
ar
X

iv
:2

50
3.

04
75

9v
2

 [
cs

.L
O

]
 3

0
Ju

n
20

25

Games with ω-Automatic Preference Relations
Véronique Bruyère #Ñ

Université de Mons (UMONS), Belgium

Christophe Grandmont # Ñ

Université de Mons (UMONS), Belgium
Université libre de Bruxelles (ULB), Belgium

Jean-François Raskin # Ñ

Université libre de Bruxelles (ULB), Belgium

Abstract
This paper investigates Nash equilibria (NEs) in multi-player turn-based games on graphs, where
player preferences are modeled as ω-automatic relations via deterministic parity automata. Unlike
much of the existing literature, which focuses on specific reward functions, our results apply to any
preference relation definable by an ω-automatic relation. We analyze the computational complexity
of determining the existence of an NE (possibly under some constraints), verifying whether a given
strategy profile forms an NE, and checking whether a specific outcome can be realized by an NE.
When a (constrained) NE exists, we show that there always exists one with finite-memory strategies.
Finally, we explore fundamental properties of ω-automatic relations and their implications in the
existence of equilibria.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Software
and its engineering → Formal methods; Theory of computation → Solution concepts in game theory;
Theory of computation → Exact and approximate computation of equilibria

Keywords and phrases Games played on graphs, Nash equilibrium, ω-automatic relations, ω-
recognizable relations, constrained Nash equilibria existence problem

Funding This work has been supported by the Fonds de la Recherche Scientifique – FNRS under
Grant n° T.0023.22 (PDR Rational).
Jean-François Raskin: Supported by Fondation ULB (https://www.fondationulb.be/en/) and the
Thelam Fondation.

1 Introduction

Non-zero-sum games on graphs provide a powerful framework for analyzing rational behavior
in multi-agent systems, see, e.g., [11, 12, 16, 26, 31, 34, 37]. By modeling settings where agents
have individual objectives, this approach captures the complexity of real-world scenarios
where the interests of agents (modeled by players) are neither fully aligned nor entirely
antagonistic. It enables the study of solution concepts such as Nash and subgame-perfect
equilibria [40, 41], offering insight into strategic decision making. This, in turn, can aid
in designing systems that anticipate and respond to rational behaviors, enriching reactive
synthesis methodologies.

In this context, specifying player objectives [30] is central to reasoning about strategies
and equilibria. In qualitative games, objectives determine whether an execution (an infinite
path in the graph) is winning or losing for a given player. In quantitative games, executions
are instead assigned numerical values, allowing players to compare and rank them based
on accumulated rewards, with higher values being preferable. From this perspective, the
qualitative setting can be viewed as a special case where the values are Boolean, typically
captured by parity acceptance conditions, which encompass all ω-regular objectives. In the
quantitative setting, a variety of reward functions have been explored, including total sum,
limsup and liminf, discounted-sum, and hybrid models such as cost-optimal reachability. For

mailto:veronique.bruyere@umons.ac.be
https://informatique-umons.be/bruyere-veronique/
https://orcid.org/0000-0002-9680-9140
mailto:christophe.grandmont@umons.ac.be
https://chrisgdt.github.io/
https://orcid.org/0009-0009-4573-0123
mailto:jean-francois.raskin@ulb.be
https://verif.ulb.ac.be/jfr/
https://orcid.org/0000-0002-3673-1097
https://www.fondationulb.be/en/
https://arxiv.org/abs/2503.04759v2

2 Games with ω-Automatic Preference Relations

each of these functions, dedicated techniques have been developed to design algorithms that
analyze optimal strategies and, more broadly, equilibria.

However, these solutions are often tightly coupled to the specific reward function used,
which limits their generality. When a new reward function or combination thereof is
introduced, significant technical effort is required, as existing techniques rarely transfer across
different reward models. This lack of general results—where solutions remain specialized to
the underlying evaluation model, preventing knowledge transfer between different classes of
objectives—has been noted in related contexts such as quantitative verification (see, e.g., [3]).

To address this, we propose a general approach based on automata-based preference
relations to compare infinite paths in the graph. This framework provides a structured and
unified method for reasoning about strategies and equilibria across various reward models. A
similar use of automata-based preference relations has been explored in [3, 5, 10], and here
we demonstrate how this idea can be adapted to fit the non-zero-sum game setting.

Contributions. Our contributions center on using ω-automatic relations on infinite words [49],
as introduced in [27], to define a general framework for preference relations over paths in
game graphs, thereby establishing a generic method to compare executions for players in
non-zero-sum games. These relations are specified by deterministic parity automata that
read pairs (x, y) of words synchronously and accept them whenever y is preferred to x.

Our main contributions focus on the computational complexity of four key problems
related to NEs in non-zero-sum games [40] with ω-automatic preference relations. First, we
study the problem of verifying whether a given strategy profile, specified by Mealy machines,
one per strategy, constitutes an NE in the given game. We prove that this problem is
PSPACE-complete (Theorem 3). Second, we examine whether a lasso-shaped path (i.e., a
regular path) is the outcome of an NE, showing that this problem is in NP ∩ coNP and Parity-
hard (Theorem 4). Third, we establish the existence of games without any NE, motivating
the fundamental problem of determining whether a given game admits at least one NE. This
problem turned out to be particularly challenging, and we reduce it to a three-player zero-sum
game with imperfect information. We provide an algorithm for solving this problem with
exponential complexity in the size of the graph, the parity automata defining the preference
relation, and the number of their priorities, and doubly exponential complexity in the number
of players. However, since the number of players is a natural parameter that tends to be
small in practical scenarios,1 we refine this result by proving that for a fixed number of
players, the problem lies in EXPTIME and is PSPACE-hard (Theorem 5). In addition, our
approach has the advantage of being modular and therefore easily adapts to question the
existence of a constrained NE. When we attach one constraint to each player given as a
lasso-shaped path and ask for an NE whose outcome is preferred to any of those constraints,
the adapted algorithm keeps the same complexity except that it becomes doubly exponential
in the number of priorities of the parity conditions. Yet the number of priorities is often
small2 and when we fix it and the number of players, the algorithm remains in EXPTIME
and PSPACE-hard (Theorem 6). Note that our approach allows to show that when there
exists an (constrained) NE, there exists one composed of finite-memory strategies.

1 In robotic systems or in security protocols, the number of agents is usually limited to a few. For example,
in a security protocol, the players are Alice and Bob who exchange messages, the trusted third party,
and a fourth player for the network (see, e.g., [23, 33])

2 important classes of objectives such as Büchi, co-Büchi, reachability, and safety require at most three
priorities

V. Bruyère, C. Grandmont, and J.-F. Raskin 3

Additionally, we analyze the algorithmic complexity of verifying whether an ω-automatic
relation satisfies the axioms of a strict partial order (irreflexivity and transitivity) or of a
preorder (reflexivity and transitivity) which are two classical requirements for a relation to
model preferences. We show that these problems are NL-complete (Proposition 9). Finally,
we show that when the ω-automatic preference relations are all ω-recognizable (a strict
subclass of ω-automatic relations where the two input words can be processed independently)
and preorders, the existence of at least one NE is always guaranteed (Theorem 11).

Related work. A well-established hierarchy of rational relations holds for both finite and
infinite words [19, 47]. The ω-automatic relations — also called synchronized ω-rational
relations — were first studied in [27]. Some decision problems about ω-automatic and
ω-recognizable relations were solved in [39] and improved in [4]. The study of automatic
structures has also led to results involving rational relations, notably within first-order logic
(see, e.g., [6, 29, 35, 45]).

The problems we study in this paper were widely investigated in the literature for specific
reward functions, including functions that mix different objectives, see, e.g., [8, 32, 50, 51].
There are also works that study these problems across large classes of reward functions
rather than individual ones, or that consider general notions of preference relations. For
instance, in [14], the authors prove the existence of finite-memory NEs for all cost-semi-linear
reward functions. In [9], a complete methodology is developed to solve the (constrained)
NE existence problem, thanks to the concept of suspect game, encompassing all reward
functions definable by a class of monotone circuits over the set of states that appear (finitely
or infinitely often) along paths in a game graph. The preference relations studied in [9] are all
ω-automatic. In [24], the authors study NEs for games with a reward function that, given a
finite set X of objectives of the same type, associates an integer with each subset of satisfied
objectives of X. Again, if the objectives of X are ω-regular, the reward functions of [24]
lead to ω-automatic preference relations. The existence of NEs is guaranteed within a broad
setting, both in [31] and [38], without relying on an automata-based approach, however with
no complexity result about the constrained NE existence problem. In case of games with
ω-recognizable preference relations, our proof that NEs always exist relies on the technique
developed in [31].

The results we obtain with games with ω-recognizable preference relations cover a large
part of the games studied classically. In addition, our setting allows any combinations of
objectives as soon as they are expressible by automata. However, it does not cover games
with mean-payoff or energy objectives. Indeed, in the first case, it is proved in [3] that
the related preference relation is not ω-automatic; and in the second case, the constrained
NE existence problem is undecidable [13]. Note that the general concepts of ω-automatic
and ω-recognizable relations have also been used to study imperfect information in games
in [5, 10] and formal verification of quantitative systems in [3].

2 Preliminaries

In this section, we introduce the useful definitions of games with ω-automatic preference
relations and give several illustrative examples.

Automatic Relations. Let Σ be a fixed finite alphabet. We consider binary relations
R ⊆ Σω × Σω on infinite words over Σ. The relation R is ω-automatic if it is accepted by a
deterministic finite parity automaton over the alphabet Σ × Σ, that is, R is an ω-regular

4 Games with ω-Automatic Preference Relations

language over Σ × Σ. The automaton reads pairs of letters by advancing synchronously on
the two words. This behavior is illustrated in Figure 1 below. A relation R is ω-recognizable
if it is equal to ∪ℓ

i=1Xi × Yi where Xi, Yi ⊆ Σω are ω-regular languages over Σ [39]. Any
ω-recognizable relation is ω-automatic [47].

We suppose that the reader is familiar with the usual notion of deterministic parity
automaton (DPA) used to accept ω-automatic relations [39]. A run is accepting if the
maximum priority seen infinitely often is even. In this paper, we also use other classical
notions of automata: deterministic Büchi automata (DBA) and Rabin automata. See,
e.g., [30] for general definitions, or [2, 36] for deeper details. We also need the concept of
generalized parity automaton which is an automaton with a positive3 Boolean combination
of parity conditions. Given an automaton A, its size |A| is its number of states.

Games with Preference Relations. An arena is a tuple A = (V, E, P, (Vi)i∈P) where V is
a finite set of vertices, E ⊆ V × V is a set of edges, P is a finite set of players, and (Vi)i∈P
is a partition of V , where Vi is the set of vertices owned by player i. We assume, w.l.o.g.,
that each v ∈ V has at least one successor, i.e., there exists v′ ∈ V such that (v, v′) ∈ E. We
define a play π ∈ V ω (resp. a history h ∈ V ∗) as an infinite (resp. finite) sequence of vertices
π0π1 . . . such that (πk, πk+1) ∈ E for any two consecutive vertices πk, πk+1. The set of all
plays of an arena A is denoted PlaysA ⊆ V ω, and we write Plays when the context is clear.
The length |h| of a history h is the number of its vertices. The empty history is denoted ε.

A game G = (A, (Ri)i∈P) is an arena equipped with ω-automatic relations Ri over the
alphabet V , one for each player i, called his preference relation. For any two plays π, π′,
player i prefers π′ to π if (π, π′) ∈ Ri. In the sequel, we write ≺i instead of Ri and for all
x, y ∈ V ω, x ≺i y, or y ≻i x, instead of (x, y) ∈ Ri. We also say that x is maximal (resp.
minimal) for ≺i if for all y ∈ V ω, we have x ̸≺i y (resp. y ̸≺i x). Below we give various
examples of games whose preference relations are all strict partial orders. At this stage, ≺i

is just an ω-automatic relation without any additional hypotheses. Such hypotheses will be
discussed in Section 6.

Given a play π and an index k, we write π≥k the suffix πkπk+1 . . . of π. We denote the
first vertex of π by first(π). These notations are naturally adapted to histories. We also write
last(h) for the last vertex of a history h ̸= ε. We can concatenate two non-empty histories h1
and h2 into a single one, denoted h1 · h2 or h1h2 if (last(h1), first(h2)) ∈ E. When a history
can be concatenated to itself, we call it cycle. A play π = µνν · · · = µ(ν)ω, where µν is a
history and ν a cycle, is called a lasso. The length of π is then the length of µν, denoted |π|.4

Let A be an arena. A strategy σi : V ∗Vi → V for player i maps any history h ∈ V ∗Vi to
a successor v of last(h), which is the next vertex that player i chooses to move after reaching
the last vertex in h. A play π = π0π1 . . . is consistent with σi if πk+1 = σi(π0 . . . πk) for all
k ∈ N such that πk ∈ Vi. Consistency is naturally extended to histories. A tuple of strategies
σ = (σi)i∈P with σi a strategy for player i, is called a strategy profile. The play π starting
from an initial vertex v0 and consistent with each σi is denoted by ⟨σ⟩v0 and called outcome.

A strategy σi for player i is finite-memory [30] if it can be encoded by a Mealy machine
M = (M, m0, αU , αN) where M is the finite set of memory states, m0 ∈ M is the initial
memory state, αU : M × V → M is the update function, and αN : M × Vi → V is the next-
move function. Such a machine defines the strategy σi such that σi(hv) = αN (α̂U (m0, h), v)

3 The negation is not allowed in the Boolean combination.
4 To have a well-defined length for a lasso π, we assume that π = µ(ν)ω with µν of minimal length.

V. Bruyère, C. Grandmont, and J.-F. Raskin 5

for all histories hv ∈ V ∗Vi, where α̂U extends αU to histories as expected. A strategy σi is
memoryless if it is encoded by a Mealy machine with only one state.

We suppose that the reader is familiar with the concepts of two-player zero-sum games
with ω-regular objectives and of winning strategy [25, 30].

Generality of the ω-Automatic Preference Framework. Let us show that the above notion
of game G = (A, (≺i)i∈P) encompasses many cases of classic games and more. We begin
with games where each player i has an ω-regular objective Ωi ⊆ V ω, such as a reachability or
a Büchi objective [25, 30]. In this case, the preference relation ≺i ⊆ V ω × V ω is defined by
x ≺i y if and only if Ωi(x) < Ωi(y), where Ωi is seen as a function Ωi : V ω → {0, 1}. As Ωi is ω-
regular, it follows that ≺i is ω-automatic. For instance, given a target set T ⊆ V , the first DPA
of Figure 1 accepts ≺i when Ωi is a reachability objective {x = x0x1 . . . ∈ V ω | ∃k, xk ∈ T};
the second DPA accepts ≺i when Ωi is a Büchi objective {x ∈ V ω | Inf(x) ∩ T ̸= ∅}, where
Inf(x) is the set of vertices seen infinitely many times in x.

More general preference relations can be defined from several ω-regular objectives
(Ωj

i)1≤j≤n for player i. With each x ∈ V ω is associated the payoff vector Ω̄i(x) =
(Ω1

i (x), . . . , Ωn
i (x)) ∈ {0, 1}n. Given a strict partial order < on these payoff vectors, we define

a preference relation ≺i such that x ≺i y if and only if Ω̄i(x) < Ω̄i(y) [9]. There exist several
strict partial orders on the payoff vectors, like, for example, the lexicographic order, or the
counting order, i.e., Ω̄i(x) < Ω̄i(y) if and only if |{j | Ωj

i (x) = 1}| < |{j | Ωj
i (y) = 1}|. One

can check that all preference relations studied in [9] are ω-automatic.
Let us move on to classical quantitative objectives, such as quantitative reachability,

limsup or discounted-sum objectives [25, 30]. In this case, an objective for player i is now a
function Ωi : V ω → Q ∪ {±∞}.5 We then define a preference relation ≺i such that x ≺i y if
and only if Ωi(x) < Ωi(y). Bansal et al. showed in [3] that such a relation is ω-automatic for
a limsup objective and for a discounted-sum objective with an integer discount factor. They
also proved that ≺i is not ω-automatic for a mean-payoff objective. The first DPA of Figure 1
where the label on the loop on the vertex with priority 0 is replaced by (∗, ∗), accepts a
preference relation ≺i defined from a min-cost-reachability objective as follows: x ≺i y if
and only if there exists ℓ such that yℓ ∈ T and, for all k, xk ∈ T ⇒ ∃ℓ < k, yℓ ∈ T (player i

prefers plays with fewer steps to reach the target set T). The variant where player i prefers
to maximize the number of steps to reach T ,6 called max-reward-reachability, is accepted by
the third DPA in Figure 1.

Hence, there are many ways to envision ω-automatic relations. Note that in our framework,
the preference relations ≺i of a game G can vary from one player to another, where each
relation ≺i can be defined from a combination of several objectives (see Example 1 below).

3 Decision Problems about Nash Equilibria

In this section, we state the decision problems studied in this paper and we provide our main
results regarding their complexity classes.

Studied Problems. A Nash Equilibrium (NE) from an initial vertex v0 is a strategy profile
(σi)i∈P such that for all players i and all strategies τi of player i, we have ⟨σ⟩v0 ̸≺i ⟨τi, σ−i⟩v0 ,
where σ−i denotes (σj)j∈P\{i}. So, NEs are strategy profiles where no single-player has an

5 It can also be a function Ω : Eω → Q ∪ {±∞}.
6 as each step corresponds to a reward.

6 Games with ω-Automatic Preference Relations

1 0
¬T, T

¬T, ¬T ¬T, ∗

1 3

2

T, ∗

¬T, T

¬T, ¬T

¬T,¬T

T, ∗

¬T, T

¬T, ¬T

¬T, T

T, ∗

1

1 0

0

T, ¬T

¬T, T

¬T, ¬T

∗, ¬T
∗, T

∗, ∗

¬T, ∗

Figure 1 DPAs accepting preference relations, corresponding respectively to reachability, Büchi,
and max-reward-reachability objectives. The priorities are indicated inside each state, and an edge
label T , ¬T , or ∗ means that there is an edge for each label v ∈ T , v ∈ V \T , and v ∈ V , respectively.

v0 v3

v1

v2

Figure 2 An arena with round (resp. square) vertices owned by player 1 (resp. player 2).

incentive to unilaterally deviate from his strategy. When there exists a strategy τi such
that ⟨σ⟩v0 ≺i ⟨τi, σ−i⟩v0 , we say that τi (or, by notation abuse, ⟨τi, σ−i⟩v0) is a profitable
deviation for player i. The set of players P\{i} is called coalition −i, sometimes seen as one
player opposed to player i.

