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“It is easy to make things hard, but hard to make them easy.”
Rutger Bregman






Abstract

HE development of Al has created sophisticated applications,
but they often lack the ability to understand non-verbal cues
essential for human communication. This thesis addresses that
gap by exploring audio-visual deep learning methods for Affective

Computing.

We believe that analysing deep learning model behavior can improve
performance and build trust by making their decision-making pro-
cesses more transparent. Our work focuses on processing voice signals
and facial expressions, specifically smiles and laughter, as key indica-

tors of emotional states.

The main contributions of this research are fourfold. First, we en-
hanced three existing datasets by adding annotations for speaker /
listener roles and the intensity of smiles and laughter. Then, using
LSN-TCN, a deep learning-based neural network, we analyzed how
fusing audio and visual feature representations impacts the detection
of smiles and laughter. We also implemented Social-MAE, an ad-
vanced multimodal system that effectively encodes facial and vocal
information for tasks like emotion recognition. Finally, we explored
a novel method to separate affective information from existing deep
learning systems without compromising their performance by using an

auxiliary network.

This thesis provides open-source methods to leverage non-verbal cues,
paving the way for more sophisticated and empathetic Al systems with

potential applications in social and clinical settings.
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4 Scope and Contributions

1.1 Introduction & Motivations

The development of Artificial Intelligence (AI) depends on numerous factors, such as
the emergence of new technologies and new computational powers, and has spread in
various themes such as:

e Research focusing on detection and preventing danger for humans in situations like
railroad tracks or warehouses;

e Development of autonomous cars and the ethical choices behind unforeseeable
events like accidents or road works;

e Chatbots conversing with humans on diverse subjects.

The specific domain of Affective Computing (AC) is a branch that aims at interpreting,
understanding and generating signals that takes emotions into account. One common
application is the conversational agents, which have widely improved during the last
few years with tools from OpenAl or Google such as ChatGPT' or Gemini®>. These
tools not only process text, but can also accept audio and visual requests, enabling
them to perform affective tasks such as Speech Emotion Recognition. They provide an
impressive combination of quality and performance but they lack clarity on the training
and inference methodologies.

Deep Learning (DL) methods, commonly used for complex tasks for a decade now, have
been able to increase the state of the art in almost all domains. Although impressive
for detection, recognition and data generation, their decision making relies on complex
features that are hardly understandable for humans, in opposition to engineered features
previously used.

The objective of the present work is to explore audio-visual DL approaches to perform
affective tasks. They have a specific behaviour to process audio and visual data. Our
assumption is that analysing their behaviour would allow humans to better understand
the decision process or some hidden data characteristics. Intuitively, understanding a
decision process enhances the trust in the content decoded from a user affective state.

In AC, one of the goal is to allow virtual agents to better understand human non-verbal
communication. This is achieved in several ways:

e in text, with sentiment analysis where the ”emotional” content of a phrase, a para-
graph or a whole document is inferred;

e in physiological signals like Electrocardiogram (ECG), by understand the relation-
ship between affective states and body behaviours;

e in visual data, either static images or dynamic videos, as the body and the face
communicates countless pieces of information per second;

"https://chatgpt.com/
https://gemini.google.com/
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e in speech prosody, tone, or even the absence of speech.

All these modalities provide important resources to understand human communication.
In their day to day lives, people mix and fuse the cues from these different channels to
engage in social activities. Based on such observation, the development of virutal agents
should use not only verbal information provided by the user, but non-verbal content as
well.

The complexity of fusing modalities led to lot of research in different domains. There
is countless methods to extract information from multimodal input. The topic of this
work in AC is limited to audio and visual modalities, more specifically to the processing
of voices and faces.

The motivation behind this work was to provide open-source methods that leverage non-
verbal cues to detect the emotional content (short-term) or the mood (long-term) in an
interaction. The importance of such context is key for an external observer to understand
the dynamics between individuals. For example people with Autism Spectrum Disorders
(ASD) or other social difficulties would benefit from tools that give affective information
and help them in their social interaction. Naive by nature, as they start from randomly
initialised weights, DL. models have been compared to a person with ASD that could
learn from large amount of social examples [1].

Recent DL models require large datasets to reach satisfactory performance. Said per-
formance depends on both the quality of the datasets (recording conditions and anno-
tations) and their availability for training. While some systems show impressive results
(e.g. ChatGPT on Natural Language Processing (NLP) tasks), they do not disclose the
datasets used for training. Other systems fail to reach optimal performance due to lack
of data in the downstream domain. They either use data augmentation to artificially
increase the size of the dataset or spend resources creating a new dataset. When it comes
to data collection, even more for audio-visual content, the ethical aspect is an important
matter. In Europe, the Al Act [2] provides a legal framework to, among other things,
regulate the use of personal data in Al systems.

1.2 Contributions

The original contributions of this thesis are listed below:

e IB, an extension of three datasets available for research is performed to provide
new information. It follows an annotation protocol that specifies the turning role
of participants in dyadic interactions (speaker or listener), as well as annotations
on two non-verbal expressions (smiles and laughter). In addition to the expressions
classes, the work conducted also contains subclasses for each one about their in-
tensity. The extension is validated on multiple applications and the importance of
providing intensity as a subclass is also discussed;
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e Since the nature of laughter and smiles as distinct classes is not universal, we try
to understand how a DL system would interpret them. To achieve this:

— we use the voice and the area around the lips as input of LSN-TCN, a DL
architecture, and set the goal to detect which expression appears;

— we study the impact of fusing modalities on the recognition rate;

— we analyse and discuss the distribution of each expression intensity during
inference.

e Confident with the observations made on lips and voice, we extend our visual input
on the whole face. We implement Social-MAE, a multimodal system based on
attention and masked input to encode information about face and voice. The system
is then used to perform downstream tasks, including smile and laugh detection and
emotion recognition;

e Finally, we explore the possibility to conserve and disentangle affective information
from existing DL systems without modifying their performance. This is achieved
by connecting an auxiliary network and aiming to reconstruct the original input.

1.3 Organisation of the Dissertation

e Chapter 2 presents the theoretical notions about DL that are important for the
reader to understand. It covers the cornerstone of most recent architectures that
rely on Deep Neural Networks (DNNs).

e Chapter 3 presents how audio and visual data are processed in Machine Learning
(ML) systems, either as single modality or joint together using fusion techniques.

e Chapter 4 introduces the reader to core concepts of Affective Computing (AC),
including challenges, non-verbal communication and emotion models.

e Chapter 5 describes the datasets available for research in AC domain and their
characteristics. It also presents the IB dataset, a annotation extension of three
existing audio-visual collections of dyadic interactions.

e Chapter 6 presents the implementation and analysis of the detection of laugh and
smile expressions by a multimodal system. It includes the discussion on the impor-
tance of modality fusion, the use of pre-trained models and how expression intensity
influences the detection rate.

e Chapter 7 describes an architecture upgrade based on masking and multimodal
attention. An analysis on downstream tasks is performed to study its encoding
efficiency.

e Finally, Chapter 8 shows a proof of concept of a system that retains lost information
from pre-trained models based on methods described in previous chapters. More
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specifically, it discusses the affective content saved by an auxiliary branch plugged
to the pre-trained model.
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Theoretical Background






Chapter 2

Deep Learning

Contents
2.1 Learning Scheme . . . . . . . . . . . ..., 12
2.1.1 Training . . . . . .o L oo 14
2.1.2 Validation and Test . . . . . . . . . . .. .. ... ... 15
2.1.3 Transfer Learning . . . . . . . . . . ... 16
2.2 Convolutional Neural Network . . . . . . . . . ... ... 18
2.2.1 Definition . . . . . . .o e e e e e 18
2.2.2 Convolution Layer . . . . . . .. . . ... ... ..., 19
2.2.3 Pooling Layer . . . . . . . . ... oo 20
2.2.4  Fully Connected Layers and Output . . . . . . .. .. .. .. 21
2.2.5 CNN Applications and Challenges . . . . . . . . . ... ... 21
2.3 Transformer . . . . . . . . . . .. ... 21
2.3.1 Tokens . . . . . ..o e 22
2.3.2 Positional Encoding . . . . . ... .00 oL 23
2.3.3 Encoder and Decoder . . . . . . . . ... ... L. 23
2.3.4 Attention . . . ... e 24
2.3.5 Multi-head attention . . . . . . . . ..o 25
2.3.6  Feed-Forward Networks . . . . . . . .. .. ... .. .... 26
2.3.7 Comparison with CNNs . . . . . . . .. .. ... ...... 27
2.4 Evaluation metrics . . . . . . . . . ..o 0000 27
2.4.1 Loss Functions . . . . . . . . ... . oo 27
2.4.2 Performance Metrics . . . . . . . . . ... 28
2.4.3 Statistical Significance and Fair Evaluation . . . . . . . . .. 30
25 InBrief. . . . . . . . . ... s 31

The last decade has seen the rapid development of DL, a branch of ML. DL groups all
complex systems that are able to extract features from all sort of input based on DNN.
These models are designed to perform tasks of varying degrees of complexity. DNN
models vary in terms of applications and number of parameters. It originates from the
design of Multi-Layer Perceptron (MLP), and has grown to complex models of billions
of parameters for the most advanced (Computer Vision: ResNet18 [3]: 11.7M (2015),
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Speech Recognition: Whisper-Large [4]: 1.55B (2022), NLP: DeepSeek-V3 [5]: 671B
(2025)).

In this chapter, we present the basics of DL. First, we will explain the learning scheme
that underlies most models (Section 2.1). Next, we will discuss the architecture of
Convolutional Neural Network (CNN) (Section 2.2). Then, we describe the Transform-
ers architecture, an important breakthrough in DL (Section 2.3). Finally, we present
evaluation metrics, for domains like classification (Section 2.4) before giving a brief sum-
mary (Section 2.5).

2.1 Learning Scheme

: x

Wz

(1w ) T — 0 —y )

[ %

Figure 2.1. Representation of a perceptron. The node y is the result of the weighted sum of
each node z; passed through an activation function f(.).

b

The main advance of DNN compared to previous ML systems is the combination of
layered perceptrons to extract a complex representation of the data rather than relying
on complex statistical modeling. A perceptron (Figure 2.1) is equivalent to a single value
y, calculated as the weighted combination of z; values from previous layers according to
the equation 2.1.

y=fWz) = f) wiw; +b) (2.1)
i=1

where f(.) is an activation function which introduces non-linearity, w; the weight applied
to the i" value and b the bias that shifts the output of the activation function by adding
a constant. Several activation functions can be considered depending on the application:
Rectified Linear Unit (ReLU), Sigmoid, Tanh (Figure 2.2). The introduction of non-
linearity is crucial for extracting abstract features from the output of the previous layer.
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2

. .
(e"—e=?)

(a) ReLU: max(0, x) (b) Sigmoid: uTlfr) (¢) Tanh: e

Figure 2.2. Activation functions. (a) ReLU is efficient but limits some neuron activations. (b)
Sigmoid converts input into output ranging between 0 and 1. (¢) Tanh is similar
to Sigmoid with an output range between -1 and 1.

MLP is the most basic model for DNN methods and consists of several layers of percep-
trons as depicted in Figure 2.3. It is defined with a set of parameters (W, b) as:

(W, ) = (WO p® @ p@ O pO @y (2.2)

where W contains the weight matrix of layer 1 and ") the bias. The abstract multi-
dimensional space between layers is referred to as the latent space, it contains a repre-
sentation of the data where each dimension is a separate feature.

Wy 4 b)) W@ +p@)]

g -
£ — V3 - Yo C:;

Figure 2.3. A multi-layer perceptron. Each circle is a perceptron, a value that embeds a rep-
resentation of the input data. The more distant the perceptron layer, the more
complex the representation it contains. In this example, the latent space corre-
sponds to the green circles.
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The weights and biases are adjusted during training by trial and error at every step.
One step corresponds to the processing of a batch (a fixed quantity of input data) by
the model. The amount of batch usually matches the dataset size divided by the batch
size. An epoch refers to the relative period taken to process all batches once. The goal
of adjusting weights is to reduce a cost function (or loss function) £. The cost function
depends on the task at hand: some are specific to classification (determine a discrete
value in a set of possible targets), others to regression (predict a value in a continuous
domain). We discuss cost functions later in Section 2.4.

The learning scheme is separated in three parts:

e Training Phase: The model learns by adjusting weights based on the content of
the training subset.

e Validation Phase: At the end of each epoch, the model is evaluated on the
validation subset.

e Test Phase: The final model is evaluated on the test subset to assess generalisa-
tion.

While a trained model can be used as is for inference in applications, especially if the
results are satisfactory, it can also serve as backbone for transfer learning, which will be
further discussed in Section 2.1.3.

2.1.1 Training

The training phase aims at tuning the parameters (W, b) so that the network outputs
values as close as possible to the target for a given dataset. The objective is to learn
generalisable features applicable to unseen data. Training is an iterative process where
the network computes an output for a given input and updates its parameters to minimise
the loss function £, defined as:

L= LGhw) (23)
=1

where ); represents the model prediction and y; the ground truth target. The choice of
loss function depends on the task: e.g. cross-entropy for classification, mean squared
error for regression, etc.

The loss function provides a feedback signal to adjust the model parameters. Updates are
performed using gradient descent-based algorithms, such as Stochastic Gradient Descent
(SGD) or Adam [6], which impact training speed, stability, and generalisation [7]. The
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weights and biases are adjusted according to their gradient values:

1 l oL
wz(j) w,fj) aa 0 (2.4)
wi’j
) =V 875) (2.5)
(2 (2 8b(l

where « is the learning rate, controlling step size in weight updates. A poor learning
rate choice may lead to slow convergence (if too low) or divergence (if too high), affecting
model performance. To efficiently compute gradients, models use backpropagation. It
first calculates gradients for the last layer and propagates them backward using the chain
rule:

oc  oc 02
ORPRORPW) (2.6)
8wi’j sz 8wi’j

where zj(l) is the output of neuron j. The computed gradients are then applied to update

parameters using Equations 2.4 and 2.5.
Training consists of:

e A forward pass, where input data propagates through the network to produce an
output and compute the loss.

e A backward pass, where gradients are computed and weights updated accordingly.

Models typically require multiple epochs to converge. Training can be done using either
batch gradient descent that processes the entire dataset at once, but is computation-
ally expensive, mini-batch gradient descent that updates weights using smaller batches,
balancing efficiency and stability or SGD that updates weights per sample, introducing
noise but improving generalisation.

A major challenge is overfitting, where the model memorises the training data instead
of generalising. Regularisation techniques like weight decay, dropout, and data augmen-
tation mitigate this. The opposite is underfitting which occurs when the model lacks
sufficient capacity to learn patterns and can be addressed by increasing model complexity
or extending training duration.

Determining when to stop training is crucial. Farly stopping monitors validation loss and
halts training when no further improvement is observed, preventing overfitting. Learning
rate schedules also help refine convergence.

2.1.2 Validation and Test

The validation and test phases assess the model performance on unseen data, but they
serve distinct purposes:
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e Validation Set: Used during training to fine-tune hyperparameters (e.g., learning
rate, dropout, batch size). It helps monitor overfitting and guides optimisation
strategies.

e Test Set: Evaluated only once after training is complete to assess the model’s final
generalisation ability.

Validation and Overfitting Detection Validation is performed at the end of each epoch
using a separate subset of data. The model’s loss and other evaluation metrics are com-
puted, and the best-performing parameters are typically stored as checkpoints. As men-
tioned, one key purpose of validation is to detect overfitting, where the model performs
well on training data but generalises poorly. QOwverfitting is often identified when the
training loss decreases while the validation loss increases.

While deep learning models typically use a single validation set, K-fold cross-validation
is useful for smaller datasets. It involves splitting the dataset into K subsets, training
on K — 1 folds, and validating on the remaining fold, repeating this K times to ensure
robustness.

Test Set and Fair Evaluation The test set serves as a final benchmark for model per-
formance and must remain completely separate from training and validation to prevent
data leakage. Leakage can occur if test data influences training, leading to misleadingly
high performance.

Test set evaluation is crucial for model comparison in research, and statistical significance
should be considered when comparing results. Techniques like t-tests, further discussed
in Section 2.4, ensure that improvements are not due to random chance. Additionally, a
well-trained model should generalise to new, unseen data. Robustness can be tested by
evaluating performance across different datasets (domain adaptation) or by introducing
small perturbations (adversarial attacks, noise) to assess stability.

2.1.3 Transfer Learning

Transfer learning is a technique that improves the learning process by leveraging knowl-
edge acquired from pre-trained models rather than training from scratch. This approach
significantly enhances efficiency, reduces the need for large labeled datasets, and accel-
erates training convergence.

Instead of initialising model weights randomly, transfer learning repurposes models that
have been trained on large-scale datasets and fine-tunes them to perform well on new
tasks with different but related data distributions.
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Types of Transfer Learning

There are different strategies for transfer learning, depending on how much of the pre-
trained model is reused:

e Feature Extraction (Frozen Weights): The pre-trained model’s layers act as a
fixed feature extractor, and only a new classifier or task-specific layers are trained
on top of the extracted representations. This is common when the new dataset is
small.

e Fine-tuning (Full Model Adaptation): Some or all layers of the pre-trained
model are updated alongside the newly added task-specific layers. Fine-tuning
requires more computational resources but allows the model to adapt better to the
new task.

e Hybrid Approach: The lower layers (which learn generic features) remain frozen
while the higher layers (task-specific features) are fine-tuned. This balances effi-
ciency and task adaptation.

Few-shot and Zero-shot Learning

Modern transfer learning approaches, like few-shot and zero shot learning, aim to min-
imise the reliance on labeled data. In Few-shot Learning, the model is fine-tuned using
only a small number of labeled examples per class. This is beneficial when data collection
is expensive or limited. Zero-shot Learning refers to the model generalising to new tasks
without explicit retraining, relying on high-level semantic embeddings learned from vast
datasets.

Benefits and Challenges

Transfer learning offers multiple advantages. While training from scratch requires exten-
sive data and computational resources, fine-tuning pre-trained models accelerates con-
vergence. It also improves generalisation by leveraging knowledge from large datasets
to help models perform better on smaller, domain-specific datasets. It also enables high
performance even with scarce labeled data.

However fine-tuning includes challenges. If the new dataset is too different from the pre-
trained model’s dataset, performance may degrade. This is known as as domain shift.
Fine-tuning can also overwrite learned knowledge and can harm generalisation. While
pre-trained models save training time, fine-tuning large models still requires significant
resources.

Figure 2.4 illustrates how a pre-trained image recognition model (e.g., ResNet) can be
adapted to a new task, such as classifying ducks and dogs.
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Figure 2.4. Illustration of transfer learning in neural networks for image classification. (A)
Pre-trained Model: A model trained on a dataset (e.g., to classify dogs vs. other
species). (B) Transfer Learning: A pre-trained model is adapted to a new task
(e.g., identifying ducks).

2.2 Convolutional Neural Network

e

/

Input data Convolution Pooling

Figure 2.5. Illustration of a CNN processing pipeline. The left section represents the input
data, where a filter (blue grid) slides over the raw image to extract local features.
The convolution operation (middle section) transforms the input into feature maps
by applying a kernel that captures spatial patterns. Pooling (right section) down-
samples the feature map by aggregating values from neighboring regions, reducing
dimensionality while keeping essential information.

2.2.1 Definition

A CNN [8] is an extension of MLP specifically designed to process structured signals
such as images, audio, and video. Unlike MLPs, CNNs leverage spatial hierarchies and
local connectivity patterns to efficiently learn meaningful representations.
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Three key principles define the effectiveness of CNNs:

e Locality: Neighboring values in an input (e.g., pixels in an image or samples in an
audio signal) exhibit strong correlations, and CNNs exploit this spatial dependency.

e Stationarity: The same patterns frequently appear in different parts of the input,
allowing filters to learn shared features across the entire dataset.

e Compositionality: Higher-level representations are constructed by hierarchically
combining low-level features, enabling abstraction and complex pattern recognition.

