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Abstract 
 

Sequence-controlled macromolecules (SCMs) are polymeric or oligomeric systems in 

which the sequence of monomers is partially or totally regulated. When the control is 

absolute, i.e. when all chains contain the exact same sequence and number of 

monomers, the material is classified as a sequence-defined macromolecule (SDM), a 

specific subclass of SCMs. SCMs are ubiquitous in Nature and perform specific 

biological functions, DNA and proteins being prime examples. Proteins, in particular, 

have the ability to fold into specific 3D structures, executing functions with very high 

selectivity. This remarkable structural control is encoded in their sequence of 

monomers, the amino acids, which governs the folding process. The discovery of the 

importance of monomer sequence in natural macromolecules sparked a considerable 

interest among researchers, fuelling the desire to produce human-made SCMs. The 

recent advances in polymer synthesis have enabled the design of a wide range of fully 

synthetic SCMs, building on the virtually unlimited library of monomers available to a 

polymer chemist. However, this diversity of structures, while very attractive, brings 

considerable challenges: how to rationalize the design of synthetic SCMs? Which 

backbone and side-chains to use for a given application? What will be the 3D structure 

of the system in solution? Currently, synthetic SCMs are designed following “chemical 

intuition” rather than sound guidelines. 

The aim of this thesis is to address these questions. The 3D structures of various 

natural and synthetic SCMs are investigated using the tools of molecular modeling. 

Molecular dynamics (MD) simulations, a computational method based on classical 

mechanics, allow us to predict the 3D structure and dynamics of (macro)molecular 

systems at the atomistic scale, using only their chemical structure as input. Our results 

are systematically compared to experimental data, to provide a better understanding 

of the links between sequence of monomers, 3D structure, and function. 

The first part of the thesis focuses on biorecognition applications, one system targeting 

a protein, the other DNA. The simulations give insights on the mechanisms of assembly 

and the interactions at the molecular level, helping to understand experimental results. 

The second part concerns the study of a supramolecular catalyst made by the assembly 

of two complementary SDMs, functionalized with nucleobases for the recognition 

between the chains, and catalytic units. MD simulations and network representations 

are used to elucidate the formation and dynamics of the catalytic duplex, and help to 

rationalize the experimental results of catalytic activity. 

In the last part of the thesis, MD simulations are combined with small-angle X-ray 

scattering (SAXS) experiments to reveal the 3D structure of purely synthetic 

copolymers, in the context of single-chain polymeric nanoparticles. The folding in 
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water is studied for two different copolymer designs, showing how the nature of the 

hydrophilic grafts can influence the resulting nanostructures. 

Globally, our thesis provides insights into the sequence-structure-property 

relationships in SCMs, towards a rational design of functional macromolecular 

systems. 
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Résumé 
 

Les macromolécules de séquence contrôlée (SCMs) sont des systèmes polymériques ou 

oligomériques au sein desquels la séquence de monomères est partiellement ou 

totalement régulée. Quand le contrôle est absolu, c’est-à-dire quand toutes les chaînes 

contiennent exactement la même séquence et le même nombre de monomères, le 

matériau est classé comme macromolécule de séquence définie (SDM), une sous-classe 

au sein des SCMs. Les SCMs sont omniprésentes dans la Nature et exercent des 

fonctions biologiques spécifiques, l’ADN et les protéines étant des exemples typiques. 

Les protéines, en particulier, ont la capacité de se replier en des structures 3D 

spécifiques, exécutant des fonctions précises avec une très haute sélectivité. Cet 

exceptionnel contrôle structurel est encodé dans leur séquence de monomères, les 

acides aminés, qui gouvernent leur processus de repliement. La découverte de 

l’importance de la séquence de monomères au sein des macromolécules naturelles a 

engendré un grand intérêt parmi les chercheurs, nourrissant le désir de produire des 

SCMs artificielles. Les avancées récentes en synthèse des polymères ont permis la 

création d’une large gamme de SCMs synthétiques, s’appuyant sur une bibliothèque de 

monomères virtuellement illimitée à disposition des chercheurs. Cependant, cette 

diversité de structures, bien que très attrayante, soulève plusieurs questions : comment 

rationnaliser le design des SCMs synthétiques ? Quel squelette moléculaire et chaînes 

latérales utiliser pour une application donnée ? Quelle sera la structure 3D du système 

en solution ? Actuellement, les SCMs synthétiques sont construites sur base de 

« l’intuition chimique » plutôt qu’en suivant des principes bien établis. 

Le but de cette thèse est de s’adresser à ces questions. Les structures 3D de diverses 

SCMs naturelles et synthétiques sont étudiées en utilisant des outils de modélisation 

moléculaire. Les simulations de dynamique moléculaire (MD), une méthode 

computationnelle basée sur les lois de la mécanique classique, nous permettent de 

prédire la structure 3D et la dynamique de systèmes (macro)moléculaires à l’échelle 

atomique, en utilisant uniquement leur structure chimique comme point de départ. 

Nos résultats sont systématiquement comparés à des données expérimentales, afin de 

fournir une meilleure compréhension des liens qui unissent séquence de monomères, 

structure 3D, et fonction. 

La première partie de la thèse se concentre sur des applications de bioreconnaissance, 

un système ciblant une protéine, l’autre l’ADN. Les simulations nous donnent un 

aperçu des mécanismes d’assemblage et des interactions au niveau moléculaire, nous 

aidant à mieux comprendre des résultats expérimentaux. La deuxième partie concerne 

l’étude d’un catalyseur supramoléculaire obtenu par assemblage de deux SDMs 

complémentaires, fonctionnalisées avec des nucléobases pour la reconnaissance entre
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les chaînes, et des unités catalytiques. Les simulations de MD et des représentations en 

réseau sont utilisées pour élucider la formation et la dynamique du duplexe catalytique, 

et nous aident à rationnaliser des mesures expérimentales d’activité catalytique. Dans 

la dernière partie, des simulations de MD sont combinées avec des expériences de 

diffusion de rayons X aux petits angles pour révéler la structure 3D de copolymères 

purement synthétiques, dans le contexte des nanoparticules polymériques à chaîne 

unique. Le repliement dans l’eau est étudié pour différents copolymères, montrant 

comment la nature des groupements hydrophiles peut influencer les nanostructures 

obtenues. 

Globalement, notre thèse apporte des pistes pour mieux comprendre les liens 

séquence-structure-fonction au sein des SCMs, afin d’évoluer vers une conception 

rationnelle de systèmes macromoléculaires fonctionnels. 
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I. Overview and aim of the thesis 
 

Nature has always been a major source of inspiration for humanity. The design of the 

ornithopter by Leonardo da Vinci, directly inspired by the wings of birds. Self-cleaning 

superhydrophobic surfaces, reproducing the microstructure of the lotus leaf. The 

aerodynamic nose of the Shinkansen, Japan’s high-speed train, mimicking the beak of 

the kingfisher. The list could continue with countless examples: Nature has developed 

many highly efficient architectures over millions of years of evolution. At the molecular 

scale, Nature also carries out fascinating biochemical processes, relying on highly 

sophisticated chemical structures. Major examples include nucleic acids and proteins. 

Among all biomacromolecules, proteins constitute the class operating the broadest 

range of functions. Enzymes, for instance, constitute a subclass of proteins dedicated 

to catalysis, and display remarkably selective binding and efficient activity, even within 

the complex and crowded cellular environment. This efficiency is inscribed in their 

highly defined 3D structures. Starting from disordered conformations, many proteins 

will spontaneously fold back into their native state in water. This naturally raises a 

question: how is the structure of a protein controlled? The answer began to emerge in 

the early 20th century, when their chemical structure was elucidated. Proteins are 

polymers: long macromolecular chains constituted by the covalent linkage of smaller 

molecular units – the monomers. The building blocks of proteins are the amino acids 

(AAs), which comprise a relatively limited set of 22 monomers, including two non-

standard residues (selenocysteine and pyrrolysine). A striking particularity of proteins, 

shared by other functional biopolymers, is that their sequence of monomers is precisely 

controlled. Each protein is characterized by a unique sequence of AAs. This sequence 

is the code governing their folding, thus their 3D structure. Beyond the well-known 

structure – function, there exists sequence – structure relationships. These links are 

not completely understood yet, but many protein structures have been elucidated over 

time and are regrouped in sequence – structure databases. The Protein Data Bank, for 

example, comprises more than 200,000 experimentally determined structures.[1] 

These extensive datasets are particularly valuable for training machine learning (ML) 

algorithms, which are among the most powerful tools available for uncovering complex 

relationships between large sets of inputs and outputs. This approach led to the 

development of ML models, such as AlphaFold, capable of efficiently predicting the 3D 

structure of proteins from their AA sequence alone.[2] It is important to note that ML 

algorithms do not “understand” the physico-chemical laws governing folding; they only 

extract statistical patterns, relying sequences to structures, from vast datasets. The 

achievements of AlphaFold, however, clearly demonstrate that the AA sequence 

encodes the information required to determine the 3D structure of a protein. 
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Understanding that highly functional biomacromolecules are characterized by a 

precisely controlled sequence of monomers, giving rise to a well-organized 3D 

structure, inspired researchers to develop artificial systems based on the same 

principle. The tools of polymer chemistry offer an ideal platform for such applications. 

Since the discovery of the chemical structure of polymers by Staudinger in 1920, the 

field has undergone tremendous development.[3] Polymers were initially synthesized 

as a disperse, heterogeneous mixture of chains, without control on their individual 

length or monomer sequence. Nowadays, many synthesis pathways are available to 

produce polymer samples with a very low dispersity, and where the incorporation of 

monomer units is partially or totally regulated.[4] These systems are defined as 

sequence-controlled macromolecules (SCMs). When the control over sequence and 

chain length is absolute, attaining a dispersity of one, the term sequence-defined 

macromolecule (SDM) can be used.[5] Natural biopolymers such as proteins and 

nucleic acids belong to this subclass of SCMs. Synthetic SCMs provide opportunities to 

go beyond these natural examples, offering a virtually unlimited number of 

possibilities in terms of chemical diversity – not only with the choice of the side-chains, 

but also with the nature of the backbone. The influence of the solvent and 

stereochemistry can be further taken into account, allowing researchers to finely tune 

the properties of their systems. While this wide chemical space constitutes a fascinating 

playground, it significantly complexifies the establishment of sequence – structure 

relationships; a task already challenging for proteins, which have a unique backbone 

and a limited number of side-chains. Additionally, although synthesis pathways 

continue to improve, it remains difficult to obtain synthetic SCMs – let alone SDMs – 

with both high yields and sufficient chain lengths. Consequently, it can be very time-

consuming and cost-intensive to produce these macromolecules, especially if one 

wants to screen a broad range of sequences for a given system. These elements bring 

interrogations: is there really a significant advantage to precisely control the sequence 

of monomers for an artificial SCM? Will a defined sequence always translate into a 

controlled 3D structure? How to rationalize the design of SCMs, in view of specific 

applications?  

The aim of this thesis is to address these questions. Our methodology relies on 

molecular modeling, a computational method bypassing the constraints of synthesis. 

The molecules of interest are built in silico, and their conformations and dynamics are 

simulated, helping researchers to identify the most promising compounds for a given 

application. The atomistic view offered by molecular modeling provides precious 

information on the 3D structure, folding dynamics, and interactions inside single-

chain systems or supramolecular assemblies. This molecular-level knowledge serves to 

better understand experimental properties and can be used to guide the design of more 
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efficient systems. Our results are systematically compared to experimental 

measurements, bringing insights on sequence – structure – function relationships for 

various SCMs, including natural and synthetic structures (Figure I.1). In parallel, this 

approach is a step towards the establishment of sequence – structure databases for 

synthetic SCMs, analogous to the Protein Data Bank for proteins. Ideally, such 

databases could feed ML algorithms and support the development of predictive models 

for artificial systems. 

Figure I.1. Schematic representation of different chemical structures investigated in the 

thesis and their associated applications. 

After this general introduction, the main concepts related to the field of SCMs are 

reviewed along with state-of-the-art examples in Chapter II. The discussion 

progresses from natural biomacromolecules and the lessons they provide, towards 

their translation into human-made SCMs, based on synthetic oligomers and polymers. 
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In Chapter III, the fundamentals of our computational approach are explained. This 

chapter reviews the basics of quantum mechanics (QM), molecular mechanics (MM), 

and the workflow of molecular dynamics (MD) simulations. The limits of the method 

and advanced approaches are also described. Finally, the descriptors and tools mainly 

used to analyze the molecular conformations and their dynamics are detailed. 

Then, Chapter IV regroups results obtained for biorecognition applications for two 

distinct systems. The first part concerns the interaction between peptides and an 

integrin, studied in the framework of cellular migration. Our results show that subtle 

changes in stereochemistry modulate peptide – protein binding. The second part 

describes the modeling of supramolecular complexes between DNA and 

photoswitchable ligands. The simulations reveal that the trans to cis isomerization of 

the ligands impacts the assembly with DNA. 

Chapter V focuses on SDMs targeting applications in supramolecular catalysis. Two 

complementary strands are functionalized with nucleobases and catalytic moieties. 

The mechanisms of recognition between the two strands and the dynamics of the 

duplex, responsible for the observed catalytic activity, are investigated by a 

combination of MD simulations and network representations. 

In Chapter VI, the folding dynamics and 3D structures of purely synthetic copolymers 

in water are studied. The atomistic picture given by the simulations is compared to 

small-angle X-ray scattering (SAXS) experimental spectra. Our results show that, 

depending on the nature of the hydrophilic grafts, different nanostructures can be 

obtained in solution, varying in shape and folding properties. 

To conclude, a summary of our results is presented in Chapter VII. Insights collected 

on the various systems are regrouped, and our findings concerning the establishment 

of sequence – structure – function relationships for synthetic SCMs are discussed. 

Finally, perspectives for future research in the field of SCMs, and the role that 

molecular modeling could play, are mentioned. 
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II. Sequence control in macromolecules – From natural 
inspiration to the design of original systems 
 
Sequence-controlled macromolecules (SCMs) constitute an emerging research area, 

and at the same time have always been exploited by living organisms. The main 

concepts related to sequence and structural control in biomacromolecules are reviewed 

along this introductory chapter (Section II.1). Proteins and nucleic acids are taken as 

examples, as they are either directly involved in the systems studied during this thesis 

(see Chapters IV-A and IV-B for proteins and DNA, respectively), or served as a 

major source of inspiration for the design of novel macromolecules (see Chapters V 

and VI, for DNA- and protein-inspired systems, respectively). These amazing 

compounds can be used in their native form, but researchers have also explored ways 

to introduce small modifications to their scaffold and to design artificial biomimetic 

systems for targeted applications (Section II.2). Nowadays, the knowledge acquired 

on biomacromolecules and the improvements in controlled polymer synthesis allow to 

go even further, with the design of entirely original systems (Section II.3). SCMs are 

already demonstrating their interest for various applications. Here, a focus is made on 

three areas of research, namely biorecognition, catalysis, and information storage. 

 

II.1. Biomacromolecules: a lesson on sequence and 

structural control 

II.1.1. Protein 

II.1.1.1. A brief history and the different structural levels of proteins 

The first documented usage of the word “protein” is attributed to Jöns Jacob Berzelius, 

in a letter addressed to Gerardus Johannes Mulder, and dates back to 1838, less than 

200 years ago.[1] Mulder, later that same year, published the paper “Sur la composition 

de quelques substances animales”, in the Bulletin des Sciences Physiques et Naturelles 

en Néerlande. In this work, he described fibrin, albumin and gelatin as essential 

organic substances found in the animal and vegetal bodies, and formally coined the 

term “protein”. However, despite the understanding that these compounds could be 

regrouped in a new, particular molecular class, there was limited knowledge on their 

exact chemical nature. The suggestion that proteins are made of an ensemble of 

covalently linked small molecular fragments – the amino acids (AAs) – was put 

forward around 1902 by the groups of Emil Fischer and Franz Hofmeister.[2] 

Hydrolysis experiments revealed that whole proteins could be decomposed into 

smaller AAs, which was a major discovery at the time. A total of 22 genetically encoded 

AAs are known to be incorporated into proteins, including two non-standard residues 
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(selenocysteine and pyrrolysine), which are rarely found. With the exception of glycine, 

all of them are chiral, i.e. non-superimposable to their mirror image. Consequently, 

each AA (except glycine) can exist in two forms, sharing the same chemical 

composition but differing in their 3D arrangement, called enantiomers. Natural 

proteins are nearly exclusively composed of L-enantiomers, which also makes them 

chiral structures. The sequence of AAs constituting a polypeptide chain is called its 

primary structure. Decoding the sequence of a protein seemed unattainable in 1948, 

when Raymond M. Fuoss wrote: “We may, for instance, never learn the detailed 

sequence of amino acids in a protein molecule […]”.[3] Only seven years later, Sanger 

published his work on the sequencing of insulin, a chain of 51 AAs, for which he was 

awarded his first Nobel Prize in Chemistry in 1958.[4] In parallel to the discoveries 

related to their primary structure, polypeptides were investigated on a structural level, 

notably using X-ray diffraction. At first, short peptides were studied, which allowed to 

elaborate models for what is now known as the secondary structures of proteins. These 

are local folded motifs, resulting from a particular organization of the AAs, such as the 

α-helix or the β-sheet. In 1932, William T. Astbury detected two forms – that he named 

Figure II.1. Drawings of the α-helix and the anti-parallel pleated sheet (the β-sheet) 

structures published by Pauling and Corey in 1951. Hydrogen bonding interactions are 

represented as dotted lines. Adapted from Refs. 6 and 8. 
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α and β – for various fibres, depending on their stretching.[5] With more accurate 

information on bond distances and angles, Pauling and Corey established, in 1951, a 

precise picture of the α-helix as well as the existence of parallel and anti-parallel 

pleated sheets.[6–8] These structures are maintained by well-organized intramolecular 

hydrogen bonding interactions (Figure II.1). When discussing about secondary 

structures, it is important to cite the work of Ramachandran and his famous diagram, 

published in 1963.[9] He further refined the so-called "Pauling-Corey coordinates” by 

defining the authorized boundaries for the backbone dihedral angles Φ and Φ’ (Figure 

II.2). His diagram reveals that the conformational space available to the peptide 

backbone is quite restricted, many regions being inaccessible due to steric hindrance. 

The highly ordered secondary structures combine with one another, sometimes 

including more flexible regions, to constitute the tertiary structure, i.e. the entire 3D 

structure of the protein. Myoglobin was the first protein whose 3D structure was 

elucidated, in 1958.[10] Interestingly, the researchers noted that the model was “more 

complicated than has been predicated by any theory of protein structure”, and were 

surprised by the lack of symmetry and regularities along the chain. This marked an 

early encounter with the ever-present challenge of predicting the 3D structure of a 

protein. The same group published a higher-resolution model in 1960, demonstrating 

clearly for the first time that α-helices exist inside globular proteins.[11] The last 

structural level of proteins, the quaternary structure, designs functional complexes 

made by the assembly of several polypeptide chains. A prime example is hemoglobin, 

a four-protein complex, which was the first experimentally determined quaternary 

structure.[12] These remarkable works on the structure of myoglobin and hemoglobin, 

which were pivotal in the history of protein science, were awarded the Nobel Prize in 

Chemistry in 1962. 

Figure II.2. Illustration of a polypeptide chain (left) and Ramachandran plot (right), showing 

the allowed values of the Φ and Φ’ dihedral angles. Adapted from Ref. 9. 
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II.1.1.2. Sequence – structure – function relationships in proteins 

Most proteins display the exceptional ability to fold into a unique and well-defined 3D 

structure, known as the native structure. The folding process must be extremely 

efficient, as a protein’s ability to perform its biological functions is rooted in its 3D 

structure. Yet, proteins remain highly flexible entities and are essentially stabilized by 

non-covalent interactions. This structural flexibility is essential to many of their 

biological functions, and proteins often undergo conformational changes in response 

to external stimuli, such as the binding to another receptor or to a substrate.[13] 

Consequently, native structures cannot be too thermodynamically stable, which opens 

the door to failures of the folding process. Misfolded proteins are not only inactive: 

they are prone to interact with other chains, potentially leading to the formation of very 

stable aggregates, which play a role in several neurodegenerative diseases.[14] 

Intramolecular folding and intermolecular aggregation are two competing 

phenomena. The former ended to be a very complex process, optimized during 

thousands of years of evolution, to circumvent the latter. A whole family of proteins is 

even dedicated to assisting folding: the molecular chaperones.[15] 

The search for the native structure is anything but random, as illustrated by the famous 

Levinthal’s paradox.[16] However, there is no clear consensus about the exact folding 

mechanisms, although several important principles are generally accepted. The first 

step of a protein folding would involve the formation of the secondary structures, 

driven by nonspecific and local interactions, essentially hydrophobic effects and 

hydrogen bonds.[17] These structures are conformationally restricted to the regions 

shown in the Ramachandran plot, due to steric hindrance. Further organization of the 

secondary structures would form a network of longer-range intramolecular 

interactions.[18] The protein would then sample several intermediate states (sometimes 

described as “molten globule” states), until finally reaching its most stable, native 

structure. The folding process would follow a “funnel-shaped” pathway in the potential 

energy of the system, where the formation of partially folded and compact 

intermediates would reduce the conformational space and quicken the search towards 

the lowest energy structure (Figure II.3). Conflicting views address the sampling of 

these intermediates, sometimes with different interpretations of the same 

experimental results. Some argue that folding occurs through a unique pathway, were 

intermediate states are sampled in a specific order through cooperative processes 

(Figure II.3 A).[19] Others express the view of a rather chaotic process, where multiple 

pathways can lead to the native structure from a wide conformational ensemble of 

compact intermediates (Figure II.3 B).[18,20]  
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Figure II.3. Simplified funnel-shaped representations of the folding mechanism. (A) The 

protein would go from its unfolded (U) to its native (N) state by sampling a series of 

intermediates in a defined order, through the cooperative sequential formation of secondary 

structures. (B) Other view of the folding process, where the fast formation of the secondary 

structures would lead to compact, partially folded states (i.e. molten globules). The protein can 

fold into its native structure through multiple pathways. Adapted from Ref. 19. 

A crucial point is that the formation of the secondary structures is mainly driven by 

local effects, thus strongly depends on the sequence order of the AAs. This well-

organized, unique suite of monomers encodes all the information governing the folding 

and the formation of the native structure.[21] Replacing or modifying as little as one AA 

can sometimes strongly impact the folding of a protein and its biological functions.[22–

24] Despite all the work carried out over the years and the understanding of some key 

steps of protein folding, researchers have not yet unraveled all the mysteries relating a 

given sequence of AAs to a given native structure. Establishing sequence – structure – 

function relationships remains challenging. However, a lot of data has been acquired 

and huge databases, such as the Protein Data Bank (PDB), regroup the sequence of 

proteins and their associated 3D structure.[25] This is particularly useful to feed 

machine learning (ML) algorithms, which constitute a method of choice to uncover 

relationships between a series of inputs (sequences) and outputs (structures). In 2020, 

AlphaFold, an ML algorithm developed by Google DeepMind, entered the Critical 

Assessment of protein Structure Prediction (CASP), a competition testing the efficiency 

of different methods to predict the structure of proteins.[26] During CASP, researchers 

receive the AA sequences of several proteins whose experimental structures have 

recently been established but are not yet public. AlphaFold won the competition, 

displaying an outstanding accuracy in its predictions. The success of AlphaFold, which 

is able to predict the structure of a protein solely from its AA sequence and a large 
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dataset of known sequence – structure pairs, provides further evidence that the 

sequence of monomers dictates the 3D structure of proteins. An updated version, 

AlphaFold3, was released in 2024.[27] This new iteration enables structural predictions 

of various biomacromolecules, small ligands, and supramolecular complexes made by 

the assembly of several components. Unfortunately, AlphaFold only brings us from 

point A (sequence) to point B (structure), without giving any information on the 

pathway connecting them. 

 

The precise sequence – structure control found in proteins allows the emergence of 

remarkable functions. The chaperones, mentioned earlier, are an interesting example. 

Enzymes constitute another impressive family of proteins, dedicated to catalysis. They 

display exceptional selectivity towards their substrates, even within the crowded and 

complex cellular environment.[28] Substrate recognition by the active site of the enzyme 

occurs through shape complementarity and the formation of stabilizing interactions. 

Among all potential substrates, those most stably bound are selectively transformed 

into the desired product. Similarly, antibodies display a specific binding site, enabling 

the selective recognition and neutralization of pathogens. Biological processes rely on 

a myriad of host – guest interactions that depend directly on the 3D structures of the 

proteins involved; structures that are themselves encoded in the AA sequence. 

Therefore, the biosynthesis of proteins – a process called translation – must be 

perfectly controlled. To this end, Nature developed a complex machinery involving 

ribonucleic acids (RNAs). 

 

II.1.2. Ribonucleic acid 

RNAs constitute another major class of sequence-defined biomacromolecules. They 

belong to the group of nucleic acids, along with deoxyribonucleic acids (DNAs). Their 

polymeric backbone is made of a sugar – the ribose for RNA – and a phosphate moiety. 

Like proteins, natural nucleic acids are chiral, the sugar component existing exclusively 

in its D-enantiomeric form. Each ribose is linked to a nitrogenous base, or nucleobase. 

While proteins are built on 22 different AAs, RNAs rely on a smaller set of four different 

monomers, distinguished by the nature of the nucleobase, which can be the adenine 

(A), uracil (U), cytosine (C) or guanine (G). The sugar – phosphate – nucleobase triad 

constitutes the nucleotides, i.e. the monomers forming nucleic acids, which are linked 

together by covalent phosphodiester bonds. The nucleobases are complementary by 

pairs, forming A---U and C---G dimers through hydrogen bonding interactions, known 

as the Watson-Crick pairing. Although this allows the hybridization of two RNA 

strands to form a double helix, single-stranded structures are more frequent in living 

organisms. RNA is chemically nearly identical to DNA, but in terms of folding and 
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functions, it is much closer to proteins. However, RNAs are more flexible, making the 

determination of their 3D structures even more challenging. This underlines once 

more the complexity of establishing sequence – structure relationships, even for 

polymers made with only four different monomers. ML models are currently 

investigated for predicting the 3D structures of RNAs, although the available data is 

much sparser (RNA-only structures account for less than 1 % of the PDB).[29] Even 

AlphaFold3 displays important errors on some RNA structures, especially on less 

common motifs.[30] More generally, ML models are far from accurately predicting the 

conformational landscape of nucleic acids, as illustrated in Figure II.4. 