▶ Example 1. Let us illustrate the NE definition with two examples. We consider the
two-player arena depicted in Figure 2 such that player 2 owns only v3 and player 1 owns all
other vertices. The preference relation ≺1 for player 1 is defined from a min-cost-reachability
objective with a target set T1 = {v1}. The preference relation ≺2 for player 2 is defined
from a Büchi objective with a target set T2 = {v2}. Let us consider the strategy profile
σ = (σ1, σ2) defined by two memoryless strategies such that σ1(v0) = v3 and σ2(v3) = v0.7 It
is an NE from the initial vertex v0 with outcome ⟨σ⟩v0 = (v0v3)ω. Player 1 has no profitable
deviation if player 2 sticks on his strategy σ2: it is not possible to visit vertex v1. Player 2
has also no profitable deviation. There exists another NE σ′ = (σ′

1, σ′
2) from v0 such that

σ′
1(hv0) = v2 if the history h visits v1, and to σ′

1(hv0) = v3 otherwise,
σ′

2 is the memoryless strategy such that σ′
2(v3) = v1.

In that case, the NE outcome is ⟨σ′⟩v0 = v0v3v1(v0v2)ω. Note that both players prefer the
second NE as ⟨σ⟩v0 ≺i ⟨σ′⟩v0 for i = 1, 2.

Let us slightly modify the relation of player 1 such that ≺1 is defined from a lexicographic
order using two objectives: a min-cost-reachability objective Ω1

1 with T1 and a Büchi
objective Ω2

1 with T2. We have x ≺1 y if and only if (Ω1
1(x) < Ω1

1(y)) or (Ω1
1(x) = Ω1

1(y) and
Ω2

1(x) < Ω2
1(y)). If we consider the two previous strategy profiles, σ′ is still an NE, but σ is

no longer an NE as player 1 has a profitable deviation. Indeed, with the memoryless strategy
τ1 such that τ1(v0) = v2, we get ⟨σ⟩v0 = (v0v3)ω ≺1 ⟨τ1, σ2⟩v0 = (v0v2)ω. ⌟

▶ Example 2. In this example, we show that there does not always exist an NE in games
with ω-automatic preference relations. Consider the simple one-player game G with two
vertices v0, v1, the edges (v0, v0), (v0, v1), (v1, v1), and whose preference relation ≺1 is defined
from a max-reward-reachability objective with a target set T = {v1}. This game has no NE

7 As v1 and v2 have only one successor, the strategy is trivially defined for those vertices.

V. Bruyère, C. Grandmont, and J.-F. Raskin 7

from the initial vertex v0.8 Indeed, if the strategy of player 1 is to loop on v0, then he has a
profitable deviation by going to T at some point, and if his strategy is to loop k times in v0
and then go to T , then he has a profitable deviation by looping one more time in v0 before
going to T . ⌟

In this paper, we investigate the following problems.

▶ Problems. The NE checking problem is to decide, given a game G, an initial vertex v0,
and a strategy profile σ = (σi)i∈P where each strategy σi is defined by a Mealy machine
Mi, whether σ is an NE from v0 in G.
The NE outcome checking problem is to decide, given a game G and a lasso π, whether π

is the outcome of an NE in G.
The NE existence problem is to decide, given a game G and an initial vertex v0, whether
there exists an NE from v0 in G.
The constrained NE existence problem is to decide, given a game G, an initial vertex
v0, and a lasso πi for each player i, whether there exists an NE from v0 in G with an
outcome ρ such that πi ≺i ρ for all players i ∈ P.

Main Results. Let us state our main results. We consider games G = (A, (≺i)i∈P) on the
arena A = (V, E, P, (Vi)i∈P), where each preference relation ≺i ⊆ V ω × V ω is ω-automatic.
We denote by Ai the DPA accepting ≺i and by {0, 1, . . . , di} its set of priorities. We say
that a problem L is Parity-hard if there exists a polynomial reduction from the problem of
deciding the winner of a two-player zero-sum parity game to L.

▶ Theorem 3. The NE checking problem is PSPACE-complete.

▶ Theorem 4. The NE outcome checking problem is in NP ∩ coNP and Parity-hard.

▶ Theorem 5. The NE existence problem is exponential in |V |, Πi∈P |Ai|, and Σi∈Pdi, thus
doubly exponential in |P|. If the number of players is fixed (resp. for a one-player game),
this problem is in EXPTIME and PSPACE-hard (resp. PSPACE-complete).

▶ Theorem 6. The constrained NE existence problem, with the constraints given by lassoes
(πi)i∈P , is exponential in |V |, Πi∈P |Ai|, Πi∈P |πi|, and doubly exponential in Σi∈Pdi, thus
also doubly exponential in |P|. If the number of players and each di are fixed (resp. for a
one-player game), this problem is in EXPTIME and PSPACE-hard (resp. PSPACE-complete).

The proofs of these theorems are detailed in the next two sections. In Section 7, we
reconsider the studied problems in the special case of games with ω-recognizable relations.

4 NE Checking and NE Outcome Checking Problems

We first prove Theorem 3, stating the PSPACE-completeness of the NE checking problem.
The hardness is limited to a sketch of proof, the full technical details are given in Appendix A.

Proof of Theorem 3. We begin with the membership result. Given the Mealy machines
Mi = (Mi, mj

0, αi
U , αi

N), i ∈ P, and the strategies σi they define, we have to check whether
σ = (σi)i∈P is an NE from a given initial vertex v0. Equivalently, we have to check whether

8 A similar example is given in [38].

8 Games with ω-Automatic Preference Relations

vinit (q1, 1)

(qm, n)

(q1, n)

(qm, n) if qi ∈ {qaccept, qreject}

vendConnected part

Figure 3 The game used for PSPACE-hardness of Theorem 3.

there exists a strategy τi for some player i such that ⟨σ⟩v0 ≺i ⟨τi, σ−i⟩v0 (in which case σ is
not an NE). That is, whether there exists i such that the language

Li = {(x, y) ∈ V ω × V ω | x ≺i y, x = ⟨σ⟩v0 , y consistent with σ−i and starting at v0}

is non-empty. We are going to describe a generalized DPA Bi, with a conjunction of three
parity conditions, that accepts Li. We proceed as follows.
1. The set {(x, y) ∈ V ω × V ω | x ≺i y} is accepted by the given DPA Ai that accepts ≺i.
2. The outcome ⟨σ⟩v0 is a lasso obtained from the product of the arena A and all Mj . We

can define a DPA, of size exponential in the number of players, that only accepts ⟨σ⟩v0 .
3. Finally, consider the product A′ of the arena A with all Mj , with j ≠ i. We denote by

V ′ the set of vertices of A′, where each vertex is of the form (v, (mj)j ̸=i), with v ∈ V

and mj a memory state of Mj . The set of plays y consistent with σ−i and starting
at v0 is accepted by a DPA whose set of states is V ′ ∪ {s0} with s0, a new state, its
initial state, all those states with priority 0, and whose transition function δ is such
that δ((v, (mj)j ̸=i), v′) = (v′, (m′

j)j ̸=i) for αj
U (mj , v) = m′

j , and δ(s0, v0) = (v0, (mj
0)j ̸=i).

Note that δ is a function as each Mj is deterministic and that this DPA is of exponential
size in the number of players.

The announced automaton Bi is the product of the automata defined in the previous steps. It
has exponential size and can be constructed on the fly, hence leading to a PSPACE algorithm.
Indeed, to check whether Li is non-empty, we guess a lasso µ(ν)ω and its exponential length,
and check whether the guessed lasso is accepted by Bi. This only requires a polynomial space
as the lasso is guessed on the fly, state by state, while computing the maximum priority
occurring in ν for each priority function, and the length |µν| is stored in binary. Finally, we
repeat this procedure for each automaton Bi, i ∈ P.

For the PSPACE-hardness, we use a reduction from the membership problem for linear
bounded deterministic Turing machines (LBTMs), known to be PSPACE-complete [28], to
the complement of the NE checking problem. Recall that an LBTM T has a limited memory
such that the tape head must remain in the n cells that contain the input word w.

We give only a sketch of proof. First, let us show how we encode any configuration of the
LBTM. For the current word written on the tape, we associate one player per cell, and we
say that the letter in the i-th cell, i ∈ {1, . . . , n}, is the current memory state of the Mealy
machine Mi of player i. Then we define an arena where each vertex is of the form (q, i), for
a state q of T and the current position i of the tape head, and such that player i owns all
the vertices (q, i). Second, we simulate transitions of the LBTM with the Mealy machines:
Mi can describe the next vertex according to its memory state. For example, from vertex
(q, i) and memory state a for player i, Mi moves to vertex (q′, i + 1) and updates its memory
state to a′ if the LBTM says that from state q and letter a, the tape head must write a′ and
go right, and that the next state is q′.

This construction allows us to completely simulate the LBTM with an arena, described
in Figure 3. We add an extra player n + 1 who decides whether to let the other players follow

V. Bruyère, C. Grandmont, and J.-F. Raskin 9

their Mealy machine to simulate the LBTM on the given word, or go to a sink state #. With
his preference relation ≺n+1, player n + 1 prefers a play visiting a vertex (qaccept, i), for any
i, to any other play. His Mealy machine goes from vinit to #. Thus, the strategy profile
given by all Mealy machines is not an NE if and only if it is profitable for player n + 1 to let
the other players simulate the LBTM on w, i.e., this simulation visits qaccept. ◀

Let us now prove Theorem 4 stating the complexity of the NE outcome checking problem.

Proof of Theorem 4. Let us begin with the membership result. Given a lasso π starting at
v0, checking whether π is an NE outcome amounts to finding a strategy profile σ = (σi)i∈P
with outcome π such that for all i ∈ P and all strategies τi, we have π ̸≺i ⟨τi, σ−i⟩v0 . In
other words, given σ a strategy profile partially defined such that π = ⟨σ⟩v0 , our goal is to
check whether, for all i, there exists σ−i that extends this partially defined profile such that
for all τi, π ̸≺i ⟨τi, σ−i⟩v0 . For this purpose, we explain the algorithm in NP ∩ coNP for one
given player i ∈ P, and then repeat it for the other players.

Let us consider Li = {x ∈ V ω | π ̸≺i x}. This set is accepted by a DPA Bi constructed as
the product of the complement of Ai and the lasso π. Clearly, the size of Bi is polynomially
bounded in the sizes of Ai and π. So, Li contains all the deviations that are not profitable for
player i compared to π. Now, it suffices to decide whether the coalition −i has a strategy σ−i

against player i to ensure that every play consistent with σ−i lies in Li. As Li is accepted by
the DPA Bi, this amounts to solving a zero-sum parity game Hi (of polynomial size) defined
directly from Bi. The details are as follows.

Suppose that Bi has a set Q of states, an initial state q0, and a transition function
δBi : Q × V → Q. Let us define the game Hi, where the two players are A and B. Its set of
vertices is the Cartesian product V × Q, such that player A (resp. player B) controls the
vertices (v, q) with v ∈ Vi (resp. v ̸∈ Vi). In other words, A has the role of player i while
B has the role of the coalition −i. As Bi is deterministic, it is seen as an observer, and
its states are information added to the vertices of V . Hence, the edges of Hi are of the
form ((v, q), (v′, q′)) such that (v, v′) ∈ E and q′ = δBi

(q, v). We define a parity objective for
player B as follows: the priority of each vertex (v, q) of Hi is equal to the priority of q in
Bi. Consequently, a play in Hi is won by player B if and only if the projection on its first
component belongs to Li. For the constructed game Hi, from every vertex (v, q), we can
decide in NP ∩ coNP which player wins in Hi together with a memoryless winning strategy
for that player [30].

To obtain an algorithm in NP, it remains to check whether π, seen as a lasso in Hi, only
crosses vertices (v, q) that are winning for player B whenever v ∈ Vi. Indeed, in this case,
we can deduce from a winning strategy τB from (v, q) for player B, a strategy σ−i for the
coalition −i such that for all τi, π ̸≺i ⟨τi, σ−i⟩v0 . Similarly, to obtain an algorithm in coNP,
we check whether π in Hi crosses at least one vertex (v, q) that is winning for player A and
deduce a winning strategy for player i.

We continue with the hardness result, with a reduction from the problem of deciding
whether player 1 has a winning strategy in a zero-sum parity game. We reduce this problem
to the complement of the NE outcome checking problem, to establish its parity-hardness. Let
H be a parity game with players 1 and 2, an arena A with V as set of vertices, an initial vertex
v0, and a priority function α : V → {0, . . . , d}. We construct a new game G = (A′, ≺1, ≺2)
with the same players, whose arena A′ is a copy of A with an additional vertex v′

0 owned by
player 1, with v0 and itself as successors (see Figure 4). Given V ′ = V ∪ {v′

0}, the preference
relation ≺2 is empty, accepted by a one-state DPA, while the preference relation ≺1 is defined
as follows: x ≺1 y if and only if x = (v′

0)ω and y = (v′
0)my′, with m ≥ 0 and y′ is a play in

10 Games with ω-Automatic Preference Relations

v′
0

A1
H

q0

v0

G

v′
0, v0

v′
0, v′

0 H

v0
v′

0, v
v

Figure 4 The game G and the DPA
A1 accepting ≺1 for the reduction of
Theorem 4.

v

P1: v → v′?

C accepts
v, (v, v′)?

C deviates with v → u

(where v ∈ Vj)

v′ u, j
P1: v′ → v′′?

...
P1: v′ → v′′?

v′, (v′, v′′)? u, j
C: u → u′(if u ∈ Vj)
P2: u → u′(if u′ /∈ Vj)

...

v′

v′′ u′, j

Figure 5 An illustration of the P1CP2 game intuition:
P1 observes the left part of a vertex (all v, v′, v′′), while C
and P2 represent the deviating player j and the coalition −j

in the right part (all u, u′). Given ρ = vv′v′′ . . . and
ρ′ = vuu′ . . . , P1 and P2 aim to ensure ρ ̸≺j ρ′.

H starting at v0 and satisfying the parity condition α. A DPA A1 accepting ≺1 is depicted
in Figure 4, it is constructed with a copy of the arena A and a new state q0 with priority 1.

The proposed reduction is correct. Indeed, suppose that π = (v′
0)ω is not an NE outcome.

As ≺2 is empty, there cannot be profitable deviations for player 2. This means that for each
strategy profile σ = (σ1, σ2) with outcome π, there exists a deviating strategy τ1 of player 1
such that π ≺1 ρ with ρ = ⟨τ1, σ2⟩v′

0
. Thus, by definition of ≺1, ρ is equal to (v′

0)mρ′ with ρ′

a winning play in H. Hence, transferred to H, we get that for each strategy σ′
2 of player 2,

there exists a strategy τ ′
1 of player 1 such that ⟨τ ′

1, σ′
2⟩v0 is winning. By determinacy, player 1

has thus a winning strategy in H from v0. The other direction is proved similarly, if player 1
has a winning strategy in H, then transferring this strategy to G gives a profitable deviation
from a strategy with outcome π. ◀

5 NE Existence and Constrained NE Existence Problems

This section is devoted to the NE existence problem and its constrained variant. We mainly
focus on the NE existence problem and explain at the end of the section how to take into
account the constraints imposed on the NE outcome.

To solve the NE existence problem, we adapt a recent approach proposed in [17]. The
idea is to reduce our problem to solving a three-player game with imperfect information.9
Let us first give some intuition (see also Figure 5) and then the formal definition. We use
a reduction to a game with three players: two Provers P1 and P2 and one Challenger C.
The two Provers aim to build an NE outcome ρ while Challenger contests that it is an NE
outcome: P1 has the task of building ρ edge by edge, while P2 has the task of showing that
the deviation ρ′ of player i proposed by C is not profitable, i.e., ρ ̸≺i ρ′. We need two Provers
(we cannot use a two-player zero-sum game), as the construction of ρ cannot depend on one
specific deviation and must be fixed, i.e., its construction cannot change according to the
deviation ρ′ to artificially force ρ ̸≺i ρ′. This also means that P1 has to build ρ without
knowing when C deviates: he has partial observation of the game, while C and P2 have

9 Although the underlying game structure of [17] is reused, the player roles and correctness arguments
differ entirely.

V. Bruyère, C. Grandmont, and J.-F. Raskin 11

perfect information. This game, called P1CP2 game, is articulated in two parts. The first
part consists of vertices where C does not deviate, where an action of P1 is to suggest an edge
(v, v′) to extend the current construction of ρ, and an action of C is either to accept it or to
deviate from ρ by choosing another edge (v, u) with u ̸= v′. Such a deviation corresponds to
a deviation by the player j who owns v, leading to the second part of the game. In this part,
the vertices must retain the construction of the play ρ, the construction of the deviation
ρ′, and the component j to identify the player who deviated: P1 continues to propose an
extension (v, v′) for ρ with no interaction with C, and C and P2, representing respectively
the deviating player j and the opposed coalition −j, interact to construct ρ′. When the
game stays in the first part, the objective of P1 is to produce an NE outcome ρ, and if it goes
in the second part, P1 has the same goal and the aim of P2 is to retaliate on the deviations
proposed by C to guarantee that ρ′ is not a profitable deviation. Hence, the vertices of the
P1CP2 game also store the current states of the DPAs accepting the preference relations, in
a way to compare the outcome ρ with the deviation ρ′.

