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Abstract

This thesis focuses on the problem of answering numerical queries issued against
databases that may violate primary key constraints. A database repair is de-
fined as any maximal subset of the original database that satisfies all con-
straints. The range consistent answer to a numerical query is a pair [glb, lub],
where glb and lub denote the greatest lower bound and least upper bound,
respectively, of the query results across all possible repairs. This work studies
the computational complexity of determining range consistent answers to con-
junctive queries with aggregation. In SQL, such queries follow the SELECT-
FROM-WHERE-GROUP BY format, where the WHERE clause consists of
a conjunction of equalities, and the SELECT clause may include aggregate
functions such as MAX, MIN, SUM, AVG, or COUNT. The thesis investigates
sufficient and necessary syntactic conditions under which range consistent an-
swers can be computed via rewriting into first-order aggregate logic.

The thesis consolidates and moderately generalizes the results presented in
three publications by Amezian El Khalfioui & Wijsen:

Amezian El Khalfioui, A., & Wijsen, J. (2023). Consistent query answer-
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CHAPTER 1
Introduction

1.1. Motivation

Typically, database systems have a set of integrity constraints (primary keys,
foreign keys, etc.) that are intended to ensure the consistency of the informa-
tion represented in their data. As long as these constraints are respected, we
can safely assume that the information obtained from the database is correct.

However, there are situations where we may find ourselves with database
instances that do not respect integrity constraints. A typical case where this
may occur is when the database instance integrates data from multiple sources
that individually satisfy the integrity constraints but collectively violate them.

Example 1.1.1. Consider the relation Dealers in the database instance of
Fig. 1.1. The primary key for this relation is underlined: Each dealer can
work in only one town. This constraint is clearly violated, as Smith works in
both Boston and New York. Suppose this database instance integrates data
from sources that gather data at a regional level. It is not possible to detect
the inconsistency at the source level, since Boston and New York belong to
different states. In each of these sources, Smith works in only one town. The
inconsistency only becomes apparent once the data are integrated. ◁

We say that a database instance that does not respect its integrity con-
straints is inconsistent. Dealing with inconsistent database instances can be a
major problem. Executing a query on such an instance may produce a result
that cannot be trusted since the inconsistent data may influence the result.
Multiple approaches exist to restore the consistency of the instance depending

1



2 Introduction

Dealers Name Town

† Smith Boston
Smith New York

† James Boston

Stock Product Town Qty

† Tesla X Boston 35
Tesla X Boston 40

† Tesla Y Boston 35
† Tesla Y New York 95

Tesla Y New York 96

Figure 1.1: Database instance dbStock. Blocks are separated by dashed lines.

on the type of constraints considered. This process is typically called repair-
ing. However, repairing may not be an immediate option, as it may require
external information or making the database instance unavailable during the
process. An alternative to repairing is Consistent Query Answering (CQA):
rather than obtaining all the information from the inconsistent instance, we
want to obtain only the part that does not rely on inconsistent data.

1.2. Consistent Query Answering

Consistent query answering (CQA) was introduced in (Arenas et al., 1999)
as a principled approach to answering queries on databases that are inconsis-
tent with respect to a given set of integrity constraints. The only integrity
constraints we consider in the current work are primary keys. A block in a
database instance is a ⊆-maximal set of tuples of a same relation R that agree
on the primary key of R. A repair of a database instance picks exactly one tu-
ple from each block. Given a Boolean query q, CERTAINTY(q) is then defined
as the decision problem that takes a database instance db as input, and asks
whether q holds true in every repair of db. This problem, while commonly
studied for Boolean queries, can be readily extended to queries with free vari-
ables x⃗: a consistent answer to a query q(x⃗) is any sequence c⃗ of constants, of
length |x⃗|, such that q(c⃗) holds true in every repair.

Example 1.2.1. The database dbStock of Fig. 1.1 records the quantity of
products in stock in various towns (relation Stock) and the town of operation
for each dealer (relation Dealers). The primary keys are underlined, and blocks
are separated by dashed lines. The inconsistencies concern Smith’s town of
operation, and the stock levels of Tesla X and Tesla Y in, respectively, Boston
and New York. For the example database of Fig. 1.1, the following Boolean
conjunctive query q1 holds true if the dealer Smith works in a town where the
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product Tesla X is stored:

q1 := ∃y∃z(Dealers(“Smith”, y) ∧ Stock(“Tesla X”, y, z)).

In Fig. 1.1, any repair where the dealer Smith works in New York falsifies q1
and, thus, CERTAINTY(q1) returns false when dbStock is given as input.

The following conjunctive query q2 returns the dealers that work in a town
where the product Tesla X is stored:

q2(x) := ∃y∃z(Dealers(x, y) ∧ Stock(“Tesla X”, y, z)).

CERTAINTY(q2) will return {James} when dbStock is given as input since
James is the only dealer who works, in every repair, in a town where the
product Tesla X is stored. ◁

CQA for self-join-free conjunctive queries q, without aggregation, and pri-
mary keys has been intensively studied. A systematic study of its complexity
for self-join-free conjunctive queries had started already in 2005 (Fuxman &
Miller, 2005), and was eventually solved in two journal articles by Koutris &
Wijsen (2017, 2021), as follows: for every self-join-free Boolean conjunctive
query q, CERTAINTY(q) is either in FO, L-complete, or coNP-complete, and
it is decidable, given q, which case applies. This complexity classification ex-
tends to non-Boolean queries by treating free variables as constants. Other
extensions beyond this trichotomy deal with foreign keys (Hannula & Wi-
jsen, 2022), more than one key per relation (Koutris & Wijsen, 2020), negated
atoms (Koutris & Wijsen, 2018), restricted self-joins (Koutris et al., 2021, 2024;
Padmanabha et al., 2024), and data annotated with semiring values (Kolaitis
et al., 2025). A more detailed discussion of the latter work appears in Sec-
tion 6.5. For unions of conjunctive queries q, Fontaine (2015) established inter-
esting relationships between CERTAINTY(q) and Bulatov’s dichotomy theorem
for conservative CSP (Bulatov, 2011). Recently, Figueira et al. (2023) proposed
a polynomial-time procedure for evaluating CERTAINTY(q) for conjunctive
queries q, including those with self-joins. The procedure correctly handles all
polynomial-time cases of CERTAINTY(q) identified in (Koutris & Wijsen, 2017;
Koutris et al., 2021). Nevertheless, for q = ∃x∃y∃z(R(x, y, z)∧R(z, x, y)), the
authors show that CERTAINTY(q) is in P but their procedure may yield false
negatives.

The counting variant ♯CERTAINTY(q) asks to count the number of re-
pairs that satisfy some Boolean query q. This counting problem is fundamen-
tally different from the range semantics in the current work. For self-join-free
conjunctive queries, ♯CERTAINTY(q) exhibits a dichotomy between FP and
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♯P-complete under polynomial-time Turing reductions (Maslowski & Wijsen,
2013). This dichotomy has been shown to extend to queries with self-joins
if primary keys are singletons (Maslowski & Wijsen, 2014), and to functional
dependencies (Calautti et al., 2022a). Calautti et al. (2019) present a complex-
ity analysis of these counting problems under weaker reductions, in particular,
under many-one logspace reductions. The same authors have conducted an
experimental evaluation of randomized approximation schemes for approxi-
mating the percentage of repairs that satisfy a given query (Calautti et al.,
2021). Other approaches to making CQA more meaningful and/or tractable
include operational repairs (Calautti et al., 2018, 2022b) and preferred re-
pairs (Kimelfeld et al., 2020; Staworko et al., 2012).

Recent overviews of two decades of theoretical research in CQA can be
found in (Bertossi, 2019; Wijsen, 2019; Kimelfeld & Kolaitis, 2024). It is
worthwhile to note that theoretical research in CERTAINTY(q) has stimulated
implementations and experiments in prototype systems (Dixit & Kolaitis, 2019;
Fan et al., 2023; Fuxman et al., 2005a,b; Amezian El Khalfioui et al., 2020;
Kolaitis et al., 2013).

1.3. Range Semantics

It is significant to generalize CQA from Boolean queries, which return either
true or false, to numerical queries, which return a numeric result. Aggregation
queries constitute an important class of numerical queries. However, numerical
aggregation queries are likely to return different results on different repairs, and
therefore lack a single consistent answer that holds true across all repairs. For
this reason, Arenas et al. (2001) have proposed range semantics, which pro-
vides the greatest lower bound (glb) and the least upper bound (lub) of query
answers across all repairs. Specifically, for a numerical aggregation query g(),
the function problems GLB-CQA(g()) and LUB-CQA(g()) take a database in-
stance db as input, and return, respectively, the glb and the lub of the set that
contains each number returned by g() on some repair.

In the current work, we consider numerical aggregation queries g() that
take the following form in the extended Datalog syntax of (Cohen et al., 2006,
1999):

AGG(r)← q(u⃗), (1.1)

where the body q(u⃗) is a conjunction of atoms (a.k.a. subgoals), r is either a
numeric variable occurring in u⃗ or a non-negative number, and AGG is an ag-
gregate symbol (like MAX, MIN, SUM, AVG, COUNT). Every aggregate symbol AGG
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in our query language is associated with an aggregate operator, denoted FAGG,
which is a function that takes a multiset of numbers, and returns a number.
Such a query (1.1) will be called an AGG-query, and is interpreted as follows:
let θ1, θ2, . . . , θn enumerate all embeddings of the body into db, then the query
returns FAGG({{θ1(r), θ2(r), . . . , θn(r)}}). Note that the argument of FAGG is a
multiset, because it is possible that θi(r) = θj(r) for i ̸= j. For this semantics
to be well-defined, each θi(r) must necessarily belong to some numerical do-
main D. In this case, the aggregate query is said to be over D. In this work,
we take D to be Q≥0.

Example 1.3.1. For the example database of Fig. 1.1, the following query
returns the total quantity of cars in stock in Smith’s town of operation:

SUM(y)← Dealers(“Smith”, t),Stock(p, t, y).

In Fig. 1.1, the repair composed of the tuples preceded by † yields the answer 70
(= 35+35), which is the smallest result achievable among all repairs. Notably,
the greatest result among all repairs is 96, obtained by any repair that contains
Dealers(“Smith”, “New York”) and Stock(“Tesla Y”, “New York”, 96). ◁

An issue arises when a database instance serving as input to GLB-CQA(g())
or LUB-CQA(g()) has a repair in which there is no embedding of q(u⃗)—
that is, db has a repair that falsifies ∃u⃗(q(u⃗)), or equivalently, db is a “no”-
instance of CERTAINTY(∃u⃗(q(u⃗))). Our semantics so far requires that FAGG(∅)
is defined. However, some aggregate operators, such as FAVG, are not natu-
rally defined over the empty multiset. If FAGG(∅) is undefined, the problems
GLB-CQA(g()) or LUB-CQA(g()) may be revised to return a special constant ⊥
whenever some repair falsifies ∃u⃗(q(u⃗)). Alternatively, this issue can be circum-
vented by restricting the input to database instances that are “yes”-instances
of CERTAINTY(∃u⃗(q(u⃗))).

In this thesis, we investigate the computational complexity of determining
GLB-CQA(g()) and LUB-CQA(g()). Specifically, we aim to understand un-
der which conditions GLB-CQA(g()) and LUB-CQA(g()) are solvable through
rewriting in an aggregate logic, denoted AGGR[FOL], which extends first-order
logic with aggregate operators along the lines of (Hella et al., 2001). So our
central problem takes as input a numerical query g(), and asks whether or
not there is a numerical query φ() in AGGR[FOL] that solves GLB-CQA(g())
or LUB-CQA(g()); moreover, when such φ() exists, we are interested in con-
structing it, a task loosely referred to as “(consistent) glb (or lub) rewriting
of g() in AGGR[FOL].” A practical motivation for focusing on AGGR[FOL] is
that formulas in this logic are well-suited for implementation in SQL, allowing
them to benefit from existing DBMS technology.
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Chapter 4 of the current thesis is inspired by the PhD thesis of Fuxman
(2007) who initiated the complexity study of GLB-CQA(g()) and LUB-CQA(g()).
Fuxman introduced the class Cforest of Boolean conjunctive queries, and showed,
among other results, that for every counting query g() := SUM(1)← q(u⃗), if the
existential closure ∃u⃗(q(u⃗)) of its body belongs to Cforest, then the answers
to GLB-CQA(g()) and LUB-CQA(g()) on database instances that are “yes”-
instances of CERTAINTY(∃u⃗(q(u⃗))) can be evaluated by first executing some
first-order queries followed by simple counting steps. We refer to this method
as parsimonious aggregation or Fuxman’s technique. It can be expressed in a
syntactically highly restricted fragment of AGGR[FOL]: one where aggregation
is only applied “at the end” on FOL-formulas that themselves do not contain
aggregation. It remained an open question to syntactically characterize the
class of all counting queries g() for which Fuxman’s technique applies. This
question is resolved as follows: the syntactic class Cparsimony, introduced in
Chapter 4, is an extension of Cforest that contains all (and only) self-join-free
conjunctive queries for which Fuxman’s technique applies.

As parsimonious aggregation, by definition, does not exploit the full expres-
sive power of AGGR[FOL], it is important to ask for a syntactic characterization
of all AGG-queries g() := AGG(r) ← q(u⃗) such that GLB-CQA(g()) can be ex-
pressed in AGGR[FOL]; and likewise for LUB-CQA(g()). Notably, expressibility
of either problem in AGGR[FOL] does not imply expressibility of the other.
Furthermore, there is no reason to limit these questions to “yes”-instances of
CERTAINTY(∃u⃗(q(u⃗))), especially when FAGG(∅) is naturally defined—for in-
stance, FSUM(∅) = 0. These questions are addressed in Chapters 6 and 7 for
aggregate operators that are monotone and associative, yielding the following
results:

• If FAGG is monotone and associative, then the following problem is de-
cidable in quadratic time: given g(), can GLB-CQA(g()) be expressed in
AGGR[FOL]?

• If AGG = SUM, then the following problem is decidable in quadratic time:
given g(), can LUB-CQA(g()) be expressed in AGGR[FOL]? Moreover,
whenever FAGG is monotone and associative, the same decision procedure
yields no false positives, but may yield false negatives.

1.4. Organization

This thesis is organized as follows. Chapter 2 introduces some preliminaries,
and Chapter 3 introduces the logic AGGR[FOL] that will serve as the target
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language for our rewritings, as well as the function problems GLB-CQA(g())
and LUB-CQA(g()). In Chapter 4, we formalize the semantic notion of ad-
mitting parsimonious counting, and then syntactically characterize the class of
all counting queries g() := SUM(1) ← q(u⃗) that have this property. Moreover,
we extend some of our findings to aggregate operators beyond counting. In
Chapter 5, we express GLB-CQA(g()) and LUB-CQA(g()) in terms of a new
construct called Maximal Consistent Subset (MCS). This new construct al-
lows us to prove in Chapters 6 and 7, respectively, the two findings mentioned
at the end of Section 1.3. Finally, Chapter 8 explores GLB-CQA(g()) and
LUB-CQA(g()) for numerical queries that are not covered in previous chapters.
Chapter 9 concludes the thesis.

1.5. Publications

The work reported in this PhD thesis has already resulted in the following
publications:

• Chapter 4 extends a publication at ICDT 2023 (Amezian El Khalfioui &
Wijsen, 2023). While the conference version only pertains to counting
queries, the corresponding chapter also considers aggregation operators
beyond counting.

• The results presented in Chapter 6 appeared in PODS 2025 (Amezian El
Khalfioui & Wijsen, 2024a).

• The results of Chapter 7 have been accepted for publication at ICDT
2026 (Amezian El Khalfioui & Wijsen, 2026).

The technical treatment in this thesis differs slightly from these existing and
forthcoming publications, as we have unified and generalized certain definitions
for consistency and clarity in the context of the thesis.
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CHAPTER 2

Preliminaries

We assume denumerable sets var and dom of variables and constants respec-
tively. The set dom includes Q≥0, the set of non-negative rational numbers.
The set of numerical variables is a subset of var.

We assume denumerably many relation names. Every relation name is
associated with a signature, which is a triple (n, k, J) where n is the arity,
{1, . . . , k} is called the primary key, and J ⊆ {1, . . . , n} is the set of numerical
positions (also called numerical columns). This relation name is full-key if
n = k. A relation name that is not full-key has non-primary key positions
k+1, k+2, . . . , n. Note that each relation name R is associated with exactly one
key constraint, which is determined by the signature of R. For an n-tuple x⃗ =
(x1, . . . , xn), we write |x⃗| to denote its arity n. We often blur the distinction
between a sequence (x1, . . . , xn) of distinct variables and the set {x1, . . . , xn},
which is also denoted vars(x⃗). If x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , ym), then
we define their concatenation x⃗ · y⃗ (or x⃗y⃗) as the tuple (x1, . . . , xn, y1, . . . , ym).

Atoms, facts, and database instances. Let R be a relation name of
signature (n, k, J). An atom is an expression R(u1, . . . , un) where each ui is
either a constant or a variable, and for every j ∈ J , uj is a numerical variable
or a number in Q≥0. It is common to underline positions of the primary key.
An atom is said to be full-key if its relation name is full-key. If F is an atom,
then vars(F ) is the set of variables that occur in F , and Key(F ) is the set
of variables that occur in F at a position of the primary key. Further, we
define notKey(F ) := vars(F ) \Key(F ). A fact is an atom without variables. A
fact with relation name R is also called an R-fact. Two facts R1(⃗a1, c⃗1) and
R2(⃗a2, c⃗2) are said to be key-equal if R1 = R2 and a⃗1 = a⃗2.

9
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A database instance db is a finite set of facts. We write adom(db) for the
active domain of db, i.e., the set of all constants that occur in db. If R is
a relation name, then the R-relation of db is the set of all R-facts in db. A
database instance is consistent if it does not contain two distinct facts that are
key-equal. Primary keys need not be explicitly specified, as they are deter-
mined by the predefined relation signatures.

Valuations. A valuation over a finite set U of variables is a total mapping θ
from U to dom such that θ(r) ∈ Q≥0 for every numerical variable r. For a
valuation θ over U , we write dom(θ) to denote its domain U . A valuation θ
over U is extended to every element u in var ∪ dom by letting θ(u) = u for
every u /∈ U .

Let θ be a valuation. If F is the atom R(u1, . . . , un), then θ(F ) :=
R(θ(u1), . . . , θ(un)). If q is a set of atoms, then θ(q) := {θ(F ) | F ∈ q}.
Notably, every variable in vars(q) \ dom(θ) remains a variable in θ(q). If θ is
a valuation and V ⊆ dom(θ), then θ ↾V denotes the restriction of θ to V , i.e.,
dom(θ ↾V ) = V and for every x ∈ V , we have θ ↾V (x) = θ(x). Let θ and µ
be valuations such that dom(θ)∩ dom(µ) = ∅. We write θ · µ for the valuation
over dom(θ) ∪ dom(µ) that extends both θ and µ.

Partial valuation. Let db be a database instance, and φ(x⃗) a first-order
formula with free variables x⃗. Let θ be a valuation. Then we write (db, θ) |=
φ(x⃗) to denote that θ can be extended to a valuation θ′ over dom(θ) ∪ vars(x⃗)
such that for a⃗ := θ′(x⃗), we have db |= φ(⃗a) using standard semantics (see,
e.g., (Libkin, 2004, p. 15)). Typically, but not necessarily, dom(θ) ⊆ vars(x⃗).
If φ has no free variables, then we write db |= φ instead of (db,∅) |= φ,
where ∅ is the empty valuation.

Repairs and CERTAINTY(φ). A repair of a database instance is a ⊆-
maximal consistent subset of it. We write rset(db) for the set of repairs of a
database instance db. If φ(x⃗) is a first-order formula and θ a valuation, then
we write (db, θ) |=cqa φ(x⃗) to denote that for every repair r of db, we have
(r, θ) |= φ(x⃗). If φ has no free variables, then we write db |=cqa φ instead
of (db,∅) |=cqa φ, where ∅ is the empty valuation. For a closed formula φ,
CERTAINTY(φ) is the decision problem that takes a database instance db as
input and determines whether or not db |=cqa φ.

Conjunctive Queries. A self-join-free conjunctive query q is a closed
first-order formula ∃u⃗(R1(u⃗1) ∧ · · · ∧ Rn(u⃗n)), where each Ri(u⃗i) is an atom,
u⃗ is a sequence containing variables occurring in some u⃗i, and i ̸= j implies
Ri ̸= Rj . We will call the variables in u⃗ bound variables. Every non-bound vari-
able in some u⃗i is called a free variable, and we denote by free(q) the set of free
variables occurring in q. The conjunction R1(u⃗1)∧· · ·∧Rn(u⃗n), whose free vari-
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ables are u⃗, is called the body of the query, denoted body(q). We often blur the
distinction between the query q, its body, and the set {R1(u⃗1), . . . , Rn(u⃗n)}.
For example, if F is an atom of (the body of) q, then q \ {F} is the query ob-
tained from q by deleting F from its body. A self-join-free Boolean conjunctive
query q is a self-join-free conjunctive query without free variables. We write
sjfBCQ for the set of self-join-free Boolean conjunctive queries. We now intro-
duce operators for turning bound variables into free variables, or vice versa,
and for instantiating free variables.

Making bound variables free. Let q be a conjunctive query with free(q) =
z⃗. Let x⃗ be a tuple of (not necessarily all) bound variables in q (hence x⃗∩
z⃗ = ∅). We write ∄x⃗ [q] for the conjunctive query q′ such that free(q′) =
z⃗ ∪ x⃗ and body(q′) = body(q). Informally, ∄x⃗ [q] is obtained from q by
omitting the quantification ∃x⃗. For example, if q(z) = ∃x∃y(R(x, y) ∧
R(y, z)), then ∄x [q] = ∃y(R(x, y) ∧R(y, z)).

Binding free variables. Let q be a conjunctive query, and x⃗ a tuple of (not
necessarily all) free variables of q. Then ∃x⃗ [q] denotes the query with
the same body as q, but whose set of free variables is free(q) \ x⃗.

Instantiating free variables. Let q be a conjunctive query, and z⃗ a tuple
of distinct free variables of q. Let c⃗ be a tuple of constants of arity |z⃗|.
Then q[z⃗ 7→c⃗] is the query obtained from q by replacing, for every i ∈
{1, 2, . . . , |z⃗|}, each occurrence of the ith variable in z⃗ by the ith constant
in c⃗.

Gaifman Graph. The Gaifman graph of q, denoted Gaifman(q), is an
undirected simple graph whose vertex-set is vars(q). There is an edge between
x and y if x ̸= y and some atom of q contains both x and y. We write
E(Gaifman(q)) for the edge-set of Gaifman(q).

Guardedness. Let q1 and q2 be two queries in sjfBCQ. We say that q1 is
guarded by q2, denoted q1 ≼g q2, if for every atom F in q1, there exists an
atom G in q2 such that vars(F ) ⊆ vars(G). We write q1 ∼g q2 if both q1 ≼g q2
and q2 ≼g q1. It is straightforward that q1 ∼g q2 implies Gaifman(q1) =
Gaifman(q2) (but the converse does not hold).

Attack graph. Attack graphs for queries q in sjfBCQ were first introduced
in (Wijsen, 2012), later generalized in (Koutris & Wijsen, 2017), and have since
been used in several studies, e.g., (Figueira et al., 2025; Amezian El Khalfioui
& Wijsen, 2024a; Kolaitis et al., 2025). We write K(q) for the set of functional
dependencies that contains Key(F ) → vars(F ) whenever F ∈ q. For F ∈ q,
we define F+,q := {x ∈ vars(q) | K(q \ {F}) |= Key(F ) → x}, where |= is
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R(x, y, z)

S(z, x) T (z, x)

R(x, y, z)

S(z, x) T ′(z, x)

q0 q′0

Figure 2.1: Attack graphs for two queries in sjfBCQ. The query q′0 on the right
is derived from the query on the left by replacing T (x, z) with T ′(x, z).

the standard notion of logical implication. An atom F of q is said to attack
a variable x, denoted F

q
⇝ x, if Gaifman(q) contains a (possibly empty) path

between some variable in notKey(F ) and x such that no variable on the path
belongs to F+,q. A variable x is said to be unattacked (in q) if no atom
attacks x. The attack graph of q is a directed simple graph whose vertices are
the atoms of q. There is a directed edge from F to G, denoted F

q
⇝ G, if F

attacks some variable of vars(G). Attack graphs are also defined for self-join-
free conjunctive queries in a similar way, the only difference being that K(q)
also contains ∅ → x for every free variable x ∈ free(q).

Whenever a query in sjfBCQ is clear from the context, we can use a relation
name as a shorthand for the unique atom with that relation name in the
query. For example, in the following example, R is used as a shorthand for the
atom R(x, y).

Example 2.0.1. Consider the sjfBCQ query q0 on the left side of Fig. 2.1. The
directed edges represent attacks. We have R+,q0 = {x, y}, T+,q0 = {z, x}, and

S+,q0 = {z, x}. The sequence (z) entails R
q0
⇝ S and R

q0
⇝ T . The query q′0

on the right side is obtained from q0 by replacing the T -atom with a full-key
atom, which introduces a cycle in the attack graph. ◁

The following result shows the usefulness of attack graphs.

Theorem 2.0.1 (Koutris & Wijsen (2017)). For every query q in sjfBCQ,
CERTAINTY(q) is in FO if and only if the attack graph of q is acyclic.

Sequential proof. Let q be a query in sjfBCQ. Assume that K(q) |=
X → y. A sequential proof of K(q) |= X → y is a (possibly empty) sequence
(F1, F2, . . . , Fn) of atoms in q such that y ∈ X ∪ (

⋃n
i=1 vars(Fi)) and for every

j ∈ {1, 2, . . . , n}, we have Key(Fj) ⊆ X ∪
(⋃j−1

i=1 vars(Fi)
)
.

Embeddings. Whenever q(u⃗) is a conjunction of atoms, we write q to
denote the closed formula ∃u⃗(q(u⃗)). Let q(u⃗) now be a self-join-free conjunction
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of n atoms such that the attack graph of q is acyclic. The following definitions
are relative to a fixed topological sort (F1, . . . , Fn) of q’s attack graph and a
fixed database instance db. We define the following sequences of variables for
ℓ ∈ {1, . . . , n}:

• u⃗ℓ contains all (and only) variables of
⋃ℓ

i=1 vars(Fi). Thus, u⃗n = u⃗;

• x⃗ℓ contains the variables of Key(Fℓ) that do not occur in
⋃ℓ−1

i=1 vars(Fi);
and

• y⃗ℓ contains the variables of notKey(Fℓ) that do not already occur in⋃ℓ−1
i=1 vars(Fi).

Moreover, we define u⃗0 = (), the empty sequence. With this notation, we have
that for every ℓ ∈ {1, . . . , n},

u⃗ℓ = (u⃗ℓ−1, x⃗ℓ, y⃗ℓ). (2.1)

Let ℓ ∈ {1, . . . , n}. An ℓ-embedding (of q in db) is a valuation θ over u⃗ℓ
such that (db, θ) |= q(u⃗). A 0-embedding is defined to be the empty set.
An ℓ-embedding with ℓ = n is also called an embedding for short. We write
Embq(db) for the set containing every embedding of q in db. A subset M ⊆
Embq(db) is said to be consistent if M |= K(q). An ℓ-key-embedding (of q in
db) is a valuation θ over u⃗ℓ−1 · x⃗ℓ such that (db, θ) |= q(u⃗).

Reductions. Let P1 and P2 be function problems whose output is a single
number. If I is an instance of Pj , we write Pj(I) to denote the output of Pj

on input I, where j ∈ {1, 2}. We say that P1 is first-order reducible to P2,
denoted P1 ≤FO P2 if there exits a first-order definable function f such that for
every instance I of P1, f(I) is an instance of P2 such that P1(I) = P2(f(I)).
We write P1 ≤nr-datalog P2 if the reduction can even be expressed by a non-
recursive datalog (nr-datalog) program, as defined in (Abiteboul et al., 1995,
page 62–63).
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CHAPTER 3
Aggregate Logics and CQA

In this chapter, we first define the notion of aggregate operator in Section 3.1.
Sections 3.2 and 3.3 will respectively introduce the logics AGGR[FOL] and
AGGR[nr-datalog], which will serve as the target languages for our rewritings.
In Section 3.4, we formally define consistent lower and upper bounds, denoted
LUB-CQA(g(x⃗)) and GLB-CQA(g(x⃗)), for arbitrary numerical terms g(x⃗) in
AGGR[FOL] with free variables x⃗. Our study will focus on closed numerical
terms g() in AGGR[sjfBCQ], a subclass of AGGR[FOL] introduced in Defini-
tion 3.4.1. Finally, in Section 3.5, we discuss how GLB-CQA and CERTAINTY

problems are related.

3.1. Aggregating Non-Negative Numbers

Let S be a set. A multiset is said to be over S if all of its elements belong to S.
A (positive) aggregate operator is a function FAGG (where AGG is an aggregate
symbol) that maps each nonempty finite multiset over Q≥0 to a non-negative
rational number. Some aggregate operators may also map the empty multiset
to a non-negative rational number, in which case we say that FAGG(∅) is defined.

In the following definitions, all multisets are understood to be multisets
over Q≥0.

Associativity. An aggregate operator is associative if for all multisets X
and Y such that FAGG(X) is defined, we have:

FAGG(X ⊎ Y ) = FAGG({{FAGG(X)}} ⊎ Y ), (3.1)

15
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where ⊎ denotes union of multisets. Note that FAGG(X) is undefined exactly
when X = ∅ and FAGG(∅) is undefined.

Example 3.1.1. Examples of associative aggregate operators are FSUM, FMAX,
and FMIN. On the other hand, FAVG, FCOUNT, and FSUM-DISTINCT are not as-
sociative. Note, for instance, that we have FCOUNT({{5, 6, 7, 8}}) = 4 and
FCOUNT({{FCOUNT({{5, 6, 7}}), 8}}) = FCOUNT({{3, 8}}) = 2. ◁

If FAGG(∅) is defined, by letting X = ∅ in Eq. 3.1, we obtain that if FAGG is
associative, then for all multisets Y , we have FAGG(Y ) = FAGG({{FAGG(∅)}}⊎Y ).
This condition holds for FSUM and FMAX over Q≥0 if and only if we define
FSUM(∅) := 0 and FMAX(∅) := 0. On the other hand, for every r ∈ Q≥0, if
we defined FMIN(∅) to be equal to r, then FMIN would no longer be associa-
tive, because FMIN({{r + 1}}) ̸= FMIN({{r, r + 1}}). Throughout this thesis,
FSUM(∅) = FMAX(∅) = 0, while FMIN(∅) is undefined.

Monotonicity. An aggregate operator FAGG is monotone if for allm ≥ 0 such
that FAGG({{x1, . . . , xm}}) is defined, and for every (possibly empty) multiset Y ,
we have:

FAGG({{x1, . . . , xm}}) ≤ FAGG({{x
′
1, . . . , x

′
m}} ⊎ Y ) whenever xi ≤ x

′
i for every i.

(3.2)
Note that FAGG({{x1, . . . , xm}}) is undefined exactly when m = 0 and FAGG(∅)
is undefined. If FAGG(∅) is defined, by letting m = 0 in Eq. 3.2, we obtain
that if FAGG is monotone, then for all multisets Y , we have FAGG(∅) ≤ FAGG(Y ).
Again, this condition holds for FSUM and FMAX over Q≥0 if and only if we define
FSUM(∅) := 0 and FMAX(∅) := 0.

Example 3.1.2. Examples of monotone aggregate operators are FSUM, FMAX,
and FCOUNT. Note that FMIN is not monotone since FMIN({{3}}) > FMIN({{2, 3}}).
COUNT-DISTINCT also lacks monotonicity: if we increase 3 to 4 in the multiset
{{3, 4}}, the number returned by COUNT-DISTINCT drops from 2 to 1. ◁

Significantly, an aggregate operator FAGG that is not monotone in general
may become monotone under a restriction of its underlying domain. For ex-
ample, FPRODUCT, defined by FPRODUCT({{x1, . . . , xm}}) := Πm

i=1xi, is not mono-
tone over Q≥0 (because FPRODUCT({{1}}) > FPRODUCT({{1,

1
2}})), but is monotone

over Q≥1.
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3.2. The Logic AGGR[FOL]

Our treatment of aggregate logic follows the approach in (Hella et al., 2001;
Libkin, 2004). We write AGGR[FOL] for the extension of predicate calculus
with numerical terms introduced next.

Every formula in classical predicate calculus is also a formula in AGGR[FOL].
In AGGR[FOL], terms are not restricted to variables and constants; they also in-
clude numerical terms, as defined below. Let q(x⃗, y⃗) be a formula in AGGR[FOL],
where x⃗, y⃗ are disjoint sequences that together contain each free variable of q
exactly once. A primitive numerical term is either a non-negative rational
number or a numerical variable in x⃗ · y⃗. For every possible aggregate opera-
tor FAGG, a primitive numerical term r, and a formula q(x⃗, y⃗), we have a new
numerical term

g(x⃗) := AggrFAGG
y⃗ [r, q(x⃗, y⃗)] .

Variables y⃗ that are free in q(x⃗, y⃗) become bound in AggrFAGG
y⃗ [r, q(x⃗, y⃗)]; in

this respect AggrFAGG
y⃗ behaves like a sort of quantification over y⃗. Next, we

define the semantics.
Let a⃗ be a sequence of constants of length |x⃗|. The value g(⃗a) on a database

instance db, denoted [[g(⃗a)]]db, is calculated as follows. Let {θ1, . . . , θm} be a
(possibly empty) ⊆-maximal set of valuations over x⃗ · y⃗ such that θi(x⃗) = a⃗ and
(db, θi) |= q(x⃗, y⃗) for 1 ≤ i ≤ m. Then [[g(⃗a)]]db = FAGG({{θ1(r), . . . , θm(r)}}).
Note that the argument of FAGG is in general a multiset, since θi(r) may be
equal to θj(r) for i ̸= j. A numerical term without free variables is also called
a numerical query, denoted g().

Example 3.2.1. If g0(t) := AggrFSUM
(p, z) [z,Stock(p, t, z)], then on the ex-

ample database of Fig. 1.1, g0(“Boston”) = 110, the sum of quantities in
Boston. This numerical term can be used in other formulas. For example,
q0(t, y) := ∃p∃z(Stock(p, t, z)) ∧ y = g0(t) returns, for each town t, the total
quantity y of products stored in t. ◁

3.3. The Logic AGGR[nr-datalog]

We assume that the reader is familiar with the concept of a nonrecursive data-
log program (nr-datalog program), whose definition can be found in (Abiteboul
et al., 1995, pp. 62–63). We now extend such programs by incorporating ag-
gregation. Assume that an nr-datalog program contains the following rule,
where r is either a number or a numerical variable:

P (x⃗, r)← R1(u⃗1), . . . , Rn(u⃗n). (3.3)
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Note that by the safety requirement of nr-datalog, if r is a variable, it also
occurs in the body of the rule. We allow such a rule to be replaced with:

P (x⃗, AGG(r))← R1(u⃗1), . . . , Rn(u⃗n),

where AGG is an aggregate symbol. The semantics on a given database db

is as follows. Let B(u⃗) be the conjunction of all atoms in the body of the
rule, where u⃗ is a shortest sequence containing every variable that occurs in
the body of the rule. Let a⃗ be a sequence of constants of length |x⃗|. Let
{θ1, θ2, . . . , θm} be a ⊆-maximal set of valuations over u⃗ such that θi(x⃗) = a⃗
and (db, θi) |= B(u⃗) for 1 ≤ i ≤ m. If m ≥ 1, then the rule derives P (⃗a, n)
with n = FAGG({{θ1(r), . . . , θm(r)}}). Note that the argument of FAGG is in
general a multiset, since θi(r) may be equal to θj(r) for i ̸= j. In case m = 0,
no such fact is derived.

We write AGGR[nr-datalog] for the language consisting of all programs ob-
tained from nr-datalog programs by allowing aggregate operators in the head
(but not in the body). Example 3.3.1 shows a program in AGGR[nr-datalog].

Example 3.3.1. Retrieve the town(s) with the largest total quantity of stored
products.

TotalStockPerCity(t, SUM(z))← Stock(p, t, z)

MaxStock(MAX(s))← TotalStockPerCity(t, s)

Answer(t)← TotalStockPerCity(t, s),MaxStock(s)

Replacing SUM(z) and MAX(s) with z and s, respectively, in the above program
yields a standard nr-datalog program, as required by AGGR[nr-datalog]. ◁

3.4. Lower and Upper Bounds Across All Repairs

For each numerical term g(x⃗) := AggrFAGG
y⃗ [r, q(x⃗, y⃗)], we define GLB-CQA(g(x⃗))

and LUB-CQA(g(x⃗)) relative to a database instance db. Let q′(x⃗) be the self-
join-free conjunctive query ∃y⃗(q(x⃗, y⃗)). Let a⃗ be a sequence of constants of
length |x⃗|.

If FAGG(∅) is defined, then

[[GLB-CQA(g(⃗a))]]db := min {[[g(⃗a)]]r | r ∈ rset(db)} . (3.4)

If FAGG(∅) is undefined, then

(a) [[GLB-CQA(g(⃗a))]]db = ⊥ if some repair of db falsifies q′(⃗a); and
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(b) [[GLB-CQA(g(⃗a))]]db := min {[[g(⃗a)]]r | r ∈ rset(db)} otherwise.

The case (a) in this definition is justified by the observation that for every
repair r of db, we have [[g(⃗a)]]r = FAGG(∅) if and only if r ̸|= q′(⃗a). The value
[[LUB-CQA(g(⃗a))]]db is defined symmetrically by replacing min with max.

In this work, we will study under which conditions GLB-CQA(g(⃗a)) and
LUB-CQA(g(⃗a)) can be expressed in AGGR[FOL]. We will consider numerical
terms of the form g(x⃗) := AggrFAGG

y⃗ [r, q(x⃗, y⃗)] where q(x⃗, y⃗) is a self-join-
free conjunction of atoms. For readability, we often express such a numerical
term g(x⃗) using the following Datalog-like syntax:

(x⃗, AGG(r))← q(x⃗, y⃗),

where the aggregate symbol AGG is interpreted by the aggregate operator FAGG,
which is often made explicit by writing FAGG. For instance, SUM is interpreted
by FSUM, and MAX by FMAX.

In the initial technical treatment, we assume that x⃗ is empty, i.e., we are
dealing with numerical terms g() := AggrFAGG

y⃗ [r, q(y⃗)] without free variables,
which are conveniently expressed as AGG(r) ← q(y⃗). In Section 8.5 of Chap-
ter 8, we treat the extension to free variables. We will also exclude numerical
queries g() for which there exists a rational number r such that, for every
database instance db (including the empty database instance), [[g()]]db = r,
and consequently, [[GLB-CQA(g())]]db = [[LUB-CQA(g())]]db = r. An example
is SUM(0)← R(x, y), S(y). These numerical queries are of no practical interest,
and excluding them simplifies the technical development by avoiding the need
to treat them as special cases. The following definition pinpoints the class of
queries we are interested in.

Definition 3.4.1. AGGR[sjfBCQ] is defined as the class of numerical queries
AggrFAGG

y⃗ [r, q(y⃗)] where q(y⃗) is a self-join-free conjunction of atoms, r is either
a numerical variable in y⃗, or a non-negative rational number and the following
condition is satisfied:

Nontriviality Condition: if FAGG(∅) is defined, then there is a database
instance db such that [[g()]]db ̸= FAGG(∅).

An alternative syntax is AGG(r) ← q(y⃗), where the aggregate symbol AGG is
interpreted by FAGG. We call AGG(r) the head, and q(y⃗) the body. We write
BCQ(g()) for the Boolean query ∃y⃗(q(y⃗)), which belongs to sjfBCQ.
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3.5. When is GLB-CQA(g()) Not in AGGR[FOL]?

In this section, we provide a sufficient condition for GLB-CQA(g()) to be in-
expressible in AGGR[FOL] by utilizing its relationship with the decision prob-
lem CERTAINTY(BCQ(g())). Section 3.5.1 explores this relationship, and Sec-
tion 3.5.2 focuses on the specific case where the aggregate operator used is
monotone and associative.

3.5.1 Reducing CERTAINTY to GLB-CQA

Let g() be a numerical query in AGGR[sjfBCQ] with head AGG(r), and let q =
BCQ(g()). Theorem 3.5.1 states that, under some mild conditions, we have
CERTAINTY(q) ≤FO GLB-CQA(g()). One of these conditions involves a special
case of an injective function, called a separator.

Definition 3.5.1 (Separator). If ρ is a function from Q≥0 to Q≥0, and X is
a multiset over Q≥0, then ρ(X) denotes the multiset obtained by applying ρ
to each element of X, preserving multiplicities. That is, if X = {{a1, . . . , an}},
then ρ(X) = {{ρ(a1), . . . , ρ(an)}}.

Let FAGG be an aggregate operator such that FAGG(∅) is defined. A separator
for FAGG is an injective function ρ from Q≥0 to Q≥0 such that:

• ρ is first-order computable; and

• for every nonempty multiset X, we have FAGG(ρ(X)) > FAGG(∅).

Example 3.5.1. A separator for FSUM is the injective function defined by
ρ(x) = x+ 1. Obviously, if X is a nonempty multiset over Q≥0, then we have
FSUM(ρ(X)) > 0 = FSUM(∅). ◁

Example 3.5.2. Let FODD be the aggregate operator such that FODD(X) = 1
if |X| is odd, and FODD(X) = 0 otherwise. Clearly, FODD(∅) = 0. We argue that
FODD has no separator. To this end, let X be a nonempty multiset such that
FODD(X) = 0. Then, for every injection ρ, we have FODD(ρ(X)) = 0. ◁

Example 3.5.3. Define a nonGoldbach number as an even natural number
greater than 3 that is not the sum of two prime numbers. Define the aggregate
operator FGOLDBACH as follows:

• FGOLDBACH(∅) = 0;



21

• FGOLDBACH({{a}}) =

{
a if a is greater than some nonGoldbach number;

0 otherwise.

• for n ≥ 1, FGOLDBACH({{a1, . . . , an}}) =
∑n

i=1FGOLDBACH{{ai}}.