Figure II.4. Overview of the accuracy of ML models in predicting nucleic acid structures, as 

discussed in Ref. 30. The structures are ordered along the horizontal axis from inaccurately 

(left) to accurately (right) predicted by ML models. The vertical axis spans from atomistic 

details (bottom) to global shape and conformation (top). Reproduced from Ref. 30. 
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RNAs are able to fold into a wide variety of conformations, stabilized by intramolecular 

stacking interactions and hydrogen bonds involving the nucleobases, allowing it to 

perform various biological functions.[31] A well-known example is the synthesis of 

proteins, which involves different RNA species. As mentioned at the end of the 

previous section, this process is called translation. The information required to build a 

specific protein is encoded in the sequence of nucleobases of a single-stranded 

messenger RNA (mRNA). This sequence is deciphered by the ribosome, a complex 

macromolecular machine made of proteins and RNA. Inside the ribosome, the mRNA 

sequence is decoded three nucleotides at a time – these triplets are called codons – by 

other polynucleotides called transfer RNAs (tRNAs). Each tRNA contains a recognition 

site made of a sequence of three nucleotides, able to bind only to the matching codon 

through the complementary hydrogen bonding pattern of the nucleobases. At its 

opposite end, the tRNA carries an AA. Therefore, to each codon corresponds one 

specific AA. During translation, tRNAs bind to the successive codons of mRNA, 

bringing the AAs one after another to form the polypeptide chain. After complete 

decoding of the mRNA strand, the synthesized protein is released into the cytoplasm. 

Its structure can subsequently be modified through post-translational modifications 

(PTMs), i.e. the chemical attachment of a functional group to the protein after its 

biosynthesis. 

RNAs are another example of the prime importance of the sequence control in 

biomacromolecules. As for proteins, their biosynthesis must be perfectly controlled 

and cannot bear mistakes: an error in the mRNA sequence would lead to an erroneous 

codon, possibly translating into the wrong AA. The biosynthesis of RNA is templated 

by DNA itself, along a process called transcription. 

 

II.1.3. Deoxyribonucleic acid 

When mentioning the molecules of life, DNA, the carrier of genetic information, often 

comes first to mind. The chemical structure of this biopolymer is nearly identical to the 

one of RNA, with two notable differences. First, the sugar in DNA is deoxyribose. Then, 

the uracil nucleobase of RNA is replaced by thymine (T). As U, T is complementary to 

A. In terms of structure, however, DNA displays a significantly different behaviour. In 

eukaryote cells, it is essentially found in a double helix conformation, formed by the 

supramolecular assembly of two complementary DNA strands. This structure was 

officially elucidated in 1953 by Watson and Crick, with inputs from many other 

researchers, notably X-ray experimental data from Rosalind Franklin.[32] The DNA 

double helix is an extremely conserved and protected structure, as it contains all the 

information necessary to the proper functioning of cells: its sequence of nucleotides is 

the code governing protein biosynthesis. During transcription, the DNA double helix 



Sequence control in macromolecules – From natural inspiration to the design of original systems 

15 
 

is locally unwound at a specific site, making the targeted sequence of nucleotides 

accessible. One of the two strands then serves as a template for synthesizing the 

complementary RNA sequence, following base pairing rules. The synthesized RNA can 

then undergo maturation steps to produce the mRNA, which will be used to synthesize 

proteins. The process of transcription is catalyzed by RNA polymerase, assisted by a 

variety of enzymes and complex molecular machineries. Along transcription and 

translation, the control of sequence is propagated from DNA to proteins, through RNA 

intermediates. This process is extremely complex and involves three different 

biological “languages”: the DNA tetrad A-T-C-G; the RNA tetrad A-U-C-G; and finally, 

the 22 amino acids of proteins. It opens the door to dramatic butterfly effects, as one 

single mutation in the DNA code, i.e. the insertion, deletion or substitution of one 

nucleotide, may disrupt this flow of information and lead to inactive, misfolded, and 

potentially harmful proteins. Such complexity explains the highly evolved machinery 

that Nature has built to synthesize proteins. 

 

As described along this entire first section, sequence control is a central characteristic 

of the highly functional biomacromolecules of life, translating into an absolute control 

of their 3D structures and functions. Their fascinating properties naturally triggered a 

major interest for many researchers, eager to explore the possibilities offered by their 

particular chemistry and seeking ways to expand their use beyond natural contexts. 

This idea is not new: in 1902, Emil Fischer stated in his Nobel Lecture: “To equal 

Nature here, the same means have to be applied, and I therefore foresee the day when 

physiological chemistry will not only make extensive use of the natural enzymes as 

agents, but when it will also prepare synthetic ferments for its purposes.” As will be 

covered in the next section, the future proved him right. 

 

II.2. Mimicking or modifying Nature’s building blocks 

II.2.1. Chemical synthesis of (modified) biopolymers 

Before using biopolymers for specific applications or simply to study their sequence – 

structure – function relationships, they must be produced. To this end, one must either 

extract them from their environment, or directly synthesize them. The latter offers the 

advantage that any polypeptide or polynucleotide can be formed, without being limited 

by the sequences biologically available.[33,34] The chemical synthesis of biopolymers has 

greatly benefitted from advances in solid-phase synthesis, notably with Merrifield’s 

work on polypeptides in the 1960s and the development of phosphoramidite chemistry 

for polynucleotides in the 1980s.[35,36] In these approaches, the growing chain is 

covalently linked to a solid support, typically a column, and monomers functionalized 
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with a protecting group are added iteratively. Between each addition, the column is 

washed to remove the excess of reagents. A deprotection step is then performed before 

coupling the next monomer, guaranteeing sequence control. Once the desired chain 

has been assembled, it is cleaved from the solid support and purified. These methods 

are still routinely used to produce tailor-made biomacromolecules and are now 

commonly automated. In general, solid-phase approaches allow the formation of 

relatively short biopolymers (around 50-100 monomers), which can subsequently be 

coupled through ligation steps to create longer chains. Nevertheless, several recent 

advances in biopolymer synthesis have been made to improve standard protocols. One 

trend concerns the miniaturization of the synthesis sites and devices, with the advent 

of microarray-based methods,[37–41] or the use of microfluidic technologies.[40,42,43] 

Flow chemistry also constitutes a promising area. Automated protocols have recently 

been optimized for the synthesis of long polypeptides,[44] enabling the incorporation of 

site-specific modifications,[45] or the formation of synthetic covalent dimers that mimic 

the quaternary structure of complex natural dimers.[45] Another interesting way of 

making proteins is to divert their biosynthesis pathway, by directly modifying the DNA 

sequence through genetic engineering. These approaches have become extremely 

powerful since the emergence of genetic edition tools such as the CRISPR/Cas9 

enzyme, which allow scientists to bring changes on precise locations of the genome.[46] 

An example used this process to biosynthesize proteins functionalized with fluorescent 

tags, to facilitate their localization and study their functions in the cell.[47] Concerning 

DNA synthesis, an elegant approach harnesses a natural enzyme belonging to the class 

of DNA polymerases, the terminal deoxynucleotidyl transferase.[48] This enzyme 

enables the controlled addition of nucleotides to a growing chain and even tolerates 

modified nucleotides, allowing the formation of tailored DNA strands.[49] 

 

II.2.2. Twisting proteins to create artificial systems 

As mentioned in the previous section, the synthesis pathways developed for 

biopolymers can be adapted to incorporate (stereo)chemical modifications or 

unnatural monomers into their structures. This approach is extremely attractive, as it 

allows site-specific modifications on known and efficient scaffolds. Many different 

unnatural AAs have been studied to bring new side-chains while keeping intact the 

natural peptide backbone.[50] An interesting application consists in the modification of 

proteins with stimuli-responsive AAs. For example, one group introduced a photo-

crosslinkable AA into a protein to identify its interaction partners.[51] Upon irradiation 

with UV light, a covalent bond was formed between the protein and its binders, 

permitting their isolation and characterization. Another group added a photolabile 

protecting group to a tyrosine residue in an interleukin receptor.[52] The binding of the 
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interleukin to its receptor was significantly lowered before irradiation. After exposure 

to UV light, thus removal of the photo-responsive protecting group, the complex could 

be formed with normal affinity. Here, a slight modification on a single AA allowed 

researchers to modulate an interaction, having repercussions on a whole 

phosphorylation cascade, which offers interesting perspectives for therapeutic 

applications. Another important application of unnatural AAs concerns the 

improvement of the activity and stability of natural enzymes, or even the addition of 

catalytic functions to non-enzymatic proteins. These systems constitute an ideal 

starting point to design biocatalysts with novel properties. For example, a protein was 

transformed into an artificial endonuclease – an enzyme able to cleave phosphodiester 

bonds within nucleic acids – by incorporating an unnatural AA containing a bipyridyl 

moiety (Figure II.5).[53] The naturally occurring protein recognizes and binds short 

double-stranded RNAs of 19 to 25 nucleotides in length in a size-selective and 

sequence-independent manner. After the site-specific introduction of the bipyridyl 

moiety and in the presence of copper, the artificial enzyme was able to cleave short 

non-coding RNAs with high specificity, a function not observed in any known natural 

endonuclease. Another work attempted to slightly modify a histidine – an AA involved 

in the catalytic center of many biocatalysts – by attaching a vinyl moiety to one of its 

nitrogen atoms.[54] This modification increases the electron-withdrawing behaviour 

and lowers the pKa of the imidazole ring, leading to improved catalytic properties at 

pH = 5.5. These impressive examples confirm the possibility to create systems with 

novel or improved properties, by modifying enzymes at the level of a single AA. Once 

the role of each monomer unit in the sequence has been understood and related to its 

position in the 3D structure, thus when sequence – structure information has been 

deciphered, it becomes possible to precisely engineer remarkable functional systems. 

Many successful examples make use of unnatural AAs, but not all changes on the 

precise monomer sequence of proteins are tolerated. An ML model was recently 

proposed to rationalize the design of proteins containing unnatural AAs, by identifying 

positions in the primary structure that would be likely to tolerate substitutions.[55] At 

the time of publication, the training dataset included 1221 unnatural AA substitution 

sites, with a marked imbalance between the number of successful and unsuccessful 

cases (1064 and 157, respectively). The ML model would undoubtedly benefit from 

more examples of failed modifications, to better capture statistical trends underlying 

prohibited substitutions. Unfortunately, successful results are more prone to be 

published, which is detrimental to the development of reliable ML algorithms. 

Nevertheless, the model achieved reasonable predictive accuracy and was 

experimentally validated in a test case. 
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Figure II.5. Design of an artificial endonuclease through insertion of an unnatural AA (UAA) 

into a non-enzymatic protein. (A) Schematic representation of the process; after the site-

specific insertion of a bipyridyl moiety (depicted as the small red ball) the protein is able to cut 

an RNA strand. (B) Crystal structure of the binding pocket of the protein before modification, 

assembled with a short double-stranded RNA (PDB ID: 1RPU). The AA in red is the one that is 

replaced by the unnatural AA. Adapted from Ref. 53. 

Other SCMs were designed with the idea of modifying the natural peptide backbone. 

These peptidomimetic systems constitute a broad range of chemical structures. Their 

synthesis generally relies on solid-phase protocols and iterative approaches, ensuring 

sequence control. Note that some of these structures are purely artificial, despite their 

resemblance to natural peptides. They could as well have been discussed in Section 

II.3, which focuses on synthetic SCMs. However, we made the choice to integrate them 

in this section due to their strong biomimetic character. One of the most minimal 

structural modifications to a peptide backbone is the inversion of the stereochemistry 

of its building blocks, the L-AAs. Their D-enantiomers are exploited in diverse 
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applications, such as the development of “mirror-image life” and racemic protein 

crystallography.[56] More interestingly, D-AAs are less efficiently recognized by natural 

biomolecules, such as proteases – enzymes specialized in protein degradation – which 

essentially interact with natural AAs. This property is exploited in the design of peptide 

drugs, notably through mirror-image phage display.[57] This strategy was recently 

followed to isolate D-peptides able to disrupt the activity of the epidermal growth 

factor, a protein associated to the uncontrolled proliferation of tumour cells.[58] 

However, mirror-image phage display has had few practical applications, essentially 

because it requires the synthesis of long D-polypeptide targets, which remains 

challenging. The recent developments of automated flow chemistry protocols 

(mentioned in the previous section) could renew interest for this technique and allow 

the emergence of more protease-resistant D-peptide drugs.[59] The influence of peptide 

chirality is investigated in the framework of cellular migration in our thesis, see 

Chapter IV-A. Among peptidomimetic SCMs, peptoids constitute a molecular class 

that attracted great attention in recent years. In contrast to peptides, the side-chain is 

carried by the nitrogen atom instead of the α-carbon. This apparently trivial 

modification implies two major changes: the peptoid backbone is achiral and does not 

possess hydrogen bond donors, which prevents intramolecular interactions in the 

backbone. Therefore, the folding and secondary structures of these SCMs are 

essentially dictated by the nature of their side-chains. This simpler network of 

interactions makes peptoids ideal targets to study sequence – structure 

relationships.[60] For instance, the placement of hydrophobic units in the sequence was 

shown to affect the dynamics of hydration water in short amphiphilic polypeptoids.[61] 

The researchers even found that changes in the sequence had more impact than the 

peptoid conformation on water behaviour. They attributed this observation to the 

inability of the chains to bury water molecules even when being compact, due to their 

small size, and the stronger impact of local chemical environment on water. Sequence 

– structure relationships were studied on longer amphiphilic polypeptoids by varying 

the position of hydrophobic units in the chains.[62] The results, combining experiments 

and simulations, showed that different conformational ensembles were obtained 

depending on the distribution of hydrophobic moieties in the primary structure. 

Beyond single-chain systems, the supramolecular assembly of small peptoids into 

nanohelices was also demonstrated.[63] Impressively, the nanohelix handedness could 

be controlled by the incorporation of a single chiral side-chain. The versatility of 

peptoids makes these SCMs attractive for various applications. An interesting example 

concerns the storage of solar energy, using photoswitchable azobenzene compounds as 

side-chains.[64] Azobenzene molecules can undergo trans to cis photoisomerization 

upon irradiation with UV-Vis light, and spontaneously revert back to their more stable 
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trans form after some time, releasing energy in the form of heat during the process. In 

this example, the position of the azobenzene side-chain in the sequence affects its 

spectroscopic properties and the kinetics of retro-isomerization, which are crucial 

parameters for the storage of solar energy. Another promising area for peptoids is 

artificial catalysis, where the formation of specific secondary structures can 

advantageously be exploited to build well-defined catalysts. Peptoids functionalized 

with chiral substituents were shown to fold into helices of preferred handedness, and 

displayed enantioselective catalysis when covalently bound to an achiral 2,2,6,6-

tetramethyl-1-piperidinyloxyl (TEMPO) catalytic unit.[65] Interestingly, when the 

TEMPO moiety was grafted on the center of the peptoid rather than at its extremity, 

the enantioselective behavior was nearly fully lost, demonstrating an important effect 

of sequence. 

 

II.2.3. Exploiting and modifying nucleic acids for novel applications 

As the relation between the sequence of AAs and the resulting 3D structure of a protein 

is not always straightforward, despite the advances of predictive ML models, full tailor-

made proteins are rarely built. Instead, new functions are introduced into known 

scaffolds through site-specific modifications, or simpler mimetic systems are designed. 

On the other hand, nucleic acids are much easier to program, therefore much easier to 

use “as is”. Not at the single-chain level, because RNAs and DNAs are also able to form 

various secondary structures, but at the level of their assemblies, which is much more 

easily programmable. Two complementary strands will form a double helix, following 

the simple rules of Watson-Crick pairing. Therefore, high order self-assembled 

architectures can be engineered through a perfect control over the sequence of 

nucleotides (Figure II.6). A beautiful example is shown by DNA origamis.[66] These 

structures are formed by combining a long single-stranded DNA (ssDNA) scaffold with 

many short oligonucleotides playing the role of staples (Figure II.6 A). The long 

ssDNA (typically extracted from a virus) can be folded into a variety of nanostructures 

through complementary base pairing on specific locations. Recent improvements in 

the protocols of assembly make possible the formation of many controlled DNA 

nanostructures, including nanogrids and very complex 3D shapes.[67,68] A freely 

available software allows users to determine the sequence of the oligonucleotides 

necessary to build their desired 2D or 3D shape, without even requiring the use of an 

ssDNA scaffold.[69] Beyond being beautiful scientific accomplishments, these nucleic 

acid-based nanostructures are envisioned for various applications, such as templating 

of nanomaterials, drug delivery, nanophotonics, etc.[70] An interesting example 

concerns the development of a DNA tweezer, able to reversibly control the activity of 

an enzyme (Figure II.6 B).[71] The structure, composed of two DNA arms  
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Figure II.6. Examples of ordered DNA nanostructures. (A) Representation of the functioning 

of DNA origamis, where the folding of a long ssDNA is guided by short oligonucleotides. The 

area in the red rectangle is shown with the detailed nucleobase sequence below, highlighting 

the complementary A---T and C---G pairings. Adapted from Ref. 66. (B) Functional DNA 

tweezer able to reversibly switch between open (left) and closed (right) forms, depending on 

the conformation adopted by the central oligonucleotide, in red. Reproduced from Ref. 71. 

functionalized with an enzyme and its cofactor, can switch between closed (active) and 

open (inactive) forms. This switching is governed by a central regulatory oligomer. In 

the absence of a complementary strand, the oligomer folds into a hairpin structure, 

bringing the two arms into proximity and favoring the formation of the active enzyme-
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cofactor complex. Upon hybridization with a strand of complementary sequence, the 

conventional double helix conformation is retrieved, which spatially separates the 

arms and disables enzymatic activity. Reversible activation / deactivation cycles were 

demonstrated, confirming the possibility to regulate the activity of an enzyme through 

a precisely engineered DNA nanomachine. 

Researchers also aimed at expanding the functions of nucleic acids by modifying their 

structure, either the ribose-phosphate backbone or the nucleobases. These synthetic 

systems are called xenonucleic acids (XNAs). Similarly to unnatural AAs for proteins, 

a variety of new nucleobases were designed to enrich the A-C-G-T/U biological 

alphabet.[72] For instance, an ssDNA was functionalized with a pH-responsive artificial 

nucleobase for targeting cancer cells.[73] The lower pH of the microenvironment of 

these cells triggers a switch of the nucleobase, which becomes able to recognize and 

inhibit receptors involved in cell migration. In our thesis, an unnatural nucleobase was 

investigated for the supramolecular assembly of a catalytic complex, see Chapter V. 

Another example of XNA is the peptide nucleic acid (PNA), an interesting hybrid 

structure between a peptide-like backbone and nucleobases as side-chains.[74] PNA-

DNA complexes were shown to be more stable than their DNA-DNA counterpart 

because of the absence of electrostatic repulsion between the phosphate groups, as 

PNAs are not negatively charged. 

 

The various examples shown throughout this section illustrate the interest of using the 

scaffold of well-defined natural SCMs, which are ideal targets for site-specific 

modifications and constitute important inspirations for the design of biomimetic 

compounds. The next step towards artificial systems is to apply the fantastic lesson 

taught by Nature into fully human-made macromolecules. 

 

II.3. Lesson learned! Applying sequence control to 

synthetic macromolecules 

II.3.1. Controlling polymer synthesis towards artificial SCMs 

Advances in polymer synthesis in the past 15-20 years have allowed researchers to go 

beyond the heterogeneous mixture of chains associated with polymer chemistry. As a 

reminder, there is a distinction between “sequence control” and “sequence definition”: 

the latter refers to perfectly uniform samples in which all chains share the exact same 

ordering and number of monomers (SDMs), whereas the former also includes samples 

with low dispersity and partial sequence regulation (SCMs) (Figure II.7).[75] 
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Figure II.7. Illustration of the meaning of the terms “sequence control” and “sequence 

definition”. “Polymer” is replaced by the more general term “macromolecule” in our thesis. 

Adapted from Ref. 75. 

Traditional step-growth and chain-growth polymerization pathways have been 

considerably improved, notably through so-called “living” and controlled radical 

approaches.[76] By reversibly modulating the reactivity of the growing chains, a better 

control on monomer incorporation is gained, leading to SCMs with lower dispersity 

and the formation of complex multiblock systems. However, these methods still follow 

statistical rules: their improvement narrows the gaussian distribution of chain lengths 

within a sample, but the control over sequence and degree of polymerization (DP) is 

still not absolute. 

The synthesis of perfectly controlled macromolecules generally relies on iterative 

approaches and the stepwise incorporation of monomer units.[77] While these are 

efficient for controlling the sequence, they generally only give access to oligomers of 

limited length. For example, if each monomer addition is realized with a yield of 99 %, 

the overall yield to reach a 16-mer is about 86 %. If the yield of each step decreases to 

95 %, which remains very high, the overall yield drops to approximately 46 %. 

Therefore, synthesis protocols must be extremely well optimized to reach high DP; they 

often exploit orthogonal reactions and click-chemistry. Nevertheless, the SDMs formed 

by such step-by-step approaches remain generally limited to around 20 monomer 

units.[78] 

 

This introductory section does not aim to thoroughly cover synthetic strategies to reach 

SCMs; the interested reader is directed to excellent papers reviewing this 

topic.[76,77,79,80] Two key points should be highlighted: first, the synthesis of SCMs and 

SDMs remains challenging and their large-scale production is still limited; second, 

SCMs are attainable through various pathways, allowing the use of many diverse 

backbones and side-chains.[78] While it is already difficult to predict the 3D structure 

of proteins, made with a unique backbone and a limited number of different side-



Chapter II 

24 
 

chains, the huge chemical space offered by synthetic SCMs brings considerable 

challenges.[81] In addition to sequence, stereochemistry can also be controlled to 

further increase an already complex conformational landscape.[82] Despite these 

challenges, the influence of sequence has already been demonstrated for SCMs in 

various applications, reinforcing the promise of sequence control in synthetic chains. 

 

II.3.2. Synthetic SCMs for biorecognition 

Many biological processes rely on specific ligand – receptor interactions. The use of 

synthetic SCMs as ligands emerged rapidly, due to their conceptual resemblance with 

biomacromolecules. Precisely controlling the position of each monomer unit onto a 

polymer backbone is very attractive to establish well-defined interaction networks and 

to develop selective systems towards biological receptors of interest. 

An original approach used the sequence-defined peptide backbone of the human serum 

albumin (HSA) as a scaffold to precisely introduce functional groups (Figure II.8).[83] 

The researchers exploited the presence of a unique cysteine residue on the outer 

surface of the protein in its native state to site-specifically substitute it by a biotin. 

Then, long polyethylene glycol (PEG) chains were introduced to replace surface-

accessible carboxylate moieties, leading to the formation of a brush polymer. 

Subsequently, the biotin was used to recruit streptavidin, a protein having a very high 

affinity towards biotin. The streptavidin could, in turn, recruit other units, such as an 

antibody (as shown in Figure II.8). This work demonstrates the possibility to design 

a precisely functionalized brush polymer by exploiting the defined sequence of a 

protein scaffold. 

Figure II.8. Protein scaffold functionalized with a biotin grafted to the residue cysteine 34, 

before the addition of long PEG chains, leading to the formation of the brush polymer. The 

biotin, through interactions with streptavidin, can be used to recruit different compounds, 

such as an antibody. Adapted from Ref. 83. 

Another intensive research area concerns the targeting of lectins, i.e. protein receptors 

able to specifically bind glycans and involved in the regulation of many biological 

processes. Multivalency, i.e. the presence of multiple interaction sites between a ligand 

and a receptor, was shown to be advantageous in lectin binding. Therefore, using 
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polymer backbones able to carry multiple copies of a glycan ligand is thought to be a 

promising approach to interact with lectin receptors. However, traditional disperse 

glycopolymers may lack selectivity in the binding due to their heterogeneous nature, 

preventing the specific targeting of one lectin over another. For this reason, precision 

glycopolymers with an absolute control of sequence and stereochemistry were 

designed and tested against eight kinds of lectins.[84] Interestingly, it was shown that 

the equilibrium association constant (Ka) for a given receptor varies by one order of 

magnitude between two stereoisomers. Glycopolymers containing alternating 

stereoisomers were, in most cases, more efficient than their full R or full S isotactic 

counterparts. This behavior was attributed to their ability to sample more diverse 

conformational landscapes, as suggested by MD simulations. An important 

contribution of this work is the demonstration that lectin binding is strongly influenced 

by small conformational and stereochemical modifications of the glycopolymer carrier. 

Such fine structure – function relationships could only be accessed through SDMs, 

devoid of the heterogeneity of traditional samples. Another research group attempted 

a similar work, playing with tacticity, but without an absolute control on the length of 

the produced glycopolymers.[85] While an effect of stereochemistry was again observed 

on the binding to lectins, the lack of absolute sequence control, leading to differences 

in DP between the stereoisomers, made the comparison more difficult. In general, the 

longer chains were more efficient, as expected due to their higher multivalency. 

Another group aimed to target galectin-3, a particular lectin recognizing β-

galactosides.[86] To this end, they synthesized SDMs functionalized with several copies 

of a sugar, ensuring multivalency, but also with nonglycosidic moieties. In particular, 

the incorporation of aromatic motifs between the glycans was shown to improve the 

binding to the targeted receptor, galectin-3, while decreasing the affinity towards a 

similar receptor, galectin-1. It shows that site-specific modifications of SDMs 

constitute an interesting tool to modulate the selectivity of interactions. 

Sequence control was also exploited to design synthetic mimics of antibodies, 

dedicated to peptide recognition.[87] Natural antibodies are protein complexes 

presenting specific recognition sites towards antigens, i.e. any foreign body identified 

as harmful for the organism, and are able to trigger their elimination after binding. 

Here, poly(N-isopropyl acrylamide) nanoparticles were functionalized with sequence-

defined oligomers designed to recognize melittin, a peptide found in bee venom, and, 

upon binding, inhibit its hemolytic activity. Satisfyingly, the nanoparticles decorated 

with the SDM showed much stronger affinity for melittin than nanoparticles 

functionalized with randomly incorporated monomers or truncated oligomers. 

Furthermore, slight modifications in the AA sequence of the melittin led to a significant 

decrease in the binding of the nanoparticles, demonstrating that sequence 
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complementarity improves the recognition process. Another strategy to stimulate the 

immune system consists of using SDMs to recruit antibodies.[88] Recently, sequence-

defined heptamers functionalized with three copies of a dinitrophenyl (DNP) ligand, 

able to interact with anti-DNP antibodies, were designed. Three SDMs were compared, 

by varying the number of spacing units between the DNPs (zero, one or two). Initially, 

the addition of spacing units was envisioned as a way to promote multivalent binding, 

by making the ligands accessible to several antibodies. Counter-intuitively, the most 

efficient antibody-recruiting molecule was the one without spacers between the DNPs. 

MD simulations revealed that the three molecules formed similar globular folded 

structures, and that the addition of spacers led to the burying of the DNPs inside the 

core, making them less accessible. This example shows again the importance of 

sequence control, and the complexity of designing efficient systems following chemical 

intuition. MD simulations were of utmost importance to understand and rationalize 

the experimental behavior. We also studied biomolecular SDMs in our thesis, 

exploiting sequence-specific interactions for biorecognition (see Chapter IV-A and 

IV-B). 