We now proceed to the formal definition of the P1CP2 game. Suppose that we are given a
game G = (A, (≺i)i∈P) with A = (V, E, P, (Vi)i∈P) and v0 ∈ V as the initial vertex, and each
relation ≺i accepted by a DPA Ai. We denote each automaton as Ai = (Qi, q0

i , V × V, δi, αi)
with Qi its set of states, q0

i its initial state, V × V its alphabet, δi : Qi × (V × V) → Qi its
transition function, and αi : Qi → {0, 1, . . . , di} its priority function. The game

P1CP2(G) = (S, (SP1, SC, SP2), (AP1, AC, AP2), ∆, Obs, WP1P2)

is a three-player game with partial observation for P1, defined as follows.
The set S of vertices are of the form (v, j, u, (qi)i∈P) or (v, j, u, (qi)i∈P , (v, v′)) such that
v, u ∈ V , j ∈ P ∪ {⊥}, qi ∈ Qi, and (v, v′) ∈ E. Coming back to the intuition given
above, v is the current vertex of ρ, j is the deviating player (or ⊥ if C did not deviate
yet), u is the current vertex of ρ′ (if it exists, otherwise u = v), qi is the current state of
Ai while comparing ρ and ρ′.
Given that we are looking for an NE in G from some initial vertex v0, we consider the
initial vertex s0 = (v0, ⊥, v0, (q0

i)i) in the P1CP2 game.
The set S is partitioned as SP1 ∪ SC ∪ SP2 such that SP1 is composed of the vertices
(v, j, u, (qi)i), SC is composed of the vertices (v, j, u, (qi)i, (v, v′)) such that either j = ⊥
and v = u, or j ̸= ⊥ and u ∈ Vj , and SP2 is composed of the vertices (v, j, u, (qi)i, (v, v′))
such that j ̸= ⊥ and u ∈ V \Vj .
The set of actions10 is, respectively for each player, equal to: AP1 = {(v, v′) | (v, v′) ∈ E}
(P1 chooses an edge (v, v′) to extend the current construction of ρ) and AC = AP2 = V (C
and P2 choose the next vertex u of ρ′ in case C deviates, otherwise C accepts the vertex
v′ of the edge (v, v′) proposed by P1.)
The transition function is defined as follows:

for P1: for each s = (v, j, u, (qi)i) ∈ SP1 and each (v, v′) ∈ AP1, we have ∆(s, (v, v′)) =
(v, j, u, (qi)i, (v, v′)),
for C who has not yet deviated: for each s = (v, ⊥, v, (qi)i, (v, v′)) ∈ SC and each u ∈ AC
with (v, u) ∈ E, we have either u = v′ and ∆(s, u) = (v′, ⊥, v′, (q′

i)i) (which means that
C accepts the edge proposed by P1), or u ̸= v′, v ∈ Vj , and ∆(s, u) = (v′, j, u, (q′

i)i)
(which means that C starts deviating), with q′

i = δ(qi, (v, v)), for each i ∈ P, in both
cases, i.e., the states of the DPAs are updated.

10 We introduce actions in a way to easily define the transition function ∆.

12 Games with ω-Automatic Preference Relations

for C who has deviated and P2: for each s = (v, j, u, (qi)i, (v, v′)) and each u′ with
(u, u′) ∈ E, we have either u ∈ Vj and thus s ∈ SC, or u ∈ V \Vj and thus s ∈ SP2, and
in both cases, ∆(s, u′) = (v′, j, u′, (q′

i)i) with q′
i = δ(qi, (v, u)), for each i ∈ P.

The observation function Obs for P1
11 is such that Obs((v, j, u, (qi)i, (v, v′))) = (v, v′)

and Obs((v, j, u, (qi)i)) = v. When s, s′ ∈ S and Obs(s) = Obs(s′), we consider that P1
cannot distinguish s and s′. Hence, P1 can only observe the vertices v of the initial game
G and the edges (v, v′) that he proposes. We naturally extend Obs to histories and plays
of the P1CP2 game by applying the observation function on each of their vertices.
To complete the definition of the P1CP2 game, it remains to define the winning condition
WP1P2. Let us introduce some notation. Given a vertex s, we denote by projV,1(s)
(resp. dev(s), projV,2(s)) the projection on its first (resp. second, third) component. For
a vertex s ∈ SC ∪ SP2, we denote by projE(s) this last component of s. Note that
if s ∈ SP1, then Obs(s) = projV,1(s), and if s ∈ SC ∪ SP2, then Obs(s) = projE(s).
Given a play π = π0π1π2 . . . of the P1CP2 game starting at the initial vertex s0, π

is an alternation of vertices of SP1 and vertices of SC ∪ SP2. Moreover, looking at the
first (resp. third) components of the vertices of π, each such component is repeated
from one vertex to the next one. Thus, we denote by projV,1(π) the projection on the
first component of the vertices of π0π2 . . . π2k Similarly, we use notation projV,2(π)
for the projection on the third component. We also define the notation projE(π) for
the projection of π1π3 . . . π2k+1 . . . on the last component of its vertices. Note that
projV,1(π) = Obs(π0π2 . . . π2k . . .) and projE(π) = Obs(π1π3 . . . π2k+1 . . .). In the play π,
either the second component always remains equal to ⊥ or ultimately becomes equal to
some j ∈ P. We use notation dev(π) to denote this value ⊥ or j. All these notations are
also used for histories.
The set WP1P2 is defined as WP1P2 = Wacc ∪ Wdev where Wacc is the set of plays where C
always agreed with P1 and Wdev is the set of plays where C deviated but P2 was able to
show that this deviation is not profitable, i.e.,

Wacc = {π ∈ Plays(P1CP2(G)) | dev(π) = ⊥},
Wdev = {π ∈ Plays(P1CP2(G)) | ∃j ∈ P, dev(π) = j and projV,1(π) ̸≺j projV,2(π)}.

This set WP1P2 is the winning condition for both P1 and P2 while C has the complementary
winning condition Sω \WP1P2.

The next theorem states how the P1CP2 game helps to solve the NE existence problem.
A strategy τP1 of P1 is observation-based if for all histories h, h′ ending in a vertex of P1 such
that Obs(h) = Obs(h′), we have τP1(h) = τP1(h′).

▶ Theorem 7. The following statements are equivalent:
In G, there exists an NE σ = (σi)i∈P from v0,
In P1CP2(G), there exists an observation-based strategy τP1 of P1 such that for all strategies
τC of C, there is a strategy τP2 of P2 such that ⟨τP1, τC, τP2⟩s0 ∈ WP1P2.

Theorem 7 is the key tool to solve the NE existence problem. It is proved in detail in
Appendix B. We give hereafter a sketch of proof for the membership result of Theorem 5,
which follows the approach proposed in [17]. The PSPACE-hardness already holds for one-
player games, with a reduction from the existence of a maximal element in a relation ≺,
which is a PSPACE-complete problem and close to the existence of NEs in one-player games.
All details are given in Appendix C.

11 Recall that C and P2 have total observation of the P1CP2 game.

V. Bruyère, C. Grandmont, and J.-F. Raskin 13

Sketch of Proof of Theorem 5, Membership. By Theorem 7, deciding whether there exists
an NE from v0 in G reduces to deciding whether there exists an observation-based strategy
τP1 of P1 in P1CP2(G) such that for all strategies τC of C, there is a strategy τP2 of P2 such
that ⟨τP1, τC, τP2⟩s0 ∈ WP1P2. In [17], the authors solve the problem they study by solving
a similar three-player game with imperfect information. They proceed at follows: (i) the
winning condition is translated into a Rabin condition12 on the arena of the P1CP2 game, (ii)
the three-player game is transformed into a two-player zero-sum Rabin game with imperfect
information, and finally (iii) classical techniques to remove imperfect information are used
to obtain a two-player zero-sum parity game with perfect information.

In this sketch of proof, we only explain the first step, i.e., how to translate WP1P2 = Wacc ∪
Wdev into a Rabin condition, as the second and third steps heavily use the arguments of [17].
To translate Wacc, we use one pair (E1, F1) such that E1 = ∅ and F1 = {s ∈ S | dev(s) = ⊥}.
To translate Wdev, notice that dev(π) = j is equivalent to dev(π) ̸∈ {⊥} ∪ P\{j}, and thus
Wdev = ∪j∈P{π ∈ Plays(P1CP2(G)) | dev(π) ̸∈ {⊥} ∪ P \{j} and projV,1(π) ̸≺j projV,2(π)}.
Recall that each relation ≺j is accepted by the DPA Aj with the priority function αj : Qj →
{0, 1, . . . dj}, thus also ̸≺j with the modified priority function αj + 1. Therefore, Wdev can be
translated into a Rabin condition on the vertices of S with Σj∈Pdj Rabin pairs [36]. Steps
(ii) and (iii) are detailed in Appendix C, leading to the announced complexity: the NE
existence problem is exponential in |V |, Πi∈P |Ai|, and Σ

i∈P di. ◀

Let us finally comment on Theorem 6 stating the complexity class of the constrained NE
existence problem. The detailed proof is presented in Appendix D. The approach to proving
membership is very similar to that of the NE existence problem, as we only need to modify
Wacc in a way to include the constraints imposed on the NE outcome. A constraint imposed
by a lasso πi can be represented by a DPA A′

i accepting the language {ρ ∈ V ω | πi ≺i ρ},
with a polynomial size |Ai| · |πi|. Then it suffices to extend the arena the P1CP2 game with
the states of each A′

i. The hardness result is obtained by a reduction from the NE existence
problem, already for one-player games.

Note that by steps (i)-(iii), solving the (constrained) NE existence problem is equivalent
to solving a zero-sum parity game with memoryless winning strategies for both players.
Therefore, we get the following property:

▶ Corollary 8. If there exists a (constrained) NE, then there exists one with finite-memory
strategies.

There is a great interest in using the concept of P1CP2 game, as it provides a unified
approach to solve the NE existence problem and its constrained variant. With this approach,
we could also decide the existence of an NE whose outcome ρ satisfies various combinations
of constraints, such as, e.g., πi ≺i ρ ≺i π′

i for one or several players i. The chosen constraints
only impact the winning condition WP1P2 and thus its translation into a Rabin condition.

6 Hypotheses on Preference Relations

In the previous sections, we presented several decision algorithms. Since the players’ relations
≺i are intended to formalize how they prefer one play to another, we may naturally expect
them to satisfy certain properties, such as irreflexivity and transitivity. However, since the

12 Recall that a Rabin condition uses a finite set of pairs (Ej , Fj)j∈J in a way to accept plays π such that
there exists j ∈ J with Inf(π) ∩ Ej = ∅ and Inf(π) ∩ Fj ̸= ∅.

14 Games with ω-Automatic Preference Relations

relation ≺i is accepted by a DPA, its structure can be intricate, and it becomes relevant to
verify whether such properties hold. In this section, we address decision problems related to
the algorithmic verification of properties of ≺i. We also explore alternative approaches to
modeling preferences between plays, focusing in particular on cases where the DPA accepts
a non-strict preference relation ≾i, i.e., a preorder, rather than a strict partial order.

Hypotheses on Relations. Given a relation R ⊆ Σω × Σω, it is:
reflexive (resp. irreflexive) if for all x ∈ Σω, we have (x, x) ∈ R (resp. (x, x) ̸∈ R),
transitive (resp. ¬-transitive) if for all x, y, z ∈ Σω, we have (x, y) ∈ R ∧ (y, z) ∈ R ⇒
(x, z) ∈ R (resp. (x, y) ̸∈ R ∧ (y, z) ̸∈ R ⇒ (x, z) ̸∈ R),
total if for all x, y ∈ Σω, we have (x, y) ∈ R ∨ (y, x) ∈ R,

A reflexive and transitive relation is a preorder. An irreflexive and transitive relation is a
strict partial order. When, in addition, a strict partial order R is ¬-transitive, it is a strict
weak order. The next proposition states that all the relevant properties mentioned above can
be efficiently verified on the DPA accepting the relation R. It is proved in Appendix E.

▶ Proposition 9. The problem of deciding whether an ω-automatic relation R is reflexive
(resp. irreflexive, transitive, ¬-transitive, total) is NL-complete.

Variants on our Setting. Let us first observe that all the lower bounds established for the
decision problems about NEs remain valid even when the players’ preference relations Ri are
assumed to be strict partial orders.13 This implies that taking this additional property into
account does not yield any important advantage in terms of complexity class.

We now consider an alternative setting in which each relation Ri is not a strict preference,
but rather a preorder (where some plays are declared equivalent). To discuss this further, let
us recall the relationship between strict partial orders and preorders. From a strict partial
order ≺, one can obtain a preorder ≾ by taking its reflexive closure, i.e., x ≾ y if x ≺ y

or x = y. When ≺ is a strict weak order, another preorder which is total, is obtained by
defining x ≾ y if y ̸≺ x. In both cases, if ≺ is ω-automatic, ≾ is also ω-automatic (resp. by a
generalized DPA with a disjunction of two parity conditions, or by a DPA). Conversely, from
any preorder ≾, we can define a strict partial order ≺ such that x ≺ y if x ≾ y ∧y ̸≾ x. Every
strict partial order can be constructed this way. Moreover, if ≾ is total, then ≺ is a strict
weak order. We can also define the equivalence relation ∼ such that x ∼ y if x ≾ y ∧ y ≾ x.
The equivalence class of x is denoted [x]. Again, if ≾ is ω-automatic, then ≺ and ∼ are both
ω-automatic (by a generalized DPA with a conjunction of two parity conditions).

For games with preorders Ri, we keep the same upper bounds, except that we only have
an NP membership for Theorem 4. Indeed, it requires solving a generalized parity game
with a disjunction of two parity conditions (instead of a parity game), solvable in NP [22].
All lower bounds remain valid by carefully modifying the preference relations used in the
reductions into preorders, see Appendix F.

Finally, recall that given a lasso π, it is easy to construct an automaton that accepts all
plays related to π according to an ω-automatic preference relation. This set being ω-regular,
all standard verification techniques for ω-regular languages can be applied. For example, one
may wish to verify that all plays preferred to π satisfy a given ω-regular property. In such
cases, the full range of verification algorithms developed for ω-regular languages can be used.

13 The upper bounds do not need more than the ω-automaticity of each Ri

V. Bruyère, C. Grandmont, and J.-F. Raskin 15

v0v1 v2

Figure 6 An arena with one player.

Alternative Definition of NE. Given a game G = (A, (≾i)i∈P) with preorders ≾i, an NE
is a strategy profile σ such that for all players i and all strategies τi of player i, we have
⟨σ⟩v0 ̸≺i ⟨τi, σ−i⟩v0 . An alternative definition asks for all i and τi that ⟨τi, σ−i⟩v0 ≾i ⟨σ⟩v0 [9].
The two definitions yield different notions of NE (unless all ≾i are total). In this paper, we
do not consider the second definition, due to the nonexistence of NEs in very simple games.
Let us consider the one-player game G depicted in Figure 6, where, from the initial vertex
v0, player 1 has the choice between v0vω

1 and v0vω
2 . We consider the preorder ≾1 equal to

{(x, x) | x ∈ {v0, v1, v2}ω}. Clearly, v0vω
1 ̸≾1 v0vω

2 and v0vω
2 ̸≾1 v0vω

1 , showing that there is
no NE from v0 for this alternative definition (while v0vω

1 and v0vω
2 are both NE outcomes

with the first definition). This phenomenon appears as soon as there are two incomparable
plays.

7 ω-Recognizable Relations

In this section, we suppose that we have a game G = (A, (≾i)i∈P) whose relations ≾i

are ω-recognizable and preorders. We recall that ≾i is ω-recognizable if it is of the form
∪ℓ

i=1Xi × Yi where Xi, Yi ⊆ Σω are ω-regular languages over Σ. Any ω-recognizable relation
is ω-automatic (see [47]), and deciding whether an ω-automatic relation accepted by a DPA
is ω-recognizable is NL-complete [4]. For each ≾i, we use the related relations ≺i and ∼i as
defined in the previous section.

In Example 2, we presented a one-player game with no NE. The reason for the absence
of NE is that ≺1 has an unbounded infinite ascending chain. This situation cannot happen
for ω-recognizable preorders, as highlighted in the next proposition, easily derived from [39]
(its proof is given in Appendix G). This motivates the interest of games with ω-recognizable
preference relations.

▶ Proposition 10. An ω-automatic preorder ≾ ⊆ Σω × Σω is ω-recognizable if and only if
its induced equivalence relation ∼ has finite index.

Thanks to this result, we can partition Σω as a finite lattice given by a partial order
induced by ≾ on the equivalence classes of ∼. In particular, there always exists a maximal
(resp. minimal) element in this lattice. Examples of ω-recognizable preorders are numerous:
those deriving from any Boolean combination of ω-regular objectives or any multidimensional
objective where each dimension is defined using an ω-regular objective. In the subclass of
games with ω-recognizable preorders, the main difference is the existence of NEs.

▶ Theorem 11. When the preference relations of a game are all ω-recognizable preorders,
then there always exists an NE composed of finite-memory strategies.

The proof of Theorem 11 requires two steps. We first prove the existence of an NE under
the assumption that each preference relation ≾i is a total preorder and then without this
assumption. (Note that we get an NE composed of finite-memory strategies by Corollary 8).
The first step can be obtained as a corollary of [38, Theorem 15] that guarantees the existence
of an NE in the case of strict weak orders ≺i. Recall that the relation ≺i induced by a
preorder ≾i is a strict weak order if ≾i is total. Nevertheless, we provide a proof of this first

16 Games with ω-Automatic Preference Relations

step in Appendix H, inspired by the work of [31] and [14], where the existence of NEs is
studied through the concept of value and optimal strategy (see below and in Appendix H).

The second step is obtained thanks to an embedding of partial preorders into total
preorders, as described in the next proposition. Theorem 11 easily follows (see Appendix I).

▶ Proposition 12. Any ω-recognizable preorder ≾ can be embedded into an ω-recognizable
total preorder ≾′. Moreover, for all x, y, if x ⋊⋉ y, then x ⋊⋉′ y, for ⋊⋉ ∈ {≾, ≺,≿, ≻, ∼}.

