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ABSTRACT: Elucidating the topology of host-guest complexes is essential for the rational design of supramolecular 

assemblies. Building on the recent success of data-driven approaches, we evaluate the combination of ion mobility–mass 

spectrometry (IMS–MS), density functional theory (DFT) featurization, and machine learning to predict and classify the 

binding modes of 1:1 complexes formed between cucurbit[6]uril (CB6) and diamine guests. Training a regression model 

with DFT-derived molecular descriptors and experimentally determined collisional cross sections (CCS) enables to predict 

the CCS of host-guest complexes with a diverse set of diamine guests. The predicted values naturally separate in two 

distinct groups corresponding respectively to inclusion and exclusion complexes, thereby enabling topology classification. 

This approach demonstrates that DFT-featurization and IMS–MS data capture well host–guest topology and provide a 

framework for the data-driven design of supramolecular assemblies. 

 

Enzymes are generally considered to be the hallmark of reactivity under confinement, catalysing challenging reactions 

with remarkable efficiency and selectivity through interactions between their active pocket and the substrates.1, 2 However, 

the intrinsic specificity of enzymes limits their broader applicability.3 The demand for catalysts that retain the activity of 

enzymes through confinement effects, while offering a greater versatility, has drawn a significant interest in the 

development of artificial nanoenvironments featuring emergent behavior.3, 4 These so-called ‘molecular flasks’3 alter 

chemical reactivity through confinement, either by encapsulating reactants within the cavity of containers such as 

cryptands,5 cucurbiturils,6 porphyrin cages,7 coordination cages,8 hydrogen-bonded capsules,9 or by constraining them on 

a surface.10 Conducting reactions within confined spaces can modulate chemical reactivity by increasing reaction rates,3 

stabilizing reactive intermediates3 or improving reaction selectivity.8, 11-15 

In this context, elucidating whether a guest binds within the cavity of a molecular flask presents a significant analytical 

challenge. For this purpose, ion mobility-mass spectrometry (IMS-MS) stands out as a particularly powerful tool.16-18 Briefly, 

ion mobility spectrometry separates gaseous ions based on their mobility in a buffer gas under the influence of an electric 

field, which effectively enables to probe their size and shape as reflected by their collisional cross section (CCS). Combined 

with mass spectrometry, which gives access to the determination of complex stoichiometries based on detected m/z ratios, 

IMS-MS is a tool of choice for probing host-guest topology, typically the formation of isomeric inclusion (IN) vs exclusion 

(OUT) complexes.19-24 Furthermore, IMS-MS combines high sensitivity with rapid analysis times, making it well-suited for 

detecting transient species within complex mixtures.25 Traditionally, elucidating complex topology relies (i) on a priori 

knowledge of whether a given guest fits within the host cavity or; (ii) on comparing experimental CCS values with 

theoretical estimates obtained from atomistic simulations.26-29  

In recent years, machine learning (ML) has been increasingly applied in organic chemistry to predict whether a reaction 

will occur30 and to estimate reaction efficiency under varying conditions, such as changes in the substrate concentration, 

temperature and/or in the presence of additives.31, 32 ML models incorporating chemically-informed descriptors - derived 

from density functional theory (DFT) calculations - have proven particularly valuable33, 34 as they enable to identify key 

features governing reactivity trends, thus providing mechanistic insights and facilitating rational design.35 Automated 

workflows leveraging the high throughput of MS and IMS-MS approaches have also been developed to screen the 

formation of self-assembled metal-organic complexes and coordination cages.36, 37 Building upon the success of data-

driven approaches, we hypothesized that ML could be integrated with IMS-MS measurements to classify guests based on 

their propensity to form inclusion or exclusion complexes with a specific host. To assess this, we sought to determine 

whether CCS measurements provide an adequate basis for training models able to perform such a classification. 

