites
dynamics is expressed :
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dC

- = Nu(C) (1)
Where C € R™ denotes the vector of metabolites concen-
trations and v € R™ is the vector of network fluxes.
A non-negative vector a is introduced and contains infor-
mation about the number of atoms (of carbon, nitrogen,
or phosphorus) in each metabolite : z = a” C. Therefore, if
mass conservation applies, z must be constant, so its time
derivative is null. Hence, ¢ N = 0. If such vector g exists,
then there is mass conservation when constructing the
network. For mass balance of biomass and macromolecules,
an average atomic composition is considered.

2.2 Constraint-Based Methods

To limit the possible solutions and explore the solution
space, constraint-based methods are established. It con-
sists in adding a series of constraints that govern the
operation of the network at steady-state. By applying the
pseudo-steady state assumption, the following system of
linear equations is obtained :

Nv =0 (2)
In addition, network fluxes are often subject to positivity
constraints assuming that direct reactions prevail over
their reverse counterparts :

v>0 (3)

Flux Balance Analysis It is undoubtedly the most pop-
ular constraint-based method. It supposes an optimal be-
haviour of the cell and consists in computing an optimal
flux distribution v which maximizes or minimizes an ob-
jective function Z = ¢Tv such that :

g"”tzmgX(Z) st. {Nv=0;0v>0; 5y <v<u,} (4
where ¢ is a vector of weights translating how much each
reaction contributes to the objective function, and v;, and
v, are vectors of lower and upper bounds, respectively.
Note that the optimal flux distribution may not corre-
spond to the actual flux distribution and might not be
unique.

Flux Coupling Analysis  This framework appears partic-
ularly useful to study the topological and flux connectiv-
ity features of large metabolic networks. This approach
requires the solution of a sequence of linear programs
and allows reducing the dimensionality of the network by
finding pairs of metabolic fluxes. Three types of couplings
are commonly characterized : directional, partial and full
coupling. More information can be found in (Burgard
et al., 2004). Pairs not belonging to one of these categories
are classified as uncoupled, defining blocked reactions.

In order to reduce the number of linear programs to solve,
this work suggests to enhance the existing method and
identify only the blocked reactions, defined as reactions in-
capable of carrying a flux under steady-state conditions for
a particular uptake scenario. In this way, blocked reactions
are exploited to identify incomplete pathways, to pinpoint
errors or omissions in the metabolic reconstruction and
possibly to detect issues regarding reactions reversibility.
Furthermore, inconsistencies in the network and redun-
dant reactions might be identified. Mathematically, it con-
sists in solving the following linear programming problem
once for every flux :

mazimize v (5)
N

subject to ZNijvj =0,VieM (6)
j=1

U}thake < U}Lptake""“m’ VJ € Nt'r'ansz)m't (7)

v; >0, VjeN (8)

In this formulation, reversible reactions are expressed as
two irreversible reactions in opposite direction, constrain-
ing all the fluxes to positive values. Therefore, if the
maximum value of the flux is zero, then the reaction is said
unusable or blocked. Also, the solution of the above lin-
ear program depends on the steady-state assumption and
imposed uptake-secretion scenarios. Therefore, a blocked
reaction does not necessarily imply that the reaction is in-
correct, inconsistent, or irrelevant in describing the cellular
metabolism ; it could only indicate that the reaction is not
activated under the current uptake-secretion conditions.

3. APPLICATION

This section is devoted to the application of the procedure
for the purpose of obtaining a mid-size metabolic network
structure representative of the metabolism of photosyn-
thetic eukaryotic cells. First, the main metabolic pathways
describing the metabolism of such organisms are men-
tioned, with a focus on the reactions characterizing ATP
synthesis. Then, the iterative process depicted in Fig. 1 is
applied and a couple of iterations are presented.

8.1 Analysis of Metabolic Pathways

As discussed in Sec. 2, most organisms have metabolic
pathways in common. As a matter of fact, glycolysis occu-
pies a central position in their metabolism. Basically, one
molecule of glucose produces two molecules of pyruvate.
Then, pyruvate is oxidized into acetyl groups to enter the
so-called tricarboxylic acid cycle. Also, glucose (specifi-
cally glucose-6-phosphate) can be oxidized via the pentose
phosphate pathway to form ribose-5-phosphate, essential
to synthesize RNA, DNA and coenzymes. In addition, the
GS-GOGAT pathway is a crucial biochemical pathway for
nitrogen assimilation in many microorganisms and allows
the incorporation of ammonium which is toxic to cells
at high concentrations, into organic molecules, specifically
amino acids. Another way to dispose of toxic ammonium
is via the urea cycle, also called ornithine cycle. Indeed,
although photosynthetic organisms mostly manage nitro-
gen through the GS-GOGAT pathway, certain species can
produce urea under specific conditions.