We now focus on prefix-independent relations R, such that for all x, y ∈ Σω, (x, y) ∈ R ⇔
∀u, v ∈ Σ∗, (ux, uy) ∈ R. From our proof of Theorem 11, when the relations ≾i are total and
prefix-independent, we can derive the following characterization of NE outcomes in terms of
values (the proof is given in Appendix J). In this context, for each player i and vertex v of G,
there always exists a value vali(v) (which is an equivalence class of ∼i) and optimal strategies
σv

i for player i and σv
−i for the coalition −i such that σv

i (resp. σv
−i) ensures consistent plays

π starting at v such that vali(v) ≾i [π]i (resp. [π]i ≾i vali(v)) (see Appendix H). Such an NE
characterization is well-known for games with classical objectives (see, e.g., the survey [15]).

▶ Theorem 13. Let G be a game such that each preference relation ≾i is an ω-recognizable
preorder, total, and prefix-independent. Then a play ρ = ρ0ρ1 . . . is an NE outcome if and
only if for all vertices ρn of ρ, if ρn ∈ Vi, then vali(ρn) ≾i [ρ]i.

In this theorem, we can weaken the hypothesis of prefix-independency into prefix-linearity.
A relation R is prefix-linear if, for all x, y ∈ Σω and u ∈ Σ∗, (x, y) ∈ R implies (ux, uy) ∈ R. In
that case, the condition vali(ρn) ≾i [ρ]i in Theorem 13 must be replaced by vali(ρn) ≾i [ρ≥n]i.
Moreover, deciding whether a relation R is prefix-independent (resp. prefix-linear) is NL-
complete. All proofs and details are provided in Appendix J.

8 Conclusion

In this work, we have introduced a general framework for defining players’ preferences via
ω-automatic preference relations instead of fixed reward functions. It subsumes several
classical settings, including the Boolean setting with ω-regular objectives and quantitative
models such as min-cost-reachability, as well as combinations of several such objectives.

In this framework, we have studied the complexity of four fundamental problems related
to NEs, notably with a novel use of the P1CP2 game setting recently introduced in [17]. This
approach enables a broader applicability and more reusable results. It contrasts sharply with
most existing work that is typically focused on specific reward functions.

We hope that our framework will serve as a basis for exploring additional problems such
as decision problems about subgame perfect equilibria (which are NEs in any subgame of a
game [42]), or the rational synthesis problem as studied in [37]. New results will lead to the
development of general and modular solutions for a wider class of questions in the theory of
infinite games played on graphs.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009. URL: https://theory.cs.princeton.edu/complexity/.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Suguman Bansal, Swarat Chaudhuri, and Moshe Y. Vardi. Comparator automata in quan-

titative verification. Logical Methods in Computer Science, Volume 18, Issue 3, July 2022.
doi:10.46298/lmcs-18(3:13)2022.

https://theory.cs.princeton.edu/complexity/
https://doi.org/10.46298/lmcs-18(3:13)2022

V. Bruyère, C. Grandmont, and J.-F. Raskin 17

4 Pascal Bergsträßer and Moses Ganardi. Revisiting Membership Problems in Subclasses of
Rational Relations. In 38th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2023, Boston, MA, USA, June 26-29, 2023, pages 1–14. IEEE, 2023. doi:10.1109/
LICS56636.2023.10175722.

5 Dietmar Berwanger and Laurent Doyen. Observation and Distinction: Representing In-
formation in Infinite Games. Theory of Computing Systems, 67(1):4–27, 2023. doi:
10.1007/s00224-021-10044-x.

6 Achim Blumensath and Erich Grädel. Automatic structures. In 15th Annual IEEE Symposium
on Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000, pages
51–62. IEEE Computer Society, 2000. doi:10.1109/lics.2000.855755.

7 Udi Boker, Orna Kupferman, and Avital Steinitz. Parityizing Rabin and Streett. In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai,
India, volume 8 of LIPIcs, pages 412–423. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2010. doi:10.4230/lipics.fsttcs.2010.412.

8 Patricia Bouyer, Romain Brenguier, and Nicolas Markey. Nash Equilibria for Reachability
Objectives in Multi-player Timed Games. In Paul Gastin and François Laroussinie, editors,
CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,
France, August 31-September 3, 2010. Proceedings, volume 6269 of Lecture Notes in Computer
Science, pages 192–206. Springer, 2010. doi:10.1007/978-3-642-15375-4_14.

9 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure Nash
Equilibria in Concurrent Deterministic Games. Logical Methods in Computer Science, 11(2),
2015. doi:10.2168/lmcs-11(2:9)2015.

10 Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Uniform strategies, rational re-
lations and jumping automata. Information and Computation, 242, 2015. URL: https:
//www.sciencedirect.com/science/article/pii/S0890540115000279, doi:10.1016/j.ic.
2015.03.012.

11 Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez, Mickael Randour,
Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas. Non-Zero Sum Games for Reactive
Synthesis. In Adrian-Horia Dediu, Jan Janousek, Carlos Martín-Vide, and Bianca Truthe,
editors, Language and Automata Theory and Applications - 10th International Conference,
LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceedings, volume 9618 of Lecture
Notes in Computer Science, pages 3–23. Springer, 2016. URL: https://doi.org/10.1007/
978-3-319-30000-9%5F1, doi:10.1007/978-3-319-30000-9_1.

12 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. Rational Verification for
Nash and Subgame-Perfect Equilibria in Graph Games. In Jérôme Leroux, Sylvain Lombardy,
and David Peleg, editors, 48th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume
272 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/lipics.mfcs.2023.26.

13 Léonard Brice, Marie van den Bogaard, and Jean-François Raskin. Subgame-perfect Equilibria
in Mean-payoff Games (journal version). Logical Methods in Computer Science, 19(4), 2023.
doi:10.46298/lmcs-19(4:6)2023.

14 Thomas Brihaye, Julie De Pril, and Sven Schewe. Multiplayer Cost Games with Simple
Nash Equilibria. In Sergei N. Artëmov and Anil Nerode, editors, Logical Foundations of
Computer Science, International Symposium, LFCS 2013, San Diego, CA, USA, January
6-8, 2013. Proceedings, volume 7734 of Lecture Notes in Computer Science, pages 59–73.
Springer, 2013. URL: https://doi.org/10.1007/978-3-642-35722-0%5F5, doi:10.1007/
978-3-642-35722-0_5.

15 Véronique Bruyère. Computer Aided Synthesis: A Game-Theoretic Approach. In Émilie
Charlier, Julien Leroy, and Michel Rigo, editors, Developments in Language Theory - 21st
International Conference, DLT 2017, Liège, Belgium, August 7-11, 2017, Proceedings, volume

https://doi.org/10.1109/LICS56636.2023.10175722
https://doi.org/10.1109/LICS56636.2023.10175722
https://doi.org/10.1007/s00224-021-10044-x
https://doi.org/10.1007/s00224-021-10044-x
https://doi.org/10.1109/lics.2000.855755
https://doi.org/10.4230/lipics.fsttcs.2010.412
https://doi.org/10.1007/978-3-642-15375-4_14
https://doi.org/10.2168/lmcs-11(2:9)2015
https://www.sciencedirect.com/science/article/pii/S0890540115000279
https://www.sciencedirect.com/science/article/pii/S0890540115000279
https://doi.org/10.1016/j.ic.2015.03.012
https://doi.org/10.1016/j.ic.2015.03.012
https://doi.org/10.1007/978-3-319-30000-9%5F1
https://doi.org/10.1007/978-3-319-30000-9%5F1
https://doi.org/10.1007/978-3-319-30000-9_1
https://doi.org/10.4230/lipics.mfcs.2023.26
https://doi.org/10.46298/lmcs-19(4:6)2023
https://doi.org/10.1007/978-3-642-35722-0%5F5
https://doi.org/10.1007/978-3-642-35722-0_5
https://doi.org/10.1007/978-3-642-35722-0_5

18 Games with ω-Automatic Preference Relations

10396 of Lecture Notes in Computer Science, pages 3–35. Springer, 2017. URL: https:
//doi.org/10.1007/978-3-319-62809-7%5F1, doi:10.1007/978-3-319-62809-7_1.

16 Véronique Bruyère. Synthesis of Equilibria in Infinite-Duration Games on Graphs. ACM
SIGLOG News, 8(2):4–29, May 2021. doi:10.1145/3467001.3467003.

17 Véronique Bruyère, Jean-François Raskin, Alexis Reynouard, and Marie Van Den Bogaard.
The Non-Cooperative Rational Synthesis Problem for Subgame Perfect Equilibria and omega-
regular Objectives, 2024. doi:10.48550/arxiv.2412.08547.

18 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
Parity Games in Quasi-polynomial Time. SIAM Journal on Computing, 51(2):STOC17–152–
STOC17–188, 2022. doi:10.1137/17M1145288.

19 Olivier Carton, Christian Choffrut, and Serge Grigorieff. Decision problems among the
main subfamilies of rational relations. RAIRO - Theoretical Informatics and Applications -
Informatique Théorique et Applications, 40(2):255–275, 2006. URL: http://www.numdam.org/
articles/10.1051/ita:2006005, doi:10.1051/ita:2006005.

20 Krishnendu Chatterjee and Laurent Doyen. The Complexity of Partial-Observation Parity
Games. In Christian G. Fermüller and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17, Yogyakarta,
Indonesia, October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in Computer Science,
pages 1–14. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-16242-8%5F1, doi:
10.1007/978-3-642-16242-8_1.

21 Krishnendu Chatterjee and Laurent Doyen. Games with a Weak Adversary. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science,
pages 110–121. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43951-7%5F10,
doi:10.1007/978-3-662-43951-7_10.

22 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized Parity
Games. In Helmut Seidl, editor, Foundations of Software Science and Computational
Structures, 10th International Conference, FOSSACS 2007, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2007, Braga, Portugal,
March 24-April 1, 2007, Proceedings, volume 4423 of Lecture Notes in Computer Science,
pages 153–167. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-71389-0%5F12,
doi:10.1007/978-3-540-71389-0_12.

23 Krishnendu Chatterjee and Vishwanath Raman. Synthesizing protocols for digital contract
signing. In Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model Checking,
and Abstract Interpretation - 13th International Conference, VMCAI 2012, Philadelphia, PA,
USA, January 22-24, 2012. Proceedings, volume 7148 of Lecture Notes in Computer Science,
pages 152–168. Springer, 2012. doi:10.1007/978-3-642-27940-9_11.

24 Yoav Feinstein, Orna Kupferman, and Noam Shenwald. Non-Zero-Sum Games with Multiple
Weighted Objectives. In Proceedings of the 28th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2025), volume To appear
of Lecture Notes in Computer Science, page To appear. Springer, 2025. URL: https://www.
cs.huji.ac.il/~ornak/publications/tacas25b.pdf.

25 Nathanaël Fijalkow, Nathalie Bertrand, Patricia Bouyer-Decitre, Romain Brenguier, Arnaud
Carayol, John Fearnley, Hugo Gimbert, Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey,
Benjamin Monmege, Petr Novotný, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier
Serre, and Mateusz Skomra. Games on Graphs. Online, 2023. doi:10.48550/arxiv.2305.
10546.

26 János Flesch, Jeroen Kuipers, Ayala Mashiah-Yaakovi, Gijs Schoenmakers, Eilon Solan, and
Koos Vrieze. Perfect-Information Games with Lower-Semicontinuous Payoffs. Mathematics of
Operations Research, 35(4):742–755, 2010. doi:10.1287/moor.1100.0469.

https://doi.org/10.1007/978-3-319-62809-7%5F1
https://doi.org/10.1007/978-3-319-62809-7%5F1
https://doi.org/10.1007/978-3-319-62809-7_1
https://doi.org/10.1145/3467001.3467003
https://doi.org/10.48550/arxiv.2412.08547
https://doi.org/10.1137/17M1145288
http://www.numdam.org/articles/10.1051/ita:2006005
http://www.numdam.org/articles/10.1051/ita:2006005
https://doi.org/10.1051/ita:2006005
https://doi.org/10.1007/978-3-642-16242-8%5F1
https://doi.org/10.1007/978-3-642-16242-8_1
https://doi.org/10.1007/978-3-642-16242-8_1
https://doi.org/10.1007/978-3-662-43951-7%5F10
https://doi.org/10.1007/978-3-662-43951-7_10
https://doi.org/10.1007/978-3-540-71389-0%5F12
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.1007/978-3-642-27940-9_11
https://www.cs.huji.ac.il/~ornak/publications/tacas25b.pdf
https://www.cs.huji.ac.il/~ornak/publications/tacas25b.pdf
https://doi.org/10.48550/arxiv.2305.10546
https://doi.org/10.48550/arxiv.2305.10546
https://doi.org/10.1287/moor.1100.0469

V. Bruyère, C. Grandmont, and J.-F. Raskin 19

27 Christiane Frougny and Jacques Sakarovitch. Synchronized rational relations of fi-
nite and infinite words. Theoretical Computer Science, 108(1):45–82, 1993. URL:
https://www.sciencedirect.com/science/article/pii/030439759390230Q, doi:10.1016/
0304-3975(93)90230-Q.

28 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979. URL: https://perso.limos.fr/~palafour/
PAPERS/PDF/Garey-Johnson79.pdf.

29 Erich Grädel. Automatic Structures: Twenty Years Later. In Holger Hermanns, Lijun Zhang,
Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, LICS’20, page 21–34, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3373718.3394734.

30 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

31 Erich Grädel and Michael Ummels. Solution Concepts and Algorithms for Infinite Multiplayer
Games. In New Perspectives on Games and Interaction, volume 4, pages 151–178. Amsterdam
University Press, 2008. URL: https://core.ac.uk/reader/36484420.

32 Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, Thomas Steeples, and
Michael J. Wooldridge. Equilibria for games with combined qualitative and quantitative
objectives. Acta Informatica, 58(6):585–610, 2021. doi:10.1007/s00236-020-00385-4.

33 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge. Automated
temporal equilibrium analysis: Verification and synthesis of multi-player games. Artificial
Intelligence, 287:103353, 2020. doi:10.1016/j.artint.2020.103353.

34 Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge. On the
complexity of rational verification. Ann. Math. Artif. Intell., 91(4):409–430, 2023. doi:
10.1007/s10472-022-09804-3.

35 Bernard Ralph Hodgson. Décidabilité par automate fini. Annales des sciences mathématiques
du Québec, 7:39–57, 1983. URL: https://www.labmath.uqam.ca/~annales/volumes/07-1/
PDF/039-057.pdf.

36 Orna Kupferman. Automata Theory and Model Checking. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
107–151. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-10575-8%5F4, doi:
10.1007/978-3-319-10575-8_4.

37 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational en-
vironments. Annals of Mathematics and Artificial Intelligence, 78(1):3–20, 2016. doi:
10.1007/s10472-016-9508-8.

38 Stéphane Le Roux and Arno Pauly. Equilibria in multi-player multi-outcome infinite sequential
games. Information and Computation, 276:104557, 2021. 5th International Workshop on
Strategic Reasoning (SR 2017). doi:10.1016/j.ic.2020.104557.

39 Christof Löding and Christopher Spinrath. Decision Problems for Subclasses of Rational
Relations over Finite and Infinite Words. Discrete Mathematics & Theoretical Computer
Science, 21(3), 2019. doi:10.23638/dmtcs-21-3-4.

40 John F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 36(1):48–49, 1950. doi:10.1073/pnas.36.1.48.

41 Martin J. Osborne. An introduction to game theory. Oxford Univ. Press, 2004.
42 Martin J. Osborne and Ariel Rubinstein. A course in game theory. The MIT Press, Cambridge,

USA, 1994. electronic edition.
43 Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger.

Algorithms for Omega-Regular Games with Imperfect Information. Logical Methods in
Computer Science, 3(3), 2007. doi:10.2168/LMCS-3(3:4)2007.

44 John H. Reif. The Complexity of Two-Player Games of Incomplete Information. Journal of
Computer and System Sciences, 29(2):274–301, 1984. doi:10.1016/0022-0000(84)90034-5.

https://www.sciencedirect.com/science/article/pii/030439759390230Q
https://doi.org/10.1016/0304-3975(93)90230-Q
https://doi.org/10.1016/0304-3975(93)90230-Q
https://perso.limos.fr/~palafour/PAPERS/PDF/Garey-Johnson79.pdf
https://perso.limos.fr/~palafour/PAPERS/PDF/Garey-Johnson79.pdf
https://doi.org/10.1145/3373718.3394734
https://doi.org/10.1007/3-540-36387-4
https://core.ac.uk/reader/36484420
https://doi.org/10.1007/s00236-020-00385-4
https://doi.org/10.1016/j.artint.2020.103353
https://doi.org/10.1007/s10472-022-09804-3
https://doi.org/10.1007/s10472-022-09804-3
https://www.labmath.uqam.ca/~annales/volumes/07-1/PDF/039-057.pdf
https://www.labmath.uqam.ca/~annales/volumes/07-1/PDF/039-057.pdf
https://doi.org/10.1007/978-3-319-10575-8%5F4
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/s10472-016-9508-8
https://doi.org/10.1007/s10472-016-9508-8
https://doi.org/10.1016/j.ic.2020.104557
https://doi.org/10.23638/dmtcs-21-3-4
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.2168/LMCS-3(3:4)2007
https://doi.org/10.1016/0022-0000(84)90034-5

20 Games with ω-Automatic Preference Relations

45 Sasha Rubin. Automatic structures. In Jean-Éric Pin, editor, Handbook of Automata Theory,
pages 1031–1070. European Mathematical Society Publishing House, Zürich, Switzerland,
2021. doi:10.4171/automata-2/6.

46 Shmuel Safra. Complexity of Automata on Infinite Objects. PhD thesis, Weizmann Institute
of Science, Rehovot, Israel, March 1989.

47 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009. URL:
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253.

48 Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA,
third edition, 2013.

49 Wolfgang Thomas. Automata on Infinite Objects. In Jan Van Leeuwen, editor, Formal
Models and Semantics, Handbook of Theoretical Computer Science, pages 133–191. Elsevier,
Amsterdam, 1990. doi:10.1016/B978-0-444-88074-1.50009-3.