 

II.3.3. Synthetic SCMs for catalysis 

Artificial enzymes have already been mentioned in this thesis, notably through the 

incorporation of site-specific modifications to protein backbones or with 

peptidomimetic systems. Synthetic SCMs are promising in the field of catalysis, as 

controlled folding and well-organized 3D structures could be attained through the 

control of sequence, as observed for natural enzymes, with the versatility of polymer 

chemistry. 

Impressive sequence effects were exhibited by trifunctional oligomers dedicated to the 

aerobic oxidation of alcohols.[89] The chains carry a TEMPO unit, an imidazole, and a 

copper complex: they constitute a catalytic triad of interest, where all three functional 

groups must be spatially close for an efficient catalysis.[90] Therefore, their 

incorporation onto the same scaffold should increase their probability of encounter 

compared to free monomers in solution. Two trimers were synthesized, differing only 

by the position of two monomers in their primary structure. They were densely grafted 

on a surface, to promote cooperative interchain interactions and reduce folding and 

conformational flexibility. The best oligomer displayed a turnover frequency (TOF) five 

times higher than the other, a remarkable difference given the very small sequence 

modification. The effect of sequence was markedly less important for the oligomers 

diluted in solution, where the folding probably blurred the role of primary structure. 

Following this work, MD simulations and network representations were applied on 

very similar catalytic trimers to rationalize their activity (Figure II.9).[91] The results 
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indicated that all trimers adopted similar globular yet very flexible conformations in 

acetonitrile, regardless of the sequence. However, network representations helped to 

rationalize the measured catalytic activities by revealing a higher and more efficient 

intrachain connectivity for the most efficient system. In contrast, in the less active 

catalyst, the interactions between the functional groups were hindered by non-catalytic 

units, typically backbone atoms. Impressively, despite the flexibility of the chains, the 

influence of the sequence was still apparent in the intrachain connectivity patterns. 

Figure II.9. Chemical structures, final MD snapshots, network representations and 

modularizations of the investigated catalytic trimers. The sequence of the chains is given by 

the order of the letters T (TEMPO), I (Imidazole) and P (Copper complex). The number of 

edges in the network representations, related to intrachain connectivity, follows the same trend 

than the experimental catalytic activities. The TOFs are given for a catalyst concentration of 5 

mol % (relative to substrate concentration). Adapted from Ref. 91 and reproduced from Ref. 

81. 
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In another work, a catalytic trimer was shown to catalyze the elongation of a polymer 

bearing a complementary substituent.[92] Here, two monomers bearing 

complementary recognition units – named “A” and “D”, for “acceptor” and “donor”, 

respectively – were mixed with a linker moiety, following a combinatorial approach. 

The monomers can reversibly oligomerize through the formation of dynamic covalent 

imine bonds. Researchers thought that, by adding a trimer of sequence “AAA” to the 

mixture, the complementary trimer “DDD” would preferentially form. Instead, they 

found that “AAA” catalyzed the polymerization of pure “Dn” oligomers. Interestingly, a 

dimer of sequence “AA” did not show any catalytic activity. It seems that the trimer was 

able to bind to the extremity of a “Dn” growing chain through complementary A-D 

interactions, and that this binding facilitated further oligomerization. This discovery 

shows that the design of SCMs bearing recognition units at precise positions allows the 

emergence of remarkable catalytic effects. 

All these works highlight the interest of precisely engineered polymer chains for 

catalytic applications, especially in the case of multifunctional catalysts, where 

important sequence effects were demonstrated. Computational approaches able to 

predict the folding of synthetic SCMs are particularly needed for this kind of 

applications, where the 3D structure strongly impacts the efficiency of the system. Such 

an approach was undertaken recently on polyurethanes, where the design of the chain 

was optimized through MD simulations before synthesizing the most promising 

sequence.[93] Catalysis is also explored in our thesis, with the formation of a sequence-

defined supramolecular duplex (see Chapter V). We also used MD simulations to 

predict the single-chain folding of different polymers, an important step towards the 

design of efficient catalytic systems (see Chapter VI). 

 

II.3.4. Synthetic SDMs for information storage 

Information storage is a topic of intense research. Nowadays, most of the data 

generated is stored digitally. “Information” can be viewed as a simple binary sequence 

of “0” and “1”, which can represent any kind of data: audio files, images, text, etc. The 

amount of data produced every day is estimated to be around 1011 gigabytes, a number 

that increases at an uncontrollable pace. The current devices used to store data, such 

as hard disk drives (HDDs) and solid-state drives (SSDs), may become insufficient in 

terms of storage density. Additionally, their stability over time and energy 

consumption constitute other improvable factors. Pursuing an ideal of more stable and 

compact storage devices, SDMs have emerged as a pertinent alternative. Indeed, the 

“0” and “1” of a binary code can be represented by two monomers in a primary 

structure. DNA, for instance, stores all the genetic information in its sequence of 

nucleotides and is considered as a viable platform, especially for long-term storage 
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applications.[94] The storage density of DNA is considerably higher than current 

methods, with a maximum of 2 bits per nucleotide. Theoretically, all the information 

produced in the world in one year could be stored in some grams of DNA. Logically, 

synthetic SDMs are also envisioned for information storage. This is the most obvious 

and probably simpler application, as there is no problematic of controlled folding or 

precise engineering of interactions with complex binding sites, in complex 

environments. Here, everything is related to the primary structure itself, which implies 

that the sequence must be perfectly controlled. New methods to sequence SDMs, i.e. to 

decode their primary structure, need to be developed. Currently, tandem mass 

spectrometry (MS/MS) is the most commonly used technique. Briefly, the idea is to 

break the polymer chain into a series of fragments, which are subsequently put in order 

based on their fragmentation patterns, to reconstruct the whole sequence. The 

advantage of synthetic polymers envisioned for data storage is that their chemical 

structure can be optimized to contain predictable fragmentation sites, facilitating the 

readout.[95] For example, researchers developed an algorithm to automatically 

sequence oligo(amide-urethane)s from their MS/MS spectra.[96] To simplify the 

readout, both extremities of the chain are decorated with a different moiety, allowing 

a software to easily understand the sense of reading. The efficiency of the algorithm 

was demonstrated by its ability to decode a sentence written with several oligomers 

(Figure II.10). In the same work, another software was used to write and read a QR-

code. A QR-code can be seen as a binary sequence of “0” and “1”, and was converted 

into a series of sequence-defined oligomers. After synthesis of the library of oligomers, 

the software was able to re-convert them into a binary sequence, thus to rebuild the 

QR-code. Here, an advantage of synthetic SDMs is the possibility to use a broad range 

of monomers, which enables a dense storage capacity despite limited chain length.  

Following the idea of maximizing storage density, “dual” SDMs, storing information 

not only in the side-chains, but also in the backbone, were designed.[97] This method 

significantly increases the storage capacity, as a “dual” pentamer contains nearly as 

much information than a decamer without information in its backbone. Another group 

followed the opposite approach and managed to synthesize very long SDMs, up to 256 

units with satisfying yield, incorporating only two different co-monomers.[98] 

Impressively, these systems possess a density of information storage 50 % higher than 

that of DNA.  

Information-containing macromolecules can also be used for cryptographic 

applications. One group designed “molecular keys” using SDMs.[99] In this practical 

example, a molecule was adsorbed onto paper, here an envelope, containing a coded 

message. The molecule acts as a password; using MS/MS, the specific sequence of the 

molecule could be deciphered and converted into digital information, enabling  
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Figure II.10. General chemical structure of SDMs dedicated to information storage and 

practical example with the writing of a sentence. Each monomer is decorated with a functional 

group, and each functional group is associated to a letter. The oligomers can be sequenced by 

MS/MS, showing that it is possible to store and extract information using SDMs. Adapted from 

Ref. 96. 

decryption of the message. This proof-of-concept illustrates the potential of SDMs in 

anti-counterfeiting applications.  

SDMs for information storage applications are not yet a completely mature field and 

will particularly benefit from improvements in the synthesis pathways, especially in 

terms of increased DP and speed of the reading/writing processes. In this respect, a 

fully automated protocol has recently been proposed to synthesize and sequence 

oligourethanes.[100] It seems likely that precision macromolecules will find practical 

applications in the medium term, notably for long-term data storage, where their very 

high storage density should be a highly valuable advantage.  

 

II.4. Conclusion 

Less than 200 years ago, practically nothing was known about proteins or nucleic acids 

– there were not even words to describe them. Nowadays, researchers are not only able 

to build tailor-made biopolymers, fulfilling the dream of artificial enzymes mentioned 

by Fischer in 1902, but also to functionalize them with many unnatural substituents. 

This is due in large part to the knowledge gained on sequence – structure relationships. 

By “simply” controlling the order in which the monomers are inserted into the chains, 

complex 3D structures and supramolecular assemblies were designed. Since about 15 
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years ago, advances in polymer synthesis have enabled the emergence of a new field of 

research, dedicated to purely synthetic SCMs. The exquisite control of sequence 

displayed by functional biomacromolecules, combined with the chemical diversity 

offered by polymer chemistry, is seen as a way to design novel highly performant 

nanomaterials. The field is still very young and SCMs, while they carry a lot of 

promises, have to go beyond proofs-of-concept and to demonstrate their suitability for 

practical applications. However, it is now clear that playing with the order of 

monomers impacts the properties of the chains, sometimes even within flexible 

systems. Information storage will probably be the first area to benefit from SCMs, as it 

does not directly depend on a fine 3D organization or the establishment of specific 

interactions. For applications having these requirements, such as catalysis or 

biomolecular recognition, a more fundamental understanding of sequence – structure 

– function relationships is required. Computational approaches such as molecular 

modeling will be essential to reach this goal. This is the approach followed in this thesis, 

and the details of our methodology are explained in the next chapter. In parallel to this 

fundamental understanding, we can hope that expanding the database of known 

sequence – structure pairs will lead to the development of predictive ML models, which 

could help to rationalize the design of SCMs, despite the immensity of the chemical 

space that has been opened. 
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III. Methodology 
 

This chapter aims at providing the reader with a brief yet comprehensive introduction 

to the computational methods employed in this thesis. The first section is mainly 

dedicated to non-experts and beginners in the field, starting with a quick review of the 

theoretical foundations governing the behavior of atoms and molecules, i.e. quantum 

physics. Then, the principles of molecular mechanics (MM) and molecular dynamics 

(MD) simulations are concisely explained, focusing on the main concepts and the steps 

that one has to follow to predict the time evolution of a molecular system (Section 

III.1). Then, more advanced topics are introduced, including the limitations of MD 

simulations and methodological advances designed to enhance the speed or accuracy 

of conventional approaches. Recent literature examples illustrating the use of some of 

these methods are discussed, showing their successes but also, in some cases, their 

failures (Section III.2). Finally, several descriptors and tools used throughout this 

thesis to characterize and analyze molecular conformations are explained (Section 

III.3). The detailed simulation protocols and parameters will be further developed in 

their corresponding chapters. 

 

III.1. Basics of Molecular Dynamics Simulations 

III.1.1. Fundamentals of quantum chemistry 

The ability to model molecular systems through computer simulations resides in the 

existence of physical models capable of predicting their properties. The most accurate 

mathematical framework currently available to describe the behavior of the 

infinitesimally small components of matter, such as atoms and molecules, relies on the 

laws of quantum mechanics (QM), established about a century ago.[1] All the 

information about a chemical system in a stationary state, i.e. one whose observable 

properties remain constant over time, can be accessed by solving the time-independent 

Schrödinger equation (Equation III.1). 

��� = �� (III.1) 

Where Ĥ is the Hamiltonian operator, Ψ is the wavefunction of the system and E is the 

corresponding energy eigenvalue. 

Unfortunately, solving the Schrödinger equation exactly is impossible for most 

chemical systems due to its mathematical complexity.[1,2] Analytical solutions are only 

available for very simple systems, such as hydrogenoid species containing a single 

electron.[3] The only way to use the Schrödinger equation to get knowledge on chemical 

systems is to introduce approximations. The Born-Oppenheimer (BO) approximation 

is probably the most well-known, and consists of decoupling the movements of the 
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electrons from that of the nuclei.[4] Since electrons are much lighter and thus much 

faster than the nuclei, the coordinates of the latter can be considered fixed. This leads 

to the so-called electronic Schrödinger equation. This first step simplifies the problem, 

but obtaining exact solutions to the electronic Schrödinger equation remains extremely 

challenging in most cases. To address this and reach approximate solutions, several 

methods have been developed, such as Hartree-Fock,[5] post-Hartree-Fock,[6] density 

functional theory,[7] or hybrid approaches.[8] Each of these is based on diverse 

assumptions, with several levels of approximations. They provide a flexible theoretical 

framework to study a given system, depending on the properties of interest, the 

targeted accuracy, and the computational resources at hand.[9] Nonetheless, using the 

mathematical framework of QM remains computationally demanding and limits its use 

to relatively small systems, typically ranging between a few atoms to a few thousand.[2] 

 

III.1.2. The simpler framework of molecular mechanics 

Chemical systems can also be described using a much simpler approach based on 

classical mechanics, known as molecular mechanics (MM), in which atoms and 

molecules are treated as classical particles. This allows the study of much larger 

systems, with up to several million atoms.[10] Using MM models, molecules are 

represented as balls connected by sticks, or springs (Figure III.1). Obviously, 

chemical systems cannot be described as simple hard spheres: each ball, i.e. each atom, 

is characterized by an atom type and a partial charge. The atom types serve to identify 

the chemical elements and also account for their bonding environment. For instance, 

carbon atoms in a carbonyl group and in a phenyl ring will have different atom types. 

Then, the partial charges describe the electrostatic properties of the system. In MM 

models, contrary to quantum chemical approaches, the electrons are not explicitly 

represented. Their effect, and the electrostatic potential that they generate, is implicitly 

taken into account through point charges, directly located on the nuclei. Therefore, 

MM does not give access to the electronic properties of materials and does not allow 

the formation or breaking of covalent bonds.  

Figure III.1. Chemical structure (left) and “ball and sticks” representation (right) of a 

molecule. An example of atom type (in black) and partial charge (in blue) is shown for one 

carbon atom on the 3D representation. 
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Knowing the atomic coordinates of a system, all the information needed to compute its 

potential energy and related properties using MM is provided by a force field (FF). A 

force field contains both the functional form and an ensemble of parameters required 

for these calculations (Figure III.2). The philosophy behind FFs is that the potential 

energy of the whole system can be decomposed into a sum of independent terms, each 

described by a specific mathematical expression. For example, bond stretching is 

usually modelled as a harmonic potential: deviation from the equilibrium bond length 

will result in an energy penalty, proportional to the square of the deviation (as shown 

in the red box in Figure III.2). To evaluate each term, the atomic coordinates and a 

set of parameters, which are tabulated in the FF (see kb and req in Figure III.2), are 

required. These parameters generally come from QM calculations or experimental 

data. Many different FFs exist, each distinguished by its set of atom types, parameters, 

and the mathematical expressions of the potential energy and its individual terms. 

Consequently, selecting an appropriate FF depends on the molecular class under study, 

as different FFs will lead to different levels of performance and accuracy. 

Figure III.2. General expression of the potential energy, decomposed into a sum of terms, as 

expressed by a force field. A detailed example is provided for the bonding energy, Ebond, here 

described as a harmonic term. Examples of kb (the force constant) and req (the equilibrium 

bond length), two FF parameters, are shown in the purple box. The terms c3, c2 and c1 refer to 

the atom types of sp3, sp2 and sp1 carbon atoms, respectively. The variation of the bonding 

energy with respect to the bond length, r, is displayed in the red box. 
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III.1.3. The workflow of molecular dynamics simulations 

Molecular dynamics (MD) simulations build upon MM models, using force fields to 

calculate the potential energy and the forces acting on the atoms, in order to predict 

the temporal evolution of chemical systems. Note that, in reality, MD simulations 

following the laws of quantum mechanics are possible – they are called ab initio MD 

simulations.[11] In practice, they are limited to very small systems and timescales, and 

are generally not adapted to the study of (bio)macromolecules. 

At the beginning of an MD simulation, only the initial structure of the system is known, 

i.e. a set of atomic coordinates r(0). The purpose of the simulation is to predict the suite 

of conformations that the system will adopt over time – its trajectory. As the real, 

continuous trajectory cannot be solved analytically, it is approximated by a series of 

discrete states, separated by a timestep Δt. The movements of the atoms, treated as 

classical particles, are computed by integrating Newton’s equations of motion using a 

numerical integrator such as the Verlet algorithm.[12] This integrator estimates the next 

set of coordinates, r(0 + Δt), through a Taylor series expansion around r(0) (Equation 

III.2). 

��0 + 
�� = ��0� + 
�0�
� + ��0� 
��
2  (III.2) 

Where v(0) and a(0) are the initial sets of velocities and accelerations, respectively. 

In this equation, the coordinates r(0) are known. The velocities v(0) are initialized 

“randomly”, following a Maxwell-Boltzmann distribution (thus depending on the 

temperature of the system) (Equation III.3). 

��
� = � �2�����/�  �����/� ! (III.3) 

Where f(v) is the probability density function describing the likelihood of finding a 

particle with a given velocity v, m is the mass, k is the Boltzmann constant, and T is the 

temperature. 

The last unknown part in Equation III.2 is the acceleration, a(0). From Newton’s 

second law of motion and the fact that a force can be expressed as the derivative of the 

potential energy with respect to the coordinates, we can link the acceleration a, the 

forces F and the potential energy EP (Equation III.4). 

" = �� =  − $�%$�  (III.4) 

Therefore, after computing the potential energy of the system using the force field, the 

corresponding set of forces – and hence the atomic accelerations – can be determined. 

Knowing r(0), v(0) and a(0), it is then possible to solve Equation III.2 and obtain r(0 

+ Δt). With this new set of coordinates, the accelerations a(0 + Δt) can be computed, 

as the potential energy only depends on the atomic positions (and the parameters 

defined in the force field). Finally, Equation III.5 can be used to compute v(0 + Δt). 
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�²2  (III.5) 

The iterative process supporting MD simulations is summarized in Figure III.3. 

This procedure, which decomposes the continuous trajectory into a series of discrete 

states, would only yield the exact coordinates for infinitesimally small timesteps, Δt. 

However, using longer timesteps is desirable, as it allows to reach a given simulation 

time with fewer steps, thus at lower computational cost. In practice, Δt is often set to   

1 fs (10-15 s), about ten times smaller than the timescale of the fastest motions in the 

system – typically, vibrations involving hydrogen atoms. Nowadays, various methods 

enable the use of longer timesteps, as will be discussed in Section III.2.3. 

Figure III.3. Workflow of a MD simulation. Based on the structure provided by the user, the 

first sets of coordinates, velocities and accelerations are initialized. They allow the computation 

of a new set of coordinates (i.e. the next molecular conformation), from which the accelerations 

can be calculated with the information contained in the force field. These accelerations, in turn, 

serve to calculate the velocities. 
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III.1.4. MD simulations are an ideal tool to model 

(bio)macromolecular systems 

The much lower computational cost required to run classical MD simulations, in 

comparison to QM approaches, makes it a method of choice to treat macromolecular 

systems. In particular, several MD engines were initially developed for studying 

biomolecules, especially proteins and nucleic acids. The software used throughout this 

thesis, the Assisted Model Building with Energy Refinement (AMBER), follows this 

trend.[13] AMBER contains a variety of FFs dedicated to the modelling of proteins, 

nucleic acids, sugars, solvents, and so on. It also includes tools to build custom organic 

molecules. The general amber force field (GAFF), implemented in 2004, provides 

parameters for most organic compounds, and is compatible with the other AMBER 

FFs.[14] GAFF is parametrized against a wide range of molecular structures commonly 

found in ligands. An updated version of the force field, GAFF 2, was released in 2015 

(and, later, GAFF 2.11 released in May 2016) and seems to display slightly improved 

performances than the original version.[15] When building a custom molecule, it is also 

necessary to compute its partial charges. Two different models were used in this thesis: 

the restrained electrostatic potential (RESP),[16] and the Austin Model 1 with bond 

charge correction (AM1-BCC).[17] They both aim to reproduce the electrostatic potential 

of the molecules calculated at the Hartree-Fock/6-31G* level of theory (a QM method), 

against which GAFF was parametrized. The set of partial charges used, and its accuracy 

to represent the true electrostatic potential, can have a dramatic influence on the 

conformations adopted by a chemical system, as will be discussed in Chapter VI. In 

addition, AMBER offers very practical tools to build oligomers and polymers, as it is 

possible to constitute its own library of custom monomeric units. The monomers can 

then be combined in any desired sequence to constitute a tailor-made oligomer or 

polymer, just as one would build a protein or a nucleic acid by inputting its sequence 

of amino acids or nucleotides, respectively. This methodology has often been used by 

our group, as described in a recent review.[18]  

 

Another important aspect of (bio)molecular simulations concerns the treatment of the 

solvent. It can be described implicitly, i.e. without including the solvent molecules in 

the system. The Generalized Born model,[19] an approximated version of the Poisson-

Boltzmann equation, is commonly used. This model treats the solvent as a continuum, 

whose screening effect on the electrostatic interactions depends on its dielectric 

constant and the degree of burial of atoms in the 3D structure. The other possibility is 

to describe the solvent molecules explicitly. This approach, more accurate, allows to 

directly probe the interactions between the solvent and solute molecules. However, it 

significantly increases the number of atoms in the system and, therefore, the 
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computational cost. It also imposes the use of periodic boundary conditions (PBC) 

(Figure III.4). The principle of PBC is to replicate the simulation box in all directions 

by creating mirror images, approximating an infinite system. It minimizes edge effects 

at the boundaries of the box, preventing molecules at the edges from being exposed to 

vacuum. It also ensures that a molecule diffusing out of the box is replaced by another 

molecule from a mirror image, as illustrated in Figure III.4. 

Figure III.4. Illustration of the PBC in two dimensions. The central simulation box, in red, 

contains a solute and water molecules. It is replicated in the left and right directions. If the 

water molecule in the upper left corner leaves the simulation box to the left (purple arrow), it 

is replaced by its mirror image from the opposite side. The cutoff, i.e. the distance at which the 

models used to compute the non-bonded interactions (van der Waals and Coulomb) change, is 

also illustrated (further details are provided in the text). 

In MD simulations, the heavier burden on the computational cost consists in treating 

the non-covalent interactions, i.e. van der Waals (vdW) and electrostatic terms. Their 

number typically scales with the square of the number of atoms, which can become 

very large, especially in the case of simulations in explicit solvent. Therefore, non-

covalent interactions are generally truncated at a threshold distance, known as the 

cutoff (as illustrated in Figure III.4). The van der Waals terms are computed using a 

Lennard-Jones potential for pairs of particles whose distance is within the cutoff, and 

a continuum model is applied as a correction for long-range interactions. Electrostatic 

terms are calculated through the particle mesh Ewald (PME) scheme, which treats the 

electrostatic interactions as a sum of short-range and long-range terms.[20] 

Electrostatic forces for particles whose distance is within the cutoff are calculated in 

the real space, using direct summation. Long-range interactions are computed in the 

reciprocal space, using Fourier transforms. 

 

These concepts constitute a basis to understand the functioning of computational 

simulations, in particular classical MD simulations. In the next part, recent 

developments in the field, aiming to improve the accuracy of the simulations and the 

exhaustivity of the sampling, are discussed. 
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III.2. Limits of MD simulations and how to push their 

boundaries 

III.2.1. MD simulations are based on many (many, many) 

approximations 

The “computational microscope” offered by MD simulations is an extremely powerful 

tool, giving researchers precious insights on the 3D structure and dynamics of 

(bio)molecular systems.[21] The field has considerably evolved since the first 

biomolecular simulation published, in 1997, which studied the dynamics of the bovine 

pancreatic trypsin inhibitor during 8.8 ps.[22] 20 years later, in 2007, the first 

microsecond timescale simulation of B-DNA was published.[23] The significant 

improvements in MD algorithms,[24] the optimization of GPU codes,[25] and the 

remarkable evolution of the computational resources have made the simulation of 

hundreds of thousands of atoms on the microsecond timescale routine. MD 

simulations have achieved many successes over the years and, more generally, the field 

of computational chemistry is now well established, as evidenced by the 1998, 2013, 

and 2024 Nobel Prizes in Chemistry. 

However, simulations are far from infallible. Their classical nature already represents 

a considerable approximation. The accuracy of a simulation is dictated by the quality 

of the parameters contained in its FFs, which may, in some cases, completely fail to 

describe certain properties of a particular molecular system. A striking example is the 

case of TIP3P, one of the most widely used water model in biomolecular simulations.[26] 

It happens that TIP3P (and other common water models) is unable to correctly 

reproduce the behavior of bulk water, predicting several macroscopic properties with 

significant errors (Figure III.5).[27] A new water model called OPC was proposed in 

2014, and seems to constitute a significant improvement.[28] 

It shows the complexity of finding good FF parameters, even for water. Another lesson 

can be drawn from this example: a simulation does not need to be perfectly accurate to 

give meaningful results. The failure of TIP3P to reproduce several properties of bulk 

water does not mean that it is completely unsuitable to study the folding and dynamics 

of biomacromolecules. It is the role of the researcher to keep a critical eye on the 

outcome of a simulation, to know the limits of its model, and to take them into account 

when drawing conclusions. Nevertheless, it is highly desirable to develop more 

accurate force fields. Improved versions are continuously released, even for well-

known biomolecules – see for example ff19SB (for proteins)[29] and tumuc1[30] or 

OL24[31] (for DNA), available since 2020, 2021 and 2025, respectively. Finding valid 

FF parameters for synthetic systems is even more challenging, given their enormous 

chemical diversity. Most FFs dedicated to synthetic molecules are rather general: they  
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Figure III.5. Relative errors between the predicted theoretical and experimental values of 

several macroscopic properties of water for five widely used water models. Reproduced from 

Ref. 27. 

contain parameters to describe a wide range of atoms, bonds, angles and torsions. 