The previous pathways are catabolic, meaning the ma-
jor metabolic fuels are degraded to release chemical en-
ergy and yield the synthesis of ATP. Nevertheless, an-
abolic pathways are also necessary to describe the whole
metabolism of an organism. In this case, these pathways
use chemical energy in the form of ATP, NADH or NADPH
to synthesize cellular components from simple precursor
molecules. In that respect, the network must also contain
routes characterizing the biosynthesis of carbohydrates,
lipids, amino acids and nucleotides, as well as information
pathways (proteins, DNA and RNA metabolism) in order
to form biomass.
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In contrast with animal cells, plants and photosynthetic
organisms can synthesize organic compounds like glucose,
directly from CO4 and water, during a process called CO5
assimilation or the Calvin-Benson cycle. This process takes
place in the stroma of chloroplasts, which are distinct
organelles within the cells, proper to eukaryotic plants and
algae.

3.2 ATP Synthesis

Energetic reactions are fundamental for the proper opera-
tion of living organisms. As cited in the previous section,
ATP is required for anabolic pathways and is also needed
for the reduction of COs during the Calvin-Benson cy-
cle in photosynthetic organisms. ATP can be synthesized
through diverse mechanisms depending on the presence of
light and oxygen availability.

First, ATP can be generated in all living organisms
through enzymatic reactions during glycolysis and tri-
carboxylic acid cycle. This process, called substrate-level
phosphorylation, enables a fast production of ATP in
the cytoplasm, particularly under anaerobic conditions or
when light is not available for photosynthesis.

However, the most significant step in ATP synthesis is
the process of oxidative phosphorylation, alongside the
process of photophosphorylation for photosynthetic or-
ganisms in the presence of light. During these metabolic
processes, the synthesis of ATP (from ADP and P;) is
driven by the proton motive force (PMF), which is an
electrochemical gradient. This proton gradient is created
across a membrane and is caused by the movement of
electrons through the electron-transport-chain (based on
the chemiosmotic theory (Nelson and Cox, 2008)). Re-
garding photophosphorylation, light energy is captured
by chlorophyll and other pigments during the so-called
oxygenic photosynthesis. During this process, electrons
flow through a series of membrane-bound carriers in the
thylakoid membrane of chloroplasts. As the electrons move
through the electron-transport-chain, ions H are pumped
across the membrane, creating a higher concentration of
HT inside the membrane, producing a proton gradient that
will serve as the driving force for ATP synthesis. Regarding
the oxidative phosphorylation, the same mechanism occurs
but takes place across the inner mitochondrial membrane.
In this case, the proton gradient is created by the move-
ment of the electrons from NADH and FADH, generated
in glycolysis and the citric acid cycle.

Since the electrochemical gradient is poorly modeled in ex-
isting metabolic networks, this study suggests to differen-
tiate the cytoplasmic protons, i.e. outside the membrane,
H (namely H*) and the periplasmic protons H, i.e.
inside the membrane (thylakoid membrane of chloroplasts
or mitochondrial membrane). It leads to the following
metabolic reactions :

ADP+ P, +n H} — ATP + H,O + 1 Hyf
2H,0 +2NADP* +10 v* — O2 + 2NADPH + 12H]}
NADH + 11H} 4+ 0.5 Oy - NAD" + 10H; + H50
FADH; +6H,} +0.5 Oy - FADY +6H} + H,0

The first reaction represents the synthesis of ATP from
ADP and P;, the second is relative to photophosphoryla-
tion, the third and fourth reactions are relative to oxidative

phosphorylation. v* represents a mole of photon and 7 is
the number of protons required to produce one molecule
of ATP. For photosynthetic eukaryotic organisms, n = 4.
By combining the previous metabolic reactions, it fol-
lows that 2.5 molecules of ATP are produced per NADH,
1.5 molecules of ATP are produced per FADH; and 3
molecules of ATP with photophosphorylation per Oy pro-
duced. These results are in concordance with the approxi-
mate stoichiometry established in (Nelson and Cox, 2008).