A typical CNN consists of two fundamental types of layers: convolutional layers and
pooling layers, as depicted in Figure 2.5. Convolutional layers apply learnable filters
to detect spatial and temporal features, while pooling layers reduce dimensionality by
summarising information in local regions. These layers are often stacked in deep archi-
tectures, allowing models to progressively extract more complex patterns.

CNNSs automatically learn hierarchical feature representations, making them particularly
suited for computer vision. The next sections will detail the role of convolutional and
pooling layers, along with the training strategies used to optimise CNN-based models.

2.2.2 Convolution Layer

The convolution layer extracts features from an input by applying a set of filters (or
kernels) that slide across the signal. Each filter consists of learnable weights, which
interact with input values to emphasise important patterns. For an input image I of
dimension w X h X d, where w and h are the width and height, and d represents the
number of channels (e.g., d = 3 for RGB images), a convolution operation applies d
learnable kernels K of size K, x K,,. The result is a feature map computed as follows:

Kn  Ku
2 2
zi= Y > (Wap X Z(ita)(jth)) (2.7)
_—Ep p——Euw
a=— 5
z=Wxzx (2.8)

where W represents the filter weights and x the input values.

To control the spatial dimensions of the output, padding is used to adjust the receptive
field. There is common types of padding. The first is valid padding (or no padding)
where no extra pixels are added resulting in an output size smaller than the input. The
second is same value padding where extra pixels (typically zeros) are added to maintain
the same spatial dimensions between input and output. Padding helps preserve border
information, ensuring that feature extraction applies uniformly across the image.

The way filters slide across the input is describe by the stride. Stride defines the step size
at which the filter moves across the input. A stride of 1 results in maximum coverage,
whereas a stride greater than 1 skips positions, reducing the feature map’s spatial size.



20 Deep Learning

Higher strides introduce downsampling effects, reducing computation but potentially
losing fine-grained details.

For multi-channel convolutions (as stated above RGB images have 3 channels) CNNs
apply filters with the same depth as the number of channels leading to aggregated
responses that create a more complex representation. The output of a multi-channel
convolution is computed as the sum of filtered responses from all channels.

The convolution operation enables hierarchical feature learning. Early layers detect low-
level features like edges and textures, while deeper layers recognise complex patterns
such as object parts or high-level abstractions. The ability of CNNs to automatically
learn these representations makes them powerful for computer vision [9, 10].

2.2.3 Pooling Layer

The pooling layer is a non-trainable layer designed to reduce the dimensionality of feature
maps while preserving essential information. Pooling is typically applied independently
to each channel of a feature map. The two most common types are Max Pooling and
Average Pooling. With the Max Pooling method the model selects the maximum value
within a given window, emphasising dominant features and edges. Average Pooling com-
putes the average value within a given window, preserving more contextual information.

In addition to standard pooling operations, Global Average Pooling (GAP) is widely
used in modern architectures. Instead of applying a fixed-size kernel, GAP computes
the average of all values across the entire feature map, effectively reducing each channel
to a single value. This technique is commonly used before fully connected layers in
classification models, enabling parameter-efficient architectures [11,12].

Pooling serves several key functions:

¢ Dimensionality Reduction: Decreases the spatial size of feature maps, leading
to fewer parameters and lower computational cost.

e Translation Invariance: Helps models focus on patterns rather than specific pixel
locations.

e Overfitting Reduction: Downsampling forces the network to learn more robust
features by discarding non-essential details.

Despite its benefits, pooling removes fine-grained spatial information, which may be un-
desirable in tasks requiring precise localisation, such as object detection or segmentation.
To address this, some architectures use attention mechanisms as alternatives to pooling,
as discussed in Section 2.3.4.
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2.2.4 Fully Connected Layers and Output

After extracting hierarchical features through convolution and pooling layers, a CNN
typically ends with one or more fully connected (FC) layers to produce a final output.
These layers function similarly to those in MLP networks. The role of FC layers is to
transform the high-dimensional feature maps into a structured representation suitable
for classification, regression, or other downstream tasks.

For classification tasks, the final FC layer typically outputs a vector representing class
probabilities. When handling multi-class classification, a softmaz activation function is
applied:

e~

- , 2.9
g Y (2.9)

where ; is the probability of class ¢, and z represents the raw scores produced by the
FC. The sum of all §; equals to 1. For binary classification, the sigmoid activation
function (defined in Section 2.1) is often used instead.

Beyond classification, CNNs can be adapted for regression tasks by replacing the softmax
layer with a linear activation function. In object detection and segmentation, FC layers
may be replaced with more specialised architectures such as bounding box regression
heads or segmentation masks [13].

2.2.5 CNN Applications and Challenges

CNNs have demonstrated state-of-the-art performance across various domains due to
their ability to automatically learn hierarchical representations [14, 15]. Despite their
widespread success, CNNs face several challenges. One key limitation is their difficulty
in capturing long-range dependencies, as they primarily focus on local features. Another
challenge is the computational cost associated with deep CNNs, which require substan-
tial processing power and memory, making them expensive for real-time applications.
Additionally, CNNs heavily depend on large labeled datasets for training, limiting their
effectiveness in low-data scenarios. To mitigate this, techniques such as transfer learning
and few-shot learning are often employed, as presented above. Finally, CNNs are vul-
nerable to adversarial attacks, where small, imperceptible perturbations in input images
can lead to incorrect predictions, posing significant security risks in applications like
facial recognition and autonomous driving.

2.3 Transformer

Transformers are a groundbreaking innovation in the field of Al, introduced in the paper
” Attention Is All You Need” [16]. Since then, they have become a foundational archi-
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Figure 2.6. Overview of the Transformer architecture, illustrating the tokenization process, po-
sitional encoding, and the flow of data through the encoder and decoder. The input
text is first converted into numerical tokens with additional positional encodings,
and processed through self-attention and feed-forward layers. The decoder takes
the encoded latent representations and applies self-attention to generate contextu-
alised outputs.

tecture, playing a crucial role in the development of state-of-the-art models for various
natural language processing tasks, including machine translation and sentiment analysis,
outperforming CNN-only models.

This section examines the fundamental principles of the Transformer architecture, cov-
ering key components: the Tokenizer, the Encoder-Decoder, the Attention Mechanism,
the Feed-Forward Networks, and the Positional Encoding. A simplified diagram of the
Transformer framework is presented in Figure 2.6.

2.3.1 Tokens

Input sequences are divided into fixed-size sets of tokens, which serve as the fundamental
units for the Transformer. The model processes input by splitting it into smaller parts
and converting them into embeddings of a fixed but higher-dimensional representation.
This tokenization, combined with the attention mechanism, enables the model to handle
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sequences of varying lengths efficiently through matrix multiplications. This advance-
ment significantly enhances the ability to generate or translate sequences such as images,
text, and audio. For instance, in NLP, a text tokenizer assigns an index to each word
based on a predefined dictionary [17,18]. In the case of Vision Transformer (ViT) [19],
CNNs act as tokenizers, converting image patches into meaningful representations.

2.3.2 Positional Encoding

Positional Encoding is a mechanism designed to incorporate information about the order
of elements within an input sequence. Since Transformers do not inherently capture
positional dependencies, positional encoding is introduced to help the model distinguish
between elements based on their position. It consists of a set of parameters that are added
element-wise to the input tokens, ensuring that positional relationships are retained.
These parameters can be either engineered values, such as a combination of sine and
cosine functions [20], or learnable parameters which lead to similar performance [16].

Our positional encoding operates as an additive vector P that remains constant across all
input sequences. For a simple example, consider the i*" input sequence z; = [z;1, Zs0, . . .,
Z;n] in a batch, with the corresponding positional encoding P = [p1,p2, ..., ps]. The final
representation s; before passing through the first layer is computed as:

8i = Tij T Pj (2.10)

This ensures that each token retains positional information while being processed by the
Transformer model.

2.3.3 Encoder and Decoder

The Transformer architecture consists of two main components: an encoder that pro-
cesses and encodes the input information into a latent representation, and a decoder
that reconstructs or generates an output from this latent space. The encoder-decoder
approach can be categorised as an Auto-Encoder (AE) when the output objective is
derived exclusively from the input data, in any form. For instance, an autoencoder can
be used for denoising tasks, where noise is artificially added during data augmentation
and the model learns to reconstruct the clean signal.

Beyond generative tasks, the encoder can also be fine-tuned as a feature extractor for
classification or regression problems. Encoding information is fundamental in ML, as
model performance is directly influenced by its ability to capture patterns in the train-
ing data. The final output of the encoder, the latent space, serves as an intermediate
representation of the input data. In supervised learning tasks such as regression and
classification, this latent representation is typically passed through decision layers to
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produce class predictions or continuous values. In contrast, generative models leverage
the decoder to transform the latent space into meaningful outputs.

The Transformer encoder consists of multiple stacked layers, where each layer comprises a
self-attention mechanism and a feed-forward network, detailed in Sections 2.3.4 and 2.3.6,
respectively. The decoder, as introduced in [16], differs from the encoder. First, it
employs masked attention to enforce causality, ensuring that predictions at a given
position ¢ do not depend on future tokens j > 4. Second, it introduces an additional
cross-attention mechanism, which allows the decoder to attend to both the previously
generated sequence and the encoded input representation.

Transformers follow a residual learning paradigm, meaning that each layer refines the
representation by adding newly extracted information to its input, improving gradient
flow and stabilising training.

2.3.4 Attention

The attention mechanism is the core component of the Transformer. It enables the
model to perform what is known as ’self-attention’, a dynamic process through which it
evaluates and assigns different levels of importance to various elements within an input
sequence. Each element can be a word in a sentence, a pixel in an image, or any other
discrete unit in the data.

Self-attention allows the Transformer to capture contextual information, as it considers
how each element relates to all other elements in the sequence. This comparison gener-
ates a set of attention scores that reflect the importance of each element with respect
to the others. These scores are then passed through a softmax function that transforms
them into probability distributions that sum to 1. These distributions determine how
much focus each element should place on other elements. More specifically, the Attention
mechanism is defined as:

. QKT
Attention(Q, K, V') = softmax v (2.11)

Vg
with Q the query vectors, K the key vectors, V the value vectors and dj the vector
dimension. In the example sentence 'The dog loves to play in the woods’, self-attention
allows the word ’loves’ to focus on the word ’dog’ more than 'woods’ (Figure 2.6). We
can see those vectors as a user with a query that looks for a match in all keys, returning

a value for its request.

QKT the dot product between queries and keys, gives a measure of the similarity of each
pair g;k;. If dj, increases to large values, the dot product magnitude pushes the softmax
function to reach extremely small gradient. To balance this effect and avoid exploding
gradients, the dot product is scaled by a factor ﬁ. The matrix multiplication with the
values gives a weighted representation based solely on available data.
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2.3.5 Multi-head attention

The multi-head attention mechanism is a crucial component of the Transformer archi-
tecture, enhancing the model’s ability to capture complex dependencies within an input
sequence. It extends the concept of self-attention, where every token in the sequence
attends to every other token, by introducing multiple parallel attention mechanisms,
referred to as heads (Figure 2.7 - left).

Activation

5 —p Linear layer

| Linear layer —
; Ay din—dy

7
Concatenation

— i FFN

Multihead Processing

Figure 2.7. Illustration of the multi-head attention mechanism followed by a feed-forward net-
work in a Transformer model. On the left, the attention mechanism computes the
attention scores. This operation is repeated across multiple heads, each extracting
different relationships within the input sequence. The outputs from all attention
heads are concatenated and fed to feed-forward network (right). The feed-forward
network consists of two FC layers with an activation function in between, allowing
for additional feature transformation before propagating to the next layer in the
model.

A single self-attention layer may struggle to capture different aspects of the input data,
such as syntax and semantics in NLP or spatial and temporal features in vision tasks.
To address this, the Transformer applies multiple self-attention operations in parallel.
Each attention head learns a distinct representation of relationships within the sequence,
enabling the model to process information more effectively.

Mathematically, given an input sequence X, the Transformer first projects it into three
different spaces to form Q, K, and V matrices:

Q=XWy, K=XWg, V=XWy (2.12)

where Wq, Wi, Wy are learnable projection matrices that reduce the input dimension-
ality. This reduction is analogous to 1D convolutional layers. Each head independently
performs scaled dot-product attention as in Equation 2.11.
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Once the attention computation is completed across all h heads, the resulting outputs are
concatenated and projected back to the original dimension using a final weight matrix:

MultiHead(Q, K, V') = Concat(heady, heads, ..., head,)Wo (2.13)

where Wy is a trainable weight matrix that integrates the different attention perspec-
tives.

The introduction of multiple heads enables the Transformer to:

e Capture various types of dependencies simultaneously, such as short-term and long-
term relationships.

e Learn different representations of meaning, such as word order and contextual im-
portance.

e Improve generalisation by allowing multiple attention patterns rather than relying
on a single perspective.

The combination of multiple attention heads diversify the extraction process of the
model, contributing to its state-of-the-art performance across various domains, including
text, images, and speech processing.

2.3.6 Feed-Forward Networks

Beyond the attention mechanism, the Feed-Forward Network (FFN) plays a crucial role
in Transformers by refining and transforming latent representations before passing them
to the next layer (Figure 2.7 - right). Each latent embedding, after undergoing multi-
head attention, is processed independently by an FFN. Unlike CNNs, which extract
spatial patterns, which process sequences step by step, the FFN applies the same trans-
formation to each embedding without considering positional dependencies. This ensures
that information flows effectively while maintaining computational efficiency.

The FEN consists of two linear transformations with a non-linear activation function in
between:

FFN(x) = activation(x x Wy + by) x Wa + by (2.14)

where W1, Wy are weight matrices, b1, bs are biases, and RelLU is typically used as the
activation function. The first linear transformation expands the representation into
a higher-dimensional space, while the second one projects it back to its original size.
This dimensional expansion, often with a factor of 4, allows the network to learn richer
representations.

The inclusion of an FFN after attention serves multiple purposes. It enhances fea-
ture extraction by introducing non-linearity, allowing for more complex transformations
beyond simple weighted sums from attention. It processes each token independently,
ensuring that the model can learn transformations without forcing unnecessary sequen-
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tial dependencies. The projection into a higher-dimensional space enhances the learning
capabilities of the model, helping it capture intricate relationships within the data.

2.3.7 Comparison with CNNs

While CNNs process local spatial features using convolution kernels, Transformers lever-
age FEF'Ns to transform embeddings after attention. The advantage of this approach is
that the FFN learns a more general transformation rather than focusing on local pat-
terns. However, this comes with a computational cost, as each token must be processed
separately in a high-dimensional space.

2.4 Evaluation metrics

This section introduces several evaluation metrics. The choice of metric depends on
the problem type, whether it is classification, regression, speech recognition, or another
deep-learning application. Below is a non-exhaustive list of commonly used metrics,
categorised by their usage.

2.4.1 Loss Functions

Loss functions output a value that the model attempts to optimise during training. For
classification tasks, the most commonly used loss function is the cross-entropy loss, which
measures the difference between the predicted probability distribution and the true class
labels. Common regression losses are Mean Squared Error (MSE) and Mean Absolute
Error (MAE), but custom loss functions are also often used.

Cross-entropy Cross-entropy loss is defined as:
n
L=-=> yilog()) (2.15)
i=1

where y; is the true label (1 for the correct class, 0 otherwise) and g; is the predicted
probability for that class.

For binary classification, it simplifies to:

n

L=—- > [yilog(#:) + (1 — i) log(1 — §)] (2.16)
=1
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For multi-class classification, where the output is a probability distribution over C' classes
using a softmax function, cross-entropy is:

n C
L= 23 los(iie) (2.17)

i=1 c=1

Mean Squared Error (MSE) MSE calculates the squared differences between predicted
and actual values (Lower values indicate better model performance):

n

—_— 1 PR— A. 2
MSE = n ;(yz ¥i) (2.18)

Benefits: MSE strongly penalises large errors due to the squared term, making it useful
for applications where large deviations should be minimized.

Drawbacks: The squared nature of MSE gives disproportionate weight to large errors,
which can make the model more sensitive to outliers. Additionally, since MSE is in
squared units of the target variable, it may be less interpretable compared to absolute
error metrics.

Mean Absolute Error (MAE) MAE computes the absolute differences between pre-
dicted and actual values:

n

1 X
MAE = EZ’yi — Gl (2.19)
=1

Benefits: Unlike MSE, MAE treats all errors equally, making it more robust to outliers.
It is also easier to interpret because it reflects the average deviation in the same unit as
the target variable.

Drawbacks: MAE does not penalise large errors as heavily as MSE, which might be
undesirable in scenarios where minimizing large deviations is crucial.

2.4.2 Performance Metrics

Accuracy measures the overall correctness of the model:

YL TR
Z?;(TPZ‘ + Zj;éi FPZ])

Accuracy = (2.20)
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where the numerator represents the total correctly classified samples across all classes,
and the denominator is the total number of samples. While accuracy is useful for bal-
anced datasets, it can be misleading in the presence of class imbalance. In such cases,
class-specific metrics such as Precision, Recall, and F1-score provide a more informative
evaluation:

TP
p—_ " 2.21
TP+ FP (2:21)

TP
-t 2.22
= TprFN (2:22)

P 2% TP

Fl-score = 2 x L& X (2.23)

P+R 2xTP+FP+FN

where True Positive (TP) indicates correctly classified positive samples, False Positive
(FP) represents incorrect positive predictions, and False Negative (FN) denotes actual
positives that were misclassified as negatives. Precision measures how often the model
is correct when predicting a positive class. Recall (also called Sensitivity) quantifies how
well the model captures actual positive instances. Fl-score is the harmonic mean of
Precision and Recall, balancing both aspects. These metrics can be further divided into
"micro-averaged”, which aggregate TP, FP, and FN across all classes before computing
the final score, and "macro-averaged”, which compute individual scores per class and
then take their unweighted average.

A confusion matrix provides a structured way to evaluate classification performance by
summarizing correct and incorrect predictions across multiple classes. For a multi-class
classification task with IV classes, the confusion matrix is represented as follows:

Predicted Class 1 Predicted Class 2 ... Predicted Class N
Actual Class 1 TP FPo o FP N
Actual Class 2 FPy, TP, o FP N
Actual Class N FPy FPys ... TPy

Table 2.1. Confusion Matrix for Multi-Class Classification

Each diagonal element T'P; represents the number of correctly classified instances for
class i. Off-diagonal elements F'P; ; represent misclassifications, where samples belonging
to class ¢ were incorrectly classified as class j.
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2.4.3 Statistical Significance and Fair Evaluation

Beyond model performance metrics, it is essential to ensure that reported performance
are statistically significant. One common method is hypothesis testing using the p-value.

The p-value represents the probability of observing the obtained results if the null hy-
pothesis was true. The null hypothesis is a statistical hypothesis that states that no
statistical significance exists in a set of given observations. It assesses the credibility of
a hypothesis by using sample data. The p-value provides a level of significance at which
the null hypothesis would be rejected. A lower p-value (typically p < 0.05) indicates
stronger evidence against the null hypothesis, suggesting that performance differences
are statistically significant.

A good model should generalise well to unseen data. Generalisation can be tested by
evaluating domain shifts, where the model is tested on data from a different distribution
or adversarial robustness, assessing how small input perturbations affect predictions.
Another test is the out-of-distribution (OOD) detection, identifying whether the model
confidently classifies unknown inputs.
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2.5 In Brief

Summary for Chapter 2 I

e This chapter provided an overview of deep learning, highlighting its fundamental
concepts, architectures, and evaluation metrics. We introduce the learning scheme
and transfer learning as a technique that leverages pre-trained models to improve
performance on new tasks.

e Convolutional Neural Networks (CNNs) were introduced as a key architecture
for structured data processing. Transformers were presented as an alternative
architecture, excelling in capturing long-range dependencies through self-attention
mechanisms.

e The chapter also covered evaluation metrics for classification tasks, like F1-score,
and cross-entropy loss, and regression problems, like Mean Squared Error (MSE)
and Mean Absolute Error (MAE). The importance of statistical significance tests
and considerations for fair model evaluation were discussed.