Clearly, FGOLDBACH is computable, monotone, and associative. However, it is
not known whether FGOLDBACH has a separator, because it is not known whether
nonGoldbach numbers exist. ◁

Theorem 3.5.1. Let g() be a numerical query in AGGR[sjfBCQ] with head
AGG(r), and let q = BCQ(g()). There is a first-order reduction from the problem
CERTAINTY(q) to GLB-CQA(g()) if one of the following conditions holds:

(a) FAGG(∅) is undefined;

(b) FAGG(∅) is defined, r is a variable, and FAGG has a separator; or

(c) FAGG(∅) is defined, r is a constant, and for every positive integer n, we

have FAGG({{
n times︷ ︸︸ ︷

r, r, . . . , r}}) > FAGG(∅).

Proof. Let db be a database instance that is input to CERTAINTY(q). We
distinguish the three possibilities:

Case that (a) holds. Then, db is a “yes”-instance of CERTAINTY(q) if and
only if [[GLB-CQA(g())]]db ̸= ⊥.

Case that (b) holds. We can assume a separator ρ for FAGG. Let ρ(db, q, r)
be the⊆-minimal database instance such that for every fact R(a1, . . . , an)
of db, if R(t1, . . . , tn) is the (unique) R-atom of q, then ρ(db, q, r) con-
tains R(b1, . . . , bn), where for i ∈ {1, . . . , n},

bi =

{
ρ(ai) if ti = r; and

ai otherwise.

Informally, ρ(db, q, r) is obtained from db by applying ρ to each rational
number in every r-column, while leaving other columns unchanged. It
is easily seen that for every database instance db, we have that r is a
repair of db if and only if ρ(r, q, r) is a repair of ρ(db, q, r). Since ρ is
first-order computable, we have that ρ(db, q, r) is first-order computable.
It is easily verified that db is a “yes”-instance of CERTAINTY(q) if and
only if [[GLB-CQA(g())]]ρ(db,q,r) > FAGG(∅).
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Case that (c) holds. Then, db is a “yes”-instance of CERTAINTY(q) if and
only if [[GLB-CQA(g())]]db > FAGG(∅).

This concludes the proof of Theorem 3.5.1.

The following two theorems state inexpressibility results for GLB-CQA(g())
and LUB-CQA(g()) in AGGR[FOL].

Theorem 3.5.2. Let g() be a numerical query in AGGR[sjfBCQ], and let
q = BCQ(g()). If the attack graph of q is cyclic, and one of the condi-
tions (a), (b), (c) in Theorem 3.5.1 holds, then GLB-CQA(g()) is not expressible
in AGGR[FOL].

Proof. Assume that the attack graph of q is cyclic. Then, CERTAINTY(q)
is known to be L-hard under first-order reductions (Koutris & Wijsen, 2017).
By Theorem 3.5.1, GLB-CQA(g()) is L-hard under first-order reductions, and
therefore is not Hanf-local. By (Libkin, 2004, Corollary 8.26 and Exercise 8.16),
every query in AGGR[FOL] is Hanf-local and, thus, GLB-CQA(g()) is not ex-
pressible in AGGR[FOL].

Theorem 3.5.3. Let g() be a numerical query in AGGR[sjfBCQ], and let q =
BCQ(g()). If the attack graph of q is cyclic, and condition (a) in Theorem 3.5.1
holds, then LUB-CQA(g()) is not expressible in AGGR[FOL].

Proof. The proof is analogous to that of Theorem 3.5.2.

3.5.2 Application to Monotone Associative Aggregation

The following theorem concerns the existence of separators for aggregate op-
erators that are monotone and associative.

Theorem 3.5.4. Let FAGG be an aggregate operator that is monotone and as-
sociative, and such that FAGG(∅) is defined. Then the following are equivalent:

(A) FAGG has a separator;

(B) FAGG(X) ̸= FAGG(∅) for some multiset X; and

(C) FAGG({{r}}) ̸= FAGG(∅) for some r ∈ Q≥0.

Proof. First we show that condition (A) implies condition (B). Assume that
condition (A) holds true. Then, FAGG has a separator ρ. Let Y be a nonempty
multiset of non-negative rational numbers. By Definition 3.5.1, FAGG(ρ(Y )) >
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FAGG(∅), hence FAGG(ρ(Y )) ̸= FAGG(∅). By letting X = ρ(Y ), condition (B)
holds true.

Next we show that condition (B) implies condition (C). Assume that con-
dition (B) holds true. Then, there is a cardinality-minimal multiset X =
{{x1, . . . , xn}} such that FAGG(X) ̸= FAGG(∅). Let X ′ = {{x1, . . . , xn−1}}.
Since X is chosen as cardinality-minimal, we have FAGG(X

′) = FAGG(∅). Since
X = X ′ ⊎ {{xn}}, by associativity of FAGG, FAGG(X) = FAGG({{FAGG(X

′), xn}}).
It follows FAGG(X) = FAGG({{FAGG(∅), xn}}). By associativity, FAGG(X) =
FAGG({{xn}}). Consequently, FAGG({{xn}}) ̸= FAGG(∅), and thus condition (C)
holds true.

Finally, we show that condition (C) implies condition (A). Assume that
condition (C) holds true. Then, there is r ∈ Q≥0 such that FAGG({{r}}) ̸=
FAGG(∅), hence, by monotonicity of FAGG,

FAGG(∅) < FAGG({{r}}). (3.5)

Let ρ be the injective function from Q≥0 to Q≥0 such that ρ(x) = x + r. We
show next that ρ is a separator for FAGG. To this end, let X be a nonempty
multiset of non-negative rational numbers, and let x be an element of X.
Clearly, r ≤ ρ(x) = x+ r, hence, by monotonicity of FAGG,

FAGG({{r}}) ≤ FAGG({{ρ(x)}}). (3.6)

Since ρ(x) belongs to ρ(X), by monotonicity of FAGG,

FAGG({{ρ(x)}}) ≤ FAGG(ρ(X)). (3.7)

From (3.5), (3.6), and (3.7), it follows that FAGG(∅) < FAGG({{ρ(X)}}). Conse-
quently, ρ is a separator for FAGG, and hence condition (A) holds true.

The following lemma shows some desirable consequences of the Nontrivial-
ity Condition in Definition 3.4.1.

Lemma 3.5.5. Let g() be a query in AGGR[sjfBCQ] with head AGG(r), for
an aggregate operator FAGG that is monotone and associative, and such that
FAGG(∅) is defined. Then,

• FAGG has a separator; and

• if r is a constant, then FAGG({{
n times︷ ︸︸ ︷

r, r, . . . , r}}) > FAGG(∅) for every positive
integer n.
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Proof. By the Nontriviality Condition in Definition 3.4.1, there must be a
multiset X with X ̸= ∅ such that FAGG(X) ̸= FAGG(∅). It follows from Theo-
rem 3.5.4 that FAGG has a separator.

Assume from here on that r is a constant. For every nonnegative integer i,

define Bi := {{
i times︷ ︸︸ ︷

r, r, . . . , r}}. By the Nontriviality Condition in Definition 3.4.1,
and by the monotonicity of FAGG, there must be a positive integer n such that
FAGG(∅) < FAGG(Bn). By monotonicity, FAGG(∅) ≤ FAGG(B1) ≤ FAGG(B2) ≤ · · · .
Hence, there exists m ∈ {1, 2, . . . , n} such that

FAGG(∅) = FAGG(Bm−1) < FAGG(Bm).

Since {{r}} = ∅ ⊎ {{r}}, by associativity of FAGG,

FAGG({{r}}) = FAGG({{FAGG(∅), r}}). (3.8)

Since Bm = Bm−1 ⊎ {{r}}, and by associativity of FAGG,

FAGG(Bm) = FAGG({{FAGG(Bm−1), r}}). (3.9)

Since FAGG(∅) = FAGG(Bm−1), it follows from (3.8) and (3.9) that FAGG(Bm) =
FAGG({{r}}). Consequently, FAGG(∅) < FAGG({{r}}). By monotonicity of FAGG,
we have FAGG(∅) < FAGG({{r}}) ≤ FAGG({{r, r}}) ≤ · · · . This concludes the
proof.

Consequently, the following result applies to every numerical AGGR[sjfBCQ]
query using a monotone and associative aggregate operator.

Theorem 3.5.6. Let g() be a numerical query in AGGR[sjfBCQ] with head
AGG(r), and let q = BCQ(g()), such that FAGG is monotone and associative.
If the attack graph of q is cyclic, then GLB-CQA(g()) is not expressible in
AGGR[FOL].

Proof. Immediate consequence of Theorem 3.5.2 and Lemma 3.5.5.



CHAPTER 4

Parsimony

In this chapter, inspired by the work of Fuxman (2007), we study the express-
ibility of GLB-CQA(g()) and LUB-CQA(g()) in what can be thought of as a
syntactically highly restricted subclass of AGGR[FOL], for AGG-queries g() in
AGGR[sjfBCQ]. This subclass is limited in expressive power to applying simple
aggregation steps to the results of genuine first-order queries—a method we
refer to as parsimonious aggregation, or Fuxman’s technique. We first consider
counting queries, i.e., numerical queries with head SUM(1), and then extend our
study to other aggregate operators. In this chapter, we also assume that the
database instances db for which GLB-CQA(g()) and LUB-CQA(g()) are com-
puted satisfy db |=cqa BCQ(g()), which implies that every aggregation is over
a non-empty multiset. Under this assumption, it does not matter whether or
not FAGG(∅) is defined. The motivation for starting with this simplified set-
ting is primarily historical: for many years—until the work of Amezian El
Khalfioui & Wijsen (2023)—it remained an open question which aggregation
queries could be handled by Fuxman’s technique. This question is resolved in
the current chapter. Once this question is resolved, our attention will turn to
the expressibility of GLB-CQA(g()) and LUB-CQA(g()) in plain AGGR[FOL]—
without syntactic restrictions—over database instances whose repairs may fal-
sify BCQ(g()). These studies are presented in subsequent chapters, which can
be read independently of the current one.

In his PhD thesis, Fuxman (2007) showed that for some counting queries g()
and database instances db such that db |=cqa BCQ(g()), [[GLB-CQA(g())]]db

and [[LUB-CQA(g())]]db can be computed by executing FOL queries, followed
by simple counting steps. To illustrate his approach, consider the database

25
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in Fig. 4.1, which stores information about employees and their department
buildings. Consider the numerical query g() := SUM(1)← E(x, y, z), D(z, “A”)
and the following query in SQL:

SELECT COUNT(DISTINCT Emp) AS CNT

FROM E, D

WHERE E.Dept = D.Dept AND Building = ’A’

On our example database db of Fig. 4.1, this SQL query returns 3, which also
turns out to be the answer to [[LUB-CQA(g())]]db. Importantly, it can be shown
that this is not by accident: on every database instance, the latter SQL query
will return the correct answer to LUB-CQA(g()). Note that the latter SQL
query uses COUNT(DISTINCT Emp), which means that duplicates are removed,
which is a standard practice in relational algebra.

We now explain how to obtain [[GLB-CQA(g())]]db for our example query.
To this end, consider the following query:

SELECT Emp

FROM E, D

WHERE E.Dept = D.Dept AND Building = ’A’

For our example database, the consistent answers to this SQL query are in the
following table, which we call C:

C Emp

Suzy

Note that Grety is not a consistent answer because Grety is not an answer
in some repair. From (Koutris & Wijsen, 2017), it follows that computing
the consistent answers to the latter SQL query is in FO (i.e., the class of
problems that can be solved by a first-order query), using a technique known
as consistent first-order rewriting. The lower bound 1 is now found by executing
the following query on C (and, again, this is not by accident):

SELECT COUNT(DISTINCT Emp) AS CNT

FROM C

Since C can be expressed in SQL, we can actually construct a single SQL query
that computes GLB-CQA(g()).

In general, a counting query g() is said to admit parsimonious counting if
it is possible to evaluate [[GLB-CQA(g())]]db and [[LUB-CQA(g())]]db as previ-
ously described, for every database instance db such that db |=cqa BCQ(g()).
Thus, our example showed that g() := SUM(1) ← E(x, y, z), D(z, “A”) admits
parsimonious counting. A formal definition of parsimonious counting will be
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E Emp Gender Dept

Suzy F HR
Anny F HR
Anny F IT
Grety F IT
Lucy F MIS

D Dept Building

HR A
IT A
IT B

MIS B

Figure 4.1: Example database. Primary keys are underlined.

given later on (Definition 4.1.1). In this introduction, we content ourselves by
saying that parsimonious counting, if possible, computes GLB-CQA(g()) and
LUB-CQA(g()) by executing two first-order queries (one for lower bounds, and
one for upper bounds), followed by simple counting steps.

In his doctoral dissertation, Fuxman (2007) defined a class of self-join-
free conjunctive queries, called Cforest, and, among other results, proved the
following.

Theorem 4.0.1 (Fuxman (2007)). Let g() be a counting query in the class
AGGR[sjfBCQ]. If BCQ(g()) ∈ Cforest, then g() admits parsimonious counting.

The class Cforest has been used in several studies on consistent query an-
swering. It was an open question whether Cforest contains all self-join-free
Boolean conjunctive queries ∃y⃗ (q(y⃗)) such that g() := SUM(1) ← q(y⃗) ad-
mits parsimonious counting. We will answer this question negatively in Sec-
tion 4.1.4. More fundamentally, we introduce a new syntactic class, called
Cparsimony, which includes Cforest, and contains all (and only) the self-join-
free Boolean conjunctive queries ∃y⃗ (q(y⃗)) such that g() := SUM(1) ← q(y⃗)
admits parsimonious counting. That is, we prove the following theorem.

Theorem 4.0.2 (Main theorem about parsimonious counting). For every
counting query g(), it holds that g() admits parsimonious counting if and only
if BCQ(g()) is in Cparsimony.

The chapter is organized as follows. First, Section 4.1 introduces the se-
mantic notion of parsimonious counting, our new syntactic class of queries,
called Cparsimony, and shows that for every counting query g(), BCQ(g()) ∈
Cparsimony is a sufficient and necessary condition for g() to admit parsimo-
nious counting. Moreover, we also show that Cforest is strictly included in
Cparsimony, and we illustrate how parsimonious counting can be expressed in
AGGR[FOL]. Section 4.2 then extends the notion of parsimonious counting to
numerical queries with a head other than SUM(1), which we refer to as par-
simonious aggregation. We show that for every numerical query g() with a



28 Parsimony

monotone aggregation operator, BCQ(g()) ∈ Cparsimony is a sufficient (but
not necessary) condition for g() to admit parsimonious aggregation. We also
illustrate how parsimonious aggregation is expressible in AGGR[FOL].

4.1. Parsimonious Counting

Let g() be a counting query in AGGR[sjfBCQ]. The following proposition states
that computing LUB-CQA(g()) can be NP-hard, even if BCQ(g()) has a con-
sistent first-order rewriting.

Proposition 4.1.1. There is a counting query g() such that BCQ(g()) has a
consistent first-order rewriting and LUB-CQA(g()) is NP-hard to compute.

Proof. The following problem is NP-complete (Garey & Johnson, 1979).

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set M ⊆ A1 × A2 × A3, where A1, A2, A3 are disjoint sets
having the same number n of elements.

QUESTION: Does M contain a matching, that is, a subset M ′ ⊆ M such
that |M ′| = n and no two elements of M ′ agree in any coordinate?

Consider the numerical query

g() := SUM(1)←
3⋃

i=1

{
Ri(xi, y), Si(xi, y)

}
.

Let q = BCQ(g()). The edge-set of q’s attack graph is empty. Therefore,
q’s attack graph is acyclic. Observe that the Si-atoms serve to render the
attack graph acyclic. By Theorem 2.0.1, q has a consistent first-order rewriting.
Let M ⊆ A1 × A2 × A3 be an instance of 3DM. Let dbM be the database
instance that includes

⋃3
i=1{Ri(ai, a1a2a3), Si(ai, a1a2a3)} for every a1a2a3 in

M . Clearly, dbM is first-order computable from M .
We now show the following property: M has a matching if and only if

[[LUB-CQA(g())]]dbM = n. Before delving into the proof, we provide an exam-
ple.

Example 4.1.1. Let A1 = {a, b}, A2 = {d, e}, A3 = {f, g}, and M =
{adf, aeg, beg}. Thus, n = |A1| = 2. Then, we construct relations as follows.

dbM :

R1 = S1 x1 y

a adf ∗
a aeg
b beg ∗

R2 = S2 x2 y

d adf ∗
e aeg
e beg ∗

R3 = S3 x3 y

f adf ∗
g aeg
g beg ∗
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It can be verified that [[LUB-CQA(g())]]dbM = 2. The tuples marked with ∗
form a repair r on which [[g()]]r = 2. In particular, there are two embed-
dings in r mapping (x1, x2, x3, y) to (a, d, f, adf) and (b, e, g, beg). This answer
corresponds to the 3-dimensional matching {adf, beg}. ◁

=⇒ Assume M ′ is a matching of M . Let r be a database instance that

includes, for every a1a2a3 ∈ M
′, the set

⋃3
i=1{Ri(ai, a1a2a3), Si(ai, a1a2a3)}.

Since no two elements ofM ′ agree on any coordinate, r is consistent. Moreover,
since n = |M ′| = |A1| = |A2| = |A3|, r contains a tuple of every block of dbM .
Therefore, r is a repair of dbM . Clearly, [[g()]]r = n. It is also obvious to see
that there is no repair s of dbM on which [[g()]]s = k with k > n.

⇐= Let r be a repair of dbM such that [[g()]]r = n. Let θ be the
embedding of q in r mapping (x1, x2, x3, y) to (a1, a2, a3, b1b2b3). For each
i ∈ {1, 2, 3}, since q contains the atom Ri(xi, y), r contains Ri(ai, b1b2b3), and
hence ai = bi by our construction. It follows b1b2b3 = a1a2a3.

Let θa and θb be two embeddings of q in r mapping, respectively, the
sequence (x1, x2, x3, y) to (a1, a2, a3, a1a2a3) and (b1, b2, b3, b1b2b3). Since q
contains Ri(xi, y), r contains Ri(ai, a1a2a3) and Ri(bi, b1b2b3). If ai = bi,
then, since r is consistent, we have a1a2a3 = b1b2b3. Consequently, no two
distinct embeddings of q in r agree on any coordinate among x1, x2, and x3.
Since [[g()]]r = n, it follows that the set containing θ(y) for every embedding θ
of q in r is a matching of M ′ of size n. This concludes the proof.

Note that the foregoing proof carries over from 3-DIMENSIONAL MATCH-

ING to 2-DIMENSIONAL MATCHING. That is, if

g() := SUM(1)← R1(x1, y), S1(x1, y), R2(x2, y), S2(x2, y),

then BCQ(g()) has a consistent first-order rewriting, whereas LUB-CQA(g())
is as hard as 2-DIMENSIONAL MATCHING.

The following definition introduces the semantic notion of parsimonious
counting, which was illustrated by the running example that introduced this
chapter. Informally, for a counting query g() in AGGR[sjfBCQ] that admits
parsimonious counting, it will be the case that on every database instance db

such that db |=cqa BCQ(g()), [[GLB-CQA(g())]]db and [[LUB-CQA(g())]]db can
be computed by a first-order query followed by a simple counting step.

Definition 4.1.1 (Parsimonious counting). Let g() be a counting query in
AGGR[sjfBCQ]. Let q = BCQ(g()). Let x⃗ be a (possibly empty) sequence of
distinct bound variables of q. We say that g() admits parsimonious counting
on x⃗ if the following hold (let q′(x⃗) = ∄x⃗ [q]):
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(A) q has a consistent first-order rewriting;

(B) q′(x⃗) has a consistent first-order rewriting (call it φ(x⃗)); and

(C) for every database instance db such that db |=cqa q, the following con-
ditions (a) and (b) are equivalent:

(a) [[GLB-CQA(g())]]db = m and [[LUB-CQA(g())]]db = n.

(b) Both the following hold:

(i) m is the number of distinct tuples d⃗, of arity x⃗, such that db |=
φ(d⃗); and

(ii) n is the number of distinct tuples d⃗ such that db |= q′(d⃗).

We say that g() admits parsimonious counting if it admits parsimonious count-
ing on some sequence x⃗ of bound variables.

Significantly, since Definition 4.1.1 contains a condition that must hold
for every database instance db, it does not give us an efficient procedure for
deciding whether a given g() ∈ AGGR[sjfBCQ] admits parsimonious counting.

From the proof of Proposition 4.1.1 and the paragraph after that proof, it
follows that under standard complexity assumptions, for k ≥ 2,

gk() := SUM(1)←
k⋃

i=1

{Ri(xi, y), Si(xi, y)}

does not admit parsimonious counting, even though BCQ(gk()) has a consistent
first-order rewriting.

4.1.1 The Class Cparsimony

The notion of parsimonious counting is a semantic property defined for count-
ing queries. A natural question is to syntactically characterize the class of
counting queries that admit parsimonious counting. In this section, we will
answer this question for counting queries in AGGR[sjfBCQ]. This is the best
we can currently hope for, because consistent query answering for primary
keys and conjunctive queries with self-joins is a notorious open problem for
which no tools are known (e.g., attack graphs are not helpful in the presence
of self-joins). We now define our new syntactic class Cparsimony, which uses
the following notion of frozen variable.

Definition 4.1.2 (Frozen variable). Let q be a self-join-free conjunctive query.
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R(x, y1) S(x, y2)

T (y1, y2, y3)

P (v, w)

y1

y2

y3 x

v

w

Figure 4.2: Attack graph (left) and Gaifman graph (right) of q =
∃x∃y1∃y2∃y3∃v∃w(R(x, y1) ∧ S(x, y2) ∧ T (y1, y2, y3) ∧ P (v, w)).

We say that a bound variable y of q is frozen in q if there exists a sequential

proof of K(q) |= ∅ → y such that F
q

̸⇝ y for every atom F that occurs in
the sequential proof. We write frozen(q) for the set of all bound variables of
vars(q) that are frozen in q. A bound variable that is not frozen in q is called
nonfrozen in q.

Example 4.1.2. Let q = ∃x(R(c, x) ∧ S(c, x)). We have R
q

̸⇝ x. Therefore,
(R(c, x)) is a sequential proof of K(q) |= ∅ → x that uses no atom attacking x.
Hence, x is frozen. ◁

Definition 4.1.3 (The class Cparsimony). We define Cparsimony as the set of
self-join-free Boolean conjunctive queries q satisfying the following conditions:

(I) the attack graph of q is acyclic; and

(II) there is a tuple x⃗ of bound variables of q such that:

(1) K(q) |= x⃗→ vars(q); and

(2) for every atom F in q, every (possibly empty) path in the Gaifman
graph of q between a variable of notKey(F ) and a variable of x⃗ uses
a variable in Key(F ) ∪ frozen(q).

We will say that such an x⃗ is an id-set for q. We will say that an id-set x⃗ is
minimal if any sequence obtained from x⃗ by omitting one or more variables is
no longer an id-set.

Informally, id-sets x⃗ will play the role of x⃗ in Definition 4.1.1: they identify
the values that have to be counted to obtain GLB-CQA(g()) and LUB-CQA(g()).

We now illustrate Definition 4.1.3 by some examples. Then Proposition 4.1.2
implies that every query q in Cparsimony has a unique minimal id-set that can
be easily constructed from q’s attack graph.



32 Parsimony

Example 4.1.3. In the paragraph following the proof of Proposition 4.1.1, we
considered the query q = ∃x1∃x2∃y(

∧2
i=1(Ri(xi, y) ∧ Si(xi, y))). The edge-set

of q’s attack graph is empty. No variable is frozen. According to condition (1)
in Definition 4.1.3, every id-set (if any) must contain x1. However, no id-set can
contain x1, because for the atom R2(x2, y), the edge {y, x1} in the Gaifman
graph of q is a path between a variable of notKey(R2) and x1 that uses no
variable of Key(R2). We conclude that q is not in Cparsimony. ◁

Example 4.1.4. The query q = ∃x∃y∃v(R(x, y)∧S(y, v)∧T (v, y)∧P1(c, y)∧
P2(c, y)) belongs to Cparsimony. The attack graph of q has a single attack
from S to T . The Gaifman graph of q has two undirected edges: {x, y} and
{y, v}. The variable y is frozen, because (P1(c, y)) is a sequential proof of

K(q) |= ∅ → y and P1

q

̸⇝ y.
It can be verified that (x) is an id-set. Note that (y, x) is a path in

the Gaifman graph of q between y ∈ notKey(T ) and x that uses no variable
of Key(T ) = {v}. However, that path uses the frozen variable y. ◁

Example 4.1.5. Let q be the following self-join-free Boolean conjunctive query

q = ∃x∃y1∃y2∃y3∃v∃w(R(x, y1) ∧ S(x, y2) ∧ T (y1, y2, y3) ∧ P (v, w)).

The attack graph and the Gaifman graph of q are shown in Fig. 4.2. We now
argue that q is in Cparsimony. First, the attack graph of q is acyclic. We next
argue that (xv) is an id-set for q. Condition (1) in Definition 4.1.3 is obviously
satisfied for x⃗ = (xv). It is easily verified that condition (2) is also verified. In
particular, for the atom T (y1, y2, y3), every path between y3 and x uses either
y1 or y2. ◁

Example 4.1.6. Let q = ∃x∃y(R1(x, y) ∧R2(x, y) ∧ S1(y, x) ∧ S2(y, x)). The
attack graph of q contains no edges and, thus, is acyclic. It can be verified
that no variable is frozen. We claim that q is not in Cparsimony, because it has
no id-set. Indeed, from condition (1) in Definition 4.1.3, it follows that every
id-set must contain either x or y (or both). For the atom S1(y, x), the empty
path is a path between a variable in notKey(S1) to x that uses no variable
in Key(S1). It follows by condition (2) that no id-set can contain x. From
R2(x, y), by similar reasoning, we conclude that no id-set can contain y. It
follows that q has no id-set. ◁

Proposition 4.1.2. Let q in Cparsimony, and let x⃗ be a minimal id-set for it.
Let N =

⋃
{notKey(R) | R ∈ q}. Let V be a ⊆-minimal subset of vars(q) that

includes, for every unattacked atom F of q, every bound variable of Key(F )\N .
Then,
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(A) V = vars(x⃗); and

(B) whenever F,G are unattacked atoms that are weakly connected in q’s
attack graph, Key(F ) ∩ x⃗ = Key(G) ∩ x⃗.

Example 4.1.7. Let q = ∃x∃y(R(x, y)∧S(x, y)∧T (y)). The attack graph of q
contains no edges, and hence has three weak components. If we construct V
as in the statement of Proposition 4.1.2, we first compute N = {y}, and then
V = {x}. ◁

Example 4.1.8. Let q = ∃x∃y∃z1∃z2(R(x, y, z1) ∧ S(x, y, z2) ∧ T (z1, z2) ∧
P (x, y)). The attack graph of q contains two edges: R(x, y, z1) and S(x, y, z2)
both attack T (z1, z2). Thus, the attack graph of q has two weak components.
If we construct V as in the statement of Proposition 4.1.2, we first compute
N = {y, z1, z2}, and then V = {x}. ◁

The proof for Proposition 4.1.2 is provided in Section B.1 of Appendix B.
The following proposition settles the complexity of checking whether a query
belongs to Cparsimony.

Proposition 4.1.3. The following decision problem is in quadratic time: Given
a self-join-free Boolean conjunctive query q, decide whether or not q belongs to
Cparsimony.

Proof. Let q be a self-join-free Boolean conjunctive query. It is possible, in
quadratic time in the size of q, to compute the attack graph of q (Wijsen, 2012),
test whether condition (I) in Definition 4.1.3 is satisfied, and construct V as in
the statement of Proposition 4.1.2. By adding to q, for every variable x, a fresh
atom Px(x), the attack graph allows determining the set nx of all atoms not
attacking x. Membership of x in frozen(q) is determined by testing whether
K(nx) |= ∅ → x, which is in linear time in the size of nx. If condition (I) is not
satisfied, answer “no”; otherwise proceed as follows. For every atom F in q,
test whether, in q’s Gaifman graph, some variable of V is reachable from some
variable in notKey(F ) without using variables from Key(F ) ∪ frozen(q). This
can be done in quadratic time. If any such reachability test succeeds, then
it is correct to answer “no”, because q has no id-set; otherwise answer “yes”.
The correctness follows from Proposition 4.1.2: if q has an id-set, then V is an
id-set. Therefore, if V falsifies condition (2) in Definition 4.1.3, then V is not
an id-set, and hence q has no id-set. Finally, we note that, by construction, V
will satisfy condition (1) in Definition 4.1.3.
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4.1.2 Cparsimony Admits Parsimonious Counting

In this section, we show the if-direction of Theorem 4.0.2, which is the following
theorem.

Theorem 4.1.4. Let q ∈ Cparsimony and let g() be a counting query such that
BCQ(g()) = q. Then g() admits parsimonious counting.

We use a number of helping lemmas and constructs. The following lemma
says that if x⃗ is an id-set for a query q in Cparsimony, then for a consistent
database db, if g() is the counting query such that BCQ(g()) = q, the answers
to [[g()]]db can be obtained by counting the number of distinct x⃗-values, while
variables not in x⃗ can be ignored.

Lemma 4.1.5. Let q be a sjfBCQ in Cparsimony and x⃗ be an id-set for q.
Let db be a consistent database instance. Let θ1, θ2 be two embeddings of q
in db. If θ1(x⃗) = θ2(x⃗), then θ1 = θ2.

Proof. From condition (1) in Definition 4.1.3, we have that K(q) |= x⃗ →
vars(q). Since db is a consistent database instance and θ1(x⃗) = θ2(x⃗), it
follows that θ1 = θ2.

We now present the notion of optimistic repair, which was originally in-
troduced by Fuxman (2007). Informally, a repair r of a database db is an
optimistic repair with respect to a conjunctive query q(x⃗) if every tuple that is
an answer to q(x⃗) on db is also an answer to q(x⃗) on r. The converse obviously
holds true because conjunctive queries are monotone and repairs are subsets
of the original database instance.

Definition 4.1.4 (Optimistic repair). Let q(x⃗) be a conjunctive query. Let
db be a database instance. We say that a repair r of db is an optimistic repair
with respect to q(x⃗) if for every tuple a⃗ of constants, of arity |x⃗|, db |= q(⃗a)
implies r |= q(⃗a) (the converse implication is obviously true).

The following lemmas gives a sufficient condition for the existence of opti-
mistic repairs.

Lemma 4.1.6. Let q be a query in Cparsimony, and let x⃗ be an id-set for q. Let
q′(x⃗) be the query ∄x⃗ [q]. Let db be a database instance such that db |=cqa q.

Let {d⃗1, . . . , d⃗ℓ} be a subset of adom(db)|x⃗| such that db |= q′(d⃗i) for every
i ∈ {1, . . . , ℓ}. Let r be a non-negative rational number or a numerical variable
in vars(q). For each i ∈ {1, . . . , n}, there exists an embedding θi of q in db

satisfying the following conditions:
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(a) θi(x⃗) = d⃗i;

(b) for every j ∈ {1, . . . , n}, for every atom F in q, if θi(F ) and θj(F ) are
key-equal, then they are equal; and

(c) for every embedding θ of q in db such that θ(x⃗) = d⃗i, θ(r) ≤ θi(r).

The proof of Lemma 4.1.6 is provided in Section B.2 of Appendix B. Note
that condition (c) of Lemma 4.1.6 is not used in this proof but will be useful
in later sections. Indeed, for counting queries, we will always use r = 1.

Lemma 4.1.7. Let q be a query in Cparsimony, and let x⃗ be an id-set for q. Let
q′(x⃗) be the query ∄x⃗ [q]. Let db be a database instance such that db |=cqa q.
Then, db has an optimistic repair with respect to q′(x⃗).

Proof. Let {d⃗1, . . . , d⃗n} be a maximal subset of adom(db)|x⃗| such that db |=
q′(d⃗i) for every i ∈ {1, . . . , n}. By Lemma 4.1.6, for each i ∈ {1, . . . , n}, there
exists an embedding θi of q in db satisfying the following conditions:

(a) θi(x⃗) = d⃗i; and

(b) for every j ∈ {1, . . . , n}, for every atom F in q, if θi(F ) and θj(F ) are
key-equal, then θi(F ) = θj(F ).

From the last property, it follows that there is a repair r of db such that
for every i ∈ {1, . . . , n}, θi is an embedding of q in r. Since r |= q′(d⃗i) for
every i ∈ {1, . . . , n}, the repair r is an optimistic repair of db with respect
to q′(x⃗).

We now present the notion of pessimistic repair, also borrowed from (Fux-
man, 2007). Informally, a repair of a database db is a pessimistic repair with
respect to a conjunctive query q(x⃗) if every answer to q(x⃗) on r is a consistent
answer to q(x⃗) on db. The converse trivially holds true.

Definition 4.1.5 (Pessimistic repair). Let q(x⃗) be a conjunctive query. Let
db be a database instance. We say that a repair r of db is a pessimistic repair
with respect to q(x⃗) if for every tuple a⃗ of constants, of arity |x⃗|, if r |= q(⃗a),
then db |=cqa q(⃗a).

The following lemma gives a sufficient condition for the existence of pes-
simistic repairs.

Lemma 4.1.8. Let q be a query in Cparsimony, and let x⃗ be an id-set for q.
Let q′(x⃗) be the query ∄x⃗ [q]. Let db be a database instance. Then, db has a
pessimistic repair with respect to q′(x⃗).
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Proof. From (Koutris & Wijsen, 2017), it follows that whenever x⃗ is a se-
quence of unattacked variables of a self-join-free Boolean conjunctive query,
then every database instance db has a repair r such that for every sequence d⃗
of constants, of arity |x⃗|, r |= q′(d⃗) implies db |=cqa q

′(d⃗). The proof is now
straightforward by using that all variables of an id-set are unattacked (by
item (b) in Lemma B.1.3, provided in Section B.1 of Appendix B).

The following example illustrates the preceding constructs and lemmas.

Example 4.1.9. Let g() := SUM(1)← R(x, y), S(x, y). Let q = BCQ(g()). Let
db be the following database instance:

R x y
a1 b1
a1 b2
a2 b2

S x y

a1 b1
a2 b2

Clearly, db has two repairs, which are r1 := db \ {R(a1, b2)} and r2 := db \
{R(a1, b1)}.

We first determine the answers to [[GLB-CQA(g())]]db and [[LUB-CQA(g())]]db

in a naive way without using parsimonious counting, but by enumerating re-
pairs. For i ∈ {1, 2}, let M(ri) be the set of tuples of constants (c1, c2) such
that there is an embedding θ of q in ri mapping (x, y) to (c1, c2). We have:

M(r1) = {(a1, b1) , (a2, b2)}

M(r2) = {(a2, b2)}

Clearly, [[GLB-CQA(g())]]db = 1 and [[LUB-CQA(g())]]db = 2.

It can be easily verified that q ∈ Cparsimony with an id-set (x). We next
compute [[GLB-CQA(g())]]db and [[LUB-CQA(g())]]db by means of parsimonious
counting. To this end, let q′(x) = ∄x [q], and let φ(x) be a consistent first-order
rewriting for q′(x). If we execute these queries on db, we obtain:1

q′(db) = {a1, a2}

φ(db) = {a2}

As stated in Theorem 4.1.4, the set q′(db) yields the upper bound 2 and the
set φ(db) yields the lower bound 1. It is important to understand that par-
simonious counting obtains these bounds directly on db, without computing
any repair.

1
ϕ(db) is a shorthand for the set of all tuples (c) such that db |= ϕ(c).
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We elaborate this example further to illustrate the constructs of optimistic
and pessimistic repairs. We have:

q′(r1) = {a1, a2}

q′(r2) = {a1}

Note that the consistent answer to q′(x) on db (i.e., the set φ(db) used previ-
ously) is equal to q′(r1)∩ q

′(r2) = {a1}. We see that r1 is an optimistic repair
with respect to q′(x), and r2 a pessimistic repair with respect to q′(x). ◁

We finish this section by a proof of Theorem 4.1.4.

Proof of Theorem 4.1.4. Let q ∈ Cparsimony, x⃗ be an id-set for q and g() be
a counting query such that BCQ(g()) = q. We have to prove that g() admits
parsimonious counting. It suffices to show that conditions (A), (B), and (C)
in Definition 4.1.1 are satisfied for the id-set x⃗ of q. As in Definition 4.1.1, let
q′(x⃗) = ∄x⃗ [q].

Since q is in Cparsimony, q has an acyclic attack graph. It follows from
Theorem 2.0.1 that q has a consistent first-order rewriting. Thus, condition (A)
in Definition 4.1.1 is satisfied. It is known (Koutris & Wijsen, 2017) that the
attack graph of q′(x⃗) is a subgraph of the attack graph of q. Informally, no
new attacks are introduced when bound variables are made free. It follows that
q′(x⃗) has an acyclic attack graph, and therefore, by Theorem 2.0.1, a consistent
first-order rewriting. Thus, condition (B) in Definition 4.1.1 is satisfied. In
the remainder of the proof, we show that condition (C) in Definition 4.1.1
is satisfied. To this end, let db be an arbitrary database instance such that
db |=cqa q.

Let D be the active domain of db. Let f be a function that maps every
subset s of db to the cardinality of the set {a⃗ ∈ D|x⃗| | s |= q′(⃗a)}. Clearly, for
every repair r of db, we have r ⊆ db and hence, since conjunctive queries are
monotone, f(r) ≤ f(db). Moreover, since repairs are consistent, it follows by
Lemma 4.1.5 that for every repair r of db, if [[g()]]r = i, then i = f(r).

By Lemma 4.1.7, we can assume an optimistic repair ro of db with respect
to q′(x⃗). By Definition 4.1.4 of an optimistic repair, for every tuple a⃗ of con-
stants, of arity |x⃗|, we have ro |= q′(⃗a) if and only if db |= q′(⃗a). It follows
f(ro) = f(db). Consequently, for every repair r of db, f(r) ≤ f(ro). It follows
that [[LUB-CQA(g())]]db = f(db).

By Lemma 4.1.8, we can assume a pessimistic repair rp of db with respect to
q′(x⃗). Let φ(x⃗) be a consistent first-order rewriting of q′(x⃗). By Definition 4.1.5
of a pessimistic repair, the following hold:
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• rp |= q(⃗a) if and only if db |= φ(⃗a). Therefore, f(rp) is the cardinality
of the set S := {a⃗ ∈ D|x⃗| | db |= φ(⃗a)}.

• for every repair r of db, f(rp) ≤ f(r).

It follows that [[GLB-CQA(g())]]db = |S|. From this, it is correct to conclude
that condition (C) in Definition 4.1.1 is satisfied. This concludes the proof.

4.1.3 Completeness of Cparsimony

In this section, we show the only-if-direction of Theorem 4.0.2, which is the
following theorem.

Theorem 4.1.9. For every counting query g() in AGGR[sjfBCQ] that admits
parsimonious counting, BCQ(g()) belongs to Cparsimony.

The following two lemmas state some properties of queries g() that admit
parsimonious counting on some x⃗.

Lemma 4.1.10. Let g() be a counting query in AGGR[sjfBCQ], and q =
BCQ(g()). If g() admits parsimonious counting, then the attack graph of q
is acyclic.

Proof. Proof by contraposition. If the attack graph of q is cyclic, then by
Theorem 2.0.1, q has no consistent first-order rewriting, and therefore g() does
not admit parsimonious counting.

Lemma 4.1.11. Let g() be a counting query in AGGR[sjfBCQ], and q =
BCQ(g()). Let x⃗ be a (possibly empty) sequence of bound variables of q. If
there exists a consistent database instance db and two embeddings θ1, θ2 of q
in db such that θ1(x⃗) = θ2(x⃗) but θ1 ̸= θ2, then g() does not admit parsimo-
nious counting on x⃗.

Proof. Let db be a consistent database instance and two embeddings θ1, θ2
of q in db such that θ1(x⃗) = θ2(x⃗) but θ1 ̸= θ2. Let q′(x⃗) = ∄x⃗ [q] and
q∗(x⃗, w⃗) = ∄w⃗ [q′] where w⃗ is a shortest vector containing every variable of
vars(q) that does not appear in x⃗. It follows that θ1(w⃗) ̸= θ2(w⃗). Let D be the
active domain of db. Define:

M := {⃗b ∈ D|x⃗| | db |= q′(⃗b)},

M∗ := {⃗b · c⃗ ∈ D|x⃗| ·D|w⃗| | db |= q∗(⃗b, c⃗)}.

Clearly, for every b⃗ ∈M , there exists c⃗ ∈ D|w⃗| such that b⃗ · c⃗ ∈M∗. Therefore,
|M | ≤ |M∗|. Moreover, from db |= q∗(θ1(x⃗), θ1(w⃗)) and db |= q∗(θ2(x⃗), θ2(w⃗)),
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it follows |M | < |M∗|. Since db is consistent, [[LUB-CQA(g())]]db = [[g()]]db =
|M∗|. From |M | ≠ |M∗|, it is correct to conclude that g() does not admit
parsimonious counting on x⃗.

The following lemma concerns condition (1) in Definition 4.1.3.

Lemma 4.1.12. Let g() be a numerical query in AGGR[sjfBCQ], and q =
BCQ(g()). Let x⃗ be a (possibly empty) sequence of bound variables of q. If g()
admits parsimonious counting on x⃗, then x⃗ satisfies condition (1) in Defini-
tion 4.1.3.

Proof. The proof is by contraposition. Assume that x⃗ does not satisfy condi-
tion (1) in Definition 4.1.3. We can assume a variable v ∈ vars(q) such that
K(q) ̸|= x⃗ → v. Let θ, µ be two valuations over vars(q) such that for every
variable u ∈ vars(q),

θ(u) = µ(u) if and only if K(q) |= x⃗→ u. (4.1)

Let db = θ(q)∪µ(q). We show that db is a consistent database instance, i.e.,
whenever two facts in db are key-equal, then they are equal. Since q is self-
join-free, it suffices to consider any atom F in q such that for every u ∈ Key(F ),
θ(u) = µ(u). By Eq. (4.1), it follows K(q) |= x⃗→ Key(F ). Since K(q) contains
Key(F )→ vars(F ), it follows K(q) |= x⃗→ vars(F ) by Armstrong’s transitivity
axiom. By Eq. (4.1), θ(F ) = µ(F ).