However, their accuracy is limited, as one single FF cannot perfectly reproduce every 

chemical system. Consequently, when modeling a synthetic compound, it is good 

practice (and sometimes mandatory) to reparametrize the FF, i.e. to adjust its 

parameters to describe more accurately the molecule of interest. In general, the 

parameters are refined by comparison with QM calculations. This task can be very 

tedious, although several tools exist to simplify and automatize it. Within the AMBER 

suite of programs, mainly used in this thesis, we can cite Paramfit[32] or mdgx.[33] 

 

III.2.2. Enhancing the accuracy of MD simulations 

Beyond parameters adjustment, other methods exist to enhance the accuracy of MD 

simulations, i.e. to bridge the gap between classical and QM approaches. Polarizable 

FFs, for instance, aim at improving the representation of the electrostatic properties of 

the molecules, which are modeled as fixed atomic charges in classical approaches.[34] 

The most intuitive way to account for the deformability of the electronic cloud is to 

introduce extra particles carrying a fraction of the atomic charges. This is the basis of 

the Drude oscillator model.[35] Each atom is assigned an additional pseudo-particle, 

called the Drude particle. The atomic partial charge is distributed between the nucleus 

and its Drude oscillator, which is free to move, allowing the atom to respond to its 

electrostatic environment. This improved description of the charge distribution has 

been successful in different biomolecular applications, including studies of base-

flipping in DNA,[36] the structural dynamics of RNA hairpins[37] and mannose 

disaccharides,[38] as well as for computing the free energy of hydration for most amino 
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acids.[39] However, the model failed to correctly describe a highly flexible RNA 

structure, probably due to an overstabilization of hydrogen bonding interactions.[40] 

Machine learning (ML) FFs are also becoming a common tool in computational 

chemistry. Their purpose, similarly to traditional FFs, is to establish relationships 

between a set of atomic coordinates and the potential energy of the system, the forces 

acting on the atoms, or both. However, the construction of the mathematical model is 

completely different. An MLFF does not need to decompose the potential energy of the 

system into a sum of individual terms (as expressed in Figure III.2): it can build any 

mathematical model. The MLFF is trained on an extensive database of molecular 

structures with known potential energy, computed at the QM level.[41] From this 

dataset, a functional representation of the potential energy surface is extracted. The 

MLFF must then be tested against a validation set, i.e. another ensemble of structures 

with known potential energy. If the error of the MLFF on the validation set is 

sufficiently low, it can be used for MD simulations. The QM method used to compute 

the potential energy fixes the upper limit of accuracy of the ML algorithm, as it will, at 

best, perfectly reproduce the method used for training. MLFFs can be viewed as an 

intermediate between QM methods and traditional FFs, being more accurate (if 

correctly trained) but less computationally efficient (due to their more complex 

functional form) than the latter.[42] Very promising results were published recently for 

the use of MLFFs in biomolecular simulations, to compute the relative energy,[43] or 

even to perform MD simulations on proteins.[44] In that study, the model was trained 

on small fragments, and then applied to simulate a 46-residue protein in explicit water 

(more than 25,000 atoms). Although limited to the nanosecond timescale, it 

demonstrates that MD simulations with MLFFs, reaching ab initio accuracy, are 

achievable on macromolecular systems. 

Finally, another way to improve the accuracy of MD simulations is to use hybrid 

QM/MM approaches, treating a small part of the system at the QM level and describing 

the rest with MM.[45] This is particularly useful in biomolecular simulations, where the 

computational cost of running pure ab initio MD simulations would be prohibitive, 

while a sub-part of the system requires QM accuracy. A typical example of these 

multiscale approaches is host-guest chemistry, such as enzymatic catalysis or ligand 

binding. The active site, where the reaction or binding occurs, is treated at the QM 

level, while the surrounding protein scaffold and the solvent are described using FFs. 

The main challenge associated to QM/MM simulations lies in computing the 

interactions at the interface between atoms in the “MM region” and atoms in the “QM 

region”. A recent example made use of QM/MM methods to correctly estimate the 

unbinding rate constant of a ligand.[46] Classical FFs from AMBER were accurate to 

describe the stable bound state, but overestimated the potential energy of the 
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transition state, thus overestimating the unbinding rate constant. The QM/MM 

approach was necessary to correctly describe the change in electrostatic properties 

between the bound and transition states. It illustrates a disadvantage of the fixed point 

charges used by classical FFs. Another example took advantage of QM/MM 

simulations to investigate the reaction mechanisms of four inhibitors of a SARS-CoV-

2 enzyme, the main protease, which plays a part in viral replication.[47] The four ligands 

are able to form a covalent bond with a cysteine in the active site of the enzyme – a 

chemical reaction that cannot be captured with classical MD simulations – thereby 

inhibiting its activity. 

 

III.2.3. Enhancing the speed of MD simulations 

In addition to the efforts aimed at improving the accuracy of MD simulations, several 

approaches have been developed to accelerate conformational sampling. It is now 

routine to run microsecond-long simulations, but this timescale remains too short to 

probe many biomolecular processes. One way to increase the speed of a simulation is 

to increase the timestep, i.e. to reduce the frequency at which the equations of motions 

need to be solved. The problem in increasing the timestep is that it quickly leads to 

numerical instabilities, when the forces change importantly between two steps. The 

typical value of the timestep is 1 fs, as mentioned earlier. However, algorithms are 

commonly applied to freeze the vibrations including hydrogen atoms, such as 

SHAKE,[48] SETTLE,[49] or LINCS,[50] allowing the use of a 2-fs timestep. More recently, 

the hydrogen mass repartitioning (HMR) scheme was used in MD simulations, 

enabling the use of timesteps of 4 fs.[51] The principle of HMR is to redistribute the 

mass of the heavy atoms to their bonded hydrogen atoms, such as to increase their 

mass and to slow down their vibration frequency. This strategy proved effective to 

simulate biological membranes.[52] The increased timestep did not alter the computed 

properties, in comparison to simulations using a 2-fs timestep, and brought a speedup 

comprised between 40 to 90 %, depending on the system and the computational 

architecture. However, the method may apparently slow down protein-ligand 

binding.[53] Here, the increased timestep led to faster diffusion of the ligand and 

increased protein dynamics compared to classical MD. This apparently complicated 

the stabilization of metastable states encountered in the binding process. Although 

appealing, increasing the timestep may not be an ideal choice to reduce the 

computational time in every case, especially when key binding intermediates must be 

sampled. 

Different methods were also developed to improve the sampling efficiency, to find 

more quickly local minima on the potential energy surface.[54] In particular, accelerated 

molecular dynamics (aMD) simulations use a bias potential to lower the energy 
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barriers between minima.[55] When the potential energy of the system falls below a 

threshold, a boost potential is applied. The idea is to artificially flatten the potential 

energy surface, preventing the system from being trapped for long times in local 

minima. Accelerated simulations were performed on ligand-protein binding studies 

and permitted to identify the same binding sites than those detected by conventional 

MD simulations in much shorter simulation time.[56] A similar approach was followed 

to compute the thermodynamic and kinetic properties of binding of several guests to a 

cyclodextrin host.[57] The accelerated protocol allowed to sample several 

binding/unbinding events in 300 ns, while several microseconds were required with 

conventional MD. These two methods (HMR and aMD) were exploited in this thesis to 

study the dynamics of large heteropolymers in a reasonable computational time 

(Chapter VI). 

Finally, we can cite coarse-grained (CG) approaches, which reduce the computational 

cost – thus the computational time – by decreasing the number of particles in the 

system. To do so, several atoms are merged into the same particle – for example, one 

amino acid could be represented by only one particle, instead of taking into account all 

its atoms. Consequently, the system is described with a lower resolution than in all-

atom MD simulations. CG models necessarily miss finer atomic details, such as 

directionality of H-bonds[58] or interactions with the solvent,[58,59] and lack flexibility 

in the description of the secondary structures of proteins.[59] Still, this method is 

popular to study biomolecular systems,[58,60] notably with the well-known MARTINI 

force field.[59] Originally developed to model lipids, its scope has been expanded over 

the years, making it a general force field, even applicable to model organic polymers. 

CG methods provide a way to study systems of a size that all-atom MD simulations 

could never reach. A particularly striking example is the building of a whole cell using 

tools from the MARTINI ecosystem.[61] Although no MD simulations were actually 

launched, being able to develop a computational model for an entire cell with all its 

components, containing more than six billion atoms, remains remarkable. 

 

III.3. Common molecular descriptors and analyses 

Several descriptors are used throughout this thesis to characterize the conformations, 

dynamics and interactions of molecular systems. They are explained hereafter to clarify 

their meaning to the reader. Most of the analyses were performed with the cpptraj 

module of AMBER and in-house scripts.[62] 

 

The root mean square deviation (RMSD) is the average deviation of the atomic 

coordinates of a structure by comparison to the atomic coordinates of a reference 

structure (Equation III.6). The reference structure is often chosen as the initial 
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conformation of the MD simulation. The evolution of the RMSD over time gives 

insights on the flexibility of the system, and its convergence can indicate the 

stabilization of a given conformation.  

)*+,��� = -∑ &/0��� − /0�����'²102� 3  (III.6) 

Where N is the number of atoms, and xi(t) and xi(ref) are the coordinates of atom i in 

the structure generated at time t and in the reference structure, respectively. 

The root mean square fluctuation (RMSF) is a similar measurement, but is more local. 

The RMSF computes the positional fluctuations of an atom around its average 

coordinates (Equation III.7). It is often averaged over groups of atoms, typically 

monomer units, providing insights into the distribution of flexible and rigid regions 

within a molecule. 

)*+" =  -∑ �/0��4� − 〈/0〉�²7892� *  (III.7) 

Where M represents the number of input structures, xi(tj) represents the coordinates 

of atom i in the structure generated at time tj, and 〈xi〉 denotes the average coordinates 

of atom i, computed over all input structures. Note that the RMSD involves a sum on 

the number of atoms, thus being a descriptor of the global structure, while the RMSF 

involves a sum on all snapshots for one atom (or one group of atoms), thus being an 

average local descriptor. 

The radius of gyration (RG) is a measure of the size and compactness of a system. It 

computes the average distance of the atoms from their geometric center (Equation 

III.8). The evolution of the RG as a function of time can be tracked to follow the folding 

of a molecule. 

): = -∑ �/0 − /;<=8<>�²102� 3  (III.8) 

Where N is the number of atoms, xi represents the coordinates of atom i, and xcenter 

denotes the coordinates of the geometric center. 

The solvent-accessible surface area (SASA) measures the extent of a molecular surface 

that can be probed by a solvent molecule (Figure III.6). It reflects the exposure of a 

molecule to its surrounding environment. The SASA can be decomposed by sub-parts 

of the whole system, such as monomeric units, revealing which regions are buried and 

which ones are exposed. The SASA was determined using the linear combination of 

pairwise overlaps (LCPO) method.[63] In this model, atoms are approximated as perfect 

spheres, with a radius equal to their van der Waals radius plus that of a solvent probe 

(typically 1.4 Å, to represent a water molecule). 
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Figure III.6. 2D schematic representation of the SASA of an atom i. The solvent probe (in 
purple) defines the accessible region (in green), while the occluded area (in red) is inaccessible 
due to overlaps with neighboring atoms j and k. 

Analyses can also be carried out in the form of images, such as “heatmaps”, which were 

often used in this thesis to highlight and localize relationships between pairs of 

variables. Many kinds of data can be represented, such as distances, interactions, free 

enthalpy of binding, and so on. A very simple example is shown in Figure III.7.  

Finally, network representations were used to investigate the connections inside 

supramolecular assemblies, using the Cytoscape 3.9.1 software.[64] The 3D 

conformations generated during the MD simulations are converted into 2D networks, 

where each heavy atom, i.e. any atom except hydrogen, constitutes a node (Figure 

III.8). Two nodes are connected, i.e. linked to each other by an edge, if their distance  

Figure III.7. Illustration of a distance heatmap. The molecule investigated is a tetramer 

bearing four functional units, represented by the letters A-D. The heatmap is built based on 

the 3D structure shown on the left. At the crossing of two letters, on the x and y axes, is found 

a square, whose color indicates the distance between the two units (see the scale on the right). 

As an example, the distance between the units A and C was measured on the 3D structure and 

corresponds to the squares circled in red on the heatmap, which is symmetric with respect to 

the diagonal. 

i
j

k

SASAi

Solvent probe
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in the 3D structure is inferior than a cutoff distance typical of short-range interactions 

(around 5 Å). Network representations are a useful visualization tool, and an 

interesting way to investigate the connectivity and recognition inside molecular 

systems. It has been commonly applied to biomolecular systems or in materials 

science.[65,66] Two descriptors are used in this thesis to mathematically describe the 

connectivity inside a network. The betweenness centrality of a node describes the 

number of shortest paths, i.e. the shortest sequence of nodes that must be traversed to 

go from one node to another, involving this node. The closeness centrality indicates 

how long are the paths connecting one node to all the others. A node able to reach all 

the others with short paths will have a high closeness centrality. Networks were further 

studied with the partition algorithm Infomap,[67] which detects groups of highly 

connected nodes. These nodes are regrouped into the same particle, called “module” 

or “community”. This approach allows a coarse-grained representation of the network, 

simplifying the visualization of the most important connections between specific 

moieties. 

Figure III.8. Representation of the conversion of a molecular 3D structure into a 2D network. 

Only the heavy atoms, i.e. not hydrogen atoms, are conserved in the network representation. 
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IV. Exploiting sequence-controlled architectures to 
master biorecognition 
 

The results section of this thesis starts with systems involved in biorecognition 

applications, where the defined sequence and programmable folding of biopolymers 

help us to target them. This section is divided in two parts. The first one is dedicated to 

the study of the interactions between an integrin and different peptides. We will see 

how subtle stereochemical modifications can influence the intrinsic conformation of 

the peptides, and how it affects their binding to a protein receptor involved in cellular 

migration (Section IV-A). In the second part, we will investigate the supramolecular 

assembly of small organic molecules around a DNA template. The synthetic molecules, 

functionalized with nucleobases, are able to recognize a single-stranded DNA bearing 

the complementary unit. Furthermore, these synthetic molecules are 

photoisomerizable, and the switch between trans and cis configurations allows us to 

modulate the assembly with DNA (Section IV-B). 

 

IV-A. Chiral mismatch in collagen-mimetic peptides 
modulates cell migration through integrin-mediated 
molecular recognition 
 
Part of this work is reported in: Chiral mismatch in collagen-mimetic peptides 

modulates cell migration through integrin-mediated recognition. 

A. Remson, D. Dellemme, M. Luciano, M. Surin, S. Gabriele. Deposited on bioRxiv 

(author preprint): https://doi.org/10.1101/2024.07.23.604866.  

 

IV-A.1. Introduction 

Many cellular processes rely on interaction cascades, where specific host-guest 

recognitions trigger conformational changes that propagate from one molecular 

species to the next.[1,2] These interactions take place in the crowded cellular 

environment, involving many proteins and small molecules, yet they are extremely well 

regulated: the same receptor, when activated by different ligands, can trigger different 

responses.[3] The specificity of these recognition events arises from the highly 

controlled 3D structures of proteins, whose sequence-encoded folding generates well-

defined binding sites. All these interactions mediate the behavior of cells, which 

respond to the stimuli that they perceive when probing their environment. As a 

consequence, the physicochemical parameters characterizing the cell environment, i.e. 

the extracellular matrix (ECM), can strongly influence the internal organization of cells 

and the processes in which they are involved. For instance, matrix rigidity was shown 
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to impact cell shape, polarization, adhesion and migration.[4,5] Modifications on the 

microstructure of the matrix, such as the presence of curvatures or other patterns, also 

modify cell properties.[5,6] A recent example showed that matrix viscoelasticity and 

stiffness influence cell spreading and migration, and that spatial confinement can alter 

the way cells respond to the mechanical properties of their environment.[7] Another 

characteristic of biological components is their chirality. This property is found at all 

scales in living matter, from proteins and nucleic acids, built on chiral monomers, to 

organs such as the heart. Cells contain intrinsically chiral components, such as actin 

filaments, helical supramolecular polymers that are part of the cytoskeleton. 

Interestingly, the dynamic network of actin filaments was shown to self-organize into 

chiral motifs, twisted radial fibres rotating in a counter-clockwise manner, when cells 

are confined on circular micropatterns.[8] This chiral organization could even induce 

the chiral motion of other cellular components. Impressively, the sense of rotation 

could be reversed, from counter-clockwise to clockwise, through the overexpression of 

α-actinin-1, a protein involved in the crosslinking of actin filaments. Another group 

found that cell aggregates embedded within a 3D hydrogel environment spontaneously 

exhibit rotational motions, the sense of rotation being regulated by the same 

mechanism involving actin filaments and α-actinin-1.[9] Chirality was also 

demonstrated to propagate from the molecular scale to an entire organism.[10] The 

localized overexpression of myosin 1D, a molecular motor, was sufficient to induce a 

complete twist of the body of a larva and perturb its movements. Despite these 

examples and the known importance of chirality in living systems, the impact of the 

stereochemistry of ECM components on cell behavior has remained largely unexplored 

until now.  

To bridge this gap, three peptide-coated surfaces of varying chirality were engineered 

as representative models of the ECM components, and exploited to study the adhesion 

and migration of epithelial keratocytes, cells derived from fish scales. Collagen, the 

most abundant component of the ECM, was chosen as the natural coating, acting as a 

control.[11] Then, two collagen-mimetic peptides (CMPs), able to reproduce the triple 

helix structure of collagen, were designed.[12] The two CMPs share the same sequence 

of AAs and differ only in their stereochemistry. The first CMP contains only L-AAs, 

while the second consists of a block of L-AAs followed by a block of D-AAs; they are 

referred to as homochiral and heterochiral CMPs, respectively. Experiments showed 

differences in cell adhesion and migration on these substrates of opposite chirality. In 

particular, the heterochiral CMP, which contains a “chiral mismatch” at the junction 

between its natural L and unnatural D-AAs, displayed a lower ability to support cell 

adhesion and migration. These results reveal that the stereochemistry of the ECM 

components impacts cell behavior. At the molecular level, integrins, a family of 
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transmembrane proteins expressed by cells, are known to mediate cellular migration 

through interactions with the ECM components.[13] Therefore, inhibition experiments 

were carried out and identified the α1β1 integrin, a well-known collagen receptor, as 

sensitive to the ECM chirality. It led us to investigate the behavior of collagen and the 

CMPs in interaction with this integrin at the atomic scale, by means of molecular 

dynamics (MD) simulations. Our results suggest that the chiral mismatch in the 

heterochiral CMP destabilizes its triple helix conformation, reducing its interactions 

with the binding site of the integrin. This perturbation at the molecular level could 

contribute to the decreased cell adhesion on this substrate. All the experimental results 

presented in this chapter were obtained by Alexandre Remson.[14] 

 

IV-A.2. Design of the peptide substrates and simplified 

models for MD simulations 

Collagen I being the major component of the ECM, it was chosen as the control 

substrate to probe the effect of ECM chirality on cell migration.[11] Collagen forms a 

left-handed helix at the single-chain level, with a conformation known as polyproline 

type II (PPII), but self-assembles into a supramolecular right-handed triple helix 

(Figure IV.1 A).[12] To mimic collagen, the two CMPs incorporate an AA sequence 

(PPG)10, P and G refer to as proline and glycine, respectively. A long sequence with this 

triplet was shown to reproduce a conformation similar to PPII.[15] The effect of chirality 

is incorporated in this sequence: the proline residues have the natural L chirality in the 

homochiral CMP, while they have the artificial D chirality in the heterochiral CMP. The 

formation of PPII conformations with opposite chirality for the two CMPs, both in 

solution and in the solid state, was confirmed by circular dichroism (CD) 

spectroscopy.[14] A sequence (PEG)2 precedes the (PPG)10 part, E refers to as glutamate. 

This AA was shown to play an important role in the recognition between collagen and 

α integrins, and was therefore integrated into the CMPs.[16] Before the (PEG)2 residues, 

four lysines were added to improve solubility in water. Finally, a glycine unit links the 

CMPs to a fluorescent dye commonly used with peptides (5-

Carboxytetramethylrhodamine, TAMRA). All lysines and the (PEG)2 residues have the 

natural L chirality in both CMPs. Therefore, the only difference between the 

homochiral and the heterochiral CMPs is the stereoinversion in the (PPG)10 section 

(Figure IV.1 B). For the MD simulations, simplified peptide models were employed, 

retaining only the AAs relevant to the interaction with the integrin and to reduce 

computational cost. Collagen type I was represented by a sequence of 21 AAs 

containing the binding motif “GFOGER”, known to be involved in the interaction with 

collagen-binding integrins (Figure IV.1 C).[17] For the CMPs, only the (PEG)2 part and 

a (PPG)5 section were considered, as this minimal model contains the glutamate  
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residue, necessary for the binding, and the (PPG) triplets which induce the formation 

of the supramolecular triple helix and contain the chiral information distinguishing the 

two CMPs (Figure IV.1 D). 

Figure IV.1. Structures of the peptides investigated. (A) Cartoon representation of collagen 

type I, highlighting the formation of a supramolecular right-handed triple helix from left-

handed single-chains. (B) AA sequence and chemical structure of the CMPs. “Pro*” indicates 

prolines that have the opposite chirality between the two CMPs. (C), (D) Cartoon 

representation of the simplified models of the peptides, shown as triple helices, used for the 

MD simulations. Two snapshots, illustrating the first (at 1 ns) and last (at 1000 ns) 

conformations, are superimposed for each system. The AA sequence is given below (G: glycine; 

P: proline; O: hydroxyproline; F: phenylalanine; E: glutamate; R: arginine). The letters “L” and 

“D” preceding the AA letters indicate their chirality. 

IV-A.3. Cell migration involves peptide-integrin interactions 

mediated by a glutamate residue 

The migration of epithelial cells was experimentally studied on the three substrates, 

and a significant impact of the chirality on cell migration speed was observed. Similar 

speed values were found on collagen and the homochiral CMP (8.78 ± 3.01 µm/min 

and 8.64 ± 2.67 µm/min, respectively), but the migration was significantly slower on 

the heterochiral CMP (6.50 ± 2.14 µm/min). In addition, cells performed less focal 

adhesions on this substrate. These results indicate that cells are sensitive to the 

chirality of their matrix. We hypothesized that this behavior could be attributed to 

interactions between collagen (or the CMPs) and integrins, which are protein receptors 

expressed by the cell to mediate adhesion and migration through specific interactions 

with components of the ECM (Figure IV.2 A).[4] Integrins constitute a class of 24 
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Figure IV.2. Summary of the investigated cell-matrix interactions. (A) Schematic 

representation of the interaction between collagen, found in the ECM, and the I-domain of the 

collagen-binding integrin α1β1, expressed by the cell. The zoom shows the binding site, where 

the collagen triple helix coordinates the divalent cation (Mg2+, represented as a cyan sphere) 

in the MIDAS with a glutamate residue. The left part of the figure was created with 

BioRender.com. (B) Results of inhibition experiments performed by Alexandre Remson, 

showing the modulation of cell migration speed before (in blue) and after (in red) inhibition of 

the α1β1 integrin on the collagen (left), homochiral CMP (middle) and heterochiral CMP (right) 

substrates. (C), (D) Final MD snapshots of the heterochiral CMP and homochiral CMP, in 

interaction with the I-domain of the α1β1 integrin. In (D), a zoom is made on the binding site 

to show the Mg2+ complexation, made by AAs of the I-domain, the glutamate residue of the 

CMP and completed by water molecules. 
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heterodimeric proteins, composed of the association between an α and a β subunit.[13] 

There exists a subclass of integrins dedicated to collagen-binding (α1β1, α2β1, α10β1 and 

α11β1) whose selectivity depends on the collagen type.[18] However, they all share the 

presence of a particular I-domain, carried by the α subunit, responsible for binding.[13] 

This domain contains a cavity hosting a divalent cation, known as the metal-ion 

dependent adhesion site (MIDAS).[19] Binding to MIDAS was shown to be strongly 

influenced by the presence of a glutamate residue (which is present in the GFOGER 

motif in collagen), able to coordinate the central cation (see the zoom in Figure IV.2 

A). Inhibition experiments were thus carried out to identify the cell receptors involved 

in the migration of our keratocytes. Antibodies were added to block the binding site of 

collagen-binding integrins, preventing their interactions with the peptides. These 

experiments showed a particularly strong response from the α1β1 integrin, in 

agreement with other studies highlighting its role in cell migration.[20,21] Once again, 

the results were similar for collagen and the homochiral CMP, with a cell speed 

decrease of 20 to 25 % upon α1β1 inhibition. In contrast, the migration speed on the 

heterochiral substrate was not significantly affected (Figure IV.2 B).  

Based on these results, MD simulations were carried out to better understand the 

impact of chirality on the intermolecular interactions between the α1β1 integrin and the 

peptides. The simulations were realized with the AMBER suite of programs, by placing 

either collagen, the homochiral CMP or the heterochiral CMP in the binding site of the 

I-domain of the α1β1 integrin (see Figure IV.2 A, C, D), in explicit water boxes 

containing Na+ and Cl- ions (see details of the simulation protocol in Section IV-

A.5).[22] As with collagen, the CMPs contain glutamate residues, that serve as 

coordinating units for a divalent cation located in the MIDAS (Figure IV.2 C, D). 

Here, glutamate can coordinate a Mg2+ ion in the binding site, thus completing its 

coordination sphere (see the zoom in Figure IV.2 D). In all cases, the glutamate 

maintains its interaction with the ion during the whole simulations, ensuring that the 

triple helices remained bound to the domain. The fact that the two CMPs did not 

disassemble from the MIDAS shows that the full AA sequence “GFOGER” is not 

mandatory for the binding. This agrees with several studies suggesting that recognition 

could occur with other, similar motifs of the general type GXX’GEX’’, although with 

generally lower affinity.[23] Our CMPs contain the (PEG)2 triplets which, if written 

reversely as (GEPGEP), match this binding pattern. There is not a unique sequence 

that fits the binding site, but a common feature of the ligands is the presence of a 

glutamate moiety. For comparison, we realized simulations on pure L- or D-(PPG)10 

triple helices, which lack the (PEG) triplets, in interaction with the I-domain. The 

peptides were markedly less stabilized, displaying very few intermolecular hydrogen 

bonding interactions (see Figure IV.5), with possible complete unbinding. In line 
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with our results, the absence of binding of (PPG)10 sequences to the similar I-domain 

of the α2β1 integrin was demonstrated experimentally by others.[23] Our simulations 

thus highlight the crucial role of the glutamate moiety, without which the recognition 

seems unlikely. This observation confirms the findings of other studies.[16] Even a 

single AA mutation, replacing the glutamate by an aspartate, which is only one 

methylene shorter, strongly weakens the binding.[17,24]  

 

IV-A.4. Interactions with the integrin are perturbed by the 

presence of a chiral mismatch  

Based on the previous observations, the presence of D-AAs causing a chiral mismatch 

in the heterochiral CMP does not seem to completely prevent the interaction with 

integrin, thanks to the glutamate residue. This is not unexpected, as cells are able to 

adhere and spread on this substrate, although with less efficiency than on its 

homochiral counterpart or on collagen. The stereochemical modification seems to act 

more as a modulation of the interactions than as an ON/OFF switch. We therefore 

investigated the peptide-integrin interactions during the simulations in more details. 

The anchoring of the peptide in the binding site was evaluated by measuring the 

contact surface between the triple helix and the I-domain (Figure IV.3).  

Figure IV.3. Measurements of the contact surface between the peptides and the I-domain of 

the integrin. (A) Equation used to compute the contact surface, and surface representation of 

the different species involved. (B) Distribution of the contact surface values for each system. 

The lines delimiting a box represent the first and third quartiles, whose values are annotated 

at the edges of the box. The line inside a box indicates the mean value. The error bar is given 

as mean ± 1.5 x standard deviation. The average values and standard deviations are given in 

the table. 
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The heterochiral CMP displays the lowest value, although the three peptides show 

similar levels overall, which is consistent with the fact that binding is maintained in all 

cases. Similarly, the number of intermolecular hydrogen bonds, both direct and water-

mediated (so-called “bridging” H-bonds, i.e. between two species via a water molecule) 

was found to be slightly higher for the homochiral CMP than for its heterochiral 

counterpart (Figure IV.4). 