Perspectives for Chapter 2 I

e DL presents several ethical and practical challenges. High power consumption
raises environmental concerns, while data privacy and security risks emerge from
models trained on vast user data.

e Additionally, DL models often lack interpretability, making it difficult to under-
stand their decision-making process. Explainable AI (XAI) research aims to im-
prove transparency through feature attribution and interpretability methods.
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Our work focuses on processing images, videos and audio signals and the information
resulting from their fusion. In this chapter we will first outline several representations
for audio (Section 3.1) and visual data (Section 3.2). Then we will discuss the various
methods to fuse modalities together (Section 3.3). We conclude the chapter with a
summary and perspectives (Section 3.4).

3.1 Audio representation

Audio data can be represented in various forms, ranging from raw waveforms to struc-
tured feature embeddings extracted through deep learning models. The choice of repre-
sentation depends on the computational efficiency required and the level of abstraction
needed for downstream tasks.

3.1.1 Waveform Representation

Raw audio is typically stored as a time-series waveform, where each sample represents
the amplitude of a sound signal at a given time step. The sampling rate determines the
resolution of the signal, with common values including 16 kHz for speech and 44.1 kHz
for music.

Although raw waveforms preserve all information from the original signal, they are high-
dimensional and computationally expensive to process. Directly feeding raw audio into
deep learning models requires important computational resources and large amounts of
training data. As a result, most audio processing pipelines leverage feature extraction
methods to transform waveforms into more compact and informative representations.

3.1.2 Handcrafted Audio Features

To reduce dimensionality while preserving relevant information, various handcrafted
audio features have been engineered. These features extract spectral and temporal char-
acteristics that are useful for speech and audio recognition tasks.

MFCCs are one of the most widely used audio features, particularly in speech process-
ing. They simulate the human auditory system by applying a Mel-scale filterbank to the
power spectrum of the signal, followed by a discrete cosine transform (DCT) to decorre-
late frequency components. The resulting coefficients capture the timbre and phonetic
characteristics of the audio. The computation of MFCCs involves:

e Applying the Short-Time Fourier Transform (STFT) to extract frequency informa-
tion over time.

e Passing the spectrum through Mel-scale filterbanks (a handcrafted collection of
filters), emphasising perceptually important frequencies.



Audio-Visual Processing 35

e Applying the logarithm to approximate human loudness perception.
e Performing a DCT transformation to obtain decorrelated coefficients.

A spectrogram is a time-frequency representation of an audio signal that visualises how
frequency content evolves over time. Spectrograms can be further processed into Mel-
Spectrograms, where frequency bins are mapped to the Mel scale, mimicking human
auditory perception. These representations serve as powerful inputs for CNNs and other
deep-learning models.

While other handcrafted features exist, their interest is limited in our work and are
therefore not mentioned. Engineered features have the main advantage of being more
easily interpretable than learned features from DL feature extractors.

3.1.3 Learned Audio Representations

Recent advances in deep learning have enabled models to learn feature representations
directly from raw waveforms, avoiding the need for handcrafted features. These deep
features capture higher-level abstractions that are useful for complex tasks like speech
recognition.

Several self-supervised learning architectures extract deep audio embeddings from raw
waveforms:

o Wav2Vec 2.0 [21]: Uses a Transformer-based model to learn speech representations
from unlabelled audio, improving performance on speech recognition tasks.

e HuBERT [22]: Uses masked prediction training to learn hierarchical speech rep-
resentations. It generates pseudo-labels for each unmasked segment of the speech
and then tries to predict the pseudo-label of the masked segments.

e Audio2Vec [23]: Builds up a missing audio section based on surrounding sections.

These models provide robust embeddings that outperform traditional features in various
speech and audio understanding tasks.

Deep-learning-based approaches learn feature transformations directly from raw wave-
forms:

e CNN-Based Feature Extraction: Some models apply 1D or 2D CNNs to raw wave-
forms or spectrograms to extract localised spectral patterns.

e Transformer-Based Representations: Inspired by ViT [19] (Section 3.2.3), some
architectures process spectrogram patches as input tokens, leveraging self-attention
to model long-range dependencies.

These approaches eliminate the need for manual feature engineering. They also achieve
state-of-the-art performance in speech recognition, sound event detection, and music
classification.



36 Audio-Visual Processing

3.2 Visual representation

Visual data, including both images and videos, presents unique challenges due to its
high dimensionality and complex spatial-temporal dependencies. While raw pixel values
can be directly processed, most deep-learning approaches extract meaningful features
through engineered or learned representations.

3.2.1 Raw Image and Video Representations

Images are represented as 3D tensors, where each pixel is associated with a value across
multiple colour channels:

I(z,y,c) € REXWXC (3.1)

where H and W denote the height and width of the image, and C' represents the number
of channels (e.g., RGB images have C' = 3 channels). Videos introduce an additional
temporal dimension, effectively forming a 4D tensor:

V(t,z,y,c) € RTXHXWxC (3.2)

where T represents the number of frames per second (fps). Due to this extra dimen-
sion, video processing is computationally expensive and often requires efficient feature
extraction techniques. Processing raw visual data directly also needs significant memory
and computational power. As a result, handcrafted features and deep-learning-based
embeddings are commonly used to extract relevant information.

3.2.2 Traditional Feature Extraction

Before deep learning became dominant, various handcrafted features were designed to
capture specific aspects of visual data. These features reduce dimensionality while pre-
serving meaningful representations.

Optical flow measures motion between consecutive video frames by estimating pixel
displacement. It is commonly used in gesture recognition, action recognition, and motion
tracking.

Histogram of Oriented Gradients (HOG) is a feature descriptor that captures local object
shape and appearance by computing the distribution of edge orientations. It has been
extensively used in early object detection algorithms, including pedestrian detection.
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3.2.3 Deep Feature Extraction

Modern deep-learning approaches extract high-level visual representations through hi-
erarchical feature learning. These methods replace handcrafted features with learned
embeddings that are optimised for specific tasks.

CNNs have revolutionised visual feature extraction by automatically learning hierarchi-
cal representations. Popular architectures include:

e ResNet [3]: Introduces skip connections to improve deep network training.
e EfficientNet [24]: Optimises model scaling for better efficiency.

Many modern vision tasks leverage pretrained models to extract feature representations,
reducing computational costs and training time. Some commonly used backbones in-
clude:

e ViT [19]: Trained to classify images on a large-scale dataset to capture global
relationships. It processes images by breaking them into small patches, projecting
each patch into a high-dimensional token, and then using a self-attention mechanism
to understand the relationships between these tokens.

e DINO [25]: A self-supervised ViT model that learns high-quality embeddings with-
out labeled data.

e CLIP [26]: Jointly trained on image-text pairs to enable zero-shot learning. One
modality is used as the Query the self-attention mechanism and the other is used
as the Key and the Value.

Deep-learning-based approaches, particularly Transformer models like ViTs, have sur-
passed traditional CNNs in certain computer vision applications, highlighting the ongo-
ing shift towards more flexible architectures.

3.3 Fusion levels

This section presents the different fusion methods. In this context, fusion refers to all
approaches that mix different modality together (concatenation, addition, multiplication,
...). It can either be early fusion, late fusion and mid fusion (Figure 3.1).

When combining modalities such as speech and video, maintaining temporal alignment
is crucial. For example speech and lip movements must be synchronised to ensure mean-
ingful correlations. Misalignment can negatively impact performance, particularly in
tasks like speech-driven facial animation or audiovisual emotion recognition.

Audio and visual data often carry different levels of importance for a given task. In
some cases, one modality may dominate the learning process, leading to an imbalance
in feature utilisation. Adaptive weighting techniques or attention mechanisms can help
dynamically adjust the contribution of each modality during training.
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Figure 3.1. Illustration of different multimodal fusion strategies. (A) Early Fusion: Input
modalities are fused at the feature level before being processed, leading to a single
latent representation. (B) Late Fusion: Each modality is processed independently
through its own feature extraction network, and only the decision-level represen-
tations are combined before reaching the final decision layer. (C) Mid Fusion:
Separate modality-specific networks extract features independently before fusion,
allowing each modality to retain distinct feature representations.

3.3.1 Early Fusion

Early fusion refers to methods that combine input data or features from multiple modali-
ties before they are fed into a model (Figure 3.1.A). This integration can occur at different
levels, including raw data concatenation, feature-level fusion, or tokenized fusion within
a shared model architecture.

Types of Early Fusion

One of the simplest approaches to early fusion is the direct concatenation of raw data
representations. For example, audio waveforms can be combined with image pixel values
to create a multimodal input representation. However, this approach often results in
extremely high-dimensional data, making it computationally expensive and difficult to
train.

Instead of fusing raw inputs, feature-level fusion extracts meaningful representations
from each modality before merging them. For instance, handcrafted features such as
MFCCs from audio can be concatenated with CNN-extracted features from images or
videos. This approach reduces dimensionality while maintaining important characteris-
tics from each modality.

Modern multimodal architectures often employ Transformer-based models to fuse dif-
ferent modalities at the feature level. In this approach, both audio and visual features
are tokenized and projected into a shared embedding space, allowing the Transformer to
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model cross-modal interactions. This method benefits from self-attention mechanisms,
which help capture dependencies across modalities more effectively.

Challenges of Early Fusion

Despite its advantages, early fusion presents several challenges. Concatenating multi-
modal features, especially at the raw data level, can lead to a dramatic increase in input
size. This not only increases computational costs but also makes training more difficult
due to the curse of dimensionality. Careful feature selection or dimensionality reduction
techniques (e.g., PCA, autoencoders) can mitigate this issue. While early fusion offers
a powerful way to integrate multimodal data by preserving cross-modal relationships,
addressing these challenges is essential to achieving optimal model performance.

3.3.2 Late Fusion

Late fusion refers to methods where decisions from multiple independently trained mod-
els, each processing a different modality, are combined at the output level (Figure 3.1.B).
This approach is particularly useful in scenarios where individual modalities require spe-
cialised architectures or when cross-modal alignment is challenging.

Common Late Fusion Methods

A simple yet effective approach to late fusion is applying predefined rules to aggregate
predictions. These include:

e Majority Voting: In classification tasks, each modality-specific model votes for a
class, and the majority prediction is selected.

e Max-Pooling: The model outputs are compared, and the class with the highest
confidence score across modalities is chosen.

e Weighted Averaging: Instead of treating all modalities equally, confidence scores
from different models are weighted based on prior knowledge or validation perfor-
mance.

Instead of relying on fixed rules, a neural network can be trained to combine modality-
specific outputs. A common approach is to use a MLP that takes the probability scores
or feature representations from each model as input and learns an optimal fusion strat-
egy. Transformer-based fusion models can be employed to model relationships between
modality-specific predictions.
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Advantages and Disadvantages

One major benefit of late fusion is that each modality can be processed independently,
allowing for specialised architectures tailored to the unique characteristics of each data
type. This independence also enables more modular and flexible system designs, where
new modalities can be added without retraining the entire model. Additionally, late
fusion is particularly useful when modalities have vastly different feature distributions,
making joint representation learning (as in early fusion) difficult.

However a significant drawback of late fusion is that it does not inherently capture cross-
modal interactions, as each modality is processed. Late fusion relies solely on high-level
decisions, which may overlook meaningful relationships between modalities. Moreover,
training separate models for each modality can be computationally expensive, especially
when deep architectures are involved. In cases where cross-modal dependencies are
crucial for accurate predictions, late fusion may be suboptimal.

3.3.3 Mid Fusion

Layer - ' i‘ ) ‘i
s ke s Sy e
Mid fusion Bon](;n;;;:l; ;u;ion Bottleneck mid fusion

Figure 3.2. Illustration of mid fusion schemes. Mid fusion allows the exchange of cross-modal
information. In traditional mid fusion (left), information flows directly between
modalities. The bottleneck (centre) acts as a boundary to limit the influence of
one modality on the other, while still learning certain intermodal dependencies. The
bottleneck mid fusion (right) scheme combines the advantages of letting the first
layers learn the low-level characteristics and managing the transfer of information
between modalities.

Mid fusion is a compromise between early and late fusion, where modality-specific fea-
tures are first extracted separately and then integrated at an intermediate stage in the
model as illustrated in Figure 3.2. This approach enables each modality to be processed
independently in the early layers while still allowing for cross-modal interactions at later
stages. By merging latent representations instead of raw inputs or final decisions, mid fu-
sion retains the advantages of both early and late fusion while mitigating their respective
drawbacks.
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Types of Mid Fusion

A common mid fusion strategy is learning a shared feature space where both audio
and visual embeddings are projected. Instead of processing each modality separately
throughout the network, a joint embedding space ensures that features from different
modalities can be aligned and leveraged for better downstream performance. Attention
mechanisms have also proven highly effective in multimodal learning. Cross-modal at-
tention is commonly employed to dynamically adjust the importance of each modality
by learning attention weights. This ensures that the model focuses on relevant features
from each modality depending on the input context. In Chapter 2, we presented the
architecture of Transformers, in particular the attention composed of the Query, Key
and Values tensors. In the case of single-modality processing, these tensors are generally
projections of the same input. For multimodality, and mid fusion in particular, we can
use one modality for the Query tensor, and another for the Key and Value tensors.

Bottleneck fusion [27] introduces a technique to regulate the amount of information
transferred between modalities, ensuring that one modality does not dominate the fusion
process. This is typically achieved through:

e Cross-Attention Mechanisms, which selectively control how much information each
modality contributes to the final representation.

e Gating Mechanisms, which dynamically adjust the contribution of each modality,
allowing the model to learn optimal fusion strategies.

Bottleneck fusion helps prevent redundancy and enables efficient information sharing
while preserving modality-specific features.

Advantages and Challenges of Mid Fusion

Mid fusion provides a balance between modality independence and cross-modal inter-
action making it a flexible choice for multimodal learning. By allowing early layers
to specialise in modality-specific feature extraction while enabling later layers to inte-
grate information, mid fusion captures correlations across different data types without
excessive computational costs.

However, mid fusion also introduces challenges. The model must effectively learn to
align and merge features from heterogeneous modalities, which may have different tem-
poral resolutions or feature distributions. Additionally, selecting the optimal fusion layer
and tuning the fusion strategy (e.g., attention weights, bottleneck constraints) requires
careful experimentation.
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3.4

In Brief

Summary for Chapter 3 I

This chapter introduced different representations for audio and visual data, rang-
ing from raw signals to engineered and deep-learning-based features. Each ap-
proach offers trade-offs between information retention, computational cost, and
interpretability.

We then explored fusion techniques that integrate multimodal information at dif-
ferent stages of processing. These approaches are categorised into early fusion
(feature-level integration), late fusion (decision-level combination), and mid fu-
sion (intermediate-level integration), each with its own benefits and limitations.

Perspectives for Chapter 3.

The choice of data representation remains an open research question, as differ-
ent approaches balance efficiency, interpretability, and task-specific effectiveness.
Deep features have demonstrated superior performance but often lack explainabil-
ity.

Future research may explore adaptive and dynamic fusion mechanisms that can
adjust based on task requirements, data availability, and computational con-
straints.
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This chapter introduces several core concepts of Affective Computing. First we define
the terms, present key challenges in the domain and some applications (Section 4.1).
Second we describe low-level affect descriptors for non-verbal communication (Section
4.2) and high-level descriptors such as emotions (Section 4.3). Finally we summarise the
chapter and present future perspectives (Section 4.4).

4.1 Introduction

4.1.1 Definition

AC is a multidisciplinary field that integrates computer science, psychology, and cogni-
tive science to develop systems capable of recognizing, interpreting, and responding to
human affects. The term was first introduced by Rosalind W. Picard in her ground-
breaking work Affective Computing [28], where she outlined how computing can relate
to, arise from, or influence human emotions.

The importance of emotions in human life is significant, shaping our perceptions, deci-
sions, and interactions. One of Picard’s key arguments reinforces this idea: emotions
influence human behaviour more strongly than logic or law. For instance, despite the
existence of strict laws and severe punishments, emotional and social factors often have
a greater impact on human actions—highlighting the importance of studying emotions
in both human psychology and artificial intelligence. Izard in a treatise on emotion
theory [29] describes emotions as a motivating force in perception and attention, while
Leidelmeijer [30] emphasizes their strong connection with cognitive processes: ”Once
the emotion process is initiated, delibarate cognitive processing and physiological ac-
tivity may influence the emotional experience, but the generation of emotion itself is
hypothesized to be a perceptual process”.

Affective states occur during various scenarios, either widely studied (e.g., detecting
stress through various modailties [31-33], sentiment analysis on social media [34,35]) or
intuitively logical (e.g., personalizing learning content based on a student’s emotional
responses , designing robots that can adapt to human moods for better interaction ).

4.1.2 Key Challenges

Affective Computing remains a highly complex task due to the subjective, cultural,
and multimodal nature of affects. Several challenges arise in accurately detecting and
interpreting emotional states, spanning issues related to data variability and ethical
considerations.

Affect Recognition Complexity Affects are highly subjective and vary significantly
between individuals. Unlike objective data such as speech transcripts or physiological
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measurements, affective expressions are influenced by personal experiences, social norms,
and cultural backgrounds. The same facial expression or vocal tone may convey different
affects depending on the context and individual differences.

Moreover, affects are expressed through multiple channels, including facial expressions,
vocal characteristics, gestures, body movements and physiological signals. Because of
this multimodal nature, affect recognition systems must integrate diverse data sources.

Ethical Concerns in Affective Computing The deployment of emotion-tracking tech-
nologies raises significant ethical and privacy concerns, especially as these systems are
increasingly integrated into workplaces, healthcare, and surveillance applications.

e Many emotion recognition datasets are biased toward certain demographics, cul-
tures, or emotional expressions. For instance, datasets containing mostly Western
facial expressions may misinterpret emotions from individuals of different cultural
backgrounds [36]. This can lead to misclassification and unfair decision-making,
particularly in applications such as hiring processes, mental health assessments,
and security surveillance.

o Affect recognition often requires continuous monitoring through cameras, micro-
phones, and physiological sensors. This raises concerns about informed consent
and data security. Users may not always be aware that their emotional data is
being collected or how it is being used. Ethical frameworks such as General Data
Protection Regulation (GDPR) emphasize the need for explicit user consent and
data anonymization in affective applications [37].

e DI-based emotion analysis could potentially be used for manipulative purposes,
such as targeted advertising, political influence, or workplace surveillance. For
instance, models trained to detect stress levels might be exploited by employers to
monitor employees’ affects without their consent, leading to ethical dilemmas in
workplace environments.

4.1.3 Applications of Affective Computing

In the healthcare domain, Affective Computing plays an important role in mental health
diagnosis and support. Advanced algorithms analyze speech patterns to detect condi-
tions such as depression, while systems adapt interactions with individuals on the ASD
to provide tailored therapeutic assistance, as discussed in [1] and implemented in [38].
These technologies ensure that patient care is not only clinical but also empathetic [39].

The education sector witnesses the rise of learning systems designed to adapt to students
emotional needs. These systems use affective computing to adjust teaching strategies
based on real-time feedback about student engagement and emotions, creating a more
inclusive and supportive learning environment [40].
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Human-Robot Interaction (HRI) is another area where Affective Computing makes sig-
nificant impacts. Social robots are increasingly deployed in customer service roles, offer-
ing empathetic responses that enhance user satisfaction. Additionally, these social robots
provide therapeutic companionship to individuals needing emotional support, fostering
connections that improve mental well-being.

Entertainment and gaming experiences are redefined through adaptive systems that
respond to player emotions and stress levels. These technologies create immersive envi-
ronments where content is personalized based on audience engagement and preferences,
making entertainment more impactful and resonant with users [41].