Here, we examine the binding of protonated diamine guests to cucurbit[6]uril (CB6) as model complexes. CB6 hosts, 

characterized by a pumpkin-shaped structure, possess a hydrophobic cavity and carbonyl-lined portals that enable the 

formation of stable inclusion complexes with protonated (di)amine guests.38, 39 Based on the proposed binding mechanism, 

the guest initially interacts with one of the carbonyl portals via its ammonium moiety before entering the CB6 cavity 

(Scheme 1).40 In the case of protonated diamine guests, both terminal ammonium groups can engage with the portals, 

leading to the formation of interconverting 1:1 inclusion and exclusion complexes and of higher-order assemblies.41, 42 

Focusing on 1:1 complexes, we harness IMS measurements to train a ML model aiming at classifying guests by predicting 

the CCS of the corresponding host-guest complex. Relying on the Auto-QChem package developed by the Doyle Group, 
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we chose to leverage chemically-informed descriptors derived from DFT calculations to capture relevant structural and 

electronic properties for the guest molecules.31, 33, 35  

 

Scheme 1. Representation of the binding of protonated diamine guests to a curcurbit[6]uril host (CB6). The protonated 

diamine is represented by a dumbbell whose orange disks correspond to ammonium groups. In the representation of CB6, 

grey atoms correspond to carbon atoms, blue to nitrogen atoms, red to oxygen atoms and white to hydrogen atoms. 

We first sought to construct a chemical space encompassing a diverse range of diamine guests to guide a selection of 

representative compounds for subsequent experiments. From a SciFinder search using the keyword ‘diamine’, 103 

candidate molecules were arbitrarily preselected (Figures S1-4). DFT calculations were performed on multiple conformers 

for each compound, as generated by the Auto-QChem package (Figure 1A).33, 35 The calculations yielded a broad set of 

molecular descriptors, including molar volume, hardness, dipole moment, HOMO/LUMO energies, atomic charges, and 

predicted nuclear magnetic resonance (NMR) shift for each atom. Dimensionality reduction was then applied to this large 

set of computed molecular descriptors, using either principal component analysis (PCA) or uniform manifold approximation 

and projection (UMAP), to visualize the associated chemical space in two dimensions (Figure 1B for UMAP, Figure S7 

for PCA). 

 

  

Figure 1. A. Workflow for the construction of a chemical space from 103 candidate diamines and selection of 

representative compounds. Adapted from the Auto-QChem workflow in references.33, 35 B. Visualization and clustering of 

the chemical space using uniform manifold approximation and projection (UMAP). C. Overlay between the chemical space 

and the library of selected representative diamines. 

Based on this low-dimensionality space, we then grouped the candidate diamines following agglomerative hierarchical 

clustering to identify representative compounds from each natural cluster. The optimal number of clusters was established 

by computing the Silhouette index across various levels of dimensionality reduction (Figures S5-6). The Silhouette index, 

ranging from -1 to 1, quantifies how well each data point fits within its own cluster compared to others.43 Large positive 

values indicate that data points are best assigned with other members from their own group and do not match with others. 

On the other hand, negative values indicate that samples have been wrongly grouped together. The analysis of Silhouette 

indices reveals that dividing the chemical space into 6 clusters is optimal, with UMAP yielding consistently larger scores 



3 
 

compared to PCA. The resulting clusters are visualized in two-dimensional space in Figure 1B for UMAP and in Figure 

S7 for PCA. The molecules composing each group are shown in Figures S8-13. Gratifyingly, all groups exhibit distinct 

features to a chemist’s eye, indicating that the molecular descriptors are adequate for differentiating the candidate 

molecules based on their structure. For instance, clusters 1 and 4 contain aromatic amines while 2 and 5 are constituted 

of aliphatic amines. Furthermore, clusters 1, 2 and 4 are made of primary amines while cluster 6 is primarily constituted of 

secondary amines. 

We selected a library of 27 diamines across all 6 clusters (Figure S14), ensuring a comprehensive representation of the 

entire chemical space (see chemical space coverage in Figure 1C and Figure S7). IMS-MS experiments were then 

conducted on complexes between CB6 and the selected guests. To control the influence of mixing time on the equilibrium 

between inclusion and exclusion complexes, the host-guest adducts are generated under continuous flow conditions and 

analysed by ESI-MS after an arbitrarily selected mixing time. As described in the Experimental section, the complexes are 

continuously monitored with 1:2 host:guest stoichiometry after ~1.8 min of mixing in 80:20 H2O:MeOH.  