Figure IV.4. Number of (A) intermolecular H-bonds and (B) intermolecular bridging H-

bonds per conformation measured during the whole simulations between the three peptides 

and the I-domain of the integrin. Data is shown as mean ± standard deviation. The pale lines 

represent the distribution of the measurements during the whole simulations. Statistics are 

given in the tables below. 

Collagen is involved in more intermolecular H-bonds, which is expected due to the 

presence of the full GFOGER binding motif, as well as the presence of other 

hydroxyproline units in the collagen sequence. In contrast, the CMPs can only form H-

bonds through their glutamate residues and the backbone amide bonds. To localize the 

AAs of the I-domain interacting with the peptides, a heatmap of the intermolecular H-

bonds was drawn (Figure IV.5). On the x-axis on the heatmap are represented the 

AAs of the binding site involved in H-bonds with the peptides, while the different 

peptides studied are displayed on the y-axis. At the crossing of the axes are found 

colored rectangles, whose color indicates the number of H-bonds detected between a 

peptide and the corresponding AA of the binding site. In addition to collagen and the 

two CMPs, the heatmap features the pure L- and D-(PPG)10 chains. The first striking 

observation is that the (PPG)10 peptides form very few interactions, regardless of their 

stereochemistry. The addition of the glutamate units in the CMPs significantly 

increases their anchoring in the binding site, thus their number of intermolecular H-

bonds. The pattern of interactions of the CMPs approaches that of collagen, although  
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Figure IV.5. Heatmap of the intermolecular H-bonds between the five simulated peptides 

and the I-domain of the integrin (left), and top view of the I-domain (right). The heatmap 

displays the AAs of the binding site (represented by their one-letter code and their residue 

number) on its x-axis, and the five peptides on its y-axis. At the crossing of the x and y axes is 

found a rectangle, whose color indicates the frequency of the intermolecular H-bonds (the 

brightest the color, the more frequent the interaction). The red, blue and green rectangles on 

the heatmap highlight the position of the AAs in the binding site (see associated colored areas 

on the top view of the I-domain). 

there are some differences. Three groups of AAs can be distinguished, based on their 

position in the binding site (see red, blue and green colored rectangles in the heatmap 

and associated areas on the snapshot in Figure IV.5). The heterochiral CMP 

essentially interacts with AAs located in the blue area, and performs much fewer H-

bonds with the other parts of the I-domain. Furthermore, it does not feature very 

persistent interactions, its most frequent hydrogen bond (with tyrosine T80) occurring 

less than 40 % of the time. In contrast, the homochiral CMP shows interactions in all 

three areas and forms persistent interactions with a serine (S14) and an arginine 

(R147). Interestingly, this H-bond is located in an area where the collagen does not 

really interact. This could suggest that the CMP is stabilized by interactions with other 

AAs than natural collagen, despite their identical stereochemistry. This is reasonable, 

as collagen mainly interacts through its polar side-chains, while the CMPs essentially 

contain apolar substituents (glycine and proline residues), thus mainly interact 

through their backbone amides and free glutamate residues. Therefore, the similar but 

not identical behavior of cells on collagen and the homochiral substrates observed 

experimentally could be explained by such differences in the sequence of AAs, the CMP 

containing the necessary units to interact, but finding other mechanisms to stabilize in 

the binding site of the integrin. Additionally, the homochiral CMP displays a very 

persistent intermolecular bridging H-bond, occurring between one of its free glutamate 
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and another glutamate residue on the I-domain (Figure IV.6). This bond is found 

more than 90 % of the time, and could be another interaction helping the homochiral 

CMP to stabilize in the binding site. In comparison, the most persistent bridging 

intermolecular H-bonds for collagen and the heterochiral CMP are found less than 50 

% of the time.  

Figure IV.6. Final snapshot of the MD simulation of the homochiral CMP, showing its most 

persistent bridging intermolecular H-bond, which occurs between one of its glutamate residue 

and another glutamate (GLU 217) exposed on the I-domain, through interaction with two water 

molecules. H-bonds are represented as black dots. 

Overall, the heterochiral CMP displays less interactions with the binding site than its 

homochiral counterpart, and more importantly, does not feature persistent 

interactions, in marked contrast to the homochiral CMP.  

Based on these atomic-scale investigations, our hypothesis to explain the less efficient 

interactions observed between the heterochiral CMP and the integrin is related to an 

increased internal flexibility caused by the chiral mismatch in this peptide. The 

stereochemical inversion of the AAs in the (PPG)5 section induces the formation of a 

left-handed triple helix, while the (PEG)2 segment, composed of L-prolines, cannot 

follow this handedness. This brings conformational disorder in the supramolecular 

assembly of the triple helix at the junction between the L- and D-AAs, located right in 

the binding site. This disorder is detrimental to the recognition, especially because the 

triple helix structure was deemed essential for the binding, as GFOGER-containing 

peptides lacking a triple helix structure were shown to be unable to interact with the I-

domain of α1β1 or support cell adhesion.[17] The higher flexibility of the (PEG)2 part in 

the heterochiral CMP, compared to the homochiral CMP and collagen, is shown by 

RMSF measurements (Figure IV.7). In contrast, the (PPG)5 part is similarly stable in 

both CMPs, indicating that stereoinversion alone does not compromise the integrity of 

the triple helix, as destabilization is localized at the chiral mismatch. 



Chiral mismatch in collagen-mimetic peptides modulates cell migration through integrin-mediated 
molecular recognition 

71 
 

Figure IV.7. RMSF measurements for each AA in the first (left), second (middle) and third 

(right) chains forming the triple helix, for all systems. The higher the RMSF value, the more 

flexible is the residue. The sequences of the CMPs and collagen are written in black and blue 

on the x-axis, respectively. 

This can be observed on the superimposed first and final snapshots obtained for all 

peptides, presented in Figure IV.1 D, where the (PEG)2 part of the heterochiral CMP 

is visibly disordered. This lack of stability is also reflected by the number of H-bonds 

inside the supramolecular triple helix, between the three peptide chains, measured for 

all systems (Figure IV.8). In the last 12 AAs, i.e. inside the (PPG)5 triple helix, the 

chiral inversion does not seem to impact the network of H-bonds (around 6 H-bonds 

per conformation for both CMPs). However, the heterochiral CMP displays much less 

interactions within its first nine AAs (around 1 H-bond per conformation), i.e. in the 

(PEG)2 part, compared to the homochiral CMP (around 4 H-bonds per conformation), 

see Figure IV.8 C. The increased flexibility of the heterochiral CMP and the partial 

loss of the triple helix conformation could explain the less efficient interactions with 

the integrin, thus the lower affinity of cells for this substrate. As cells have less 

adhesions with this matrix, their ability to exert contractile forces necessary for their 

displacement will be reduced, leading to a slower migration speed. 
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Figure IV.8. Estimates of the number of H-bonds inside the supramolecular triple helix. (A) 

Number of H-bonds between the first nine (left) and last twelve (right) AAs of the three peptide 

strands inside the triple helix for collagen (blue), homochiral CMP (red), and heterochiral CMP 

(green). Data is shown as mean ± standard deviation. The pale lines represent the distribution 

of the measurements during the whole simulations. (B) Table summarizing the data. (C) Final 

MD snapshot of the heterochiral CMP showing that H-bonds (displayed as pink dots) are 

maintained in the (PPG)5 part, while they vanish in the more disordered (PEG)2 part 

(represented in gray). 

IV-A.5. Conclusion 

In agreement with the experimental results, our simulations indicate that the 

heterochiral CMP is not able to interact with the α1β1 integrin as efficiently as natural 

collagen and the homochiral CMP. We attribute this behavior to the chiral mismatch 

present in the sequence of the heterochiral CMP, where the triple helix conformation 

is disorganized at the junction between the L- and D-AAs. This could explain the lower 

number of cell-matrix adhesions on the heterochiral substrate, thus resulting in slower 

migration. It is remarkable that a small stereochemical perturbation has such an 

impact on the supramolecular assembly of two peptides sharing the exact same 

sequence of monomers, leading to major differences in their interactions with 

important cellular receptors. Our simulations also confirmed the major role of the 

glutamate moiety, without which binding in the MIDAS cavity is not possible. 

Of course, our simulations only capture a minor fraction of the complexity of cell 

migration, which involves much more interaction partners and components of the 

ECM, and cannot entirely explain the differences between the two CMPs. However, we 

believe that the information brought by the MD simulations is particularly valuable to 

better understand the impact of small changes in the primary structure on 

(supra)molecular conformations and cellular processes. This work highlights clearly 
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the sensitivity of cells to their environment, and how modifications at the atomic scale 

can lead to perturbations in cell behavior. Chirality is an important factor that 

researchers can use to modulate the physicochemical properties of the ECM and better 

understand cell behavior in response to perturbations in their environment. 

 

IV-A.6. Simulation protocol 

MD simulations were carried out with the AMBER package.[22] The structures of the I-

domain of the α1β1 integrin and of the (PPG)10 triple helix were directly taken from the 

Protein Data Bank (PDB), with PDB ID: 1qcy[25] and 1k6f,[15,25] respectively. To build 

the collagen-mimetic peptides (PEG)2-(PPG)5, the backbone of the (PPG)10 triple helix 

was reproduced, and its length and AA composition was subsequently adapted with the 

LEaP module of AMBER. The D-enantiomers were obtained by creating the mirror 

image of the L-enantiomers using LEaP. The structure of collagen was extracted from 

a crystal structure of its complex with the I-domain of the α2β1 integrin (PDB ID: 

1dzi).[19] This binding mode was reproduced for the simulations of collagen and the 

CMPs in interaction with the I-domain of α1β1. This assumption seems reasonable, 

given the high structural similarity between the I-domains of α1β1 and α2β1.[26] 

Collagen, the homochiral and heterochiral CMPs, the L- and D-(PPG)10 triple helices 

and the I-domain of α1β1 were described with the ff19SB force field.[27] The peptide – I-

domain complexes were solvated in explicit water boxes, using the 4-point OPC water 

model.[28] NaCl ions were added at a concentration of 0.15 M, using the “SPLIT” 

method.[29] The simulations started with a geometry optimization performed by 

molecular mechanics to get a stable starting structure. A first phase served to stabilize 

the solvent molecules and the Na+ and Cl- ions, which underwent 1,000 steps of 

steepest descent followed by 9,000 steps of conjugated gradient, with restraints on the 

solute atoms. The second phase of optimization was performed with the same protocol, 

without any constraints. Next, a heating step of 2 ns was performed in the NVT 

ensemble. The system was brought to a temperature of 300 K in 1 ns, and was 

maintained at this temperature for a further 1 ns (and for the rest of the simulation) 

using a Langevin thermostat, with a collision frequency of 1 ps-1. Positional restraints 

were applied to all solute atoms during heating, with a force-constant of 10 kcal.mol-

1.Å-2. Then, the system was equilibrated during 10 ns in the NPT ensemble at a pressure 

of 1 bar using a Monte Carlo barostat, with a pressure relaxation time of 2 ps. Finally, 

the production phase of 1 µs was launched in the NPT ensemble. Five independent 

replicas were launched for each peptide – I-domain complex, starting from the same 

structure optimized by molecular mechanics. A timestep of 2 fs was used with the 

SHAKE algorithm to constrain bonds involving hydrogen atoms. A cutoff of 12.0 Å was 

used for non-bonded interactions and the particle mesh Ewald method was used to 
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treat long-range electrostatic interactions. A snapshot was extracted each ns of the 

production phase for further analyses (5,000 conformations for each system when 

considering the five replicas). The cpptraj module of AMBER and in-house scripts were 

used to analyze the simulations.[30] The solvent-accessible surface area (SASA) values 

were computed using the LCPO algorithm, using a van der Waals radius of 1.4 Å for the 

solvent probe. These values were injected in the equation shown in Figure IV.3 A to 

determine the contact surfaces. RMSF values were computed for each amino acid of 

the triple helices, after removal of the translational and rotational movements. 

Hydrogen bonds were detected using geometric criteria: the distance between the 

acceptor and the donor heavy atom must be ≤ 3.0 Å, and the angle between the donor, 

the hydrogen atom and the acceptor must be ≥ 135°. The PyMOL 2.5.4 software was 

used to produce the snapshots.[31] The solvent water molecules were hidden on the 

snapshots, for the sake of clarity. Statistics given in the tables are always calculated on 

the 5,000 conformations for each system. 
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IV-B. Selectivity in the chiral self-assembly of 
nucleobase-arylazopyrazole photoswitches along DNA 
templates 
 
Part of this work is reported in: Selectivity in the chiral self-assembly of nucleobase-

arylazopyrazole photoswitches along DNA templates. 

N. Nogal, S. Guisán, D. Dellemme, M. Surin, A. de la Escosura, J. Mater. Chem. B, 

2024, 12, 3703-3709. 

 

IV-B.1. Introduction 

The possibility to control the nucleobase sequence of DNA allows the emergence of 

programmable assemblies, such as DNA origamis and various 2D and 3D 

nanostructures.[1–4] Its controllable architecture can be functionalized with the 

covalent attachment of synthetic components, to expand the range of applications.[5,6] 

The grafted units can promote the formation of networks of non-covalent interactions, 

allowing the formation of complex supramolecular assemblies involving DNA 

strands.[7–13] The programmable structure of DNA can also be exploited without 

modifications, to template the organization of molecules at the nanoscale. These pure 

supramolecular approaches are attractive, as they make use of readily available DNA 

strands, avoiding the challenges associated with the synthesis of modified 

polynucleotides. For instance, DNA can guide the supramolecular assembly of 

chromophores, modulating donor-acceptor coupling to control energy transfer.[14–16] 

Specific secondary structures of DNA can be targeted by tailor-made ligands, in view 

of biosensing applications.[17–23] The templating effect of DNA can also be used to direct 

supramolecular polymerization, to preorganize monomers before their coupling into a 

covalent polymer of defined sequence, or to build various highly controlled 

nanostructures.[1,24–28] Another advantage of using supramolecular interactions is their 

dynamic and reversible nature, meaning that external stimuli can be exploited to 

design responsive and adaptable systems. Light is a particularly attractive stimulus, 

providing fine spatial and temporal resolution without introducing contaminants in 

the system. Light-responsive molecules able to reversibly change their configuration 

upon irradiation, such as azobenzene derivatives, have emerged as promising systems 

for a wide range of applications, including energy harvesting, catalysis or 

bioimaging.[29–32] Combining light-responsive components with programmable DNA 

templates opens new avenues for the development of functional nanomaterials.[33,34] 

Several examples have demonstrated the possibility to control the supramolecular 

assembly of photoswitchable ligands with DNA and to selectively stabilize specific DNA 

conformations using light.[35–37] For instance, an azobenzene derivative was 
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incorporated inside a gene to regulate its expression in vitro.[38] In the trans 

configuration, the molecule intercalates into the DNA double helix, blocking RNA 

polymerase binding and thereby inhibiting transcription. Upon photoisomerization to 

the cis configuration, transcription resumes, demonstrating the possibility of 

temporally regulating gene expression. More recently, a short oligothymine single-

strand was combined with a complementary photoswitchable molecule bearing two 

adenine bases to develop a photo-responsive hydrogel.[39] The molecule can form H-

bonds with two ssDNAs simultaneously, leading to the formation of a network 

composed of large twisted fiber bundles after several weeks of equilibration. Upon 

irradiation with UV light, which alters the photoswitch conformation, local shrinking 

of the hydrogel was observed on the illuminated area. These examples, among many 

others, demonstrate the interest of combining DNA and stimuli-responsive 

components to develop adaptable nanomaterials. 

In our work, novel photoswitches based on an arylazopyrazole unit were designed. 

Arylazopyrazoles are easier to photoisomerize and exhibit greater thermal stability 

than azobenzenes.[40,41] Our compounds are decorated with a nucleobase, either 

thymine or adenine, with the goal to assess their supramolecular organization 

templated by complementary oligonucleotides. This design is motivated by previous 

works that made use of short ssDNAs, such as oligoadenine (dAn) or oligothymine 

(dTn), to template the self-assembly of molecules bearing a complementary recognition 

unit.[25,39,42–44] Chiroptical spectroscopy experiments revealed that both 

arylazopyrazoles can bind to their complementary DNA strand and adopt a chiral 

organization in their trans configuration, while partial disassembly occurs upon 

photoisomerization into the cis configuration (Figure IV.9). Molecular dynamics 

(MD) simulations were carried out to shine light on the binding modes of the 

arylazopyrazoles in their trans and cis configurations with their DNA partner. Our 

results show that the trans form allows the emergence of stabilizing π-type interactions 

between the molecules wrapped around DNA, which helps to maintain the 

supramolecular assembly. In the cis configuration, these interactions are partially lost, 

leading to the formation of more disordered aggregates and less persistent H-bonds 

with the template. All the experimental results presented in this chapter were obtained 

by Noemí Nogal,[45] and the compounds were synthesized by Santiago Guisán, in the 

frame of a collaboration with the group of Dr. A. de la Escosura at Universidad 

Autónoma de Madrid. 
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Figure IV.9. Cartoon representation of the investigated systems. Partial disassembly occurs 

upon irradiation with UV light and isomerization of the molecules into their cis configuration. 

Ligands are colored in blue, while DNA nucleosides are shown in red. The DNA backbone is 

represented as a yellow tube. 

IV-B.2. Design of the ligands and reparametrization of the 

force field for the MD simulations 

Two arylazopyrazole derivatives were designed, having the same conjugated region and 

functionalized with either the adenine (Azo-A) or the thymine (Azo-T) nucleobase 

(Figure IV.10 A). Upon irradiation with UV light (365 nm), these molecules undergo 

trans to cis photoisomerization. The reversible reaction occurs upon irradiation with 

visible light (465 nm). The photoswitches are combined with a complementary ssDNA, 

with which they are able to assemble through hydrogen bonding interactions (Figure 

IV.10 B). MD simulations were performed using the AMBER package on assemblies 

of 10 arylazopyrazole molecules (Azo-A or Azo-T) with their complementary 

oligonucleotide template of 20 nucleobases (dT20 or dA20), reproducing the 

experimental stoichiometry, in explicit water boxes containing Na+ and Cl- ions.[46] The 

carboxylate group at the end of each azo compound was modeled in its deprotonated 

form, as the pKa value of benzoic acid is around four.[47] Independent simulations were 

run for each assembly (Azo-A/dT20 and Azo-T/dA20), with all azo compounds either in 

the trans or cis configuration preorganized along the DNA template. Two replicas were 

run for each condition, giving a total of eight simulations. Complementary H-bonds  
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Figure IV.10. Chemical structures of the systems studied. (A) Structure of Azo-A and Azo-T 

and illustration of their photoswitchable trans and cis configurations, upon irradiation with 

visible (465 nm) or UV (365 nm) light. Adenine and thymine nucleobases are represented in 

blue and red, respectively, and the conjugated region is depicted in lighter colors. (B) 

Representation of the supramolecular assemblies studied, involving oligonucleotides 

comprising 20 nucleobases (dT20 or dA20) and the complementary arylazopyrazole molecule. 

between the nucleobases (as represented in Figure IV.10 B) were constrained for 250 

ns to allow equilibration of the supramolecular complex without ligand unbinding, 

followed by 1 µs of unrestrained simulation (see full details of the protocol in Section 

IV-B.6). 

Given the particular structure of the azo compounds, which contain an extended 

conjugated region including several heteroatoms, we carried out a reparametrization 

of the torsional parameters of the GAFF 2.11 force field (Figure IV.11). The 

reparametrization was done with the mdgx module implemented in AMBER. In short, 

two fragments containing the dihedral angles of interest, Φ1 to Φ4, were built (Figure 

IV.11 A). Hundreds of conformers were generated and optimized with the default 

GAFF 2.11 parameters to sample the torsions in the interval [-180 ° ; 180 °]. Then, the 

energy of these conformers was obtained at the MM and QM levels, with the QM energy  
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Figure IV.11. Reparametrization of the four dihedral angles, Φ1 to Φ4. (A) Chemical structure 

of the two fragments used for the reparametrization. (B) Relative potential energy curves, in 

kcal/mol, as a function of the dihedral angle for the four torsions. The energy curves obtained 

at the QM level, with the default GAFF 2.11 parameters and the modified parameters are shown 

in black, red and blue, respectively. 

serving as the reference data. Finally, new dihedral parameters were generated in order 

to reduce the gap between the MM and QM energies. The results of the 

reparametrization of the four dihedral angles are displayed in Figure IV.11 B. The 

curves generated with the refined force field parameters (in blue in Figure IV.11 B) 

are not perfectly matching the QM reference curves (in black in Figure IV.11 B), 
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especially for the torsion Φ4. The height of the barrier is also too high for Φ3. However, 

the new profiles represent a considerable improvement compared to the curves 

obtained with the initial force field parameters (in red in Figure IV.11 B), coming 

from GAFF 2.11. It reveals significant flaws in this force field’s ability to accurately 

reproduce the conformations of extended conjugated systems, especially when they 

involve heteroatoms and combinations of aromatic cycles and double bonds. In 

particular, the parameters describing Φ1 were completely erroneous, with minima and 

maxima of the potential energy surface inverted compared to the QM reference. 

Although not perfect, our modifications will ensure that the conjugated region keeps 

its planarity and will prevent spontaneous trans-cis isomerization (with a barrier of 

more than 30 kcal/mol between the trans and cis states, see Φ2 curves), which is the 

expected behavior according to the QM torsional profiles. Further refinement of these 

parameters may be needed in view of more sophisticated analyses sensitive to small 

conformational changes, such as the simulation of CD spectra. However, these 

approaches were not undergone in this work and are envisioned as perspectives: 

preliminary attempts have been realized and will be discussed in Section IV-B.5. 

 

IV-B.3. DNA templating organizes the stacking of the trans 

isomers and requires high ionic strength 

Experimental CD spectra indicate that both azo compounds in their trans 

configuration are able to interact with their complementary DNA template (Figure 

IV.12). This can be stated by the appearance of a strong induced CD (ICD) signal 

between around 325 and 450 nm. Only the achiral ligands absorb light in this region, 

Figure IV.12. Experimental CD spectra of the Azo-A/dT20 and Azo-T/dA20 complexes, 

represented by the blue and red curves, respectively. The spectra were measured at NaCl 

concentrations of 1 M (left) and 5 M (right). 
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and they do not present a chiral signature alone in solution: this signal means that they 

acquire a chiral organization upon interaction with the ssDNA template. The 

chiroptical spectra provide two further valuable insights. Firstly, a high ionic strength 

promotes the supramolecular assembly, as shown by the significantly stronger 

intensity of the ICD signals at a NaCl concentration of 5 M compared to 1 M. Secondly, 

the signs of the ICD signals are opposite for the two azo compounds, which is surprising 

given that they are expected to bind to ssDNAs with the same helical sense. MD 

simulations were therefore carried out on assemblies of the azo compounds in their 

trans configuration with their complementary ssDNA, to better understand the 

interactions stabilizing the supramolecular complexes. In all cases, the number of H-

bonds between the complementary nucleobases of the ligands and of their template 

instantaneously decreased after removal of the restraints (Figure IV.13 A). The azo 

compounds quickly reorganized along the DNA strand, although some ligands are still 

H-bonded at the end of the simulation, with around 5 to 9 H-bonds remaining between 

complementary nucleobases. In marked contrast, the number of π-type interactions1 

stayed generally stable after removal of the restraints (Figure IV.13 B).  

Figure IV.13. Interactions between the trans azo compounds and their complementary DNA 

template. (A) Evolution of the number of H-bonds between the complementary nucleobases 

of the arylazopyrazoles and the DNA template. (B) Evolution of the number of π-type 

interactions between the arylazopyrazoles. Blue and red curves represent the Azo-A/dT20 and 

Azo-T/dA20 systems, respectively. The running average including the five previous and five 

subsequent conformations is displayed, for ease of visualization. (C) Table summarizing the 

average number of interactions during the last 500 ns of the simulation. 

 

1
 π-type interactions are counted between aromatic cycles following these geometric criteria: the distance 

between their centers of mass must be ≤ 5 Å, and the angle between their planes must be < 45 ° or > 135 °. 
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The organization of the trans azo compounds can be observed on the final snapshot of 

the MD simulation of the Azo-A/dT20 assembly, showing the molecules wrapped 

around the oligonucleotide (Figure IV.14 A). Although several ligands have lost their 

H-bonds, π-type interactions between their large conjugated regions stabilize the 

formation of a well-organized stack around the template, as shown by the zoom in 

Figure IV.14 B. Additionally, the H-bonding and π-type interactions occurring 

during the last 500 ns of the simulation were localized using heatmaps (Figure IV.14 

C, D). The heatmap of H-bonds represents the azo compounds and the nucleotides of  

Figure IV.14. Overview of the simulation of the Azo-A trans/dT20 complex (first replica). (A) 

Final MD snapshot showing the 10 azo compounds (in blue) wrapped around the DNA strand 

(represented as a yellow tube with the nucleosides in red). (B) Zoom on five arylazopyrazoles 

forming a well-ordered stack. (C) Heatmap of H-bonds between the complementary 

nucleobases of the 10 azo compounds (represented on the x-axis, from Azo-A 1 to Azo-A 10) 

and of the DNA template (the 20 nucleotides are depicted in the y-axis, from dT1 to dT20). (D) 

Heatmap of π-type interactions between the 10 arylazopyrazole molecules (represented on the 

x- and y-axes). 
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the template on the x- and y-axes in Figure IV.14 C, respectively. It clearly shows that 

five ligands remain engaged in interactions with nucleobases along the dT20 strand. 