3.3 Iterative Strategy

For the first iteration of the strategy, the main metabolic
pathways identified in Sec. 3.1 are considered and the
stoichiometric matrix of the metabolic network NV is built.
Note that metabolic reactions have been established by
using biochemistry textbooks and genomic studies and
reactions reversibility is accounted for by considering the
AG value and enzyme regulation. Future research papers
will detail these parts. The present work focuses mainly
on the algorithmic scheme of the mathematical methods.
Doing so, a network composed of 169 metabolites and 178
reactions is obtained. Then, following the scheme shown
in Fig. 1, elementary-mass conservation is checked and
constraint-based methods can be applied. For this purpose,
a realistic uptake scenario is considered for which light, a
carbon source (HCOj ) and a nitrogen source (HNOj3 ) are
available. Flux balance analysis is performed with biomass
optimization and flux coupling analysis is exploited to
prevent large computation times.

After analysis, the network provides inconsistent results.
A few dozen reactions are blocked leading to a biomass
production rate equals to zero. Indeed, during daytime,
photosynthetic organisms reduce COs to triose sugars be-
fore their conversion into glucose via the Calvin-Benson
cycle and gluconeogenesis. The latter pathway is missing
and needs to be added. Also, by analyzing the outcomes
of the flux coupling analysis, several missing reactions
enabling the formation of key intermediate metabolites
have been emphasized and an issue with the reversibility
of a Lewis acid-base reaction has been identified.

After adding the missing reactions and pathways, the
structure of the network is updated and elementary-mass
conservation is verified yet again. The second iteration
leads to a network containing 182 metabolites and 202 re-
actions. Flux coupling analysis is performed and unusable
reactions are still detected. However, in this case, these
unusable reactions are due to a too detailed description of
some pathways conducting to the formation of unnecessary
metabolites. Therefore, it is not caused by inconsistencies
in the network structure and in that context, flux cou-
pling analysis turns out to be particularly interesting to
simplify over-detailed networks, as noticed in (Burgard
et al., 2004). Because it possibly impacts the network
calculability, all unnecessary reactions are removed from
the network. However, as mentioned in Sec. 2.2, discarding
such reactions does not mean they are incorrect, inconsis-
tent or irrelevant.

More iterations are performed and are detailed in Table 1.
A third iteration is carried out to remove unnecessary reac-
tions. The fourth iteration consists in removing redundant



M. Maton et al. / IFAC PapersOnLine 59-1 (2025) 397-402 401

reactions due to lumping techniques or conflicting nomen-
clature of chemical compounds from literature. The fifth
iteration discards futile intermediate metabolites while the
sixth is for the addition of cofactors metabolism reactions.
And so on. In this way, this application shows the benefits
of the iterative procedure and the merits of using several
mathematical methods together to build a metabolic net-
work structure. Finally, the ultimate network is comprised
of 166 metabolites (internal metabolites and intracellular
energetic cofactors) and 192 reactions (intracellular and
transport reactions). The latter can be provided by the
authors upon request.

Table 1. Information related to the metabolic
networks using the iterative procedure

iter. # met. # rnx # blocked rnx
1 169 178 39
2 182 202 16
3 173 193 7
4 173 190 7
5 166 183 0
6 166 192 0

4. RESULTS AND DISCUSSION

This section presents the results of metabolic flux analyses
using in-silico data to validate the metabolic network
reconstruction. This study focuses only on the quasi-
steady state under constant light regimes enabling the
use of classical metabolic analysis tools. CellDesigner
(Funahashi et al., 2003) is used to have a graphical
representation of the network and derive the flux map.
Different scenarios are addressed to assess the consistency
of the network structure.

4.1 Daylight Period

The case study covered in this section is related to an
autotrophic regime where the organisms use sunlight, CO2
and H5O to produce organic compounds essentially. In the
network, light energy is modeled through an amount of
moles of photons ; however, light is commonly expressed
in watts per square meter. For simulations, a light with a
wavelength of 600 nm is assumed with a power density
of 150 W.m~2, which provides a photon flux density
equal to 7,5185.10™* moles of photons per second per
square meter, using the Planck equation. Thereafter, the
transport reaction related to light is set to 10 photons,
equivalent to a light exposure of 3,7 hours.