Representative ESI-MS spectra (Figure 2A) illustrate the complexation of CB6 with either 1,4-diaminobutane (C4) or N-

(1-naphthyl)ethylenediamine (NED). The resulting speciation highlights distinct behaviours: for C4, only 1:1 and 1:2 

guest:host complexes are detected, whereas for NED, both 1:1 and 2:1 assemblies are observed. This suggests that, 

despite its larger size, NED does not occupy the CB6 cavity, allowing for an additional NED molecule to bind. Even though 

the MS detection of larger assemblies provides information on whether the CB6 cavity is fully occupied, our discussion will 

focus exclusively on 1:1 host–guest complexes. As shown in Figure 2B, ion mobilograms of the doubly charged [CB6 + 

NED + 2H]2+ ions reveal significantly longer arrival times compared to [CB6 + C4 + 2H]2+ and empty hosts [CB6 + 2H]2+ 

ions. The complexes are therefore characterized by different sizes and shapes, with the [CB6 + NED + 2H]2+
 ions 

characterized by a larger size than the other two ions. This observation is confirmed by the determination of CCS 

(TWCCSN2→He) values from the experimental arrival time distributions (Blue, green and orange data points in Figure 2C).44 

The IMS data strongly suggest that NED is bound to one of the carbonyl portals outside of the CB6 cavity while C4 readily 

forms an inclusion complex, as the overall size of the resulting complex is nearly identical to the host alone. 

 

 

Figure 2. A. ESI-MS spectra of 2:1 Guest:CB6 in 80:20 H2O:MeOH measured after ~1.8 min of reaction, with the 1,4-

diaminobutane (C4) or N-(1-naphthyl)ethylenediamine (NED) guests. The ions corresponding to complexes between CB6 

and the guests are highlighted with colour. B. Ion mobilograms recorded for doubly charged ions [CB6 + 2H]2+ and [CB6 

+ Guest + 2H]2+ with the 1,4-diaminobutane or N-(1-naphthyl)ethylenediamine guests. Dots correspond to experimental 

data and dashed lines correspond to Gaussian fits. C. Left: Experimental setup interfacing a tubular flow reactor and an 
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ESI-MS instrument. Three syringe pumps independently deliver the CB6 host, the guest and solvent into a tubular reactor 

directly connected to the ESI source of the instrument. The reaction medium is monitored after a constant reaction time. 

Right: Collision cross sections (TWCCSN2→He) measured for doubly charged ions corresponding to complexes between CB6 

and various guests as a function of the guest mass. The three ions shown in panel B are highlighted by coloured dots and 

the entire dataset can be found in Table S1.  

Comparing the TWCCSN2→He of [CB6 + Guest + 2H]2+ ions formed by CB6 and the guest library as a function of guest mass 

reveals two distinct families of complexes (Figure 2C, full dataset in Table S1). Ions exhibiting similar TWCCSN2→He 

regardless of guest mass can be attributed to inclusion complexes, as the nature of the guest exerts minimal influence on 

the overall ion size. The ions characterized by larger TWCCSN2→He values (> 220 Å²) could be assigned to exclusion 

complexes, in which the guests remain bound to one of the carbonyl portals rather than being fully encapsulated. Based 

on this representation, host-guest topology may already be classified. However, this classification is ambiguous. For 

instance, the complex with 1,12-diaminododecane (mguest = 200 Da ; TWCCSN2→He([CB6 + C12 + 2H]2+) = 221.6 Å²) exhibits 

a significantly higher TWCCSN2→He than the complex with 1,6-diaminohexane (mguest = 116 Da ; TWCCSN2→He([CB6 + C6 + 

2H]2+)  = 207.5 Å²). This size difference could arise from either (i) 1,12-diaminododecane remaining outside the CB6 cavity; 

or (ii) partial encapsulation, where the guest is too large to fit completely in the cavity and extends beyond the host 

structure. Topology classification based on these experimental data can thus be hazardous. 