Since K(q) |= x⃗→ x⃗, we have θ(x⃗) = µ(x⃗) by Eq. (4.1). Since K(q) ̸|= x⃗→
v, it follow that θ(v) ̸= µ(v) by Eq. (4.1) and, thus, θ ̸= µ. By Lemma 4.1.11,
it is correct to conclude that g() does not admit parsimonious counting on x⃗.

The following two lemmas, and their corollary, concern condition (2) in
Definition 4.1.3.

Lemma 4.1.13. Let g() be a numerical query in AGGR[sjfBCQ], and q =
BCQ(g()). Let x⃗ be a (possibly empty) sequence of bound variables of q, and
let q′(x⃗) = ∄x⃗ [q]. If g() admits parsimonious counting on x⃗, then, for every
database instance db such that db |=cqa q, db has an optimistic repair with
respect to q′(x⃗).

Proof. Assume that g() admits parsimonious counting on x⃗. Let db be a
database instance such that db |=cqa q.

Define

S := {d⃗ ∈ D|x⃗| | db |= q′(d⃗)}, (4.2)
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where D be the active domain of db. By our hypothesis that g() admits
parsimonious counting on x⃗, it follows by condition (C) in Definition 4.1.1
that

[[LUB-CQA(g())]]db = |S|. (4.3)

By Definition of LUB-CQA(g()), we can assume a repair r of db such that
[[g()]]r = [[LUB-CQA(g())]]db. Define

Sr := {d⃗ ∈ D
|x⃗| | r |= q′(d⃗)}. (4.4)

By our hypothesis that g() admits parsimonious counting on x⃗, it follows by
condition (C) in Definition 4.1.1 that

[[g()]]r = [[LUB-CQA(g())]]r = |Sr|. (4.5)

Since conjunctive queries are monotone and r ⊆ db, it follows Sr ⊆ S. Since
|Sr| = |S| by (4.3) and (4.5), it follows Sr = S. From S ⊆ Sr, it follows that r
is an optimistic repair with respect to q′(x⃗).

Lemma 4.1.14. Let g(), q, x⃗, q′(x⃗) as in the statement of Lemma 4.1.13.
Assume that x⃗ violates condition (2) in Definition 4.1.3. Then, there exists a
database db such that db |=cqa q and db has no optimistic repair with respect
to q′(x⃗).

The proof for Lemma 4.1.14 is provided in Section B.3 of Appendix B.

Corollary 4.1.14.1. Let g(), q, x⃗, q′(x⃗) as in the statement of Lemma 4.1.13.
If g() admits parsimonious counting on x⃗, then x⃗ satisfies condition (2) in
Definition 4.1.3.

Proof. Immediately from Lemmas 4.1.13 and 4.1.14.

Before giving a proof of Theorem 4.1.9, we illustrate the preceding results
with an example.

Example 4.1.10. Let g() := SUM(1) ← R(x, z, y), S(y, x), T (y, x). Let q =
BCQ(g()). We will argue that q is not in Cparsimony, and then illustrate that
g() does not admit parsimonious counting.

The only attacks in q are R
q
⇝ S and R

q
⇝ T . Assume for the sake of

contradiction that q ∈ Cparsimony. Then, following Proposition 4.1.2, the
minimal id-set for q is the empty sequence (). However, since K(q) ≡ {x →
y, x → z, y → x}, condition (1) in Definition 4.1.3 is violated for x⃗ = (). We
conclude by contradiction that q /∈ Cparsimony.
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We now argue, without using Theorem 4.1.9, that g() does not admit parsi-
monious counting. Conditions (A) and (B) in Definition 4.1.1 of parsimonious
counting are satisfied for every choice of x⃗ in {(), (x), (y), (x, y)}. However, we
will show that condition (C) is not satisfied. To this end, let x⃗ be a sequence of
bound variables of q. Let q′(x⃗) = ∄x⃗ [q]. First, suppose that x⃗ ∈ {(x) , (x, y)}.
Consider the following database instance db:

R x z y
a d e
b d e
c d f

S y x

e a
e b
f c

T y x

e a
e b
f c

We have that [[GLB-CQA(g())]]db = 1 and [[LUB-CQA(g())]]db = 2, but it can
be easily verified that |q′(db)| = 3, which is distinct from the upper bound 2.

Assume next that x⃗ ∈ {(y) , (x, y)}. Consider the following database in-
stance db:

R x z y
a d e
a d f
b d g

S y x

e a
f a
g b

T y x

e a
f a
g b

Now we have that [[GLB-CQA(g())]]db = 2 and [[LUB-CQA(g())]]db = 2, but
|q′(db)| = 3.

The only remaining case to be considered is x⃗ = (). In that case q′(x⃗) = q.
Consider the following database instance db:

R x z y
a d e
b d f

S y x

e a
f b

T y x

e a
f b

Since db is a consistent database instance, the only repair of db is db itself.
We have that [[GLB-CQA(g())]]db = 2 and [[LUB-CQA(g())]]db = 2. It can be
easily verified that |q′(db)| = 1, which is distinct from the upper bound 2.

Finally, we claim (without proof) that 2-DIMENSIONAL MATCHING (2DM)
can be first-order reduced to computing LUB-CQA(g()). Therefore, since 2DM

is NL-hard (Chandra et al., 1984), g() cannot admit parsimonious counting
under standard complexity assumptions. ◁

We can now give the proof of Theorem 4.1.9.

Proof of Theorem 4.1.9. Assume that g() admits parsimonious counting. Let
q = BCQ(g()). Then, q has a tuple x⃗ of bound variables such that for the
query q′(x⃗) := ∄x⃗ [q], the conditions (A), (B), and (C) in Definition 4.1.1 are



42 Parsimony

satisfied. By Lemma 4.1.10, q has an acyclic attack graph, and thus condi-
tion (I) in Definition 4.1.3 is satisfied. By Lemma 4.1.12, condition (1) in
Definition 4.1.3 is satisfied for x⃗. By Corollary 4.1.14.1, condition (2) in Defi-
nition 4.1.3 is satisfied by x⃗. Since we have shown that q satisfies all conditions
in Definition 4.1.3, we conclude q ∈ Cparsimony.

4.1.4 Comparison with Cforest

In this section, we introduce Cforest and show, without using Theorem 4.0.1,
that Cforest ⊊ Cparsimony. Theorem 4.0.1 then follows by Theorem 4.1.4.

Definition 4.1.6 (Cforest). Let q be a self-join-free Boolean conjunctive query.
The Fuxman graph of q is a directed graph whose vertices are the atoms of q.
There is a directed edge from an atom F to an atom G if F ̸= G and notKey(F )
contains a bound variable that also occurs in G. The class Cforest contains all
(and only) boolean self-join free conjunctive queries q whose Fuxman graph is
a directed forest satisfying, for every directed edge from F to G, Key(G) ⊆
notKey(F ).

Theorem 4.1.15. Cforest ⊊ Cparsimony.

The proof of Theorem 4.1.15 is provided in Section B.4 of Appendix B.

4.1.5 Parsimonious Counting in AGGR[FOL]

Finally, we show that the expressions in (i) and (ii) of Definition 4.1.1 can
be expressed in AGGR[FOL]. To this end, let q′(x⃗) and φ(x⃗) be as in Defi-
nition 4.1.1. Then, the values m and n in (i) and (ii) are computed by the
following AGGR[FOL] terms, respectively:

ϕglb() := AggrFSUM
x⃗ [1, φ(x⃗)] ;

ϕlub() := AggrFSUM
x⃗
[
1, q′(x⃗)

]
.

4.2. Parsimonious Aggregation

A natural question is whether the main ideas behind parsimonious counting
can be applied to numerical queries whose head differs from SUM(1). In this
section, we will generalize the notion of parsimonious counting to parsimonious
aggregation.

Definition 4.2.1 (Parsimonious Aggregation). Let g() be a numerical query
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in AGGR[sjfBCQ] with head AGG(r). Let q = BCQ(g()). Let x⃗ be a (possibly
empty) sequence of distinct bound variables of q. We say that g() admits
parsimonious aggregation on x⃗ if the following hold (let q′(x⃗) = ∄x⃗ [q]):

(A) q has a consistent first-order rewriting;

(B) q′(x⃗) has a consistent first-order rewriting (call it φ(x⃗)); and

(C) for every database instance db such that db |=cqa q, the following con-
ditions (a) and (b) are equivalent:

(a) [[GLB-CQA(g())]]db = m and [[LUB-CQA(g())]]db = n.

(b) Both the following conditions hold:

(i) Minimality Condition: Let c⃗1, . . . , c⃗k enumerate all the ele-
ments c⃗ of adom(db)|x⃗| such that db |= φ(c⃗) holds. For every
i ∈ {1, . . . , k}, let Mi be the set of embeddings of q in db that

map x⃗ to c⃗i, and define v
(i)
min := min{θ(r) | θ ∈ Mi}. Then,

FAGG({{v
(1)
min, . . . , v

(k)
min}}) = m.

(ii) Maximality Condition: Let d⃗1, . . . , d⃗ℓ enumerate all the ele-
ments d⃗ of adom(db)|x⃗| such that db |= q′(d⃗) holds. For every
i ∈ {1, . . . , ℓ}, let Ni be the set of embeddings of q in db that

map x⃗ to d⃗i, and define v
(i)
max := max{θ(r) | θ ∈ Ni}. Then,

FAGG({{v
(1)
max, . . . , v

(ℓ)
max}}) = n.

We say that g() admits parsimonious aggregation if it admits parsimonious
aggregation on some sequence x⃗ of bound variables.

Note that parsimonious counting is a particular case of parsimonious ag-
gregation where AGG(r) = SUM(1).

4.2.1 Cparsimony Admits Parsimonious Aggregation

In this section, we prove that the if-direction in Theorem 4.0.2 can be extended
to parsimonious aggregation for numerical queries with monotone aggregate
operator, as stated by the following theorem.

Theorem 4.2.1. Let g() be a numerical query using a monotone aggregate
operator such that BCQ(g()) ∈ Cparsimony. Then, g() admits parsimonious
aggregation.

We use a number of helping lemmas and constructs. We first introduce
MAX-optimistic repairs, a variant of the optimistic repair notion.



44 Parsimony

Definition 4.2.2 (MAX-Optimistic repair). Let q(x⃗) be a conjunctive query.
Let r be a non-negative rational number or a numerical variable in vars(q). Let
db be a database instance. We say that a repair r of db is a MAX-optimistic
repair with respect to q(x⃗) and r if both the following conditions hold:

1. r is an optimistic repair with respect to q(x⃗); and

2. for every d⃗ ∈ adom(db)|x⃗| such that r |= q(d⃗), if M is the set of embed-
dings of q in db that map x⃗ to d⃗, then there is an embedding θ∗ of q in r

such that θ∗(x⃗) = d⃗ and θ∗(r) = max{θ(r) | θ ∈M}.

The following lemma gives a sufficient condition for the existence of MAX-
optimistic repairs.

Lemma 4.2.2. Let q ∈ Cparsimony, x⃗ an id-set for q, and q′(x⃗) = ∄x⃗ [q]. Let
r be a non-negative rational number or a numerical variable in vars(q). Let db
be a database instance such that db |=cqa q. Then, db has a MAX-optimistic
repair with respect to q′(x⃗) and r.

Proof. Let d⃗1, . . . , d⃗n enumerate all the elements d⃗ of adom(db)|x⃗| such that
db |= q′(d⃗) holds. By Lemma 4.1.6, for each i ∈ {1, . . . , n}, there exists an
embedding θi of q in db satisfying the following conditions:

(a) θi(x⃗) = d⃗i;

(b) for every j ∈ {1, . . . , n}, for every atom F in q, if θi(F ) and θj(F ) are
key-equal, then θi(F ) = θj(F ); and

(c) for every embedding θ of q in db such that θ(x⃗) = d⃗i, θ(r) ≤ θi(r).

It follows that there is a repair r of db such that for every i ∈ {1, . . . , n}, θi is
an embedding of q in r. Since r |= q′(d⃗i) for every i ∈ {1, . . . , n}, the repair r

is a MAX-optimistic repair of db with respect to q′(x⃗).

We now present the notion of MIN-pessimistic repair.

Definition 4.2.3 (MIN-Pessimistic repair). Let q(x⃗) be a conjunctive query.
Let r be a non-negative rational number or a numerical variable in vars(q). Let
db be a database instance. We say that a repair r of db is a MIN-pessimistic
repair with respect to q(x⃗) and r if

1. r is a pessimistic repair of db with respect to q(x⃗); and
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2. for every d⃗ ∈ adom(db)|x⃗| such that r |= q(d⃗), if M is the set of embed-
dings of q in db that map x⃗ to d⃗, then there is an embedding θ∗ of q in r

such that θ∗(x⃗) = d⃗ and θ∗(r) = min{θ(r) | θ ∈M}.

We introduce some helping lemmas.

Lemma 4.2.3. Let q be a query in Cparsimony, and let x⃗ be an id-set for q. Let
q′(x⃗) be the query ∄x⃗ [q]. Let db be a database instance such that db |=cqa q.

Let {d⃗1, . . . , d⃗n} be a subset of adom(db)|x⃗| such that db |= q′(d⃗i) for every
i ∈ {1, . . . , n}. Let r be a non-negative rational number or a numerical variable
in vars(q). For each i ∈ {1, . . . , n}, there exists an embedding θi of q in db

satisfying the following conditions:

(a) θi(x⃗) = d⃗i;

(b) for every j ∈ {1, . . . , n}, for every atom F in q, if θi(F ) and θj(F ) are
key-equal, then they are equal; and

(c) for every embedding θ of q in db such that θ(x⃗) = d⃗i, θ(r) ≥ θi(r).

The proof of Lemma 4.2.3 is symmetrical to the proof of Lemma 4.1.6.

Lemma 4.2.4. Let q be a self-join free Boolean conjunctive query. Let db be
a database instance. Let x⃗ be a vector of variables in q such that no variable
in x⃗ is attacked in q. Let q′(x⃗) = ∄x⃗ [q]. Let f be the function with domain 2db

that maps every subset s of db to the set {a⃗ ∈ adom(db)|x⃗| | s |= q′(⃗a)}. Let r
be a repair of db. Let θ be an embedding of q in r. Let F be an atom in q,
and A a fact in db with the same relation name as the atom F such that θ(F )
and A are key-equal. Then, f((r \ {θ(F )}) ∪ {A}) ⊆ f(r).

The proof for Lemma 4.2.4 is provided in the Appendix of (Koutris & Wi-
jsen, 2017). The following lemma gives a sufficient condition for the existence
of MIN-pessimistic repairs.

Lemma 4.2.5. Let q ∈ Cparsimony, x⃗ an id-set for q, and q′(x⃗) = ∄x⃗ [q]. Let r
be a non-negative rational number or a numerical variable in vars(q). Let db
be a database instance such that db |=cqa q. Then, db has a MIN-pessimistic
repair with respect to q′(x⃗) and r.

Proof. Let d⃗1, . . . , d⃗n enumerate all the elements d⃗ of adom(db)|x⃗| such that
db |=cqa q

′(d⃗) holds. By Lemma 4.2.3, for each i ∈ {1, . . . , n}, there exists an
embedding θ∗i of q in db satisfying the following conditions:
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(a) θ∗i (x⃗) = d⃗i;

(b) for every j ∈ {1, . . . , n}, for every atom F in q, if θ∗i (F ) and θ∗j (F ) are
key-equal, then θ∗i (F ) = θ∗j (F ); and

(c) for every embedding θ of q in db such that θ(x⃗) = d⃗i, θ(r) ≥ θ
∗
i (r).

By Lemma 4.1.8, db has a pessimistic repair r with respect to q′(x⃗). By
Definition 4.1.3, K(q) |= x⃗ → vars(q). Let σ = (F1, . . . , Fℓ) be a sequential
proof for x⃗ → vars(q) in q. We will build, by induction on increasing i, a
sequence of repairs (r0, r1, . . . , rℓ) such that for every i ∈ {0, . . . , ℓ}:

1. ri is a pessimistic repair of db with respect to q′(x⃗); and

2. for every j ∈ {1, . . . , n}, θ∗j ({F1, . . . , Fi}) ⊆ ri.

Note that, if a variable v ∈ x⃗ does not appear in some atom of σ, then x⃗ is not
minimal, a contradiction. Thus, vars(q) ⊆

⋃ℓ
k=1 vars(Fk).

Basis i = 0. Trivial with r0 = r.

Step i− 1→ i. Assume, as induction hypothesis, that there is a repair
ri−1 of db such that:

1. ri−1 is a pessimistic repair of db with respect to q′(x⃗); and

2. for every j ∈ {1, . . . , n}, θ∗j ({F1, . . . , Fi−1}) ⊆ ri−1.

Let θ1, . . . , θm be (all) the embeddings of q in ri−1. Since ri−1 is a pessimistic
repair of db with respect to q′(x⃗), it follows that for every j ∈ {1, . . . ,m},
there is a k ∈ {1, . . . , n} such that θj(x⃗) = d⃗k. From Lemma 4.1.5, it follows
that for every j, k ∈ {1, . . . ,m}, if θj(x⃗) = θk(x⃗), then j = k. Thus, we have
that m = n. Assume, without loss of generality, that for every j ∈ {1, . . . , n},
θj(x⃗) = θ∗j (x⃗) = d⃗j .

Now we argue that, for every j ∈ {1, . . . , n}, θj(Fi) and θ∗j (Fi) are key-
equal. Let j ∈ {1, . . . , n}. By definition of a sequential proof, it follows that
Key(F1) ⊆ x⃗. Since θj(x⃗) = θ∗j (x⃗) and θ∗j (F1) ∈ ri−1 by induction hypothesis, it
follows that θj(F1) = θ∗j (F1). By definition of a sequential proof, it follows that
Key(F2) ⊆ x⃗ ∪ vars(F1). Since θj(x⃗) = θ∗j (x⃗), θj(F1) = θ∗j (F1) and θ∗j (F2) ∈
ri−1 by induction hypothesis, it follows that θj(F2) = θ∗j (F2). And so on,
until we reach θj(Fi−1) = θ∗j (Fi−1). By definition of a sequential proof, it

follows that Key(Fi) ⊆ x⃗ ∪
⋃i−1

k=1 vars(Fk). Since θj(x⃗) = θ∗j (x⃗) and, for every

v ∈
⋃i−1

k=1 vars(Fk), θj(v) = θ∗j (v), it follows that θj(Fi) and θ∗j (Fi) are key-
equal.
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If θj(Fi) = θ∗j (Fi) for every j ∈ {1, . . . , n}, then ri = ri−1 satisfies the
wanted properties. Assume that there is j ∈ {1, . . . , n} such that θj(Fi) and
θ∗j (Fi) are key-equal but different. Let r

′
i = (ri−1 \ {θj(Fi)}) ∪ {θ

∗
j (Fi)}. By

Lemma 4.2.4, r′i is a pessimistic repair of db with respect to q′(x⃗). Note that
all variables of an id-set are unattacked (by item (b) in Lemma B.1.3, provided
in Section B.1 of Appendix B). By applying this modification for every j ∈
{1, . . . , n} such that θj(Fi) and θ∗j (Fi) are key-equal but different, we achieve a
pessimistic repair ri such that for every j ∈ {1, . . . , n}, θ∗j ({F1, . . . , Fi}) ⊆ ri.
Note that each of these modifications will never remove a fact θ∗j (Fi) for some
j ∈ {1, . . . , n}. Indeed, if it was the case, there are j, k ∈ {1, . . . , n} such that
j ̸= k, θ∗j (Fi) and θ∗k(Fi) are key-equal but different, which is a contradiction.
This concludes the induction step of the proof.

It follows that rℓ is a pessimistic repair of db with respect to q′(x⃗) such
that for every j ∈ {1, . . . , n}, θ∗j ({F1, . . . , Fℓ}) ⊆ rℓ. Let j ∈ {1, . . . , n}. Since
rℓ is a pessimistic repair of db with respect to q′(x⃗), there is an embedding
θ′ of q in rℓ such that θ′(x⃗) = d⃗j . By definition of a sequential proof, it
follows that Key(F1) ⊆ x⃗. Since θ′(x⃗) = θ∗j (x⃗) and θ∗j (F1) ∈ rℓ, it follows that
θ′(F1) = θ∗j (F1). By definition of a sequential proof, it follows that Key(F2) ⊆
x⃗ ∪ vars(F1). Since θ′(x⃗) = θ∗j (x⃗), θ

′(F1) = θ∗j (F1) and θ∗j (F2) ∈ rℓ, it follows
that θ′(F2) = θ∗j (F2). And so on, until we reach θ′(Fℓ) = θ∗j (Fℓ). Since

vars(q) ⊆
⋃ℓ

k=1 vars(Fk), it follows that θ′ = θ∗j . Thus, we have that for every
j ∈ {1, . . . , n}, θ∗j is an embedding of q in rℓ. From Lemma 4.1.5, since rℓ

is a pessimistic repair of db with respect to q′(x⃗), we obtain that θ∗1, . . . , θ
∗
m

are (all) the embeddings of q in rℓ. Since for every j ∈ {1, . . . , n}, for every
embedding θ of q in db such that θ(x⃗) = d⃗j , we have θ(r) ≥ θ∗j (r), it follows
that rℓ is a MIN-pessimistic repair of db.

The following example illustrates the preceding constructs and lemmas.

Example 4.2.1. Let g() := SUM(r) ← R(x, y), S(x, y, r). Let q = BCQ(g()).
Let db be the following database instance:

R x y
a1 b1
a1 b2
a2 b2

S x y r

a1 b1 2
a1 b1 3
a2 b2 2
a2 b2 3

We have that [[GLB-CQA(g())]]db = 2 and [[LUB-CQA(g())]]db = 6. It can
be easily verified that q ∈ Cparsimony with an id-set (x). We next compute
[[GLB-CQA(g())]]db and [[LUB-CQA(g())]]db by means of parsimonious aggrega-
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tion. To this end, let q′(x) = ∄x [q], and let φ(x) be a consistent first-order
rewriting for q′(x). If we execute these queries on db, we obtain:2

q′(db) = {a1, a2}

φ(db) = {a2}

For i ∈ {1, 2}, let Mi be the set of embeddings θ of q in db such that θ(x) = ai,

v
(i)
min = min{θ(r) | θ ∈Mi} and v

(i)
max = max{θ(r) | θ ∈Mi}. We have

v
(1)
min = v

(2)
min = 2

and

v(1)max = v(2)max = 3.

As stated in Theorem 4.2.1, we have

[[GLB-CQA(g())]]db = FSUM({{v
(2)
min}}) = FSUM(2) = 2

and

[[LUB-CQA(g())]]db = FSUM({{v
(1)
max, v

(2)
max}}) = FSUM(3, 3) = 6.

It is important to understand that parsimonious aggregation obtains these
bounds directly on db, without computing any repair.

We elaborate this example further to illustrate the constructs of MAX-
optimistic and MIN-pessimistic repairs. It can be easily verified that every
repair of db containing the fact R(a1, b1) is an optimistic repair of db, and
every repair of db containing the fact R(a1, b2) is a pessimistic repair of db.
Let r1 be a repair that keeps the facts R(a1, b2), and S(a2, b2, 2). Let r2 be a
repair that keeps the facts R(a1, b1), S(a1, b1, 3), and S(a2, b2, 3). It is easily
verifiable that r1 is a MIN-pessimistic repair of db with respect to q′(x⃗) and r,
and r2 is a MAX-optimistic repair of db with respect to q′(x⃗) and r. We have:

[[g()]]r1 = FSUM({{v
(2)
min}})

[[g()]]r2 = FSUM({{v
(1)
max, v

(2)
max}})

◁

We finish this section with a proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. Let q be a self-join-free Boolean conjunctive query in

2
ϕ(db) is a shorthand for the set of all tuples (c) such that db |= ϕ(c).
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Cparsimony. Let x⃗ be an id-set for q. Let r be a non-negative rational number
or a numerical variable in vars(q). Let g() be a numerical query with a head
AGG(r) such that FAGG is a monotone aggregate operator and BCQ(g()) = q.
We have to prove that g() admits parsimonious aggregation. It suffices to show
that conditions (A), (B), and (C) in Definition 4.2.1 are satisfied for the id-set
x⃗ of q. As in Definition 4.2.1, let q′(x⃗) = ∄x⃗ [q].

Since q is in Cparsimony, q has an acyclic attack graph. It follows from
Theorem 2.0.1 that q has a consistent first-order rewriting. Thus, condition (A)
in Definition 4.2.1 is satisfied. It is known (Koutris & Wijsen, 2017) that the
attack graph of q′(x⃗) is a subgraph of the attack graph of q. Informally, no
new attacks are introduced when bound variables are made free. It follows that
q′(x⃗) has an acyclic attack graph, and therefore, by Theorem 2.0.1, a consistent
first-order rewriting. Thus, condition (B) in Definition 4.2.1 is satisfied. In
the remainder of the proof, we show that condition (C) in Definition 4.2.1
is satisfied. To this end, let db be an arbitrary database instance such that
db |=cqa q. By Lemma 4.2.5, there is a MIN-pessimistic repair rmin of db with
respect to q′(x⃗) and r. By Lemma 4.2.2, there is a MAX-optimistic repair rmax of
db with respect to q′(x⃗) and r. To show that condition (C) in Definition 4.2.1
is satisfied, it suffices to show that for every repair r of db, we have

[[g()]]rmin ≤ [[g()]]r ≤ [[g()]]rmax . (4.6)

Note that the computations described in condition (b) correspond to [[g()]]rmin

and [[g()]]rmax by definition of MIN-pessimistic and MAX-optimistic repairs.
Let r be a repair of db. Let Θ = {θ1, . . . , θℓ} be the set of embeddings

of q in r. Let Θ+ = {θ+1 , . . . , θ
+
n } be the set of embeddings of q in rmax. Let

Θ− = {θ−1 , . . . , θ
−
m} be the set of embeddings of q in rmin. By Lemma 4.1.5,

two distinct embeddings in Θ cannot agree on every variable of x⃗. This same
property applies to Θ+ and Θ−.

By Definition 4.1.5, we have that for every θ− ∈ Θ−, there is a θ ∈ Θ such
that θ−(x⃗) = θ(x⃗). It follows that m ≤ ℓ. Assume, without loss of generality,
that for every i ∈ {1, . . . ,m}, θ−i (x⃗) = θi(x⃗). It follows that

[[g()]]rmin = FAGG({{θ
−
1 (r), . . . , θ

−
m(r)}}) (4.7)

and
[[g()]]r = FAGG({{θ1(r), . . . , θm(r), θm+1(r), . . . , θℓ(r)}}). (4.8)

By Definition 4.2.3, it follows that for every i ∈ {1, . . . ,m}, θ−i (r) ≤ θi(r). By
monotonicity of FAGG, (4.7), and (4.8), it follows that [[g()]]rmin ≤ [[g()]]r.

By Definition 4.1.4, we have that for every θ ∈ Θ, there is a θ+ ∈ Θ+ such
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that θ(x⃗) = θ+(x⃗). It follows that ℓ ≤ n. Assume, without loss of generality,
that for every i ∈ {1, . . . , ℓ}, θi(x⃗) = θ+i (x⃗). It follows that

[[g()]]r = FAGG({{θ1(r), . . . , θℓ(r)}}) (4.9)

and

[[g()]]rmax = FAGG({{θ
+
1 (r), . . . , θ

+
ℓ (r), θ

+
ℓ+1(r), . . . , θ

+
n (r)}}). (4.10)

By Definition 4.2.2, it follows that for every i ∈ {1, . . . , ℓ}, θi(r) ≤ θ+i (r). By
monotonicity of FAGG, (4.9) and (4.10), it follows that [[g()]]r ≤ [[g()]]rmax . We
conclude that (4.6) holds and thus g admits parsimonious aggregation.

4.2.2 Incompleteness of Cparsimony for MAX-queries

In this section, we show that the only-if-direction of Theorem 4.0.2 only ap-
plies for parsimonious aggregation with some monotone aggregate operators.
First, we have that, if a SUM-query g() admit parsimonious aggregation, then
BCQ(g()) ∈ Cparsimony.

Theorem 4.2.6. For every SUM-query g() in AGGR[sjfBCQ] that admits par-
simonious aggregation, BCQ(g()) belongs to Cparsimony.

Proof. The proof of Theorem 4.1.9 can be easily extended to SUM-queries and
parsimonious aggregation.

Now, we prove the existence of a MAX-query g() such that BCQ(g()) ̸∈
Cparsimony and g() admits parsimonious aggregation. Note that FMAX is a
monotone aggregate operator.

Theorem 4.2.7. There is a MAX-query g() such that BCQ(g()) ̸∈ Cparsimony

and g() admits parsimonious aggregation.

Proof. Consider the following numerical query

g() := MAX(r)← T (c, r), R1(x1, y), S1(x1, y), R2(x2, y), S2(x2, y).

Let q = BCQ(g()). The edge-set of q’s attack graph is empty and no variable
in vars(q) is frozen. Note that, since c is a constant, we have K(q) |= ∅ → r.

We first show that q ̸∈ Cparsimony. According to condition (1) in Def-
inition 4.1.3, every id-set (if any) must contain x1. However, no id-set can
contain x1, because for the atom R2(x2, y), the edge {y, x1} in the Gaifman
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graph of q is a path between a variable in notKey(R2) and x1 that uses no
variable in Key(R2). We conclude that q is not in Cparsimony.

Now, we show that q admits admits parsimonious aggregation on x⃗ = ().
It suffices to show that conditions (A), (B), and (C) in Definition 4.2.1 are
satisfied for x⃗. As in Definition 4.2.1, let q′ = ∄x⃗ [q] = q.

It is easily verifiable that q has an acyclic attack graph. It follows from
Theorem 2.0.1 that q has a consistent first-order rewriting. Thus, condition (A)
in Definition 4.2.1 is satisfied. Since q′ = q, it follows that q′ has an acyclic
attack graph and a consistent first-order rewriting. Thus, condition (B) in
Definition 4.2.1 is satisfied. In the remainder of the proof, we show that con-
dition (C) in Definition 4.2.1 is satisfied. To this end, let db be an arbitrary
database instance such that db |=cqa q.

Let r be a repair of db. Let n = |Embq(r)|. Since db |=cqa q, we have
n ≥ 1. Since K(q) |= ∅ → r, it follows that, for every θ1, θ2 ∈ Embq(r),
θ1(r) = θ2(r). Let vr be the value such that for every θ ∈ Embq(r), θ(r) = vr.
Thus, we have

[[g()]]r = FMAX({{
n times︷ ︸︸ ︷

vr, . . . , vr}}) = vr. (4.11)

From definition of GLB-CQA(g()), we have

[[GLB-CQA(g())]]db = min{vr | r ∈ rset(db)}. (4.12)

From definition of LUB-CQA(g()), we have

[[LUB-CQA(g())]]db = max{vr | r ∈ rset(db)}. (4.13)

Let θmin ∈ Embq(db) such that for every θ ∈ Embq(db), θmin(r) ≤ θ(r).
Let rmin be a repair of db such that θmin is an embedding of q in rmin. From
(4.11), we have

[[g()]]rmin = vrmin = θmin(r).

It follows that, for every r ∈ rset(db), [[g()]]rmin ≤ [[g()]]r. From (4.12),
[[GLB-CQA(g())]]db = θmin(r). Let θmax ∈ Embq(db) such that for every
θ ∈ Embq(db), θ(r) ≤ θmax(r). Let rmax be a repair of db such that θmax is
an embedding of q in rmax. From (4.11), we have

[[g()]]rmax = vrmax = θmax(r).

It follows that, for every r ∈ rset(db), [[g()]]r ≤ [[g()]]rmax . From (4.13),
[[LUB-CQA(g())]]db = θmax(r). We can conclude that condition (C) in Defi-
nition 4.2.1 is satisfied and, thus, g() admits parsimonious aggregation.
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4.2.3 Parsimonious Aggregation in AGGR[FOL]

Finally, we show that parsimonious aggregation can be captured in AGGR[FOL];
that is, the Minimality and Maximality Conditions from Definition 4.2.1 can
be expressed within AGGR[FOL]. To this end, let g() and x⃗ be as in Def-
inition 4.2.1, and assume that g() admits parsimonious aggregation on x⃗,
with φ(x⃗) as given in the same definition. We illustrate the Minimality Con-
dition for the case where r is a variable such that r /∈ vars(x⃗). The other cases
are analogous. Define the following AGGR[FOL] formulas:

ψmin(x⃗, w) := φ(x⃗) ∧ w = AggrFMIN
r
[
r, ∄r

[
q′(x⃗)

]]
;

ϕglb() := AggrFAGG
x⃗, w [w,ψmin(x⃗, w)] .

These formulas compute the value FAGG({{v
(1)
min, . . . , v

(k)
min}}) described in the

Minimality Condition of Definition 4.2.1. It follows that for every database
instance db such that db |=cqa BCQ(g()), we have

[[ϕglb()]]
db = [[GLB-CQA(g())]]db.



CHAPTER 5
From Repairs to Maximal Consistent

Subsets

In this chapter, we introduce a new construct called the maximal consistent
subset (MCS). This construct will serve as a useful tool in the following chapters
for computing GLB-CQA(g()) and LUB-CQA(g()) for numerical queries g() in
AGGR[sjfBCQ] with a monotone aggregate operator.

Let g() be some numerical query in AGGR[sjfBCQ] and q = BCQ(g()).
The notion that will be introduced below arises from the observation that, as
defined in Section 3.2, the computation of [[g()]]db for some database instance
db only takes into account the embeddings of q in db. Every fact in db that
is not used by some embedding of q in db can be omitted in the computation.
Thus, to compute GLB-CQA(g()) or LUB-CQA(g()), no repair r of db needs to
be computed as long as we can obtain the embeddings of q in r. Consider the
following construct:

Definition 5.0.1. Let q be a query in sjfBCQ, and db be a database instance.
Let M be a set of embeddings of q in db. A maximal consistent subset (MCS)
of M is a ⊆-maximal subset N of M such that N |= K(q). We write MCSq(M)
for the subset of 2M that contains all (and only) MCSs of M .

The following lemmas describe the relation between repairs and maximal
consistent subsets.

Lemma 5.0.1. Let q be a query in sjfBCQ, and db be a database instance. Let
r be a repair of db. There is an MCS N of Embq(db) such that Embq(r) ⊆
N .
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Proof. Trivial.

Lemma 5.0.2. Let q be a query in sjfBCQ, and db be a database instance. Let
N be an MCS of Embq(db). There is a repair r of db such that Embq(r) =
N .

Proof. Consider the repair r of db built as follows: for every block in db,
if there is an embedding in N that uses a fact in that block, keep that fact.
Otherwise, keep any fact on the block. Note that, by definition of an MCS,
N |= K(q) and, thus, two embeddings in N can not use different facts in
a same block. Clearly, by construction, N ⊆ Embq(r). It remains to be
shown that Embq(r) ⊆ N . Assume, for the sake of contradiction, that there
is an embedding θ ∈ Embq(r) such that θ ̸∈ N . Clearly, θ ∈ Embq(db).
By definition of a repair, it follows that N ∪ {θ} |= K(q) and, thus, N is
not an MCS of Embq(db); contradiction. We conclude by contradiction that
Embq(r) ⊆ N .

Informally, for every maximal consistent subset N of Mdb, there is a repair
of db with exactly the embeddings in N , but the reverse is not necessarily
true.

Example 5.0.1. Let q = ∃x(R(x, c)). Let db be the following database
instance:

R x c
a c
a d

Let r = db \ {R(a, c)}. Clearly, r is a repair of db and Embq(r) = ∅.
However, the empty set is not an MCS of Embq(db) since Embq(db) contains
an embedding θ of q in db mapping x to a. ◁

If FAGG is monotone, we obtain the following lemma.

Lemma 5.0.3. Let g() be a numerical query in AGGR[sjfBCQ], with a head
AGG(r), q = BCQ(g()) and such that FAGG is monotone. Let db be a database
instance. For every couple r, s of repairs of db, if Embq(r) ⊆ Embq(s), then
[[g()]]r ≤ [[g()]]s.

Proof. Straightforward from monotonicity of FAGG.

The following theorem expresses LUB-CQA(g()) using maximal consistent
subsets.
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Theorem 5.0.4. Let g() be a numerical query in AGGR[FOL], with a head
AGG(r) and q = BCQ(g()), such that FAGG is monotone. Let db be a database
instance. Then,

• if some repair of db falsifies q and FAGG(∅) is undefined, then

[[LUB-CQA(g())]]db = ⊥; (5.1)

• otherwise,

[[LUB-CQA(g())]]db = max
N∈MCSq(Embq(db))

FAGG({{θ(r) | θ ∈ N}}). (5.2)

Proof. Straightforward from Lemma 5.0.1, Lemma 5.0.2 and Lemma 5.0.3.

In Chapter 6, we will prove that, under some constraints, a similar result
can be achieved for GLB-CQA(g()) by replacing max with min and restricting
Embq(db) to a subset that can be computed in FOL.

Now, consider the following notion.

Definition 5.0.2 (FAGG-maximal value for a partial valuation). Let g() be a
numerical query in AGGR[sjfBCQ] with a head AGG(r) and q = BCQ(g()). Let
db be a database instance. Let θ be a valuation over some subset of vars(q)
that can be extended to an embedding of q in db. We write Ext(θ | q,db) (or
simply Ext(θ) if q and db are clear from the context) for the set of embeddings
of q in db that extend θ.

The rational number v defined as

v := max
N∈MCSq(Ext(θ))

{
FAGG

(
{{θ′(r) | θ′ ∈ N}}

)}

is called the FAGG-maximal value for θ in db; and an MCS N∗ of Ext(θ) is
called FAGG-maximal if it satisfies FAGG ({{µ(r) | µ ∈ N

∗}}) = v. We say that
an MCS N∗ of Ext(θ) is FCOUNT-maximal if for every MCS N of M , we have
|N∗| ≤ |N |.

The notions of a FAGG-minimal value for θ in db and a FAGG-minimal MCS
of Ext(θ) are defined symmetrically by replacing max with min. A FCOUNT-
minimal MCS is also defined symmetrically by replacing ≤ with ≥.

Informally, Theorem 5.0.4 implies that we can compute [[LUB-CQA(g())]]db,
for some database instance db, by computing the FAGG-maximal value for the
empty valuation in db, which requires computing maximal consistent subsets
rather than repairs. Moreover, we will see in Chapter 6 that, under some
constraints, a similar result can be obtained for GLB-CQA(g()).
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CHAPTER 6
GLB-CQA with Monotone, Associative

Aggregate Operators

In this chapter, we study the expressibility of GLB-CQA(g()) in AGGR[FOL] for
numerical queries g() in AGGR[sjfBCQ] with aggregate operators that are both
monotone and associative. SUM and MAX are among the most common aggregate
operators with these properties, and are therefore covered by Theorem 6.0.1,
the main result of this chapter. Note that counting queries are also covered,
since they take the form SUM(1)← q(y⃗).

Theorem 6.0.1 (Separation Theorem for GLB-CQA). The following decision
problem is decidable in quadratic time (in the size of the input): Given as in-
put a numerical query g() in AGGR[sjfBCQ] whose aggregate operator is both
monotone and associative, is GLB-CQA(g()) expressible in AGGR[FOL]? More-
over, if the answer is “yes,” then it is possible to effectively construct, also in
quadratic time, a formula in AGGR[FOL] that solves GLB-CQA(g()).

The formal proof of Theorem 6.0.1 will be provided in Section 6.4. In this
chapter, we will not discuss numerical queries g() such that the attack graph of
BCQ(g()) is cyclic, as they are already covered by Theorem 3.5.6. Thus, most
of this chapter will be dedicated to prove the expressibility of GLB-CQA(g())
in AGGR[FOL] for numerical queries g() where the attack graph of BCQ(g()) is
acyclic, which is stated by the following theorem.

Theorem 6.0.2. Let g() be a numerical query in AGGR[sjfBCQ] using an
aggregate operator FAGG that is monotone and associative, and such that the
attack graph of BCQ(g()) is acyclic. Then, GLB-CQA(g()) is expressible in
AGGR[FOL].
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Section 6.2 will present the main ideas of the proof of Theorem 6.0.2, using
some new constructs previously introduced in Section 6.1. Then, the formal
proof of Theorem 6.0.2 will be provided in Section 6.3. Section 6.4 will provide
the formal proof of Theorem 6.0.1. Finally, Section 6.5 discusses how our
results relate to those of a recent study by Kolaitis et al. (2025).

6.1. ∀Embeddings and Superfrugal Repairs

In (Koutris & Wijsen, 2017), a construct called “frugal repair” was introduced.
In the current section, we introduce a related but more stringent construct,
called superfrugal repair.

∀embeddings Whenever q(u⃗) is a conjunction of atoms, we write q to denote
the closed formula ∃u⃗(q(u⃗)). Let q(u⃗) now be a self-join-free conjunction of
n atoms such that the attack graph of q is acyclic. The following definitions
are relative to a fixed topological sort (F1, . . . , Fn) of q’s attack graph and a
fixed database instance db. We define the following sequences of variables for
ℓ ∈ {1, . . . , n}:

• u⃗ℓ contains all (and only) variables of
⋃ℓ

i=1 vars(Fi). Thus, u⃗n = u⃗;

• x⃗ℓ contains the variables of Key(Fℓ) that do not occur in
⋃ℓ−1

i=1 vars(Fi);
and

• y⃗ℓ contains the variables of notKey(Fℓ) that do not already occur in⋃ℓ−1
i=1 vars(Fi).

Moreover, we define u⃗0 = (), the empty sequence. With this notation, we have
that for every ℓ ∈ {1, . . . , n},

u⃗ℓ = (u⃗ℓ−1, x⃗ℓ, y⃗ℓ). (6.1)

The following definition is by induction. An ℓ-embedding θ is called an
ℓ-∀embedding (of q in db) if one of the following holds true:

Basis: ℓ = 0 and every repair of db satisfies q; or

Step: ℓ ≥ 1 and both the following hold true:

• (db, θ ↾u⃗ℓ−1x⃗ℓ
) |=cqa Fℓ ∧ Fℓ+1 ∧ · · · ∧ Fn; and

• the (ℓ− 1)-embedding contained in θ is an (ℓ− 1)-∀embedding.
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In simple terms, the first bullet states that every repair must satisfy the query
whose atoms are obtained from Fℓ, Fℓ+1, . . . , Fn by replacing x with θ(x) when-
ever x is a variable that occurs in the primary key of Fℓ or in an atom that
precedes Fℓ. The second bullet implies that the same condition must hold
for ℓ − 1, ℓ − 2, . . . , 2, 1, and eventually 0. An ℓ-∀embedding with ℓ = n is
also called a ∀embedding for short. We write ∀Embq(db) for the set con-
taining every ∀embedding of q in db. We say that a ℓ-key-embedding γ is a
ℓ-∀key-embedding if γ = θ ↾u⃗ℓ−1x⃗ℓ

for some ℓ-∀embedding θ.