Simultaneously, the organized packing of the molecules is maintained at the 

microsecond timescale, with persistent π-type interactions occurring between 

neighboring arylazopyrazoles (displayed on the x- and y-axes in Figure IV.14 D), as 

indicated by the colored squares all along the diagonal of the heatmap. A similar 

behavior was observed for the four simulations of the trans isomers (see the left 

column of Figures IV.S1 and IV.S2 for the replica of Azo-A trans/dT20 and for the 

simulations of Azo-T trans/dA20). These heatmaps confirm that molecules dissociated 

from the template can remain efficiently stacked; see for example Azo-A 7, which forms 

very few H-bonds with the oligonucleotide but maintains π-type interactions with its 

neighbors Azo-A 6 and Azo-A 8. Overall, the molecules seem to be stabilized essentially 

by their π-type interactions, whereas H-bonds with the template help to order the 

stacks of azo compounds. The ligands that bind efficiently to the oligonucleotide can 

serve as “anchors” for the stacking of other units, which may remain within the chiral 

templated stacks even without forming direct H-bonds with the template. This 

tendency to favor π-type interactions over H-bonds with a DNA template was observed 

for other compounds presenting an extended conjugated region.[48–50] The stacking 

mode of the azo compounds in their trans configuration may also explain the 

important role played by the salt concentration. Within the stacks, the nucleobases are 

directed towards the template, which brings the negatively charged carboxylate groups 

at the other end of the molecules closer together. Increasing salt concentration helps 

to decrease the electrostatic repulsion, thus stabilizing the assemblies. The attraction 

of Na+ ions towards the carboxylate moieties is illustrated by radial distribution 

functions (RDFs) (Figure IV.15). Interestingly, the density of Na+ ions close to the 

carboxylates is slightly higher for the molecules in their trans configuration than for 

those in their cis configuration, with higher RDF values for the first three peaks. This 

could arise from weaker π-type interactions between the cis azo compounds, as will be 

discussed in the next section, leading to less proximity between the carboxylates, thus 

a lower local density of cations. Finally, the organization of the trans azo compounds 

was investigated by measuring the rotation between consecutively stacked units. To 

this end, a vector was defined along the conjugated region (see illustration in Figure 

IV.16 A), and the angle between consecutive vectors was measured during the first 

250 ns, i.e. when the H-bonds are constrained, to analyze the organization of “ideal” 

stacks. The average angle between the conjugated region of two stacked molecules is 

23.9 ± 17.6 ° (with a median value of 20 °). In comparison, the helical twist between 

consecutive nucleobases in dsDNA in its B-form is about 34°. This shows that the 

rotation around the azo units does not strictly follow the natural helical twist of the 
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Figure IV.15. RDF measured for the first replica of the Azo-A/dT20 complex, for the trans 

(left) and cis (right) isomers. RDFs for the other simulations (second replica of Azo-A and 

simulations of Azo-T) follow a very similar trend (data not shown). The RDF value indicates 

the density of ions (Na+ or Cl-, in blue and red, respectively), normalized by the average density 

of ions in the full simulation box, as a function of the distance from the carbon atom of the 

carboxylate groups. For instance, a value of six means that the ion density is six times higher 

than in the bulk, indicating a strong local attraction. The RDF values for the first three peaks 

of the Na+ distribution are indicated in the table (statistics calculated on all replicas). 

DNA template, which may explain the vanishing of H-bonds for several molecules, 

unable to maintain both H-bonds and π-type interactions, and prioritizing the latter. 

 

Globally, our simulations reveal similar trends for the Azo-A trans/dT20 and the Azo-

T trans/dA20 complexes, without obvious differences in the assembly. The reason 

behind the apparition of ICD signals of opposite signs remains unclear. However, other 

ligands presenting a large aromatic region were shown to interact with an ssDNA 

strand without following its helicity.[48] Ligands maintaining strong stacking 

interactions when assembled along DNA templates can form complex chiral structures, 

whose interpretation is not straightforward. Further work is needed to get more precise 

information on the nature of these ICD signals.  
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Figure IV.16. Measurements of the rotation between pairs of stacked azo compounds. (A) 

Schematic representation of the methodology used to compute the rotation angle, using vectors 

defined along the conjugated region. (B) Distribution of the rotation angle values. The lines 

delimiting the box represent the first and third quartiles, whose values are annotated at the 

edges of the box. The line inside the box indicates the mean value. The error bar is given as 

mean ± 1.5 x standard deviation. (C) Table summarizing the data. 

IV-B.4. Trans to cis photoisomerization disorganizes ligands 

stacking and weakens the supramolecular assembly 

Chiroptical spectra show a complete loss of the ICD signal when the molecules are 

switched in their cis configuration. To shine light on the effect of photoisomerization 

on the supramolecular assembly, MD simulations were also performed on the cis azo 

compounds organized along their complementary DNA template, following the same 

methodology than before. Similarly than for the trans compounds, the number of H-

bonds quickly decreased after removal of the restraints (Figure IV.17, A). However, 

here, the interactions are nearly completely lost at the end of the simulations, except 

in one case (replica of Azo-A, light blue curve). This outlier suggests that, although 

binding to the template seems weaker for the cis isomers, the photoisomerization does 

not always imply a complete dissociation. The number of π-type interactions between 

the arylazopyrazoles is also significantly lower for the cis isomers, with on average 

around 10 interactions per conformation at the end of the simulation (against around 

19 for the trans compounds) (Figure IV.17, B). The lack of planarity of the 

conjugated region for the cis isomers prevents the formation of well-organized stacks 

along the template. Instead, highly disordered and dense aggregates are formed 
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(Figure IV.18 A, B). Given the major role of π-type interactions in maintaining the 

assembly of the trans isomers, it is unsurprising that the molecules in their cis form 

quickly lose interactions with the oligonucleotide. Consequently, dissociation from the 

template is more likely for these isomers (see final MD snapshots of the other 

simulations in Figure IV.S3). This can be observed on the heatmap of H-bonds, with 

only one molecule still forming H-bonds with the oligonucleotide at the end of the 

simulation (Azo-A 2 with the nucleotide dT9) (Figure IV.18 C). The heatmap of π-

type interactions also shows that interactions are much weaker for the cis compounds, 

in comparison to the same heatmap for their trans counterparts (see Figure IV.14 

D). H-bonds and stacking heatmaps for the other simulations (replica of Azo-A 

cis/dT20 and the simulations of Azo-T cis/dA20) are presented in the right column of 

Figures IV.S1 and IV.S2. Except for the replica of Azo-A cis mentioned earlier, 

where H-bonds remained surprisingly well-organized despite the apparent disorder of 

the ligands, these heatmaps confirm that the trans isomers bind more efficiently to the 

template and establish a stronger network of π-type interactions. Therefore, in  

Figure IV.17. Interactions between the cis azo compounds and their complementary DNA 

template. (A) Evolution of the number of H-bonds between the complementary nucleobases 

of the arylazopyrazoles and the DNA template. (B) Evolution of the number of π-type 

interactions between the arylazopyrazoles. Blue and red curves represent the Azo-A/dT20 and 

Azo-T/dA20 systems, respectively. The running average including the five previous and five 

subsequent conformations is displayed, for ease of visualization. (C) Table summarizing the 

data during the last 500 ns of the simulation. 
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Figure IV.18. Overview of the simulation of the Azo-A cis/dT20 complex (first replica). (A) 

Final MD snapshot showing the 10 azo compounds (in blue) wrapped around the DNA strand 

(represented as a yellow tube with the nucleosides in red). (B) Zoom on five arylazopyrazoles 

forming a disordered aggregate. (C) Heatmap of H-bonds between the complementary 

nucleobases of the 10 azo compounds (represented on the x-axis, from Azo-A 1 to Azo-A 10) 

and of the DNA template (the 20 nucleotides are depicted in the y-axis, from dT1 to dT20). (D) 

Heatmap of π-type interactions between the 10 arylazopyrazole molecules (represented on the 

x- and y-axes). 

addition to the partial disassembly from the oligonucleotide, the loss of the ICD signal 

observed for the cis isomers could also stem from the formation of highly disordered 

aggregates that do not strongly interact with the template, hence do not follow its 

helical structure. 
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IV-B.5. Conclusion 

The binding modes of the azo compounds along their complementary DNA templates 

were shown to be strongly influenced by their configuration. In the trans form, a 

combination of H-bonds between complementary nucleobases and π-type 

interactions, with a predominance of the latter, is key to induce and maintain the 

supramolecular assembly. Although some molecules do not maintain their H-bonds 

with the template, they remain stacked with other ligands, ensuring that the chirality 

of DNA is transmitted to the azo compounds. These supramolecular stacks are 

stabilized by the presence of a high concentration of Na+ ions. Inversely, the cis 

isomers, lacking planarity in their conjugated region, are not able to maintain ordered 

π-type interactions. This significantly weakens the binding to the DNA strand, and 

leads to partial disassembly from the template and the formation of disordered 

aggregates. These results are in line with the experimental CD spectra, which indicate 

the need of a high ionic strength to promote supramolecular assembly, and loss of the 

ICD signals upon photoisomerization into the cis configuration. 

However, our simulations do not explain the unexpected nature of the ICD signals, 

which are of opposite signs for the two azo compounds. As mentioned previously, the 

sign of the ICD signal is not always dictated by the chirality of the DNA template in the 

case of strongly conjugated molecules.[48] Therefore, a deeper understanding of these 

chiroptical experiments would require theoretical calculations of CD spectra based on 

conformations extracted from MD simulations. This constitutes a perspective to this 

work, and new simulations have already been performed using the GROMACS 

package, with a more accurate reparametrization of the force field.[51] CD spectra have 

begun to be simulated with the VeloxChem software from these new simulations, in 

collaboration with the group of M. Linares and P. Norman at KTH Royal Institute of 

Technology in Stockholm. An example for each azo compound is shown in Figure 

IV.S4.[52] In brief, these first attempts suggest that very small conformational 

modifications can induce a completely opposite response. Our goal now is to 

understand which structural parameters determine the sign of the ICD signals, in order 

to correlate the experimental observations with an accurate atomic-scale picture of the 

assemblies. 

 

IV-B.6. Simulation protocol 

Concerning the reparametrization step, 540 conformers were generated for the 

fragment 1 to scan the Φ1, Φ2 and Φ3 dihedral angles. New parameters were derived for 

all three angles based on this scan. For the fragment 2 and the reparametrization of Φ4, 

400 conformers were generated. Individual scans, presented in Figure IV.11, were 



Selectivity in the chiral self-assembly of nucleobase-arylazopyrazole photoswitches along DNA 
templates 

 

93 
 

then realized to evaluate the quality of the new parameters. The QM calculations were 

performed with the Gaussian 16 software, using the MP2 method (post-Hartree-Fock) 

and the cc-pvdz basis set.[53] Using fragments instead of the whole azo compounds has 

two interests: it reduces the number of atoms for the QM calculations, thus reducing 

computational cost, and allows to use the same set of new parameters for both Azo-A 

and Azo-T, which seems reasonable as their conjugated part is the same. 

 

To build the azo compounds, the structure of the molecule was divided in 3 fragments, 

modeled with the Avogadro 1.2.0 software.[54] The assembly of the fragments and all 

subsequent operations were carried out with the AMBER package.[46] The calculations 

of the atomic partial charges were performed with the antechamber module of 

AMBER, using the semi-empirical AM1-BCC method.[55] All force field parameters for 

the azo compounds were given by GAFF 2.11, except the reparametrized ones.[56] The 

fragments were assembled using the LEaP module of AMBER. The oligonucleotides 

were built with the Nucleic Acid Builder (NAB) tool implemented in AMBER and the 

DNA force field parameters were given by Parmbsc1.[57] The 

arylazopyrazoles/oligonucleotide supramolecular complexes were built within LEaP. 

The azo units were preorganized along the template (pairing of the complementary 

nucleobases) using PyMol 2.5.4.[58] The Azo-A/dT20 and Azo-T/dA20 complexes were 

simulated independently, in 2 replicas for each isomer (trans and cis), giving 8 

independent simulations. All systems were solvated in truncated octahedral water 

boxes, with at least 25.0 Å between any solute atom and the edge of the box, in order 

to let enough space for the ligands to have the possibility to dissociate from the 

template. The 4-point OPC water model was used to describe the solvent and a NaCl 

concentration of 5 M was used to reproduce the experimental conditions, following the 

“SPLIT” method.[59,60] All MD simulations were performed with the GPU version of 

AMBER. They started with a geometry optimization performed by MM to get a stable 

starting point. 1,000 steps of steepest descent were followed by 9,000 steps of 

conjugated gradient on the solvent and salt residues. A second geometry optimization 

was done with the same protocol, on the whole system. Then, a heating step of 2 ns was 

performed in the NVT ensemble to bring the system to a temperature of 300 K, using 

positional restraints on the solute atoms with a force constant of 10 kcal.mol-1.Å-2. The 

temperature was maintained at 300 K with a Langevin thermostat, using a collision 

frequency of 1 ps-1. The system was equilibrated during 10 ns in the NPT ensemble with 

a Monte Carlo barostat, with restraints to maintain the H-bonds between the 

complementary nucleobases of the arylazopyrazole units and the DNA template: a 

force constant of 40 kcal.mol-1.Å-2 was applied as soon as the distance between the 

donor and the acceptor of the H-bond exceeded 2.2 Å. These restraints were extended 
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for 250 ns, to let the system stabilize without disassembly of the ligands, followed by 1 

µs of unrestrained simulation. A timestep of 2 fs was used and the SHAKE algorithm 

was applied to constrain bonds involving hydrogen atoms. To switch the azo units into 

their cis form, a constraint on the Φ2 dihedral angle was imposed: a force constant of 

100 kcal.mol-1.Å-2 was applied as soon as the dihedral angle was going out of the range 

[-30.0 ; 30.0] degrees. In practice, this force constant helped the arylazopyrazoles to 

bypass the torsional barrier leading from the trans to cis configuration at the beginning 

of the simulation. Spontaneous back isomerization from cis to trans did not occur 

afterwards. A cut-off of 12.0 Å was selected for non-bonded interactions and the 

particle mesh Ewald (PME) scheme was used to treat electrostatic interactions. A 

snapshot was saved each ns and extracted for further analyses. PyMol 2.5.4 was used 

to visualize the snapshots and to create images.[58]  

To analyze the trajectories, the cpptraj module implemented in AMBER was used.[61] 

Hydrogen bonds were detected with geometric criteria: the distance between the 

acceptor and the donor heavy atoms must be ≤ 3.0 Å and the angle between the donor, 

the hydrogen atom and the acceptor must be ≥ 135°. H-bonds were measured between 

the atoms of the nucleobases of the azo compounds and of the oligonucleotide. π-type 

interactions between the aromatic cycles were detected with geometric criteria: two 

cycles are considered stacked if the distance between their centers of mass is ≤ 5 Å and 

if the angle between them is < 45° or > 135 °. The aromatic interactions were calculated 

for all pairs of aromatic cycles of the azo compounds, and were summed “by molecule” 

for the heatmaps (two molecules perfectly superimposed would form four interactions, 

as they possess four aromatic cycles). The heatmaps were computed over the last 500 

ns of the simulations. Radial distribution functions were computed between the carbon 

atom of the carboxylate moiety of each arylazopyrazole and the Na+ or Cl- ions, over 

the last 500 ns, with a bin spacing of 0.1 Å. The density value used for normalization 

was calculated as the ratio between the number of ions in the box and the average 

volume of the simulation box. To measure the rotation between the conjugated parts 

of consecutive azo compounds, a vector was defined for each ligand, as represented by 

the purple arrows in Figure IV.16 A. The rotation angle between two stacked 

molecules was calculated from the dot-product of their vectors and was measured for 

each pair of consecutive azo compounds (Azo 1 – Azo 2; Azo 2 – Azo 3; Azo 3 – Azo 4; 

and so on). This angle was measured during the first 250 ns, when the H-bonds were 

constrained. As the stacks may present discontinuities, with two consecutive azo 

compounds not interacting, a criterion was added to remove these pairs from the 

calculation. We decided to exclude the pairs whose rotation angle was superior than or 

equal to 100° (which clearly indicates that the conjugated part are not superimposed) 

at least 10 % of the time. 
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IV-B.7. Additional data 

Figure IV.S1. Additional heatmaps of H-bonds, for the replicas of the trans and cis Azo-

A/dT20 and both replicas of Azo-T/dA20. Except for the replica of Azo-A in cis, the results 

generally indicate significantly more H-bonds for the trans isomers. 
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Figure IV.S2. Additional heatmaps of π-type interactions, for the replicas of the trans and 

cis Azo-A/dT20 and both replicas of Azo-T/dA20. Except for the replica of Azo-T in trans, the 

results generally indicate significantly more stacking interactions for the trans isomers. 
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Figure IV.S3. Final MD snapshots of the six simulations not shown in the main text (replica 

for trans and cis Azo-A/dT20, and simulations of Azo-T/dA20). 
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Figure IV.S4. Preliminary results of CD spectra simulation. (A) Experimental CD spectra 

measured at a NaCl concentration of 5 M. (B) Simulated CD spectra for both compounds 

measured on stacks extracted from one frame of the MD simulations (these curves were 

selected to show that it is possible to retrieve features similar to the experimental spectra, but 

are only issued from one frame; a more rigorous methodology will have to be implemented to 

get reliable results). The spectra were simulated by TD-DFT with the CAM-B3LYP functional 

and the def2-svpd basis set. (C) Structure of the stacks used to calculate the CD spectra. The 

nucleobases were stripped from the molecules and replaced by methyl groups to reduce 

computational cost, as the chromophore of interest is constituted by the conjugated region. 
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V. Dynamic self-assembly of supramolecular catalysts 
from precision macromolecules 
 

The next results chapter of our thesis focuses on the supramolecular assembly of two 

SDMs forming a catalytic duplex. Taking a step further from natural systems towards 

artificial materials, we studied oligomers with a purely synthetic backbone, 

functionalized with nucleobases – inspired by the recognition mechanisms of nucleic 

acids – and catalytic units that must self-assemble in close spatial proximity, 

reminiscent of enzymatic active sites. MD simulations combined with network theory 

were used to characterize the 3D structure and dynamics of the supramolecular 

complex. This approach helped to rationalize experimental trends in catalytic activity 

and provided insights for improving molecular design. 

 

Part of this work is reported in: Dynamic self-assembly of supramolecular catalysts 

from precision macromolecules. 

Q. Qin, J. Li, D. Dellemme, M. Fossépré, G. Barozzino-Consiglio, I. Nekkaa, A. 

Boborodea, A. E. Fernandes, K. Glinel, M. Surin, A. M. Jonas, Chem. Sci., 2023, 14, 

9283-9292. 

 

V.1. Introduction 

Living systems rely on many complex metabolic pathways, such as the Krebs cycle, 

photosynthesis, or the urea cycle, enabling energy production and the degradation of 

harmful species.[1] These processes involve cascades of chemical reactions, which must 

be highly efficient and tightly regulated to ensure the proper functioning of living 

organisms. This role is fulfilled by enzymes, biocatalysts displaying well-defined 

catalytic pockets able to host specific substrates, which are stabilized by shape 

complementarity with the active site and interactions involving a series of ideally 

positioned amino acids. After binding of the substrate, its transformation is catalyzed 

by the cooperative action of several chemical groups, assembled in spatially close 

positions. This mechanism is very dynamic, the conformational flexibility of the 

enzyme ensuring accessibility to and from the catalytic pocket and the realization of 

the reaction transition state.[2,3] The remarkable efficiency and selectivity displayed by 

enzymes have long attracted the interest of researchers, but the translation of such self-

assembled multifunctional catalysts into synthetic systems remains challenging. A key 

parameter consists in maximizing the probability of encounter of the different 

components forming the catalytic site. Various approaches have been investigated, 

including the use of natural SDMs, such as peptides or DNA, which can fold and self-

assemble into programmable and well-defined nanostructures, and guide the 
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organization of catalytic components.[4–14] Preorganizing the catalytic units within 

synthetic polymer backbones able to form controlled structures in solution is another 

option, with the examples of single-chain polymeric nanoparticles (SCPNs), foldamers 

or even supramolecular polymers.[15–20] More recently, synthetic SDMs have been 

envisioned as a very promising avenue to approach the efficiency of biocatalysts.[21,22] 

Distributing the catalytic units at precise locations within a defined primary structure 

could help in building artificial systems mimicking the organization of enzymes, 

without reproducing their full size and complexity. Additionally, the order of 

monomers can be used to modulate the catalytic properties.[18,23–25] Impressive 

sequence effects were demonstrated for short catalytic trimers grafted on silica 

particles, the primary structure influencing interchain interactions and the spatial 

proximity of the catalytic units, thus the catalytic activity.[23] The role of the sequence 

was also demonstrated at the single-chain level for similar trimers, whose catalytic 

properties were rationalized by MD simulations and network analyses.[24]  

Our work follows this trend, aiming at exploiting SDMs to optimize the spatial 

proximity and organization of the components of a multifunctional catalytic system. 

However, instead of relying on single-chain folding, our approach requires the 

supramolecular assembly of two complementary sequence-defined oligomers. The 

catalytic units are distributed among the two chains, which must therefore self-

assemble into a supramolecular duplex to form the active center. To this end, our SDMs 

are also functionalized with complementary recognition units. Several examples have 

shown that synthetic SDMs can be advantageously used to precisely position 

recognition motifs and promote the formation of controlled assemblies.[26–30] 

Consequently, encoding a programmed recognition into synthetic SDMs to maximize 

the encounter of catalytic units, replicating the sequence control of 

biomacromolecules, constitutes an interesting strategy in view of approaching artificial 

enzymes. MD simulations were carried out on the supramolecular complex formed by 

the assembly of the two oligomers to better understand its 3D structure and dynamics 

in solution. Our results indicate the formation of a disordered globular duplex, 

stabilized by a myriad of interactions and inside which the individual oligomers retain 

a high flexibility (Figure V.1). However, with the support of network representations, 

we were able to demonstrate the important role played by the recognition units in the 

supramolecular assembly, showing that persistent and specific interactions arise in the 

globule. Our results, combined with experiments, give precious insights into the role 

of each monomer unit on the properties of the complex, helping us to rationalize 

peculiar trends in catalytic activity. All the experimental results presented in this 

chapter were obtained by Qian Qin, Jie Li, Gabrielle Barozzino-Consiglio and Adrian 

Boborodea, in the frame of a collaboration with the group of Profs. K. Glinel and A. M. 
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Jonas at the Université Catholique de Louvain.[31] The compounds were synthesized by 

Qian Qin, Jie Li and Imane Nekkaa. 

Figure V.1. Illustration of the globular supramolecular duplex formed by the assembly of two 

sequence-defined oligomers (one chain is represented in red, the other in blue), involved in the 

aerobic oxidation of alcohols. Each colored unit represents a side-chain of the oligomers (see 

their chemical structure in Figure V.2). 

V.2. Design of the oligomers and supramolecular 

assemblies studied by MD simulations 

To explore whether a supramolecular catalytic center can be encoded within self-

assembled SDMs, we selected a multifunctional catalytic system developed for the 

aerobic oxidation of alcohols, based on 2,2,6,6-tetramethylpiperidine-1-oxyl 

(TEMPO), Cu(I)-complexes (involving bidentate nitrogen ligands, such as bipyridine) 

and imidazoles.[32–35] The exact catalytic mechanism is still under discussion, but 

recent studies corroborate the formation of a four-membered intermediate composed 

of a dinuclear copper complex supported by two auxiliary ligands and interacting with 

a TEMPO moiety (Figure V.2 A).[36–38] These five units were therefore attached as 

side-chains in two oligomeric strands, Oa and Ob, based on an oligo(urethane triazole) 

backbone (Figure V.2 B). The first oligomer, Oa, contains the TEMPO radical (M) 

and a pyridyltriazole-copper complex (P), while Ob contains two imidazole co-ligands 

(I and I’ having different spacer lengths for optimal accessibility) and the second P unit 

(Figure V.2 C). For the system to be active, Oa and Ob must self-assemble; they were 

therefore both functionalized with two nucleobases, selected as the recognition units. 

These substituents, well-known for driving the secondary structures of nucleic acids, 

have been successfully used to control the supramolecular assembly of various 

synthetic systems.[39–42] Oa is decorated with a guanine (G) and a thymine (T), and Ob 
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with a cytosine (C) and a 2,6-diamidopyridine (D) unit, complementary through G---C 

and T---D hydrogen bonding interactions. The unnatural nucleobase D was preferred 

to the natural adenine because it can form three H-bonds with the thymine, instead of 

two for adenine. Finally, the oligomers carry hexyl side-chains (C6) on both extremities, 

to improve solubility in the acetonitrile : dimethylsulfoxide 95 : 5 v/v solvent mixture 

and possibly contribute to stabilization of the self-assembled structure. In summary, 

the supramolecular catalyst is made by the combination of an hexamer, Oa, of sequence 

C6-G-M-P-T-C6 (catalytic units shown in bold), and an heptamer, Ob, of sequence C6-

C-I’-I-P-D-C6. To demonstrate that all five units are required for catalytic activity, two 

alternative oligomers were designed as substitutes to Ob: Ob2 and Ob3, lacking a P and 

an I group, respectively, yielding the incomplete catalytic centers Oa/Ob2 and Oa/Ob3. 

Figure V.2. Overview of the catalytic system studied. (A) Simplified catalytic mechanism of 

the aerobic oxidation of alcohols, showing the formation of the five-membered intermediate 

(shown in the right part of the cycle). The substrate transformation is highlighted in the red 

rectangle (shown in the left). (B) General chemical structure of the oligo(urethane triazole) 

backbone and side-chains library. (C) Chemical structure of the complete Oa/Ob catalytic 

duplex. The catalytic center is shown in the red dotted circle. Adapted from Ref. 31. 
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MD simulations were realized on the complete catalytic system, Oa/Ob, to elucidate the 

mechanisms of interaction between the two chains. Simulations were also carried out 

on an incomplete duplex, Oa/Ob2, which will be shortly discussed in comparison of 

Oa/Ob. The simulations were performed with the AMBER package, using an implicit 

solvent model with the dielectric constant of acetonitrile at 20 °C. Two independent 

replicas of 10 µs were generated for each duplex, with the Oa and Ob (or Ob2) chains 

being separated by more than 50 Å in the starting structure, to avoid initial contacts. 

Additional simulations were performed on the individual chains Oa and Ob for 5 µs, in 

two replicas (see Section V.7 for full details of the simulation protocol). 

 

V.3. The oligomers quickly fold and assemble into a highly 

dynamic globular duplex 

At the beginning of the simulations, the two strands (Oa and Ob) are separated, and the 

system is characterized by high radius of gyration (RG) values (see inset in Figure V.3 

A). The oligomers quickly assembled, within 10 ns, as indicated by the sharp decrease 

in the RG for both replicas. The chains formed a compact and globular heteromolecular 

duplex, which remained stable during the whole simulations, as indicated by the RG of 

the system oscillating around 10 Å. This value is in very good agreement with  

Figure V.3. Data on the radius of gyration of the Oa/Ob duplex. (A) Evolution of the radius of 

gyration for both replicas of the Oa/Ob duplex over time, with an inset showing the fast decrease 

occurring in the first 10 ns. (B) Distribution of values for the whole simulations. The lines 

delimiting a box represent the first and third quartiles, whose values are annotated at the edges 

of the box. The line inside a box indicates the mean value. The error bar is given as mean ± 1.5 

x standard deviation. (C) Table summarizing the data. 
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experimental measurements of the hydrodynamic radius (RH), comprised between 8.6 

and 14.6 Å for solutions of equimolar mixtures of Oa and Ob in dilute regimes (between 

1 and 5 mM). These radii were calculated with the Stokes-Einstein equation, using 

diffusion coefficients measured by DOSY.[31] Inside the stable globule, the two strands 

undergo significant folding and remain highly flexible, allowing the different units to 

dynamically reorganize. This is shown by the end-to-end distance values measured for 

Oa and Ob, ranging from around 5 to 30 Å (Figure V.4). It indicates that the chains 

can adopt very extended or very compact conformations in the duplex, without 

affecting its global globular shape. 