To assess whether the set of molecular descriptors determined above could effectively classify complex topology based 

on IMS-MS data, we combined it with TWCCSN2→He values to train a regression model (Figure 3A). Prior to modelling, the 

DFT descriptors were pre-processed to remove low variance and correlated features, leaving 30 remaining descriptors.33 

As the size of the descriptor set was similar to that of the training set (27 guests), its dimensionality was reduced by PCA 

to mitigate the risk of overfitting. Reducing the descriptor set to 5 dimensions was chosen as it accounts for 90% of the 

total variance, as determined by PCA (Figure S15).  

Using the 27 experimental TWCCSN2→He values as training set (Figure 3A), the model performance was validated through 

three train-test approaches: (i) training and testing on the full dataset (Figure S16), which constitutes an initial assessment 

of the model’s performance but likely overestimates its accuracy since the model is evaluated on the same data it learned 

from; (ii) leave-one-out (L1O) cross-validation (Figure S17), where the model is trained on 26 values and tested to predict 

the remaining one, repeating this process across the 27 training values; and (iii) leave-five-out (L5O) cross-validation 

(Figure 3B), where five random values are excluded from the training set. The model is then trained on 22 values and 

tested to predict the remaining five, repeating this process 100 times with random train-test splits. As summarized in 

Figure 3B, the mean absolute error of the predictions is consistently lower than 5 Å², even for cross-validation, indicating 

that the model generalizes well to guests unseen during the training phase. Interestingly, the cross-validation predictions 

suggest that the CCS of complexes with N-(1-naphthyl)ethylenediamine (NED, TWCCSN2→He = 237.0 Å², cluster 3) and 4,4'-

diaminodiphenyl ether (APE, TWCCSN2→He =  248.0 Å², cluster 1) are consistently underestimated when they are not 

included in the training set. On the contrary, the predicted CCS of complexes with 1,4-diaminobutane (C4, TWCCSN2→He =  

204.0 Å², cluster 5) are always accurate. 

We then applied the model for predicting the CCS values for [CB6 + Guest + 2H]2+ ions across the chemical space (Figure 

1). Since the model was trained on guests with molecular masses below 200 Da, we limited its application to guests with 

masses under 225 Da to avoid unreliable extrapolations for larger guests. The model yielded CCS predictions for 1:1 

complexes with 75 guest molecules, which appeared to naturally separate in two distinct groups (Figure 3C, full dataset 

in Table S2). Agglomerative hierarchical clustering and Silhouette index analysis confirmed that grouping the predicted 

CCS into two clusters was optimal (Figure S18). We then used a classifier to provide a classification boundary between 

the predicted data points, which is shown in Figure 3C. Based on the guest mass and predicted CCS, the points below 

the boundary can be classified as inclusion complexes while data points above are identified as exclusion complexes. A 

comparison between the modelled classification boundary and the experimental CCS values is provided in Figure S19. 

Host-guest complexes exhibiting a CCS similar to that of the free host (dashed horizontal line in Figure 3C) are indicative 

of inclusion topologies, where the guest fits entirely within the CB6 cavity and has minimal impact on the overall size of 

the complex. However, certain guests may only partially fit inside the host cavity and extend outward, resulting in a CCS 

increase as discussed above for [CB6 + C12 + 2H]2+. The data shown in Figure 3C demonstrate that the regression model 

captures this effect, as the predicted CCS of the inclusion complexes with higher molecular weight guests are ~ 10 Å² 

larger than the host alone, reflecting the influence of partial protrusion.  
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Figure 3. A. Workflow for training and testing a model for predicting the CCS of [CB6 + Guest + 2H]2+ions based on IMS-

MS measurements and molecular descriptors computed by DFT. B. Training and validation of the model. Left: Prediction 

of the model test set by leave-five-out cross-validation (L5O C-V). The L5O cross-validation predictions for complexes with 

1,4-diaminobutane (C4), N-(1-naphthyl)ethylenediamine (NED) and 4,4'-diaminodiphenyl ether (APE) are highlighted with 

colour. Right: Model performance shown as the coefficient of determination scores (R²) and mean average errors on 

predicted CCS by testing the model on (i) the entire training set, (ii) leave-one-out cross-validation and (iii) leave-five-out 

cross-validation. C. Predicted CCS for 75 diamines originating from the chemical space shown in Figure 1. The data points 

naturally separate in two groups, corresponding to inclusion and exclusion complexes. The classification boundary is 

highlighted as the border between the two coloured areas, and the TWCCSN2→He of [CB6 + 2H]2+ is shown as a dashed 

horizontal line. 