Example 6.1.1. The query q0 = ∃t∃p(Dealers(“James”, t) ∧ Stock(p, t, 35))
checks if there is any product stored in a quantity of 35 in the town where
James is a dealer. It holds true in every repair of the database instance dbStock

of Fig. 1.1. The embedding {t 7→ “Boston”, p 7→ “Tesla Y”} is a ∀embedding.
On the other hand, the embedding θ := {t 7→ “Boston”, p 7→ “Tesla X”} is not
a ∀embedding, because θ ↾{t,p}= θ and (dbStock, θ) ̸|=cqa Stock(p, t, 35). In-
deed, if r is a repair that contains Stock(“Tesla X”, “Boston”, 40), then (r, θ) ̸|=
Stock(p, t, 35). ◁

We now state two important helping lemmas. The first one states that all
topological sorts of an acyclic attack graph yield the same ∀embeddings. The
second lemma establishes that ∀embeddings can be computed in FOL.

Lemma 6.1.1. Let q a query in sjfBCQ with an acyclic attack graph, and db

be a database instance. Let n be the number of atoms in q. Let ≺1 and ≺2 be
two topological sorts of q’s attack graph. Every n-∀embedding relative to ≺1 is
an n-∀embedding relative to ≺2.

The proof for Lemma 6.1.1 is provided in Section C.2 of Appendix C.

Lemma 6.1.2. Let q := ∃u⃗(q(u⃗)) be a query in sjfBCQ with an acyclic attack
graph. It is possible to construct, in quadratic time in the size of q, a FOL

formula φ(u⃗) such that for every database instance db, for every valuation θ
over u⃗, (db, θ) |= φ(u⃗) if and only if θ is a ∀embedding of q in db.

The proof for Lemma 6.1.2 is provided in Section C.3 of Appendix C. Note
that since the formula φ(u⃗) in Lemma 6.1.2 can be constructed in quadratic
time, its length is at most quadratic (in the size of q).

Superfrugal repairs A repair r of a database instance db is superfrugal
relative to a query q in sjfBCQ if every embedding of q in r is a ∀embedding
of q in db. Informally, superfrugal repairs are repairs with ⊆-minimal sets of
embeddings, which is expressed by Lemma 6.1.3.
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Example 6.1.2. Continuation of Example 6.1.1. Let r be the repair of dbStock

that contains all (and only) tuples preceded by † in Fig. 1.1. Then, r is not
superfrugal relative to q0 := ∃t∃p(Dealers(“James”, t)∧Stock(p, t, 35)). Indeed,
θ := {t 7→ “Boston”, p 7→ “Tesla X”} is an embedding of q0 in r, but as discussed
in Example 6.1.1, θ is not a ∀embedding of q0 in db. ◁

Lemma 6.1.3. Let db be a database instance, and q a query in sjfBCQ with
an acyclic attack graph. For every repair r of db, there exists a superfrugal
repair r

∗ of db such that every embedding of q in r
∗ is also an embedding of q

in r.

The proof of Lemma 6.1.3 is provided in Section C.4 of Appendix C.
Lemma C.5.1 in Appendix C.5 shows that for queries q ∈ sjfBCQ with an
acyclic attack graph, superfrugal repairs are identical to the n-minimal re-
pairs defined in (Figueira et al., 2023) and the ⪯X

q -frugal repairs introduced
in (Koutris & Wijsen, 2017), where n denotes the number of atoms and X =
vars(q). In the current work, we opted to define superfrugal repairs in terms of
∀embeddings; an alternative approach would be to take n-minimal repairs (or,
equivalently, ⪯X

q -frugal repairs) as a starting point and show that all embed-
dings in them are ∀embeddings. This alternative approach would also arrive
at the conclusion of Lemma 6.1.2 regarding the computability of ∀embeddings
in FOL. Specifically, Lemma 8 and Remark 11 in (Figueira et al., 2023, Sec-
tion 4) entail that one can compute in FOL a set E that contains, for every
ℓ ∈ {0, 1, 2, . . . , n}, each ℓ-∀embedding. The goal in Figueira et al. (2023)
is to check whether E contains a 0-∀embedding (or, equivalently, the empty
set), which indicates that q holds true in every repair. For that purpose, it is
sufficient for the set E to be a superset, rather than an exact match, of the
set of all ℓ-∀embeddings, for 0 ≤ ℓ ≤ n. Lemma 6.1.2 differs in that it refers
to a set that contains exactly all n-∀embeddings and nothing else. On the
other hand, we will argue in Chapter 9 that the more general technical de-
velopment in (Figueira et al., 2023), which also handles cyclic attack graphs,
could be particularly valuable for exploring the polynomial-time computabil-
ity of GLB-CQA(g()), an intriguing open problem that is not the focus of our
current work.

It follows from Theorems 2.0.1 and 6.0.2 that for a numerical query g() in
AGGR[sjfBCQ] whose aggregate operator is both monotone and associative, if
CERTAINTY(BCQ(g())) is expressible in FOL, then GLB-CQA(g()) is express-
ible in AGGR[FOL]. However, it will soon become apparent that transitioning
from CERTAINTY(BCQ(g())) to GLB-CQA(g()) introduces new challenges that
require novel techniques. Briefly, in the former problem, it is sufficient to deter-
mine the existence (or non-existence) of a 0-∀embedding. In contrast, the latter
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R x y

a1 b1
a1 b2
a2 b2
a2 b3
a3 b4

S y z d r

b1 c1 d 1
b1 c1 d 2
b1 c2 d 3
b2 c3 d 5
b2 c3 d 6
b3 c4 d 5
b4 c5 d 7
b4 c5 e 8

M0 := [[ϕ0]]
db0 x y z r

a1 b1 c1 1
a1 b1 c1 2
a1 b1 c2 3
a1 b2 c3 5
a1 b2 c3 6
a2 b2 c3 5
a2 b2 c3 6
a2 b3 c4 5

Figure 6.1: Example database instance db0, and the set M0 of all ∀embeddings
of q0 into db0.

xyz → r

[[ϕ1]]
M0 x y z r

a1 b1 c1 1
a1 b1 c1 2
a1 b1 c2 3
a1 b2 c3 5
a1 b2 c3 6
a2 b2 c3 5
a2 b2 c3 6
a2 b3 c4 5

x→ y

[[ϕ2]]
M0 x y z r

a1 b1 c1 1
a1 b1 c2 3
a1 b2 c3 5
a2 b2 c3 5
a2 b3 c4 5

Figure 6.2: Computation of an FSUM-minimal MCS relative to {x→ y, yz → r}.

problem, if a 0-∀embedding exists, additionally requires finding a ⊆-maximal
consistent set of ∀embeddings whose aggregated value is minimal.

6.2. Main Ideas for Proving Theorem 6.0.2

In this section, we use a concrete example to introduce the main ingredients
of the proof for Theorem 6.0.2. Our example uses the database instance db0

of Fig. 6.1 and the following SUM-query g0(), in which d is a constant:

SUM(r)←

q0(x,y,z,r)︷ ︸︸ ︷
R(x, y), S(y, z, d, r) . (g0())
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σ(x, y, z, r) := R(x, y) ∧ S(y, z, d, r) ∧ ∀v∀r′
(
S(y, z, v, r′)→ v = d

)

ϕ0(x, y, z, r) := σ(x, y, z, r) ∧ ∀y′
(
R(x, y′)→ ∃z′∃r′

(
σ(x, y′, z′, r′)

))

ϕ1(x, y, z, r) := ϕ0(x, y, z, r) ∧ ∀r
′
(
ϕ0(x, y, z, r

′)→ r ≤ r′
)

t(x, y) := AggrFSUM
(z, r) [r, ϕ1(x, y, z, r)]

ϕ2(x, y, z, r) := ϕ1(x, y, z, r)∧

∀y′∀z′∀r′
(
ϕ1(x, y

′, z′, r′)→

(
t(x, y) ≤ t(x, y′)∧
(y′ ≺ y → t(x, y) < t(x, y′))

))

ψ2(x, v) := ∃y∃z∃r

(
ϕ1(x, y, z, r) ∧ (v = t(x, y))∧
∀y′∀z′∀r′ (ϕ1(x, y

′, z′, r′)→ (t(x, y) ≤ t(x, y′)))

)

GLB-CQA(g0()) := AggrFSUM
(x, v) [v, ψ2(x, v)]

Figure 6.3: Calculation of both an FSUM-minimal MCS (formula ϕ2) and
GLB-CQA(g0()) for SUM(r)← R(x, y), S(y, z, d, r).

The attack graph of the underlying Boolean conjunctive query has a sin-
gle attack, from the R-atom to the S-atom. Fig. 6.1 shows the set M0 of
all ∀embeddings of q0 in db0, which can be calculated by the FOL formula
ϕ0(x, y, z, r) in Fig. 6.3. Note incidentally that the embedding (in db0) which
maps (x, y, z, r) to (a3, b4, c5, d, 7) is not a ∀embedding, because of the value e
(e ̸= d) in the last row of the S-relation. We have K(q0) = {x → y, yz → r},
and from Fig. 6.1, it is clear that M0 ̸|= K(q0). We now introduce a crucial
lemma about maximal consistent subsets of M0.

Lemma 6.2.1. Let q be a query in sjfBCQ with an acyclic attack graph. Let
db be a database instance. Then,

1. for every superfrugal repair r of db, Embq(r) is an MCS of ∀Embq(db);
and

2. whenever N is an MCS of ∀Embq(db), there is a superfrugal repair r of
db such that Embq(r) = N .

The proof of Lemma 6.2.1 is provided in Section C.6 of Appendix 6. The
following Corollary 6.2.1.1, which expresses GLB-CQA(g()) in terms of the
construct of MCS, will be very helpful. It requires monotonicity, but not
associativity, of aggregate operators.
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Corollary 6.2.1.1. Let g() be a numerical query in AGGR[FOL], with a head
AGG(r) and q = BCQ(g()), such that the attack graph of q is acyclic. Let db

be a database instance. If FAGG is monotone, then

• if ∀Embq(db) = ∅ and FAGG(∅) is undefined, then

[[GLB-CQA(g())]]db = ⊥; (6.2)

• otherwise,

[[GLB-CQA(g())]]db = min
N∈MCSq(∀Embq(db))

FAGG({{θ(r) | θ ∈ N}}). (6.3)

Proof. Immediate corollary of Lemma 6.2.1. Note that ∀Embq(db) = ∅ im-
plies that some repair of db falsifies q.

The proof of Theorem 6.0.1 constructs an AGGR[FOL]-formula which cor-
rectly calculates the right-hand side of equation (6.3), provided that FAGG is
not only monotone, but also associative. In the remainder, we illustrate the
construction by our running example, which uses q0 and M0.

First, we focus on calculating an MCS N∗ ∈ MCSq0(M0) at which the
minimum of (6.3) is reached, that is,

FSUM({{θ(r) | θ ∈ N
∗}}) = min

N∈MCSq0 (M0)
FSUM({{θ(r) | θ ∈ N}}).

Informally, to obtain such an MCS N∗, we must delete a ⊆-minimal set of
tuples from M0 in order to satisfy {x → y, yz → r}, in a way that minimizes
the SUM over the remaining r-values. Such deletions are represented in Fig. 6.2
by struck-through tuples.

The left-hand table of Fig. 6.2 shows how, in a first step, we delete tuples
from M0 in order to satisfy xyz → r (which is logically implied by yz → r),
in a way that minimizes the SUM over the remaining r-values: within each
set of tuples that agree on xyz, we pick the one with the smallest r-value.
The rationale for this step relies on the monotonicity of SUM: smaller argu-
ments will result in a smaller SUM. This computation is readily expressed by
the formula ϕ1(x, y, z, r) in Fig. 6.3, where for readability we assume a vo-
cabulary with ≤. In AGGR[FOL], t1(x⃗) ≤ t2(x⃗) can be expressed as t1(x⃗) =
AggrFMIN

v [v, v = t1(x⃗) ∨ v = t2(x⃗)]. In this simple example, it is evident that
the remaining tuples will satisfy yz → r, as desired, since the minimal value
of r within each xyz-group is completely determined by yz, regardless of x.
Proving that such independences hold in general is a major challenge in the
general proof of Theorem 6.0.1.
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The next step is to delete more tuples in order to also satisfy x→ y, which
is illustrated by the right-hand table of Fig. 6.2. Within each group of tuples
that agree on x, we pick the y-value that results in the smallest SUM. In the
example, since 1+3 < 5, the tuple with r-value 5 is deleted, indicated by a blue
strike-through. There is a tie among the tuples where the x-value equals a2.
To break this tie, we opt for the smallest y-value according to lexicographical
order. Specifically, b2 is chosen over b3, indicated by a red strike-through. This
computation is expressed by the formula ϕ2(x, y, z, r) in Fig. 6.3, where ⪯ is
used for lexicographical order.

To conclude this example, we note that to calculate the value at the right-
hand side of (6.3), there is actually no need to entirely compute the right-hand
table of Fig. 6.2. We only need to know, for every set of tuples that share
the same x-value, the total sum of their r-values. This is achieved by the
formula ψ2 in Fig. 6.3, which does not rely on lexicographical order. In our
example, ψ2(a1, 4) (4 = 3+1) and ψ2(a2, 5) hold true. Finally, GLB-CQA(g0())
is obtained by applying SUM over the second column of ψ2, which yields 9 in our
example. Note that associativity is needed to enable incremental aggregation.

6.3. Proof of Theorem 6.0.2

In this section we will provide a formal proof for Theorem 6.0.2. First, we
introduce two helping Lemmas.

Lemma 6.3.1 (Decomposition Lemma). Let g() be a numerical query in
AGGR[sjfBCQ], with a head AGG(r) and q = BCQ(g()), such that FAGG is mono-
tone and associative, and the attack graph of q is acyclic. Let (F1, . . . , Fn)
be a topological sort of q’s attack graph. Let ℓ ∈ {0, 1, . . . , n − 1}. Let db

be a database instance. Let θ be an ℓ-∀embedding of q in db. Let m be the
FAGG-minimal value for θ in db as defined by Definition 5.0.2. Let γ1, . . . , γk
enumerate all extensions of θ that are (ℓ+1)-∀key-embeddings of q in db. For
i ∈ {1, . . . , k}, let Ni be an FAGG-minimal MCS of Ext(γi), and define vi :=
FAGG ({{µ(r) | µ ∈ Ni}}). If

⋃k
i=1Ni |= K(q), then m = FAGG ({{v1, v2, . . . , vk}}).

The proof for Lemma 6.3.1 is provided in Section C.7 of Appendix C. Let v
be the FAGG-minimal value for some ℓ-∀embedding θ. Let γ1, . . . , γk enumerate
all (ℓ+1)-∀key-embeddings of q in db such that each γi extends θ. For each i ∈
{1, 2, . . . , k}, let vi be the FAGG-minimal value for γi. Lemma 6.3.1 establishes
that under some consistency hypothesis, we have v = FAGG ({{v1, v2, . . . , vk}}).
Informally, this consistency hypothesis expresses that there is a single frugal
repair r in which each vi is attained, that is, for each i ∈ {1, 2, . . . , k}, vi =



65

FAGG ({{µ(r) | µ is an embedding extending γi such that µ(q) ⊆ r}}). The Con-
sistent Extension Lemma (Lemma 6.3.2) will demonstrate that this consistency
hypothesis can always be satisfied.

Lemma 6.3.2 (Consistent Extension Lemma). Let g() be a numerical query
in AGGR[sjfBCQ], with a head AGG(r) and q = BCQ(g()), such that FAGG is
monotone and associative, and the attack graph of q is acyclic. Let (F1, . . . , Fn)
be a topological sort of q’s attack graph. Let db be a database instance. Let
ℓ ∈ {1, 2, . . . , n}. Let γ1, . . . , γk be a sequence of ℓ-∀key-embeddings of q in db

such that {γ1, . . . , γk} |= K({F1, . . . , Fℓ−1}). For every i ∈ {1, . . . , k}, there is
an FAGG-minimal MCS Ni of Ext(γi) such that

⋃k
i=1Ni |= K(q).

The proof for Lemma 6.3.2 is provided in Section C.8 of Appedinx C.
With these helping lemmas in place, we can now proceed with the proof of
Theorem 6.0.2.

Proof of Theorem 6.0.2. Let g() be a numerical query in AGGR[sjfBCQ], with
a head AGG(r) and q = BCQ(g()), such that FAGG is monotone and associative,
and the attack graph of q is acyclic. We need to show that GLB-CQA(g()) is
expressible in AGGR[FOL]. Let db be a database instance. By Lemma 6.1.2,
∀Embq(db) can be calculated in FOL. If ∀Embq(db) = ∅ and FAGG(∅) is
undefined, by Corollary 6.2.1.1, we have [[GLB-CQA(g())]]db = ⊥. Assume
from here on that ∀Embq(db) ̸= ∅ or FAGG(∅) is defined. By Corollary 6.2.1.1,

[[GLB-CQA(g())]]db = min
N∈MCSq(∀Embq(db))

FAGG ({{θ(r) | θ ∈ N}}) . (6.4)

The proof of Theorem 6.0.2 proceeds by showing that the right-hand expression
of (6.4) can be expressed in AGGR[FOL]. Let (F1, . . . , Fn) be a topological sort
of q’s attack graph. Let θ be an ℓ-∀embedding of q in db. We will show, by
induction on decreasing ℓ = n, n− 1, . . . , 0, that the FAGG-minimal value for θ
in db can be computed in AGGR[FOL]. Note that for ℓ = 0, we have θ = ∅
and, by Corollary 6.2.1.1, the expression of the FAGG-minimal value for ∅ in
db calculates [[GLB-CQA(g())]]db.

For the induction basis (ℓ = n), we have Ext(θ) = {θ} = MCSq(Ext(θ)). It
follows that the FAGG-minimal value for θ in db is FAGG ({{θ(r)}}), which can
obviously be computed in AGGR[FOL].

For the induction step (ℓ + 1 → ℓ), the induction hypothesis is that
for every i ∈ {ℓ + 1, ℓ + 2, . . . , n}, for every i-∀embedding θ′ of q in db,
the FAGG-minimal value for θ′ in db can be computed in AGGR[FOL]. Let
γ1, . . . , γk enumerate all (ℓ + 1)-∀key-embeddings of q in db that extend θ.
By Lemma 6.3.2, for each i ∈ {1, 2, . . . , k}, we can assume an FAGG-minimal
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MCS Ni of Ext(γi) such that
⋃k

i=1Ni |= K(q). For every i ∈ {1, . . . , k},
let vi := FAGG ({{µ(r) | µ ∈ Ni}}), that is, vi is the FAGG-minimal value for γi
in db. By Lemma 6.3.1, FAGG ({{v1, . . . , vk}}) is the FAGG-minimal value for θ
in db. We show in the next paragraph that for every i ∈ {1, . . . , k}, vi can be
computed in AGGR[FOL]. This suffices to show the theorem, as FAGG can be
expressed in AGGR[FOL].

Let i ∈ {1, . . . , k}. Let θ+1 , θ
+
2 , . . . , θ

+
p enumerate all (ℓ + 1)-∀embeddings

of q in db that extend γi. For every j ∈ {1, . . . , p}, let v+j be the FAGG-

minimal MCS of θ+j . By the induction hypothesis, each v+j can be com-
puted in AGGR[FOL]. Since K(q) |= Key(Fℓ+1) → vars(Fℓ+1), it is clear that
FMIN({{v

+
1 , v

+
2 , . . . , v

+
p }}) is the FAGG-minimal value for γi in db. Since FMIN can

be expressed in AGGR[FOL], it is correct to conclude that the FAGG-minimal
value for θ can be computed in AGGR[FOL].

6.4. Proof of Theorem 6.0.1

We can finally provide the proof of Theorem 6.0.1.

Proof of Proof of Theorem 6.0.1. Let g() be a numerical query in AGGR[sjfBCQ]
with a head AGG(r) and q = BCQ(g()) and such that FAGG is monotone and
associative. If the attack graph of q is cyclic, then GLB-CQA(g()) is not
in AGGR[FOL] by Theorem 3.5.6. If the attack graph of q is acyclic, then
GLB-CQA(g()) is expressible in AGGR[FOL] by Theorem 6.0.2.

It remains to establish the upper bounds on the time complexities stated
in Theorem 6.0.1. Acyclicity of the attack graph of q can be tested using the
QuadAttack algorithm described in (Wijsen, 2012, Section 9), which runs in
quadratic time. Assuming that the the attack graph of q is acyclic, the proof of
Theorem 6.0.2 constructs the expression for GLB-CQA(g()) in two steps: first,
a FOL formula for the set of ∀embeddings, followed by a AGGR[FOL] formula.
The construction of the former formula is in quadratic time by Lemma 6.1.2,
and the proof of Theorem 6.0.2 shows that the latter formula can be con-
structed in linear time (with respect to the length of g()).

6.5. Databases Annotated with Semiring Values

In Kolaitis et al. (2025), all facts in a database instance are annotated with
elements of a naturally ordered positive semiring K = (K,+,×, 0, 1). The
authors call K positive if a + b = 0 implies a = 0 and b = 0, and a × b = 0
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implies a = 0 or b = 0. In our setting, annotations can be captured by defining
an annotated database instance as a pair (db, α) where α maps each fact of
the database instance db to a value in K \ {0}. We extend this annotation
function to all facts by mapping facts not in db to 0. We now briefly explain
the problem studied in Kolaitis et al. (2025), and compare one of their main
findings with ours.

Let q be a self-join-free Boolean conjunctive query whose set of atoms
is {F1, F2, . . . , Fn}. The function α gives rise to a mapping evalValq,α from
valuations over vars(q) to K, and a mapping evalq,α from database instances
to K as follows. For every valuation θ over vars(q), we define

evalValq,α(θ) :=

n∏

i=1

α(θ(Fi)), (6.5)

where
∏

refers to multiplication in the semiring. For every subset s of db, we
define

evalq,α(s) :=
∑

θ∈Embq(s)

evalValq,α(θ), (6.6)

where
∑

refers to addition in the semiring. Significantly, the summation
in (6.6) ranges over Embq(s). Note that if θ ∈ Embq(s) and s ⊆ db, then
θ ∈ Embq(db), hence α(θ(Fi)) ̸= 0 for every i, and therefore evalValq,α(θ) ̸= 0.
The aim in Kolaitis et al. (2025) is to determine the value

min
r∈rset(db)

evalq,α(r). (6.7)

Their main result (Kolaitis et al., 2025, Theorem 4.9) shows that acyclicity
of q’s attack graph is a necessary and sufficient condition for (6.7) to be com-
putable in a logic called LK, which is reminiscent of what we have proved in
this chapter. We next sketch why this is not merely a superficial similarity.

Let u⃗ be a shortest sequence containing every variable of vars(q). Consider
a logic in which we can express a predicate ν(u⃗, r), where r is a variable ranging
over K, with the following interpretation relative to an annotation function α:
for every sequence c⃗ of constants of the same length as u⃗, ν(c⃗, k) holds if and
only if k = evalValq,α(θ), where θ is the valuation satisfying θ(u⃗) = c⃗. As
argued before, we can also construct a FOL formula ψ(u⃗) such that db |= ψ(c⃗)
if and only if the valuation mapping u⃗ to c⃗ is a ∀embedding of q in db. Finally,
define

ϕ0(u⃗, r) := ψ(u⃗) ∧ ν(u⃗, r).
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Informally, ϕ0 associates each ∀embedding with its semiring value defined
by (6.5). Then, the AGGR[FOL] rewriting established in the proof of Theo-
rem 6.0.1 (illustrated in Fig. 6.1) can be applied. Here, SUM is interpreted
relative to the additive operation of the semiring, yielding a monotone and
associative aggregate operator, while MAX is interpreted relative to the natural
order of the semiring. If (F1, . . . , Fn) is a topological sort of q’s attack graph,
then this rewriting yields precisely (6.7). On the other hand, if the attack
graph of q has a cycle, then (6.7) cannot be computed in any Hanf-local logic.



CHAPTER 7
LUB-CQA with Monotone, Associative

Aggregate Operators

A natural question is whether the results provided in Chapter 6 can also be
applied to LUB-CQA(g()) for numerical queries g() using aggregate operators
that are both monotone and associative. We will see in this chapter that
Theorem 6.0.2 fails if GLB-CQA(g()) is replaced with LUB-CQA(g()), while
keeping all other conditions the same. That is, acyclicity of the attack graph
is not a sufficient condition for LUB-CQA(g()) to be expressible in AGGR[FOL].
To address this, we will introduce κ-acyclicity, a polynomial-time decidable
syntactic property of sjfBCQ queries. Our main result can then be stated as
follows:

Theorem 7.0.1 (Separation Theorem for SUM). Let g() be a numerical query
in AGGR[sjfBCQ], with a head SUM(r) and q = BCQ(g()). Then, LUB-CQA(g())
is expressible in AGGR[FOL] if and only if q is κ-acyclic.

Our second main result is that the right-to-left implication in Theorem 7.0.1
extends from SUM-queries to all AGG-queries in AGGR[sjfBCQ] whose aggregate
operator is monotone and associative.

Theorem 7.0.2. Let g() be a numerical query in AGGR[sjfBCQ], with a head
AGG(r) and q = BCQ(g()), such that FAGG is monotone and associative. If q is
κ-acyclic, then LUB-CQA(g()) can be expressed by a query in AGGR[FOL] (and
such a query can be effectively constructed in polynomial time in the size of q).

The inverse of Theorem 7.0.2 does not generally hold. For instance, the
problem LUB-CQA(g()) is expressible in AGGR[FOL] for all MAX-queries in

69
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κ-acyclic queries

sjfBCQ

queries with acyclic attack graph

Cparsimony

Cforest

Figure 7.1: Subclasses of self-join-free Boolean conjunctive queries. The class
of κ-acyclic queries, introduced in the current chapter, is the largest class that
allows lub rewriting for SUM-queries. The class of queries with an acyclic
attack graph is the largest class that allows glb rewriting.

AGGR[sjfBCQ], with FMAX being monotone and associative. This is because
LUB-CQA(g()) is trivial if g() is a MAX-query: the maximal result of a MAX-
query across all repairs of a database is equal to the result of the MAX-query on
the original database.

Our results add κ-acyclic queries to the query classes in Fig. 7.1 and prove
the correctness of the inclusions shown. In Chapter 4, we saw that lub rewrit-
ing of SUM-queries is possible for the classes Cforest and Cparsimony over some
database instances. The notion of κ-acyclicity is new and identifies the largest
class of queries that allow lub rewriting of SUM-queries. Interestingly, The-
orem 6.0.1 and our results show that there are SUM-queries that allow glb
rewriting but not lub rewriting, specifically those that are not κ-acyclic but
have an acyclic attack graph.

This chapter is organized as follows. In Section 7.1, we introduce a key aux-
iliary result, the Reduction Lemma. Section 7.2 introduces the new notion of
κ-acyclicity and establishes some of its properties. The expressibility result of
Theorem 7.0.2 is discussed in Section 7.3. Section 7.4 establishes the inexpress-
ibility direction of Theorem 7.0.1, showing that lub rewriting in AGGR[FOL]
is impossible for SUM-queries that lack κ-acyclicity. Finally, Section 7.5 shows
that all queries in Cparsimony are κ-acyclic.
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7.1. The Reduction Lemma

In this section we present an important result, called the Reduction Lemma,
which is stated next.

Lemma 7.1.1 (Reduction Lemma). Let g1() and g2() be two AGG-queries in
AGGR[sjfBCQ] with the same head. Assume that FAGG is monotone, and that
FAGG(∅) is defined. Let q1 = BCQ(g1()), and q2 = BCQ(g2()). If q1 ≼g q2 and
K(q1) ≡ K(q2), then LUB-CQA(g1()) ≤nr-datalog LUB-CQA(g2()).

Before proving the Reduction Lemma, we illustrate it with an example and
show that it does not hold for greatest lower bounds.

Example 7.1.1. Let g1 := SUM(1)← q0 and g2 := SUM(1)← q′0 with q0 and q′0
as shown in Fig. 2.1. Clearly, q0 ∼g q

′
0. Both queries have the same Gaifman

graph (specifically, a triangle involving x, y, and z), and the same set of induced
functional dependencies (notably, {xy → z, z → x}). The Reduction Lemma
implies that LUB-CQA(g1()) and LUB-CQA(g2()) are equivalent under first-
order reductions. However, this equivalence does not hold for glb: indeed,
by Theorem 3.5.6 and Theorem 6.0.2, GLB-CQA(g1()) is in AGGR[FOL] but
GLB-CQA(g2()) is not. ◁

Proof of Lemma 7.1.1. Assume q1 ≼g q2 and K(q1) ≡ K(q2). Since q1 ≼g q2,
we have vars(q1) ⊆ vars(q2). For simplicity, we first show the lemma under the
hypothesis vars(q1) = vars(q2), and then indicate how the proof extends to the
case vars(q1) ⊊ vars(q2). Let db be a database instance. Let

db
′ := {θ(G) | θ ∈ Embq1(db), G atom in q2}. (7.1)

Clearly, we have that db
′ is computable in nr-datalog. We need to show

[[LUB-CQA(g1())]]
db = [[LUB-CQA(g2())]]

db
′

.

Claim 1. Embq1(db) = Embq2(db
′)

Proof of Claim 1. The inclusion Embq1(db) ⊆ Embq2(db
′) holds straight-

forwardly true by construction. We show Embq2(db
′) ⊆ Embq1(db) in the

remainder of the proof. To this end, let µ ∈ Embq2(db
′). Assume, for

the sake of contradiction, that µ /∈ Embq1(db). Then there exists an atom
F in q1 such that µ(F ) /∈ db. Since q1 ≼g q2, there exists an atom G in
q2 with vars(F ) ⊆ vars(G). Because µ ∈ Embq2(db

′), we have µ(G) ∈ db
′.

By the construction of db′, there exists an embedding θ ∈ Embq1(db) such
that θ(G) = µ(G). Now, vars(F ) ⊆ vars(G) implies µ(F ) = θ(F ), and since
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θ ∈ Embq1(db), we have θ(F ) ∈ db. This contradicts our assumption that
µ(F ) /∈ db. Hence, we conclude that µ ∈ Embq1(db), as desired. This con-
cludes the proof of Claim 1.

Since K(q1) ≡ K(q2), every MCS of Embq1(db) with respect to K(q1)
is also an MCS of Embq2(db

′) with respect to K(q2). By Theorem 5.0.4,
[[LUB-CQA(g1())]]

db = [[LUB-CQA(g2())]]
db

′

.
The preceding proof can be easily adapted to the case where vars(q1) ⊊

vars(q2) by mapping every variable v ∈ vars(q2)\vars(q1) to the same constant c
in the construction of db′. This concludes the proof of Lemma 7.1.1.

7.2. Kernels and κ-Acyclicity

We assume that the reader is familiar with the notion of a minimal cover of
a set of functional dependencies (FDs), which can be computed in polynomial
time (Maier, 1980)(Abiteboul et al., 1995, p. 257). To recall briefly, a set Σ
of FDs is a minimal cover (a.k.a. irreducible) if each functional dependency σ
in Σ has the form X → A, where A is an attribute, and σ is left-reduced and
non-redundant. A set Σ of FDs is a minimal cover of another set Σ′ of FDs if
Σ is a minimal cover and Σ ≡ Σ′. We now extend this notion of irreducibility
to sjfBCQ queries, introduce the notion of a kernel, and present some auxiliary
lemmas.

Definition 7.2.1 (Irreducible query and Kernel). Let q be query in sjfBCQ,
and let q̂ denote the set of atoms in q that are not full-key. We say that q is
irreducible if the following two conditions hold:

1. for every atom F of q̂, we have K(q̂ \ {F}) ̸≡ K(q̂); and

2. the set {Key(F )→ notKey(F ) | F ∈ q̂} is irreducible .

A kernel of q is an irreducible query q′ in sjfBCQ such that K(q′) ≡ K(q)
and q′ ∼g q.

Example 7.2.1. Consider the queries q0 = ∃x∃y∃z(R(x, y, z), S(z, x), T (z, x))
and q′0 = ∃x∃y∃z(R(x, y, z), S(z, x), T ′(z, x)) in Fig. 2.1. The query q0 is not
irreducible, because it does not satisfy the first condition in Definition 7.2.1.
The query q′0 is irreducible. Since K(q0) ≡ K(q

′
0) ≡ {xy → z, z → x} and

q0 ∼g q
′
0 , it follows that q′0 is a kernel of q0. Notably, the attack graph of q0

is acyclic, whereas the attack graph of its kernel contains a cycle. ◁
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Lemma 7.2.1. Let q be a query in sjfBCQ that is irreducible. Let G be an atom
in q that is not full-key. Then, there is a variable x such that notKey(G) = {x}

and G
q
⇝ x.

Proof. By the second item in Definition 7.2.1, |notKey(G)| = 1. Hence, we
can assume x such that notKey(G) = {x}. Let q̂ denote the set of atoms in q
that are not full-key. By the first item in Definition 7.2.1, K(q̂ \ {G}) ̸≡ K(q̂).
It must obviously be the case that K(q̂ \ {G}) ̸|= Key(G) → x, which implies

G
q
⇝ x.

Lemma 7.2.2. Let q be a query in sjfBCQ. A kernel of q can be constructed
in polynomial time in the size of q.

Proof. Let Σ be a minimal cover of K(q) such that for every X → y in Σ, there
is an atom F in q such that X ∪ {y} ⊆ vars(F ). It is easily verified that such
a Σ can be computed in polynomial time by a standard algorithm for minimal
covers; see (Maier, 1983, Chapter 5). Let q′ be a query in sjfBCQ constructed
as follows:

(a) q′ contains every full-key atom of q;

(b) for every atom R(x⃗, y⃗) in q that is not full-key, q′ contains a full-key atom
R′(x⃗, y⃗);

(c) for every X → {y} in Σ, q′ contains an atom S(x⃗, y) such that vars(x⃗) =
X, where S is a fresh relation name. If X = ∅, then x⃗ = c, for some
constant c; and

(d) q′ contains no atoms other than those specified in ((a)), ((b)), and ((c)).

It is easy to verify that this construction runs in polynomial time and ensures
that q′ is irreducible, q′ ∼g q, and K(q′) ≡ K(q). Hence, q′ is a kernel of q.

Example 7.2.1 illustrates that an sjfBCQ query with an acyclic attack graph
can have a kernel whose attack graph contains a cycle. Informally, this means
that cycles in attack graphs can emerge during the construction of a kernel but,
as stated in Proposition 7.2.4, they cannot disappear. Moreover, the following
lemma states that all kernels of the same query either all have an acyclic attack
graph or all have a cyclic attack graph.

Lemma 7.2.3. Let q be a query in sjfBCQ. If some kernel of q has an acyclic
attack graph, then every kernel of q has an acyclic attack graph.
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The proof of Lemma 7.2.3 in Section D.1 of Appendix D also establishes
the following result: if some kernel of q has an acyclic attack graph, then all
kernels agree on their atoms that are not full-key, up to the choice of relation
names. Lemma 7.2.3 allows the following definition.

Definition 7.2.2 (κ-acyclic). A query q in sjfBCQ is κ-acyclic if it has a kernel
with an acyclic attack graph (and hence, by Lemma 7.2.3, all of its kernels have
acyclic attack graphs).

As illustrated in the Venn diagram in Fig. 7.1, κ-acyclic queries have acyclic
attack graphs:

Proposition 7.2.4. Every κ-acyclic query in sjfBCQ has an acyclic attack
graph.

Two different proofs for Proposition 7.2.4 are provided in Section D.2 of
Appendix D.

7.3. Expressibility Result (Theorem 7.0.2)

Theorem 7.0.2 uses AGGR[FOL] as the target language for solving the prob-
lem LUB-CQA(g()). The following lemma uses a weaker logic that yields more
readable rewritings, namely AGGR[nr-datalog]. The language nr-datalog, un-
like FOL, does not include negation. As it turns out, if LUB-CQA(g()) is
expressible in AGGR[FOL] according to Theorem 7.0.2, and moreover FAGG(∅)
is defined, then LUB-CQA(g()) is also expressible in AGGR[nr-datalog]. How-
ever, if FAGG(∅) is not defined, then LUB-CQA(g()) is defined to return ⊥ on
“no”-instances of CERTAINTY(q), where q = BCQ(g()). Distinguishing be-
tween “yes”-instances and “no”-instances generally requires negation, because
CERTAINTY(q) is typically non-monotonic: a “yes”-instance may have an ex-
tension that is a “no”-instance.

Lemma 7.3.1. Let g() be a numerical query in AGGR[sjfBCQ], with a head
AGG(r) and q = BCQ(g()). Assume that FAGG is monotone, associative, and
that FAGG(∅) is defined. If q is irreducible and has an acyclic attack graph,
then an AGGR[nr-datalog] program solving LUB-CQA(g()) can be constructed
in polynomial time in the size of q.

The proof of Lemma 7.3.1 is provided in Section 7.3.1. Then, in Sec-
tion 7.3.2, we provide the proof for Theorem 7.0.2. Finally, in Section 7.3.3,
we illustrate the rewriting in AGGR[nr-datalog] using a concrete example and
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show that there is potential for making the rewriting more efficient. However,
in this thesis, our focus is solely on rewritability in AGGR[nr-datalog], without
addressing the optimization of such rewritings.

7.3.1 Proof of Lemma 7.3.1

First, we introduce two helping Lemmas which are variations of the Decompo-
sition Lemma and Consistent Extension Lemma introduced in Section 6.3 of
Chapter 6. The main variation with respect to the original lemmas are that we
consider irreducible queries (rather than queries with an acyclic attack graph)
and ℓ-embeddings (rather than ℓ-∀embeddings).

Lemma 7.3.2 (Decomposition Lemma for LUB-CQA). Let ∃u⃗(q(u⃗)) be an
irreducible sjfBCQ query with an acyclic attack graph, topologically sorted as
(F1, . . . , Fn). Let g() be the AGGR[sjfBCQ] query defined as g() := AGG(r) ←
q(u⃗), where FAGG is monotone and associative. Let db be a database instance.
Let ℓ ∈ {0, . . . , n − 1}. Let θ be an ℓ-embedding of q in db, and let m be the
FAGG-maximal value for θ in db. Let γ1, . . . , γk enumerate all extensions of θ
that are (ℓ+1)-key-embeddings of q in db. For i ∈ {1, . . . , k}, let Ni be an
FAGG-maximal MCS of Ext(γi), and define vi := FAGG ({{µ(r) | µ ∈ Ni}}). If⋃k

i=1Ni |= K(q), then m = FAGG ({{v1, v2, . . . , vk}}).

Lemma 7.3.3 (Consistent Extension Lemma for LUB-CQA). Let ∃u⃗(q(u⃗)) be
an irreducible sjfBCQ query with an acyclic attack graph, topologically sorted
as (F1, . . . , Fn). Let g() be the AGGR[sjfBCQ] query defined as g() := AGG(r)←
q(u⃗), where FAGG is monotone and associative. Let db be a database instance.
Let ℓ ∈ {1, 2, . . . , n}. Let γ1, . . . , γk be a sequence of ℓ-key-embeddings of q
in db such that {γ1, . . . , γk} |= K({F1, . . . , Fℓ−1}). For every i ∈ {1, . . . , k},
there is an FAGG-maximal MCS Ni of Ext(γi) such that

⋃k
i=1Ni |= K(q).

The proof for both lemmas are provided in Section D.3 in Appendix D. We
can now proceed with the proof of Lemma 7.3.1.

Proof of Lemma 7.3.1. Let g() be a numerical query in AGGR[sjfBCQ], with
a head AGG(r) and q = BCQ(g()). Assume that q is irreducible and has an
acyclic attack graph. We need to show that LUB-CQA(g()) is expressible in
AGGR[nr-datalog]. Let db be a database instance. By Theorem 5.0.4,

[[LUB-CQA(g())]]db = max
N∈MCSq(Embq(db))

FAGG ({{θ(r) | θ ∈ N}}) . (7.2)

The proof of Lemma 7.3.1 proceeds by showing that the right-hand expression
of (7.2) can be expressed in AGGR[nr-datalog]. The technical treatment follows
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the outline of the proof of Theorem 6.0.2, but requires novel theoretical notions
due to the difference between glb and lub.

Let (F1, . . . , Fn) be a topological sort of q’s attack graph. For every ℓ ∈
{1, . . . , n}, we use the notation u⃗ℓ = (u⃗ℓ−1, x⃗ℓ, y⃗ℓ) defined in Chapter 2. Let
q(u⃗) be the self-join-free conjunction of atoms in the body of g(). Note that
u⃗n = u⃗. Consider the AGGR[nr-datalog] program built as follows. The program
uses a fresh IDB predicate E 0 of arity 2, and for every ℓ ∈ {1, 2, . . . , n}, it
uses two fresh IDB predicates: E ℓ of arity |u⃗ℓ| + 1, and KeyE ℓ of arity
|u⃗ℓ−1|+ |x⃗ℓ|+ 1. The IDB predicate E n is defined as follows:

E n(u⃗, AGG(rn))← q(u⃗), rn = r (7.3)

For every ℓ ∈ {1, . . . , n}, the IDB predicates KeyE ℓ and E (ℓ− 1 ) are defined
as follows:

KeyE ℓ(u⃗ℓ−1, x⃗ℓ, MAX(rℓ))← E ℓ(u⃗ℓ, rℓ) (7.4)

E (ℓ− 1 )(u⃗ℓ−1, AGG(mℓ))← KeyE ℓ(u⃗ℓ−1, x⃗ℓ,mℓ) (7.5)

By inspecting the program, one can see that for every ℓ-embedding θ of q
in db, there exists c such that db |= E ℓ(θ(u⃗ℓ), c). We will show, by induction
on decreasing ℓ = n, n− 1, . . . , 0, that the following holds for every ℓ:

for every ℓ-embedding θ of q in db,

db |= E ℓ(θ(u⃗ℓ), c) iff c is the FAGG-maximal value for θ in db. (7.6)

For ℓ = 0, we obtain that db |= E 0 (() , c0) if and only if c0 is the FAGG-
maximal value for ∅ in db, and hence, by Theorem 5.0.4, we have c0 =
[[LUB-CQA(g())]]db.