Figure V.4. Distribution of the end-to-end distance values for the Oa and Ob oligomers, 

measured for both replicas of the Oa/Ob duplex simulations. The lines delimiting a box 

represent the first and third quartiles, whose values are annotated at the edges of the box. The 

line inside a box indicates the mean value. The error bar is given as mean ± 1.5 x standard 

deviation. Statistics are given in the table below. 

These observations reveal the formation of a disordered and highly dynamic 

supramolecular complex, where the side-chains appear randomly mixed within the 

globule, in marked contrast with the idealized 2D representation where each unit is 

precisely positioned along a linear backbone (see Figure V.2 C). During the 

simulations, the chains explore a large conformational space allowed by their intrinsic 

flexibility, arising from the presence of many freely rotatable bonds in their backbone 
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and side-chains. Globular and folded conformations are stabilized by a vast network of 

interactions, in particular π-type interactions1 between the large number of triazole 

rings, but also with the nucleobases, imidazole moieties and pyridyl groups (Figure 

V.5 A). The oligomers also present many H-bond donors and acceptors, such as the 

ether and urethane moieties in the backbone, as well as the nucleobases (Figure V.5 

A). Interestingly, we found very few hydrogen bonding interactions involving the 

triazole rings, which is in line with NMR measurements realized on monomer units.[43] 

We detected slightly more π-type interactions (around six per conformation) than H-

bonds (around four per conformation) (Figure V.5 B). The heatmap of π-type 

interactions highlights a homogeneous distribution of the stacking, involving all 

monomers and side-chains (although some units perform more interactions, in 

particular G) (Figure V.5 C, see Figure V.11 in Section V.7 for explanations on the 

per-residue decomposition adopted in the heatmap). While the total number of π-type 

interactions is significant, the contacts are weakly persistent, with only slightly more 

than one interaction every 20 conformations, on average, for the most frequent residue 

– residue interactions (see the white spots on the heatmap, corresponding to an 

average of 0.06 interaction per conformation). It shows that, within the globule, all 

residues dynamically interact together and can spatially regroup, even if they seem far 

from each other in the 2D representation. 

Overall, these results indicate that a defined sequence of monomers does not 

necessarily translate into a well-defined 3D structure, particularly in the case of highly 

flexible chains displaying a large number of interaction sites. Such characteristics 

promote the formation of a disordered, globular system able to dynamically reorganize, 

thereby partially blurring the influence of the primary structure. The nucleobases, 

which contain H-bond donors and acceptors in addition to being aromatic structures, 

also contribute to many unspecific interactions, contrary to their organized behavior 

typically adopted within nucleic acids. However, in natural systems, these groups are 

combined with a rather rigid backbone, short side-chains, and a structure promoting 

well-defined stacking.[44] The chemistry of our system is very different, and the 

nucleobases are not tightly paired with their complementary partner. While the 

dynamic behavior of the assembly is not optimal to favor duplex formation over other 

poly(oligomeric) species, it could reveal advantageous for the catalytic process, which 

requires conformational flexibility for substrate binding and product release, as 

observed for enzymes. 

 

1
 π-type interactions are counted between aromatic cycles following these geometric criteria: the distance 

between their centers of mass must be ≤ 5 Å, and the angle between their planes must be < 45 ° or > 135 °. 
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Figure V.5. Overview of the interactions stabilizing the Oa/Ob globule. (A) Chemical structure 

of the Oa/Ob duplex, highlighting the various interaction sites. The triazoles were not counted 

as H-bond acceptors, as they mainly perform aromatic interactions. (B) Number of H-bonds 

and π-type interactions per conformation measured during the whole simulations. Data is 

shown as mean ± standard deviation. The pale lines represent the distribution of 

measurements. Statistics are given in the table below. (C) Heatmap showing the 

decomposition of the π-type interactions by residue pairs (see Figure V.11 for explanations 

on the per-residue decomposition). Each square, localized at the crossing of two residues, 

indicates the number of interactions per conformation detected between these residues. The 

heatmap is symmetrical with respect to the diagonal. 

V.4. Specific interactions arise in the disordered duplex 

Given the formation of a disordered globular duplex made of highly flexible chains, it 

seems that all monomers and side-chains contribute to a network of rather unspecific 

interactions. Interestingly, while this is true for the π-type interactions, a different 

behavior is observed for the H-bonds, as evidenced by a heatmap, used once more to 

localize the interactions (Figure V.6 A). This heatmap displays three bright spots, 

indicating persistent interaction sites, while the other residue pairs contribute to a 

lesser extent to the network of H-bonds. The two most frequent H-bond sites (white 

squares) are located for the G---C and T---D pairs of residues, i.e. the complementary 

recognition units. In addition to these interactions, G---D pairing (yellow square) 
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provides a significant but less frequent mechanism of stabilization. This graph 

demonstrates that, despite the apparent disorder of the globule, specific hydrogen 

bonding interactions are able to emerge. A similar conclusion can be drawn from a 

second heatmap, showing the enthalpy of binding decomposed by residue pairs, 

highlighting the most stabilizing residue – residue interactions (darkest blue squares) 

in the duplex (Figure V.6 B). These are localized for the pairs G---D, T---D and G---

C, in excellent agreement with the heatmap of H-bonds. These analyses demonstrate 

that the recognition units play their role efficiently in the supramolecular assembly, 

although the duplex adopts compact conformations that allow all units to interact. 

Figure V.6. Localization of the interactions stabilizing the supramolecular assembly. A 

cartoon representation of the primary structure of the Oa/Ob duplex is displayed above the 

heatmaps. (A) Heatmap showing the decomposition of H-bonds by residue pairs. (B) 

Heatmap showing the decomposition of the enthalpy of binding by residue pairs. 

Another way to study the intermolecular contacts stabilizing the assembly is the use of 

network theory. The 3D conformations generated during the simulations can be 

converted into 2D networks, where each atom (except hydrogens) constitutes a node 

(Figure V.7). Two nodes are connected by an edge if they are spatially close: here, the 

distance cutoff was set at 5 Å, to take into account contacts through H-bonds and π-

type interactions. We computed an average network from the whole simulations to 

highlight the most persistent contacts, thus the strongest contributions to the assembly 

(see full details of the methodology in Section V.7). In line with the previous 

heatmaps, the network indicates that interchain connections arise dominantly from 

the nucleobases, especially through G---C, T---D and G---D pairings, whereas  
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Figure V.7. Structure of the Oa/Ob duplex. (A) MD snapshot illustrating the globular 

structure of the assembly, with one color by oligomer chain (left) and with one color by 

substituent (right). The color code of the side-chains is the same as in the other figures. (B) 

Network representation of the system, highlighting the persistent contacts observed during the 

MD simulations. The nodes belonging to Oa and Ob are circled in red and blue, respectively, 

with the same color code for the functional groups. (C) Modular representation of the network. 

The modules in yellow contain backbone or chain-ends nodes. Intramolecular connections 

relying nodes belonging to Oa or Ob are represented by red and blue lines, respectively. 

Intermolecular connections between Oa and Ob are represented by purples lines. The 

nucleobases T and D are merged in the same module, indicating high connectivity.  

intrachain connectivity replicates the primary structure of the oligomers (Figure V.7 

B). These visual observations are confirmed by several descriptors, such as the 

betweenness and closeness centralities, which are presented with their Z-values, i.e. 

the number of standard deviations by which the value is below or above the mean value 

(Figure V.8). The betweenness describes the importance of a node to create 
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connections between the other nodes, while the closeness is related to the ability of a 

node to communicate with all the others (see more details in Section V.7). These two 

values are particularly high for the nodes belonging to the nucleobases, as expected 

given their strong contribution to the persistent contacts between the two chains. 

Figure V.8. Characterization of the connectivity inside the network with the betweenness and 

closeness centralities (see definitions in Section V.7), presented with their Z-value. The nodes 

belonging to the nucleobases (G, T, C and D) are highlighted in the graph, showing that higher 

Z-values are located for these nodes. Statistics are given in the table below. 

A modular representation of the network gives a simpler, coarse-grained view of the 

system and shows again that the catalytic modules (M, I’, I and P in Figure V.7 C) are 

connected through links involving the nucleobases. The network representations also 

suggest that the C6 units do not contribute to the assembly, and do not tend to intertwin 

with each other, as could be thought when looking at the 2D structure. Viewing them 

on the 3D structures (see units in black in Figures V.1 and V.7 A, right), it appears 

likely that they are too short, compared to the size of the globule, to contribute to the 

binding. Overall, our simulations indicate that the duplex is stabilized by a vast 

network of dynamic interactions involving all residue pairs, no matter their position in 

the sequence, with more persistent contacts emerging dominantly between the 

recognition units, ensuring some specificity in the recognition. 
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Interestingly, the recognition pattern of the incomplete catalytic system Oa/Ob2 follows 

the same trend (Figure V.S1 in Section V.8). This is not unexpected, Ob2 having the 

same sequence as Ob except for one P monomer. Our simulations suggest that it is 

possible to bring small modifications in the composition of the catalytic center without 

affecting the mechanisms of assembly between the oligomers. It means that variations 

in the catalytic activity between the Oa/Ob and Oa/Ob2 systems can be directly related 

to the contribution of individual catalytic units, making our SDMs particularly 

interesting to study the role of each monomer in the catalytic mechanism. 

 

V.5. Rationalizing the trends in catalytic activities by 

combining MD simulations and experiments  

For an efficient catalysis, the substrate must interact with the catalytic moieties when 

the Oa/Ob duplex is formed. We therefore investigated the accessibility of the different 

functional units to their surrounding environment (Figure V.9). Two variables were 

used: the average distance from the geometric center of the globule, and the ΔSASA, 

i.e. the difference in accessibility of one residue in the duplex compared to its 

accessibility when the oligomer is alone (see Section V.7 for details on the 

methodology). When looking at the distance from the geometric center, it appears that, 

on average, the nucleobases tend to be located closer to the center of the globule than 

Figure V.9. Data on the accessibility of the different residues in the Oa/Ob duplex to their 

environment. (A) Average distance of each functional unit from the geometric center of the 

assembly. (B) Average ΔSASA value of each functional unit, measured as the difference 

between the SASA of this unit in the Oa/Ob duplex and the SASA of the unit in the Oa or Ob 

chain alone. A high negative ΔSASA value indicates that the residue is significantly hindered 

by the formation of the assembly. (C) Table summarizing the data for each kind of 

substituents. For detailed statistics on the individual residues, see Table V.S1 in Section V.8. 
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the hexyl tails or the catalytic units (Figure V.9 A). The only exception to this trend 

is the TEMPO moiety (M), which is one of the five units with the shortest average 

distance to the geometric center. The measurements of ΔSASA confirm this trend 

(Figure V.9 B). The nucleobases present the greater decrease of accessibility going 

from the isolated oligomers to the intermolecular duplex, as indicated by their higher 

negative ΔSASA values. Again, the hexyl tails and catalytic units display similar values, 

with a lower decrease of their SASA upon formation of the globule, at the exception of 

the TEMPO moiety. Although the differences between the different kinds of 

substituents are rather small, these two descriptors reveal that, on average, the hexyl 

tails and catalytic units spend more time at the periphery of the globule, indicating that 

substrates should be able to interact with the catalytic moieties. The nucleobases, on 

the other hand, tend to be more isolated from their environment, located more often 

at the interface of the two oligomers. This view is concordant with our network 

representations, and the fact that the nucleobases significantly contribute to 

intermolecular interactions. 

With all this information in hand, we can now bring some insights into the 

experimental trends in catalytic activity. The systems were tested in the aerobic 

oxidation of benzyl alcohol into benzaldehyde, for different temperatures between 30 

and 60 °C and at different molar concentrations of catalyst. Cu(I) was introduced in 

stoichiometric amount with respect to P groups, and catalyst concentration is 

expressed as the content in molar units relative to the molar concentration of 

introduced alcohol (0.2 M). The catalytic activity is represented by the turnover 

frequency (TOF) (Figure V.10). The complete Oa/Ob system presents a peculiar bell-

shaped curve, with a maximum TOF at around 1 mol % of catalyst concentration, and 

a decrease of activity at higher concentrations (Figure V.10 A). We attribute this 

behavior to the formation of poly(oligomeric) aggregates at higher concentrations, 

where an important steric crowding would decrease accessibility to the catalytic center. 

These complexes would be stabilized by various unspecific interactions, involving the 

backbone H-bond donors and acceptors and the numerous aromatic rings. The 

maximum of catalytic activity for the Oa/Ob system is presumably reached when the 

heteromolecular duplex is predominant in solution. In comparison, the incomplete 

Oa/Ob2 and Oa/Ob3 complexes exhibit a significantly lower TOF (Figure V.10 B). 

Additionally, their activity continues to increase well after 1 mol % of catalyst, meaning 

that, contrarily to Oa/Ob, they benefit from the formation of poly(oligomeric) species. 

This is not surprising if we consider that these systems require the assembly of at least 

three chains to regroup all five catalytic units, and it demonstrates that only one 

missing catalytic moiety in the chains is enough to significantly decrease the catalytic 

activity. Individual chains, which also contain an incomplete sequence of catalytic 
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units, equally display a very low TOF (diamonds in Figure V.10 C). A mixture of 

monomeric units with the same composition as the complete duplex displays a 

completely different trend, the catalytic activity increasing linearly with the 

concentration, as expected for a system relying on random encounters (crosses in 

Figure V.10 C). For the same reason, a mixture of MP dimers and II’P trimers, i.e. 

oligomers lacking the hydrogen binding units and the hexyl tails, also display a linear 

evolution of the TOF with respect to the catalyst concentration (pentagons in Figure 

V.10 C). The most striking feature of the Oa/Ob system is its resistance to dilution. It 

is the only system able to maintain a catalytic activity even at very low catalyst 

concentrations, a particularity that we ascribe to its self-assembling properties, leading 

to the formation of active heteromolecular duplexes in solution. Upon dilution, the 

TOF of the other systems quickly decreases, either because they lack recognition units 

or because catalytic units are missing when forming duplexes. Therefore, the unique 

catalytic properties of the Oa/Ob system must emerge from the formation of self-

assembled duplexes, maintained through various interactions, with a particularly 

important role of the nucleobases and the presence of the five required catalytic 

moieties. However, the presence of a large number of interaction sites favors the 

formation of aggregates at higher concentrations, limiting the efficiency of the system 

above 1 mol % of catalyst. 

Figure V.10. Experimental measurements of the catalytic activity of the self-assembled 

oligomers. The TOF was calculated as the slope of the yield of oxidation versus time, divided 

by the molar content in M units in the catalyst. (A)-(C) TOF versus catalyst concentration at 

four temperatures (colors as indicated), for (A) the complete Oa/Ob system, (B) the incomplete 

Oa/Ob2 (circles) and Oa/Ob3 (open triangles) systems and (C) various control systems. 

Reproduced from Ref. 31. 
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V.6. Conclusion 

We investigated the possibility to exploit precisely designed SDMs to build a complex 

multifunctional catalytic system, requiring the supramolecular assembly of two 

oligomers to be active. MD simulations revealed the formation of a globular duplex, 

inside which each chain is strongly folded and highly flexible. Our results indicate that 

2D chemical structures can be misleading: here, this representation suggests the 

formation of a well-organized duplex, where each monomer unit faces a partner in the 

other chain in a precisely programmed manner. The 3D view given by the simulations 

provides important information on the supramolecular assembly of the two chains, 

stabilized by a myriad of interactions, and where the primary structure is partially 

blurred by the flexibility of the oligomers. Despite the apparent disorder in the duplex, 

heatmaps and network representations demonstrated that interactions involving the 

nucleobases contribute dominantly to the duplex stabilization, in particular through 

complementary H-bond pairings. Additionally, our simulations indicate that the 

catalytic units tend to remain accessible to their environment, at the periphery of the 

globule, while the nucleobases spend more time at the interface of the two chains. The 

simulations helped us to understand the peculiar trends in catalytic activity, where the 

Oa/Ob system revealed to be particularly efficient at high dilution. Such resistance to 

dilution was not observed on any other system, which either lacked the recognition 

units or only one catalytic moiety. These results indicate that the formation of the self-

assembled duplex containing all five catalytic units is key to catalytic activity. Precisely 

controlling the monomeric composition of the system is therefore crucial, which is an 

important validation of our approach combining supramolecular assembly and 

catalytic activity inside SDMs. Additionally, such SDMs are very powerful in view of 

mechanistic studies, to probe the role of each substituent in the catalytic mechanism. 

However, it seems likely that the precise monomer ordering in our chains is not crucial 

for their activity, given the high flexibility of the system. Still, it allowed us to place the 

nucleobases far from each other inside the chains, which revealed to be very efficient 

to minimize intramolecular interactions, which would be detrimental to the 

intermolecular assembly. In comparison, tetramers with the same oligo(urethane 

triazole) backbone functionalized with four adjacent nucleobases displayed important 

intramolecular interactions.[43] MD simulations, combined with network theory, 

revealed to be a very precious tool to decipher the structure, dynamics and mechanisms 

of assembly of this complex supramolecular system, presenting a large number of 

interaction sites and an important flexibility.  

 

Based on our simulations, several leads could be considered to improve the molecular 

design of the chains. Ideally, the equilibrium of species in solution should be even more 
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biased towards duplex formation, through supplementary interactions. It could be 

interesting to increase the number of recognition units, for example by replacing the 

hexyl tails, which seem too short to contribute to the stability of the duplex, by 

additional nucleobases. The nucleobases could also be substituted by other H-bonding 

units containing either only donor or only acceptor sites, thus promoting duplex 

formation over intramolecular folding, as demonstrated by others.[45,46] Modifying the 

chemical nature of the backbone may also be an option, to avoid the presence of 

numerous unspecific interaction sites, such as the carbamate units and the triazole 

rings, which promote aggregation at higher concentrations. Increasing the rigidity of 

the backbone to better retain the information encoded in the primary structure, thus 

increasing the specificity of the recognition, could also be envisioned. Of course, while 

these options are trivial from the point of view of a computational chemist, it may bring 

significant synthetic challenges; the triazole rings, for example, are unavoidable when 

using the click chemistry route exploited here. In conclusion, while there are plenty of 

alternative designs to test, it remains difficult to embark into lengthy syntheses without 

a clearer picture of the systems that are really worth the effort. Computational methods 

and a better fundamental understanding of sequence – structure relationships, leading 

to accurate predictive models, will be important tools to rationalize the design of such 

complex sequence-defined nanomaterials in the future. 

 

V.7. Simulation protocol 

The oligomeric chains were built as a series of fragments, or residues, with the 

Avogadro software (Figure V.11).[47]  

Figure V.11. Chemical structure of the complete Oa/Ob catalytic system. The two strands, Oa 

and Ob, are decomposed into a series of 28 residues, separated by black dots. The residues 

containing the functional side-chains are identified by letters. 

These fragments were subsequently connected to one another to form the complete 

strands. The calculations were then performed with the AMBER simulation package, 

while free energy calculations were performed with the 2020 version of ambertools.[48] 
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The atomic partial charges were assigned to the fragments using the antechamber 

module of AMBER with the semi-empirical AM1-BCC method.[49] Structural 

parameters and partial charges of the TEMPO radical were used as reported by 

Stendardo et al. after an ab initio reparametrization.[50] Structural parameters and 

partial charges of the pyridyltriazole copper ligands were obtained by calculations at 

the quantum chemical level using density functional theory (DFT) with the B3LYP/6-

31G** model and extra basis sets LanL2DZ and MIDI! for the copper and iodine atoms, 

respectively. All other force field parameters were given by GAFF 2.11.[51] The 

individual molecular fragments were connected in the desired sequence with the LEaP 

module of AMBER to constitute the complete oligomeric chains. When building the 

Oa/Ob catalytic system, Ob was translated by 40 Å in the x, y and z directions from Oa 

in order to avoid contacts between the two oligomers in the starting structure. A 

geometry optimization was then performed by MM, with a total of 10,000 steps 

distributed in 1,000 steps of steepest descent and 9,000 steps of conjugated gradient, 

in order to get a stable starting point for the subsequent MD simulations. These were 

carried out with an implicit solvent model, the Generalized Born (GB) model, to ensure 

a sufficient conformational sampling in a reasonable computational time.[52] The 

dielectric constant was set as the one of acetonitrile at 20 °C (ε = 37.5). For the catalytic 

system, constituted of the two strands Oa and Ob, two replicas of 10 µs were realized 

(same for the Oa/Ob2 duplex). Each oligomer was also simulated alone in two replicas 

of 5 µs. The timestep was fixed to 1 fs and the temperature was maintained at 300 K 

with a Langevin thermostat, with a collision frequency of 1 ps-1. A bond restraint was 

applied in the simulations of the two strands to avoid that they translate in opposite 

directions and never meet each other, as we are not in periodic conditions: when the 

distance between the chains exceeds about 75 Å, a force constant of 10 kcal.mol-1.Å-2 is 

activated to prevent the chains from moving further away. An infinite cut-off was 

selected for the non-bonded interactions. A snapshot was saved each ns during the MD 

simulations and extracted for further analyses, giving a total of 20,000 conformations 

for the catalytic duplexes and 10,000 for each oligomeric chain alone. The GPU version 

of AMBER was used for all minimizations and MD simulations. PyMOL 2.5.4 was used 

to visualize the snapshots and to extract images.[53]  

 

The analyses of the simulations were performed using the cpptraj module of 

AMBER.[54] Radii of gyration (RG) were computed with respect to heavy atoms (all 

atoms except hydrogens). End-to-end distances were calculated as the distance 

between the carbon directly linked to the silicon in the tert-butyl moiety at one end, 

and the carbon in para position of the phenyl ring at the other end. Hydrogen bonds 

were detected with the default cpptraj parameters, i.e. a distance cutoff of 3.0 Å 
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between the acceptor and the donor heavy atom and an angle cutoff of 135 ° between 

the donor, the hydrogen atom and the acceptor. π-type interactions (parallel stacking) 

were detected using geometric criteria: two aromatic units are considered in 

interaction if the distance between their centers of mass is ≤ 5.0 Å and if the angle 

between the normal vectors of their planes is < 45° or > 135 °. The heatmaps of H-

bonds and π-type interactions were built with in-house scripts. The residue 

decomposition follows the sequence order, and corresponds to the fragments used to 

build the chains, as is represented in Figure V.11. To compute the distance of each 

side-chain to the geometric center, only the heavy atoms located after the triazole ring 

were included in the calculation. For instance, for a C6 unit, only the six carbon atoms 

of the hexyl tail were considered: the distance is measured between the geometric 

center of these six carbon atoms and the geometric center of the globule (same 

approach for the other side-chains). The first 100 ns were not included in this 

calculation, to let the duplex form and equilibrate. Solvent-accessible surface area 

(SASA) values were calculated with the LCPO model, as implemented within 

cpptraj.[55] The per-residue ΔSASA was computed as the difference between the SASA 

calculated for a residue in the simulation of the Oa/Ob duplex and the SASA of the same 

residue calculated in the simulation of the individual chains, Oa or Ob, using the per-

residue scheme shown in Figure V.11. The ΔSASA can only be inferior or equal to 

zero: a residue that would be located far from the interface of the two strands, without 

contact with the second chain, would have a ΔSASA of zero, meaning that it is equally 

accessible with or without the second chain. Binding enthalpy calculations were 

performed with the Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) 

method, using the parallelized version of the Python program MMPBSA.py 14.0, 

implemented in AMBER.[56] The binding enthalpy is given as the difference between 

the energy calculated for the complex (here, the complete catalytic system) and the sum 

of energies for the receptor (Oa) and ligand (Ob) alone. The multiple-trajectory 

approach was followed, which means that the conformations for the complex, receptor 

and ligand were obtained from independent simulations. MMPBSA.py post-processes 

the trajectories and calculates the energy of each frame with an implicit representation 

of the solvent. The energy is divided in two parts: an internal contribution and a 

solvation contribution. The internal contribution was given by the force field and can 

be seen as the energy of the system in vacuum (bonds, angles, dihedrals, van der Waals 

and electrostatics). The solvation contribution is further divided into a polar and a non-

polar part. The polar part represents the electrostatic interactions between the solute 

and the solvent and was obtained by solving the PB equation with a finite difference 

method. The non-polar part was calculated as the sum of a favorable “dispersion term” 

and an unfavorable “cavity term”, representing the stabilizing solute – solvent 
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dispersion interactions and the cost of creating a cavity in the solvent, respectively. 

These two terms are proportional to the SASA. Several calculations were carried out by 

varying the internal dielectric constant, i.e. the dielectric constant of the solute, ranging 

from 1 to 4. The default value is set to 1, but in some cases, a better agreement with 

experimental results was obtained with higher values of the internal dielectric 

constant.[57,58] In our case, a better agreement was reached with an internal dielectric 

value of 4 (note that this parameter did not affect the qualitative trend observed in the 

residue – residue interactions). The first 100 ns of each replica were skipped for the 

calculations to let the systems reach equilibrium, giving a total of 19,800 

conformations for the Oa/Ob duplex and 9,800 conformations for the oligomeric 

strands alone. The external dielectric constant was fixed at 37.5, as in the MD 

simulations. MMPBSA.py offers the possibility to decompose the energy by residue 

and by pairs of residues (using the same residue division as the one shown in Figure 

V.11). The residue pairwise decomposition scheme was used to highlight pairs of 

residues playing an important part in the binding of the two oligomeric chains. 

 

The 2D networks were built from the 3D conformations generated during the 

simulations. In this representation, all heavy atoms constitute nodes, and two nodes 

are connected by an edge if their distance is inferior than or equal to 5 Å. This cutoff 

value allows to take into account hydrogen bonding interactions as well as π-type 

interactions. In practice, one network file was created for each conformation as soon 

as the duplex was formed (interchain distance < 14 Å) using in-house scripts, resulting 

in a total of 19,988 networks for Oa/Ob and 19,953 for Oa/Ob2. These files, representing 

one conformation each, have been used to build one global network for each system, 

following this procedure: two nodes are considered connected by an edge only if they 

have been in contact during at least 10 % of the MD time, i.e. if their contact was 

detected in at least 10 % of the 19,998 conformations for Oa/Ob and of the 19,953 

conformations for Oa/Ob2. The resulting network is thus focusing on persistent 

contacts. All edges are undirected and unweighted. To analyze and visualize the 

network, the Cytoscape 3.9.1 software was used with its included analyzer 

NetworkAnalyzer 4.4.8.[59,60] Two descriptors were chosen to characterize the nodes 

inside the network. The betweenness centrality Cb for one node is proportional to the 

number of shortest paths connecting two other nodes passing through this node, i.e. 

the importance of the node to put the other ones into communication. The closeness 

centrality Cc for one node reflects the reciprocal of the average shortest paths length 

connecting this node to all the other nodes in the network: the higher the closeness, 

the more “central” is the node in the network, the more easily it communicates with 

the other nodes. The network file was then submitted to the Infomap algorithm, in 
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order to detect communities or modules, which are defined as highly connected groups 

of nodes. The resulting modular representation can thus be considered as a coarse-

grained view of the previous network. Various methods exist to decipher the modular 

topology of a network: the one that we used is called the map equation.[61,62] It is a flow-

based method, which means that it focuses on “how is flowing, propagating the 

information from one node to another?”. The propagation of information is 

materialized by a random walker that can move on the edges between nodes while an 

information cost, in bits, is associated with the movements of the walker. The main 

idea behind the map equation is that finding modules in the network can be seen as an 

encoding problem: to reduce at best the information cost associated to the random 

walk, it is necessary to efficiently partition, modularize the network. The map equation, 

based on Shannon’s source coding theorem, gives the theoretical lower limit of the 

information cost associated with one step of the random walker, on average, on the 

network.[63] Infomap is the algorithm used to minimize the map equation. The 

principle is as follows: each node begins in its own module. Then, the nodes are moved 

into their neighboring module that reduces the most the map equation. This operation 

is repeated, the newly formed modules are merged with their neighbors, until no more 

minimization can be attained. The main goal of Infomap is thus to find the best 

partition of the network, i.e. the optimal organization of nodes inside the optimal 

number of modules, to reduce the most efficiently the information cost associated with 

the movements of a random walker. A two-level partition of the network was chosen, 

such as there is only one layer of modules containing the nodes (no possibility to have 

“modules inside a module”). Visualization and analysis of the network were done with 

the 2.6.0 version of the web server utility of Infomap. 