We finally evaluated model for classifying the topology of host-guest complexes involving guests that were not included in 

the training set. For this purpose, we excluded four guests from the training data, each forming [CB6 + Guest + 2H]2+ 

species exhibiting two ion populations (Figure 4), suggesting the coexistence of inclusion and exclusion complexes with 
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one population being more abundant.27 For convenience, the IMS-MS mobilograms recorded for these complexes were 

converted into TWCCSN2→He distributions. The measurements reveal that the ion populations at higher TWCCSN2→He are 

most abundant for the guests o-phenylenediamine, 2-aminobenzylamine and N-phenylethylenediamine (Figure 4A, B and 

D), suggesting that the exclusion complexes are mainly produced. The opposite situation is observed for p-

xylylenediamine, indicating that inclusion complexes are most abundant (Figure 4C).  

 

 

Figure 4. Testing the model on (A) o-phenylenediamine, (B) 2-aminobenzylamine, (C) p-xylylenediamine and (D) N-

phenylethylenediamine. TWCCSN2→He distributions are shown for [CB6 + Guest + 2H]2+ involving these four guests, dots 

correspond to experimental data and dashed curves to Gaussian fits. CCS predicted by the model are represented by 

dashed lines. The model classification as inclusion (IN) or exclusion (OUT) topologies is also highlighted, along with the 

error between the experimental and predicted CCS values. 

When used as a test set, the model correctly classifies the topology of 1:1 complexes involving o-phenylenediamine, 2-

aminobenzylamine and p-xylylenediamine based on the guest mass and predicted CCS of the host:guest complex. 

Moreover, CCS predictions highlighted by vertical dashed lines in Figure 4 demonstrate the model accuracy for 

quantitative predictions. However, the model misclassified the complex with N-phenylethylenediamine (NED, cluster 3) as 

an inclusion complex (Figure 4D). This misclassification likely originates from the limited representation of compounds 

structurally similar to NED in the training set, despite four related compounds being included (cluster 3 - Figure S10). 

Furthermore, cross-validation indicated that the predicted CCS of complexes involving NED was significantly 

underestimated (Figure 3B).  

To evaluate the misclassification of NED, predicted CCS values were coloured according to the cluster assignment of the 

corresponding guest, as shown in Figure 1B. This analysis, shown in Figure S20, reveals that compounds belonging to 

five of the six clusters are exclusively classified as inclusion or exclusion complexes. In contrast, compounds from cluster 

3 exhibit both topologies, indicating that this cluster is not well captured by the model. This could either arise from an 

insufficient number of clusters, thereby grouping together structurally dissimilar compounds, or from a limited 

representation of cluster 3 in the training set. In the latter scenario, expanding the training set to include more structurally 

diverse compounds could probably improve the model accuracy for this subset of compounds. Nonetheless, the model 

ability in correctly classifying most of the test guests demonstrates that both DFT-derived molecular descriptors and CCS 

as informative physicochemical observables are adequate for characterizing and predicting the topology of host–guest 

complexes. 

Classifying the topology of host-guest complexes often presents an analytical challenge, as it involves distinguishing subtle 

structural differences such as guests binding at different locations or guests partially protruding from the host cavity.  Here, 

we developed a regression model that successfully predicts and classifies the topology of host-guest complexes formed 

by CB6 hosts and diamine guests by integrating DFT featurization and IMS-MS experiments. By selecting a training set 

composed of diamines representative of the chemical space and measuring the TWCCSN2→He of the corresponding 1:1 

complexes, the model not only classifies known complexes but also generalizes to unseen guests. 

As the host-guest complexes are analysed in continuous flow conditions, the integration of automated sample introductions 

with liquid chromatography injectors could significantly improve the experimental throughput, thereby expanding the 

chemical space coverage.36, 45 Moreover, although this study only considered the binding of bifunctional guests to a rigid 

host, the proposed approach could be generalized to other complex systems, such a protein-ligand complexes or 

coordination cages,46, 47 and ultimately paves the way for chemical models able to predict the topology of supramolecular 

assemblies based on IMS-MS measurements.  