To show (7.6), let θ be an arbitrary ℓ-embedding of q in db. For the
induction basis, ℓ = n, we have Ext(θ) = {θ} = MCSq(Ext(θ)). It follows that
the FAGG-maximal value for θ in db is FAGG ({{θ(r)}}). The program rule (7.3)
ensures that db |= E n(θ(u⃗), c) if and only if c = FAGG ({{θ(r)}})).

For the induction step, ℓ + 1 → ℓ, let γ1, . . . , γk enumerate all (ℓ + 1)-
key-embeddings of q in db that extend θ. By Lemma 7.3.3, for each i ∈
{1, 2, . . . , k}, we can assume an FAGG-maximal MCS Ni of Ext(γi) such that⋃k

i=1Ni |= K(q). For every i ∈ {1, . . . , k}, let vi := FAGG ({{µ(r) | µ ∈ Ni}}),
that is, vi is the FAGG-maximal value for γi in db. By Lemma 7.3.2, we have
that FAGG ({{v1, . . . , vk}}) is the FAGG-maximal value for θ in db. By program
rule (7.5), the following statements are equivalent:

(a) for every i ∈ {1, . . . , k}, db |= KeyE ℓ(γi(u⃗ℓ−1), γi(x⃗ℓ), ci) if and only if
ci is the FAGG-maximal value for γi in db; and
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(b) db |= E (ℓ− 1 )(θ(u⃗ℓ−1), c) if and only if c is the FAGG-maximal value for
θ in db.

Therefore, to show the desired result ((b)), it suffices to show ((a)).
To show ((a)), let i ∈ {1, . . . , k}. Let θ+1 , θ

+
2 , . . . , θ

+
p enumerate all ℓ-

embeddings of q in db that extend γi. For every j ∈ {1, . . . , p}, let v+j be

the FAGG-maximal MCS of θ+j . By the induction hypothesis (7.6) for ℓ, for
each j ∈ {1, 2, . . . , p},

db |= E ℓ(θ+j (u⃗ℓ), c) if and only if c = v+j . (7.7)

Since K(q) |= Key(Fℓ) → vars(Fℓ), it is clear that FMAX({{v
+
1 , v

+
2 , . . . , v

+
p }})

is the FAGG-maximal value for γi in db. From program rule (7.4), it follows
that ((b)) holds true. This concludes the proof of Lemma 7.3.1.

7.3.2 Proof of Theorem 7.0.2

We can now provide the proof of Theorem 7.0.2.

Proof of Theorem 7.0.2. Assume that q is κ-acyclic. By Lemma 7.2.2, it is
possible to construct, in polynomial time in the size of q, a kernel q′ of q. Let
g′() be a numerical query in AGGR[sjfBCQ] with a head AGG(r) and such that
BCQ(g′()) = q′. We consider two cases:

Case that FAGG(∅) is defined. By Lemma 7.1.1, LUB-CQA(g()) ≤nr-datalog

LUB-CQA(g′()). By Definition 7.2.1, q′ is irreducible. Since q is κ-acyclic,
the attack graph of q′ is acyclic. By Lemma 7.3.1, LUB-CQA(g′()) is
expressible in AGGR[nr-datalog]. Consequently, LUB-CQA(g()) can be
solved in AGGR[nr-datalog] by first reducing it to LUB-CQA(g′()) using
the nr-datalog reduction of Lemma 7.1.1, and then solving LUB-CQA(g′()).

Case that FAGG(∅) is undefined. By Proposition 7.2.4, the attack graph of q
is acyclic. By Theorem 2.0.1, one can test in AGGR[FOL] whether the
database instance input to LUB-CQA(g()) is a “no”-instance of the prob-
lem CERTAINTY(q) and, if so, return ⊥ as the answer to LUB-CQA(g()).
The remaining case is when the input is a “yes”-instance of CERTAINTY(q).
The proofs of Lemmas 7.1.1 and 7.3.1 rely on Eq. (5.2) from Theo-
rem 5.0.4, which applies if FAGG(∅) is defined or if the input database
instance is a “yes”-instance of CERTAINTY(q). The requirement that
FAGG(∅) is defined is built into the statements of these lemmas. How-
ever, they remain valid even when FAGG(∅) is undefined, as long as the
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R x y

a1 b1
a1 b2
a2 b2

S y z r

b1 c1 1
b1 c1 4
b1 c2 3
b2 c3 5
b2 c3 6

E 2

x y z r r2 := r

a1 b1 c1 1 1
a1 b1 c1 4 4
a1 b1 c2 3 3
a1 b2 c3 5 5
a1 b2 c3 6 6
a2 b2 c3 6 5
a2 b2 c3 6 6

KeyE 2 m2 :=

x y z MAX(r2)

a1 b1 c1 4
a1 b1 c2 3
a1 b2 c3 6
a2 b2 c3 6

E 1 r1 :=

x y SUM(m2)

a1 b1 4 + 3
a1 b2 6
a2 b2 6

KeyE 1 m1 :=

x MAX(r1)

a1 7
a2 6

E 0

SUM(m1)

7 + 6

Figure 7.2: Computation of LUB-CQA(g0()) for g0() := SUM(r) ←
R(x, y), S(y, z, r).
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problem LUB-CQA(g()) is restricted to “yes”-instances of CERTAINTY(q).
Therefore, “yes”-instances of CERTAINTY(q) can be treated as in the first
case—i.e., the case where FAGG(∅) is defined.

7.3.3 Elaborated Example and Optimization

Let g() := AGG(r)← R1(x, y), R2(y, z, r), where FAGG is monotone and associa-
tive, and r is a variable. The following program computes LUB-CQA(g()) as
the unique value b for which E 0 (b) holds (b = 13 in Fig. 7.2).

E 2 (x, y, z, r, AGG(r))← R1(x, y), R2(y, z, r)

KeyE 2 (x, y, z, MAX(r2))← E 2 (x, y, z, r, r2)

E 1 (x, y, AGG(m2))← KeyE 2 (x, y, z,m2)

KeyE 1 (x, MAX(r1))← E 1 (x, y, r1)

E 0 (AGG(m1))← KeyE 1 (x,m1)

Fig. 7.2 presents a complete run of this program for the case where AGG =
SUM. We briefly note that there are ways to optimize such programs, without
delving into technical details. In particular, the optimization involves avoiding
the full join expressed in rule (7.3) by distributing it across multiple rules, as
illustrated below.

E 2 ′(y, z, r, AGG(r))← R2(y, z, r)

KeyE 2 ′(y, z, MAX(r2))← R2(y, z, r),E 2 ′(y, z, r, r2)

E 1 ′(y, AGG(m2))← KeyE 2 ′(y, z,m2)

KeyE 1 (x, MAX(r1))← R1(x, y),E 1 ′(y, r1)

E 0 (AGG(m1))← KeyE 1 (x,m1)

For the database instance in Fig. 7.2 and AGG = SUM, the latter program
computes the same relations for KeyE 1 and E 0 as shown in Fig. 7.2. How-
ever, the intermediate relations—being projections of the corresponding rela-
tions in Fig. 7.2—are smaller in size:

E 2 ′ y z r r2
b1 c1 1 1
b1 c1 4 4
b1 c2 3 3
b2 c3 5 5
b2 c3 6 6

KeyE 2 ′ y z m2

b1 c1 4
b1 c2 3
b2 c3 6

E 1 ′ y r1
b1 7
b2 6
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Roughly, the envisioned optimization consists of projecting away from E ℓ
and KeyE ℓ those variables on which the computed numerical value does not
depend. In the preceding rewritings, the value m2 in KeyE 2 (x, y, z,m2) does
not depend on x, which is therefore projected away in KeyE 2 ′(y, z,m2).

7.4. Inexpressibility Result (Left-to-Right Implication
in Theorem 7.0.1)

The right-to-left implication in Theorem 7.0.1 follows from Theorem 7.0.2.
We now show the left-to-right implication, whose contraposition reads as fol-
lows: for each numerical query g() in AGGR[sjfBCQ] with a head SUM(r) and
q = BCQ(g()), if q is not κ-acyclic, then GLB-CQA(g()) is not expressible in
AGGR[FOL]. Note that, by the nontriviality condition in Definition 3.4.1, we
have that if r is a constant, then r ̸= 0. The proof relies on a reduction from
the 2DM problem (a.k.a. Bipartite Perfect Matching), which we recall next.

2-DIMENSIONAL MATCHING (2DM)

INSTANCE: A set M ⊆ A×B, where A and B are disjoint sets having the
same number n of elements.

QUESTION: Does M contain a matching, that is, a subset M ′ ⊆ M such
that |M ′| = n and no two elements of M ′ agree in any coordinate?

Lemma 7.4.1. Let g() be a numerical query in AGGR[sjfBCQ] with a head
SUM(r) and q = BCQ(g()). If the attack graph of q has a cycle, then 2DM ≤FO

LUB-CQA(g()).

The proof of Lemma 7.4.1 is provided in Section D.4 in Appendix D. A key
crux in the following proof of Theorem 7.0.1 is a deep result by Hella et al. Hella
et al. (2001), which implies that every query in AGGR[FOL] is Hanf-local.

Proof of Theorem 7.0.1. The right-to-left implication of Theorem 7.0.1 follows
from Theorem 7.0.2. We show the left-to-right implication by contraposition.
Assume that q is not κ-acyclic. Let q′ be a kernel of q, and let g′() be the
numerical query with the same head as g() and BCQ(g′()) = q′. Since q is not
κ-acyclic, the attack graph of q′ contains a cycle. By Lemma 7.4.1, 2DM ≤FO

LUB-CQA(g′()). By Lemma 7.1.1, LUB-CQA(g′()) ≤FO LUB-CQA(g()). Since
first-order reductions compose, 2DM ≤FO LUB-CQA(g()). In (Libkin, 2004,
Corollary 8.26 and Exercise 8.16), it is established that every query in a logic
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called Laggr is Hanf-local. It is easily verified that every query in AGGR[FOL]
is expressible in Laggr, and therefore cannot express 2DM. It follows that
LUB-CQA(g()) cannot be expressed in AGGR[FOL].

7.5. The κ-acyclicity of Cparsimony

Theorem 7.0.1 implies that every query in Cparsimony must be κ-acyclic. In
this section we provide a proof of the following result that is based solely on
syntax.

Proposition 7.5.1. Every query in Cparsimony is κ-acylic.

Proof of Proposition 7.5.1. Let q be a query in Cparsimony. Let q′ be an ar-
bitrary kernel of q. It suffices to show that the attack graph of q′ is acyclic.
Assume, for the sake of a contradiction, that the attack graph of q′ contains
a cycle. From (Koutris & Wijsen, 2017, Lemma 3.6), there are two distinct

atoms F,G ∈ q′ such that F
q′

⇝ G and G
q′

⇝ F . Let x⃗ be an id-set for q.

From condition (1) in Definition 4.1.3 and K(q) ≡ K(q′), it follows K(q′) |=
x⃗ → vars(q). Consequently, K(q′) |= x⃗ → Key(F ). If G occurs in a shortest
sequential proof of K(q′) |= x⃗ → Key(F ), then K(q′ \ {F}) |= x⃗ → Key(G).
Otherwise K(q′\{G}) |= x⃗→ Key(F ). Consequently, either K(q′\{G}) |= x⃗→
Key(F ) or K(q′ \ {F}) |= x⃗→ Key(G) (or both). Assume K(q′ \ {G}) |= x⃗→
Key(F ) (the case K(q′\{F}) |= x⃗→ Key(G) is symmetrical). By Lemma C.1.1,

since K(q′ \ {G}) |= x⃗ → Key(F ) and G
q′

⇝ F , it follows that G
q′

⇝ v for
some variable v in x⃗. Thus, there is a path (w1, . . . , wn) in Gaifman(q′) such
that w1 ∈ notKey(G), wn = v, and for every i ∈ {1, . . . , n}, K(q′ \ {G}) ̸|=
Key(G) → wi. Since Gaifman(q) = Gaifman(q′), the path (w1, . . . , wn) also
exists in Gaifman(q). We now show the following claims.

Claim 2. For every i ∈ {1, . . . , n}, K(q′) ̸|= ∅ → wi.

Proof. Assume, for the sake of contradiction, that K(q′) |= ∅ → wi for some

i ∈ {1, . . . , n}. Since G
q′

⇝ wi, it follows that K(q′ \ {G}) ̸|= ∅ → wi. This

implies that K(q′ \ {G}) |= ∅ → Key(G). Since F
q′

⇝ G, F attacks some
variable in Key(G). Thus, we have that K(q′ \ {G,F}) ̸|= ∅ → Key(G). This

implies that K(q′ \ {G,F}) |= ∅ → Key(F ), hence G
q′

̸⇝ F , a contradiction.
This concludes the proof of Claim 2.
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Since K(q) ≡ K(q′), it follows that for every i ∈ {1, . . . , n}, K(q) ̸|= ∅ → wi,
and therefore no variable in (w1, . . . , wn) is frozen in q.

Claim 3. There is an atom H in q satisfying:

(a) K(q) |= ∅ → Key(H) \ Key(G); and

(b) there is a path (z1, . . . , zm) in Gaifman(q) such that z1 ∈ notKey(H),
zm = w1, and for every i ∈ {1, . . . ,m}, zi ̸∈ Key(H) ∪ frozen(q).

Proof. Since w1 ∈ notKey(G), it follows that K(q′) |= Key(G) → w1. Since
K(q′) ≡ K(q), it follows that K(q) |= Key(G)→ w1. We can assume a shortest
sequence

(H1, . . . , Hℓ) (7.8)

that is a sequential proof of K(q) |= Key(G) → w1. Note that, since K(q′ \
{G}) ̸|= Key(G) → w1, we have that w1 ̸∈ Key(G), and thus, ℓ ≥ 1. By
definition of a sequential proof, it follows that w1 ∈ notKey(Hℓ). We distinguish
two possibilities.

Case that K(q) |= ∅ → Key(Hℓ) \ Key(G). Then Claim 3 is proved by choos-
ing H = Hℓ, and using the empty path (w1) in Gaifman(q).

Case that there is z1 ∈ Key(Hℓ) \ Key(G) such that K(q) ̸|= ∅ → z1. Since
the sequence in (7.8) is a sequential proof, there is k ∈ {1, . . . , ℓ − 1}
such that z1 ∈ notKey(Hk). Let k be the smallest index such that
z1 ∈ notKey(Hk). This choice implies that for every j ∈ {1, . . . , k},
z1 ̸∈ Key(Hj). If K(q) |= ∅ → Key(Hk) \ Key(G), then Claim 3 is proved
by choosing H = Hk and using the path (z1, w1) in Gaifman(q). Other-
wise, there is a variable z2 ∈ Key(Hk)\Key(G) such that K(q) ̸|= ∅ → z2,
and we can repeat the same reasoning as before, replacing z1 with z2,
and Hℓ with Hk. By repeating the same reasoning, we eventually reach
an atom H in (7.8) such that K(q) |= ∅ → Key(H) \ Key(G).

The proof of Claim 3 is now concluded.

Let H and (z1, . . . , zm) be as in the statement of Claim 3. For every i ∈
{1, 2, . . . , n}, we have wi /∈ Key(H), or else, since wi /∈ Key(G), K(q) |= ∅ → wi,
a contradiction. Since zm = w1, Gaifman(q) has a path

(z1, z2, . . . , zm−1, w1, w2, . . . , wn)

where wn = v, z1 ∈ notKey(H), v ∈ vars(x⃗), and no variable in the path belongs
to Key(H) ∪ frozen(q). The existence of this path shows that q /∈ Cparsimony,
a contradiction.
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E 2 (x, y, r, r2)← R(x, y), T (y, r), r = r2.

KeyE 1 (x, MAX(r2))← E 2 (x, y, r, r2).

E 0 (SUM(m1))← KeyE 1 (x,m1).

Figure 7.3: Calculation of LUB-CQA(g1()) for g1() := SUM(r) ←
R(x, y), T (y, r). LUB-CQA(g1()) is the unique value b for which E 0 (b) holds
true.

Example 7.5.1. Consider the SUM-query g1() := SUM(r) ← R(x, y), T (y, r).
It is easily verifiable that BCQ(g1()) ∈ Cparsimony and, by Proposition 7.5.1,
BCQ(g1()) is κ-acyclic. The difference from the query g0(), whose rewriting is
shown in Fig. 7.2, is that the variable y shared by the two atoms constitutes
the primary key of one of the atoms. The computation of GLB-CQA(g1()) is
given in Fig. 7.3. Compared to Fig. 7.2, the IDB predicates KeyE 2 and E 1

can be skipped. ◁
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CHAPTER 8
Exploring Other Aggregation Queries

In this chapter, we explore the expressibility of the problems GLB-CQA(g(x⃗))
and LUB-CQA(g(x⃗)) in AGGR[FOL] for numerical terms g(x⃗) that were not cov-
ered in previous chapters. We introduce in Section 8.1 a manifestation of non-
monotonicity, called descending chains, which is used to identify cases where
GLB-CQA(g()) is not expressible in AGGR[FOL] under the above assumptions.
Descending chains are also used in Section 8.2 in the study of LUB-CQA(g())
and GLB-CQA(g()) via the use of dual aggregate operators, and in Section 8.3
to demonstrate that unconstrained numeric columns (i.e., columns not con-
strained to Q≥0) suffice for moving from expressibility in AGGR[FOL] to non-
expressibility. We conclude with some positive results: In Section 8.4, we show
that when g() is a MIN-query, it is decidable whether or not GLB-CQA(g()) and
LUB-CQA(g()) are expressible in AGGR[FOL] and, in Section 8.5, we explain
how the results provided in previous chapters can be extended to numerical
terms with free variables.

8.1. Aggregate Operators with Descending Chains

We first show that the inverse of Theorem 3.5.6 does not hold for every numer-
ical query: Lemmas 8.1.1 and 8.1.2 introduce numerical queries with acyclic
attack graphs that however do not allow glb rewriting in AGGR[FOL]. Their
proofs rely on the existence of a (possibly bounded) descending chain for an
aggregate operator FAGG, which implies that FAGG lacks monotonicity. Concrete
examples of such aggregate operators are FAVG and FPRODUCT, as expressed by
Corollary 8.1.3.1 (assuming that the numeric domain is Q≥0).
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Definition 8.1.1 (Descending chain). For i ∈ N and t ∈ Q, we write i#t as

a shorthand for

i times︷ ︸︸ ︷
t, t, . . . , t, i.e., i occurrences of t. We say that an aggregate

operator FAGG has a descending chain if there exist s, t ∈ Q≥0 such that for
every i ∈ N, FAGG({{s, i#t}}) > FAGG({{s, (i+ 1)#t}}). Note that s and t need
not be distinct. Such a descending chain is said to be bounded if for every
i ∈ N, there exists mi ∈ Q≥0 such that for all j ∈ N>0, for all k′, k ∈ N
such that k′ ≤ k ≤ i, we have FAGG({{s, k

′#t}}) < FAGG({{j#mi, s, k#t}}).
Informally, this expression means that FAGG will strictly increase if at least one
copy of mi is added, regardless of any addition of copies of t. Notice that mi

depends on i. See the proof of Lemma 8.1.3 for examples.

Lemma 8.1.1. Let FAGG be an aggregate operator with a descending chain
(which may not be bounded). Then, GLB-CQA(g()) is NL-hard for g() :=
AGG(r)← R(x, y, r), S1(y, x), S2(y, x). Consequently, GLB-CQA(g()) is not ex-
pressible in AGGR[FOL].

Proof. First-order reduction from 2DM (2-DIMENSIONAL MATCHING) which
is known to be NL-hard Chandra et al. (1984).

2-DIMENSIONAL MATCHING (2DM)

INSTANCE: A set M ⊆ A×B, where A and B are disjoint sets having the
same number n of elements.

QUESTION: Does M contain a matching, that is, a subset M ′ ⊆ M such
that |M ′| = n and no two elements of M ′ agree in any coordinate?

Since FAGG has a descending chain, we can assume s, t ∈ Q≥0 such that
FAGG({{s}}) > FAGG({{s, t}}) > FAGG({{s, t, t}}) > FAGG({{s, t, t, t}}) > · · · .
Given an instance M of 2DM, construct a database instance dbM as follows:

• for every (a, b) ∈M , add R(a, b, t), S1(b, a), and S2(b, a); and

• add R(⊥A,⊥B, s), S1(⊥B,⊥A), and S2(⊥B,⊥A), where ⊥A and ⊥B are
fresh constants.

If M has a matching, then dbM has a repair on which g() returns ℓ :=
FAGG({{s, n#t}}). If M has no matching, then every repair of dbM has less
than n embeddings of g()’s body, and hence on any repair, g() returns the value
FAGG({{s,m#t}}) with m < n, hence FAGG({{s,m#t}}) > ℓ. Consequently,
GLB-CQA(q) returns ℓ if and only if M has a matching.
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Lemma 8.1.2. Let FAGG be an aggregate operator with a bounded descend-
ing chain. Then, GLB-CQA(g()) is NP-hard for g() := AGG(r) ← S1(x, c1),
S2(y, c2), T (x, y, r), where c1 and c2 are (not necessarily distinct) constants.
Consequently, GLB-CQA(g()) is not expressible in AGGR[FOL].

Proof of Lemma 8.1.2. Proof adapted from a similar proof in (Dixit & Kolaitis,
2022). First order-reduction from SIMPLE MAX CUT, which is known to be
NP-hard (Garey et al., 1976).

SIMPLE MAX CUT

INSTANCE: Graph G = (V,E), positive integer K.

QUESTION: Is there a partition of V into disjoint sets V1 and V2 such that
the number of edges from E that have one endpoint in V1 and one end-
point in V2 is at least K?

Since FAGG has a bounded descending chain, we can assume s, t ∈ Q≥0 such that
FAGG({{s}}) > FAGG({{s, t}}) > FAGG({{s, t, t}}) > FAGG({{s, t, t, t}}) > · · · . Let
e = 2∗|E|. Moreover, there isme ∈ Q≥0 such that for all j ∈ N>0, for all k′, k ∈
N such that k′ ≤ k ≤ e, we have FAGG({{s, k

′#t}}) < FAGG({{j#me, s, k#t}}).
Given an instance G = (V,E) of SIMPLE MAX CUT, construct a database

dbG as follows. We can assume E ̸= ∅, and that the graph is simple. Let d be
a constant such that c1 ̸= d ̸= c2.

• for every v ∈ V , dbG contains S1(v, c1) and S1(v, d);

• for every v ∈ V , dbG contains S2(v, c2) and S2(v, d);

• for every edge {u, v} in E, dbG contains both T (u, v, t) and T (v, u, t);

• for every v ∈ V , dbG contains T (v, v,me);

• dbG contains S1(⊥, c1), S2(⊥, c2), T (⊥,⊥, s), where ⊥ is a fresh con-
stant. It follows that every repair of dbG satisfies

∃x∃y∃r
(
S1(x, c1) ∧ S2(y, c2) ∧ T (x, y, r)

)
.

Note that the T -relation of dbG is consistent, and hence belongs to every
repair. We show that [[GLB-CQA(g())]]dbG ≤ FAGG({{s,K#t}}) if and only if G
is a “yes”-instance of SIMPLE MAX CUT.

⇐= Assume that G is a “yes”-instance of SIMPLE MAX CUT, as wit-
nessed by a partition of V into V1 an V2. Construct a repair r as follows:
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• for every v ∈ V1, r contains S1(v, c1) and R2(v, d);

• for every v ∈ V2, r contains R2(v, c2) and S1(v, d).

It is easily verified that [[g()]]r ≤ FAGG({{s,K#t}}).
=⇒ Assume that [[GLB-CQA(g())]]dbG ≤ FAGG({{s,K#t}}). We can as-

sume a repair r such that [[g()]]r = [[GLB-CQA(g())]]dbG . Construct V1 and V2
as follows. Whenever r contains S1(v, c1), then v ∈ V1. Whenever r contains
S2(v, c2), then v ∈ V2. Whenever r contains both S1(v, d) and S2(v, d), then
v ∈ V1 (the choice is arbitrary). Let j := |V1∩V2|. Let k be the number of val-
uations θ over {x, y} with θ(x) ̸= θ(y) such that (s, θ) |= S1(x, c1)∧S2(y, c2)∧
T (x, y, r). Then, [[g()]]r = FAGG({{j#me, s, k#t}}). Clearly, k ≤ e. We show
j = 0. Assume for the sake of a contradiction j ≥ 1. Let r

′ be the repair ob-
tained from r by replacing S2(v, c2) with S2(v, d) for every v ∈ V1 ∩ V2. Then,
[[g()]]r

′

= FAGG({{s, k
′#t}}) for some k′ with k′ ≤ k. Then, FAGG({{s, k

′#t}}) <
FAGG({{j#me, s, k#t}}), contradicting that g() reaches a minimum in r. We
conclude by contradiction that j = 0, hence [[g()]]r = FAGG({{s, k#t}}). Since
FAGG({{s, k#t}}) ≤ FAGG({{s,K#t}}), we have k ≥ K. Consequently, the num-
ber of edges from E that have one endpoint in V1 and one end-point in V2 is
at least K.

Lemma 8.1.3. FAVG and FPRODUCT have bounded descending chains.

Proof. For FAVG, we have FAVG({{1}}) > FAVG({{1, 0}}) > FAVG({{1, 0, 0}} >
FAVG({{1, 0, 0, 0}} > · · · . Take s = 1 and t = 0. For every i ∈ N, let mi = i+2.
Whenever j > 0 and 0 ≤ k′ ≤ k ≤ i, we have 1

k′+1 = FAVG({{1, k
′#0}} <

FAVG({{j#(i+ 2), 1, k#0}} = j∗(i+2)+1
j+k+1 , as desired.

For FPRODUCT, we have

FPRODUCT({{
1

2
}}) > FPRODUCT({{

1

2
,
1

2
}}) > FPRODUCT({{

1

2
,
1

2
,
1

2
}}) > · · · .

Take s = t = 1
2 . Let i ∈ N. For j > 0 and 0 ≤ k′ ≤ k ≤ i, we obtain

FPRODUCT({{
1
2 , k

′#1
2}} < FPRODUCT({{j#mi,

1
2 , k#

1
2}} by choosing mi = 2i+1.

Corollary 8.1.3.1. GLB-CQA(g()) is not expressible in AGGR[FOL] with g()
as in Lemma 8.1.1 or Lemma 8.1.2 and AGG ∈ {AVG, PRODUCT}.

8.2. Dual Aggregate Operators

Definition 8.2.1 (Dual aggregate operator). The dual of positive aggregate
operator FAGG, denoted Fdual

AGG
, is the mapping such that for every finite multi-

set X of non-negative rational numbers,
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• if FAGG(X) is undefined, then Fdual
AGG

(X) is undefined; and

• if FAGG(X) is defined, then Fdual
AGG

(X) = −1 ∗ FAGG(X).

The dual of a positive aggregate operator is also called a dual aggregate oper-
ator.

Note that a dual aggregate operator is not a positive aggregate operator
itself, as it can return negative rational numbers. Despite this, Definition 8.1.1
of (bounded) descending chain applies also to dual aggregate operators. Ad-
ditionally, it can be verified that Lemmas 8.1.1 and 8.1.2 remain valid for
dual aggregate operators, since their proofs do not rely on the signs of the
aggregated values.

As formalized by Proposition 8.2.1, the function problem LUB-CQA(g())
for g() := AGG(r)← q(u⃗) is the same up to a sign as GLB-CQA(h()) where h()
has the same body as g(), but uses the dual of AGG in its head:

h() := AGG
dual(r)← q(u⃗),

where the aggregate symbol AGGdual is interpreted by Fdual
AGG

, i.e., the dual of
FAGG. The semantics of h() on a database instance db is naturally defined:
if g() returns a rational number r, then h() returns −1 ∗ r. The problems
GLB-CQA(h()) and LUB-CQA(h()) are defined as before. The proof of the
following propostion is straightforward.

Proposition 8.2.1. Let g() := AGG(r) ← q(u⃗) be a numerical query in the
class AGGR[sjfBCQ]. Let h() := AGG

dual(r) ← q(u⃗). Then, for every database
instance db, we have

• [[LUB-CQA(g())]]db = [[GLB-CQA(h())]]db = ⊥ if db ̸|=cqa ∃u⃗(q(u⃗)) and
FAGG(∅) is undefined;

• [[LUB-CQA(g())]]db = −1 ∗ [[GLB-CQA(h())]]db otherwise.

If we let AGG = SUM in the numerical term g() of Lemma 8.1.1, then
GLB-CQA(g()) is in AGGR[FOL] (by Theorem 6.0.2), but LUB-CQA(g()) is
not, as a consequence of the following lemma.

Theorem 8.2.2. LUB-CQA(g()) is not expressible in AGGR[FOL] with g() as
in Lemma 8.1.1 and AGG ∈ {SUM, AVG, PRODUCT}.

Proof. From Fdual
AVG

({{0}}) > Fdual
AVG

({{0, 1}}) > Fdual
AVG

({{0, 1, 1}} > · · · , it fol-
lows that Fdual

AVG
has a descending chain. From Fdual

SUM
({{1}}) > Fdual

SUM
({{1, 1}}) >



90 Exploring Other Aggregation Queries

Fdual
SUM

({{1, 1, 1}} > · · · , it follows that Fdual
SUM

has a descending chain. From
Fdual
PRODUCT

({{2}}) > Fdual
PRODUCT

({{2, 2}}) > Fdual
PRODUCT

({{2, 2, 2}} > · · · , it follows that
Fdual
PRODUCT

has a descending chain. The desired result then follows by Proposi-
tion 8.2.1 and Lemma 8.1.1.

It can be easily verified that the descending chain for PRODUCT in the
proof of Theorem 8.2.2 is bounded by choosing mi =

1
2i+1 , which implies that

LUB-CQA(g()) is not expressible in AGGR[FOL] with g() as in Lemma 8.1.2
and AGG = PRODUCT.

8.3. Unconstrained Numerical Columns

So far, we have restricted our attention to database instances in which all
numbers occurring in numeric columns are non-negative. For the following
theorem, it is relevant to note that while FSUM is monotone over both N and
Q≥0 (and covered by previous chapters), it becomes non-monotone if these
domains are extended by even a single negative number (in our treatment, the
integer −1). Since for the numerical query g() of Theorem 8.3.1 we have that
BCQ(g()) is in Cforest, it disproves a claim in (Fuxman, 2007) stating that
GLB-CQA(g()) is expressible in AGGR[FOL] for all SUM-queries h() such that
BCQ(h()) is in Cforest.

Theorem 8.3.1. Assume that the third attribute of T is a numeric column that
can contain numbers in N∪{−1}. Then, GLB-CQA(g()) is NP-hard for g() :=
SUM(r) ← S1(x, c1), S2(y, c2), T (x, y, r), where c1 and c2 are (not necessarily
distinct) constants. Consequently, GLB-CQA(g()) is not in AGGR[FOL].

Proof sketch. It can be easily verified that FSUM has a bounded descending chain
if −1 can be used. The desired result then follows from Lemma 8.1.2.

8.4. MIN and MAX

FMIN is not monotone, since its value can decrease when extending a multi-
set, for example, FMIN({{3}}) > FMIN({{2, 3}}). Despite this, rewritability in
AGGR[FOL] is decidable for MIN-queries, for both glb and lub.

Theorem 8.4.1. Let g() := MIN(r)← q(y⃗) be a query in AGGR[sjfBCQ]. Then,

• GLB-CQA(g()) is expressible in AGGR[FOL] if and only if the attack graph
of ∃y⃗(q(y⃗)) is acyclic.
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• LUB-CQA(g()) is expressible in AGGR[FOL] if and only if the attack graph
of ∃y⃗(q(y⃗)) is acyclic.

Proof. If the attack graph of ∃y⃗(q(y⃗)) is cyclic, then by Theorems 3.5.2 and 3.5.3,
both GLB-CQA(g()) and LUB-CQA(g()) are not expressible in AGGR[FOL].

Assume from here on that the attack graph of ∃y⃗(q(y⃗)) is acyclic. Let
db be a database instance. From Theorem 2.0.1, there is a first-order for-
mula ψ such that db |= ψ if and only if db |=cqa ∃y⃗(q(y⃗)). If db ̸|= ψ, then
GLB-CQA(g()) = LUB-CQA(g()) = ⊥. Assume db |= ψ from here on. It
can be easily seen that [[GLB-CQA(g())]]db = [[g()]]db, hence GLB-CQA(g())
is expressible in AGGR[FOL]. It remains to show that LUB-CQA(g()) is also
expressible in AGGR[FOL]. To this end, define (Q,≤′) such that r ≤′ s if and
only if s ≤ r, that is, ≤′ reverses the natural order on the rational numbers.
Then, LUB-CQA(g()) relative to ≤ coincides with GLB-CQA(MAX(r) ← q(y⃗))
relative to ≤′. From Theorem 6.0.2, there is a formula φ() in AGGR[FOL] that
expresses GLB-CQA(MAX(r)← q(y⃗)) relative to ≤′.

On the other hand, for MAX-queries g(), LUB-CQA(g()) is expressible in
AGGR[FOL] even when the attack graph of the body of g() is cyclic. This
different behavior between MAX-queries and MIN-queries arises from the fact
that, with Q≥0 as numerical domain, FMAX(∅) is defined, whereas FMIN(∅) is
not. Thus, Theorem 3.5.3 is not applicable to MAX-queries.

Theorem 8.4.2. Let g() := MAX(r)← q(y⃗) be a query in AGGR[sjfBCQ]. Then,

• GLB-CQA(g()) is expressible in AGGR[FOL] if and only if the attack graph
of ∃y⃗(q(y⃗)) is acyclic.

• LUB-CQA(g()) is expressible in AGGR[FOL].

Proof. The first item follows from Theorems 3.5.6 and 6.0.2. It remains to
show that LUB-CQA(g()) is also expressible in AGGR[FOL]. Let db be a
database instance. It can be easily seen that [[LUB-CQA(g())]]db = [[g()]]db,
hence LUB-CQA(g()) is expressible in AGGR[FOL].

We point out that Theorem 8.4.2 does not contradict (Amezian El Khalfioui
& Wijsen, 2024a, Theorem 7.11), although it may seem so at first sight. In
the latter paper, for every AGG-query g(), LUB-CQA(g()) is defined to return ⊥
whenever some repair falsifies BCQ(g()), thereby avoiding the need to handle
FAGG(∅), the result of applying the aggregate operator to the empty multiset.
In this thesis, we adopt a different, arguably more practical, approach: if
FAGG(∅) is defined, then that value can be a valid output of LUB-CQA(g()). In
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particular, we define FMAX(∅) = 0, and thus a MAX-query g() returns 0 on the
empty repair—which differs from LUB-CQA(g()) unless g() returns 0 on every
repair.

8.5. Aggregation Queries with Free Variables

So far, we have focused on numerical terms g() without free variables. We now
explain how our results extend to numerical terms g(x⃗) = AggrF y⃗ [r, q(x⃗, y⃗)]
with free variables x⃗ := (x1, . . . , xk), where q(x⃗, y⃗) is self-join-free and FAGG is
both monotone and associative. Let c⃗ = (c1, . . . , ck) be a sequence of distinct
constants. Let qc⃗(y⃗) be the conjunction obtained from q(x⃗, y⃗) by replacing, for
i ∈ {1, . . . , k}, each occurrence of each xi by ci. Then,

• GLB-CQA(g(c⃗)) is expressible in AGGR[FOL] if and only if ∃y⃗(qc⃗(y⃗)) is
acyclic; and

• If FAGG = FSUM, then LUB-CQA(g(c⃗)) is expressible in AGGR[FOL] if
and only if ∃y⃗(qc⃗(y⃗)) is κ-acyclic. This expressibility (right-to-left im-
plicaiton) holds not only for FSUM, but for every aggregate operator that
is monotone and associative.

It is now not hard to show that since q(x⃗, y⃗) is self-join-free, different sequences
of constants involve the same calculations up to a renaming of constants. This
implies that we can perform the calculation once by treating the free variables
in x⃗ as distinct constants. This treatment of free variables is often used in
consistent query answering (and in logic in general (Libkin, 2004, Lemma 2.3));
however, it fails for CQA in the presence of self-joins. This is one of the reasons
why assuming self-join-freeness serves as a simplifying assumption in much
work on CQA.



CHAPTER 9

Conclusions and Open Problems

In this thesis, our goal was to study the expressibility of the function prob-
lems GLB-CQA(g()) and LUB-CQA(g()) in AGGR[FOL] for numerical queries
g() in the class AGGR[sjfBCQ]. We defined the problems GLB-CQA(g()) and
LUB-CQA(g()) following the range semantics introduced by Arenas et al. (2001).
These function problems take a database instance db as input, and return, re-
spectively, the greatest lower bound (glb) and the least upper bound (lub)
of query answers across all repairs of db. We also studied how the problem
GLB-CQA(g()) is related to the problem CERTAINTY(BCQ(g())), obtaining
some inexpressibility results for GLB-CQA(g()) in AGGR[FOL].

Taking the PhD thesis of Fuxman (2007) as a starting point, we first ex-
plored these problems under the hypothesis that db |=cqa BCQ(g()), which
implies that every aggregation is over a non-empty multiset. We introduced
the semantic property of admitting parsimonious counting : if a counting query
g() := SUM(1) ← q(u⃗) has this property, then on database instances that
are “yes”-instances of CERTAINTY(∃u⃗(q(u⃗))), the values GLB-CQA(g()) and
LUB-CQA(g()) can be computed by executing first-order queries followed by
simple counting steps. In Theorem 4.0.2, we provided a syntactic characteriza-
tion of the set of all counting queries in AGGR[sjfBCQ] that admit parsimonious
counting. We then introduced the more general semantic concept of admitting
parsimonious aggregation, and studied syntactic classes of AGG-queries with this
property.

Then, we dropped the hypothesis that db |=cqa BCQ(g()) and focused
on each of the problems GLB-CQA(g()) and LUB-CQA(g()) individually. We
proved that, for AGG-queries g() in AGGR[sjfBCQ] such that FAGG is mono-
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tone and associative, GLB-CQA(g()) can be expressed in AGGR[FOL] if and
only if the attack graph of BCQ(g()) is acyclic. This property is decidable in
quadratic time in the size of the query. Moreover, an AGGR[FOL]-expression
for GLB-CQA(g()) can be effectively constructed, if it exists, in quadratic time.

Regarding LUB-CQA(g()), we proved that, for SUM-queries g() in the class
AGGR[sjfBCQ], LUB-CQA(g()) can be expressed in AGGR[FOL] if and only if
BCQ(g()) is κ-acyclic. This property is decidable in polynomial time in the
size of the query. Moreover, an AGGR[FOL]-expression for LUB-CQA(g()) can
be effectively constructed, if it exists, in polynomial time. We also showed that
the if-direction holds not only for SUM-queries, but for all AGG-queries such that
FAGG is monotone and associative.

This thesis mainly focused on monotone and associative aggregate opera-
tors, with SUM as a prototypical case. The complexity of GLB-CQA(g()) and
LUB-CQA(g()) for non-monotone or non-associative operators remains largely
open. Chapter 8 contains some results in this direction.

Another open question concerns shifting our focus from expressibility in
AGGR[FOL] to computability in P. By changing the focus of Theorem 6.0.1,
we can formulate the following conjecture: Given a numerical query g() in
AGGR[sjfBCQ] whose aggregate operator is both monotone and associative,
GLB-CQA(g()) is either in P or coNP-hard, and it can be decided which of
the two cases holds. We implicitly assume here that the underlying aggregate
operator is computable in polynomial time; that is, no exponential behav-
ior is incurred by the aggregation itself. We now outline a possible route
to proving this conjecture. In (Koutris & Wijsen, 2017), each cycle in the
attack graph of a query q ∈ sjfBCQ is classified as either weak or strong,
which is a decidable property. It is then shown that the decision problem
CERTAINTY(q) is in P if q’s attack graph contains no strong cycles, and
CERTAINTY(q) is coNP-complete otherwise. Let g() := AGG(r) ← q(u⃗) be
a numerical query in AGGR[sjfBCQ]. Since, under some constraints (Theo-
rem 3.5.1), a solution to GLB-CQA(g()) also solves CERTAINTY(∃u⃗(q(u⃗))), it
follows that GLB-CQA(g()) is coNP-hard if the attack graph of ∃u⃗(q(u⃗)) con-
tains a strong cycle. It suffices therefore to establish that if all cycles in the
attack graph of ∃u⃗(q(u⃗)) are weak, and FAGG is both monotone and associative,
then GLB-CQA(g()) is in P. For attack graphs without cycles, the latter fol-
lows from Theorem 6.0.1 under the assumption that AGGR[FOL] is in P (which
requires that aggregate operators are computable in polynomial time). So the
remaining problem concerns handling weak cycles in attack graphs, which we
anticipate might be solvable by employing the constructs developed in (Koutris
& Wijsen, 2021, Section 8) or (Figueira et al., 2023, Section 4). Specificallly,
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it should be investigated whether ∀embeddings can be generalized to address
weak cycles, enabling GLB-CQA(g()) to be solved along the lines presented in
Chapter 6 of this thesis—i.e., by computing the smallest aggregated value over
all ⊆-maximal consistent sets of ∀embeddings.

Finally, a more ambitious open problem is to syntactically characterize
the class of all (i.e., not necessarily in AGGR[sjfBCQ]) numerical queries for
which GLB-CQA(g()) and LUB-CQA(g()) can be expressed in AGGR[FOL]. This
problem is largely open, because it is already a notorious open problem to
syntactically characterize the class of conjunctive queries that have a consistent
first-order rewriting.
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APPENDIX A

Helping Constructs and Lemmas

We recall some definitions from graph theory. In a directed acyclic graph
(DAG), a vertex with zero indegree is called a source. If there is a directed
path from u to v in a DAG, with u ̸= v, then v is called a descendant of u,
and u an ancestor of v.