In addition, a carbon source and a nitrogen source are
considered as available and simulations are performed
for a net assimilation of 100 mol of bicarbonate ion
HCOj3 and 10 mol of nitrate NO3 . As illustrated on the
flux map in Fig. 2, autotrophy is characterized by high
fluxes in the photosynthetic pathways and the activation
of the Calvin-Benson cycle taking place in chloroplasts.
Upper glycolysis operates in the glyconeogenic direction to
produce carbohydrates and sugar precursors metabolites,
essential for growth. The pentose phosphate pathway is
in the reductive mode and ATP synthesis is driven by
the PMF and is synthesized via photophosphorylation
and oxidative phosphorylation (in addition to substrate-
level phosphorylation). Furthermore, the analysis of the

complete map shows the activation of the citric acid cycle
to synthesize metabolite precursors for biomass growth.
Lastly, the nitrogen source enables the biosynthesis of
amino-acids and the activation of the nucleotide salvage
pathway. The GS-GOGAT pathway and the urea cycle are
involved for nitrogen assimilation and biomass is produced.

Fig. 2. Flux map during the day phase representative of
autotrophic regime (online reading is advised)

4.2 Nighttime Period

The scenario explored in this section aims at represent-
ing a heterotrophic regime, meaning that carbon storage
molecules are degraded into precursors metabolites and
energy for growth and maintenance essentially. To allow a
comparison with existing studies, the heterotrophic regime
(equivalent to a chemotrophic regime in this case) is sim-
ulated by considering a net assimilation of 100 mol of glu-
cose and no light. A source of nitrogen is also considered.
As illustrated in Fig. 3, the absence of light inhibits the
activation of the Calvin-Benson cycle. When glucose is
used as carbon source, upper glycolysis is in the down-
ward direction and the pentose phosphate pathway is in
the oxidative mode. A further analysis of the whole flux
map shows that the primary carbon flux is through the
acid citric cycle which generates precursor metabolites
for growth and energy via oxidative phosphorylation and
substrate-level phosphorylation (no photophosphorylation
during the dark phase).

Fig. 3. Flux map during the night phase representative of
heterotrophic regime (online reading is advised)

4.8 Discussion

The results discussed in the previous sections are in con-
cordance with existing studies (Baroukh et al., 2014, 2017;
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Assis Pessi et al., 2023) in which smaller networks have
been identified. This paper allows the elaboration of a
more detailed network structure which improves the un-
derstanding of the metabolism of photosynthetic eukary-
otic organisms, notably by modeling the PMF. In this
way, these results demonstrate the merits of the proposed
procedure to identify a metabolic network and confirm
the network coherence. Nevertheless, it is important to
acknowledge the limitation of in-silico data and the impor-
tance of experimental data to gain reliable insights into the
operation of the organisms. Moreover, the more data, the
better the flux predictions provided by metabolic analyses.
Indeed, the identified network is underdetermined and a
calculability analysis might be conducted to determine the
number of fluxes that can be uniquely calculated.
Besides, autotrophic and heterotrophic fluxes differ only
in the arrangement of the core carbon network (Calvin-
Benson cycle, glycolysis, pentose phosphate pathway, citric
acid cycle). Indeed, the remaining pathways show rela-
tively consistent flux patterns regardless of growth con-
ditions. Accordingly, it confirms that anabolic processes
operate independently of growth conditions, which is ex-
plained by the bow tie structure of microorganisms.

5. CONCLUSION

This work proposes the elaboration of a mid-size metabolic
network structure representative of the metabolism of
photosynthetic eukaryotic microorganisms. The strategy
combines biological knowledge and a series of constraint-
based methods while respecting elementary mass conser-
vation and exploring the issue of reactions reversibility.
Furthermore, the identified network includes key energy
aspects and metabolic flux analyses provide convincing
results in concordance with existing studies. This enables
highlighting the merits of the procedure to elaborate con-
sistent metabolic networks. Even though the present study
is static, it offers first insights into the metabolism of
organisms submitted to light changes. Further research
should entail dynamic modeling approaches and the con-
sideration of experimental data in order to consolidate the
observations and refine the network definition.
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