EXPERIMENTAL SECTION 
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Ion mobility-mass spectrometry. Mass spectrometry experiments were conducted with a Waters Synapt G2-Si 

(Wilmslow, UK) equipped with an ESI source operating in positive mode. Typical instrument parameters were a source 

voltage of 2.5 kV, sampling cone of 80 V, source offset of 100 V, source temperature of 100°C, desolvation temperature 

of 200°C. Ion mobility experiments were carried out with N2 as buffer gas, with a Trap gas flow of 1 mL.min-1, He gas flow 

of 200 mL.min-1, IMS gas flow of 80 mL.min-1, IMS wave velocity of 650 m.s-1 and IMS wave height of 40 V. To mitigate 

space charge effects during IMS separation, the total signal was attenuated (pDRE) to 10 %. Arrival time distributions 

were fitted with Gaussian functions using Origin 9.0 and the apex values were converted to CCS in He (TWCCSN2-->He) 

following a calibration procedure described previously.44  

Host-guest complexes were generated in continuous flow conditions using LABM8 syringe pumps (Nijmegen, The 

Netherlands) equipped with BD Plastipak plastic syringes. The syringes were connected to a tubular reactor made out of 

perfluoroalkoxy alkane (PFA - ~35 µL). All solutions were prepared in H2O:MeOH 80:20. A 2.1 mM stock solution of CB6 

was prepared in HCOOH:H2O 50:50 and the stock diamine solutions were prepared in H2O:MeOH 80:20. Because some 

diamines were poorly soluble, 1 % HCOOH was added to fully solubilize them. As shown in Figure 2C, the setup was 

constituted by three syringe pumps equipped with 3mL BD Plastipak syringes containing individually (i) 200 µM CB6, (ii) 

200 µM diamine and (iii) H2O:MeOH 80:20. The input flows of CB6, diamine and solvent were set to respectively 4.85, 9.7 

and 4.85 µL.min-1. The reactor outlet was directly connected to the ESI source of the MS instrument. 

Computational details. DFT calculations were performed on neutral diamine molecules at the B3LYP/6-31** level48 with 

the Gaussian 16 package.49 The SCRF model was used to account for implicit water solvation.50 DFT inputs were 

generated from SMILES strings corresponding to the 103 diamine compounds selected from a Sci-Finder search, using 

the gaussian_input_generator tool available in the Auto-QChem package.33 To account for conformational heterogeneity, 

up to 5 conformers were computed for each compound. Based on their relative energies, Boltzmann weighting was applied 

to the molecular descriptors. The complete sets of descriptors are available in the ‘global_data.xlsx’ and ‘atom_data.xlsx’ 

files (see Data Availability). 

Modelling details. All analysis, clustering and modelling tools relied on readily available Python packages including 

SciPy51 and Scikit-learn.52 Additional details can be found in Supporting Information and the complete workflow is reported 

in the related Jupyter Notebooks (see Data Availability). 
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SUPPORTING INFORMATION  

- Additional details for clustering and regression modelling. 

- Molecular structures of all compounds selected for constructing the chemical space shown in Figure 1 (Figures S1 – 4), 

Silhouette index as a function of the number of clusters for dimensionality reduction using UMAP and PCA (Figures S5 – 

6), visualization and clustering of the chemical space using PCA (Figure S7), molecular structures of compounds in each 

cluster (Figures S8 – 13), library of compounds selected for IMS-MS experiments assigned to their respective cluster 

(Figure S14), explained variance of the descriptor set obtained from PCA analysis (Figure S15), training and validation 

of the model using the entire training set (Figure S16) and by leave-one-out cross-validation (Figure S17), Silhouette 

index for clustering the CCS predictions (Figure S18), comparison between predicted CCS and TWCCSN2→He (Figure S19), 

comparison between predicted CCS and cluster numbers determined by UMAP in Figure 1 (Figure S20). 

- Tables summarizing TWCCSN2→He (Table S1) and predicted CCS (Table S2). 
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