The following lemma states that whenever R and S are distinct sources
that are weakly connected in a DAG, then there is a sequence of sources that
starts with R and ends with S, such that every two adjacent vertices in the
sequence have a descendant in common.

Lemma A.0.1 (Sources of a graph are linked by sources). Let G = (V,E) be
a DAG. Let R,S ∈ V be distinct sources that are weakly connected. There is
a sequence (H1, . . . , Hn) of sources such that H1 = R, Hn = S, and every two
adjacent sources in the sequence have a common descendant.

Proof. Since R and S are weakly connected, there is a sequence (F1, . . . , Fn) of
atoms in V such that F1 = R, Fn = S and for every i ∈ {1, . . . , n− 1}, either
(Fi, Fi+1) ∈ E or (Fi+1, Fi) ∈ E. We construct a new sequence by repeating
the following step as long as possible: replace some contiguous subsequence
(I, . . . , J) with (I, J) if I is a descendant or an ancestor of J . Let the new
sequence be (G1, . . . , Gm). By construction, for all i ∈ {1, . . . ,m− 2},

• if Gi is a descendant of Gi+1, then Gi+1 is an ancestor of Gi+2; and

• if Gi is an ancestor of Gi+1, then Gi+1 is a descendant of Gi+2.

It is easily verified that G1 = R, Gm = S, and that m is an odd number.
By construction, for every i ∈ {1, . . . ,m} such that i is even, we have that
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Gi is a common descendant of Gi−1 and Gi+1. We now change the sequence
(G1, . . . , Gm) as follows: for every j ∈ {1, . . . ,m} such that j is odd, if Gj is
not a source, replace Gj by a source that is an ancestor of Gj (such a source
obviously exists in a DAG). It is easily verified that if we now omit the vertices
that are not sources (i.e., G2, G4, . . . , Gm−1), we obtain a sequence of sources
in which every two adjacent sources have a descendant in common.

The following lemma states that sequential proofs provide a sound and
complete characterization of logical implication.

Lemma A.0.2. Let q be a self-join free conjunctive query. Let Z ⊆ vars(q)
and w ∈ vars(q). Then the following are equivalent:

1. K(q) |= Z → w; and

2. there is a sequence (F1, . . . , Fn) of atoms that is a sequential proof of
K(q) |= Z → w.

Proof. Sequential proofs mimic a standard algorithm for logical implication
of functional dependencies; see for example (Abiteboul et al., 1995, Algo-
rithm 8.2.7).

Lemma A.0.3 (Attacks with same endpoint). Let q be a self-join-free con-
junctive query. Let F and G be two distinct atoms in q that both attack a same

atom. If F
q

̸⇝ G, then either G
q
⇝ F or Key(G) ⊆ F+,q.

Proof. Assume F
q

̸⇝ G. There is H such that F
q
⇝ H and G

q
⇝ H. There is

a sequence (x0, x1, . . . , xn) (n ⩾ 0) of bound variables not in F+,q such that
x0 ∈ notKey(R), xn ∈ vars(H), and every two adjacent variables occur together
in some atom of q. Likewise, there is a sequence (y0, y1, . . . , ym) (m ⩾ 0) of
bound variables not inG+,q such that y0 ∈ notKey(G), ym ∈ vars(H), and every
two adjacent variables occur together in some atom of q. Clearly, for every
i ∈ {0, 1, . . . ,m}, S

q
⇝ yi. In the sequence (x0, x1, . . . , xn, ym, ym−1, . . . , y0), it

holds that x0 ∈ notKey(F ), y0 ∈ notKey(G), and every two adjacent variables

occur together in some atom of q. By our hypothesis that F
q

̸⇝ G, there is
i ∈ {0, . . . ,m} such that yi ∈ F

+,q. By Lemma A.0.2, there exists a shortest
sequence (H1, H2, . . . , Hℓ) that is a sequential proof of K(q\{F}) |= Key(F )→
yi. Two cases are possible.

Case that ℓ = 0. Then yi ∈ Key(F ). From G
q
⇝ yi, it follows G

q
⇝ F .
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Case that ℓ > 0. If S ∈ {H1, . . . , Hℓ}, then by Lemma A.0.2 it is correct
to conclude Key(G) ⊆ F+,q, and the desired result obtains. Assume
G /∈ {H1, . . . , Hℓ} from here on. For technical reasons, define H0 := F .
We show that for every k ∈ {1, . . . , ℓ}, the following holds true:

Back Property: if G
q
⇝ Hk, then there is g < k such that

G
q
⇝ Hg.

To this end, assume G
q
⇝ Hk with k ⩾ 1. By definition of attacks, there is

a bound variable u ∈ Key(Hk) such that G
q
⇝ u. If u ∈ vars(F ), then the

desired result obtains because we let H0 = F . Assume u /∈ vars(F ) from
here on. Then there exists g ∈ {1, 2, . . . , k−1} such that u ∈ notKey(Hg).

Informally, Hg is the atom that introduces u in F+,q. Since G
q
⇝ u and

Hg ̸= S, it follows G
q
⇝ Hg. This concludes the proof of the Back

Property.

Since our sequential proof is as short as possible, yi ∈ notKey(Hℓ). From

G
q
⇝ yi and Hℓ ̸= G, it follows G

q
⇝ Hℓ. By repeated application of

the Back Property, we obtain G
q
⇝ H0 with H0 = F , as desired. This

concludes the proof.
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APPENDIX B

Proofs of Chapter 4

B.1. Proof of Proposition 4.1.2

We present a number of helping lemmas.

Lemma B.1.1. Let q ∈ Cparsimony. Let x⃗ be a minimal id-set for q. Then,
for every variable v in x⃗, we have K(q) ̸|= ∅ → v. Consequently, a minimal
id-set contains no frozen variables.

Proof. Assume for the sake of contradiction that there is a variable v in x⃗
such that K(q) |= ∅ → v. It can be easily verified that x⃗ \ {v} still satisfies
conditions (1) and (2) in Definition 4.1.3, contradicting that x⃗ is minimal.

Lemma B.1.2. Let q be a self-join-free conjunctive query. If a variable v of q
is attacked in q, then v /∈ frozen(q).

Proof. Assume F
q
⇝ v for some atom F . Assume for the sake of contradiction

that v ∈ frozen(q). Then there is a sequential proof of K(q) |= ∅ → v such that

no atom in the sequential proof attacks v. Since F
q
⇝ v, we have that F is not

used in the sequential proof. Consequently, K(q \ {F}) |= ∅ → v, and hence

v ∈ F+,q. Consequently, F
q

̸⇝ v, a contradiction.

Lemma B.1.3. Let q ∈ Cparsimony. Let x⃗ be a minimal id-set for q. For
every variable x of x⃗, the following hold:

(a) if x occurs in an atom F of q, then x occurs at a primary-key position
of R;

103



104 Proofs of Chapter 4

(b) x is unattacked; and

(c) x occurs at a primary-key position in an unattacked atom of q.

Proof. Proof of (a) Assume for the sake of contradiction that for some atom

F in q, x⃗ contains some variable x of notKey(F ). Since x is a bound variable,
the Gaifman graph of q contains an empty path from x to x, which is a path
from a variable in notKey(F ) to a variable of x⃗ that uses no variable of Key(F ).
From Lemma B.1.1, it follows that x is not frozen. It follows that condition (2)
in Definition 4.1.3 is violated, a contradiction.

Proof of (b) Assume for the sake of contradiction that some variable x of

x⃗ is attacked. There is an atom F in q that attacks x, with a path (x1, . . . , xn)
in the Gaifman graph of q between some variable in notKey(F ) and x such
that for every i ∈ {1, . . . , n}, xi ̸∈ F

+,q. Since Key(F ) ⊆ F+,q, no xi in this
sequence occurs in Key(F ). By Lemma B.1.2, no xi is frozen. It follows that
condition (2) in Definition 4.1.3 is violated, a contradiction.

Proof of (c) By item (a), we can assume an atom F such that x ∈ Key(R).

If F is unattacked, then the desired result obtains. Assume from here on that
F is attacked by an atom G in q. By definition of an attack graph, there is a a
path (v1, . . . , vn) in the Gaifman graph of q between some variable in notKey(G)
and some variable in Key(F ) such that for every i ∈ {1, . . . , n}, vi ̸∈ G

+,q, and
therefore vi ̸∈ Key(G). By Lemma B.1.2, no vi is frozen. From Lemma B.1.1,
it follows that x is not frozen. If x /∈ Key(G), then (v1, . . . , vn, x) is a (not
necessarily simple) path in the Gaifman graph from a variable in notKey(G)
to a variable of x⃗ that uses no variable of Key(G), contradicting condition (2)
in Definition 4.1.3. We conclude by contradiction that x ∈ Key(G). If G is
unattacked, then the desired result obtains. Otherwise there is an atom H that
attacksG, and we can repeat the same reasoning as before. The same reasoning
can however not be applied forever, since the attack graph of q is finite and
contains no cycles. Therefore, at some point we will find an unattacked atom
whose primary key contains x.

We can now give the proof of Proposition 4.1.2.

Proof of Proposition 4.1.2. V ⊆ vars(x⃗). Let v ∈ V . By the construction of

V , we can assume an unattacked atom F such that v is a bound variable in
Key(F )\N . By condition (1) in Definition 4.1.3, we have K(q) |= x⃗→ v. Since
v ̸∈ N , K(q) |= x⃗→ v implies that v belongs to x⃗.

vars(x⃗) ⊆ V . Let x be an arbitrary variable in the sequence x⃗. By item (c)

in Lemma B.1.3, we can assume an unattacked atom F such that x ∈ Key(F ).
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By item (a) in Lemma B.1.3, x ̸∈ N . Then, by construction of V , we have
x ∈ V .

Proof of (B). Assume F,G are unattacked atoms that are weakly con-

nected in q’s attack graph. We show Key(F )∩ x⃗ ⊆ Key(G). The desired result
then follows by symmetry. By Lemma A.0.1, there is a sequence of weakly con-
nected, unattacked atoms (H1, H2, . . . , Hn) such that H1 = F , Hn = G, and
every two adjacent atoms have a descendant in common. We will show that
Key(H1) ∩ x⃗ ⊆ Key(H2). We can assume that H1−2 is a descendant shared by
H1 and H2. Since the attack graph of q is acyclic, it is transitive by (Koutris

& Wijsen, 2017, Lemma 3.5). Assume x ∈ Key(H1) ∩ x⃗. Since H1
q
⇝ H1−2,

there is a path (x1, . . . , xn) in the Gaifman graph of q between some variable
in notKey(H1) and some variable in Key(H1−2). It follows that H1 attacks xi
for every i ∈ {1, . . . , n}. Since H2

q
⇝ H1−2, there is a path (y1, . . . , ym) in the

Gaifman graph of q between some variable in notKey(H2) and some variable
in Key(H1−2) such that, for every i ∈ {1, . . . ,m}, yi ̸∈ H2

+,q. It follows that
y1, . . . , ym /∈ Key(H2). By Lemma B.1.2, no variable in {x1, . . . , xn, y1, . . . , ym}
is frozen. Then (x, x1, . . . , xn, ym, . . . , y1) is a path in the Gaifman graph of q

between x and y1. For every i ∈ {1, . . . , n}, xi /∈ Key(H2), or else H1
q
⇝ H2, a

contradiction. Assume towards a contradiction that x /∈ Key(H2). The reverse
path is a path from the variable y1 ∈ notKey(H2) to a variable of x⃗ that uses
no variable of Key(H2)∪frozen(q). By condition (2) in Definition 4.1.3, x⃗ is not
an id-set, a contradiction. We conclude by contradiction that x ∈ Key(H2).

By repeating the same reasoning, we obtain Key(H2) ∩ x⃗ ⊆ Key(H3),
Key(H3) ∩ x⃗ ⊆ Key(H4),. . . It follows Key(H1) ∩ x⃗ ⊆ Key(Hn).

B.2. Proof of Lemma 4.1.6

Proof of Lemma 4.1.6. Since db |= q′(d⃗i) for every i ∈ {1, . . . , n}, there is a se-
quence (θ1, . . . , θn) of embeddings of q in db such that for every i ∈ {1, . . . , n},
condition (a) and condition (c) are satisfied. We can assume, without loss of
generality, that for every i, j ∈ {1, . . . , n}, if i ≤ j then θi(r) ≥ θj(r). In other
words, the sequence (θ1, . . . , θn) is sorted in descending order with respect to
the r-value of each θi. Assume that condition (b) is violated. Then there are
i, j ∈ {1, . . . , n} such that for some atom F in q, θi(F ) and θj(F ) are key-equal
but distinct. Let M be the smallest subset of atoms in q such that:

• for every atom F in q, if θi(F ) and θj(F ) are key-equal but distinct, then
F ∈M (hence M ̸= ∅); and
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• Closure Property: if M contains G and θi(v) ̸= θj(v) for some v ∈
vars(G), then M contains every atom of q in which v occurs.

We show that θi and θj agree on every variable of x⃗ that occurs in M .
Assume for the sake of contradiction that some variable x of x⃗ satisfies θi(x) ̸=
θj(x) and occurs in some atom M . By construction of M , there is an atom F0

in q, and a sequence of variables (v1, . . . , vn), with n ≥ 1, such that:

• vn = x;

• for every k ∈ {1, . . . , n}, θi(vk) ̸= θj(vk);

• θi(F0) and θj(F0) are key-equal but distinct, and v1 ∈ notKey(F0);

• every two adjacent variables in the sequence occur together in some atom
of M .

Note that the sequence may reduce to (v1) with v1 = x. Then (v1, . . . , vn) is a
path in the Gaifman graph of q that uses no variable of Key(F0).

We show that no variable among v1, . . . , vn is frozen. Assume for the sake of
contradiction that some vk is frozen (1 ≤ k ≤ n). Let q∗(vk) := ∄vk [q]. Since
db |=cqa q, it follows from (the proof of) (Koutris & Wijsen, 2021, Lemma 11)
that for all constants f1, f2, if db |= q∗(f1) and db |= q∗(f2), then f1 = f2.
Since db |= q∗(θi(vk)) and db |= q∗(θj(vk)), it follows θi(vk) = θj(vk), a
contradiction. We conclude by contradiction that no variable among v1, . . . , vn
is frozen.

Then (v1, . . . , vn) is a path in the Gaifman graph of q between a variable
of notKey(F0) and a variable of x⃗ that uses no variable of Key(F0)∪ frozen(q).
Consequently, x⃗ violates condition (2) in Definition 4.1.3. Then x⃗ is not an
id-set, a contradiction. We conclude by contradiction that θi and θj agree on
every variable of x⃗ that occurs in M .

Assume i < j. Let θ∗j be a valuation over vars(q) such that for every
v ∈ vars(q),

θ∗j (v) =

{
θi(v) if x occurs in some atom of M ;

θj(v) otherwise.

Since θi and θj agree on every variable of x⃗ that occurs in M , it follows θ∗j (x⃗) =

θj(x⃗), and thus θ∗j (x⃗) = d⃗j . We now argue that θ∗j (F ) ∈ db for every atom F
in q. We consider two cases:

Case F ∈M . Then θ∗j (F ) = θi(F ), and we have that θi(F ) ∈ db;
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Case F /∈M . Then θ∗j (F ) = θj(F ), and we have that θj(F ) ∈ db. Note here
that if some variable u of vars(F ) occurs in M , then F ̸∈ M implies
θi(u) = θj(u).

Finally, we argue that θ∗j (r) = θj(r). Assume for the sake of contradiction
that θ∗j (r) ̸= θj(r). By construction of θ∗j , it follows that θ∗j (r) = θi(r) and
θi(r) ̸= θj(r). Since i < j, it follows that θi(r) > θj(r) and, thus, θ∗j (r) >

θj(r). We have that θ∗j is an embedding of q in db such that θ∗j (x⃗) = d⃗j and
θ∗j (r) > θj(r); which contradicts our hypothesis.

The sequence
(
θ1, . . . , θi, . . . , θj−1, θ

∗
j , θj+1, . . . , θn

)
therefore is a sequence

of embeddings of q in db satisfying condition (a) and condition (c). By our
construction, for every atom F in q, if the facts θ∗j (F ) and θi(F ) are key-
equal, then they are equal. By repeatedly removing primary-key violations in
this way, we eventually obtain a sequence that also satisfies (b). Note that
our procedure will not be trapped in an infinite loop, because whenever two
distinct key-equal facts have to be made equal, say θi(F ) and θj(F ), then only
the valuation with the larger index will be modified. This means that θ1 will
never be modified; θ2 will only be modified with respect to θ1; and so on.

B.3. Proof of Lemma 4.1.14

Proof of Lemma 4.1.14. We can assume an atom F in q such that the Gaif-
man graph of q contains a path π = (v1, v2, . . . , vn) from some variable v1 in
notKey(F ) to a variable vn in x⃗ such that v1, . . . , vn /∈ Key(F )∪ frozen(q). Let
U = {u ∈ vars(q) | K(q) |= ∅ → u}. We distinguish two cases.

Case that v1, . . . , vn /∈ U . Let θ, µ, γ be three valuations over vars(q) such
that for every variable u ∈ vars(q),

θ(u) ̸= µ(u) if and only if u ∈ {v1, . . . , vn}; (B.1)

γ(u) = θ(u) if and only if u ∈ U ; (B.2)

γ(u) = µ(u) if and only if u ∈ U. (B.3)

The valuations are well-defined because v1, . . . , vn /∈ U . We can choose
θ, µ, γ as follows:

variables of U︷ ︸︸ ︷ other variables︷ ︸︸ ︷
v1 · · · vn vn+1 · · · vm vm+1 · · · vℓ
0 · · · 0 0 · · · 0 0 · · · 0 (θ)
1 · · · 1 0 · · · 0 0 · · · 0 (µ)
2 · · · 2 0 · · · 0 2 · · · 2 (γ)
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Let db = θ(q) ∪ µ(q) ∪ γ(q). We show that every repair of db in-
cludes γ(q), and hence db |=cqa q. To this end, let G be an atom
of q. If Key(G) ⊈ U , then by Eq. (B.2) and Eq. (B.3), γ(G) is key-
equal to neither θ(G) nor µ(G), and, consequently, every repair of db

will contain γ(G). Assume next that Key(G) ⊆ U . Since K(q) contains
Key(G) → vars(G), it follows that vars(G) ⊆ U . Then, γ(G) = θ(G) =
µ(G) by Eq. (B.2) and Eq. (B.3).

Note that θ(F ) and µ(F ) are key-equal, because the path π contains no
variable of Key(F ). Also θ(F ) ̸= µ(F ), because v1 ∈ notKey(F ) and
θ(v1) ̸= µ(v1). It follows that every repair must contain either θ(F ) or
µ(F ), but not both.

Since θ(vn) ̸= µ(vn), we have θ(x⃗) ̸= µ(x⃗). Let b⃗θ = θ(x⃗) and b⃗µ = µ(x⃗).

Clearly, db |= q′(⃗bθ) and db |= q′(⃗bµ).

Let r be a repair that contains µ(F ), and hence θ(F ) /∈ r. We show
r ̸|= q′(b⃗θ). Assume for the sake of contradiction that there is a valuation
ν over vars(q) such that ν(q) ⊆ r and ν(x⃗) = b⃗θ. We have that ν maps the
sequence π to (ν(v1), . . . , ν(vn)). We have ν(vn) = θ(vn). Since every two
adjacent variables occur together in some atom, it follows from Eq. (B.1)
that ν(v1) = θ(v1), hence ν(F ) = θ(F ), a contradiction. We conclude by
contradiction that r ̸|= q′(b⃗θ). By similar reasoning, for a repair r that
contains θ(F ), we have r ̸|= q′(b⃗µ). It follows that for every repair r of

db, either r ̸|= q′(b⃗θ) or r ̸|= q′(b⃗µ).

Case that {v1, . . . , vn} ∩ U ̸= ∅. We can assume a greatest integer 1 ≤ ℓ ≤ n
such that vℓ ∈ U . That is, vℓ+1, vℓ+2, . . . , vn /∈ U . We can assume
a sequence σ of atoms that is a sequential proof of K(q) |= ∅ → vℓ.
Since vℓ is not frozen, there is some atom G in the sequential proof σ
such that G

q
⇝ vℓ, and hence vℓ /∈ G

+,q.

We show vℓ+1, . . . , vn /∈ G+,q. Assume for the sake of contradiction j ∈
{ℓ+1, . . . , n} such that K(q \ {G}) |= Key(G)→ vj . Since K(q \ {G}) |=
∅ → Key(G) (because G occurs in the sequential proof σ), we obtain
K(q \ {G}) |= ∅ → vj , hence vj ∈ U , a contradiction. Consequently,
ℓ ≤ n and vℓ, vℓ+1, . . . , vn /∈ G+,q.

Let θ, µ be two valuations over vars(q) such that for every u ∈ vars(q),
θ(u) = µ(u) if and only if u ∈ G+,q.

Let db = θ(q)∪µ(q). The only facts in db that are key-equal but distinct
are θ(G) and µ(G). Note here that since G attacks some variable, there
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is a variable of notKey(G) that is not in G+,q. Consequently, db has
exactly two repairs, denoted r1 := db \ {µ(G)} and r2 := db \ {θ(G)}.

Let d⃗1 = θ(x⃗) and d⃗2 = µ(x⃗). Since vn /∈ G+,q, we have θ(vn) ̸=
µ(vn). Since vn ∈ vars(x⃗), d⃗1 ̸= d⃗2. For the query q′(x⃗) := ∄x⃗ [q], we
obviously have db |= q′(d⃗1) and db |= q′(d⃗2). Using the same proof
as (Wijsen, 2012, Proposition 6.4), we have r1 |= q′(d⃗1) and r1 ̸|= q′(d⃗2).
Symmetrically, r2 ̸|= q′(d⃗1) and r2 |= q′(d⃗2). Clearly, db |=cqa q.

In both cases, there is a database db such that db |=cqa q, and db has no
optimistic repair with respect to q′(x⃗).

B.4. Proof of Theorem 4.1.15

Lemma B.4.1. Let q be a sjfBCQ in Cforest, and let (F1, . . . , Fn) be a path in
the Fuxman graph of q. Then, K(q) |= Key(F1)→ Key(Fn).

Proof. By definition of a Fuxman graph, we have that for every i ∈ {1, . . . , n−
1}, Key(Fi+1) ⊆ notKey(Fi). This means that, for every i ∈ {1, . . . , n − 1},
K(q) |= Key(Fi) → vars(Fi+1). By Armstrong’s transitivity axiom, K(q) |=
Key(F1)→ Key(Fn).

Lemma B.4.2. Let q be a sjfBCQ in Cforest. Let x, y ∈ vars(q) be distinct
variables that are connected in the Gaifman graph of q. Let F,G be two distinct
atoms such that x ∈ notKey(F ) and y ∈ vars(G). Then, the Fuxman graph of
q has a directed path from F to G.

Proof. We can assume a shortest path (v1, . . . , vn) in the Gaifman graph of q,
where v1 = x and vn = y. We can assume a sequence (F1, . . . , Fn+1) of atoms
in q such that:

• F1 = F ;

• Fn+1 = G; and

• for every i ∈ {1, . . . , n}, vi ∈ vars(Fi) ∩ vars(Fi+1).

We will show by induction on increasing i ∈ {1, . . . , n}, that (F1, . . . , Fi+1)
is a path in the Fuxman graph of q.

Basis i = 1. Since v1 /∈ Key(F1) and v1 ∈ vars(F1)∩vars(F2), there is a di-

rected edge from F1 to F2 in the Fuxman graph of q. Induction step i− 1→ i.

The induction hypothesis is that (F1, . . . , Fi) is a path in the Fuxman graph of
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q. We have that vi ∈ vars(Fi)∩vars(Fi+1). Assume for the sake of contradiction
that vi ∈ Key(Fi). Then, by definition of Cforest, vi ∈ vars(Fi−1). Since we also
have vi−2 ∈ vars(Fi−1), the Gaifman graph of q contains an edge between vi−2

and vi. Then, (v1, . . . , vi−2, vi, . . . , vn) is a shorter path in the Gaifman graph
of q between v1 and vn, a contradiction. We conclude by contradiction that
vi /∈ Key(Fi). It follows that the Fuxman graph of q has a directed edge from
Fi to Fi+1 and, consequently, (F1, . . . , Fi+1) is a path in the Fuxman graph
of q. By induction, we obtain that (F1, . . . , Fn+1) is a path in the Fuxman
graph of q from F to G.

Lemma B.4.3. Let q be a sjfBCQ in Cforest. Let F,G be two distinct atoms
such that F

q
⇝ G. Then, the Fuxman graph of q has a directed path from F to

G.

Proof. Since F
q
⇝ G, there is a path (v1, . . . , vn) in the Gaifman graph of q such

that v1 ∈ notKey(F ), vn ∈ Key(G) and, for every i ∈ {1, . . . , n}, vi ̸∈ F
+,q.

The desired result then follows by Lemma B.4.2.

Lemma B.4.4. Every query in Cforest has an acyclic attack graph.

Proof. Fuxman (2007) has shown that every query in Cforest has a consistent
first-order rewriting. From Theorem 2.0.1, it follows that every query in Cforest

has an acyclic attack graph.

Lemma B.4.5. Let q be a Cforest. Let F be an atom in q and let G be
the root atom in the tree of the Fuxman graph of q where F appears. Then,
K(q) |= Key(G)→ vars(F ).

Proof. If F = G, then clearly K(q) |= Key(G)→ vars(F ). Assume that F ̸= G.
It follows that there is a path between G and F in the Fuxman graph of q.
From Lemma B.4.1, we have K(q) |= Key(G)→ Key(F ).

Lemma B.4.6. Let q be a sjfBCQ in Cforest. Let x⃗ be a ⊆-minimal tuple of
bound variables such that for every root R in the Fuxman graph of q, x⃗ contains
every bound variable of Key(R). Then, x⃗ verifies conditions (1) and (2) in
Definition 4.1.3.

Proof. From Lemma B.4.5, it follows that x⃗ verifies condition (1) in Defini-
tion 4.1.3. We show that x⃗ verifies condition (2) in Definition 4.1.3. Assume
towards a contradiction that there is an atom F in q, and a path (v1, . . . , vn)
in the Gaifman graph of q such that:

• vn ∈ x⃗;
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• v1 ∈ notKey(F ); and

• for every i ∈ {1, . . . , n}, vi ̸∈ Key(F ).

Since x⃗ is ⊆-minimal, we can assume an atom G that is a root in q’s Fuxman
graph such that vn ∈ Key(G). Since vn ̸∈ Key(G), it follows F ̸= G. By
Lemma B.4.2, there is a directed path from F to G in the Fuxman graph of q,
contradicting that G is a root.

Proof of Theorem 4.1.15. From Lemma B.4.4 and Lemma B.4.6, it follows that
Cforest ⊆ Cparsimony. The inclusion is strict, because ∃x∃y(R(x, y) ∧ S(x, y))
belongs to Cparsimony \ Cforest.
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APPENDIX C

Proofs of Chapter 6

C.1. Helping Lemmas

We introduce two helping lemmas that will be used later on.

Lemma C.1.1. Let q be query in sjfBCQ. For some w ∈ vars(q), Z ⊆ vars(q),
G ∈ q, let (F1, F2, . . . , Fn) be a sequential proof of K(q \ {G}) |= Z → w. If

G
q
⇝ x for some variable x in Z ∪ (

⋃n
i=1 vars(Fi)), then there is z ∈ Z such

that G
q
⇝ z.

Proof. Assume that G
q
⇝ x for some variable x in Z ∪ (

⋃n
i=1 vars(Fi)). The

proof runs by induction on increasing n. For the basis of the induction, n = 0,
we obtain x ∈ Z with G

q
⇝ x, as desired.

For the induction step, n − 1 → n, assume that the lemma holds for se-
quential proofs of length < n. Notice that for every m ∈ {0, 1, . . . , n − 1},
there is some w′ such that (F1, F2, . . . , Fm) is a sequential proof of K(q \

{G}) |= Z → w′. Therefore, if x occurs in Z ∪
(⋃n−1

i=1 vars(Fi)
)
, then the

desired result holds by the induction hypothesis. Assume from here on that

x /∈ Z ∪
(⋃n−1

i=1 vars(Fi)
)
. Then, x ∈ notKey(Fn). From G

q
⇝ x, it follows that

there is x′ ∈ Key(Fn) such that G
q
⇝ x′. By the definition of sequential proof,

it must be the case that x′ ∈ Z ∪
(⋃n−1

i=1 vars(Fi)
)
. Again, the desired result

holds by the induction hypothesis.

Lemma C.1.2. Let q be a query in sjfBCQ. Let θ be a valuation over a subset

113
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of vars(q). Let F ∈ q such that for every variable v ∈ dom(θ), F
q

̸⇝ v. Then,

for every variable v ∈ vars(q) \ dom(θ), F
q
⇝ v if and only if θ(F )

θ(q)
⇝ v.

Proof. =⇒ Let v ∈ vars(q) \ dom(θ) such that F
q
⇝ v. Since F

q
⇝ v, there

is a sequence of variables (w1, . . . , wn) such that w1 ∈ notKey(F ), wn = v,
every two adjacent variables appear together in some atom of q, and for each
j ∈ {1, . . . , n}, we have F

q
⇝ wj , which implies wj ̸∈ F

+,q and wj ̸∈ dom(θ).

If for every j ∈ {1, . . . , n}, wj ̸∈ θ(F )
+,θ(q), then it follows that θ(F )

θ(q)
⇝ v.

Assume, for the sake of contradiction, that there is a j ∈ {1, . . . , n} such

that wj ∈ θ(F )+,θ(q). It follows that, K(θ(q) \ {θ(F )}) |= Key(θ(F )) → wj .

Consequently, K(q \ {F}) |= Key(F ) ∪ dom(θ)→ wj . Since F
q
⇝ wj , it follows

by Lemma C.1.1 that F
q
⇝ w for some variable w ∈ Key(F ) ∪ dom(θ), a

contradiction. ⇐= Easy.

C.2. Proof of Lemma 6.1.1

Proof of Lemma 6.1.1. Assume that θ is an n-∀embedding of q in db relative
to (q,≺1). We first show that the desired result holds for a topological sort
(q,≺2) obtained by swapping two adjacent atoms, say Fk and Fk+1. To this
end, let

(q,≺2) = (F1, . . . , Fk−1, Fk, Fk+1, Fk+2, . . . , Fn),
↗↖

(q,≺1) = (F1, . . . , Fk−1, Fk+1, Fk, Fk+2, . . . , Fn).

We have Fk

q

̸⇝ Fk+1 and Fk+1

q

̸⇝ Fk.
Let θ′ be the restriction of θ to

⋃k−1
i=1 vars(Fi). Let p = {θ′(Fk), θ

′(Fk+1),
. . . , θ′(Fn)}, and for i ∈ {1, 2, . . . , n− k + 1}, let Gi = θ′(Fi+k−1). Let

(p,≺′
2) = (G1, G2, G3, . . . , Gn−k+1) ,

(p,≺′
1) = (G2, G1, G3, . . . , Gn−k+1) ,

where the topological sorts ≺′
2 and ≺′

1 are inherited from ≺2 and ≺1. It is
known that these are indeed topological sorts of p’s attack graph. Informally,
p is obtained from q by first applying the partial valuation θ′ on q and then

omitting the facts θ′(F1), θ
′(F2), . . . , θ′(Fk−1). We have G1

p

̸⇝ G2 and G2

p

̸⇝
G1. Let µ be the restriction of θ to vars(p). It can be verified from our
definitions that

µ is a (n− k + 1)-∀embedding of p in db relative to (p,≺′
1). (C.1)
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It suffices now to show that µ is a (n− k + 1)-∀embedding of p in db relative
to (p,≺′

2).
For i ∈ {1, 2}, let Gi = Ri(x⃗i, y⃗i), in which x⃗iy⃗i needs not be constant-free,

and let µ(Gi) = Ri(⃗ai, b⃗i). By (C.1),

db |=cqa p[x⃗2 7→a⃗2] (C.2)

db |=cqa (p \ {G2})[x⃗2y⃗2x⃗1 7→a⃗2b⃗2a⃗1]
(C.3)

To show the desired result for one swap, it suffices to show db |=cqa p[x⃗1 7→a⃗1]

and db |=cqa (p \ {G1})[x⃗1y⃗1x⃗2 7→a⃗1b⃗1a⃗2]
. In what follows, a fact is said to be

relevant for a conjunctive query in a database instance if there is an embedding
that maps a query atom to the fact.

Proof that db |=cqa p[x⃗1 7→a⃗1]. Let r be an arbitrary repair of db. Let b⃗′2 be

the (unique) sequence of constants, of length |y⃗2|, such that R2(⃗a2, b⃗
′
2) ∈

r. From (C.2), it follows r |= p[x⃗2 7→a⃗2], hence R2(⃗a2, b⃗
′
2) is relevant for p

in r. From (C.3), it follows

r |= (p \ {G2})[x⃗2y⃗2x⃗1 7→a⃗2b⃗2a⃗1]
.

Consequently,
(
r \ {R2(⃗a2, b⃗

′
2)}
)
∪ {R2(⃗a2, b⃗2)} |= p

[x⃗2y⃗2x⃗1 7→a⃗2b⃗2a⃗1]
.

It follows
(
r \ {R2(⃗a2, b⃗

′
2)}
)
∪ {R2(⃗a2, b⃗2)} |= p[x⃗1 7→a⃗1].

Since G2

p

̸⇝ G1, it follows by (Koutris & Wijsen, 2017, Lemma B.1) that

r |= p[x⃗1 7→a⃗1]. (C.4)

Proof that db |=cqa (p \ {G1})[x⃗1y⃗1x⃗2 7→a⃗1b⃗1a⃗2]
. Let r be an arbitrary repair

of db. Let b⃗′1 be the (unique) sequence of constants, of length |y⃗1|, such

that R1(⃗a1, b⃗
′
1) ∈ r. From (C.4), it follows that R1(⃗a1, b⃗

′
1) is relevant

for p in r. By (C.2),
r |= p[x⃗2 7→a⃗2].

Since G1

p

̸⇝ G2, it follows by (Koutris & Wijsen, 2017, Lemma B.1) that
(
r \ {R1(⃗a1, b⃗

′
1)}
)
∪ {R1(⃗a1, b⃗1)} |= p[x⃗2 7→a⃗2].
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Consequently,

r |= (p \ {G1})[x⃗1y⃗1x⃗2 7→a⃗1b⃗1a⃗2]
.

This concludes the proof for one swap.

To conclude the proof of Lemma 6.1.1, it suffices to observe that every topo-
logical sort can be obtained from (q,≺1) by zero, one, or more swaps, and that
any swap results in an n-∀embedding.

C.3. Proof of Lemma 6.1.2

Proof of Lemma 6.1.2. We define a formula φq(u⃗) such that for every database
instance db, db |= φq(c⃗) if and only if the valuation θ over vars(u⃗) such that
θ(u⃗) = c⃗ is an n-∀embedding in db.

Let p(x⃗) be a conjunctive query with free variables x⃗. A consistent first-
order rewriting of p(x⃗) is a first-order formula ω(x⃗) such that for every database
instance db, for every sequence c⃗ of constants, of length |x⃗|, we have db |=cqa

p(c⃗) if and only if db |= ω(c⃗). The following problem has been solved in Koutris
& Wijsen (2017): given a self-join-free conjunctive query p(x⃗), decide whether
p(x⃗) has a first-order rewriting, and if affirmative, construct such a a first-order
rewriting.

Let q be a query in sjfBCQ with an acyclic attack graph. Assume that q’s
body is F1 ∧ F2 ∧ · · · ∧ Fn, where the atoms are listed in a topological sort
of the attack graph. For j ∈ {0, 1, 2, . . . , n}, we inductively define a formula
ψj(u⃗j) expressing that u⃗j is a j-∀embedding. The basis of the induction is
ψ0() = true. For the induction step, j → j + 1, the formula ψj+1(u⃗j+1) reads
as follows:

ψj+1(

u⃗j+1︷ ︸︸ ︷
u⃗j , x⃗j+1, y⃗j+1) := ψj(u⃗j) ∧ ωj+1(u⃗j , x⃗j+1) ∧ Fj+1,

where ωj+1(u⃗j , x⃗j+1) is a consistent first-order rewriting of

∃y⃗j+1∃x⃗j+2∃y⃗j+2 · · · ∃x⃗n∃y⃗n (Fj+1 ∧ Fj+2 ∧ · · · ∧ Fn) .

It follows from (Koutris & Wijsen, 2017) that ωj+1(u⃗j , x⃗j+1) exists, and can
be constructed in linear time in the length |q| of q. Then, our desired formula
φq(u⃗n) is equal to ψn(u⃗n):

φq(u⃗n) := ψn(u⃗n).
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It remains to show the quadratic upper bound on the construction of ψn(u⃗n).
If Tj+1 denotes the time for constructing ψj+1, then T0 = 1 and for some
constant c, we have Tj+1 ≤ Tj + c · |q|. It follows that Tn ≤ n · c · |q|. Since
n ≤ |q|, Tn is quadratic in the length of q.

We illustrated the construction with an example.

Example C.3.1. Let q(x, y, z) = ∃x∃y∃z
(
R(x, y) ∧ S(y, z, c)

)
.

ψ1(x, y) = true ∧ ω1(x) ∧R(x, y),

ψ2(x, y, z) = ψ1(x, y) ∧ ω2(x, z) ∧ S(y, z, c),

where

ω1(x) = ∃yR(x, y)∧
∀y
(
R(x, y)→ ∃z

(
S(y, z, c) ∧ ∀u

(
S(y, z, u)→ u = c

)))
,

ω2(x, z) = S(y, z, c) ∧ ∀u
(
S(y, z, u)→ u = c

)
.

Putting all together, with some simplifications:

ψ2(x, y, z) = R(x, y) ∧ S(y, z, c)
∧ ∀y

(
R(x, y)→ ∃z

(
S(y, z, c) ∧ ∀u

(
S(y, z, u)→ u = c

)))

∧ ∀u
(
S(y, z, u)→ u = c

)
.

◁

C.4. Proof of Lemma 6.1.3

We introduce some helping constructs and lemmas.

Definition C.4.1. Let q be a query in sjfBCQ. Let db be a consistent database
instance. Let V be a non-empty subset of vars(q). We define Reify(q,db, V )
as the ⊆-minimal set of valuations over V that contains θ if θ can be extended
to a valuation µ over vars(q) such that (db, µ) |= q.

The following helping lemmas extend (Koutris & Wijsen, 2017, Lemma 4.4).

Lemma C.4.1. Let q be a query in sjfBCQ. Let db be a database instance.
Let V be a non-empty subset of vars(q) such that no variable of V is attacked
in q. Then, there is a repair r of db such that

Reify(q, r, V ) =
⋂

s∈rset(db)

Reify(q, s, V ).
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The following lemma extends Lemma C.4.1 by allowing V to contain vari-
ables v that are attacked in q, provided that v is only attacked by atoms whose
corresponding relation in db is consistent.

Lemma C.4.2. Let q be a query in sjfBCQ. Let db be a database instance.
Let V be a non-empty subset of vars(q) such that for every v ∈ V , for every

atom F = R(x⃗, y⃗) in q, if F
q
⇝ v, then the R-relation of db is consistent.

Then, there is a repair r of db such that

Reify(q, r, V ) =
⋂

s∈rset(db)

Reify(q, s, V ).

Proof. Let M be a set containing a fresh atom R′(x⃗, y⃗) for every atom R(x⃗, y⃗)
in q such that the R-relation of db is consistent. Let q′ = q ∪M . Let db

′

be the smallest database instance that includes db and includes {R′(⃗a, c⃗) |
R(⃗a, c⃗) ∈ db} for every atom R′(x⃗, y⃗) in M . It follows from the hypotheses
of the lemma that no variable of V is attacked in q′. For every repair r

of db, let f(r) the smallest database instance that includes r and includes
{R′(⃗a, b⃗) | R(⃗a, b⃗) ∈ db} for every atom R′(x⃗, y⃗) in M . One can easily verify
that every n-embedding of q in r is also an n-embedding of q′ in f(r), and vice
versa. Thus, for every repair r of db, Reify(q, r, V ) = Reify(q′, f(r), V ). Since
db

′ \ db is consistent by construction, we have that f : rset(db) → rset(db′)
is a bijective mapping. Since no variable of V is attacked in q′, it follows by
Lemma C.4.1 that there is a repair r

′ of db′ such that

Reify(q′, r′, V ) =
⋂

s′∈rset(db′)

Reify(q′, s′, V ).

From what precedes, it follows

Reify(q, f−1(r′), V ) =
⋂

s′∈rset(db′)

Reify(q, f−1(s′), V )

=
⋂

s∈rset(db)

Reify(q, s, V )

Then, f−1(r′) is a repair of db that proves the lemma.

The proof of Lemma 6.1.3 follows.

Proof of Lemma 6.1.3. The desired result is obvious if there is a repair r
∗

such that r
∗ ̸|= ∃u⃗ (q(u⃗)). Assume from here on that for every repair s, s |=

∃u⃗ (q(u⃗)).
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For every i ∈ {1, . . . , n}, let Ri be the relation name of Fi. Let r be a
repair of db. We show that for every i ∈ {0, 1, 2, . . . , n}, there is a repair si

of db such that:

(a) every i-embedding of q in si is an i-embedding of q in r; and

(b) every i-embedding of q in si is an i-∀embedding of q in db.

The construction runs by induction on increasing i. For the induction basis,
i = 0, let s0 be an arbitrary repair of db. From our assumption that every
repair of db satisfies ∃u⃗ (q(u⃗)), it follows that the empty set is both a 0-
embedding in r and a 0-∀embedding in db, as desired.

For the induction step, i→ i+1, the induction hypothesis is that there is a
repair si of db that satisfies conditions (a) and (b). Let db(i) be the smallest
database instance that includes si and includes, for every j ∈ {i+1, i+2, . . . , n},

the Rj-relation of db. For every m ∈ {1, 2, . . . , n}, if Fm
q
⇝ v with v ∈⋃i

j=1 vars(Fj), then m ≤ i, and hence, by construction, the Rm-relation of

db
(i) is consistent. Then, by Lemma C.4.2, there is a repair s

∗ of db(i) such
that

Reify(q, s∗, u⃗ix⃗i+1) =
⋂

t∈rset(db(i))

Reify(q, t, u⃗ix⃗i+1). (C.5)

Claim 4. For every ν ∈ Reify(q, s∗, u⃗ix⃗i+1), we have

(db, ν) |=cqa {Fi+1, Fi+2, . . . , Fn}.