4.2 Low-Level Affect Descriptors

Human communication is a complex interplay of verbal and non-verbal elements [42].
Verbal communication, such as speaking, writing, or singing, operates within structured
rules such as grammar and semantic meaning. In contrast, non-verbal communication
conveys information through tone, gestures, body posture, and positioning. Studies
indicate that between 60 and 90% of communication is non-verbal [43]. This form of
communication can be both intentional and unintentional. Intentional cues include ac-
tions like pointing to indicate something, while unintentional cues come from physical
characteristics that hint at age or other attributes. The way these cues are interpreted
does not follow specific rules but are instead shaped by the context in which they oc-
cur, whether geographical, educational, or temporal, and can evolve dynamically within
interactions.

The environment also influences non-verbal communication, serving as a source of nu-
merous signals that impact interactions. Each element shapes interactions, often without
conscious awareness on the part of the individual. For instance, an individual engaged
in conversation within a messy space may find their interaction quality reduced, showing
how external factors can influence human communication.

Verbal and non-verbal communication operate simultaneously, making disentanglement
between the two challenging. Words can transmit emotional messages, while non-verbal
cues extend beyond mere emotional expression. As highlighted in [44], Ekman exam-
ines how verbal and non-verbal behaviors interrelate, whether by repeating a message
through different channels or complementing it. This interlacing of verbal/non-verbal
communication and how DL models manage it are studied and discussed in Chapter 8.

Information from various modalities can either be congruent, reinforcing each other for
more effective communication (e.g. a smiling face paired with a cheerful tone strengthens
the expression of happiness). Alternatively, information from different modalities can
complement one another, enhancing clarity and reducing uncertainty—such as a confi-
dent tone matched with a smiling face. There’s also potential for interaction between
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modalities to generate new meanings through contradictory information—for instance,
expressing irony by conflicting facial and vocal behaviors.

4.2.1 Types of Non-Verbal Communication

As noted in section 4.1, non-verbal communication covers a wide range of behaviours and
signals that convey meaning without words. This section shows the different types of non-
verbal communication, exploring their importance in human interaction and emotional
computing.

Facial Expressions

Facial expressions play a crucial role in non-verbal communication. They serve as a key
component in understanding human emotions and reactions without relying on verbal
cues. Multiple models aim at representing facial expressions, based on handcrafted
features like Facial Action Coding System (FACS) or based on DL methods.

The FACS, developed by Paul Ekman, is a key tool in this field [45]. It breaks down
facial movements into specific components known as Action Unit (AU), each representing
distinct muscle movements (Figure 4.1). This method has played a key role in research
into emotion recognition and behavioural analysis, providing a systematic approach to
understanding facial expressions.

More recently, modern automated facial recognition technologies leverage deep learning
models such as CNNs and Transformers. As presented in Chapter 2 these systems offer
greater accuracy and scalability than traditional methods, enabling complex scenarios
to be analysed with greater precision. They represent a significant advance in the ability
to interpret facial expressions computationally.

Vocal Cues

Speech cues play a central role in human interaction, as an essential component of non-
verbal communication. These cues encompass aspects such as pitch, volume, tone and
speech patterns, all of which contribute significantly to conveying emotions, intentions
and attitudes beyond the simple words spoken. Their importance lies in their ability to
provide context and depth to conversations, allowing individuals to assess the emotional
state and authenticity of others.

In terms of representation, as discussed in Chapter 3, traditional features focus on ex-
tracting specific acoustic properties from speech signals. These include pitch variations,
intensity, formants and other measurable attributes that can be analysed using signal
processing techniques. By identifying patterns in these characteristics, researchers can
infer emotional states or communication dynamics, offering valuable insights into how
speech signals influence interactions.
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Figure 4.1. Examples of some Action Units extracted from [46].

On the other hand, deep learning approaches have brought about a breakthrough in the
representation of speech signals by employing neural networks to automatically learn
complex patterns from raw audio data. Unlike traditional methods, deep models capture
the complex and subtle aspects of speech through layers of abstraction. This capability
improves the accuracy and adaptability of systems for recognising nuanced emotional
expressions.

Body Language and Gesture Recognition

Our bodies communicate information whether in a static way (posture) or dynamicaly
(gestures). Hand gestures, microexpressions, the direction of the gaze, the dilation of the
pupils, and even subtle movements like nodding or shrugging are all factors that allow
us to interpret a person emotional state and intentions. These non-verbal cues play a
crucial role in human interaction, often conveying messages that words alone cannot
express.

Body language analysis extends beyond gestures to include aspects such as proxemics
(the use of personal space) and kinesics (the study of body movements). Understanding
these elements helps in interpreting emotions, detecting deception, or assessing comfort
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levels during interactions. For instance, crossed arms might indicate defensiveness, while
open postures can signify approachability.

Pose estimation is a key technological advancement that enables the detection and track-
ing of human body keypoints from images and videos. This involves identifying specific
points on the body, such as joints, to analyze posture and movement accurately. One
of the most prominent frameworks in this field is OpenPose [47]. It employs advanced
computer vision techniques to detect human body, face, and hand keypoints, providing
a comprehensive understanding of posture and gestures.

Physiological Signals

Non-verbal communication based on physiological signals involves analyzing data col-
lected from sensors like Electroencephalogram (EEG) or ECG. These devices measure
biological processes within the body, providing insights into emotional reactions that are
not always explicitly expressed. For instance, an EEG can capture electrical activity in
the brain associated with different emotional states, while an ECG measures heart rate
variability to reflect stress levels.

In addition to EEG and ECG, other physiological signals such as Galvanic Skin Response
(GSR), which measures changes in skin reddening, and Electromyography (EMG), track-
ing muscle activity, are also utilized. These sensors detect subtle changes in the body
that correspond to emotional experiences, offering a more comprehensive understanding
of human emotions. One of the main drawback of using physiological signals is their
invasive recording conditions [48].

4.2.2 Encoding and Decoding Processes

The general definition of non-verbal communication as stated in [42] expresses commu-
nication by means other than verbal elements. It does not indicate whether it refers
to the type of signal produced (called encoding) or to the interpretation made by the
person perceiving it (called decoding). Humans encode and decode non-verbal behaviour
daily with varying degrees of awareness and control. There are times when the responses
are carefully planned and we are fully aware of what we are doing; and sometimes our
responses are more automatic and have little planning or awareness. For example, pose
for photographs implies a high level of awareness and control while nervous mannerisms
are often enacted outside of our control [49].

Although non-verbal communication is universally used, encoding and decoding depend
on several contexts such as culture, transmission channels and even the mood of the
participant. Interpretation errors occur when the actors in the interaction do not have
the same judgements for similar non-verbal cues, which reduces the accuracy of the
communication.
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4.3 High-Level Affect Descriptors

4.3.1 Models of Emotions

In the paper "What is Emotion?” [50], authors argue that physical reactions precede
emotional feelings, such as a racing heart preceding fear. This theory, part of the James-
Lange framework of emotion, suggests that physiological signals can be used to infer
emotion. However, this theory is limited if we consider that emotions can influence
physiology or occur without any perceptible physical change. Modern definitions of
emotions are rather broad, but share the common characteristic that they are complex
states involving both physiological and mental changes [51]. Several modeling approaches
exist to describe emotional states. The next sections present two widespread approaches:
discrete and dimensional.

Discrete Classes Ekman’s Theory of Emotions [52] identifies specific, distinct emotions
such as happiness, sadness, anger, disgust, surprise, fear, and contempt. These emotions
are considered universally recognizable across cultures. Plutchik expanded on this with
his Wheel of Emotions [53], which illustrates how basic emotions can combine to form
more complex ones (Figure 4.2).

Continuous Dimensions Dimensional models represent emotions along continuous scales
rather than as separate categories. Russell’s Circumplex Model [54] uses two dimensions:
valence (positive to negative) and arousal (calm to excited) (Figure 4.3). The Pleasure-
Arousal-Dominance Model [55] incorporates three dimensions: pleasure, arousal, and
dominance. While these models capture a broader spectrum of emotional states, they
may be less intuitive for humans to interpret.

4.3.2 Personality traits

Personality traits refer to long term characteristics that shape human personality. They
play a significant role in shaping how individuals express emotions and interact with
their surroundings. In this section we present the Big Five Theory Personality Model [56]
(OCEAN) framework for understanding personality and its use for human-agent inter-
action.

The Big Five Personality Model (OCEAN) One of the most widely recognized frame-
works for understanding personality is the Big Five Personality Model, often referred
to by the acronym OCEAN. This model identifies five core dimensions of personality:
Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism.
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Figure 4.2. Plutchik’s Wheel of Emotions. A visual representation of basic and complex emo-
tions organized into eight primary bipolar categories: Joy—Sadness, Trust—Disgust,
Fear—Anger, and Surprise-Anticipation. Emotions intensify toward the center (e.g.,
Serenity — Joy — Ecstasy) and merge into more complex emotions (e.g., Joy +

Trust = Love).

e High score in openness refers to individuals that tend to be curious, creative, and
open to new experiences. They are more likely to engage with novel ideas and

environments.

e Conscientiousness is characterized by organization, responsibility, and goal-directed

behavior. Conscientious individuals are typically reliable and methodical.

e Extraverts are sociable, energetic, and enjoy interacting with others. They often

seek stimulation and thrive in dynamic social settings.

e People high in agreeableness are empathetic, cooperative, and trusting. They value
harmonious relationships and are less likely to engage in conflict.
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Figure 4.3. Russell’s Circumplex Model.

e Neuroticism is associated with emotional instability, anxiety, and a tendency to
experience negative emotions. Neurotic individuals may be more sensitive to stress
and challenges.

These dimensions of personality significantly influence how individuals express their emo-
tions and interact with others. For instance, openness might affect how someone engages
with new technologies, while conscientiousness could impact their adherence to struc-
tured interactions. Similarly, extraversion and agreeableness can shape communication
styles and social engagement, which are critical factors in human-agent interaction.

Personality in Human-Agent Interaction One key application of personality-aware
agent is in conversational interfaces such as chatbots and virtual assistants. By an-
alyzing user inputs and adapting their responses based on inferred personality traits,
these systems can provide a more personalised and engaging experience. For example,
an extroverted user might receive more dynamic and interactive responses, while an
introverted user could be offered quieter, more reflective interactions.
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4.4 In Brief

Summary for Chapter 4 I

e AC aims to build systems that can recognize, interpret, and respond to human
emotions, bridging computer science and psychology.

e Challenges include emotion subjectivity and cultural variability, multimodal na-
ture of affect (voice, face, gestures, physiology) and ethical concerns (data privacy,
bias, and responsible use).

e Non-verbal communication (facial expressions, vocal tone, gestures, physiological
signals) is critical for affect recognition.

e We introduced emotion models (discrete and dimensional) and the OCEAN de-
scribing personality trait.

Perspectives for Chapter 4.

e Current systems lack customisation for a specific user. We could consider moving
towards emotion recognition systems that adapt to individual differences.
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Affective Computing (AC) covers a huge number of fields of application in many different
modalities. Recent Al systems require large quantities of data in order to be the most
effective in terms of recognition or detection. These quantities of data are at the heart
of a major problem: their availability. Although there is more and more data available
for research, it is still possible to contribute by providing new content or increasing the
number or quality of the annotations.

This chapter first introduces datasets available for research, focusing on the face and/or
voice community (Section 5.1). Then, we present our proposition for additional annota-
tions to existing databases to include laughing and smiling expressions (Section 5.2).

5.1 Existing Affective Datasets

In this section we discuss datasets that contain either voice, face or both. We present
them as either unlabeled or labeled affective-wise. Unlabeled datasets are mostly used
for pre-training models in unsupervised tasks such as de-noising [57]. Labeled datasets
allow us to evaluate performance of models in affective use-cases. While some datasets
were not directly used, they inform on the available resources in the field.

5.1.1 Unlabeled datasets

Librispeech [58] is a dataset that contains 1000 hours of audiobook English speech con-
tent. It is distributed across more than 2,400 speakers with a relatively balanced gender
distribution (51.5 % male speakers). Half of the dataset is considered as ”clean” record-
ing quality based solely on word error rate (WER) results. 20 female and 20 male
speakers have been extracted from the ”clean” set to form a clean validation, and the
same process was applied for the test partition, leading to 5 hours of content for each
partition.

PodcastFillers [59] contains 199 podcast episodes in English annotated for filler words.
It was curated to maintain a gender-balanced distribution of 350 speakers leading to 145
hours of content. Since it was extracted from podcast, it is considered as recorded in
naturalistic conditions.

VoxPopuli [60] is a huge dataset that contains over 400,000 hours of unlabeled audio
recording from European Parliament events. For comparison purposes, we report here
the transcribed portion of the dataset, which is limited to 1791 hours and 16 languages
(without equal distribution between languages). With over 4300 identified speakers, it
represents one of the most diverse set available, although its gender balance is 34 % of
female and 66 % of male.

VGGFace2 [61] is an image-only dataset that contains over 3.31 million images of 9131
speakers. The content comes from Google Image and can be considered as naturalistic
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record conditions. The gender distribution across subject is 59.3 % of male and 40.7 %
of female.

The Edinburgh International Accents of English Corpus (EdAcc) [62] is a dataset that
aims to represent the variety in English accents. The content is video recording of video
calls between friends. It contains almost 40 hours from 120 speakers, in various dyadic
settings.Female and male speakers account for 51.2% and 48.8% of the population,
respectively.

The VoxCeleb2 [63] dataset is a large-scale audio-visual dataset primarily focused on
speaker recognition. It serves as a valuable resource for research in self-supervised train-
ing as it contains more than a million utterances with 6,000 speakers of 145 different
nationalities. It provides a wide range of languages, accents, ethnicities and ages from
real-world recordings.

Table 5.1. Comparison of unlabeled datasets according to several criteria: number of speakers,
gender distribution, modality type, duration, language. *gender-balanced is speci-
fied but no value is provided.

Durati Gender Distr.
Name Modality | # speakers Hraton Languages ener =t
(h) Male | Female
Librispeech audio 2400+ 1000 En 51% | 49 %
PodcastFillers audio 350 145 Eng n.a. | n.a.*
. . En, De, Fr
VoxPopuli audio 4300+ 1791 66 % | 34 %
+ 13 others
VGGFace2 visual 9131 n.a. - 59% | 41 %
EdAcc audiovisual 120 40 En 49% | 51 %
VoxCeleb2 | audiovisual 6000+ 2442 En 61% | 39%

5.1.2 Labeled datasets

The Emotional Voices Database (EmoV-DB) [64] contains audio recordings in English
and French from 5 individuals (En: 2 males, 2 females; Fr: 1 male). Speakers were asked
to read sentences while expressing discrete emotions (Angry, Sleepy, Amused, Neutral,
Disgust). The total number of sentences is 7590.

Emotional Voice Message (EMOVOME) [65] is a dataset of real-life phone conversations.
It includes 999 voice messages from 100 Spanish speakers (50% males, 50% females),
labeled with continuous (valence/arousal) and discrete (Angry, Sad, Happy, Surprise,
Fear, Disgust, Neutral) emotions.
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MSP-Podcast [66] is one of the largest naturalistic speech emotional dataset. It contains
over 237 hours of podcast recordings annotated by crowdsourcing in both continuous
(valence/arousal/dominance) and discrete emotions (Angry, Sad, Happy, Surprise, Fear,
Disgust, Contempt, Neutral). Speech samples are distributed between Train, Validation
and three Test partitions from more than 1800 English speakers.

AffectNet [67] is an image-only dataset that contains 450,000 manually annotated facial
images. It includes thousands of individuals (49% males, 51% females) and labels cover
continuous (valence/arousal) and discrete (Angry, Sad, Happy, Surprise, Fear, Disgust,
Contempt, Neutral) emotions.

Aff-Wild2 [68] dataset consists of 558 videos of humans in real-world conditions. 458
different individuals (60.9% males, 39.1% females) are included in the dataset and each
video is labeled in dimensional (valence/arousal) emotions. Data cover a wide genre of
age groups and ethnicities, as well as head poses, illumination conditions and occlusions.

The First Impressions dataset [69] contains around 10,000 audio-visual clips extracted
from YouTube videos of people facing and speaking in English to a camera. Clips are
labelled with apparent Big Five personality traits. In its extended version, transcriptions
and job-interview annotations are also available.

MSP-Improv [70] is a dataset of audiovisual recordings of 6 dyadic interactions of English
speaking actors (6 males, 6 females). The total duration of the dataset is about 9 hours.

The Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D) [71] provides a
diverse collection of audio and video recordings featuring 91 individuals (48 male and
43 female actors between 20 and 74 years old) acting discrete emotions. Each speaker
recorded 12 sentences in English for each emotion leading to 7442 videos ranging from
763 to 2204 utterances per emotion.

Table 5.2. Summary of affect-labeled datasets.

. # samples/ Annotation .
Name Modality | # speakers Demographics
duration type
EmoV-DB audio 5 7590 sentences discrete En: 2M/2F, Fr: 1M

EMOVOME audio 100 999 messages cont. + discr. 50% M / 50% F
MSP-Podcast audio >1800 237 hours cont. + discr. n.a.

AffectNet visual 1000+ 450,000 images | cont. + discr. 49% M / 51% F

Aff-Wild2 av 458 558 videos continuous 61% M / 39% F
First Impression av n.a. ~10,000 clips | personality traits n.a.

MSP-Improv av 12 ~9 hours cont. + discr. 50% M / 50% F
CREMA-D av 91 7442 clips discrete n.a.
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5.2 Interaction Behaviour Dataset

Due to their importance in daily communication, laughter and smiles have equally inter-
ested social scientists and computer scientists focused on human-centered applications
and human-agent interactions. This is mainly due to their frequency in interactions,
their diverse functionalities, and their presence in societies across the globe. Several
datasets and corpora have been built, either containing laughs or smiles, or focusing
solely on them [72-76].

This work is based on three different datasets of dyadic interactions. We selected them
based on the similarity of the data collection setup favoring naturalistic interactions;
including nonverbal expressions, diversity of cultural backgrounds, and the quality of
the data. These datasets are CCDb, IFADV and NDC-ME.

The Cardiff Conversation Database (CCDb) [77] contains audiovisual recordings of
dyadic interactions. These were in English, and the participants were presumably, in
the majority, of British background and so, native English speakers. They were free to
discuss any topic, even though some general topics were sometimes suggested to them.

The IFA Dialog Video Corpus (IFADV) [78] is a dataset of audiovisual interactions that
were in Dutch with scripted and freely spoken data. The participants were presumably
mostly of Dutch background and, therefore, native Dutch speakers.

The Naturalistic Dyadic Conversation on Moral Emotions (NDC-ME) dataset [79] con-
tains audiovisual recordings as well, and the interactions were in English with partici-
pants of different backgrounds. The participants asked each other preassigned questions
in turns. Most of the participants in this dataset are not native English speakers.

In the future, we intend to consider other datasets to diversify even more the content of
our dataset.

5.2.1 Annotation Protocol
Categories Definition

The definition of smiles and laughs were similar to the one in [80]. We summarize them
here and explain the definition of roles. The following definitions were used:

Roles A subject is considered a SPK, LSN, or none of them. Conversation segments
during which the subject utters an entire utterance (short or long) meant to be com-
municated to their interlocutor are tagged as SPK, while segments during which the
subjects perceive the messages coming from the speakers are tagged as LSN. SPK seg-
ments start and end with the utterance including surrounding nonverbal expressions if
any (e.g., a spoken sentence ending with a nod). LSN segments start and end when
the subjects are perceived to start listening to their interlocutor. The LSN segments



62 Datasets

can contain backchannels (like ”yes” or other expressions communicating engagement

for instance): emitting a word or a short sentence meant as feedback does not make the
subjects speakers since they are still in a perceiving role.