50 Michael Ummels. The Complexity of Nash Equilibria in Infinite Multiplayer Games. In
Roberto Amadio, editor, Foundations of Software Science and Computational Structures,
11th International Conference, FOSSACS 2008, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29
- April 6, 2008. Proceedings, volume 4962 of Lecture Notes in Computer Science, pages
20–34. Springer, 2008. URL: http://www.logic.rwth-aachen.de/~ummels/fossacs08.pdf,
doi:10.1007/978-3-540-78499-9_3.

51 Michael Ummels and Dominik Wojtczak. The Complexity of Nash Equilibria in Limit-
Average Games. In Joost-Pieter Katoen and Barbara König, editors, CONCUR 2011 -
Concurrency Theory - 22nd International Conference, CONCUR 2011, Aachen, Germany,
September 6-9, 2011. Proceedings, volume 6901 of Lecture Notes in Computer Science, pages
482–496. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-23217-6%5F32, doi:
10.1007/978-3-642-23217-6_32.

A Hardness of Theorem 3

▶ Theorem 3. The NE checking problem is PSPACE-complete.

Proof of Theorem 3, hardness. We use a reduction from the membership problem for linear
bounded deterministic Turing machines (LBTMs), also called Linear Bounded Automata [48],
known to be PSPACE-complete [28], to the complement of the NE checking problem. Recall
that an LBTM T has a limited memory such that the tape head must remain in cells
containing the input word w. The membership problem asks whether w is accepted by T .

Suppose that T is defined on a set of states Q = {q1, . . . , qm} with q1 its initial state
and containing qaccept, qreject, the word w is equal to w1w2 . . . wn, and the alphabet is
Σ = {a1, . . . , as}. We construct a (n + 1)-player game G = (V, E, (Vi)1≤i≤n+1, (≺i)1≤i≤n+1)
as illustrated in Figure 3, and n + 1 Mealy machines (Mi)1≤i≤n+1 in the following way.
Intuitively, each input tape cell is associated with a player and will be simulated by a Mealy
machine for this player, encoding actions based on the current configuration of the LBTM.
We begin with the description of the game:

V = (Q × {1, . . . , n}) ∪ {vinit, #, vend}, with three fresh vertices vinit, #, and vend,
vinit is the initial vertex and has two successors: # and (q1, 1),
and vend are sink vertices with a self-loop,
Vn+1 = {vinit, #, vend} and for each i ∈ {1, . . . , n}, Vi = Q × {i},
(q, i) → (q′, j) for all q, i, q′, j such that q ̸∈ {qaccept, qreject}, otherwise (q, i) → vend,
for each i ∈ {1, . . . , n}, the preference relation ≺i is empty, therefore accepted by a
one-state DPA,

https://doi.org/10.4171/automata-2/6
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
https://doi.org/10.1016/B978-0-444-88074-1.50009-3
http://www.logic.rwth-aachen.de/~ummels/fossacs08.pdf
https://doi.org/10.1007/978-3-540-78499-9_3
https://doi.org/10.1007/978-3-642-23217-6%5F32
https://doi.org/10.1007/978-3-642-23217-6_32
https://doi.org/10.1007/978-3-642-23217-6_32

V. Bruyère, C. Grandmont, and J.-F. Raskin 21

vinit qaccept, ∗

v, for v ̸= (qaccept, j)
vinit

v, for v ̸= vinit

Lc

L
V

V

v, for v ̸= (qaccept, j)

Figure 7 The DBAs accepting the languages L and Lc used to define the preference relation
≺n+1 in the game of Figure 3.

the preference relation ≺n+1 is defined such that vinit#ω ≺n+1 vinitx if and only if
x contains {qaccept} × {1, . . . , n}. More precisely, we define ≺n+1 = Lc × L where
L = {vinitx ∈ V ω | x visits {qaccept} × {1, . . . , n}} and Lc = V ω \ L.

Finally, let us show that ≺n+1 is accepted by a DBA of constant size. Both languages L and
Lc are accepted by a DBA as illustrated in Figure 7. Thus, the relation Lc × L is accepted
by a generalized DBAs with a conjunction of two Büchi conditions of constant size, thus by
a DBA which is in particular a DPA.

Let us now describe the Mealy machines. The Mealy machine of player n + 1 defines the
memoryless strategy σn+1 such that σn+1(vinit) = #. For player i ∈ {1, . . . , n}, the Mealy
machine Mi simulates the LBTM T when the tape head scans the i-th tape cell:

the set of memory states is M = Σ ∪ {ainit, aend}, with fresh symbols ainit, aend ̸∈ Σ,
where ainit is the initial memory state,
the udpate function αU : M × V → M indicates which symbol is written by T in the i-th
cell when the tape head scans this cell; it is defined as follows:

from the state a ̸= ainit, aend and the vertex (q, j) ∈ V , stay on state a if j ̸= i,
or go to a′ if j = i and (q, a) → (q′, a′, Move) is a transition of T , or go to aend if
q ∈ {qaccept, qreject}.
from the state aend, the only available vertex is vend; thus stay on aend.
from the state ainit, the only available vertex is vinit; thus go to state a such that
wi = a.

the next-move function αN : M × Vi → V (recall that Vi = Q × {i}) indicates the move
(R or L) of T when the tape head scans the i-th cell; it is defined as follows. From the
state a ̸= ainit, aend and vertex (q, i), output (q′, j) such that (q, a) → (q′, a′, Move) is a
transition of T and j = min(n, i + 1) if Move = R, j = max(0, i − 1) if Move = L.

By the construction given above, we know that (Mi)i produces the outcome vinit#ω. As
player n + 1 controls vinit, no deviation of player i ∈ {1, . . . , n} modifies this outcome, i.e.,
these deviations are not profitable. However, player n + 1 has exactly one possible deviation,
to go from vinit to (q1, 1), thus leading to some play vinitπ. This deviation is profitable if
vinit#ω ≺n+1 vinitπ, and we know by construction that vinit#ω ≺n+1 vinitπ if and only if π

visits the state qaccept, i.e., T accepts w (as π represents an execution of the LBTM T thanks
to the definition of M1, . . . , Mn). This shows the correctness of the reduction. Moreover,
this is a polynomial reduction. Therefore, the NE checking problem is PSPACE-hard. ◀

B Correctness of the P1CP2 Game

▶ Theorem 7. The following statements are equivalent:
In G, there exists an NE σ = (σi)i∈P from v0,
In P1CP2(G), there exists an observation-based strategy τP1 of P1 such that for all strategies
τC of C, there is a strategy τP2 of P2 such that ⟨τP1, τC, τP2⟩s0 ∈ WP1P2.

22 Games with ω-Automatic Preference Relations

Before proving this result, we study in more details the correspondence between strategies
in G and strategies in P1CP2(G). We first note that if a strategy τP1 of P1 is observation-based,
we get that for all plays π, π′ starting at s0 and consistent with τP1,

projV,1(π) = projV,1(π′) and projE(π) = projE(π′). (1)

Given a play ρ of G starting at v0, we call simulation of ρ any strategy τP1 of P1 such that
ρ = projV,1(π) for all plays π starting at s0 and consistent with τP1.

▶ Lemma 14. Let ρ be a play of G starting at v0. There always exists a simulation τP1 of ρ

that is observation-based.

Proof. Consider a play ρ = ρ0ρ1 . . . of G starting at v0. The required strategy τP1 is
constructed as follows. For all histories hs such that s ∈ SP1, we define τP1(hs) = (ρk, ρk+1)
if projV,1(hs) = ρ0 . . . ρk is a prefix of ρ. Otherwise, we define τP1(hs) as an arbitrary action
e ∈ E such that τP1(h′s′) = e for all h′s′ with Obs(h′s′) = Obs(hs). By construction, τP1 is
observation-based because whenever Obs(h′s′) = Obs(hs), then projV,1(h′s′) = projV,1(hs).
Moreover, for any play π starting at s0 and consistent with τP1, we have ρ = projV,1(π). ◀

Let τP1 be an observation-based strategy of P1 and ρ be the play of G of which it is the
simulation.

We say that a strategy τC of C is τP1-accepting if for all histories hs starting at s0 and
consistent with τP1, if projE(s) = (v, v′), then τC(hs) = v′. In this case, the plays π

consistent with τP1 and τC all satisfy dev(π) = ⊥.
Let hs be a history starting at s0 and consistent with τP1 such that dev(h) = ⊥ and
dev(hs) = j. Then, all plays π consistent with τP1 having hs as prefix, satisfy dev(π) = j

in addition to (1). Thus, only the third component of the vertices of those π can vary.14

Therefore, when τP1 is fixed:
Any strategy τC is equivalent to a strategy σj of player j such that τC(h′s′) =
σj(projV,2(h′s′)) for all histories h′s′ ending in s′ ∈ SC and having hs as prefix. It is
called a σj-deviation from τP1.
Any strategy τP2 is equivalent to a strategy profile σ−j = (σi)i ̸=j such that τP2(h′s′) =
σi(projV,2(h′s′)) for all histories h′s′ ending in s′ ∈ SP2 with projV,1(s) ∈ Vi and having
hs as prefix. It is called a σ−j-punishment strategy.

Proof of Theorem 7. Let us suppose that there exists an NE σ = (σi)i∈P from v0 in G and
let ρ = ⟨σ⟩v0 be its outcome. By Lemma 14, there exists an observation-based strategy τP1

of P1 such that for any play π starting at s0 and consistent with τP1, we have projV,1(π) = ρ.
Let τC be a strategy of C.

If τC is τP1-accepting, then we get dev(π) = ⊥ for all plays π starting at s0 and consistent
with both τP1 and τC, and any strategy τP2, i.e., ⟨τP1, τC, τP2⟩s0 ∈ Wacc.
Otherwise, τC is a σ′

j-deviation from τP1, for a strategy σ′
j of some player j. Consequently,

we define τP2 from the strategy profile σ−j = (σi)i ̸=j such that τP2 is a σ−j-punishment
strategy. Therefore, for π′ = ⟨τP1, τC, τP2⟩s0 , we get projV,2(π′) = ⟨σ′

j , σ−j⟩v0 . As σ is an
NE by hypothesis, we have projV,1(π′) = ρ ̸≺j projV,2(π′), meaning that π′ ∈ Wdev.

We now suppose that in P1CP2(G), there exists an observation-based strategy τP1 of P1
such that for all strategies τC of C, there is a strategy τP2 of P2 such that ⟨τP1, τC, τP2⟩s0 ∈ WP1P2.

14 The fourth component equal to (qi)i derive from the first and third components.

V. Bruyère, C. Grandmont, and J.-F. Raskin 23

Let us explain how to deduce an NE σ = (σi)i from v0 in G. We choose a strategy τC that
is τP1-accepting, which gives by hypothesis a strategy τP2 of P2. Observe that the resulting
outcome π = ⟨τP1, τC, τP2⟩s0 is such that dev(π) = ⊥, so π ∈ Wacc. Let us define ρ = projV,1(π),
it will be the outcome of the NE σ we want to construct.

We now partially define the strategy profile σ in a way to produce the outcome ρ. It
remains to define σi(hv) for all i ∈ P and all histories hv which are not prefix of ρ.

Consider a strategy σ′
j for player j such that there exists a history hv, with v ∈ Vj ,

prefix of ρ, but where hv · σ′
j(hv) is not. Then, we can consider τC that is a σ′

j-deviation
from τP1. By hypothesis, there exists a strategy τP2 such that π′ = ⟨τP1, τC, τP2⟩s0 ∈ WP1,P2.
Since dev(π′) = j, it must be the case that π′ ∈ Wdev, i.e., projV,1(π′) ̸≺j projV,2(π′). Hence,
we can complete the definition of σ outside ρ by σ−j thanks to the strategy τP2 seen as
a σ−j-punishment strategy. It follows that projV,2(π′) = ⟨σ′

j , σ−j⟩v0 . Therefore, by (1),
ρ = projV,1(π) = projV,1(π′) ̸≺j projV,2(π′) = ⟨σ′

j , σ−j⟩v0 , showing that ⟨σ′
j , σ−j⟩v0 is not a

profitable deviation. We conclude that the constructed σ is an NE. ◀

C NE Existence Problem

▶ Theorem 5. The NE existence problem is exponential in |V |, Πi∈P |Ai|, and Σi∈Pdi, thus
doubly exponential in |P|. If the number of players is fixed (resp. for a one-player game),
this problem is in EXPTIME and PSPACE-hard (resp. PSPACE-complete).

Proof of Theorem 5, membership. By Theorem 7, deciding whether in G, there exists an
NE from v0 reduces to deciding whether in P1CP2(G), there exists an observation-based
strategy τP1 of P1 such that for all strategies τC of C, there is a strategy τP2 of P2 such that
⟨τP1, τC, τP2⟩s0 ∈ WP1P2. In [17], the authors solve the problem they study by solving a similar
three-player game with imperfect information. They proceed with the following three steps.
1. The winning condition is translated into a Rabin condition on the arena of the P1CP2

game.
2. Then, the three-player game is transformed into a two-player zero-sum Rabin game with

imperfect information.
3. Finally, classical techniques to remove imperfect information are used to obtain a two-

player zero-sum parity game with perfect information.

For our P1CP2 game, we already explain how to translate the winning condition WP1P2

into a Rabin condition (first step). With the notations of Section 5, this game has
a number of states in O(|V |4 · |P| · Πi∈P |Ai|),
a number of actions in O(|V |2)
a number of Rabin pairs in O(Σi∈Pdi)

Let us explain the second step. To fit the context of [17], we need to slightly modify our
P1CP2 game in three ways:

We add dummy vertices such that the three players play in a turn-based way, i.e., according
to the turn sequence (P1CP2)ω.
Plays and histories include actions, i.e., they are sequences alternating vertices and
actions, such that the histories always end with a vertex.
Due to the modification of plays and histories, the observation function Obs is extended
to actions, i.e., Obs(a) = a is a ∈ AP1 and Obs(a) = # is a ∈ AC ∪ AP2 (P1 only observes
his own actions, the other actions are not visible15).

15 The situation is a little different in [17] as P1 can also observe the actions of P2.

24 Games with ω-Automatic Preference Relations

With these modifications, we can translate our P1CP2 game into a two-player zero-sum Rabin
game with imperfect information exactly as in [17] (this is derived from a transformation
introduced in [21], specifically adapted to the P1CP2 game context). The main idea is to
merge the two Provers into a new single Prover P. Imperfect information is used to ensure
that this merging does not grant too much knowledge to P. In order to let the new Prover
have as much actions available as P2 and stay observation-based, his action set includes, in
addition to the actions of AP1 , all functions from SP2 to AP2 . The set of vertices and the
Rabin objective remain the same as in the P1CP2 game. This yields a new game, called PC
game,

with the same number of vertices and Rabin pairs,
but with an exponential blowup in the number of actions.

Details about the new game can be found in [17]. In a way to guarantee the equivalence
between both P1CP2 and PC games, some technical properties must be satisfied by the
observation function Obs of the P1CP2 game:

The function Obs must be strongly player-stable and thus player-stable (see Corollary 4.1.4
and Lemma 4.1.5 of [17]). This means that for any two histories h = s0a0s1a1 . . . ak−1sk =
h1sk and h′ = s′

0a′
0s′

1a′
1 . . . a′

k−1s′
k = h′

1s′
k such that s0 = s′

0 is the initial vertex of the
P1CP2 game and Obs(h1) = Obs(h′

1), it must follow that each pair of vertices sℓ, s′
ℓ,

1 ≤ ℓ ≤ k, are owned by the same player and Obs(sk) = Obs(s′
k). It is easy to verify that

sℓ, s′
ℓ are owned by the same player as the players play in a turn-based way. Let us explain

why Obs(sk) = Obs(sk). If sk−1 is owned by P1, then Obs(sk−1) = Obs(s′
k−1) = v for

some v and ak−1 = Obs(ak−1) = Obs(a′
k−1) = a′

k−1 = (v, v′) for some (v, v′). Hence,
Obs(sk) = Obs(s′

k) = (v, v′). If sk−1 is owned by C or P2, then Obs(sk−1) = Obs(s′
k−1) =

(v, v′) for some (v, v′) and thus Obs(sk) = Obs(s′
k) = v′.

The function Obs must be action-stable (see Lemma 3.4.3 of [17]). This means that given
∆(s1, a) = s2 and ∆(s′

1, a′) = s′
2 such that Obs(s1) = Obs(s′

1), then
if a = a′, then Obs(s2) = Obs(s′

2);
if a, a′ are visible (i.e., are actions of P1) and Obs(s2) = Obs(s′

2), then a = a′.
It is easy to verify this property when Obs(s1) = Obs(s′

1) = v for some v, as s1, s′
1 are

then owned by P1 and his actions a, a′ are of the form (v, v′) for some v′. This is also
easy to verify when Obs(s1) = Obs(s′

1) = (v, v′) for some (v, v′) as s1, s′
1 are then owned

by C or P2 whose actions a, a′ are not visible.

With these technical properties and arguments similar to those of [17], one can carefully
verify that our P1CP2 game can be transformed into an equivalent two-player zero-sum Rabin
game with imperfect information exactly as in [17].

In the third step, the latter PC game is transformed into an equivalent two-player
zero-sum parity game with perfect information. The translation is exactly the same as
in [17]. The idea to get rid of the imperfect information is to apply standard game-theoretic
techniques [20, 43, 44], by (1) making the Rabin condition visible, that is, such that any
two similarly observed plays agree on the winning condition, and by (2) applying the subset
construction to recall the set of possible visited vertices, and letting them be observed. Done
carefully, this leads to a parity game with

a number of vertices exponential in the number of vertices and in the number of pairs of
the PC game (thus of the P1CP2 game),
a parity condition with a number of priorities linear in the number of vertices and the
number of pairs of the PC game.

V. Bruyère, C. Grandmont, and J.-F. Raskin 25

a, q′

q0
q q′

q′′a, q ′′

A′

Figure 8 The DPA A′ used for the PSPACE-hardness of Proposition 15.