Proof. Assume for the sake of a contradiction that there is a repair t of db
such that

(t, ν) ̸|= {Fi+1, Fi+2, . . . , Fn}. (C.6)

Let t
′ be the smallest database instance such that

• for every j ∈ {1, 2, . . . , i}, t′ contains all Rj-facts of si; and

• for every j ∈ {i+ 1, i+ 2, . . . , n}, t′ contains all Rj-facts of t.

Clearly, t′ is a repair of db(i). Thus, by (C.5), ν ∈ Reify(q, t′, u⃗ix⃗i+1). Hence,
(t′, ν) |= {F1, F2, . . . , Fn}, and thus (t′, ν) |= {Fi+1, Fi+2, . . . , Fn}. Since t

and t
′ contain the same Rj-facts for every j ∈ {i + 1, i + 2, . . . , n}, it follows

(t, ν) |= {Fi+1, Fi+2, . . . , Fn}, which contradicts (C.6). This concludes the
proof of Claim 4.

Let θ1, θ2, . . . , θg enumerate all n-embeddings of q in s
∗. For every k ∈
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{1, 2, . . . , g}, let Ak be the (unique) Ri+1-fact of r that is key-equal to θk(Fi+1).
Let

si+1 :=
(
s
∗ \ {θk(Fi+1)}

g
k=1

)
∪ {A1, A2, . . . , Ag}.

Clearly, si+1 is a repair of db(i).

Claim 5. Reify(q, s∗, u⃗ix⃗i+1) = Reify(q, si+1, u⃗ix⃗i+1).

Proof. The ⊆-inclusion is straightforward. The proof of the ⊇-inclusion is
analogous to (Koutris & Wijsen, 2017, Lemma B.1.), by remarking that each
fact in {θk(Fi+1)}

g
k=1 is relevant for q in s

∗.

We are now ready to show that conditions (a) and (b) hold true for i+ 1.
To this end, let η be an arbitrary n-embedding of q in si+1. Consequently,
η ↾u⃗ix⃗i+1

∈ Reify(q, si+1, u⃗ix⃗i+1). By Claims 4 and 5, it follows

(db, η ↾u⃗ix⃗i+1
) |=cqa {Fi+1, Fi+2, . . . , Fn}. (C.7)

Since for every j ∈ {1, 2, . . . , i}, the set of Ri-facts of si+1 is identical to that
of si (and identical to that of db(i)), it follows that η ↾u⃗i

is an i-embedding
of q in si. By the induction hypothesis,

(A) η ↾u⃗i
an i-embedding of q in r; and

(B) η ↾u⃗i
is an i-∀embedding of q in db.

From (B) and (C.7), it follows that η ↾u⃗i+1
is an (i+1)-∀embedding of q in db.

Claim 6. There is k ∈ {1, 2, . . . , g} such that η(Fi+1) = Ak.

Proof. Assume for the sake of a contradiction that η(Fi+1) /∈ {A1, A2, . . . , Ag}.
Then, by the construction of si+1 from s

∗, it follows that η is an n-embedding
of q in s∗. Hence, we can assume k ∈ {1, 2, . . . , g} such that η = θk, and thus
η(Fi+1) = θk(Fi+1). From η(q) ⊆ si+1, it follows η(Fi+1) ∈ si+1. Hence,
θk(Fi+1) ∈ si+1, which can happen only if θk(Fi+1) = Ak, contradicting
η(Fi+1) /∈ {A1, A2, . . . , Ag}.

From (A) and Claim 6, it follows that η ↾u⃗i+1
is an (i+1)-embedding of q in

r. This concludes the induction step. The proof of Lemma 6.1.3 is concluded
by letting r

∗ = sn.
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C.5. Equivalence of Superfrugal and n-Minimal Re-
pairs

Let ∃u⃗ (q(u⃗)) be a Boolean conjunctive query where q(u⃗) is quantifier-free.
The notion of i-minimality is defined relative to a duplicate-free sequence
(F1, F2, . . . , Fn) containing exactly the atoms of q(u⃗). Let i ∈ {1, 2, . . . , n},
and X :=

⋃i
j=1 vars(Fi). Let db be a database instance. A repair r of db is

i-minimal (Figueira et al., 2023) if there is no repair s of db such that

1. for every valuation θ over X, if (s, θ) |= q(u⃗), then (r, θ) |= q(u⃗); and

2. for some valuation µ over X, (r, µ) |= q(u⃗) and (s, µ) ̸|= q(u⃗).

An i-minimal repair is called ⪯X
q -frugal in (Koutris & Wijsen, 2017).

Lemma C.5.1. Let q := ∃u⃗ (q(u⃗)) be a query in sjfBCQ with an acyclic attack
graph, where q(u⃗) is quantifier-free. Let (F1, F2, . . . , Fn) be a topological sort
of q’s attack graph. Let db be a database instance. Then,

(i) every superfrugal repair of db is n-minimal; and

(ii) every n-minimal repair of db is superfrugal.

Proof. Proof of (i) Let r be a superfrugal repair of db. Assume for the sake

of a contradiction that r is not n-minimal. Then, there is a repair s of db such
that

(a) for every valuation θ over u⃗, if (s, θ) |= q(u⃗), then (r, θ) |= q(u⃗); and

(b) for some valuation µ over u⃗, (r, µ) |= q(u⃗) and (s, µ) ̸|= q(u⃗).

Since (r, µ) |= q(u⃗) and r is superfrugal, it follows that µ is an n-∀embedding
of q in db. Let ℓ ∈ {1, 2, . . . , n} be the largest index such that for X :=⋃ℓ−1

j=1 vars(Fj), we have (s, µ ↾X) |= q(u⃗). Let Y := X ∪ Key(Fℓ). By the
definition of ∀embedding, (s, µ ↾Y ) |= q(u⃗). Therefore, µ ↾Y can be extended
to a valuation ν over u⃗ such that (s, ν) |= q(u⃗). Since µ(Fℓ) and ν(Fℓ) are
distinct and key-equal, it follows (r, ν) ̸|= q(u⃗), contradicting (a).

Proof of (ii) Let r be an n-minimal repair of db. By Lemma 6.1.3, there

exists a superfrugal repair r
∗ of db such that for every valuation θ over u⃗, if

(r∗, θ) |= q(u⃗), then (r, θ) |= q(u⃗). Since r is n-minimal, there is no valuation
µ over u⃗ such that (r, µ) |= q(u⃗) and (r∗, µ) ̸|= q(u⃗). It follows that every
embedding of q(u⃗) in r is also an embedding of q(u⃗) in the superfrugal repair
r
∗, and hence is a ∀embedding of q in db. This concludes the proof.
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C.6. Proof of Lemma 6.2.1

Proof of Lemma 6.2.1. Proof of (1). Let r be a superfrugal repair of db. As-

sume for the sake of a contradiction that Embq(r) is not an MCS of ∀Embq(db).
By definition of a superfrugal repair, every element in Embq(r) is a ∀embedding
of q in db, and therefore Embq(r) ⊆ ∀Embq(db). Since Embq(r) |= K(q) but
Embq(r) is not an MCS of ∀Embq(db), there is an MCS N∗ of ∀Embq(db)
such that Embq(r) ⊊ N∗ ⊆ M . Then, we can assume a valuation θ in
N∗ \ Embq(r). Let (F1, . . . , Fn) be a topological sort of q’s attack graph.
Let ℓ be the greatest integer in {0, . . . , n} such that θ({F1, . . . , Fℓ}) ⊆ r. If
ℓ = n, then θ ∈ Embq(r), a contradiction. Assume next that ℓ < n. Let γ
be the restriction of θ to vars({F1, . . . , Fℓ}) ∪ Key(Fℓ+1). By the definition of
∀embedding, we have that (r, γ) |= {Fℓ+1, . . . , Fn}. Thus, there is an exten-
sion θ′ of γ such that θ′ ∈ Embq(r) and {θ, θ′} ̸|= Key(Fℓ+1) → vars(Fℓ+1).
Since Embq(r) ⊊ N∗, we also have that θ′ ∈ N∗. From θ, θ′ ∈ N∗ and
{θ, θ′} ̸|= Key(Fℓ+1) → vars(Fℓ+1), it follows N∗ ̸|= K(q), contradicting that
N∗ is an MCS. We conclude by contradiction that (1) holds true.

Proof of (2). Let N be an MCS of ∀Embq(db). Since N |= K(q), there is

a repair r0 of db such that N ⊆ Embq(r0). Conversely, since N is an MCS, it
contains every ∀embedding θ of q in db such that θ(q) ⊆ r0. By Lemma 6.1.3,
there is a superfrugal repair r of db such that every embedding of q in r is also
an embedding of q in r0. By the definition of superfrugal repair, every element
in Embq(r) is a ∀embedding of q in db. Consequently, Embq(r) ⊆ N . By (1),
Embq(r) is an MCS of ∀Embq(db), and therefore Embq(r) cannot be a strict
subset of N . Consequently, Embq(r) = N . So r is a repair of db such that
the set of embeddings of q in r is exactly N , which concludes the proof. Note
that the repair that proves (2) is superfrugal.

C.7. Proof of Decomposition Lemma (Lemma 6.3.1)

Using the notation u⃗ℓ defined in Section 6.1, the following lemma states that
for every (ℓ + 1)-∀key-embedding γ, if an MCS of Ext(γ ↾u⃗ℓ

) is restricted to
those valuations that include γ, the result is an MCS of Ext(γ).

Lemma C.7.1. Let q, (F1, . . . , Fn), ℓ, and db be as in Definition C.8.1. Let
θ be an ℓ-∀embedding of q in db, and let N be an MCS of Ext(θ). Let γ be
an (ℓ+1)-∀key-embedding of q in db that extends θ. Let Nγ be the subset of
N containing all (and only) ∀embeddings that extend γ. Then, Nγ is an MCS
of Ext(γ).
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Proof. Assume, for the sake of a contradiction, that Nγ is not an MCS of
Ext(γ). Since Nγ |= K(q), there is an MCS N∗ of Ext(γ) such that Nγ ⊊
N∗. We can assume µ ∈ N∗ \ Nγ . From µ ̸∈ Nγ , it follows µ ̸∈ N . Let
k be the greatest integer in {ℓ, . . . , n} such that for some µ′ ∈ N , we have
µ({F1, . . . , Fk}) = µ′({F1, . . . , Fk}). It is easily verified that such k exists.
If k = n, then µ ∈ N , a contradiction. Assume from here on that k < n.
Let µk be the restriction of µ to vars({F1, . . . , Fk}) ∪ Key(Fk+1). Using the
same reasoning as in the proof of Lemma 6.2.1, there is a repair r of db

such that N contains all and only embeddings of q in r that extend θ. Thus,
we have that µk({F1, . . . , Fk}) ⊆ r, and by the definition of ∀embedding,
(r, µk) |= {Fk+1, . . . , Fn}. Thus, N contains some extension µ′ of µk such that
{µ, µ′} ̸|= Key(Fk+1) → vars(Fk+1). Since µ′ ∈ N , it follows that µ′ ∈ Nγ ,
and thus µ′ ∈ N∗. From µ, µ′ ∈ N∗ and {µ, µ′} ̸|= Key(Fk+1)→ vars(Fk+1), it
follows N∗ ̸|= K(q), contradicting that N∗ is an MCS of Ext(γi). We conclude
by contradiction that Nγ is an MCS of Ext(γ).

We can now proceed with the proof of Lemma 6.3.1.

Proof of Lemma 6.3.1. Assume that we have
⋃k

i=1Ni |= K(q), which implies

that
⋃k

i=1Ni is an MCS of Ext(θ). Let N be an FAGG-minimal MCS of Ext(θ),
i.e,

m = FAGG ({{µ(r) | µ ∈ N}}) .

For ease of notation, we define

m̂ := FAGG

(
{{µ(r) | µ ∈

k⋃

i=1

Ni}}

)
. (C.8)

For each i ∈ {1, . . . , k}, let N−
i be the subset of N containing all (and only)

∀embeddings that extend γi, and define v−i := FAGG
(
{{µ(r) | µ ∈ N−

i }}
)
. Note

that {N−
1 , N

−
2 , . . . , N

−
k } is a partition of N . Since FAGG is associative, it follows

that
m = FAGG

(
{{v−1 , v

−
2 , . . . , v

−
k }}
)
, (C.9)

and
m̂ = FAGG ({{v1, v2, . . . , vk}}) . (C.10)

By Lemma C.7.1, for every i ∈ {1, . . . , k}, N−
i is an MCS of Ext(γi). By the

definition of FAGG-minimal MCS, we have that for every i ∈ {1, . . . , k}, vi ≤ v
−
i .

Thus, since FAGG is monotone, we have that

FAGG ({{v1, v2, . . . , vk}}) ≤ FAGG
(
{{v−1 , v

−
2 , . . . , v

−
k }}
)
. (C.11)
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By (C.9), (C.10) and (C.11), it follows that

m̂ ≤ m. (C.12)

Since m is the FAGG-minimal value for θ, it follows that

m̂ = m. (C.13)

By (C.10) and (C.13), we can conclude that

m = FAGG ({{v1, v2, . . . , vk}}) .

This concludes the proof.

C.8. Proof of Consistent Extension Lemma

(Lemma 6.3.2)

We first introduce some helping definitions and lemmas.

Definition C.8.1 (Branch). Let q be a query in sjfBCQ with an acyclic attack
graph. Let (F1, . . . , Fn) be a topological sort of q’s attack graph. Let ℓ ∈
{0, 1, . . . , n−1}. Let db be a database instance. Let θ be an ℓ-∀embedding. A
valuation γ that extends θ is called a branch (of θ) if both the following hold:

(A) each variable in dom(γ)\dom(θ) is unattacked in θ({Fℓ+1, . . . , Fn}); and

(B) γ is included in some n-∀embedding of q in db.

Such a branch is called an (ℓ + 1)-∀key-embedding if dom(γ) = dom(θ) ∪
Key(Fℓ+1).

Lemma C.8.1. Let q be a query in sjfBCQ such that the attack graph of q is
acyclic. Let (F1, . . . , Fn) be a topological sort of q’s attack graph. Let db be
a database instance. Let θ1 and θ2 be two ℓ-∀embeddings of q in db such that
{θ1, θ2} |= K({F1, . . . , Fℓ}). For i ∈ {1, 2}, let γi be a branch of θi such that
dom(γ1) = dom(γ2). Then, for every X,Y ⊆ dom(γ1), if K(q) |= X → Y ,
then {γ1, γ2} |= X → Y .

Proof. From (Koutris & Wijsen, 2017, Lemma 4.4), it follows that for i ∈
{1, 2}, (db, γi) |=cqa {Fℓ+1, . . . , Fn}. Since {θ1, θ2} |= K({F1, . . . , Fℓ}), we can
assume a repair r of db such that for i ∈ {1, 2},

θi({F1, . . . , Fℓ}) ⊆ r. (C.14)
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Let i ∈ {1, 2}. Since (db, γi) |=cqa {Fℓ+1, . . . , Fn}, we have that (r, γi) |=
{Fℓ+1, . . . , Fn}. Hence, there exists a valuation γ+i over vars(q) that extends γi
such that γ+i ({Fℓ+1, . . . , Fn}) ⊆ r. From (C.14), it follows γ+i ({F1, . . . , Fn}) ⊆
r. Consequently, {γ+1 , γ

+
2 } |= K(q). Let X,Y ⊆ dom(γ1) such that K(q) |=

X → Y . Since {γ+1 , γ
+
2 } |= K(q), it follows {γ+1 , γ

+
2 } |= X → Y , hence

{γ1, γ2} |= X → Y .

Lemma C.8.2. Let q, (F1, . . . , Fn), ℓ, and db be as in Definition C.8.1. Let
γ be a branch of some ℓ-∀embedding of q in db such that Key(Fℓ+1) ⊆ dom(γ),
and define qγ := γ({Fℓ, . . . , Fn}). Let q1 ⊆ {Fℓ, . . . , Fn} such that:

(a) Fℓ ∈ q1;

(b) the atoms of γ(q1) form a maximal weakly connected component of the
attack graph of qγ; and

(c) for every v ∈ vars(qγ), if K(q) |= Key(Fℓ)→ v, then v is attacked in qγ.

Let q2 := {Fℓ, . . . , Fn} \ q1. Then, vars(γ(q1)) ∩ vars(γ(q2)) = ∅.

Proof. For every k ∈ {ℓ + 1, . . . , n}, we have Fk

q

̸⇝ Fℓ. Consequently, by
Lemma C.1.2, γ(Fℓ) is unattacked in qγ . Assume v ∈ vars(γ(q1)). We show
v /∈ vars(γ(q2)). Since v ∈ vars(γ(q1)) and acyclic attack graphs are known
to be transitive, the variable v must occur in an atom of γ(q1) that is either
unattacked in the attack graph of γ(q1) or attacked by another atom that itself
is unattacked. Hence, there is an atom F ∈ q1 such that γ(F ) is unattacked
in qγ , and one of the following holds:

(a) v ∈ vars(γ(F )), hence K(q) |= Key(F )→ v; or

(b) v ∈ vars(γ(G)) for some atom G ∈ q1 such that γ(F )
qγ
⇝ γ(G).

Claim 7. K(q) |= Key(Fℓ)→ Key(F ).

Proof. The desired result is obvious if F = Fℓ. Assume F ̸= Fℓ from here on.

Since the atoms γ(F ) and γ(Fℓ) are unattacked in qγ and belong to the
same weakly connected component of the attack graph, and since acyclic attack
graphs are known to be transitive, there is a sequence of atoms (G1, . . . , Gk)
(k ≥ 2) in q1 such that G1 = Fℓ, Gk = F , and such that for every i ∈
{1, . . . , k − 1},

• γ(Gi)
qγ

̸⇝ γ(Gi+1), γ(Gi+1)
qγ

̸⇝ γ(Gi); and
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• there is an atom Hi ∈ q1 such that γ(Gi)
qγ
⇝ γ(Hi) and γ(Gi+1)

qγ
⇝ γ(Hi).

By Lemma C.1.2, for every i ∈ {1, . . . , k − 1}, Gi

q

̸⇝ Gi+1, Gi+1

q

̸⇝ Gi,

Gi
q
⇝ Hi, and Gi+1

q
⇝ Hi. By repeated application of Lemma A.0.3 and logical

implication of functional dependencies, we obtain K(q) |= Key(Fℓ)→ Key(F ).
This concludes the proof of Claim 7.

Assume for the sake of a contradiction that v ∈ vars(γ(q2)). We show

K(q) |= Key(Fℓ)→ v, (C.15)

which immediately follows from Claim 7 if (a) holds true. Assume next
that (b) holds true. Since the atoms of γ(q1) form a maximal weakly con-
nected component of the attack graph of qγ , it follows that v is not at-

tacked in qγ . By Lemma C.1.2, it follows F
q

̸⇝ v, which in turn implies
K(q \ {F}) |= Key(F ) → v. By Claim 7, we obtain (C.15). Then, by the
hypothesis of the lemma, v is attacked in qγ , a contradiction. This concludes
the proof.

Let q = q1⊎q2 be as in Lemma C.8.2. The following lemma implies that an
FAGG-minimal MCS relative to q can be obtained by taking the cross product of
two MCS, N1 and N2, which are calculated relative to q1 and q2, respectively.

Lemma C.8.3. Let ∃u⃗(q(u⃗)) be a query in sjfBCQ with an acyclic attack graph,
topologically sorted (F1, . . . , Fn). Let g() be the AGGR[FOL] query defined as
g() := AGG(r) ← q(u⃗), where FAGG is monotone and associative. Under the
same hypotheses as Lemma C.8.2, for every i ∈ {1, 2}, let Mi be the set of
∀embeddings of γ(qi) in db, and let Ni be an MCS of Mi such that

• Ni is FAGG-minimal if r is a variable in γ(qi); and

• Ni is FCOUNT-minimal otherwise (i.e., if r is a variable not in γ(qi) or a
constant).

Then, {γ · θ1 · θ2 | θ1 ∈ N1 and θ2 ∈ N2} is an FAGG-minimal MCS of Ext(γ).

Proof. Since vars(γ(q1)) ∩ vars(γ(q2)) = ∅ by Lemma C.8.2, it follows that for
every θ1 ∈ N1 and θ2 ∈ N2, we have that γ · θ1 · θ2 is a valid embedding of q
in db. Let N = {γ · θ1 · θ2 | θ1 ∈ N1 and θ2 ∈ N2}. Clearly, N is a subset
of Ext(γ). Moreover, since N1 and N2 are MCSs of M1 and M2 respectively,
it follows that N is an MCS of Ext(γ).
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Let N∗ be an FAGG-minimal MCS of Ext(γ), and for i ∈ {1, 2}, define
N∗

i := {θ ↾vars(γ(qi))| θ ∈ N
∗}. Then, N∗ = {γ · θ1 · θ2 | θ1 ∈ N

∗
1 and θ2 ∈ N

∗
2 }.

Since vars(γ(q1)) ∩ vars(γ(q2)) = ∅ by Lemma C.8.2, and since N∗ is an MCS
of of Ext(γ), it is easily seen that each N∗

i is an MCS of Mi (i ∈ {1, 2}). By
the definition of FAGG-minimal MCS, it follows that

FAGG ({{µ(r) | µ ∈ N
∗}}) ≤ FAGG ({{µ(r) | µ ∈ N}}) . (C.16)

To show that N is FAGG-minimal, we distinguish two cases. To ease the nota-
tion, for i ∈ {1, 2}, we define ci := |Ni| and c∗i := |N

∗
i |.

Case that r ∈ dom(γ) or r is a constant. Then, γ(r) is a constant. In-
deed, since γ is the identity on constants, if r is a constant, then r = γ(r).
We have that for every i ∈ {1, 2}, Ni is an FCOUNT-minimal MCS of Mi.
With the construct i#t as defined in Definition 8.1.1, it follows

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{(c1 ∗ c2)#γ(r)}}) , (C.17)

and

FAGG ({{µ(r) | µ ∈ N
∗}}) = FAGG ({{(c

∗
1 ∗ c

∗
2)#γ(r)}}) . (C.18)

By the definition of FCOUNT-minimal MCS, for every i ∈ {1, 2}, ci ≤ c∗i .
Since FAGG is monotone,

FAGG ({{(c1 ∗ c2)#γ(r)}}) ≤ FAGG ({{(c
∗
1 ∗ c

∗
2)#γ(r)}}) . (C.19)

From (C.17), (C.18), and (C.19), it follows

FAGG ({{µ(r) | µ ∈ N}}) ≤ FAGG ({{µ(r) | µ ∈ N
∗}}) . (C.20)

From (C.16) and (C.20), it follows

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{µ(r) | µ ∈ N
∗}}) . (C.21)

It follows that N is an FAGG-minimal MCS of Ext(γ).

Case that r is a variable not in dom(γ). Assume, without loss of general-
ity, that r ∈ vars(γ(q1)). By Lemma C.8.2, we have that r ̸∈ vars(γ(q2)).
Thus, N1 is an FAGG-minimal MCS of M1, and N2 is an FCOUNT-minimal
MCS of M2. It follows that

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{c2#µ(r) | µ ∈ N1}}) , (C.22)
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and

FAGG ({{µ(r) | µ ∈ N
∗}}) = FAGG ({{c

∗
2#µ(r) | µ ∈ N

∗
1 }}) . (C.23)

Since FAGG is associative,

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{c2#FAGG ({{µ(r) | µ ∈ N1}})}}) ,
(C.24)

and

FAGG ({{µ(r) | µ ∈ N
∗}}) = FAGG ({{c

∗
2#FAGG ({{µ(r) | µ ∈ N

∗
1 }})}}) .

(C.25)
By the definition of FCOUNT-minimal MCS, c2 ≤ c∗2. By definition of an
FAGG-minimal MCS, FAGG ({{µ(r) | µ ∈ N1}}) ≤ FAGG ({{µ(r) | µ ∈ N

∗
1 }}).

Since FAGG is monotone, we obtain that

FAGG ({{c2#FAGG ({{µ(r) | µ ∈ N1}})}})≤

FAGG ({{c
∗
2#FAGG ({{µ(r) | µ ∈ N

∗
1 }})}}) .

(C.26)

From (C.24), (C.25) and (C.26), it follows

FAGG ({{µ(r) | µ ∈ N}}) ≤ FAGG ({{µ(r) | µ ∈ N
∗}}) . (C.27)

From (C.16) and (C.27), it follows

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{µ(r) | µ ∈ N
∗}}) . (C.28)

It follows that N is an FAGG-minimal MCS of Ext(γ).

The proof is now concluded.

We can now proceed with the proof of Lemma 6.3.2.

Proof of Lemma 6.3.2. For readability, we show the lemma for k = 2. The
proof can easily be generalized for k > 2.

In the first part of the proof, we show that for i ∈ {1, 2}, there is an
ℓ-∀embedding θi extending γi such that:

• every FAGG-minimal MCS of Ext(θi) is also an FAGG-minimal MCS of
Ext(γi); and

• {θ1, θ2} |= K({F1, . . . , Fℓ}).
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Note that for i ∈ {1, 2}, dom(γi) =
(⋃ℓ−1

j=1 vars(Fj)
)
∪Key(Fℓ), and dom(θi) =

dom(γi) ∪ notKey(Fℓ). We distinguish two cases:

Case that γ1 and γ2 disagree on a variable of Key(Fℓ). Let i ∈ {1, 2}.
Let N∗

i be an FAGG-minimal MCS of Ext(γi). Let θi be the (unique)
ℓ-∀embedding such that every embedding in N∗

i extends θi. Clearly, ev-
ery FAGG-minimal MCS of Ext(θi) is also an MCS of Ext(γi). Since γ1
and γ2 disagree on some variable of Key(Fℓ), it follows that {θ1, θ2} |=
K({F1, . . . , Fℓ}).

Case that γ1 and γ2 agree on Key(Fℓ). Let i ∈ {1, 2}. Let w⃗ be a shortest
sequence containing each variable v ∈ vars(γi({Fℓ, . . . , Fn})) such that
v is not attacked in γi({Fℓ, . . . , Fn}) and K(q) |= Key(Fℓ) → v. Note
that w⃗ is the same for i = 1 and i = 2. By Lemma C.8.1, there is a
sequence of constants a⃗, of length |w⃗|, such that for every j ∈ {1, 2},
for every µ ∈ Ext(γj), µ(w⃗) = a⃗. Let γ+i be the extension of γi to
dom(γi) ∪ vars(w⃗) such that γ+i (w⃗) = a⃗. It is clear that

• γ+1 (w⃗) = γ+2 (w⃗); and

• since Ext(γi) = Ext(γ+i ), every FAGG-minimal MCS of Ext(γ+i ) is also
an FAGG-minimal MCS of Ext(γi).

Claim 8. For every variable v ∈ vars(γ+i ({Fℓ, . . . , Fn})), if K(q) |=
Key(Fℓ)→ v, then v is attacked in γ+i ({Fℓ, . . . , Fn}).

Proof. Straightforward from Lemma C.1.2 and the construction of w⃗.

Let qα ⊆ {Fℓ, . . . , Fn} such that Fℓ ∈ qα, and the atoms of γ+i (qα)
form a maximal weakly connected component of the attack graph of
γ+i ({Fℓ, . . . , Fn}). Let qβ = {Fℓ, . . . , Fn} \ qα.

Claim 9. For every v ∈ vars(qα) ∩ dom(γ+1 ), we have γ+1 (v) = γ+2 (v).

Proof. Let v ∈ vars(qα) ∩ dom(γ+1 ). We need to show γ+1 (v) = γ+2 (v).
This is obvious if v ∈ vars(w⃗). Assume for the sake of a contradiction that
v ̸∈ vars(w⃗). Then, v ∈ dom(γ1). It follows v ∈ vars({F1, . . . , Fℓ−1}), and
therefore

for every k ∈ {ℓ, . . . , n}, Fk

q

̸⇝ v. (C.29)

Define qγ+ := γ+1 ({Fℓ, . . . , Fn}). It is worth noting that the choice of
using γ+1 instead of γ+2 in the definition of qγ+ is unimportant, as the
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resulting attacks will be the same regardless of the choice. Since v ∈
vars(qα) and since acyclic attack graphs are transitive, there is an atom
F ∈ qα such that γ+1 (F ) is unattacked in qγ+ , and one of the following
holds:

• v ∈ vars(γ+1 (F )), hence v ∈ vars(F ); or

• there is G ∈ qα such that v ∈ vars(γ+1 (G)) and γ+1 (F )
q
γ+

⇝ γ+1 (G),

hence v ∈ vars(G) and, by Lemma C.1.2, F
q
⇝ G.

Since F
q

̸⇝ v by (C.29), it is correct to conclude K(q \{F}) |= Key(F )→
v. By the same reasoning as in the proof of Claim 7, we obtain K(q}) |=
Key(Fℓ) → Key(F ). Consequently, K(q) |= Key(Fℓ) → v. From (C.29)
and Lemma C.1.2, it follows that v is not attacked in γi({Fℓ, . . . , Fn}).
Then, by our definition of w⃗, we have that w⃗ contains v, a contradiction.
This concludes the proof of Claim 9.

Claim 9 implies γ+1 (qα) = γ+2 (qα). Let N (α) be an MCS of Ext(γ+1 |
γ+1 (qα),db) such that N (α) is FAGG-minimal if r ∈ vars(γ+1 (qα)), and

FCOUNT-minimal otherwise. For j ∈ {1, 2}, let N
(β)
j be an MCS of Ext(γ+j |

γ+j (qβ),db) such that N
(β)
j is FAGG-minimal if r ∈ vars(γ+j (qβ)), and

FCOUNT-minimal otherwise. By Claim 8 and Lemma C.8.3, the set N∗
i :=

{γ+i · δ · ϵ | δ ∈ N
(α) and ϵ ∈ N

(β)
i } is an FAGG-minimal MCS of Ext(γ+i ).

Let θi be the (unique) ℓ-∀embedding such that every valuation in N∗
i

extends θi. Clearly, every FAGG-minimal MCS of Ext(θi) is also an FAGG-
minimal MCS of Ext(γ+i ), and therefore also an MCS of Ext(γi). Since
N (α) is the same for i = 1 and i = 2, and since Fℓ ∈ qα, it follows that
θ1(Fℓ) = θ2(Fℓ). Consequently, {θ1, θ2} |= K({F1, . . . , Fℓ}).

So it is correct to conclude that θ1, θ2 with the desired properties exist, which
concludes the first part of the proof.

We are now ready to prove that the lemma holds for every choice of ℓ in
the statement of the lemma. The proof is by induction on decreasing ℓ. It
is straightforward to see that the lemma holds true when ℓ = n. We next
show that the lemma holds true when ℓ = g, assuming that it holds true when

ℓ = g + 1. Let i ∈ {1, 2}. Let γ
+,(i)
1 , . . . , γ

+,(i)
ki

enumerate all extensions of θi
that are (g + 1)-∀key-embeddings of q in db, where θi is the g-∀embedding
whose existence was proved in the first part of the proof. By the induction

hypothesis, for every j ∈ {1, . . . , ki}, there is an FAGG-minimal MCS N
+,(i)
j of
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Ext(γ
+,(i)
j ) such that

N1︷ ︸︸ ︷


k1⋃

j=1

N
+,(1)
j


∪

N2︷ ︸︸ ︷


k2⋃

j=1

N
+,(2)
j


 |= K(q),

in which we define N1 and N2 as shown above. It remains to show that Ni

is an FAGG-minimal MCS of Ext(γi). Clearly, it suffices to to show that Ni is
an FAGG-minimal MCS of Ext(θi). To this end, let mi denote the FAGG-minimal
value for θi in db, as defined in Definition 5.0.2. Since Ni |= K(q), it follows
from Lemma 6.3.1 that

mi = FAGG ({{v1, v2, . . . , vki}}) ,

where for every j ∈ {1, . . . , ki}, vj := FAGG
(
{{µ(r) | µ ∈ N

+,(i)
j }}

)
. From this,

it is correct to conclude that Ni is an FAGG-minimal MCS of Ext(γi), which
concludes the proof of Lemma 6.3.2.
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APPENDIX D

Proofs of Chapter 7

D.1. Proof of Lemma 7.2.3

We first need some helping lemmas on functional dependencies. In the following
lemma, Σ needs not be irreducible. The following definition serves as a natural
analogue to the notion of sequential proof introduced in Chapter 2.

Definition D.1.1. Let Σ be a set of functional dependencies. Let X → {y}
be a functional dependency. A sequential proof of Σ |= X → {y} is a (possibly
empty) sequence (X1 → Y1, X2 → Y2, . . . , Xℓ → Yℓ) of FDs in Σ such that y ∈

X ∪ Yℓ and for every i ∈ {1, 2, . . . , ℓ}, Xi ⊆ X ∪
(⋃i−1

j=1 (Xj−1 ∪ Yj−1)
)
.

Lemma D.1.1. Let S be a set of attributes. Let Σ be a set of functional
dependencies on S such that for every X → Y in Σ, we have |Y | = 1 and
Y ⊈ X. Let < be a linear order on S such that for every X → {y} in Σ, for
every v ∈ X, we have v < y. For all U ⊆ S and w ∈ S, if Σ |= U → {w},
then Σ |= {v ∈ U | v < w} → y.

Proof. Assume Σ |= U → {w}. There is a shortest sequence

(X1 → y1, X2 → y2, . . . , Xℓ → yℓ) (D.1)

of FDs in Σ such that for j ∈ {1, 2, . . . , ℓ}

• Xj ⊆ U ∪
(⋃j−1

i=1 Xi ∪ {yi}
)
;

• yℓ = w.

133
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Let U<w = {v ∈ U | v < w}. We show by induction on decreasing i = ℓ, ℓ −
1, . . . , 2, 1 that Xi ⊆ U<w. For i = ℓ, the desired result follows from yℓ = w and
the hypothesis of the lemma. For the induction step, i+ 1→ i, the induction
hypothesis is thatXi+1∪Xi+2∪· · ·∪Xℓ ⊆ U<w. Since yi ∈ Xi+1∪Xi+2∪· · ·∪Xℓ

(because the sequence (D.1) is shortest possible), it follows yi < w. By the
hypothesis of the lemma, we conclude Xi ⊆ U<w. This concludes the proof of
Lemma D.1.1.

Definition D.1.2. Let Σ be a set of functional dependencies (FDs) that is
irreducible (a.k.a. a minimal cover). The carrier set of Σ is the set of attributes
that occur in the FDs of Σ. A linear sort < of the carrier set of Σ is said to
be compliant with Σ if for every X → y in Σ, for every v ∈ X, we have v < y.
We write H(Σ) for the directed graph whose vertex-set is Σ; there is a directed
edge from X → y to U → v if y ∈ U .

Lemma D.1.2 (Existence of compliant order). Let Σ be a set of functional
dependencies that is irreducible. Let S be the carrier set of Σ. If H(Σ) is
acyclic, then there exists a linear order of S that is compliant with Σ.

Proof. Assume H(q) is acyclic. Let (X1 → y1, X2 → y2, . . . , Xn → yn) be a
topological sort of H(Σ). Define f : S → {1, 2, . . . , n, n + 1} such that for
every x ∈ S,

• if x /∈
⋃n

i=1Xi, then f(x) = n+ 1;

• otherwise f(x) is the smallest i ∈ {1, 2, . . . , n} such that x ∈ Xi.

Let ≺ be a linear order of S such that for all v, w ∈ S such that v ̸= w, if
f(v) < f(w), then v ≺ w. Here, < denotes the natural order on N. Clearly,
such a linear order ≺ exists.

We show that ≺ is compliant with Σ. To this end, let j ∈ {1, 2, . . . , n}.
Let v ∈ Xj . It suffices to show v ≺ yj . Since Σ is irreducible, yj /∈ Xj , hence
f(yj) ̸= j. It is easily verified that f(v) ≤ j and j < f(yj). Specifically, if
f(yj) < j, then H(Σ) would have a directed edge from Xj → yj to a functional
dependency that precedes Xj → yj in the topological sort, a contradiction.
Consequently, f(v) < f(yj), hence v ≺ yj .

The following theorem has already been proven under the restriction that
each left-hand side (LHS) is a singleton (Lechtenbörger, 2004).

Theorem D.1.3. Let Σ be a set of functional dependencies that is irreducible.
If H(Σ) is acyclic, then every irreducible set of functional dependencies that is
equivalent to Σ, is equal to Σ.
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Proof. Let Σ1 be an irreducible set of FDs such that H(Σ1) is acyclic. Let S
be the carrier set of Σ1. Let Σ2 be an irreducible set of FDs such that Σ2 ≡ Σ1.
We need to show Σ1 = Σ2.

By Lemma D.1.2, we can assume a linear order <1 of S that is compliant
with Σ1. The following claim states that compliance extends to Σ2.

Claim 10. Let X → y be an FD in Σ2. For every v ∈ X, we have v <1 y.

Proof. Assume for the sake of a contradiction that there is v ∈ X such that
y <1 v. We have Σ1 |= X → y. By Lemma D.1.1, Σ1 |= {u ∈ X | u < y} → y.
Consequently, Σ1 |= X \ {v} → y, contradicting that Σ2 is irreducible. This
concludes the proof of Claim 10.

We first show that H(Σ2) is acyclic. Assume for the sake of a contradiction
an elementary cycle (X0 → y0, X1 → y1, . . . , Xℓ−1 → yℓ−1, X0 → y0) inH(Σ2).
Since the cycle is elementary, we can assume yi ̸= yj if i ̸= j. By Claim 10,
y0 <1 y1 <1 · · · <1 yℓ−1 <1 y0, a contradiction. We conclude by contradiction
that H(Σ2) is acyclic. By Lemma D.1.2, we can assume an order <2 of S that
is compliant with Σ2.

It remains to show that Σ1 = Σ2. Since Σ2 is irreducible, it suffices to
show Σ1 ⊆ Σ2. Let X → y be an FD in Σ1. We need to show that X → y is
in Σ2. Since Σ2 |= Σ1, there is a shortest sequence (G1, G2, . . . , Gℓ) that is a
sequential proof of Σ2 |= X → y. Let Gi = Xi → yi for i ∈ {1, 2, . . . , ℓ}, hence
yℓ = y. The following claim implies that the desired result obtains if Xℓ and
X are comparable by ⊆.

Claim 11. If Xℓ ⊆ X or Xℓ ⊆ X, then Xℓ = X, hence Gℓ = X → y belongs
to Σ2.

Proof. Assume Xℓ ⊆ X or Xℓ ⊆ X. Since Σ1 and Σ2 are minimal covers
containing, respectively, X → y and Xℓ → y, it follows from Σ1 ≡ Σ2 that
X = Xℓ.

In the sequel, we show that Xℓ and X are indeed comparable by ⊆. To this
end, assume for the sake of a contradiction that Xℓ and X are not comparable
by ⊆. Then necessarily ℓ ≥ 2.

Claim 12. For every i ∈ {1, 2, . . . , ℓ− 1}, Σ1 \ {X → y} |= Xi → yi.

Proof. Let i ∈ {1, 2, . . . , ℓ − 1}. From the sequential proof (G1, G2, . . . , Gℓ)
of Σ2 |= X → y, and by using Claim 10, it is easily verified that yi <1 y.
Since Σ1 |= Σ2 and Xi → yi ∈ Σ2, it follows Σ1 |= Xi → yi. Let π =
(Z1 → w1, Z2 → w2, . . . , Zk → wk) be a shortest sequence that is a sequential
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proof of Σ1 |= Xi → yi. Hence wk = yi ̸= y. It suffices to show that for
j ∈ {1, 2, . . . , k}, we have Zj → wj ̸= X → y. Assume for the sake of a
contradiction that there is j ∈ {1, 2, . . . , k} such that Zj → wj = X → y.
Since yi ̸= y, it follows that X → y is not the last atom in the sequential
proof π, hence j < k. Since the sequential proof π is the shortest possible, it
can be seen that there is z ∈ Zk such that y ≤1 z. Since wk = yi, it follows
z <1 yi. Consequently, y <1 yi, a contradiction.

Claim 13. Σ1 \ {X → y} |= Xℓ → y.

Proof. Assume for the sake of a contradiction that Σ1 \ {X → y} ̸|= Xℓ → y.
This means that every sequential proof of Σ1 |= Xℓ → y (and there is at least
one such proof) must use X → y. Consequently, since Σ1 ≡ Σ2,

Σ2 |= Xℓ → X \Xℓ. (D.2)

Let xi1 <2 xi2 <2 · · · <2 xig enumerate all variables in X \ Xℓ, ordered
by <2. Note that since X → y belongs to the irreducible set Σ1, it follows
X ⊆

⋃ℓ
i=1Xi. We know g ≥ 1 because X and Xℓ are not comparable by ⊆.

By inspecting the sequential proof (G1, G2, . . . , Gℓ) of Σ2 |= X → y, it can be
verified that there exists i ∈ {1, 2, . . . , ℓ− 1} such that xig <2 yi and yi ∈ Xℓ.
Informally, xig is used in the sequential proof to derive some yj which either
occurs in Xℓ, or is smaller (with respect to <2) than some other yi occurring
in Xℓ. From (D.2) and Lemma D.1.1, it follows that for every j ∈ {1, 2, . . . , g},
Σ2 |= Xℓ \ {yi} → xij . Informally, we can remove yi from the LHS because
yi occurs after the RHS in <2. Consequently, Σ2 |= Xℓ \ {yi} → X \Xℓ.
Moreover, since yi /∈ X, we have Σ2 |= Xℓ \ {yi} → X ∩Xℓ. Consequently,
Σ2 |= Xℓ \ {yi} → X.

Since Σ2 |= X → y, we obtain Σ2 |= Xℓ \ {yi} → y. Since Σ2 contains
Xℓ → y with yi ∈ Xℓ, and Σ2 logically implies Xℓ \ {yi} → y, it follows
that Σ2 is not a minimal cover, a contradiction. This concludes the proof of
Claim 13.

By Claims 12 and 13, it follows Σ1 \{X → y} |= X → y. It follows that Σ1

is not a minimal cover, which yields the desired contradiction. This concludes
the proof of Theorem D.1.3.

We now provide the proof of Lemma 7.2.3.