Smiles Smiles are annotated as perceived and can be expressed not only with lips but
also with other areas of the face like the cheeks, eyelids, eyebrows, etc. Smiles can also be
expressed using the audio cue or alongside other expressions [81,82]. The smiles should
then be segmented based on their intensity levels. The intensity of the facial and vocal
expressions determine the intensity levels of the smile segments. Four different intensity
levels are considered : subtle, low, medium, and high. The subtle level represents smiles
that are subtle but are still perceived. They could be covered by other expressions, by
speech, or are just of very low intensity but still perceivable.

Laughs A laughter segment starts when an audio, facial expression, or body move-
ment related to laughter starts, and stops when a breath intake sound or movement
are perceived (from the stomach, face, etc.). If no breath intake happens, the segment
stops with the laugh’s movement. Three intensity levels are considered for laughs: low,
medium, and high

As mentioned before, laughter and smiling segments cannot overlap.

Annotation Process

Six annotators were asked to annotate one or several of the above-mentioned datasets.
These annotators intervene at different periods and for different durations. They were
all first trained on the annotation protocol and tested it on a test video. The test
annotations were then rechecked by the same supervisor who gave them feedback on
their work.

The annotators were instructed to first start annotating the role category, after which
they were asked to annotate smiles and laughs simultaneously. The intuition behind
this and what we have observed is that a first pass through the annotation of roles helps
the annotators familiarize themselves with the dataset’s participants’ expressions, which
would make it easier to annotate smiles, laughs, and their intensities. We found it more
efficient to ask the annotators to annotate the smiles and laughs at the same time instead
of one then the other.

Given the large amount of data and the limited availability of the annotators, some of
the annotators were instructed to annotate the first two minutes of each video to obtain
a more diverse dataset in terms of participants at the end, sacrificing the diversity with
respect to the conversation’s length. Others were instructed to annotate the full videos.
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5.2.2 IB Dataset

In this section, we first give an overview of the dataset content. For reproducibility pur-
poses and to give the reader the possibility to estimate the amount of time it would take
for an annotator to annotate their datasets, we also give the time spent per annotator
per minute of data for each category. We believe that this is an important metric to
consider to better understand the efficiency of an annotation protocol, but also because
it represents an important characteristic of an annotation protocol to take into account
when comparing them with each other.

Dataset Content

Given the interventions of the annotators at different periods, as mentioned in 5.2.1,
some of them completed others’ work, and most of them, though not all, have annotated
common data for inter-rater agreement scoring purposes. Inter-rater agreement specifies
how close the annotations of two raters are. The data is separated per dataset and per
annotator which makes it easy to select a specific part of the data depending on the
requirements. The metrics shown hereafter allow the reader to better estimate if the
data are homogeneous enough to be used together or not. They also allow to estimate
the risk and limitations before their use.

Table 5.3 shows the total amount of annotated data in minutes produced per annotator
(note that each of them spent a different total number of hours annotating). The an-
notators were asked at the end of each annotation session to manually log the category
annotated, the start and end times of the data annotated, and the duration taken to
annotate this portion. Most of them spent around an hour a day annotating for a period
of about twelve to sixteen weeks.

Table 5.3. Amount of total data annotated in minutes in the entire dataset.

Roles | Smiles | Laughs
Annotator 1 | 143 87 6

Annotator 2 | 105 35
Annotator 3 7 49
Annotator 4 61 28
Annotator 5 | 103 37
Annotator 6 | 104 25

DD || =& ]|00
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Table 5.4. Average annotation time in minutes, taken per annotator to annotate 1 min of data.

Roles | S&L | Gender
Annotator 1 8 23 F
Annotator 2 10 31 M
Annotator 3 5 14 F
Annotator 4 10 21 M
Annotator 5 9 12 F
Annotator 6 5 12 M

Performance

Table 5.4 shows the average time spent per minute of data by each annotator for each
annotation category, i.e. how long would a minute of data take on average for a person
to annotate each category. This table also shows the annotator’s gender for a more
complete background information. We follow the computer science literature here, and
use “gender” but distinguishing male vs. female is more appropriately termed as “sex
estimation”. Gender is a more complex and subjective construct. They all reported
being between 18 and 25 years old at the time of annotation.

Table 5.5 shows the inter-rater agreement (using the Cohen’s Kappa Coefficients) of each
annotator with all the others for the category of the Role. The inter-rater agreement
will be calculated per intensity and for smiles and laughs separately in future work.

Table 5.5. Inter-rater agreement Cohen’s Kappa Coefficients between all annotators for the
category Role

Annot. | 1] 2 3 4 5 6

1 11055057 | 0.58 | 0.65 | 0.64
2 -1 0.56 | 0.59 | 0.57 | 0.52
3 - - 1 0.69 | 0.60 | 0.58
4

5

- - - 1 0.7 1 0.65
- - - - 1 0.66
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Data Quality and Reliability Metrics

In order to evaluate the annotations quality and their reliability, we first calculated the
Cohen’s Kappa Coefficient which is a common metric to evaluate inter-rater agreement.
The average value was calculated between commonly annotated files among annotators.
The exceeding portions annotated were discarded. The results are shown in Table 5.6
and they represent the mean value across all annotation categories.

Table 5.6. Mean Cohen’s Kappa coefficient calculated on all common annotated parts for all
categories (Roles, Smiles, Laughs and corresponding levels) of files between annota-
tors

Annot. | 1 2 3 4 5 6
1 - 10551081068 | 05 | 048

2 - - 0.71 1 0.59 | 0.74 | 0.68
3 - - - 0.6 | 0.37 | 0.24
4 - - - - 0.68 | 0.56
5 - - - - - 0.41

Except from annotator 3 compared to 5, and 6 and annotator 5 compared to 6, all the
results are above 0.5 which shows a moderate to substantial agreement among annota-
tors [83]. After investigation these lower results come from a limited amount of common
files (and annotation categories) between these annotators. In fact some values are above
0.75 for some annotation categories.

Cohen’s Kappa is a go to metric for inter-rater agreement but, in our opinion does not
give a full view of the dataset’s content. So, we present in this work three other metrics
that, in our opinion, give a more complete insight on the subjectivity of the task and
therefore the reliability of the data. The metrics are:

e Querlap_perc: Given the common annotation portions of two annotators, we calcu-
late the percentage of overlapping segments between annotators with respect to all
the segments from both annotators, i.e. the ratio of the number of segments that
overlap to the total number of segments from both annotators data.

e JoU: For each overlapping segments between two annotators, we calculate Intersec-
tion over Union (IoU) of the two segments, i.e. the ratio of the overlap duration to
the union of both segments.

e Quverlap_levels: Out of all the overlapping segments we calculate the percentage of
the segments with the same label (for example, segments of smiles with the same
intensity levels).
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Note that we consider two segments coming from two annotators to be overlapping, if
the two have more than 10% IoU. This is done to avoid counting the overlap of segments
that happen out of lack of precision during the annotations (for example the start of a
LSN’s segment from one annotator might overlap for hundreds of milliseconds with the
end of the other annotator’s SPK segment).

Tables 5.7, 5.8, 5.9 show the above-described metrics for the Roles, Smiles and Laughs
categories respectively. The n.a. indicates a non-availability of results either because
no common files were annotated by the annotator pairs or no common data were found
due to limited amount of data in some files (this is especially true for laughter data and
even more when considering the intensity levels).

We can see that even though some difference occurs in the annotations across annotators
due to the subjective nature of the task, in most cases, similar segments are selected
for each category when the value of the segment is not considered, with an IoU above
50% (and goes as high as above 80% in several cases). The effect of subjectivity can be
clearly seen when it comes to selecting the intensity levels of smiles and laughs though.
The latter’s intensities seem to be annotated more objectively than smiles. Indeed smiles
can co-occur with speech and other expressions which can make them more confusing
to identify. Nevertheless, these metrics show that some care has to be taken when
combining the different annotations depending on the application targeted, especially
if the intensities have to be considered. But the different metrics also show that a
significant amount of data can still reliably be combined to obtain a relatively large and
diverse dataset.

This dataset or subsets of it have already been used in diverse domains, some of which
concluded in published work, from machine learning applications, such as detection sys-
tems, to behavioral studies. This further showcases the usefulness of this dataset, the
reasonable quality of the annotation and therefore the efficiency of the annotation pro-
tocol. Indeed, they were successfully used to build and study smile and laugh detection
systems [84,85], to build laughter synthesis [86], and to analyses studies of smiles and
laughs [87]. Some of these work are discussed in later chapters.
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Table 5.7. Concerning the Roles for all common annotation files between annotator pairs,
and from top to bottom in each cell: mean Overlap_perc, mean IoU and mean

Overlap_levels (SPK vs LSN in this case).

Annot. | 2 3 4 5 6
7599 | 99 | 99 | 97

1 711 90 | 93 | 62 | 61
86 | 94 | 95 | 68 70

100 98

2 - | na. | 70 | na. | 81
87 89
- - 100 | 100 | 100

3 - 54 | 57 | 62
67 | 74 | 69

96 | 99

4 - - - 65 | 64
66 70

99

5 - - - - 67
75
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Table 5.8. Concerning the Smiles for all common annotation files between annotator pairs,
and from top to bottom in each cell: mean QOwverlap_perc, mean IoU and mean

Overlap_levels (smile intensity levels).

Annot. | 2 3 4 5 6
771 99 | 92| 93 |69

1 65| 94 | 80 | 52 | 57
36 | 92 | 54| 17 | 32

91 76

2 - | n.a. | 60 | n.a. | 98
34 63

93 | 96 | 94

3 - - | 63| 53 |59
43 | 24 | 40

87 |69

4 - - - | B3 | 57
27 | 37

87

5 - - - - 52
46
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Table 5.9. Concerning the Laughs for all common annotation files between annotator pairs,
and from top to bottom in each cell: mean Overlap_perc, mean IoU and mean
Overlap_levels (laughs intensity levels).

Annot. | 2 3 4 5 6
79 100 | 83 | 87

1 65 | n.a. | 85 89 | 49
32 100 | 100 | 51

60 86

2 - | na 75 | n.a. | 68
50 74

67 | 60

3 - - n.a 86 | 49
100 | O

100 | 84

4 - - - 77 | 46
100 | 52

75

5 - - - - 58
33
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5.3

In Brief

Summary for Chapter 5 I

We highlighted unlabeled and labeled datasets, used for pre-training and affective
task evaluations respectively.

We presented a dyadic interaction dataset annotated by several annotators with
a protocol and metrics aiming at optimizing the annotation process.

We proposed metrics measuring the annotation’s reliability and efficiency in order
to insure the quality of the data and the efficiency of the process.

Perspectives for Chapter 5.

As the lists are non-exhaustive, some datasets of interest can still be added. It

does not include modalities other than audio and visual, such as motion capture,
EEG or ECG.

Future work will focus on improving the quality of the data provided and increase
the diversity of the annotations. This will be done through continuously improving
the annotation process and through deeper analyses of the results.
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This chapter presents the detection of non-verbal expressions in voice and in a restricted
area of the face around the lips. We first introduce our goals, then present previous work
in the domain (Section 6.1). Subsequently, we describe the datasets used (Section 6.2)
and finally we discuss our experiment (Section 6.3). We conclude with a summary and
future works (Section 6.4).

There is an enormous amount of non-verbal cues and even more combination for humans
to encode and decode during interactions. To reduce the scope of this research, we
decided to limit our interest on non-verbal expressions in the facial region around the
lips, region that we refer to Region of Interest (ROI). Data annotated on non-verbal
cues is quite limited, hence we decided to limit our analysis to two expressions: smiles
and laughs. As stated in Chapter 5, these are among the most common non-verbal
expressions and are less susceptible to contextual ambiguity.

The goal of this work is two-fold: first, our aim is to explore how such a model can
recognize smile and laugh expressions, and to understand its decision-making process
through post-training analysis; second, we examine how the intensity of the detected
expressions affects classification performance. We adopt the commonly held consensus
that smiling and laughing are two distinct expressions. The pre-trained model we use
combines both short-term and long-term information extractors, as its original purpose
was to enable speech transcription based solely on lip movements and associated audio
features.

6.1 Related Work

6.1.1 Region of Interest detectors

Non-verbal expressions cause structural changes in several regions of the human body,
like the pose, facial landmarks or skin reddening. Several ROIs have been identified
across the face (eyebrows, eyes, nose and mouth) and resources provides models to
standardise them or their dynamic. The most popular approach is FACS [45], which
provides a list of face regions named AU. Authors in [88] rely on image segmentation
based on anthropometric measurements to detect the eye and eyebrow regions as well
as the mouth region. While the method has noticeable results, it has limitations arising
for example from shadows or facial wrinkles. In [89], authors use a CNN-based model
to detect iris boundaries in face images. In [90] authors work on DeepFake detection,
where the identity of the person on screen is created or altered visualy. They use AUs
to build a user profile and detect inconsistencies in specific ROIs.

6.1.2 Smiles and Laugh detection

A plethora of work can be found on smile detection. We estimate that the vast majority
of them are based on the visual cue as we could find very few work based on other
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modalities [91-93], notably the audio cue was rather absent from the state-of-the-art
although smiles were proven to be recognizable audible [94-96].

Fewer work can be found on laughter detection. They focus on the audio and the
visual modalities individually but also in multimodal approaches. Kantharaju et. al.
in [97] present an automatic detection of different categories of laughter using audio-
visual data. The authors in [98] use full-body motion capture data to detect laughter
while [99] investigates the laughter detection based on audio and facial motion capture.

Surprisingly, very few work can be found where S&I are considered as two distinct
expressions, and none of them attempts to classify/detect them as different entities.
Indeed, even though the authors in [100] annotate them as two expressions in their work,
they build classifiers considering them as the same class. The authors in [101] propose
a system classifying smiles vs non-smiles based on the visual cue and laugh/non-laugh
based on a single modality and on multimodal data, but no smile/laugh discrimination
is presented. One reason for this might be the difficulty for the models to learn the
differences between smiles and laughs, especially given the limited amount of resources
available. Another reason might be the common representation for some, of smiling being
a less intense expression of laughter or even both being the same expression, which is to
the best of our knowledge, unproven yet.

6.2 Datasets

The data used here are subsets of the Nonverbal Dyadic Conversation on Moral Emo-
tions (NDC-ME) [79], and of the IFA Corpus (IFADV) [78] for which the Smiles and
Laughs were annotated following the protocole described in Chapter 5.

NDC-ME is an audiovisual collection of dyadic interactions focusing on the emotions
expressed during speaker-listener interactions. The subset we use is distributed in 17
dyadic interactions split between 10 male and 4 female individuals, with 7 male-male,
6 male-female and 4 female-female pairs. During these interactions, each duo discusses
emotional topics introduced by an open question in English. Since some of those inter-
actions are not fully annotated, the total duration of annotated data is about 90 minutes
with an unbalanced distribution between individuals.

IFADYV is also a collection of audio-visual recordings of dyadic conversations. The subset
we used contains 23 dyadic interactions of 15 male and 28 female Dutch individuals with
4 male-male, 8 male-female and 11 female-female pairs of interactions. The annotations
cover only the first two minutes of each file, leading two around 46 minutes of annotated
data.

The laughs intensities are divided in three levels (low, medium and high) and the smiles
intensities in four (subtle, low, medium and high). As stated in Chapter 5, the subtle
level was added to capture all the levels of smiles even the ones that are normally
left out because of the difficulty to annotate them: subtle smiles co-occurring with other
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expressions for instance. A third class, referred to as the None class, includes all segments
of the recordings that contain neither laughter nor smiles, such as neutral expressions
and speech. Therefore we ended up with three main classes Laughs, Smiles and None,
which will be used for training our models without taking into account the intensity
levels.

6.3 CNN-based classifier: LSN-TCN

Since the emergence of deep-learning models, architectures that rely on CNNs have
improved the results on many classification tasks. In affective computing, whether we
focus on speech, face or multimodality, the results have followed the same learning pace.
Over the years, fine-tuning have become the generic approach for domain-specific tasks:
the main principle lies in the use of models that were previously trained on huge datasets,
then, a second training step is performed on a small set of custom data. This leads to
improved performance with less training cost.

Based on the fine-tuning principle, we benefit from patterns already learned during pre-
training tasks and makes minor changes on the model first CNN layers to fit our smile
and laugh data. We explore the impact of voice-only, ROI-only or combined input data.
As our focus is to study region of interest around the lips, we selected MS-TCN [102] as
our backbone model. By the time of publication of our work, it was the best compromise
between accuracy and cost-efficiency, characteristic non-negligeable as we were limited
in computation power. MS-TCN uses CNN layers to capture both temporal and spatial
information within multiple frame of the same video to perform lipreading.

The analysis is split in three parts: speech, face and multimodal analysis for expression
classification (Laugh, Smile or None expression). We use the datasets presented in
Section 6.2: NDC-ME and IFADV. We split NDC-ME randomly into three partitions
namely train (70%), validation (15%) and evaluation (15%), while IFADV is used for
evaluation only so that we can measure inter-data learning. These two datasets contains
expression labels with additional information about each expression intensity. None is
only neutral, smiles are either subtle, low, medium or high and laughs are either low,
medium or high. The sub-label analysis allows us to look at the distribution of expression
intensity by the model without any knowledge of said intensity during training. The
multimodal approach compared to unimodal ones highlights the interrelations between
speech and facial expressions which increases machine efficiency in laugh /smile detection.
In addition to expressions analysis, we also uncover the importance of pre-training and
cross-validation across different datasets by using only NDC-ME for training and both
NDC-ME and IFADV for evaluation.

We named our model Laughs, Smiles, None-Temporal Convolution Network (LSN-TCN)
[84], an adapted version of Multi Scale-Temporal Convolutional Network (MS-TCN)
architecture.
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Figure 6.1. Schematic of our LSN-TCN architecture. Audio and Video branches are repre-
sented in yellow, blue respectively while purple represent classification layers. In-
put shapes are specified below their respective representations.

6.3.1 Speech analysis

In the audio model (upper branch in Figure 6.1) the raw audio input is projected to a
higher-dimensional space using a single-layer 1D-CNN:

x € RN*da

x is fed to a ResNet-18 [3] backbone. This backbone consists of 18 convolutional layers
and an additional residual operation H(z) every two layers. It attempts to learn residual
functions F(z) and adding them to the input x to retrieve the mapping

H(z) = F(x)+x

learned by non-residual model. This tackles the degradation of accuracy in deep models
by highlighting the features extracted. In the case of ResNet, F(x) is the output from
two successive convolution layers.

Using a backbone such as ResNet guaranties the extraction of usable features. On top
of the backbone, the MS-TCN architecture is a multi-layered combination of 1D convo-
lutions designed to model short and long term temporal information. It is composed of
multiple blocks that follow the same architecture with progressively bigger kernels and
use non-linear activation functions such as ReLLU between layers. MS-TCN have proven
efficient on sequence-based tasks like lipreading [102] or action segmentation [103].
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The model was first trained on NDC-ME either from scratch with randomly initialised
weights or initialised on pre-trained ResNet and MS-TCN with lipreading data and
finetuned on the MS-TCN layers only. The second step consists of evaluating the trained
model on either NDC-ME (dataset used for training) or IFADV (dataset unknown to
the model). Input data is preprocessed into a mono-channel audio signal of 1.2s sampled
at 16kHz. Each training session lasts 80 epochs, with a batch size of 16 and a decreasing
learning rate starting at 3 x 107 since our dataset has limited size.

Table 6.1 shows the results on Precision, Recall and F1-score metrics. Multiple observa-
tions can be made on the results. First none of the metrics reach 0.5 (with the highest
score of 0.494) while being above random (0.333 with three classes). Second NDC-
ME evaluation reaches better results than IFADV on all three metrics. Last finetuning
slightly enhances the classification performance on both datasets, with higher improve-
ments on IFADV. Our speech-only model is either not trained or powerful enough to
capture relevant feature for the task at hand and reach impressive results. Probable
causes are the training data quality and quantity that would lead to improper gener-
alisation or the size of the model is too small. An other possible cause is the type of
expressions evaluated: a smile is closer to a neutral expression than a laughter when
only sound is available.