Finally, the constructed parity game can be solved in time nO(log(d)) where n is its number
of vertices and d its number of priorities [18]. It follows that the initial NE existence problem
can be decided in time exponential in |V |, Π

i∈P |Ai|, and Σ
i∈P di. ◀

Proof of Theorem 5, hardness and particular case of one-player games. We are going to
prove that the NE existence problem is PSPACE-complete for one-player games. In this way,
we get the hardness of Theorem 5.

Before we need to study a deeply connected problem: the problem of deciding the existence
of a maximal element for a preference relation ≺ (we also consider the existence of a minimal
element).

▶ Proposition 15. The problem of deciding whether an ω-automatic relation ≺, accepted by
a DPA A, has a maximal (resp. minimal) element is PSPACE-complete.

Proof. We mainly focus on the existence of a maximal element. We briefly discuss the
existence of a minimal element at the end of the proof, as the arguments are similar. We
begin with the PSPACE-membership, by studying the non-existence of a maximal element, i.e.,
∀x ∃y, x ≺ y. The algorithm constructs a nondeterministic parity automaton B by taking
the projection of A to the first component of its labels. This automaton is of polynomial size
and accepts the set {x ∈ Σω | ∃y ∈ Σω, x ≺ y}. Then, one checks whether B is universal,
with an algorithm in PSPACE [36].

Let us shift to the PSPACE-hardness. We use a reduction from the non-universality
problem of nondeterministic Büchi automata (NBAs) which is PSPACE-complete [36]. Given
an NBA A = (Q, Σ, q0, δ, F), we construct a DPA A′, depicted in Figure 8, as follows:

A′ has the same states and initial state as A,
its alphabet Σ′ is equal to Q ∪ Σ, where Q and Σ are supposed disjoint,
its transition function δ′ is defined as q′ = δ′(q, (a, q′)) whenever q′ ∈ δ(q, a),
its priority function α uses two priorities as follows: α(q) = 2 if q ∈ F , otherwise α(q) = 1.

As δ′ is a function by construction, A′ is deterministic. We denote by ≺′ the relation accepted
by A′. By construction, we have x ≺′ y if and only if x ∈ Σω, y ∈ Qω, and y is an accepting
run of A labeled by x. Therefore, x ∈ Σω is a maximal element if and only if x ̸∈ L(A). We
thus get the correctness of the polynomial reduction.

This completes the proof of Proposition 15 for the existence of a maximal element. Let
us finally comment on the modifications needed to decide the existence of a minimal element.
For the membership result, as the non-existence of a minimal element means ∀x∃y, y ≺ x,
we have to consider the projection of A′ on the second component of the labels in step 3. For
the hardness result, we have to swap the components of the labels (a, q) of the transitions of
the automaton A′. ◀

Proof of Theorem 5 for one-player games. Let us first present a PSPACE algorithm for
the membership. Intuitively, given a one-player game G = (A, ≺) and an initial vertex v0,

26 Games with ω-Automatic Preference Relations

v0, v0
(q0, v0, v0)q′

0

(q, v1, v2) (q′, v′
1, v′

2)
v′

1, v′
2

qs

∗, ∗

v, ∗ for
v ̸= v0

v, ∗ for
(v1, v) /∈ E

Figure 9 The DPA A′ for the PSPACE mem-
bership of Theorem 5 for one-player games.

v0
v0, v0

A′G
∀a ∈ Σ

connected

a

A
q0q′

0

Figure 10 The reduction used for the PSPACE-
hardness of Theorem 5.

we will show that a play π is an NE outcome from v0 if and only if it is maximal for ≺′, a
well chosen preference relation constructed from ≺. Hence, by Proposition 15, we will get
that the existence of an NE is in PSPACE.

We define the relation ≺′ as follows: for all x, y ∈ V ω, we have x ≺′ y if and only if either
x, y are both plays starting with v0 such that x ≺ y, or x is not a play starting with v0.
Clearly, if π is an NE outcome from v0, then it is maximal for ≺′. Conversely, if x is maximal
for ≺′, then x is a play starting with v0 and it is thus an NE outcome as x is maximal.

It remains to show that ≺′ is accepted by some DPA A′. This automaton, illustrated
in Figure 9, is defined from the arena A and the DPA A accepting ≺ in the following way.
In addition to two particular states q′

0 and qs with priority 0, any state of A′ is of the form
(q, v1, v2) with q a state of A and v1, v2 ∈ V , and has the same priority as q in A. The state
q′

0 is the initial state. There is a transition from (q, v1, v2) to (q′, v′
1, v′

2) labeled with (v′
1, v′

2)
if (vi, v′

i) ∈ E for i ∈ {1, 2} and (q, (v′
1, v′

2), q′) is a transition of A. In addition, from a state
(q, v1, v2), a transition reading a label (v′

1, v′
2) such that (v1, v′

1) ̸∈ E leads to the state qs

with a self loop labeled by any (v, v′) ∈ V × V . Finally, there is a transition from q0 to
(q0, v0, v0) with label (v0, v0) (where q0 is the initial state of A), and to qs for any label (v, v′)
such that v ̸= v0.

We now prove that the NE existence problem is PSPACE-hard for one-player games,
with a reduction from the existence of a maximal element in an ω-automatic relation, a
PSPACE-complete problem by Proposition 15. The reduction works as follows. Let ≺ be
an ω-automatic relation on Σ accepted by a DPA A. We construct a one-player game
G = (A, ≺′) depicted in Figure 10 as follows. The set of vertices of A is Σ′ = Σ ∪ {v0} with
a new initial vertex v0; there is an edge between every pair of letters a, b ∈ Σ and an edge
between v0 and each letter a ∈ Σ. The preference relation ≺′ is the one accepted by the DPA
A′ of Figure 10 where the initial state q′

0 replaces the initial state q0 of A and its priority
function is the one of A extended to q0 with priority 1.

It remains to show that the reduction is correct. Suppose that π = v0x is an NE outcome
starting in v0 in G. As it is a one-player game, π is a maximal play with respect to ≺′ among
all plays starting in v0. As those plays all belong to v0Σω, it follows that x is a maximal
element in ≺, by definition of ≺′. The other implication is proved similarly: given a maximal
element x in ≺, we get a play π = v0x that is maximal in ≺′ among all plays starting in v0,
thus an NE outcome. ◀

D Constrained NE Existence Problem

▶ Theorem 6. The constrained NE existence problem, with the constraints given by lassoes
(πi)i∈P , is exponential in |V |, Πi∈P |Ai|, Πi∈P |πi|, and doubly exponential in Σi∈Pdi, thus
also doubly exponential in |P|. If the number of players and each di are fixed (resp. for a

V. Bruyère, C. Grandmont, and J.-F. Raskin 27

one-player game), this problem is in EXPTIME and PSPACE-hard (resp. PSPACE-complete).

Sketch of proof of Theorem 6, membership. From the given game G and constraints πi =
µi(νi)ω for each player i, we construct the same P1CP2 game as for the NE existence problem.
The only difference is on the winning condition WP1P2 = Wacc ∪ Wdev where Wacc is modified
in a way to take into account the constraints:

Wacc = {π ∈ Plays(P1CP2(G)) | dev(π) = ⊥ and πi ≺i projV,1(π), ∀i}

This modification has an impact on the Rabin condition encoding WP1P2 . To translate Wacc

into a Rabin condition, we proceed as follows. For each i, we construct a DPA A′
i accepting

the set {x ∈ V ω | µi(νi)ω ≺i x}. It has |Ai| · |πi| states and di priorities. We then construct
the product A′ of all those automata A′

i that accepts the set {x ∈ V ω | µi(νi)ω ≺i x, ∀i}.
This a generalized DPA whose condition can be translated into a Streett condition with
d = Σi∈Pdi pairs [36]. The latter automaton is equivalent to a deterministic automaton B
with O(|A′| · 2d log(d)) states and d Rabin pairs [46]. Finally, we replace the arena of the
P1CP2 game by its product with the automaton B. Thanks to the previous argument, Wacc

is encoded as a Rabin condition on the modified arena with d pairs (without forgetting the
condition dev(π) = ⊥). As in the proof of the membership result of Theorem 5, Wdev is
translated into a Rabin condition with d pairs (step 1), and the rest of the proof (steps 2
and 3) is then the same. Nevertheless, the complexity of the constrained existence problem
is different as the number of vertices of the P1CP2 game now also depends on |B|. It follows
that the constrained NE existence problem is exponential in |V |, Πi∈P |Ai|, Πi∈P |πi|, and
doubly exponential in Σi∈Pdi. ◀

To obtain the PSPACE-hardness result of Theorem 6, it it enough to prove it for one-player
games.

Proof of Theorem 6, one-player games. Let us start with the PSPACE-membership of the
NE constrained problem for one-player games. Given a G = (A, ≺) with a single preference
relation, an initial vertex v0, and a constraint given by a lasso π, we have to decide the
existence of an NE σ from v0 in G such that π ≺ ⟨σ⟩v0 .

First, we define a relation ≺′ from ≺ as we did for the membership proof of Theorem 5
for one-player games in Appendix C. Recall that a play π is an NE outcome from v0 if and
only if it is maximal for ≺′. Recall also that ≺′ was accepted by a DPA of size |A| · |V |2.
Second, we define an automaton B such that L(B) = {ρ ∈ Plays | π ≺ ρ}, i.e., B is a DPA of
size |A| · |π|.

Our goal is then to find a maximal element of ≺′ in B, i.e., to satisfy

∃x∀y, x ̸≺′ y ∧ x ∈ L(B).

As PSPACE is closed under complementation, we can equivalently study the negation of this
property:

∀x∃y, x ≺′ y ∨ x ̸∈ L(B). (2)

The set {(x, y) | x ≺′ y ∨ x ̸∈ L(B)} is accepted by a generalized DPA with a disjunction
of two parity conditions, i.e., by a deterministic Streett automaton. This automaton has
size |V |2 · |A|2 · |π|. Therefore, the set {x | ∃y, x ≺′ y ∨ x ̸∈ L(B)} is accepted by a
nondeterministic Streett obtained from the previous one by projection on the first component.
To check (2), it remains to perform a universality check on the latter automaton, which is
done in PSPACE [7].

28 Games with ω-Automatic Preference Relations

v′
0 v′

0, v′
0

A′

G
q′

0

v′
1

G′

q0 qs v′
1, v

v′
1, v

A
(∀v ∈ V)

v0

Figure 11 The reduction used for the PSPACE-hardness of Theorem 6.

Let us now prove the PSPACE-hardness. We use a reduction from the NE existence
problem and suppose that there is only one player, as the NE existence problem is already
PSPACE-hard in this case. Given a game G = (A, ≺) with only player 1 with a preference
relation ≺ accepted by a DPA A, and v0 an initial vertex, we construct a new game
G′ = (A′, ≺′) as depicted in Figure 11. Its arena A′ has V ′ = V ∪ {v′

0, v′
1} as set of vertices,

with v′
0 and v′

1, two new vertices owned by player 1. It is a copy of A with v′
0, the new initial

vertex, having v0 and v′
1 as successors, and v′

1 having itself as successor. The preference
relation ≺′ ⊆ (V ′)ω × (V ′)ω is the one accepted by the DPA A′ of Figure 11 where the initial
state q′

0 replaces the initial state q0 of A and its priority function is the one of A extended
to q′

0 and qs, both with priority 0. In addition to the transitions of A, we have a transition
from q′

0 to q0 labeled by (v′
0, v′

0) and for all v ∈ V , a transition from q0 to qs (resp. from qs

to qs) labeled by (v′
1, v). Note that, thanks to the sink state qs,

v′
0(v′

1)ω ≺′ v′
0x for all x ∈ V ω. (3)

We impose a constraint given by the lasso v′
0(v′

1)ω.
Let us show that there is an NE in G from v0 if and only if there is one in G′ from v′

0
whose outcome π satisfies v′

0(v′
1)ω ≺′ π (Recall that NEs are composed of a single strategy,

as there is only one player). Let us first suppose that there exists an NE σ in G. Let σ′ be
a strategy in G′ defined as σ′(v′

0) = v0 and σ′(v′
0h) = σ(h) for any history h. Clearly, by

construction of ≺′, see (3), we have v′
0(v′

1)ω ≺′ ⟨σ′⟩v′
0
. Let us explain why the profile σ′ is

an NE. The deviation v′
0(v′

1)ω is not profitable for player 1, by (3). Any other deviation is
necessarily of the form v′

0π with π a deviation in G with respect to σ. Hence, it cannot be
profitable as σ is an NE and by definition of ≺′. Conversely, suppose that there exists an NE
σ′ in G′ such that v′

0(v′
1)ω ≺′ π′ = ⟨σ′⟩v′

0
. Note that π′ ≠ v′

0(v′
1)ω by (3) and as σ′ is an NE.

Therefore, we can define a strategy profile σ in G such that σ(h) = σ′(v′
0h) for any history h.

This is an NE in G since σ′ is an NE in G′.
This shows that the constrained NE existence problem is PSPACE-hard for the single-

player case. ◀

E Proof of Proposition 9

For the proof of Proposition 9, we use logspace reductions to show the NL-hardness results.
Such a reduction consists in computing a polynomially bounded function f with a deterministic
Turing Machine using three tapes: a read-only input tape containing the input x of length
n, a write-only output tape that will contain f(x) at the end of the execution, and a
read-write work tape with log(n) cells. The reader can consult [1, 48] for more details
about logspace reductions. Let us also recall that the complexity class NL is closed under
complementation [48]. Before providing the proof of Proposition 9, we need the following
result on generalized nondeterministic parity automata (NPAs) with a positive Boolean
combination of a constant number of parity conditions.

V. Bruyère, C. Grandmont, and J.-F. Raskin 29

▶ Proposition 16. The problem of deciding whether an ω-regular language L ⊆ Σω is not
empty (resp. universal) is NL-complete if L is accepted by a generalized NPA (resp. DPA)
with a constant number of parity conditions.

Proof. Let us show the NL-membership for the non-emptiness problem for both statements.
Consider a generalized NPA A with a positive Boolean combination of d parity conditions,
with d constant. Since parity conditions only handle infinite occurrences of states of a run,
by [9, Proposition 3.1], we know that if there is a word w accepted by A, then there exists
a lasso µ(ν)ω accepted by A such that |µ|, |ν| ≤ |Q|2, where |Q| is the number of states
of A. Hence, we can guess the length n ≤ 2|Q|2 of such a lasso, and the lasso itself on
the fly, state by state. To check whether the guessed lasso is accepted by A, we retain the
maximum priority occurring in ν for each of the d parity conditions, in a way to verify
whether the Boolean combination of those conditions is true or not. At any time, the amount
of information to be stored is logarithmic since a state and d priorities take logarithmic space
when written in binary (recall that d is constant).

For the universality problem in case A is deterministic, it amounts to solve the non-
emptiness problem for the complement automaton A′. The latter automaton is constructed
from A where in its Boolean combination, each ∨ (resp. ∧) is replaced by ∧ (resp. ∨), and
the priorities are all incremented by one in each of its parity conditions. So, the size of A′ is
the same and the determinism is preserved. Hence, we can perform the same algorithm as
above.

Since the non-emptiness for NBAs and the universality problems for DBAs are both
NL-complete [36], and a Büchi condition is a special case of a generalized parity condition,
we get the NL-hardness of every statement. ◀

We now proceed to the proof of Proposition 9. We denote by A a DPA accepting an
ω-automatic relation R ⊆ Σω × Σω.

▶ Proposition 9. The problem of deciding whether an ω-automatic relation R is reflexive
(resp. irreflexive, transitive, ¬-transitive, total) is NL-complete.

Proof of Proposition 9 - reflexivity. Let us start with the NL-membership. From A, we
construct a new automaton A′ over Σ by first erasing all transitions labeled by (a, b) with
a ̸= b, and then replacing each label (a, a) of the remaining transitions by a. Clearly, A′ is a
DPA and we get that {(x, x) | x ∈ Σω} ⊆ L(A) if and only if L(A′) = Σω. Therefore, testing
whether R is reflexive reduces to checking the universality of A′. The latter problem is NL
for DPAs by Proposition 16. Note that A′ is constructed on the fly from A while guessing a
lasso not accepted by A′. This requires to use pointers on states and transitions of A, those
pointers being stored in a logarithmic space of the work tape.

Let us continue with the NL-hardness. We proceed by reduction from the universality
problem for DBAs which is NL-complete [36]. Given such an automaton A over Σ, we
construct a new automaton A′ = A × A that accepts the relation R = L(A) × L(A) over
Σ × Σ. The automaton A′ has a size |A|2 and is a generalized DBA with a conjunction of two
Büchi conditions, and can thus be transformed into a DBA B of size 2|A′|2 [36]. Moreover,
we have that for all x ∈ Σω, x ∈ L(A) if and only if (x, x) ∈ L(B). That is, L(A) = Σω

if and only if R is reflexive. This establishes the correctness of the reduction. Finally, it
is a logspace reduction. Indeed, we need to use pointers on the input tape, stored in the
work tape, in a way to iterate on the states and transitions of A, and construct step by step
the states and transitions of B on the output tape; we also need to store an extra bit to
remember the copy of A′ (to get the DBA B). ◀

30 Games with ω-Automatic Preference Relations

Proof of Proposition 9 - irreflexivity. For irreflexivity, note that R is irreflexive if and only
if (Σω × Σω)\R is reflexive. So, as the complement of a DPA is still a DPA of the same size,
we can repeat the same NL algorithm as above with (Σω × Σω)\R, and a reduction from
deciding the reflexivity of a relation to obtain the NL-hardness. ◀

Proof of Proposition 9 - transitivity. We begin with the NL-membership. The relation R

is not transitive if there exist x, y, z ∈ Σω such that (x, y) ∈ R and (y, z) ∈ R but (x, z) ̸∈ R.
Testing whether R is not transitive thus reduces to testing whether the language

L = {(x, y, z) ∈ (Σω)3 | (x, y) ∈ R ∧ (y, z) ∈ R ∧ (x, z) ̸∈ R}

is not empty. We can construct an automaton A′ accepting L which is a generalized DPA
with a conjunction of three parity conditions. This automaton has a polynomial size (the
complementation of A leads to an automaton with the same size as it suffices to increment
each priority by 1). Hence, we can check whether L is not empty with the NL algorithm of
Proposition 16. Note that A′ is constructed on the fly while guessing a lasso accepted by A′.