Proof of Lemma 7.2.3. Let q1 and q2 be kernels of q. Assume that the attack
graph of q1 is acyclic. For i ∈ {1, 2}, let Σi be the set that contains Key(F )→
notKey(F ) for every atom of qi that is not full-key. Since q1 and q2 are kernels
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of q, it follows that Σ1 and Σ2 are equivalent irreducible sets of functional
dependencies. By Lemma 7.2.1, for all atoms F,G of q that are not full-key,
if H(Σ1) contains a directed edge from Key(F ) → notKey(F ) to Key(G) →

notKey(G), then F
q1
⇝ G. Since the attack graph of q1 is acyclic, it follows that

H(Σ1) is acyclic. By Theorem D.1.3, Σ1 = Σ2.

Assume that F is an atom in q1 such that F
q1
⇝ x. Then, F is not full-key

and Gaifman(q1) has a (possibly empty) path from the variable in notKey(F )
to x such that no variable on the path uses a variable in F+,q1 . Since Σ1 =
Σ2, there is an atom F ′ in q2 such that Key(F ) = Key(F ′), notKey(F ) =
notKey(F ′), and F+,q1 = F ′+,q2 . Since Gaifman(q1) = Gaifman(q2), it follows

F ′ q2
⇝ x.
Assume for the sake of a contradiction that the attack graph of q2 contains

a cycle. By (Koutris & Wijsen, 2017, Lemma 3.6), q2 contains two atoms F1, F2

such that F1
q2
⇝ F2 and F2

q2
⇝ F1. Since Σ1 = Σ2, for i ∈ {1, 2}, there is an atom

F ′
i in q1 such that Key(F ′

i ) = Key(Fi) and notKey(F ′
i ) = notKey(Fi). From the

preceding paragraph, it follows F ′
1

q1
⇝ F ′

2 and F ′
2

q1
⇝ F ′

1, which contradicts that
the attack graph of q1 is acyclic.

D.2. Two Ways for Proving Proposition 7.2.4

We give two proofs of Proposition 7.2.4. The first uses arguments from com-
plexity theory, and the second relies solely on syntactic arguments.

Complexity-Theoretic Proof of Proposition 7.2.4. The only place where Propo-
sition 7.2.4 is used is in the proof of Theorem 7.0.2, to handle the case where
FAGG(∅) is undefined. If we restrict ourselves to aggregate operators that are
defined over the empty multiset, such as FSUM, then all our results hold without
relying on Proposition 7.2.4.

Assume that ∃u⃗(q(u⃗)) is κ-acyclic. Let g() := SUM(1) ← q(u⃗). By The-
orem 7.0.1, LUB-CQA(g()) is expressible in AGGR[FOL]. In (Libkin, 2004,
Corollary 8.26 and Exercise 8.16), it is established that every query in a logic
called Laggr is Hanf-local. Since AGGR[FOL] is included in Laggr, every query
in AGGR[FOL] is Hanf-local and hence cannot express 2DM. Consequently,
there exists no first-order reduction from 2DM to LUB-CQA(g()). It follows
from Lemma 7.4.1 that the attack graph of ∃u⃗(q(u⃗)) is acyclic.

In the remainder of this section, we provide a proof of Proposition 7.2.4
that relies solely on syntax. We begin by proving some auxiliary lemmas.
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Lemma D.2.1. Let q be a query in sjfBCQ. Let F ∈ q and v ∈ vars(q) such

that F
q
⇝ v. Let q′ be a kernel of q with an acyclic attack graph. There is an

atom F ′ ∈ q′ such that:

• F ′ q′

⇝ v;

• K(q \ {F}) |= Key(F )→ Key(F ′); and

• K(q \ {F}) |= Key(F ′)→ Key(F ).

Proof. Since F
q
⇝ v, there is a path (v1, . . . , vn) in the Gaifman graph of q

such that v1 ∈ notKey(F ), vn = v, and

for every i ∈ {1, . . . , n}, K(q \ {F}) ̸|= Key(F )→ vi. (D.3)

We will show, by induction on increasing i, that for every i ∈ {1, . . . , n}, there
is an atom F ′

i ∈ q
′ such that:

• F ′
i

q′

⇝ vi;

• K(q \ {F}) |= Key(F )→ Key(F ′
i ); and

• K(q \ {F}) |= Key(F ′
i )→ Key(F ).

Clearly, this suffices to prove Lemma D.2.1 by picking F ′ = F ′
n.

Basis i = 1. From v1 ∈ notKey(F ) and K(q) ≡ K(q′), it follows K(q′) |=
Key(F ) → v1. Hence, there is a shortest sequence (H1, . . . , Hℓ) that is a
sequential proof of K(q′) |= Key(F ) → v1. Note that, since v1 ̸∈ Key(F ),
we have ℓ ≥ 1. For every j ∈ {1, . . . , ℓ}, let zj be the unique variable in
notKey(Hj). Let k ∈ {1, . . . , ℓ} be the smallest index such that

K(q \ {F}) ̸|= Key(Hk)→ zk. (D.4)

Such a k exists, because otherwise we have that K(q \ {F}) |= Key(F ) →
v1, which contradicts (D.3). Clearly, K({H1, H2, . . . , Hk−1}) |= Key(F ) →
Key(Hk). By our choice of k, we have K(q \ {F}) |= K({H1, H2, . . . , Hk−1}).
Consequently,

K(q \ {F}) |= Key(F )→ Key(Hk). (D.5)

From K(q) |= Key(Hk)→ zk (because K(q) ≡ K(q′)) and (D.4), it follows that
every sequential proof of K(q) |= Key(Hk)→ zk (there exists at least one such
proof) must use F , and hence

K(q \ {F}) |= Key(Hk)→ Key(F ). (D.6)
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By Lemma 7.2.1, along with the definition of a sequential proof, it follows that
every atom in the sequential proof (H1, . . . , Hℓ), except the last one, attacks
some atom that occurs after it in the sequential proof. Since the attack graph
of q′ is acyclic, it follows from (Koutris & Wijsen, 2017, Lemma 3.5) that it is
transitive. It is correct to conclude

Hk
q′

⇝ v1. (D.7)

From (D.5), (D.6), and (D.7), it follows that the desired results holds true by
choosing F ′

1 = Hk.

Step i− 1→ i. We now show that the claim holds true when i > 1, as-
suming that it holds true for i−1. By induction hypothesis, we have that here
is an atom F ′

i−1 ∈ q
′ such that:

(a) K(q \ {F}) |= Key(F )→ Key(F ′
i−1);

(b) K(q \ {F}) |= Key(F ′
i−1)→ Key(F ); and

(c) F ′
i−1

q′

⇝ vi−1.

If F ′
i−1

q′

⇝ vi, then the desired results obtains by picking F ′
i = F ′

i−1. Assume

that F ′
i−1

q′

̸⇝ vi from here on. Since F ′
i−1

q′

⇝ vi−1 and the Gaifman graph
of q′ contains an edge between vi and vi−1, it follows that K(q′ \ {F ′

i−1}) |=
Key(F ′

i−1) → vi. We can assume a shortest sequence (H1, . . . , Hℓ) that is
a sequential proof of K(q′ \ {F ′

i−1}) |= Key(F ′
i−1) → vi. Note that vi ̸∈

Key(F ′
i−1), because otherwise, by ((a)), K(q \ {F}) |= Key(F ) → vi, which

contradicts (D.3). Thus, ℓ ≥ 1. For every j ∈ {1, . . . , ℓ}, let zj be the unique
variable in notKey(Hj). Let k ∈ {1, . . . , ℓ} be the smallest index such that

K(q \ {F}) ̸|= Key(Hk)→ zk. (D.8)

Such a k exists, because otherwise we have K(q \ {F}) |= Key(F ′
i−1) → vi,

and hence, by ((a)), K(q \ {F}) |= Key(F )→ vi, which contradicts (D.3). By
the same reasoning as in the Basis of the induction, we obtain K(q \ {F}) |=
Key(F ′

i−1)→ Key(Hk), hence, by ((a)),

K(q \ {F}) |= Key(F )→ Key(Hk). (D.9)

Like in the Basis of the induction, from (D.8) and K(q) |= Key(Hk) → zk, it
follows

K(q \ {F}) |= Key(Hk)→ Key(F ). (D.10)
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By the same reasoning as in the Basis of the induction,

Hk
q′

⇝ v1. (D.11)

From (D.9), (D.10), and (D.11), it follows that the desired results holds true
by choosing F ′

i = Hk.

Lemma D.2.2. Let q be a query in sjfBCQ. Let F,G be atoms of q such that
F

q
⇝ G and G

q
⇝ F . Let q′ be a kernel of q with an acyclic attack graph. For

every v ∈ vars(q), if F
q
⇝ v, then there is an atom F ′ ∈ q′ such that

• F ′ q′

⇝ v; and

• G
q
⇝ w for some w ∈ Key(F ′).

Proof. Let v ∈ vars(q) such that F
q
⇝ v. By Lemma D.2.1, there is an atom

F ′ ∈ q′ such that :

(a) F ′ q′

⇝ v;

(b) K(q \ {F}) |= Key(F )→ Key(F ′); and

(c) K(q \ {F}) |= Key(F ′)→ Key(F ).

It remains to show that G
q
⇝ w for some w ∈ Key(F ′). From G

q
⇝ F ,

there is z ∈ Key(F ) such that G
q
⇝ z. By ((c)), K(q \ {F}) |= Key(F ′) →

z. There is a shortest sequence (H1, . . . , Hn) that is a sequential proof for
K(q \ {F}) |= Key(F ′) → z. Assume, for the sake of contradiction, that
G ∈ (H1, . . . , Hn). Then K(q \ {F}) |= Key(F ′) → Key(G), hence, by ((b)),

K(q \ {F}) |= Key(F ) → Key(G), which contradicts F
q
⇝ G. We conclude by

contradiction that G ̸∈ (H1, . . . , Hn). Since G
q
⇝ z, by (Amezian El Khalfioui

& Wijsen, 2024b, Lemma A.3), we have that G
q
⇝ w for some w ∈ Key(F ′).

We can now proceed with the proof of Proposition 7.2.4.

Syntax-Based Proof of Proposition 7.2.4. We prove the contrapositive: if an
sjfBCQ query has a cyclic attack graph, then it is not κ-acyclic. To this end,
assume that the attack graph of q contains a cycle. From (Koutris & Wijsen,

2017, Lemma 3.6), there are two distinct atoms F,G ∈ q such that F
q
⇝ G

and G
q
⇝ F . Assume, for the sake of contradiction, that the attack graph of

q′ is acyclic. We will show that we can build an infinite sequence of atoms

(H1, H2, . . .) such that for every i ∈ {1, 2, . . .}, Hi ̸= Hi+1 and Hi+1
q′

⇝ Hi.
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Since F
q
⇝ G, there is a variable v ∈ Key(G) such that F

q
⇝ v. By

Lemma D.2.2, there is an atom H1 ∈ q′ such that G
q
⇝ w1 for some w1 ∈

Key(H1).

• From G
q
⇝ w1, by Lemma D.2.2 (with the roles of F and G switched),

there is an atom H2 ∈ q′ such that H2
q′

⇝ w1 (hence H2 ̸= H1 and

H2
q′

⇝ H1) and F
q
⇝ w2 for some w2 ∈ Key(H2).

• From F
q
⇝ w2, by Lemma D.2.2, there is an atom H3 ∈ q′ such that

H3
q′

⇝ w2 (hence H3 ̸= H2 and H3
q′

⇝ H2) and G
q
⇝ w3 for some

w3 ∈ Key(H3).

• And so on.

Since q′ is finite, eventually the sequence will contain a repeated atom, which
by construction of our sequence induces a cycle in the attack graph of q′, a
contradiction. This concludes the proof of Lemma 7.2.4.

D.3. Decomposition and Consistent Extension Lem-
mas for LUB-CQA

In this section, after some preliminaries in Section D.3.1, we provide for-
mal proofs for Lemma 7.3.2 (Decomposition Lemma for LUB-CQA) in Sec-
tion D.3.2 and Lemma 7.3.3 (Consistent Extension Lemma for LUB-CQA) in
Section D.3.3.

D.3.1 Preliminaries

Definition D.3.1 (Pre-attacks). Let q be a query in sjfBCQ, and ≤ be a
linear order on the atoms of q. We write F < G if F ≤ G and F ̸= G. For
every atom G in q, we define G+,(q,<) as the closure of Key(G) with respect to
{Key(F ) → vars(F ) | F < G}. A variable u is said to <-precede G, denoted
u < G, if there is an atom F such that F < G and u ∈ vars(F ).

Let G be an atom of q, and u ∈ vars(q). We say that G pre-attacks u

(with respect to (q,≤)), denoted G
(q,≤)
↬ u, if Gaifman(q) contains a path

(v0, v1, . . . , vn) with n ≥ 0, v0 ∈ notKey(G), and vn = u such that no vi

belongs to G+,(q,≤). For an atom H in q, we write G
(q,≤)
↬ H if H ̸= G and

G
(q,≤)
↬ u for some u ∈ vars(H).
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Lemma D.3.1. Let q be an irreducible sjfBCQ query with an acyclic attack
graph. Let ≤ be a topological sort of q’s attack graph. For every atom G in q,

for every variable u such that u < G, we have G
(q,≤)

̸↬ u.

Proof. Assume for the sake of a contradiction that there exists an atom H

in q and a variable u such that u < H and H
(q,≤)
↬ u. For ease of notation,

let Σ<H = K({F ∈ q | F < H}). We can assume a path (u0, u1, . . . , us) in
Gaifman(q) such that notKey(H) = {u0}, us = u, and no ui is in H+,(q,<),
which implies the following:

for every i ∈ {0, 1, . . . , s}, we have Σ<H ̸|= Key(H)→ ui. (D.12)

We show that for some ℓ ≥ 1 there is a sequence

(K1, ui1), (K2, ui2), . . . , (Kℓ, uiℓ), (D.13)

such that 0 ≤ i1 < i2 < · · · < iℓ = s and for each j ∈ {1, 2, . . . , ℓ},

(a) H ≤ Kj ;

(b) Kj
q
⇝ uij ; and

(c) Σ<H |= Key(H)→ Key(Kj).

The proof runs by induction:

Induction basis: We will show that we can choose (K1, ui1) with the desired
properties.

Induction step: Suppose (Kj , uij ) exists with the desired properties for some
j ≥ 1. We will show that if ij ̸= s, then we can choose (Kj+1, uij+1) with
the desired properties.

For the induction basis, j = 1, we choose K1 := H and i1 := 0. It is easily
verified that with this choice, items ((a))–((c)) are satisfied for j = 1. For
the induction step, j → j + 1, the hypothesis is that items ((a))–((c)) hold
true for some (Kj , uij ) with j ≥ 1. Assume ij ̸= s (otherwise the proof of the

construction of the sequence (D.13) is concluded). SinceKj
q
⇝ uij butKj

q

̸⇝ us
(because ≤ is a topological sort of q’s attack graph, and us < H ≤ Kj), there is
g ∈ {ij+1, ij+2, . . . , s} such that ug ∈ Kj

+,q. Then, for some m ≥ 1, there is a
shortest sequence (L1, L2, . . . , Lm) that is a sequential proof of K(q \ {Kj}) |=
Key(Kj) → ug. Assume for the sake of a contradiction that each atom in
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the sequential proof <-precedes H. Then, Σ<H |= Key(Kj) → ug. By ((c)),
it follows Σ<H |= Key(H) → ug, which contradicts (D.12). We conclude by
contradiction that there is a smallest f ∈ {1, . . . ,m} such that H ≤ Lf . We
choose Kj+1 := Lf (thereby satisfying ((a)) for j + 1) and ij+1 := g (hence
ij < ij+1). By our choice of f , the (possibly empty) sequence (L1, . . . , Lf−1) is
a sequential proof of Σ<H |= Key(Kj)→ Key(Kj+1). Since ((c)) holds for j, it
follows Σ<H |= Key(H)→ Key(Kj+1), hence ((c)) holds for j+1 as well. Since
the sequential proof is shortest possible, notKey(Lm) = {ug}. Since no atom is
redundant in the sequential proof, it follows from Lemma 7.2.1 that for every
i ∈ {1, . . . ,m− 1}, there is i′ ∈ {i+ 1, i+ 2, . . . ,m} such that Li

q
⇝ Li′ . Since

acyclic attacks graphs are known to be transitive (Koutris & Wijsen, 2017,

Lemma 3.5), it follows Kj+1
q
⇝ ug with g = ij+1, thereby satisfying ((b)) for

j + 1.

The sequence (D.13) shows that there is an atom Kℓ in q such that Kℓ
q
⇝ u

with u < H ≤ Kℓ, contradicting that ≤ is a topological sort of the attack graph
of q. This concludes the proof.

Lemma D.3.2. Let q be an irreducible sjfBCQ query with an acyclic attack
graph, topologically sorted as (F1, . . . , Fn). Let

qα := {Fℓ} ∪ {Fi | 1 ≤ i ≤ n and Fℓ

(q,≤)
↬ Fi}; and

qβ := {Fℓ+1, Fℓ+2, . . . , Fn} \ qα.

Then,

• qα ∩ {F1, F2, . . . , Fℓ−1} = ∅; and

• for every u ∈ vars(qα) ∩ vars(qβ), we have u ∈ F
+,(q,<)
ℓ .

Proof. The first item is an immediate consequence of Lemma D.3.1. To prove
the second item, let u ∈ vars(qα) ∩ vars(qβ). We can assume G ∈ qβ such

that u ∈ vars(G). From G /∈ qα, it follows Fℓ

(q,≤)

̸↬ G, hence Fℓ

(q,≤)

̸↬ u. Since

u ∈ vars(F ) for some F ∈ qα, it must be the case that u ∈ F
+,(q,<)
ℓ .

We are now ready to present the Decomposition Lemma (Lemma 7.3.2)
and the Consistent Extension Lemma (Lemma 7.3.3). Together, these lemmas
establish that the diagram in Fig. D.1 commutes under their hypotheses on q
and FAGG, which is key to the proof of Lemma 7.3.1.
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ℓ−embedding θ of q m

all (ℓ+ 1)-key-embeddings
γ1, . . . , γk
extending θ

{{v1, . . . , vk}}

extend

FAGG-maximal
value m for θ

FAGG-maximal
value vi for each γi

FAGG

Figure D.1: Commutative diagram established by the Decomposition Lemma
(Lemma 7.3.2) and the Consistent Extension Lemma (Lemma 7.3.3), which
forms the crux of the proof of Lemma 7.3.1.

D.3.2 The Decomposition Lemma (Lemma 7.3.2)

The following helping lemma states that for every ℓ-embedding θ and (ℓ +
1)-key-embedding γ extending θ, if an MCS of Ext(θ) is restricted to those
valuations that extend γ, the result is an MCS of Ext(γ).

Lemma D.3.3. Let q be an irreducible sjfBCQ query with an acyclic attack
graph, topologically sorted as (F1, . . . , Fn). Let db be a database instance. Let
ℓ ∈ {0, . . . , n− 1}. Let θ be an ℓ-embedding of q in db, and let N be an MCS
of Ext(θ). Let γ be an (ℓ+1)-key-embedding of q in db that extends θ. Let Nγ

be the subset of N containing all (and only) embeddings that extend γ. Then,
Nγ is an MCS of Ext(γ).

Proof. Assume, for the sake of a contradiction, that Nγ is not an MCS of
Ext(γ). Since Nγ |= K(q), there is an MCS N∗ of Ext(γ) such that Nγ ⊊
N∗. We can assume µ ∈ N∗ \ Nγ . From µ ̸∈ Nγ , it follows µ ̸∈ N . Let
k be the greatest integer in {ℓ, . . . , n} such that for some µ′ ∈ N , we have
µ({F1, . . . , Fk}) = µ′({F1, . . . , Fk}). It is easily verified that such k exists. If
k = n, then µ ∈ N , a contradiction. Assume from here on that k < n. Let µk
be the restriction of µ to vars({F1, . . . , Fk}) ∪ Key(Fk+1).

Claim 14. For every i ∈ {k + 1, . . . , n}, there is an embedding µ∗i ∈ Ext(θ)
such that µ∗i extends µk and N ∪ {µ∗i } |= K({F1, . . . , Fi}).

Proof of Claim 14. The proof is by induction on increasing i.
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Induction basis i = k + 1. The desired result is immediate if N ∪ {µ} |=
K({F1, . . . , Fk+1}). Assume N ∪{µ} ̸|= K({F1, . . . , Fk+1}) from here on.
Then, there is an embedding µc ∈ N such that µ(Fk+1) and µc(Fk+1)
are key-equal but distinct, with {µ, µc} |= K({F1, . . . , Fk}), hence µ and

µc agree on all variables in F
+,(q,<)
k+1 . Let

qα := {Fk+1} ∪ {Fi | 1 ≤ i ≤ n and Fk+1

(q,≤)
↬ Fi};

qβ := {Fk+2, Fk+3, . . . , Fn} \ qα.

By Lemma D.3.2, there exists an embedding µ∗i such that for every atom
F of q,

µ∗i (F ) =

{
µ(F ) if F ∈ {F1, . . . , Fk} ∪ qβ ; and

µc(F ) if F ∈ qα.

Clearly, N ∪ {µ∗i } |= K({F1, . . . , Fk+1}).

Induction step i− 1→ i. The argumentation is the same as in the base case
of the induction, with µ∗i−1 replacing µ.

This concludes the proof of Claim 14

Let µ∗ = µ∗n. Since µ∗ extends µk, it follows that µ∗ ̸∈ N , which contradicts
that N is an MCS of Ext(θ). We conclude by contradiction that Nγ is an MCS
of Ext(γ). This concludes the proof of Lemma D.3.3.

Proof of Lemma 7.3.2. Assume that
⋃k

i=1Ni |= K(q), which implies that the

set
⋃k

i=1Ni is an MCS of Ext(θ). Let N be an FAGG-maximal MCS of Ext(θ),
i.e,

m = FAGG ({{µ(r) | µ ∈ N}}) .

For ease of notation, we define

m̂ := FAGG

(
{{µ(r) | µ ∈

k⋃

i=1

Ni}}

)
. (D.14)

For each i ∈ {1, . . . , k}, let N−
i be the subset of N containing all (and only)

embeddings that extend γi, and define v−i := FAGG
(
{{µ(r) | µ ∈ N−

i }}
)
. Note

that {N−
1 , N

−
2 , . . . , N

−
k } is a partition of N . Since FAGG is associative, it follows

that

m = FAGG
(
{{v−1 , v

−
2 , . . . , v

−
k }}
)
, (D.15)



146 Proofs of Chapter 7

and
m̂ = FAGG ({{v1, v2, . . . , vk}}) . (D.16)

Since q is irreducible, by Lemma D.3.3, for every i ∈ {1, . . . , k}, N−
i is an

MCS of Ext(γi). By the definition of FAGG-maximal MCS, we have that for
every i ∈ {1, . . . , k}, vi ≥ v

−
i . Thus, since FAGG is monotone, we have that

FAGG ({{v1, v2, . . . , vk}}) ≥ FAGG
(
{{v−1 , v

−
2 , . . . , v

−
k }}
)
. (D.17)

By (D.15), (D.16) and (D.17), it follows that

m̂ ≥ m. (D.18)

Since m is the FAGG-maximal value for θ, it follows that

m̂ = m. (D.19)

By (D.16) and (D.19), we can conclude that

m = FAGG ({{v1, v2, . . . , vk}}) .

This concludes the proof.

D.3.3 The Consistent Extension Lemma (Lemma 7.3.3)

We first show the following helping lemma.

Lemma D.3.4. Let ∃u⃗(q(u⃗)) be an irreducible sjfBCQ query with an acyclic
attack graph, topologically sorted as (F1, . . . , Fn). Let g() be the AGGR[sjfBCQ]
query defined as g() := AGG(r)← q(u⃗), where FAGG is monotone and associative.
Let db be a database instance. Let ℓ ∈ {1, . . . , n}. Let γ be an ℓ-key-embedding
of q in db. Let

qα := {Fℓ} ∪ {Fi | i > ℓ and Fℓ

(q,≤)
↬ Fi}; and

qβ := {Fℓ+1, Fℓ+2, . . . , Fn} \ qα.

For i ∈ {α, β}, let Mi be the set of embeddings of γ(qi) in db, and let Ni be
an MCS of Mi such that

• Ni is FAGG-maximal if r is a variable in γ(qi); and

• Ni is FCOUNT-maximal otherwise (i.e., if r is a variable not in γ(qi) or a
constant).
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Then, γ(qα) and γ(qβ) have no variables in common, and {γ · θ1 · θ2 | θ1 ∈
Nα and θ2 ∈ Nβ} is an FAGG-maximal MCS of Ext(γ).

Proof. It follows from Lemma D.3.2 that vars(γ(qα)) ∩ vars(γ(qβ)) = ∅, and
thus, for every θ1 ∈ Nα and θ2 ∈ Nβ , we have that γ ·θ1 ·θ2 is a valid embedding
of q in db. Let N = {γ · θ1 · θ2 | θ1 ∈ Nα and θ2 ∈ Nβ}. Clearly, N is a subset
of Ext(γ). Moreover, since Nα and Nβ are MCSs of Mα and Mβ respectively,
it follows that N is an MCS of Ext(γ).

Let N∗ be an FAGG-maximal MCS of Ext(γ). For i ∈ {α, β}, let N∗
i be the

set of valuations obtained from N∗ by restricting each valuation in N∗ to the
variables in vars(γ(qi)). Then, N∗ = {γ · θ1 · θ2 | θ1 ∈ N

∗
α and θ2 ∈ N

∗
β}. Since

vars(γ(qα)) ∩ vars(γ(qβ)) = ∅ and N∗ is an MCS of of Ext(γ), it is easily seen
that each N∗

i is an MCS of Mi (i ∈ {α, β}). By the definition of FAGG-maximal
MCS, it follows that

FAGG ({{µ(r) | µ ∈ N
∗}}) ≥ FAGG ({{µ(r) | µ ∈ N}}) . (D.20)

To show that N is FAGG-maximal, we distinguish two cases. To ease the nota-
tion, for i ∈ {α, β}, we define ci := |Ni| and c∗i := |N

∗
i |.

Case that r ∈ dom(γ) or r is a constant. Then, γ(r) is a constant. In-
deed, since γ is the identity on constants, if r is a constant, then r = γ(r).
We have that for every i ∈ {α, β}, Ni is an FCOUNT-maximal MCS of Mi.
With the construct i#t as defined in Definition 8.1.1, it follows

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{(cα ∗ cβ)#γ(r)}}) , (D.21)

and

FAGG ({{µ(r) | µ ∈ N
∗}}) = FAGG

(
{{(c∗α ∗ c

∗
β)#γ(r)}}

)
. (D.22)

By the definition of FCOUNT-maximal MCS, for every i ∈ {α, β}, ci ≥ c∗i .
Since FAGG is monotone,

FAGG ({{(cα ∗ cβ)#γ(r)}}) ≥ FAGG
(
{{(c∗α ∗ c

∗
β)#γ(r)}}

)
. (D.23)

From (D.21), (D.22), and (D.23), it follows

FAGG ({{µ(r) | µ ∈ N}}) ≥ FAGG ({{µ(r) | µ ∈ N
∗}}) . (D.24)

From (D.20) and (D.24), it follows

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{µ(r) | µ ∈ N
∗}}) . (D.25)

It follows that N is an FAGG-maximal MCS of Ext(γ).
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Case that r is a variable not in dom(γ). Assume, without loss of general-
ity, that r ∈ vars(γ(qα)). It follows that r ̸∈ vars(γ(qβ)). Thus, Nα is an
FAGG-maximal MCS of Mα, and Nβ is an FCOUNT-maximal MCS of Mβ . It
follows that

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{cβ#µ(r) | µ ∈ Nα}}) , (D.26)

and

FAGG ({{µ(r) | µ ∈ N
∗}}) = FAGG

(
{{c∗β#µ(r) | µ ∈ N

∗
α}}
)
. (D.27)

Since FAGG is associative,

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{cβ#FAGG ({{µ(r) | µ ∈ Nα}})}}) ,
(D.28)

and

FAGG ({{µ(r) | µ ∈ N
∗}}) = FAGG

(
{{c∗β#FAGG ({{µ(r) | µ ∈ N

∗
α}})}}

)
.

(D.29)
By the definition of FCOUNT-maximal MCS, cβ ≥ c∗β . By definition of an
FAGG-maximal MCS, FAGG ({{µ(r) | µ ∈ Nα}}) ≥ FAGG ({{µ(r) | µ ∈ N

∗
α}}).

Since FAGG is monotone, we obtain that

FAGG ({{cβ#FAGG ({{µ(r) | µ ∈ Nα}})}})≥

FAGG
(
{{c∗β#FAGG ({{µ(r) | µ ∈ N

∗
α}})}}

)
.

(D.30)

From (D.28), (D.29) and (D.30), it follows

FAGG ({{µ(r) | µ ∈ N}}) ≥ FAGG ({{µ(r) | µ ∈ N
∗}}) . (D.31)

From (D.20) and (D.31), it follows

FAGG ({{µ(r) | µ ∈ N}}) = FAGG ({{µ(r) | µ ∈ N
∗}}) . (D.32)

It follows that N is an FAGG-maximal MCS of Ext(γ).

The proof is now concluded.

Proof of Lemma 7.3.3. For readability, we show the lemma for k = 2. The
proof can easily be generalized for k > 2.

In the first part of the proof, we show that for i ∈ {1, 2}, there is an
ℓ-embedding θi extending γi such that:
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• every FAGG-maximal MCS of Ext(θi) is also an FAGG-maximal MCS of
Ext(γi); and

• {θ1, θ2} |= K({F1, . . . , Fℓ}).

Note that for i ∈ {1, 2}, dom(γi) =
(⋃ℓ−1

j=1 vars(Fj)
)
∪Key(Fℓ), and dom(θi) =

dom(γi) ∪ notKey(Fℓ). We distinguish two cases:

Case that γ1 and γ2 disagree on a variable of Key(Fℓ). Let i ∈ {1, 2}.
Let N∗

i be an FAGG-maximal MCS of Ext(γi). Let θi be the (unique)
ℓ-embedding such that every embedding in N∗

i extends θi. Clearly, every
FAGG-maximal MCS of Ext(θi) is also an FAGG-maximal MCS of Ext(γi).
Since γ1 and γ2 disagree on some variable of Key(Fℓ), it follows that
{θ1, θ2} |= K({F1, . . . , Fℓ}).

Case that γ1 and γ2 agree on all variables of Key(Fℓ). Let

qα := {Fℓ} ∪ {Fi | i > ℓ and Fℓ

(q,≤)
↬ Fi}; and

qβ := {Fℓ+1, Fℓ+2, . . . , Fn} \ qα.

From Lemma D.3.2 and {γ1, γ2} |= K({F1, . . . , Fℓ−1}), it follows γ1(qα) =
γ2(qα). Let N (α) be an MCS of Ext(γ1 | γ1(qα),db) such that N (α) is
FAGG-maximal if r ∈ vars(γ1(qα)), and FCOUNT-maximal otherwise. For

j ∈ {1, 2}, let N
(β)
j be an MCS of Ext(γj | γj(qβ),db) such that N

(β)
j

is FAGG-maximal if r ∈ vars(γj(qβ)), and FCOUNT-maximal otherwise. By

Lemma D.3.4, the set N∗
i := {γi ·δ ·ϵ | δ ∈ N

(α) and ϵ ∈ N
(β)
i } is an FAGG-

maximal MCS of Ext(γi). Let θi be the (unique) ℓ-embedding such that
every valuation in N∗

i extends θi. Clearly, every FAGG-maximal MCS of
Ext(θi) is also an FAGG-maximal MCS of Ext(γi). Since N (α) is the same
for i = 1 and i = 2, and since Fℓ ∈ qα, it follows that θ1(Fℓ) = θ2(Fℓ).
Consequently, {θ1, θ2} |= K({F1, . . . , Fℓ}).

So it is correct to conclude that θ1, θ2 with the desired properties exist,
which concludes the first part of the proof.

We are now ready to prove that the lemma holds for every choice of ℓ in
the statement of the lemma. The proof is by induction on decreasing ℓ. It
is straightforward to see that the lemma holds true when ℓ = n. We next
show that the lemma holds true for ℓ = g, assuming that it holds true for

ℓ = g + 1. Let i ∈ {1, 2}. Let γ
+,(i)
1 , . . . , γ

+,(i)
ki

enumerate all extensions of
θi that are (g + 1)-key-embeddings of q in db, where θi is the g-embedding
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whose existence was proved in the first part of the proof. By the induction

hypothesis, for every j ∈ {1, . . . , ki}, there is an FAGG-maximal MCS N
+,(i)
j of

Ext(γ
+,(i)
j ) such that

N1︷ ︸︸ ︷


k1⋃

j=1

N
+,(1)
j


∪

N2︷ ︸︸ ︷


k2⋃

j=1

N
+,(2)
j


 |= K(q),

in which we define N1 and N2 as shown above. It remains to show that Ni

is an FAGG-maximal MCS of Ext(γi). Clearly, it suffices to show that Ni is an
FAGG-maximal MCS of Ext(θi). To this end, let mi denote the FAGG-maximal
value for θi in db, as defined in Definition 5.0.2. Since Ni |= K(q), it follows
from Lemma 7.3.2 that

mi = FAGG ({{v1, v2, . . . , vki}}) ,

where for every j ∈ {1, . . . , ki}, vj := FAGG
(
{{µ(r) | µ ∈ N

+,(i)
j }}

)
. From this,

it is correct to conclude that Ni is an FAGG-maximal MCS of Ext(γi), which
concludes the proof of Lemma 7.3.3.

D.4. Proof of Lemma 7.4.1

Proof of Lemma 7.4.1. An embedding of q(u⃗) into a database instance is a
valuation over u⃗ that maps every atom of q(u⃗) to a fact in the database instance.
In the first part of the proof, we assume that r = 1, i.e., LUB-CQA(g()) returns
the number of embeddings of q(u⃗) in a repair that has the greatest number
of embeddings. In the second part of the proof, we will adapt the proof to
the case where r ̸= 1. Assume that the attack graph of ∃u⃗(q(u⃗)) has a cycle.
From (Koutris & Wijsen, 2017, Lemma 3.6), there exist two atoms F and G

such that F
q
⇝ G and G

q
⇝ F . Let M ⊆ A × B be an instance of 2DM

with |A| = |B| = n. Assume without loss of generality that 1 /∈ A ∪ B. For
every (a, b) ∈ M , let θab be the valuation over vars(q) such for every variable
v ∈ vars(q),

θab (v) :=





a if F
q

̸⇝ v and G
q
⇝ v

b if F
q
⇝ v and G

q

̸⇝ v

(a, b) if F
q
⇝ v and G

q
⇝ v

1 if F
q

̸⇝ v and G
q

̸⇝ v
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Let dbM :=
⋃
{θab (q) | (a, b) ∈ M}. Clearly, dbM is first-order computable

from M . We now show the following:

(i) for every repair r of dbM , the number of embeddings of q in r is at
most n; and

(ii) dbM has a repair with n embeddings if and only if M contains a match-
ing.

Claim 15. Let H be an atom of q. If θab (x) = 1 for every variable x ∈ Key(H),
then θab (y) = 1 for every variable y ∈ notKey(H).

Proof. Assume θab (x) = 1 for every variable x ∈ Key(H). Assume for the sake
of a contradiction that θab (y) ̸= 1 for some variable y ∈ notKey(H). Then, then

for some E ∈ {F,G}, we have E
q
⇝ y. It can be easily verified that E

q
⇝ x for

some variable x ∈ Key(H), contradicting that θab (x) = 1.

Claim 16. Let (a, b) ∈M . Then,

• for every x ∈ Key(F ), θab (x) ∈ {a, 1};

• for every x ∈ Key(G), θab (x) ∈ {b, 1}.

Proof. Easy.

Claim 17. Let µ be a valuation over vars(q) such that (dbM , µ) |= q. Let

(a, b) ∈M such that µ(F ) = θab (F ). For every H ∈ q \ {F} such that F
q
⇝ H,

there exists a′ ∈ A such that µ(H) = θa
′

b (H).

Proof. Let H ∈ q \ {F} such that F
q
⇝ H. Then there is a sequence

(H0, x1, H1, x2, H2, . . . , Hi, xi+1, Hi+1, . . . , xℓ, Hℓ)

where for every i ∈ {1, 2, . . . , ℓ},

• Hi is an atom of q, with H0 = F and Hℓ = H;

• F
q
⇝ xi; and

• xi ∈ vars(Hi−1) ∩ vars(Hi).

We show, by induction on increasing i = 0, . . . , ℓ, that for every i ∈ {0, 1, . . . , ℓ},
there exists ai ∈ A such that µ(Hi) = θaib (Hi). The basis of the induction,
i = 0, holds vacuously true by choosing a0 = a. For the induction step,
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i → i + 1, the induction hypothesis is that there there exists ai ∈ A such
that µ(Hi) = θaib (Hi). Since F

q
⇝ xi+1, we have µ(xi+1) ∈ {b, (ai, b)}. Since

xi+1 ∈ vars(Hi+1) and µ(Hi+1) ∈ dbM , it follows that there is ai+1 ∈ A such
that µ(Hi+1) = θ

ai+1

b (Hi+1). This concludes the proof of Claim 17

Claim 18. Let µ be a valuation over vars(q) such that (dbM , µ) |= q. Let

(a, b) ∈M such that µ(G) = θab (G). For every H ∈ q \ {G} such that G
q
⇝ H,

there exists b′ ∈ B such that µ(H) = θab′(H).

Proof. Symmetrical to the proof of Claim 17.

Claim 19. Let µ be a valuation over vars(q) such that (dbM , µ) |= q. Then,
µ ∈ {θab | (a, b) ∈M}.

Proof. There is (a, b) ∈ M such that µ(F ) = θab (F ). We next argue that

(a, b) is unique. Indeed, there is a variable x ∈ Key(F ) such that G
q
⇝ x,

hence µ(x) = a or µ(x) = (a, b), implying that a is uniquely determined.

Furthermore, since F
q
⇝ G, there is a variable y ∈ notKey(F ) such that F

q
⇝ y,

hence µ(y) = b or µ(y) = (a, b), implying that b is uniquely determined.
By symmetrical reasoning, there is a unique (a′, b′) ∈M such that µ(G) =

θa
′

b′ (G). Since F
q
⇝ G, it follows by Claim 17 that there exists a′ such that

µ(G) = θa
′

b (G). Consequently, b = b′. By symmetrical reasoning a = a′.
Consequently, µ(G) = θab (G).

Finally, let H ∈ q \ {F,G}. Then,

• if F
q
⇝ H and G

q
⇝ H, then µ(H) = θab (H). This follows from Claims 17

and 18.

• if F
q
⇝ H and G

q

̸⇝ H, then µ(H) = θa0b for every (a0, b) ∈ M . This
follows from Claims 17 and the observation that no H-fact contains con-
stants from A;

• if F
q

̸⇝ H and G
q
⇝ H, then µ(H) = θab0 for every (a, b0) ∈ M . This

follows from Claims 18 and the observation that no H-fact contains con-
stants from B; and

• if F
q

̸⇝ H and G
q

̸⇝ H, then µ(H) = θa0b0 for every (a0, b0) ∈ M . This
follows from the observation that that no H-fact contains constants other
than 1.

It follows µ(H) = θab (H). This concludes the proof of Claim 19.
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Claim 20. Let (a1, b1), (a2, b2) ∈ M . Let r be a repair of dbM such that
(r, θa1b1 ) |= q and (r, θa2b2 ) |= q. Then,

• if a1 = a2, then b1 = b2; and

• if b1 = b2, then a1 = a2.

Proof. We show the first item (the proof of the second item is identical). Let
a1 = a2. Let a := a1. Let r be a repair of dbM such that θab1(q) ⊆ r and
θab2(q) ⊆ r, hence θab1(F ) ∈ r and θab2(F ) ∈ r. From Claim 16, it follows that
the facts θab1(F ) and θab2(F ) are key-equal, and hence are equal because they

belong to the same repair. Since F
q
⇝ G, there exists a variable y ∈ notKey(F )

such that F
q
⇝ y, hence θab1(y) ∈ {b1, (a, b1)} and θab2(y) ∈ {b2, (a, b2)}. From

θab1(F ) = θab2(F ), it follows θab1(y) = θab2(y), hence b1 = b2.

Proof of (i). Immediate from Claims 19 and 20.

Proof of (ii). Assume that dbM has n distinct embeddings. By Claim 19,

there exists M ′ ⊆ M with |M ′| = n such that the set of embeddings in dbM

is {θab | (a, b) ∈M
′}. By Claim 20, M ′ is a matching. Conversely, assume that

M ′ ⊆ M is a matching, and let r :=
⋃
{θab (q) | (a, b) ∈ M

′}. It suffices now
to show that r is consistent. To this end, let H be an atom of q with relation
name RH . We consider all possibilities:

• If neither F nor G attacks H, then the RH -relation of r is consistent by
Claim 15.

• If both F and G attack H, then there is v ∈ Key(H) such that for
every (a, b) ∈M ′, θab (v) = (a, b), hence no two distinct RH -facts of r are
key-equal.

• If F
q
⇝ H but G

q

̸⇝ H, which includes the case H = G, then for all v ∈
vars(H) and (a, b) ∈ M ′, θab (v) ∈ {b, 1}. Moreover, there is v ∈ Key(H)
such that for every (a, b) ∈M ′, θab (v) = b. It follows that no two distinct
RH -facts of r are key-equal.

• The case G
q
⇝ H but F

q

̸⇝ H is symmetrical to the previous one.

Consequently, r |= K(q).
We now show how to treat the case where r ̸= 1. The easier case is where r

is a constant distinct from 0, or r is a variable such that F
q

̸⇝ v and G
q

̸⇝ v. We
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treat the difficult case where r is a numerical variable such that either F
q

̸⇝ r

or G
q

̸⇝ r (or both). Assume F
q
⇝ r and G

q
⇝ r (the other cases are similar).

In this case, let m1,m2, . . . ,mk enumerate all elements of M . We encode every
mi by 1+ 1

2i
. A repair with j embeddings (but not j+1 embeddings) will yield

a sum s such that j < s ≤ j + (12 + 1
4 + . . . + 1

2j
) < j + 1. It follows that the

number of embeddings is ⌊s⌋. This concludes the proof of Lemma 7.4.1.
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