Table 6.1. Precision, Recall and F1l-score for speech evaluation on NDC-ME and IFADV. The
best results for each metric are in bold font.

NDC-ME IFADV
From scratch Finetuned | From scratch Finetuned
Precision (1) 0.483 0.494 0.343 0.372
Recall (1) 0.477 0.476 0.369 0.438
Fl-score (1) 0.480 0.484 0.355 0.402

Heatmaps in Figure 6.2 represent the distribution of each intensity in the model pre-
dictions. During training, only expression classes were provided as labels without any
intensity information. Our goal was to determine if the expression intensity was linked
to the better detection of said expression. NDC-ME heatmaps show that smiles are
confused with neutral expression while laughter is better discriminated. There is no sig-
nificant classification results between training methods which is coherent with Table 6.1.
IFADV evaluation shows how every class is confused with the other two, especially when
the model is trained from scratch. We can highlight how laughter are better detected
when the intensity is high, for three out of four presented results.
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Figure 6.2. Intensity Heatmaps for audio analysis. From left to right: models trained from
scratch and finetuned, evaluated on NDC-ME and on IFADV. At row i column j,
the colour in shades of blue shows the percentage of expression/intensity i being
predicted as expression j, with light blue being 0% and dark blue 100%. Values
within a row adds up to 100%.

6.3.2 Face analysis

The video model architecture (lower branch in Figure 6.1) and the training methodology
is similar to the audio model. The input data are first preprocessed in videos of 60 frames.
Each frame contains the ROI around the mouth in a square of 96 x 96 pixels in RGB.
It is composed by the ResNet-18 backbone followed by MS-TCN. The difference with
the audio model appears before the ResNet, at the high-dimensional projection layer.
It is made of a single-layer 3D-CNN instead of 1D to extract simultaneously temporal
and spatial information. The model was first trained on NDC-ME either from scratch
with randomly initialised weights or initialised on pre-trained ResNet and MS-TCN
with lipreading data and finetuned on all layers. The second step consists of evaluating
the trained model on either NDC-ME (dataset used for training) or IFADV (dataset
unknown to the model). Each training session lasts 80 epochs, with a batch size of 16
and a decreasing learning rate starting at 3 x 1076 since our dataset has limited size.

Table 6.2 shows the results on Precision, Recall and F1-score metrics of both datasets
evaluation. On the one hand there is no significant gap in performance between from
scratch and finetuned training on NDC-ME. On the other hand the zero-shot evaluation
on IFADV shows better results when the model is fine-tuned on lipreading data than from
scratch. As for the audio modality the model evaluation made on the same dataset as
training shows higher efficiency, highlighting the better generalisation. The classification
score on NDC-ME shows promising performance reaching fl-score as high as 0.693.
When we compare with speech analysis we see that our visual model is able to extract
better features to discriminate between smiles, laughter and neutral.

The intensity distributions across predicted expressions when the visual modality is
evaluated on either NDC-ME or IFADV are shown in Figure 6.3. As for the audio
analysis, only expression classes were provided as labels during training, without any
intensity information. On the one hand the NDC-ME evaluation shows that confusion
arises between higher intensities of smiles and lower intensities of laughter. The intuition



78 Regions of Interest: A Focus on Lips for Smiles and Laugh Detection

Table 6.2. Precision, Recall and Fl-score for face expression evaluation on NDC-ME and
IFADV. The best results for each metric are in bold font.

NDC-ME IFADV
From scratch Finetuned | From scratch Finetuned
Precision (1) 0.712 0.707 0.399 0.414
Recall (1) 0.674 0.679 0.432 0.477
F1-score (1) 0.692 0.693 0.415 0.443

behind that observation is that the vision model can ”see” smiles and laughs happening,
but struggles to distinguish between them without audio. Medium and low smiles as well
as neutral expression have a high recognition rate (> 70%), while the subtle smiles are
mostly confused with neutral. The subtle class was made due to the uncertainty of the
annotators between smiles and neutral, hence the visible confusion for the model. On
the other hand the IFADV evaluation shows low detection rate in most classes except
for high laughter and neutral. Finetuned model has a smaller gradient in the evolution
of intensity-wise detection, which leads to the better results showed in Table 6.2.
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low 38,43 52,84 8,73 33 53 14 2811 24,1 47,79 43,77 34,14 22,09
high 24 3 10 31,58 54,39 14,03 33,12 32,79 34,00 35,71 43,18 21,1
soiles medium 5,49 879 11,96 6,52 2152 27,61 50,86 28,73 40,3 30,96
| 4,62 77,69 17,69 518 81,48 1333 15,63 24,46 59,91 17,81 4427 37,93
|subtle 0,73 59,12 40,15 0,76 30,3 6,03 29 . 6ag9T 7,53 43,88 48,59
None none 2,89 un HEDEE 2,00 20,23 711 295 HETE 7,73 83 53,96
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Figure 6.3. Intensity Heatmaps for face analysis. From left to right: models trained from
scratch and finetuned, evaluated on NDC-ME and on IFADV. At row i column j,
the colour in shades of blue shows the percentage of expression/intensity i being
predicted as expression j, with light blue being 0% and dark blue 100%. Values
within a row adds up to 100%.

6.3.3 Multimodal emotion analysis

Our multimodal approach fuses speech and face latent spaces together when both models
are already trained. We perform late fusion (middle part of Figure 6.1), in opposition
to early and mid fusion: the latent spaces fused are those of the last layer of each
model, while early fusion concatenates input before the model backbone and mid-fusion
concatenates features from intermediate layers. Each fusion strategy has its pros and
cons as discussed in Chapter 3. We selected late fusion for the sake of simplicity, our goal
was to analyse how even a simple 2-layer MLP on top of our fused latent space would
impact the results. We combined the models trained from scratch in one pipeline and the
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finetuned models in another one, considering the training scheme as the main criteria.
Training in those scenarios lasted 30 epochs with a batch size of 16 and a decreasing
learning rate starting at 3 x 107, While other model configurations were experimented,
they do not showcase any performance worth reporting.

Table 6.3. Precision, Recall and Fl-score for fused modalities evaluated on NDC-ME and

IFADV.
NDC-ME IFADV
From scratch Finetuned | From scratch Finetuned
Precision (1) 0.615 0.602 0.384 0.499
Recall (1) 0.783 0.714 0.385 0.464
Fl-score (1) 0.690 0.653 0.384 0.481

Results in Table 6.3 shows the evaluation of both model training scheme evaluated on
either NDC-ME or IFADV. We observe how the combination of both modalities trained
from scratch reaches a higher F1-score than that of finetuned models (more than 3.5%).
This mainly comes from a higher recall which represents how the model is able to retrieve
more expressions. Compared to face analysis, fusion models reach a lower F1-score but a
higher one than speech analysis. Our intuition is that fusion works as a trade-off between
both modalities. Zero-shot evaluation on IFADV shows that fusing finetuned models is
better to generalise across set-ups than both modalities separately (improvement of 4 %)

while models trained from scratch shows the same trade-off behaviour than NDC-ME
evaluation.
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Figure 6.4. Intensity Heatmaps from the multimodal approach. From left to right: Fusion
models trained from scratch and finetuned evaluated on NDC-ME and fusion mod-
els trained from scratch and finetuned evaluated on IFADV. At row i column j,
the colour in shades of yellow/green shows the percentage of expression/intensity i

being predicted as expression j, with yellow being 0% and dark green 100%. Values
within a row adds up to 100%.

The detection rate of each class with respect to their intensity is depicted in the four
heatmaps of Figure 6.4. The first two show the fusion models evaluated on NDC-ME and
their ability to recognise higher intensity laughter and medium intensity smiles. Two
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confusion zones are distinct: the first at the junction between smiles (high intensity)
and laughs (low intensity) and the second with subtle smiles and no expression. The
two other heatmaps show the evaluation on IFADV in which there is more confusion
since the dataset has different recording specifications. While no significant difference is
observed, a progressive evolution is still observable in the distribution of laughter and
smiles when the fused models are finetuned while the neutral class is not considered.

6.3.4 Discussions

Firstly it is clear that not one model performed better than all the others in all categories.
But by considering overall results, we can argue that, when training and testing on
the same dataset, models fusion trained from scratch performs relatively well on all
classes, even better than the finetuned visual model which, interestingly, seems to confuse
low level laughs with smiles. The fusion model seems able to keep the overall good
performances of the visual modality while improving the bad ones. It is worthy to
note though, that in this work, a simple fusion mechanism and training were applied.
Improving the fusion scheme by modifying the number of layers or exploring early- and
mid-fusion might take better advantage of both modalities.

We can also note that audio laughs, when misclassified, are most often confused with
smiles, especially low-level laughs which is an interesting point suggesting that a rela-
tionship might exist even in the audio modality. However, audio classification does not
perform as well on smiles, for either evaluation datasets. It is true that the smiles true
positives are quite high but so are the false positives represented by the None being
misclassified as smiles. On an intuitive level, this makes sense. Indeed, although smiles
have been shown to be audibly recognisable, smiled speech is more a change of voice
than a burst of affect as is laughter, which makes it more complicated to discriminate
from non-smiling speech, especially with the limited amount of data at our disposal. The
audio modality seems to perform rather well on laughter, but the smile misclassification
leads to poor metrics value. The visual models seem to perform overall better for the
smiles than audio modality. This also intuitively makes sense since an obvious discrimi-
nating feature between smiles and laughs is the audio cue. One limitation of the visual
models is the use of only lips, while other feature like head motion can be important in
laugh expressions. Nevertheless the models also seem to perform rather well on laughs
especially when finetuned, this is probably due to the physical movements accompanying
the laughs that are less present when smiling.

Some interesting notes can also be taken concerning the fusion steps. First, fusion
surprisingly seems to work better when fused models were trained from scratch than
finetuned. This fusion of models trained from scratch seems to allow the model to use
the best prediction of both modalities in one system by improving the recall at the cost of
a decrease in precision. Another interesting observation regarding finetuning in general
is that it improves laughter classification and generalisation (when applied to IFADV
data) in all cases. It also seems to improve true positives in smiles detection but at the
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expense of the false positives, represented by the confusion of None with Smiles. For
the visual modality, finetuning seems to improve the performance of the models both for
smiles and laugh detection and its generalisability most of the time which is observed on
the results of the models on the IFADV data. The only slight deterioration that we can
observe is that more None samples are confused for smiles than in the model trained from
scratch. We can deduce that finetuning allows a model to use the knowledge gained from
prior training on speech or lip-reading data to increase its robustness to other datasets.
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Figure 6.5. t-SNE dimensional reduction applied to each modality.

With the goal to get a better understanding of the models’ data representation especially
on the impact of finetuning, we present a visualisation of the ending layers of the models.
For this, we extract embeddings from MS-TCN last layer. We then apply a t-SNE [104]
method to reduce the embeddings dimensions to a two-dimensional space while retaining
the most relevant features. The results on the audio modality are shown in Figures 6.6(a)
and 6.6(b) and those on the visual modality in Figures 6.7(a) and 6.7(b). For both
modalities, we can see that finetuning allows to better discriminate all three classes.
Audio laughs (shades of orange on the figure) are pushed at the extremities of the
pattern, while smiles are still rather mixed with None class, which is coherent with the
results presented above. Another observation can be made on the visual data: we can
clearly see the laughs being pushed at the left of the pattern, the low level laughs (yellow
dots) tend to also be present in the centre of the pattern, the higher level smiles (darker
blue) tend to be more mixed with the laughs and lower level smiles (lighter blue) with
the None - all coherent with our observations made above. An analysis of the results
with respect to intensity levels shows that the system tends to learn implicit knowledge
of those levels from the data. Apart from the high level laughs, levels on the extremes
seem to be more often confused by the models than the medium ones. Low level laughter
are in general mostly confused as smiles and the high levels of smiles (medium and high)



82 Regions of Interest: A Focus on Lips for Smiles and Laugh Detection

60 - Laughs low
. “:":.' ™ ...i:' Laughs medium
° ..‘.‘? s ’ °® ® Laughs high
-, [ ® Smiles subtle
0 o."l\‘.e:‘l’. . e ce o Smiles low
° e ® o .: ° ‘f . @ Smiles medium
e _." e ° ® Smiles high
8o ¢ ' .
® e l" 0, o ° ® . @ None
] PSP LT W% '.:'o. ) [ e
R R X i
oo "o s e “ o %
0 o %°2 ° oS 20 ° .
o o, \l " & Qogee®
o @ o * o% a0 " %
e o ° L. ) . o ® e @0 L3
o %l o W
-20 ¢ ﬂ'.‘ ~ 3 * & et ¢ °
. 8% ¢ 0~. s w08’y % ®0,
s *0 &% b ﬁ‘. s ®
0o o0 %e
—40 h‘ o ¢ o
] '.D. .
e 2,007, oo
—-60
a0 —20 0 20 o 60

(a) Model trained from scratch. We can hardly distinguish between Smiles and No
expression. Laughs, while mixed with others, are gathered at the low-right edge of
the cluster.
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(b) Finetuned model. While the Smiles and No expression are grouped in the middle
of the shape, Laughs are distributed across the outer perimeter.

Figure 6.6. 2D t-SNE representations of audio models. Axis dimensions have no physical signif-
icance.We observe the distribution of expressions with respect to their intensities:
yellow/red shades stand for Laughs, blue shades for Smiles and Grey for None,
with darker shades for higher intensities.



Regions of Interest: A Focus on Lips for Smiles and Laugh Detection 83

40

204

o9 Laughs low
[ ] .‘.m a & Laughs medium
tw L] @ Laughs high
.... o o @ ‘? ° “. smiles subtle
M ot .0-" 4 ® Smiles low
o @5 o ¢ «® 0 Y e smiles medium
L4 * " ® ° - % @ Smiles high
. r (od e None
" 0. 0® )
. y ~§ ° e® P
L ]
L] ® : . v . oq: ~.¢.‘. r” 2N
e ." )
4 o‘.o& ge o - s, s ™
;s TS0
)
al w. .o
- e o 2%
.y. s W L b
Y o
50 o 20 0 20 40 60

(a) Model trained from scratch. While no particular shape is visible, we see that
grey dots stay at the center of the plot, and ohter expressions are grouped around

40

204

the edge.
P Laughs low
: ”E Laughs medium
: ® g° "g. [ :g L] Lau:hs high
[} ° @ [} '. .. Smiles subtle
4 .. .h.. o @ 3 ® Smiles low
o ° .‘ \d e %y L4 @ Smiles medium
. w® e ‘. e ® o ® Smiles high
. e o0 . ® None
© . . . e o g o o 0oy
08 o, *
. 3 * o0 o o o ® o o 8
i 2 - » Soedige s e A $2g o0 0
o™ ¢ °® ° 0 ®
o: ™ &3 ":‘;’ fedle, . '.:.l:'o ';..'*: i ': ‘oo :
® ® ° : o o LI I ..Qu ® .l. e ¥ ..... o‘.‘. b h
. . L ° §%e § & 0% 3...0 .'\. $° l"o
¢ ® h‘k -.‘ .. l'. ] Py
® P d
* . ° LY g‘ \s. °
l. ote® o . Y] f
o & o" ° o e % e
. . S & %
 ° ¢
60 —a0 20 0 20 a0 60

(b) Finetuned model. We see a linear evolution following the x-axis. From left
to right: High laughs to No expression with Smiles in-between (higher than lower
intensities).

Figure 6.7.

2D t-SNE representations of visual models. Axis dimensions have no physical signif-
icance. We observe the distribution of expressions with respect to their intensities:
yellow/red shades stand for Laughs, blue shades for Smiles and Grey for None,
with darker shades for higher intensities.
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are mostly confused as laughs while the low levels (subtle and low) are mostly confused
as being None (which, as we could observe in our dataset, contains a majority of neutral
expressions or speech).

These observations can be seen in almost all the presented results from the visual modal-
ity. This confusion by models are intuitive to us: although they were not given any in-
formation about the intensity levels of the expressions during training, the models seem
to have more difficulty with some intensities on the extreme levels than with others. In
the visual modality, if we revised the current results by considering the samples classified
as higher levels of smiles (medium and high) as laughs and lower level smiles (subtle and
low) as None (thus having only 2 classes at the end instead of 3), the data would be
correctly classified as laughs at an average 69.15% with an standard deviation of 5.58%
compared to the current average rate 66.46% with an standard deviation of 10.06%.
We assume that this is due to the nature of the expressions themselves, since the fea-
tures representative of some intensities in one expression can be shared with features in
another expression (high level smiles and laughs can both show pulled lip corners and
raised cheeks for instance). We can therefore mainly conclude that:

1. Fine-tuning is beneficial for performance and generalization in most cases and
should be considered instead of training a model from scratch.

2. Given all the observations and analyses made regarding the intensity levels, the
relationship between smiles and laughs is not as simple as a binary or single class
relationship. A more complex relationship should therefore be considered when
dealing with these expressions

Finally, we suspect that some aspects of the dataset to have probably influenced nega-
tively some of the results. First, some aspect is that some files contain speech coming
from the interlocutor of the concerned subject, overlapping the subjects laughter. More
accurate detection could be achieved by removing those artefacts from the dataset. A
second drawback is that some of the annotations contain subjectivity due to the limited
number of annotators and this can make the annotations more sensitive to human error.
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6.4 In Brief

Summary for Chapter 6 I

We studied deep learning-based classifiers that distinguish smiles and laughs as
two distinct facial expressions.

Our analysis covered models originally designed for word recognition and lipread-
ing, repurposed for smiles and laugh detection using audio, visual and audio-visual
fusion modalities.

We demonstrated that fusion outperforms single-modality systems and that fine-
tuning improves generalisation especially when testing on different datasets.

Our post-hoc analysis showed that even without explicit training on intensity
labels, model behavior varies significantly across intensity ranges.

Perspectives for Chapter 6 I

We intend to investigate on fusion approaches and their effect on classification, as
well as other deep learning methods to better highlight the complex relationship
between smiles and laughs.

Other types of DL approaches can be considered to improve result or allow for
larger regions of interest. In the next chapter we present a Transformer-based
model evaluated on Smiling and Laughter detection.
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7.1 Introduction

Human emotions and social behaviours are expressed and perceived through multiple
modalities. While verbal communication can provide information on a person’s commu-
nicative intent and emotions, non-verbal communication has shown to be equally or even
more important [42]. Socially intelligent systems require multimodal methods allowing
them to perceive human social and expressive behaviours. Understanding expressions
and social behaviours can be achieved by analysing audiovisual modalities, i.e., face,
body and voice. Although unimodal approaches, e.g., vision from facial expression or
audio for tracking arousal, can reach a high performance [105, 106], fusing two modali-
ties increases the efficiency and robustness of multimodal systems [27,107] as shown in
Chapter 6.

Despite the popularity of emotion and social behavior perception, datasets for such
tasks are often limited in size due to the high cost of labelling. Most existing audiovisual
methods are based either on transfer learning with models trained on out-of-domain
data, e.g., AudioSet [108], or trained from scratch. However, the desired input data
should contain human faces and voices. Existing audiovisual encoders, e.g., [109], also
lack the temporal fidelity in the visual domain. In contrast, expressive behaviours in
the human face are rather dynamic and fast-moving. There is limited work, e.g., [110],
on audiovisual encoders suitable for the automatic perception of human emotional and
communicative behaviours.

In this chapter, we present Social-MAE, a pre-trained audiovisual model based on
Masked Autoencoder. We aim to adapt a self-supervised method with superior results
on audio event recognition for the audiovisual understanding of human social behaviours.
We evaluate our model against several baselines on three different social and affective
tasks: emotion recognition, laughter detection and apparent personality estimation. The
main contributions of this work are as follows.

e We present Social-MAE, a model based on CAV-MAE architecture adapted to
affective context by pre-training on a large-scale social dataset;

e To develop Social-MAE, we modify CAV-MAE to accept multiple frames providing
higher temporal fidelity at visual input;

e Our experiments demonstrate the importance of in-domain pre-training for affective
and social tasks. Our model reaches or outperforms SOTA models on relevant tasks.