We now prove the NL-hardness. We use a reduction from the universality problem of
DBAs which is NL-complete [36]. Given a DBA A over the alphabet Σ, we construct the
relation R = R1 ∪ R2 ∪ R3 ∪ R4 on (Σ′)ω × (Σ′)ω with Σ′ = Σ ∪ {#} such that:

R1 = Σω × {#ω},
R2 = {#ω} × Σω,

R3 = L(A) × L(A),
R4 = {(#ω, #ω)}.

Let us show the correctness of the reduction. Suppose that L(A) = Σω, it means that
R3 = Σω × Σω. Let x, y, z ∈ (Σ′)ω such that (x, y) ∈ R and (y, z) ∈ R, and let us show that
(x, z) ∈ R. If x = #ω, then y ∈ Σω or y = #ω, so (x, z) ∈ R2 ∪ R4. Otherwise x ̸= #ω,
thus by R3 = Σω × Σω and R1, we have (x, z) ∈ R1 ∪ R3. Conversely, if L(A) ̸= Σω, then
there exists x ∈ Σω \L(A). So, we have (x, #ω) ∈ R1, (#ω, x) ∈ R2 but (x, x) ̸∈ R. Hence,
L(A) = Σω if and only if R is transitive. Furthermore, R is accepted by a DBA A′ that we
construct as follows. Each Ri, i ̸= 3, is trivially accepted by a DBA of constant size. For R3,
we construct the automaton A × A which is a generalized DBA with a conjunction of two
Büchi conditions, that can be transformed into a DBA. We then create a new initial state q0
(replacing the initial state qi

0 for each Ri) and duplicate the transitions outgoing16 each qi
0 as

a transition outgoing q0. In this way we get a DBA A′ accepting R of polynomial size. One
can check that this reduction is a logspace reduction. ◀

Proof of Proposition 9 - ¬-transitivity. Note that R is ¬-transitive if and only if (Σω ×
Σω)\R is transitive. Hence, as the complement of a DPA is still a DPA of the same size, we
can repeat the same NL algorithm as for transitivity with (Σω × Σω)\R, and a reduction
from decide the transitivity of a relation to obtain the NL-hardness. ◀

Proof of Proposition 9 - totality. We begin with the NL-membership. Recall that R is
total if for all x, y ∈ Σω, we have (x = y) ∨ ((x, y) ∈ R) ∨ ((y, x) ∈ R). Equivalently, R

is total if R′ = R= ∪ R ∪ R̃ is equal to Σω × Σω such that R= = {(x, x) | x ∈ Σω} and
R̃ = {(y, x) | (x, y) ∈ R}. From A, it is easy to construct a generalized DPA A′ of polynomial
size with a disjunction of three parity conditions which accepts R′. We then run the NL
algorithm of Proposition 16 to check whether A′ is universal while constructing A′ on the fly.

16 of the form (a, #) (resp. (#, a), (a, b), (#, #)) for R1 (resp. R2, R3, R4), with a, b ∈ Σ.

V. Bruyère, C. Grandmont, and J.-F. Raskin 31

A
#, Σ

A
#, ∗

Σ, ∗

Σ, Σ

#, Σ

#, #

Σ, #

#, ∗

Σ, ∗

Σ, ∗

#, ∗

#, #

Σ, #

qΣ

q0

q#

qs ∗, ∗

Σ, Σ

Figure 12 The DBA A′ used in the reduction for the totality property of Proposition 9.

Let us turn to the NL-hardness. We use a reduction from the universality problem of
DBAs which is NL-complete [36]. From a DBA A over the alphabet Σ, we define the alphabet
Σ′ = Σ ∪ {#} and the relation R = R1 ∪ R2 where:

R1 = (Σω ∪ {#ω}) × L(A) and
R2 = L × (Σ′)ω, with L = (Σ′)ω \(Σω ∪ {#ω}).

Let us prove the correctness of the reduction. Suppose that L(A) ̸= Σω. Given x ∈ Σω\L(A),
we have x ̸= #ω, (#ω, x) ̸∈ R, and (x, #ω) ̸∈ R. Hence, R is not total. Suppose now that
R is not total, i.e., there exists x ̸= y such that (x, y), (y, x) ̸∈ R. By definition of R2, we
must have x, y ∈ Σω ∪ {#ω}. Since x ̸= y, we know that x or y is in Σω, w.l.o.g., let us say
y ∈ Σω. As (x, y) ̸∈ R1, we get y ̸∈ L(A). Therefore L(A) = Σω if and only if R is total.

Moreover, R is accepted by the DBA A′ depicted in Figure 12. Let us give some
explanations. W.l.o.g., we suppose that the automaton A is complete. The part of A′

composed of the initial state q0 and the two copies of A accepts the relation R1 = (Σω ×
L(A)) ∪ ({#ω} × L(A)). The relation R2 is accepted thanks to the accepting sink state
qs. Note that L is composed of all words containing at least one symbol of Σ and one
symbol #, a condition that has to be satisfied to reach qs. The states qΣ and q# retain
the information that it is impossible to have (x, y) ∈ R1 due to the symbol # seen inside y,
implying y ̸∈ L(A). Finally, note that A′ is deterministic, thus a DBA and in particular a
DPA. This completes the proof as the proposed reduction is a logspace reduction. ◀

F Adaptation of Reductions for Preorders

In this section, we present how to adapt the hardness proofs of Theorems 3–6 for ω-automatic
preorders (instead of ω-automatic relations). For every proof, the general idea is to modify
each DPA used in the reductions so that it accepts a preorder ≾ extending the relation ≺
initially accepted (i.e., in the sense that x ≺ y if and only if x ≾ y and y ̸≾ x).

NE Checking Problem. For the PSPACE-hardness of Theorem 3 presented in Appendix A,
relations ≺i are empty for 1 ≤ i ≤ n, while ≺n+1 = Lc × L. The only small modification
is to define ≾i = V ω × V ω, for 1 ≤ i ≤ n, and ≾n+1 = (Lc × L) ∪ (Lc × Lc) ∪ (L × L). All
these relations are now reflexive and transitive. However, some explanation is necessary for
the transitivity of ≾n+1. Let x, y, z ∈ V ω be such that x ≾n+1 y and y ≾n+1 z. If y ∈ Lc,
we must have x ∈ Lc so x ≾n+1 z. Otherwise, y ∈ L, then we must have z ∈ L so we also
have x ≾n+1 z. As L and Lc are DBAs, the cartesian product of two DBAs is a generalized
DBA with a conjunction of two Büchi conditions, thus a DBA [36], and the union of two
DBAs is still a DBA, we can conclude because a DBA is in particular a DPA.

32 Games with ω-Automatic Preference Relations

v′
0, v′

0
B

q′
0

v, v qs

v, v

q0

(v ̸= v′
0)

v′
0, v′

0; v′
1, v′

1

q′
s v′

1, v

v′
1, v

A

(∀v ∈ V ′)

(∀v ∈ V)

Figure 13 The modified automaton B for the hardness of Theorem 6 in the case of preorders.

NE Outcome Checking Problem. For the Parity-hardness of Theorem 4, the empty relation
≺2 is transformed into ≾2 = (V ′)ω × (V ′)ω (recall that V ′ = V ∪ {v′

0} for v′
0 the new initial

state). We then modify the DPA A1 for ≺1 of Figure 4 by adding a new state qs with
priority 0 and new transitions (q0, (v, v), qs) for all v ∈ V , and (qs, (v, v), qs) for all v ∈ V ′.
The modified DPA accepts ≾1, the reflexive closure of ≺1. One can easily check that it is
transitive.

NE Existence Problem. To show the PSPACE-hardness of Theorem 5 for preorders, we
need to show the PSPACE-hardness of Proposition 15 for preorders (see Appendix C).

Let us consider the relation ≺′ in the hardness proof of Proposition 15 and the DPA A′

accepting it. We modify this automaton into a DPA B accepting ≾′. We add to A′ two extra
states:

a sink state qs with a loop labeled (b, b) for each b ∈ Q ∪ Σ,
a state q′

0 that becomes the new initial state, with the transitions δ′(q′
0, (a, q)) =

δ′(q0, (a, q)) whenever the transition exists from q0, and δ′(q′
0, (b, b)) = qs for all b ∈ Q∪Σ.

The modified automaton is still deterministic. The priority function α is extended such that
α(q′

0) = 1 and α(qs) = 2. The relation accepted by B is clearly reflexive (thanks to the
sink state qs). Let us show that it is also transitive: let x, y, z ∈ (Σ′)ω be such that (x, y)
and (y, z) ∈ R. As (t, t′) ∈ R with t ̸= t′ implies that t ∈ Σω and t′ ∈ Qω, we must have
x = y or y = z. It follows that the relation of B is transitive, and thus it is an ω-automatic
preorder ≾.

Now that Proposition 15 holds for preorders, let us modify the reduction of Theorem 5
presented in Appendix C. In Figure 10, we can assume that A is complete. Moreover, we add
an extra state qs with a priority 0 and transitions (q′

0, (a, a), qs) for all a ∈ Σ, (qs, (a, a), qs)
for all a ∈ Σ ∪ {v0}, and (q, (v0, v0), qs) for all q ̸∈ {q0, qs}. One can easily verify that the
new relation ≾′ is reflexive. Let us prove that it is transitive. Let x ≾′ y and y ≾′ z, and let
us discuss the following three cases:

If y starts with some symbol a ∈ Σ, then x = y = z and x ≾′ z.
If y is of the form v0y′ with y′ ∈ Σω, then it is also the case for x and z. As ≾ is transitive,
we get that x ≾′ z.
If y is of the form v0wyv0y′ with wy ∈ Σ∗, then x = v0wxv0x′ and z = v0wzv0z′ with
wx, wz ∈ Σ∗ and |wx| = |wy| = |wz|. Therefore, as A is complete, we get x ≾′ z.

Constrained NE Existence Problem. For the hardness of Theorem 6, we have to modify the
DPA A′ in Figure 11 into a DPA B to make it reflexive in the following way (see Figure 13).
We add a new sink state q′

s with a priority 0. We add transitions (q′
0, (v, v), q′

s) for all v ≠ v′
0,

(q′
s, (v, v), q′

s) for all v ≠ v′
0, and (q, (v′

0, v′
0), q′

s), (q, (v′
1, v′

1), q′
s) for all state q in the copy

of A.

V. Bruyère, C. Grandmont, and J.-F. Raskin 33

Let us prove that the relation ≾′ accepted by the B is transitive (w.l.o.g., we suppose
that A is complete). Let x ≾′ y and y ≾′ z. Notice that x ∈ v′

0V ω ⇒ y ∈ v′
0V ω and

y ∈ v′
0V ω ⇒ z ∈ v′

0V ω (due to the copy of A inside B). Let us discuss the following cases:
If y does not start with v′

0, then x = y = z and x ≾′ z. Otherwise, y starts with v′
0, thus

also x and z.
If x ∈ v′

0V ω, then y, z ∈ v′
0V ω and the runs with label (x, y) and (y, z) both stay in Ai.

As ≾ is transitive, we get that x ≾′ z.
If x ̸∈ v′

0V ω and y ∈ v′
0V ω (and thus z ∈ v′

0V ω), then x = v′
0(v′

1)ω and then the run
labeled by (x, z) ultimately loops in q′

s, showing that x ≾′ z.
If x, y ̸∈ v′

0V ω and z ∈ v′
0V ω, then necessarily x = y = v′

0(v′
1)ω, and we get x ≾′ z.

If x, y, z ̸∈ v′
0V ω, then x (resp. y, z) is the form v′

0wxv′
ix

′ (resp. v′
0wyv′

iy
′, v′

0wzv′
iz

′) with
wx, wy, wz ∈ V ∗ such that |wx| = |wy| = |wz|, and i ∈ {0, 1}. Therefore, as A is complete,
we get x ≾′ z.

G Proof of Proposition 10

▶ Proposition 10. An ω-automatic preorder ≾ ⊆ Σω × Σω is ω-recognizable if and only if
its induced equivalence relation ∼ has finite index.

Proof. We use [39, Lemma 3] to prove this proposition. Let E1 = {(x, y) | ∀z, x ≾ z iff y ≾
z} and E2 = {((x1, x2), (y1, y2)) | x1 ≾ x2 iff y1 ≾ y2} be two equivalence relations. From [39,
Lemma 3], we know that ≾ is ω-recognizable if and only if both E1 and E2 have finite
index. Note that by definition, E2 has at most two equivalence classes. Hence, to establish
Proposition 10, we will show that E1 = ∼. Let x, y ∈ Σω. If (x, y) ∈ E1, we can particularize
z to x and then y, to get that x ∼ y by reflexivity of ≾. If x ∼ y, for all z ∈ Σω, we get by
transitivity of ≾ that x ≾ z if and only if y ≾ z, thus (x, y) ∈ E1. ◀

H Proof of the Existence of NE with Total ω-Recognizable Preorders

In this section, we assume that each game G has an ω-recognizable preorder ≾i for each
i ∈ P. We aim at proving Theorem 11 when every relation is total.

By Proposition 10, we denote by Λi the finite lattice formed by the equivalence classes
of ∼i. We also denote by [x]i the equivalence class of the word x with respect to ∼i. By
abusive notation, we write [x]i ≾i [y]i whenever x ≾i y.

Useful Lemmas In addition to Proposition 10, we first mention some useful properties
about preorders.

▶ Lemma 17. Let ≾ be an ω-recognizable preorder over Σ and ∼ the related equivalence
relation. Then, in each equivalence class of ∼, there exists a lasso. Moreover, given a word
x ∈ Σω, there exists a prefix µν of x such that x ∼ µ(ν)ω.

Proof. Let x ∈ Σω. As ≾ is a preorder, we have x ≾ x. As ≾ is ω-recognizable, i.e., ≾ is equal
to ∪ℓ

i=1Xi × Yi where Xi, Yi are ω-regular languages, there exists i such that (x, x) ∈ Xi × Yi.
Therefore, x belongs to Xi ∩ Yi which is still ω-regular and thus contains a lasso µ(ν)ω such
that µν is a prefix of x. It follows that (x, µ(ν)ω) ∈ Xi × Yi and (µ(ν)ω, x) ∈ Xi × Yi, thus
x ≾ µ(ν)ω and µ(ν)ω ≾ x, that is, x ∼ µ(ν)ω. ◀

Note that Lemma 17 does not hold in the general case of ω-automatic preorders. Let us
take ≾ defined as x ≾ y if and only if x = y. This is an ω-automatic preorder where for each

34 Games with ω-Automatic Preference Relations

word x, its equivalence class is the singleton {x}. There is an infinite number of such classes,
showing that ≾ is not ω-recognizable (by Proposition 10), and Lemma 17 does not hold.

Total Preorders We now suppose that each preorder ≾i is total, that is, the lattice Λi is a
finite total order. This means that the finite number of equivalence classes of ∼i are totally
ordered from the lowest one to the highest one. Consequently, we have the next important
property: for all x, y ∈ Σω,

x ̸≺i y ⇔ y ≾i x.

Let us state Theorem 11 in the particular setting of total preorders.

▶ Theorem 18. When the preference relations of a game are all ω-recognizable and total
preorders, then there always exists an NE.

To prove Theorem 18, we take inspiration from the work of [31] and [14], where the
existence of NEs is studied through the concept of value and optimal strategy. In the next
definitions, for a fixed i ∈ P, the notation Σi (resp. Σ−i) is used for the set of all strategies
of player i (resp. player −i).

▶ Definition 19. Let ≾i be the preference relation of player i and −i be the coalition of the
other players. Let v be a vertex. We define the following lower and upper values:

vali(v) = maxσi∈Σi min{[π]i | π consistent with σi and first(π) = v},
vali(v) = minσ−i∈Σ−i

max{[π]i | π consistent with σ−i and first(π) = v}.

Note that the lower and upper values are well defined as the lattice Λi is finite.

▶ Lemma 20. We have vali(v) ≾i vali(v) for each v ∈ V .

Proof. Let σv
i that realizes vali(v) and σv

−i that realizes vali(v). Then, we have vali(v) ≾i

[⟨σv
i , σv

−i⟩v]i ≾i vali(v). ◀

▶ Definition 21. If vali(v) = vali(v), then we speak about the value of v denoted by vali(v)
and two strategies σv

i ∈ Σi, σv
−i ∈ Σ−i that realize the value are called optimal.

Note that an optimal strategy σv
i ensures consistent plays π starting at v such that

vali(v) ≾i [π]i. This leads us to introduce the concept of threshold game (A,≾i, Ωi) defined
from G and a lasso ρ, and with Ωi = {x ∈ V ω | ρ ≾i x}. It is a zero-sum player game
between the players i and −i, whose objective of player i is the set Ωi (while the objective
of player −i is V ω \Ωi). Hence, if ρ is a lasso in the equivalence class vali(v) such that
first(π) = v (it exists by Lemma 17), σv

i is nothing more than a winning strategy in this
threshold game. Similarly, an optimal strategy σv

−i ensures consistent plays π starting at
v such that [π]i ≾i vali(v). It is thus a winning strategy in the variant of threshold game
(A,≾i, Ω−i) where Ω−i = {x ∈ V ω | x ≾i ρ} is the objective of player −i.

▶ Proposition 22. Every threshold game (and its variant) is determined, with finite-memory
winning strategies for both players.