7.2 Related Work

Past work extensively explored the natural interactions between audio and visual signals
for representation learning [111-117] through self-supervision with a variety of pretext
tasks. Synthesis-based strategies [111,112,117] have been proposed, where audio and
visual signals are artificially combined to facilitate learning cross-modal associations.
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Alignment-based methods [113,118-120], on the other hand, focus on aligning signals
from both modalities in time or space, aiming to extract meaningful correlations be-
tween them. Another line of research involves the application of masked autoencoding
(MAE) [121], where the model learns to reconstruct the missing portions of either the
audio or visual input, fostering representation learning through learning the structure of
the data.

Recently, two models, namely MAViL [122] and CAV-MAE [123], have explored the com-
bination of MAE with contrastive learning and demonstrated state-of-the-art (SOTA)
performance on audio-visual classification. Adding contrastive learning allows the mod-
els to learn inter-modality representations.

7.3 Datasets

We present the datasets that were used for either pretraining or inference on affective
tasks. While they were described in Chapter 5, we provide additional information about
the dimensions and the preprocessing applied.

VoxCeleb2 VoxCeleb2 dataset is a large-scale audio-visual dataset primarily focused
on speaker recognition. We resize every frame to 224 pixels by 224 pixels. Default mean
value for each channel is (0.4850, 0.4560, 0.4060) and standard deviation (0.2290, 0.2240,
0.2250) for Red, Green and Blue respectively. These values were calculated beforehand
and are the average values on the whole dataset. Based on that, we set the mean to 0
and standard deviation to 1 for both audio waveform and video frames. The size of the
available data for training and validation together reaches up to 70 hours and 8 hours
for the test partition, reduced by the unavailability of some videos on Youtube.

CREMA-D CREMA-D provides a diverse collection of audio and video recordings fea-
turing actors conveying a wide range of emotions. Default mean and standard deviation
for each channel have been found to be similar to these of VoxCeleb2. Based on that,
we set the mean to 0 and standard deviation to 1 for both audio waveform and video
frames. The total duration of the dataset is 2.5 hours.

First Impressions The First Impressions dataset [69] comprises audio-visual clips ex-
tracted from YouTube videos of people facing a camera. Default mean and standard
deviation for each channel have been found to be similar to these of VoxCeleb2. Also
based on that, we set the mean to 0 and standard deviation to 1 for both audio waveform
and video frames.

NDC-ME NDC-ME, described in Chapters 5 and 6, is also processed to have a zero
mean and standard deviation of 1. The average default mean and standard deviation are
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(0.5452, 0.3590, 0.2160) and (0.2193, 0.1876, 0.1488) for Red, Green and Blue channels
respectively. Based on that, we set the mean to 0 and standard deviation to 1 for both
audio waveform and video frames.

7.4 Method

We describe Social-MAE (Fig. 7.1), an adapted version of CAV-MAE that focuses on
voice and face. The model is composed of two modality-specific encoders followed by
a joint encoder module and a joint decoder module. Each module relies on a set of
Transformer layers [16] made of an attention block, a feed-forward network, residual
connections and layer normalization [124]. We describe the pre-processing pipeline in
Section 7.4.1, the model overview in Section 7.4.2 and the self-supervised training in
Section 7.4.3.

Positional Modality
embeddings embeddings

Audio
Tokenizer

Mask Audio Encoder

Video > -
Tokenizer | [

Positional Modality
embeddings embeddings

Concatenate Joint Encoder

Joint Decoder ’

Video Encoder

Figure 7.1. Socia- MAE model for voice and face analysis in videos. The model is pre-trained
to reconstruct audio and visual modalities from masked portions of their corre-
sponding input, narrowing the difference between each modality representation.

7.4.1 Audiovisual Tokenization

The architecture follows a mid-fusion scheme: both audio and video are first encoded
in two separate branches for several encoder layers before merging into a joint encoder.
Audio data are pre-processed as in CAV-MAE: we convert the input audio waveform
into a sequence of 128-dimensional log Mel filterbank features computed with a 25 ms
Hamming window and an overlap of 10 ms. We pad or crop the length of the input
to keep 1024 audio frames, resulting in a 128 x 1024 spectrogram. The spectrogram is
processed as an image that we split in N 16 x 16 non-overlapping patches. Each patch
is projected with a linear layer to a 1-dimensional embedding of size 768, referred to as
a token. We add a trainable positional embedding to each token to encode information
about the token order.
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Visual inputs differ from CAV-MAE as they consist of eight randomly selected frames
as proposed in [122] rather than single frame. Each frame is an RGB image of the face
bounding box scaled to 224 x 224 pixels, resulting in a 8 x 224 x 224 x 3 video input.
We split the video into N 2 x 16 x 16 patches with no overlap, flatten and project with
a linear layer into tokens of size 768. A trainable positional embedding is added to each
token as well. Another trainable parameter provides information about each token’s
modality and weights the modality’s importance. After adding positional and modality
embeddings, a random mask with a rate of p% is applied to the input tokens, providing
the model only with (1-p)% of the original audio and/or video sequence.

7.4.2 Model Description

We present an overview of the autoencoder architecture as described in [123]. The
model first processes an input sequence in separate encoders, each leveraging unimodal
information. The modality encoders are stacks of 11 Transformer layers that aim to
encode internal patterns in the input sequence. The joint encoder comprises a single
Transformer layer on top of the modality encoders. Each modality is processed by
the respective encoder followed by the joint encoder either individually or concatenated
with the second modality depending on the targeted loss. The layer normalization
on top of the joint encoder differs for audio, video and multimodal processing. It is
trained in a three-pass scheme: the first pass with only the audio tokens and audio-
specific layer normalization, the second with only the video tokens and video-specific
layer normalization, and the third is the concatenation of audio and video tokens in
a single sequence. The weights of the joint encoder are shared regardless of its input
modality, as it was shown that weight sharing lightens the model without degrading
performance [125]. The unimodal tokens are averaged following the average pooling
method, while the multimodal tokens are fed to the joint decoder, which is a stack of
8 Transformer layers. It aims to retrieve the original video and audio from an input
sequence made of the encoded tokens and a learnable token M repeated at masked
positions. The reconstruction loss is described later in the chapter.

7.4.3 Self-Supervised Pre-Training

We adapted the pre-trained CAV-MAE model by training with self-supervision on the
VoxCeleb2 dataset [63]. As self-supervised pre-training often requires vast amounts of
data, we chose VoxCeleb2 (Chapter 5), as a suitable large and diverse audiovisual dataset
with social content.

The learning phase relies on the weighted combination of contrastive and reconstruction
loss, each providing complementary information. For an input sequence of N pairs of
audio and video tokens a;, v;, the contrastive loss L. is computed on modality averaged
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Original
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Original
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(b) Reconstruction on First Impressions.

Figure 7.2. Randomly selected Social-MAE visual zero-shot reconstruction on (a) CREMA-D
and (b) First Impressions datasets. The first row shows the original input, the sec-

ond row the visual equivalent to masked tokens, and the last row the reconstructed
frames.
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tokens ¢, ¢} defined as:

= MeanPool(E;(E,(a;))) (7.1)
= MeanPool(E;(Ey,(v;)))

a
)
U
7

where E,,(.) is the encoder of modality m and FE;(.) the joint encoder. L. aims to
leverage relevant inter-modal information by following a LogSoftmax loss:

:_72 < exp(f(ca;, cv;)) )> (73)

J L exp(f(cas, cvj)

.
with f(ca;, cvj) = leul"lical and 7 the temperature. This aims to narrow the difference

between audio and video tokens from the same file and increase that of different files.
This efficiency of the loss depends on the mini-batch size N.

We pad the decoder input sequence z; with a learnable token M at the masked positions.

i = Ej([Ea(ai), Ev(vi)]) (7.4)
x; = concat(x;, M) (7.5
i = Dj(x}) = concat (G, M;) (7.6)

where D;(.) is the decoder, ¥; and M; the reconstructed tokens. The reconstruction loss
L, evaluates the model ability to reconstruct the masked tokens :cgn‘wk from the tokens

at the output of the decoder Z\Z with an MSE loss defined as:

Amask mask)Q Z(ﬁmask _ mask)2

—aj v
T N Z mask|

1 1 ]
mask
This loss aims to force the model into learning internal patterns by trying to reconstruct
only masked tokens with only (1 — p)% of the input tokens available.

(7.7)

|v}

The final loss is the weighted sum of the contrastive and the reconstruction losses:

L=Lc A+ L,.

7.5 Experiments and Results

We pre-trained our Social-MAE during 25 epochs with a learning rate starting at 10~%
and decreasing at a decay rate of 0.5 every 5 epochs with a masking ratio p=75%. For
comparison, we also pre-trained CAV-MAE (as it uses 1 frame instead of 8) following
the same settings. Both models were initialized on CAV-MAE®““¢* weights pre-trained
on AudioSet-2M with self-supervision. We report visual zero-shot reconstruction in
Fig. 7.2 using pre-trained Social-MAE on two downstream task datasets: CREMA-
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D [71] and First Impressions (FI) [69]. The model is able to provide a convincing output
on previously unseen data. Most reconstruction errors, although not obvious at first
sight, come from the most dynamic areas of the face, such as the eyes or lips. Table
7.1 reports the reconstruction losses on the three downstream tasks evaluated later in
this work. CAV-MAE has similar results for audio reconstruction, but our multi-frame
method is almost four times better at visual reconstruction.

Table 7.1. Zero-shot Audiovisual reconstruction losses on CREMA-D, First Impressions and
NDC-ME. Best results are in bold.

CREMA-D FI NDC-ME

A. V. A. V. A. V.
CAV-MAE | 0.014 | 0.097 || 0.016 | 0.124 0.104 0.122
Social-MAE | 0.016 | 0.028 || 0.01 | 0.033 || 0.1125 | 0.0169

For downstream tasks, we remove the decoder from the architecture and replace it with a
randomly initialized linear layer. We evaluate our pre-trained model by fine-tuning it on
three different social and affective tasks: emotions recognition on CREMA-D, personality
traits regression on First Impressions and smiles and laughter detection on NDC-ME. For
each task, we describe the dataset, the fine-tuning pipeline and the evaluation metrics
to compare CAV-MAE and Social-MAE models against published baselines, following
their experimental settings for consistency.

7.5.1 Emotion Recognition

Experimental setup This task is evaluated on CREMA-D, desribed in Chapter 5. Fine-
tuning requires no masking on audio and visual tokens. We fine-tune pre-trained Social-
MAE as well as our pre-trained version of CAV-MAE for 20 epochs using a mini-batch
size of 8, learning rates at 10~% and 107 for the encoders and the head respectively and
we use the Cross-Entropy Loss.

Baselines

UAVM [109] presented UAVM, a unified audiovisual framework for classification. The
model uses pre-trained CNN-based feature extractors on log Mel filterbanks and multi-
frame visual inputs that are fed to Transformer layers.

AuxFormer [126] proposed AuxFormer, a multimodal model that fuses audio and vi-
sual tokens through Transformer inputs. The model also processes separate modalities
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through auxiliary networks. The model loss is a weighted combination of the network
losses. Audio inputs are low-level descriptors from OpenSmile [127] toolkit, and visual
inputs are face clips processed by pre-trained VGG-face architecture [128].

VAVL [129] proposed an audiovisual model, named Versatile AudioVisual Learning
(VAVL), which relies on the Conformer architecture [130]. Each modality input flows
through a separate encoder followed by a shared-weight conformer. Audio inputs are
high-dimensional features from Wav2vec2.0 [131] and visual inputs are face clips pro-
cessed into emotional feature representations.

Table 7.2. Fl-score performance Comparison on CREMA-D. Mi and Ma refer to F1-score Micro
and Macro. The best results are in bold face font. * p-value < 1E-5

Audio Visual AV
Mi Ma Mi Ma Mi Ma
AuxFormer [126] | 0.648 | 0.593 | 0.626 0.560 0.763 0.698
UAVM [109] 0.554 | 0.614 | 0.672 0.617 0.769 0.749
VAVL [129] 0.701 | 0.628 | 0.787 | 0.738 0.826 0.779

CAV-MAE 0.694 | 0.694 | 0.630 0.635 0.766 0.759
Social-MAE 0.601* | 0.607* | 0.749* | 0.755* | 0.837* | 0.842%*

Results and discussion Table 7.2 reports the F1l-score with micro and macro averag-
ing techniques. Social-MAE outperforms previously published methods for audiovisual
classification. The micro F1 score shows the global accuracy, and the macro F1 score
shows the unweighted average accuracy across each class, so the macro F1 score can be
influenced by class imbalance. Since classes in CREMA-D range from 763 utterances
(Sadness) to 2204 utterances (Neutral), we interpret the similarities between the macro
and micro Fl-scores reached by our pre-trained models as their ability to recognize
emotions regardless of their prevalence.

Adapted CAV-MAE competes for best audio-only classification against VAVL model.
Social-MAE rivals the best baseline for visual classification. The performance is impres-
sive when you consider that the former processes 8 frames and the latter processes high-
level features from all input frames. We also find it interesting that adapted CAV-MAE is
able to outperform multi-frame baselines AuxFormer and UAVM on both unimodal and
multimodal classification tasks, highlighting the efficiency of in-domain self-supervised
pre-training.
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7.5.2 Personality Trait Prediction

Experimental setup We evaluate personliaty prediction with the First Impressions (FI)
dataset, a collection of 10,000 in-the-wild videos, in average 15s long. Videos are anno-
tated with apparent personality traits known as big-5 [56]: Openness, Conscientiousness,
Extraversion, Agreeableness and Neuroticism. Fine-tuning requires no masking on au-
dio and visual tokens. We fine-tuned both models presented in Sec. 7.4.3 for 10 epochs
using a mini-batch size of 8, an encoder learning rate of le-4 and the classification head
learning rate of le-5. We use a Mean Absolute Error loss and our accuracy metric is
1 — Mean Absolute Error.

Baselines We compare our fine-tuned CAV-MAE and Social-MAE to the best team of
the challenge associated to the dataset:

DCC DCC [132] reaches the third place with randomly initialised ResNet backbones
for each modality (single frame or audio) and a fully-connected layer on top as prediction
head. The training session lasted for 900 epochs with a mini-batch size of 32.

evolgen evolgen [69] reaches the second place using MFCC features and CNN-based
deep representations of one frame as audio inputs and visual inputs respectively. The
model is composed of LSTM [133] layers followed by a fully-connected layer for trait
prediction. The training lasted 1200 epochs with a mini-batch size of 128.

NJU-LAMDA NJU-LAMDA [134] is a model pre-trained on VGG-face. The audio
input is log Mel filterbank and the visual input is the deep features from 100 frames.
Authors train their model in 100 epochs for the audio stream and 3 epochs for the
pre-trained visual stream, with a mini-batch of 128.

Table 7.3. Model Accuracy on First Impressions Dataset. Best results are in bold face font.
* p-value < 1E-5.

Ope. Con. Ext. Agr. Neu. Avg.

DCC [132] 0.911 | 0914 | 0.911 | 0.910 | 0.909 | 0.911
evolgen [69] 0.912 | 0912 | 0.915 | 0912 | 0.910 | 0.912
NJU-LAMDA [134] | 0.912 | 0.916 | 0.913 | 0.913 | 0.910 | 0.913
CAV-MAE 0.899 | 0.899 | 0.899 | 0.902 | 0.896 | 0.899

Social-MAE 0.908* | 0.902* | 0.895* | 0.907* | 0.905* | 0.903*
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Results and discussion Table 7.3 shows the accuracy of each personality trait on
Chal.earn First Impressions dataset as well as the mean accuracy. Social-MAFE shows
a performance of 90.32% on average. While the accuracy is lower than the baseline,
it remains impressive considering it was trained for only 10 epochs and with a smaller
mini-batch size. We can also observe that processing multiple frames simultaneously
(Social-MAE) demonstrates better regressions on four out of five traits compared to the
single frame method (CAV-MAE).

7.5.3 Smiles and Laughter Detection

Experimental setup The Naturalistic Dyadic Conversation on Moral Emotions (NDC-
ME) dataset contains 8,352 clips of interactions in English of participants from different
backgrounds. Each clip lasts 1.22 seconds, is cropped around the face, and is annotated
with non-verbal expressions of smile, laughter, and neutral. We fine-tuned for 10 epochs,
with no masking strategy, a mini-batch of 8, and learning rates of le-5 and le-4 for the
backbone and classification head, respectively. Our training objective is the Cross-
Entropy Loss. The baseline for smile and laughter detection is LSN-TCN [84], our
CNN-based architecture that processes embedded representations of audio and video
input separately and feeds them to two fully-connected joint layers (Chapter 6).

Table 7.4. Fl-score on NDC-ME. Best results are in bold face font. * p-value < 1E-5.

Pre-training Audio | Visual | Audiovisual
LSN-TCN [84] Supervised 0.438 0.608 0.590
CAV-MAE Self-Supervised | 0.471 0.629 0.766
Social-MAE | Self-Supervised | 0.546* | 0.728% 0.776%*

Results and discussion Table 7.4 shows that both self-supervised methods reach higher
F1l-scores than the supervised baseline. Using multiple frames instead of one signifi-
cantly improves the performance of the visual modality while slightly improving that
of the multimodal classification. The poor results in audio-based classification can be
explain by the modalities of each expression. While laughs are both audible and visually
noticeable, smiles are mostly visual and can be confused with no expressions when audio
classification is performed.
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7.6

In Brief

Summary for Chapter 7'

In this chapter, we presented Social-MAE, our pre-trained audiovisual Masked
AutoEncoder on audiovisual social data. We modified existing CAV-MAE to
accept multiple frames on a large human social behavior dataset.

We evaluated our model on three relevant downstream tasks, demonstrating its
effectiveness in achieving state-of-the-art results in audiovisual emotion recogni-
tion with a 0.837 F1 score and laughter detection with a 0.776 F1 score.

With this work, we demonstrated the significance of in-domain adaptation of a
large multimodal model trained through self-supervised pre-training.

Perspectives for Chapter 7.

The proposed pre-trained encoder can be easily fine-tuned for other audio-visual
social behaviour understanding tasks, enabling more robust and performant mod-
els for perceiving human behaviour.

Building on contrastive learning, future research could focus on enhancing the
independence of each modality while preserving their complementarity.
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Recent developments in large-scale models have significantly influenced the way most
DL tasks are approached. Models offer strong performance and versatility, but their
size and complexity present challenges, particularly for smaller research groups with
limited resources. Training, fine-tuning, or even deploying such systems often demands
infrastructure that is not readily available to all.

Some of these models are built with general-purpose objectives in mind, designed to
manage a wide range of tasks within a single framework [5,18,135]. Multimodal systems,
in particular, can process diverse input types such as audio, video, and text, enabling
them to carry out Automatic Speech Recognition (ASR), Text-to-Speech (TTS), and
affect analysis in parallel.

In this chapter, we investigate how large models encode affective information. Our
assumption is that pre-trained models still contain latent social information such as
speaker identity or emotional content. Our aim is to study whether such content is
disentangled and discarded during pre-training and if it can be saved.

We suggest that many models tend to mix different types of information within their
latent spaces. This entanglement may make generalisation across speakers, languages,
or contexts more complex. Our approach explores ways to promote more independent
internal representations, so that affect-related signals can be better isolated and used
when appropriate.

8.1 Related Work

Disentangling affective information from other latent factors like speaker identity or
lexical content has been a long-standing challenge in affective computing. The process
of disentangling has been shown to be impossible without additional assumptions on
the architecture and the data [136,137]. In most systems, emotional features tend to
be blended with other cues in the embedding space, which limits interpretability and
generalisation. Our aim is to save some of the disentangled information that is lost in
pretrained models.

Several approaches have tried to achieve this, either through architectural design or by
applying specific training constraints. Multimodal approaches are rather complex to
set up due to the variety of non-verbal cues to tackle. Peri et al. [138] proposed an
audio-visual supervised method to disentangle emotion from speaker content based on
multitask learning. Their approach involves an auxiliary branch to force disentangle-
ment at the output of each encoder. Text and speech fusion have also been studied for
supervised emotion disentanglement. Authors in [139] uses HuBERT [22] for speech con-
tent, MPNet features for text understanding and a joint decoder prior to the emotion
classification. Ispas et al. [140] extends this work by replacing the text encoder with
DeBERTav3 features and cross-modal attention decoders prior to emotion classification.
In the context of speech-only, much of the recent progress comes from models trained for
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ASR tasks. These models, including wav2vec2 [21], HuBERT, and Whisper, focus on
lexical content, but their latent spaces also seem to capture speaker traits and emotional
signals. To counter that, Qu et al. [141] suggested the use of two pretrained models
to disentangle prosodic content: HuBERT and ECAPA-TDNN ([142] for the semantic
and speaker content respectively. While these methods have shown impressive results
in emotion recognition tasks, they still requires supervised speaker knowledge to keep
affective content only.

In contrast to prior work, we put more emphasis on how the information is represented
internally. The objective is not so to improve performance, but rather to understand
what social information is disentangled and lost within a set of input embedding. We
aim to focus on how cleanly it can be isolated from other information without the need
of simultaneous use of multiple pre-trained models for each content.

8.2 Methodology

We chose two pretrained models based their initial task: Audio Spectrogram Transformer
(AST) [106] which was trained to recognise various sounds, and Whisper [4], a weakly
supervised speech recognition system.

Our framework is as depicted in Figure 8.1: we extended the model into a dual-branch
architecture to study disentanglement. The model processes audio input through two
parallel encoders: one frozen (main branch) and one trainable (auxiliary branch). The
goal is to extract complementary information in the auxiliary branch to reconstruct the
original input.

The main encoder consists of the original tokenizer and transformer-based encoder layers.
All components in this branch are frozen throughout training, including parameters
such as positional encodings. This branch is expected to preserve the model original
performance for its initial task. In parallel, the second encoder with the same architecture
is initialised from the main model weights and trained to extract complementary features.
This auxiliary encoder shares the same input embeddings and runs in parallel, without
weight sharing. The outputs from both encoders are concatenated (late fusion) and
passed through a joint decoder, made up of several transformer layers.

The training objective combines three loss terms. The first is a reconstruction loss,
applied to the output of the decoder, which encourages the auxiliary encoder to preserve
lost but useful information. The second is a mutual information penalty between the
outputs of both encoders, designed to reduce redundancy and promote complementary
representations. Finally, a contrastive loss is applied to align representations of the same
sample across branches, while pushing apart representations of different inputs. This
combination encourages a latent space that is shared when necessary, but structured
enough to allow partial disentanglement.
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while losses are indicated in red.

Figure 8.1. Our proposed pipeline during pretraining. (a) Patching strategy of a spectrogram.
Each patch is then flatten to RP4 *Pdt and converted in a token P; of higher di-
mension R% in a tokenizer. (b) Generic pipeline of our work: the main branch
correspond to a pretrained model which weights are frozen, it includes the tokenizer
and the encoder. The auxiliary branch keeps the same architecture as the main
encoder but is trainable and use masking on its input. The decoder focuses on
information provided by both encoders to reconstruct the masked positions of the
auxiliary branch.
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Importantly, no labels are used during our training sessions. Emotion recognition and
expression detection are only evaluated afterwards, as a way to leverage each encoder
output and analyse whether affective information were retained and how they are dis-
tributed. Both branches are tested with identical classification heads to compare their
performance. This way we highlight whether disentangled information is preserved as a
result of the constraints and structure imposed during training.

8.3 Pretraining

8.3.1 Datasets

The model was first pre-trained in a self-supervised setting using two separate datasets:
Librispeech-960 and VoxCeleb2. This dual-dataset setup acts as an indirect ablation
to test how different types of input data affect what the model learns in the absence
of emotional supervision. Librispeech offers clean, read speech with minimal expressive
variation, while VoxCeleb2 includes in-the-wild recordings where emotional tone may be
present but is not annotated or controlled. A complete description of each dataset is
available in Chapter 5.

8.3.2 Main branches

Whisper During our experiments we first attempted to disentangle speech and non-
speech features based on Whisper [4] (base model, English only). Whisper is an ASR
system that has proven efficient for transcription. It follows an encoder-decoder scheme
where it first encode information from 3000 x 80 spectrograms and decode that infor-
mation into text using token generation (Figure 8.2(a)). While mutliple configurations
exist for Whisper, we decided to use OpenAl’s Whisper-base.en as it was the most down-
loaded model on HuggingFace'. It is composed of 6 encoder layers of dimension 512 and
a tokenizer made up of two convolution layers of the converts 3000 x 80 spectrograms
into 1500 patches of dimension 512 with overlapping between patches. As we apply a
masking strategy based on patches, we considered patches of 10 x 16 pixels.

AST Our second experiment was to analyse the information lost from AST [106], an
attention-based sound recognition system (Figure 8.2(b)). It converts audio input into
128-bin log-mel spectrograms using a 1024-point Fast Fourier Transform (FFT). The
spectrogram is split in 16 by 16 pixels patches and fed to a CNN-based tokenizer which
extend the dimension from 256 to R%.

"https://huggingface.co/
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Figure 8.2. The original architecture of the main branches considered in this work: (a) Whisper
and (b) AST. While the first has a encoder-decoder framework, the second uses
only an encoder followed by a classification layer.
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8.3.3 Training specifications

Masking Strategy We randomly mask 75% of the input patches and feed it to the
auxiliary branch while the main branch receives the original input. After the auxiliary
encoder pass, the masked positions are filled with a special token M that serves for the
reconstruction task. This is then concatenated with the output of the main branch and
fed to the joint decoder to reconstruct the original set of patches.

Hyperparameters The models were trained for 10 epochs using the Adam optimiser
with a learning rate of 1 x 107 and a batch size of 4. During training, the main encoder
remained frozen, and only the auxiliary encoder, decoder, and classification head were
updated. Positional encodings were also left unchanged. Model checkpoints were saved
based on the best validation loss, and the best weights were loaded for the evaluation
on the test subset.

Losses The pretraining of the auxiliary branch relies on three different losses: a recon-
struct loss, a contrastive loss and a mutual information loss. They were combined as a
weighted sum:

L=Lr 4+ X% (Le+ Lini) (8.1)

with A = 0.01. The reconstruction loss £, computes the distance between pixels from
masked patches ™K and decoded patches ™% at the same position i

5 rnask mask ) 2

Lr N Z Inaske|Z ] (82)

It forces the system to extract relevant features to capture the structure of the input
data, based solely on the provided unmask tokens. The contrastive loss L. is inspired
from Equation 7.3, replacing each modality by one of our branches:

1Y exp(f(ess, cx;))
L= N; ( )) (8.3)

>y eap(f(csi, cx;)

Its sole purpose is to bring the mean output of each encoder closer in value, so the aux-
iliary weights cannot be zeroed during training. Finally, we use the mutual information
as a third loss L£,,; and it is defined as:

x,s)lo ( )(ac s)
mi =2 2 P s (5 pe)) 54

where Py g is the joint probability function of X and S, and P x and Pg are the marginal
probability functions of X and S respectively. It can also be expressed as the sum of
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marginal entropies H(X), H(S) and the joint entropy H(X;.5):
Ly =1(X;S) =H(X)+H(S) - H(X; S) (8.5)

The mutual information is a statistical mesure of the similarities between two sets of
random variables. The higher the value, the more information is shared between the
sets, and the minimal value of 0 indicates no shared information (Figure 8.3).

HIS) H(X)

104:S)

H(X:5)

Figure 8.3. Mutual Information representation. The outer circles represent the entropy of each
random variable S and X (yellow and blue respectively), while the overlapping area
represents the shared information.

8.3.4 Results

In this section we discuss the results of the six training configurations that we were able
to train. Table 8.1 shows the total loss for Whisper trained on VoxCeleb2, and for AST
trained on either VoxCeleb2 on Librispeech (960h). The results indicate that the models

Table 8.1. Evaluation Loss values for Whisper and AST main branches (lower is better). We
conducted two experiments for each configuration: with reconstruction loss only and
the weighted sum defined in Equation 8.1.

Whisper VoxCeleb2 || AST | VoxCeleb2 | Librispeech
reconstruction only 0.0026 0.0038 0.0055
recon-cont-mi 0.0032 0.0087 0.0051

were able to efficiently reconstruct the input spectrogram in all configuration, with a
slightly higher loss on AST trained with VoxCeleb2. The performance in pretraining
is important to understand whether enough information is provided by the encoder to
help reconstruct the masked part of the input. But it does not guarantee that the
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information embedded in the auxiliary encoder contains affective features that can be
used to perform downstream tasks.

In addition, we provide some zero-shot reconstructions on CREMA-D and NDC-ME
spectrograms (Figure 8.4). The original spectrogram is masked then reconstructed by
the model while the audio comes from an unknown dataset.

8.4 Downstream tasks

To evaluate social aspect of the content from the auxiliary branch, we discard the masking
process and the decoder layers. The process pipeline is depicted in Figure 8.5. We
experiment on two affective tasks previously described in this work: emotion recognition
on CREMA-D [71] and laughs and smiles detection on NDC-ME [79,143]. We train the
different configurations during 10 epochs using an Adam optimizer with a learning rate
starting at le-3 and a batch size of 4. The loss function is the Cross Entropy Loss, and
the test metrics are the micro and macro fl-score. To assess robustness, the results are
averaged across multiple runs.

8.4.1 Emotion Recognition

Experimental Setup We evaluated the representations learned during pretraining using
a categorical emotion recognition task on CREMA-D. The classification was done across
six emotion classes as presented in Chapter 4. To analyse the latent representation
learned during pre-training, we froze both the main and auxiliary encoders to prevent
fine-tuning and trained only a fully connected layer. We also observe the results from the
concatenation of both encoder output to see if their shared information provide better
results than a single encoder.

Results and Discussion Table 8.2 contains the micro and macro fl-score for several
model configurations pretrained on VoxCeleb2. We observe that the main branch per-
form better than the auxiliary branch on all configurations. While the late fusion of both
encoders show an increase in fl-score, it is still worse than the original method. While
these results are not satisfactory regarding our original assumption, we believe that this
might be due to a misdesign in the transfert of information between branches. Indeed
previous work [27,144] have shown that improper bottleneck in cross-attention methods
lead to decreased performance. Regarding the difference in performance between the
best configuration of each architecture, we observe that Whisper reaches better fl-scores
than AST. We assume that the original task (Figure 8.2) enables Whisper to leverage
more affective information than AST.
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(a) Whisper-based reconstruction of CREMA-D (weighted sum loss).
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(b) AST-based reconstruction of CREMA-D (weighted sum loss).

Figure 8.4. Zero-shot spectrogram reconstructions after pretraining using (a) Whisper or (b)
AST as main branch. We observe a efficient reconstruction from both, with some
smoothing in the most intense values (represented by the yellow shades).

In Table 8.3 we observe that the main branch-only still perfom better than both aux-
iliary configurations by a large margin. But it also informs us on the importance of
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Figure 8.5. The evaluation pipeline for downstream tasks. Compared to the pretrained model,
we keep only the encoders and apply no masking strategy to the input tokens. The
classification layer is put on top of either one of the encoder branch (main in yellow,
auxiliary in blue) or the concatenation of both output (purple).

Table 8.2. Emotion Recognition fl-score (micro and macro). Several configurations, all pre-
trained on VoxCeleb2, are reported for each main branch architecture: the frozen
main branch only, branches from models based reconstruction-only pretraining and
branches with all losses applied during pretraining (either auxiliary only or concate-
nation of both). The two best results for each main architecture are in bold.

Configuration micro fl-score | macro fl-score
whisper-main-only 0.665 0.665
. . auxiliary-only 0.420 0.372
whisper-reconstruction-only
concatenated 0.657 0.657
) auxiliary-only 0.460 0.447
whisper-all-losses
concatenated 0.466 0.452
ast-main-only 0.592 0.590
. auxiliary-only 0.355 0.319
ast-reconstruction-only
concatenated 0.564 0.558
auxiliary-only 0.460 0.441
ast-all-losses
concatenated 0.522 0.516

using all three losses during pretraining with non-affective data rather than only the
reconstruction loss. As mentioned previously, VoxCeleb2 has an in-the-wild recording
conditions while Librispeech is considered as ”clean”. This could explain the difference
between ast-reconstruction-only and ast-all-losses configuration.
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Table 8.3. Emotion Recognition fl-score (micro and macro). Three configurations, all AST-
based and pretrained on Librispeech, are reported: the frozen main branch only and
the auxiliary branches either trained with reconstruction loss only or with all losses.
The best results are in bold.

Configuration ‘ micro fl-score ‘ macro fl-score

ast-main-only 0.592 0.590
ast-reconstruction-only 0.248 0.130

ast-all-losses 0.450 0.437

Also unlike previously mentionned approaches, our pretraining method relies only on
self-supervision: there is no possibility to efficiently force the transfert of particular
information into the auxiliary branch. Among other causes for weak performance is the
fact that emotions are already extracted by the main branches we experimented on.

8.4.2 Laughs and Smiles Detection

Experimental Setup To understand how low-level descriptors are encoded, we evalu-
ated the model on NDC-ME, which offers smile and laugh annotations in dyadic inter-
actions. As with the previous task, we extracted embeddings from one encoder branch
without finetuning it, and trained a single fully connected layer to predict the expressions
included in the input.

Results and Discussion We report the Laughs and Smiles detection performance on
NDC-ME in Table 8.4. We used the same evaluation procedure as before: micro and
macro F'l-score across all classes, averaged over three runs.

As we can see, the main branch perform better on both Whisper and AST. It shows that
enough affective information is stored in the original model to reach better results than
our auxiliary branches. AST-based auxiliary branches highlight two main behaviours.
The first observation is that the contrastive losses increase the performance, especially
when it was pretrained on Librispeech. The second observation is that in-the-wild data
from VoxCeleb2 provide more affective features in the auxiliary branch than ”clean”
data from Librispeech. We also observe that Whisper has less features relevant for
paralinguistics such as laughs and smiles than AST, resulting in poorer performance in
detection.

We extend our analysis of whisper-main-only and ast-main-only performance with the
confusion matrices in Table 8.5. As defined in Chapter 2, it provides the prediction
distribution compared to the actual classes. As expected, Laughs are more easily de-
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Table 8.4. Laughs and Smiles fl-score (micro and macro). Five AST-based (pretrained either
on VoxCeleb2 or Librispeech) and three Whisper-based (pretrained on VoxCeleb2)
configurations, are reported: the frozen main branch only and the branches either
trained with reconstruction loss only or with all losses. The best results are in bold.

Configuration ‘ micro fl-score ‘ macro fl-score ‘
whisper-main-only 0.530 0.532
whisper-reconstruction-only | VoxCeleb2 0.471 0.426
whisper-all-losses VoxCeleb2 0.459 0.433
ast-main-only 0.592 0.590
. VoxCeleb2 0.460 0.379

ast-reconstruction-only
Librispeech 0.337 0.168
VoxCeleb2 0.503 0.496
ast-all-losses

Librispeech 0.469 0.454

Table 8.5. Confusion Matrix of the best performing Whisper-based and AST-based configura-
tions. Values are expressed in percentage (%). Each row corresponds to the expected
label and each column is the predicted label. Row values from each main configura-
tion add up to 100%. Bold font highlights the TP.

whisper-main-only ast-main-only
Laughs | Smiles | None || Laughs | Smiles | None
Laughs | 64.0 17.5 18.5 82.9 11.9 5.2
Smiles 15.9 37.4 | 46.7 17.8 61.0 | 21.2
None 11.4 33.5 | 55.1 13.8 48.0 | 38.2

tected than Smiles and None classes. AST outperforms Whisper mainly due to its higher
Precision, as the other classes shared similar distribution. The result reported here is
consistent with that observed in Chapter 6 for audio-only modality: Smiles and None

are less audible than Laughs.
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8.5

In Brief

Summary for Chapter 8 I

This chapter investigates how large pre-trained models (such as Whisper and
AST) encode and retain affective information, especially when such information
is not explicitly supervised during training.

A dual-branch architecture is introduced to study latent disentanglement: a frozen
main branch keeps original capabilities, while a trainable auxiliary branch at-
tempts to extract complementary information for input reconstruction.

Experiments evaluate whether affective features (e.g., emotions, laughs, and
smiles) can be captured in the auxiliary branch using self-supervised learning
and loss constraints (reconstruction, contrastive, mutual information).

Results on emotion recognition and laugh/smile detection indicate that while aux-
iliary branches may retain some affective cues, frozen main branches typically out-
perform them, especially when trained on emotionally rich data like VoxCeleb2.

Perspectives for Chapter 8.

We believe more research could be done about the sharing of information between
main and auxiliary branches, as our pipeline only masks the auxiliary branch.

Outside of affective computing, other aspect of audio could be embedded in the
latent from the auxiliary branch, such as accent.

Future work could explore asymmetric encoders, with different architectures for
each branch.




Chapter 9

Conclusion and Contributions

9.1 Conclusion

This work investigated the behaviour of large deep learning models in the field of affective
computing, focusing on multimodal analysis of non-verbal communication through audio
and visual modalities. The main objective was to explore how these systems perceive and
process affective signals, with the broader aim of improving transparency, interpretability
and reliability of these models in real-world human-agent interactions.

Starting with fundamental concepts, the work examined the theoretical underpinnings
of deep learning architectures, including convolutional models and transformer-based
models (Chapter 2). Their role in feature extraction and representation learning was
discussed in detail, particularly in relation to structured inputs such as images, video
and speech. Building on this foundation, we addressed the specific challenges and mech-
anisms of audiovisual processing and fusion, highlighting the importance of modality
alignment, data representation and adaptive integration strategies (Chapter 3).

The study then examined affective computing in terms of low- and high-level descrip-
tors, covering facial expressions, tone of voice, gestures and personality traits. These
descriptors were systematically explored using curated and extended datasets, resulting
in the design and annotation of the IB dataset (Chapter 5). By enhancing the existing
datasets with temporal roles (speaker /listener) and graded intensity labels for smiles and
laughter, this work addressed the sparsity of refined affective annotations and enabled
non-verbal affective cues to be modelled more precisely.

Empirically, this thesis presented a progression from specific targeted analysis (e.g. lips)
to global multimodal encoding using attention and masking strategies. The LSN-TCN
architecture (Chapter 6) demonstrated the benefits of localised region analysis, while
Social-MAE, (Chapter 7) extended this understanding to full face and voice input, al-
lowing exploration of affect dissociation. This work has resulted in a new architecture
that augments pre-trained models with an auxiliary branch (Chapter 8), offering a proof
of concept for the conservation of affective information without degrading the perfor-
mance of the primary model.

Several key results were obtained:

— 113 —
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Multimodal fusion consistently outperformed unimodal baselines, particularly when
temporal and intensity cues were available.

The intensity distribution of smiles and laughter revealed interpretable patterns
in social interactions, suggesting potential applications in assistive technologies for
populations with ASD.

Pre-training and transfer learning strategies enabled robust generalisation across
datasets, even in low-data regimes.

The disentanglement approach opened promising directions for post-hoc inter-
pretability in complex networks.

Ultimately, this thesis provides technical innovations and conceptual insights into how
deep models can perceive and learn affect. Future research could build on these findings
by exploring cross-cultural models of affect, adaptive systems that evolve according to
the user’s specific affective traits, or closer integration between verbal and non-verbal
channels. As affective computing develops, it will be essential to ensure that intelligent
systems remain sensitive, interpretable and inclusive if they are to have an impact on
society.
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