Proof. Let (A,≾i, Ωi) be a threshold game defined from G and a lasso ρ. From the DPA
Ai accepting ≾i, we construct a DPA A′

i accepting Ωi, which is the product between the
lasso ρ and Ai. Then, we construct a zero-sum parity game H from the product between

V. Bruyère, C. Grandmont, and J.-F. Raskin 35

the arena A of G and A′
i, such that its parity condition encodes the objective Ωi.17 Clearly,

the existence of a winning strategy in the threshold game is equivalent to the existence of
a winning strategy in H. As parity games are determined and have memoryless winning
strategies for both players [30], this completes the proof. Note that the argument is similar
for the variant with the objective Ω−i for player −i. ◀

▶ Proposition 23. There always exists a value vali(v) for each v ∈ V . Moreover, there
exist finite-memory optimal strategies σv

i and σv
−i whose outcome ⟨σv

i , σv
−i⟩v is a lasso in the

equivalence class vali(v).

Proof. Let us suppose for a contradiction that vali(v) ≺i vali(v) for some v. It implies the
existence of a play ρ ∈ vali(v) with first(ρ) = v such that vali(v) ≺i [ρ]i. By Lemma 17, we
can assume that ρ is a lasso. In other words, we have

¬(∃σi ∈ Σi, ∀σ−i ∈ Σ−i, ρ ≾i ⟨σi, σ−i⟩v). (4)

We consider the threshold game (A,≾i, Ωi) with the objective Ωi = {x ∈ V ω | ρ ≾i x} for
player i. By determinacy, given by Proposition 22, and totality of ≾i, (4) is equivalent to

∃σ−i ∈ Σ−i, ∀σi ∈ Σi, ⟨σi, σ−i⟩v ≺i ρ.

The existence of such a strategy σ−i is in contradiction with the definition of vali(v), since
ρ ∈ vali(v). Hence, for all v, we have vali(v) = vali(v) and vali(v) exists.

Let us now prove the existence of finite-memory optimal strategies. Let ρ be a lasso
in the equivalence class vali(v) such that first(ρ) = v. By Proposition 22 (where Ωi is
defined with this lasso ρ), there exists a (winning) optimal strategy σi that is finite-memory.
Similarly, there exists a finite-memory optimal strategy σ−i for player −i and his objective
Ω−i = {x ∈ V ω | x ≾i ρ}. ◀

Now that the values and optimal strategies are defined, we still need to introduce
the concept of subgame before proceeding to the proof of Theorem 18. Given a game
G = (A, (≾i)i∈P) and a history h ∈ V ∗, we denote by G↾h = (A, (≾h

i)i∈P) the subgame from
h, where for each player i, we define the relation ≾h

i by:

∀x, y ∈ V ω, x ≾h
i y ⇔ hx ≾i hy.

Hence, this relation only refers to the preference relation ≾i restricted to words having h

as a prefix. We also define the relations ≺h
i and ∼h

i as expected. By definition, we have
x ∼h

i y if and only if hx ∼i hy. Hence, the equivalence class [x]hi of x for ∼h
i is mapped to

the equivalence class [hx]i of hx for ∼i, called the projection of [x]hi .

▶ Lemma 24. Given the ω-recognizable total preorder ≾i and any history h ∈ V ∗, the relation
≾h

i is also an ω-recognizable total preorder.

Proof. By definition, ≾h
i is clearly a total preorder. Furthermore, we can easily define a

DPA accepting ≾h
i from the DPA Ai accepting ≾i. Indeed, we simply take a copy of Ai and

replace its initial state with the unique state reached by reading the pair (h, h). Finally, to
show that ≾h

i is ω-recognizable, let us prove that ∼h
i has finite index (by Proposition 10).

As the equivalence class of any x for ∼h
i is mapped to its projection [hx]i and ∼i has a finite

index, it is also the case for ∼h
i . ◀

17 Note that in the proof of the membership result of Theorem 4, such a zero-sum generalized parity game
was already constructed for the objective {x ∈ V ω | ρ ≺i x}.

36 Games with ω-Automatic Preference Relations

We are now ready to prove Theorem 18.

Proof of Theorem 18. As done for G, thanks to Lemma 24, for each player i and each
history hv, we can define for the subgame G↾h the notion of value denoted valh

i (v) and of
optimal strategies denoted σhv

i , σhv
−i for player i and −i respectively. We also denote by νhv

i

the equivalence class for ∼i, equal to the projection of valh
i (v). This means that σhv

i , (resp.
σhv

−i) guarantees consistent plays π starting at v such that

valh
i (v) ≾h

i [π]hi (resp. [π]hi ≾h
i valh

i (v)),

or equivalently

νhv
i ≾i [hπ]i (resp. [hπ]i ≾i νhv

i). (5)

For each i, let us define the following strategy τi
18 in G: for all histories hv with v ∈ Vi,

τi(hv) = σh1u
i (h2v)

such that
h = h1h2,
νh1u

i = νhv
i with u the first vertex of h2v,

|h1| is minimal with respect to the two previous items.
(We use the optimal strategy corresponding to the smallest prefix h1 of h such that the
projections of both values valh

i (v) and valh1
i (u) are the same.)

Consider the outcome ρ = ⟨τ⟩v0 of the strategy profile τ = (τi)i∈P from a given initial
vertex v0. For each i, we define ν∗

i = max{νhv
i | hv prefix of ρ}. Notice that ν∗

i is well
defined as any νhv

i is an equivalence class of ∼i and Λi is a finite total order. Let us prove
that

ν∗
i ≾i [ρ]i for all i ∈ P. (6)

For this purpose, let us consider the smallest prefix hv of ρ such that νhv
i = ν∗

i , and let us
prove that for any hgu prefix of ρ,

τi(hgu) = σhv
i (gu) if u ∈ Vi,

νhgu
i = ν∗

i .
(From h, τi plays as dictated by σhv

i and the projection of the value valhg
i (u) remains equal

to ν∗
i .) The proof is by induction on |g|. By definition of τi and hv, this property trivially

holds when g = ε (in which case u = v). Let us assume that the property is true for gu and
let us prove that it remains true for guu′, with u′ ∈ V such that hguu′ is a prefix of ρ.

Let us first observe that guu′ is consistent with σhv
i . This is verified for gu by induction

hypothesis. Moreover, again by induction hypothesis, if u ∈ Vi, then τi(hgu) = σhv
i (gu) =

u′.
Let us then prove that νhguu′

i = ν∗
i . By definition of ν∗

i , we have νhguu′

i ≾i ν∗
i . Assume by

contradiction that νhguu′

i ≺i ν∗
i . By (5), it follows that the optimal strategy σhguu′

−i can
impose [π]i ≾i νhguu′

i ≺i v∗
i on plays π having hguu′ as prefix. This is in contradiction

with the optimal strategy σhv
i , the consistency of guu′ with this strategy, and thus by (5)

ν∗
i = νhv

i ≾i [π]i.

18 Note that the strategy profile composed of the τi’s is not yet the required NE.

V. Bruyère, C. Grandmont, and J.-F. Raskin 37

Suppose that u′ ∈ Vi, as νhguu′

i = ν∗
i , it follows by definition of τi that τi(hguu′) =

σhv
i (guu′).

As a consequence, the property is proved and we get that ρ = hρ′ with a play ρ′ consistent
with σhv

i . By (5) again, it follows that ν∗
i ≾i [ρ]i, and (6) is thus established.

We are now ready to define the required NE τ ′ = (τ ′
i)i∈P . It is partially defined in such a

way as to generate ρ = ⟨τ ′⟩v0 . Moreover, as soon as some player i deviates from ρ at any
prefix hv of ρ, then the other players form the coalition −i and play the optimal strategy
σhv

−i. In this way, by (5), the coalition imposes [ρ′]i ≾i νhv
i on the deviating play ρ′. As

νhv
i ≾i ν∗

i by definition of ν∗
i and by (6), we get [ρ′]i ≾i νhv

i ≾i ν∗
i ≾i [ρ]i. The deviating

play is therefore not profitable for player i, showing that τ ′ is an NE from v0. ◀

I Proofs of Proposition 12 and Theorem 11

▶ Proposition 12. Any ω-recognizable preorder ≾ can be embedded into an ω-recognizable
total preorder ≾′. Moreover, for all x, y, if x ⋊⋉ y, then x ⋊⋉′ y, for ⋊⋉ ∈ {≾, ≺,≿, ≻, ∼}.

Proof. The equivalence classes of ∼ form a finite lattice that we can see as an acyclic graph
(whose vertices are the equivalence classes and (C, C ′) is an edge if and only if C ≺ C ′).
Thus, by performing a topological sort of this graph, we can totally order the equivalence
classes as the sequence C1, . . . , Cn, such that Ci ≾ Cj implies i ≤ j (the topological sort
respects ≾). Let i ≤ n, and π ∈ Ci be a lasso (by Lemma 17). Therefore, we construct ≾′ as
follows:

≾′ = ≾ ∪

 ⋃
1≤i<j≤n

Ci × Cj

 .

We clearly get an embedding of ≾ into ≾′ such that ≾′ is ω-recognizable (as each equivalence
class Ci is ω-regular by ω-recognizably of ≾). The relation ≾′ is also clearly a preorder as
≾ is a preorder and by the topological sort. Let us note that ≾′ is total by construction.
Indeed, for any x, y, there exist Ci and Cj such that x ∈ Ci and y ∈ Cj . Therefore, w.l.o.g.,
assuming i ≤ j, we have x ≾′ y because either (x, y) ∈ Ci × Cj if i ̸= j, or x ∼ y thus x ≾′ y

if i = j.
The second claim is clearly verified by construction for ⋊⋉ in {≾,≿, ∼}, as ≾′ preserves

≾. For ≺ and ≻, it is true by the same argument and the topological sort preserving the
partial order of the equivalence classes. ◀

▶ Theorem 11. When the preference relations of a game are all ω-recognizable preorders,
then there always exists an NE composed of finite-memory strategies.

For the proof, we suppose that the preference relations ≾i, i ∈ P, are not necessarily
total. This means that when x ̸≺i y, then either x ̸≾i y or y ≾i x.

Proof. Given a game G = (A, (≾i)i∈P), we construct G′ = (A, (≾′
i)i∈P) with the same

arena A and, for each i ∈ P, the ω-recognizable total preference relations ≾′
i as defined

in Proposition 12. By Theorem 18, as ≾′
i are total, there exists an NE σ = (σi)i∈P in G′.

This strategy profile σ is also an NE in G. Otherwise, we would get a profitable deviation
⟨σ⟩v0 ≺i π for some player i in G, thus the same profitable deviation ⟨σ⟩v0 ≺′

i π in G′ by
Proposition 12. This is a contradiction with σ being an NE in G′. As there exists an NE,
there also exists an NE composed of finite-memory strategies by Corollary 8. ◀

38 Games with ω-Automatic Preference Relations

a, #

q0

q q′

A
#, ∗
∗, b

∗, ∗qs

Figure 14 The DBA A′ used in the reduction for the prefix-independency property.

J Characterization of NE Outcomes and Prefix-Independency

We begin with a proof of Theorem 13, then we will discuss about the alternative statement
with prefix-linear relations.

▶ Theorem 13. Let G be a game such that each preference relation ≾i is an ω-recognizable
preorder, total, and prefix-independent. Then a play ρ = ρ0ρ1 . . . is an NE outcome if and
only if for all vertices ρn of ρ, if ρn ∈ Vi, then vali(ρn) ≾i [ρ]i.

Proof. Suppose first that ρ is the outcome of an NE (τi)i∈P . Assume by contradiction that
for some vertex v = ρn ∈ Vi belonging to ρ, we have vali(v) ̸≾i [ρ]i, i.e., [ρ]i ≺i vali(v) as ≾i

is total. Let ρ = hρ≥n, and let us consider an optimal strategy σv
i for player i. Player i can use

this strategy to deviate at v and thus produce a play π starting at v such that vali(v) ≾i [π]i.
As ≾i is prefix-independent, we have π ∼i hπ, and thus [ρ]i ≺i vali(v) ≾i [hπ]i. Hence hπ is
a profitable deviation for i, which is impossible since ρ is an NE outcome.

Suppose now that ρ is a play such that for all vertices ρn of ρ, if ρn ∈ Vi, then vali(ρn) ≾i

[ρ]i. We define a strategy profile τ = (τi)i∈P such that it produces ρ, and if player i deviates
at some vertex v from ρ, then the coalition −i plays an optimal strategy σv

−i from v. Let
us prove that τ is an NE. Suppose that player i deviates at v = ρn from ρ and consider
the deviating play ρ′ = hπ′. By definition of τ , we have [π′]i ≾i vali(ρn). As ≾i is prefix-
independent, [ρ′]i = [hπ′]i ≾i vali(ρn). By hypothesis, vali(ρn) ≾i ρ. Therefore, [ρ′]i ≾i [ρ]i,
showing that ρ′ is not a profitable deviation. Hence, ρ is an NE outcome. ◀

As explained in Section 7, we can replace the assumption of prefix-independency with
prefix-linearity and slightly modify the statement of Theorem 13. This leads to the next
theorem, whose proof is almost the same.

▶ Theorem 25. Let G be a game such that each preference relation ≾i is an ω-recognizable
preorder, total, and prefix-linear. Then a play ρ = ρ0ρ1 . . . is an NE outcome if and only if
for all vertices ρn of ρ, if ρn ∈ Vi, then vali(ρn) ≾i [ρ≥n]i.

In view of Theorems 13 and 25, we might want to check whether a given ω-automatic
relation satisfies the prefix-independency or prefix-linearity property, as for the classical
properties considered in Proposition 9. We get the same complexity class:

▶ Proposition 26. The problem of deciding whether an ω-automatic relation R is prefix-
independent (resp. prefix-linear) is NL-complete.

Proof of Proposition 26 - prefix-independency. We begin with the NL-membership. Let A
be a DPA accepting R. Note that R is prefix-independent if and only if we have the following
equivalence for all x, y ∈ Σω:

(x, y) ∈ R ⇔ (x≥1, y) ∈ R ∧ (x, y≥1) ∈ R.

V. Bruyère, C. Grandmont, and J.-F. Raskin 39

We are going to show that it is decidable whether R is not prefix-independent, i.e., the
following language L is not empty:

L = {(x, y, x≥1, y≥1) ∈ (Σω)4 |
(

(x, y) ∈ R ∧ ((x≥1, y) ̸∈ R ∨ (x, y≥1) ̸∈ R)
)

∨
(

(x≥1, y) ∈ R ∧ (x, y≥1) ∈ R ∧ (x, y) ̸∈ R
)

}. (7)

As R is accepted by a DPA, the set {(x, y) | (x, y) ̸∈ R} is accepted by a DPA of the
same size as A. Therefore, one can construct a generalized DPA A′ accepting L with a
Boolean combination of six parity conditions (by carefully constructing the transitions to
deal with tuples (x, y, x≥1, y≥1)). Hence, testing whether L is not empty can be done in NL
by Proposition 16 while constructing A′ on the fly.

Let us now show the NL-hardness, by reduction from the universality problem of DBAs [36].
Let A be a DBA over the alphabet Σ. Let Σ′ = Σ ∪ {#} with a new symbol #. From
R′ = (Σω \L(A)) × {#ω}, we define the complementary relation

R = ((Σ′)ω × (Σ′)ω) \ R′.

Let us show that the reduction is correct. If L(A) = Σω, then R = (Σ′)ω × (Σ′)ω, which
is prefix-independent. Conversely, if there exists x ∈ Σω \L(A), then (x, #ω) ̸∈ R but
(x, a#ω) ∈ R with a ∈ Σ, so R is not prefix-independent. Let us now describe a DBA
A′ accepting R, as depicted in Figure 14. W.l.o.g., we suppose that A is complete. The
automaton A′ is composed of a copy of A extended with a second component # in a way
to accept L(A) × {#ω}. As soon as a pair (#, ∗) or (∗, b) (with b ∈ Σ) is read from this
copy, we go in an accepting sink state qs. Therefore, the only rejected words are those in R′.
Note that this is a logspace reduction as we need a logarithmic space on the work tape to
construct A′. ◀

Proof of Proposition 26 - prefix-linearity. Let us begin with the NL-membership. Let R be
a preference relation and A be a DPA accepting it. Let us show that R is not prefix-linear,
i.e., there exist x, y ∈ Σω and u ∈ Σ∗ such that (x, y) ∈ R and (ux, uy) ̸∈ R. We first
compute the set I = {q | q is reachable by a run on (u, u), for u ∈ Σω} by deleting all edges
labeled (a, b) for a ≠ b. Then, we construct a nondeterministic parity automaton B by taking
the complement of A that accepts ¬R and saying that every state q ∈ I is initial. Therefore,
(x, y) ∈ L(B) if and only if there exists u ∈ Σ∗ such that (ux, uy) ̸∈ R. Thus, we have to
check whether L(A ∩ B) ̸= ∅. This is the nonemptiness problem of a generalized NPA with
a conjunction of two parity objectives, an NL-complete problem by Proposition 16.

Let us now prove the NL-hardness with a reduction from the emptiness of a DBA A, an
NL-complete problem [36]. We construct R = L(A) × {#ω}. Clearly, R is accepted by a
DBA (thus a DPA) consisting in a copy of A where any label a is replaced by (a, #) for all
a ∈ Σ. Moreover, if there exists a word w ∈ L(A), then (w, #ω) ∈ R but (#w, #ω) ̸∈ R, so
R is not prefix-linear. Conversely, if L(A) = ∅, then R = ∅ and thus it is prefix-linear. ◀

	1 Introduction
	2 Preliminaries
	3 Decision Problems about Nash Equilibria
	4 NE Checking and NE Outcome Checking Problems
	5 NE Existence and Constrained NE Existence Problems
	6 Hypotheses on Preference Relations
	7 ω-Recognizable Relations
	8 Conclusion
	A Hardness of Theorem 3
	B Correctness of the P1CP2 Game
	C NE Existence Problem
	D Constrained NE Existence Problem
	E Proof of Proposition 9
	F Adaptation of Reductions for Preorders
	G Proof of Proposition 10
	H Proof of the Existence of NE with Total ω-Recognizable Preorders
	I Proofs of Proposition 12 and Theorem 11
	J Characterization of NE Outcomes and Prefix-Independency