 

 

 

 

 

 

 

 

 



Dynamic self-assembly of supramolecular catalysts from precision macromolecules 
 

125 
 

V.8. Additional data 

Figure V.S1. Overview of the mechanisms of assembly of the incomplete Oa/Ob2 duplex. A 

cartoon representation of the primary structure of the incomplete Oa/Ob2 duplex is displayed 

above. (A) Network representation of the system, highlighting the persistent contacts observed 

during the MD simulations. The nodes belonging to Oa and Ob2 are circled in red and blue, 

respectively, with the same color code as in the other figures for the functional groups. (B) 

Modular representation of the network. The module in yellow contains backbone or chain-ends 

nodes. Intramolecular connections relying nodes belonging to Oa or Ob2 are represented by red 

and blue lines, respectively. Intermolecular connections between Oa and Ob2 are represented 

by purples lines. (C) Heatmap showing the decomposition of H-bonds by residue pairs. 

Table V.S1. Statistics on the accessibility of the Oa/Ob functional units to their environment. 

The distance from the geometric center is given as mean ± standard deviation. The ΔSASA is 

given as difference between means (meancomplex – meanchain alone, as explained in Section V.7) 

± standard error of the difference between the two means. 
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VI. Revealing the folding of single-chain polymeric 
nanoparticles at the atomistic scale by combining 
computational modeling and X-ray scattering 
 

The last results chapter of our thesis is dedicated to the study of purely synthetic 

polymers, whose folding in water was studied by a combination of MD simulations and 

experiments, in particular small-angle X-ray scattering (SAXS). Despite their artificial 

nature, these systems aim to reproduce the controlled folding properties of natural 

SDMs. We applied our methodology to elucidate the 3D structure and folding dynamics 

of two families of polymers functionalized with different types of hydrophilic side-

chains. Unlike the other systems studied during our thesis, these macromolecules are 

not characterized by a perfect control over the sequence of monomers. However, 

sequence effects were investigated in silico, in order to understand whether controlling 

the primary structure would be beneficial for these chains. 

 

Part of this work is reported in: Revealing the folding of single-chain polymeric 

nanoparticles at the atomistic scale by combining computational modeling and X-

ray scattering. 

S. Wijker, D. Dellemme, L. Deng, B. Fehér, I. K. Voets, M. Surin, A. R. A. Palmans, ACS 

Macro Lett., 2025, 14, 426-433. 

 

VI.1. Introduction 

As a core concept in this thesis, functional biomacromolecules display exquisite 

properties, acquired through their well-defined 3D structure and programmed folding 

process. Enzymes and many biological receptors need to fold to acquire their function, 

and their activity can be modulated through small conformational changes.[1,2] The 

field of single-chain polymeric nanoparticles (SCPNs) aims to reproduce this ability in 

synthetic materials, enabling them to acquire a function through controlled folding in 

solution.[3–5] To control the conformations of the polymer chains in solution, it is 

tempting to take inspiration from protein folding. Solvophilic/solvophobic effects and 

non-covalent interactions, such as hydrogen bonding, metal coordination or host-guest 

complexation have been extensively used to design SCPNs.[6–18] Introducing covalent 

intramolecular crosslinks is also an efficient way to stabilize single-chain systems, and 

this approach is sometimes combined with supramolecular interactions and 

amphiphilic effects to get a better control on the folded structures.[19–21] Recently, an 

SCPN was designed to collapse in water due to hydrophobic effects and supramolecular 

interactions, while remaining in a random coil state in tetrahydrofuran (THF).[20] 

Using photoinduced covalent crosslinking, the compact and extended conformations 
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in water could be “locked” and retained when introducing the SCPN in THF. SCPNs 

are envisioned for various applications, notably for catalysis in water or in complex 

media.[22–29] Biomedical applications are also strongly investigated, with examples in 

drug delivery, cellular targeting, bioimaging, or biosensing.[30–33] For such 

applications, which operate in complex biological media, it is crucial to assess the 

conformational stability of SCPNs.[19,34] More generally, it is of utmost importance to 

resolve the 3D structure of SCPNs, as their morphology is key to their function. 

However, getting a precise picture of the 3D structure of such nanoparticles in solution, 

in particular concerning their internal structure, remains challenging.[35,36] Typically, 

techniques such as dynamic light scattering (DLS), size exclusion chromatography 

(SEC), or nuclear magnetic resonance (NMR) are used to obtain information on the 

size of the nanoparticles. These methods can detect size variations, enabling a 

distinction between presumably extended and folded chains. A decrease in the 

measured size is generally attributed to the efficient folding of the system, without 

providing any information on its conformation in solution. As discussed in this 

chapter, it is very difficult to distinguish pure single-chains from small aggregates 

based on size measurements alone. Fluorescent probes were also used to investigate 

the formation of hydrophobic compartments in surface-immobilized SCPNs, allowing 

single-chain resolution.[37] While being impressive, this example does not provide clear 

information on the 3D structure of the chains, and does not unequivocally demonstrate 

SCPN formation. The introduction of scattering techniques such as small-angle X-ray 

scattering (SAXS) and small-angle neutron scattering (SANS) were important to get 

finer insights on the 3D structure of SCPNs in solution. These methods challenged the 

naive view that ‘any’ copolymer structure composed of the correct ratio of hydrophilic 

and hydrophobic grafts would form a globular core-shell structure.[9,10,38] It is now well 

established that the conformational landscape of SCPNs more closely resembles that 

of intrinsically disordered proteins than that of globular proteins.[39] The 

improvements in computational power have also enabled the use of MD simulations, 

with the unique ability to provide a direct picture of the 3D structure of SCPNs in 

solution, to investigate their internal structure, and to reveal their folding 

dynamics.[40–42] Recently, MD simulations based on a very simple physical model were 

combined with machine learning to provide a complete mapping of the conformational 

landscape of SCPNs based on the position of their cross-linking units.[43] 

Our work aims at combining the structural information brought by MD simulations 

and SAXS experiments. While the theoretical investigation provides a picture of 

unmatched atomistic resolution on the structure of SCPNs, it is necessary to compare 

our models to experiments to validate their robustness. We applied our MD protocol 

to two different kinds of polymers, distinguished by the nature of their hydrophilic 
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grafts. Our results indicate that very different morphologies are obtained in water. 

Furthermore, the combination of MD simulations and SAXS allowed us to reveal the 

formation of small aggregates having a very similar size and shape than the single-

chain systems for one polymer family, demonstrating the interest of our approach. This 

work has been carried out through a collaboration with the group of Prof. A. Palmans 

at Technische Universiteit Eindhoven. All the experimental results were obtained by 

Stefan Wijker and Bence Fehér.[44] The polymers were synthesized by Stefan Wijker 

and Linlin Deng. 

 

VI.2. Design of the two polymer families studied by MD 

simulations in water 

Two families of polymers and random copolymers were designed through sequential 

amine postfunctionalization of poly(pentafluorophenyl acrylate), and functionalized 

with five different kinds of grafts (Figure VI.1). The two families are mainly 

distinguished by the nature of their hydrophilic grafts, added to impart water 

solubility, which are either JeffamineM1000 (J, v in Figure VI.1) or glucosamine (G, 

w), giving rise to p(J) and p(G), respectively. JeffamineM1000 is an oligoether with a 

molecular weight of around 1000 g/mol and an average degree of polymerization (DP) 

of 22 (~19 ethylene oxide and ~3 propylene oxide). In comparison, glucosamine is a 

much smaller graft of high hydrophilicity, owing to its many hydroxyl groups. In 

addition to these fully hydrophilic polymers, random copolymers were designed. They 

incorporate hydrophobic and/or supramolecular side-chains, which are dodecylamine 

(D, x in Figure VI.1) and a chiral benzenetricarboxamide (BTA) derivative (B, y), 

respectively. Both units induce the formation of hydrophobic domains, and the chiral 

BTAs are also able to self-assemble into cylindrical helical stacks with preferred 

handedness via 3-fold hydrogen bonding. The Jeffamine-based copolymers, p(J-BD), 

incorporate both substituents, while the glucose-based copolymers contain either 

dodecyl or BTA, in p(G-D) and p(G-B), respectively. Additionally, the glucose-based 

polymers contain one Nile Red substituent (z in Figure VI.1), a fluorescent dye whose 

emission wavelength depends on the polarity of its environment.[45] A last difference 

between the Jeffamine- and glucose-based (co)polymers is their length, with an 

average DP of 186 and 103, respectively. 

The five polymers were studied by MD simulations at the atomistic scale. While a 

coarse-grained (CG) modeling approach has been successfully applied elsewhere and 

is computationally faster, it misses the information at the atomic level, such as 

hydrogen bonds between different units or with the water solvent, which is important 

for the systems investigated here.[41,46] Also, applying CG models to synthetic polymers 

would require a challenging parametrization, particularly when dealing with a variety 
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of complex side-chains. [47–50] All-atom approaches tend to rely on more transferable 

force fields, offer access to finer atomistic details and information on the dynamics of 

the system. With the current computational power at hand, an all-atom approach 

seems more appropriate to study single-chain systems. Thus, MD simulations were 

performed for each polymer as an isolated single chain in explicit water boxes, starting 

from fully extended conformations and simulated on the 2 µs time scale. Three 

independent simulation replicas were run for each system with the AMBER package, 

using parameters coming from GAFF 2.11 to describe the polymers (see details of the 

protocol in Section VI.8).[51,52] To explore sequence effects, p(J-BD) was simulated as 

random (r), block (b), and multiblock (mb) polymer chains. These structures are 

denominated as p(J-r-BD), p(J-b-BD) and p(J-mb-BD), respectively. The p(G-D) and 

p(G-B) copolymers were only simulated as random sequences. 

Figure VI.1. General chemical structure of the (random co)polymers studied and details of 

their monomeric composition. Adapted from Ref. 44. 

All systems were properly equilibrated after 2 µs of simulation, as indicated by the 

convergence of their root mean square deviation (RMSD) values (Figure VI.2). 

Larger fluctuations are observed for the p(G) system, showing that this macromolecule 

remains flexible and does not stabilize into one specific conformation. 
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Figure VI.2. Evolution of the RMSD values over time for the (A) Jeffamine-based 

(co)polymers and for the (B) glucose-based (co)polymers. Only the first replica is displayed, 

for the sake of clarity; see Figure VI.S1 in Section VI.9 for all replicas. 

VI.3. Jeffamine-based polymers form worm-like structures 

in water 

The Jeffamine-based (co)polymers, starting from a fully elongated structure, tend to 

rapidly coil in water. However, the fully hydrophilic systems remain quite extended, 

with a radius of gyration (RG) of around 10 nm (Figure VI.3). The introduction of 

hydrophobic grafts in the copolymers leads to more compact conformations at the end 

of the simulations (RG ≈ 6.5 to 8 nm), no matter their microstructure (random, block 

or multiblock). This trend is consistent with the experimentally derived RG values from 

SAXS where p(J) displays higher values than p(J-BD) (RG = 11.1 nm for p(J) and            

RG = 9.3 nm for p(J-BD)). Given the fact that experimental samples have a molar mass 

dispersity (both polymers) as well as heterogeneity in microstructures (for p(J-BD)), 

the simulated RG values are well in line with the experimentally derived ones. The 

worm-like structure of the Jeffamine-based polymers can be observed in the snapshots 

presented in Figure VI.4 (see Figure VI.S4 for the final snapshots of all systems). 

Although the copolymers display more compaction, they do not completely fold, but 

rather form “kinked tube” with local folding around the hydrophobic groups, as shown 

in Figure VI.4 B. The information encoded in the primary structure is retained: units 

that are far in the sequence remain far in the 3D structures. For the random copolymer, 

p(J-r-BD), hydrophobic moieties close to each other in the sequence are able to merge 

into the same cluster, but do not meet units at the other end of the copolymer (see red 

and pink circles in Figure VI.4 B). Consequently, multiple local hydrophobic pockets 

form along the chain. This is also observed in p(J-mb-BD), where the hydrophobic 

groups were preorganized into three different clusters, which never merge during the 
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simulations. P(J-b-BD) contains a single central hydrophobic core, which does not split 

into smaller clusters. The simulations reveal that controlling the sequence of the 

Jeffamine-based copolymers, in particular the distribution of hydrophobic groups, 

could be exploited to control their morphology in water. 

Figure VI.3. Data on the RG for the Jeffamine-based systems. (A) Development of the RG for 

each system over time. Only one replica is shown, for the sake of clarity (see Figure VI.S2 in 

Section VI.9 for all replicas). (B) Distribution of the RG values over the last 400 ns of the 

simulations for each system, averaged over the three replicas. The lines delimiting a box 

represent the first and third quartiles, whose values are annotated at the edges of the box. The 

line inside a box indicates the mean value. The error bar is given as mean ± 1.5 x standard 

deviation. (C) Table summarizing the data. 

To validate our theoretical model, the 3D structures obtained from the MD simulations 

were used to simulate SAXS curves, which were compared to experimental SAXS 

measurements (Figure VI.5). Basically, in SAXS, the intensity of the light scattered 

by a sample, I(q), is measured as a function of the scattering vector, q, which is directly 

related to the scattering angle θ. Information about the size, shape and internal 

structure of the nanoparticles can be extracted from the evolution of the scattering 

curve. Different scales are probed depending on the q value: large distances at small q 

(the whole particle contributes to the scattering) and small distances at high q (as 

contributions coming from atoms separated by a large distance disappear, due to 

destructive interference). Therefore, the scattering intensity reaches its maximum 

value at small q, where it generally forms a horizontal plateau, and decreases with 
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increasing q. At some point, the signal may become too low to emerge from the 

background, which explains the important noise observed at high q in Figure VI.5. 

SAXS curves were simulated at different times (520 – 700 ns and 1820 – 2000 ns), 

and from additional accelerated MD (aMD) simulations, to ensure sufficient 

sampling.[53] This method applies a boost to the dihedral and potential energy of the 

system, helping it to escape local minima, thus improving sampling efficiency (full 

details on the aMD protocol is given in Section VI.8). Although MD simulations and 

SAXS experiments scan the matter at a different scale (with ideal systems with no 

molar mass dispersity for MD and disperse, heterogeneous mixture of chains with 

different microstructures for SAXS), the agreement between the experimental and 

simulated data is remarkable. The quality of the fit can be assessed  

Figure VI.4. Final MD snapshot of the Jeffamine-based (co)polymers. The number of atoms 

is given for each system, and the sequence of monomers is represented as a colored bar (see 

bottom legend). (A) Fully hydrophilic polymer, p(J). (B) Copolymer with the random 

sequence, p(J-r-BD). Clusters of hydrophobic groups are highlighted in the sequence and in 

the 3D structure, with the same color. 
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through the χ² values, displayed in the tables in Figure VI.5 (the higher the χ² value, 

the less the curves overlap; see Section VI.8 for details). The global shape of the 

experimental scattering curves is in good agreement with that expected for graft 

polymers with extended conformations forming worm-like chains (see Ref. 44 for in-

depth analysis of the scattering curves). Notably, two different power law regimes are 

detected, i.e. the curves display different slopes, at intermediate q (0.1 < q < 0.6 nm-1) 

and high q (0.6 < q < 1.5 nm-1), in agreement with the curves expected for semi-flexible 

polymer chains. The scattering curve of p(J-BD) lacks a clear oscillation around                 

q = 1 nm-1, which indicates that p(J-BD) does not form a defined, single hydrophobic 

interior as expected in core-shell structures.[8] Overall, the comparison with 

experimental SAXS data corroborates that MD simulations reflect the nature of the 

formed structures well, namely as extended worm-like chains for p(J) and  

p(J-BD), and the formation of local hydrophobic pockets in p(J-BD). A careful 

validation against experimental measurements turned out to be extremely important. 

We found that the model used to compute the partial charges of our polymers, thus the 

representation of their electrostatic properties, strongly influenced the resulting 

conformations. Initially, we computed the partial charges with the AM1-BCC model, 

which is very common and often used by our group.[54,55] This method led to 

underestimated absolute values for the charges on the oxygen and carbon atoms of the 

Jeffamine grafts, giving them a low polarity (Figure VI.6 A). It resulted in the 

Figure VI.5. Experimental (black squares) and simulated (colored shapes) SAXS curves in 

water for the (A) p(J) polymer and (B) p(J-BD) copolymers. Simulated curves were generated 

from two time intervals during the conventional MD simulations, and from aMD simulations. 

The experimental polymer concentration is 1.5 mg.mL-1. The χ² values, assessing the accuracy 

of fit, are given in the tables below. 
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formation of a fully folded, compact globule, which was contradictory to experimental 

results. Turning to the RESP methodology to compute the partial charges, we obtained 

much better results, with the formation of the worm-like chains discussed above.[56] 

Simulations on simple PEG chains indicated the same trend, with much more compact 

chains when the charges are computed using the AM1-BCC model (Figure VI.6 B). 

The atomic charges were recently shown to strongly influence the interactions of 

polyethers with water, explaining the sensitivity of the system to partial charges.[57] 

This example demonstrates to which extent small inaccuracies on charge description 

can lead to wrong predictions on the shape and size of macromolecular structures. 

However, precious information can be extracted from this error. First, it gives us an 

idea of the minimal size that a p(J) particle could reach if fully collapsed, the globule 

having an RG of about 3.5 nm. Then, it demonstrates that folding could occur at the 

microsecond timescale if the Jeffamine chains were less polar, thus not interacting with 

water. In other words, the Jeffamine grafts limit the flexibility of the backbone not only 

because they are long and generate steric hindrance, but also because they are polar, 

thus stay extended in the solvent and attract a lot of water molecules. 

Figure VI.6. Investigation of the effect of the set of partial charges (AM1-BCC or RESP) on 

the conformations adopted by (A) the p(J) polymers and (B) simple PEG chains. The typical 

value of the charges computed on the atoms in the middle of a Jeffamine graft are represented 

in red and green for the oxygen and carbon atoms, respectively. 
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VI.4. Glucose-based polymers form core-shell structures in 

water 

The fully hydrophilic p(G) polymers, as their Jeffamine-based counterpart, quickly coil 

in water but do not fold, and their RG oscillates around 3 nm (Figure VI.7). The 

glucose-based copolymers, however, display a completely different behavior: p(G-D) 

and p(G-B) both fold into core-shell nanoparticles (RG ≈ 2 nm). The small glucose 

residues form a shell around a hydrophobic core comprising the dodecyl or BTA grafts 

and the Nile Red moiety, as can be seen in the snapshots in Figure VI.8.  

Figure VI.7. Data on the RG for the glucose-based systems. (A) Development of the RG for 

each system over time. Only one replica is shown, for the sake of clarity (see Figure VI.S3 in 

Section VI.9 for all replicas). (B) Distribution of the RG values over the last 400 ns of the 

simulations for each system, averaged over the three replicas. The lines delimiting a box 

represent the first and third quartiles, whose values are annotated at the edges of the box. The 

line inside a box indicates the mean value. The error bar is given as mean ± 1.5 x standard 

deviation. (C) Table summarizing the data. 

This can also be inferred from the significant decrease in solvent-accessible surface 

area (SASA) of Nile Red during the simulations, indicating a reduction of Nile Red 

exposure to its environment during chain folding (Figure VI.9). The SASA of Nile 

Red decreases even in the fully hydrophilic p(G) polymers, which tend to coil around 

it to shield it from water. It shows that the presence of a single hydrophobic unit can 

induce local structuration of the chain. However, the SASA values are lower in the  
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Figure VI.8. Final MD snapshots of the glucose-based (co)polymers. The number of atoms is 

given for each system, and the sequence of monomers is represented as a colored bar (see 

bottom legend). (A) Fully hydrophilic polymer, p(G). (B) From left to right: p(G-D) simulated 

by conventional MD, p(G-D) simulated by aMD, p(G-B) simulated by conventional MD.  

copolymers, where Nile Red is incorporated into hydrophobic domains and more 

efficiently shielded. The presence of Nile Red in hydrophobic compartments in the 

p(G-D) and p(G-B) systems was also detected experimentally, in agreement with the 

simulations.[44] The folding of the backbone in p(G-D) and p(G-B) allows hydrophobic 

units that are far in the sequence to become spatially close in the 3D structure, as can 

be seen in Figure VI.8. Hydrophobic groups quickly merge with their neighbors, and 

the formed clusters merge together until forming a single hydrophobic core. Inside 

these globules, the backbone dynamics are strongly reduced, as indicated by the 

decrease of the dihedral angles’ fluctuations along the backbone, showing that the 

conformational space is reduced as the polymer folds into a compact core-shell 

structure (Figure VI.10). A similar trend was observed in other folded amphiphilic 

copolymers.[40] The compact p(G-D) and p(G-B) conformations are further stabilized 

by intramolecular hydrogen bonds that increase in number over time, while these 
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Figure VI.9. Distribution of the SASA values measured for the Nile Red moiety in the 

different glucose-based polymers, averaged over the first and last 400 ns of the simulation. The 

lines delimiting a box represent the first and third quartiles, whose values are annotated at the 

edges of the box. The line inside a box indicates the mean value. The error bar is given as mean 

± 1.5 x standard deviation. Statistics are summarized in the table below. 

remain constant for p(G) (Figure VI.11). The folding of p(G-D) and p(G-B) is 

reminiscent of the early stages of protein folding and the formation of “molten 

globules”, characterized by nonspecific and local interactions between side-chains 

promoted by hydrophobic effects, and increasing backbone rigidity.[58–60]  

During their folding, the copolymers may remain trapped for several hundreds of 

nanoseconds in partly folded states, when the hydrophobic units are grouped in two or 

more clusters (see Figure VI.8 B, structure on the left). As mentioned above, the 

formation of these stable clusters decreases the flexibility of the backbone. To avoid 

spending too much time in these metastable states, aMD simulations are particularly 

useful, and this protocol was successfully applied to the p(G-D) systems (see Figure 

VI.8 B, structure on the middle). The fully folded structure comprising a single 

hydrophobic core was formed after 300 ns, compared to 2 µs (or more) with 

conventional MD simulations. In contrast, the p(G-B) systems folded without the need 

for the accelerated protocol despite containing only 5 % of hydrophobic monomers, 

compared to 15 % for the p(G-D) systems. However, the presence of more hydrophobic 

units means that more encounters between the hydrophobic groups are required to 
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Figure VI.10. Percentage of the backbone dihedral angles undergoing fluctuations superior 

than 20° in the glucose-based systems, over the first and last 400 ns of the simulations. 

Statistics are summarized in the table below. 

form the complete hydrophobic core. Additionally, in terms of carbon content, one BTA 

unit, which bears three alkyl chains, is roughly equivalent to three dodecyl groups. The 

larger size of the BTA grafts probably increases the likelihood of hydrophobic contacts 

along the chain, which overall leads to a more efficient folding. The 3D structures of 

the p(G-D) copolymer generated from the MD simulations were used to simulate SAXS 

curves, in order to compare them to the experimental SAXS measurements (Figure 

VI.12). The p(G-D) particles being much smaller than the p(J) and p(J-BD) polymers, 

the horizontal plateau extends to higher q values, up to around q = 0.4 nm-1. The 

experimental curve indicates the formation of core-shell nanoparticles of small size (RG 

= 3.8 nm), owing to the oscillation in the scattering curve around q = 1 - 2 nm-1. 

Surprisingly, the simulated SAXS curve for a single-chain of p(G-D) did not match the 

experimental curve well, although the 3D structures from MD show the formation of 

core-shell structures. We attributed this discrepancy to the presence of aggregates in 

solution, as suggested by the upturn below q = 0.1 nm-1. To support this hypothesis, 

mixtures of two and three chains were simulated for the p(G-D) copolymer, starting 

from extended chains. As observed in Figure VI.12 A, the overlap between the 

experimental and simulated curves is significantly improved when considering 

multichain aggregates (see also the χ² values in the table). The maximum of the peak 

around q = 1 – 2 nm-1 appears at a smaller q for the aggregate comprising three chains 

compared to the single-chain system, which is consistent with the formation of a larger 

hydrophobic core. An equilibrium of species, comprising SCPNs but also small 
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Figure VI.11. Distribution of the number of intramolecular H-bonds in the different glucose-

based polymers, averaged over the first and last 400 ns of the simulations. The lines delimiting 

a box represent the first and third quartiles, whose values are annotated at the edges of the 

box. The line inside a box indicates the mean value. The error bar is given as mean ± 1.5 x 

standard deviation. Statistics are summarized in the table below. 

aggregates, probably coexist in solution. This would be in line with DLS measurements, 

which show a wide distribution of sizes for the p(G-D) particles, from about 2 to 10 

nm.[44] Aggregation likely occurs in the early steps of folding, before the complete 

shielding of the hydrophobic moieties, similarly to what happens to misfolded proteins 

that expose hydrophobic groups and thus tend to aggregate. This example 

demonstrates the robustness of our approach combining MD simulations and SAXS, 

as it allows to distinguish particles of similar shape, core-shell structures, but of slightly 

different size (see the similarity between structures comprising one, two or three 

chains, in the snapshots in Figure VI.12 B). Such resolution is difficult to attain using 

experimental means alone. It also demonstrates that aggregate formation is not 

necessarily accompanied by a strong increase in RG, making it very difficult to infer 

SCPN formation by measuring the size of the particles in solution. It seems likely that 

some experimental results describing the formation of SCPNs were in fact 

characterizing mixtures of single-chain systems and small aggregates, which could 
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explain, in part, the surprisingly wide range of sizes reported in the literature for SCPNs 

of similar molecular weights.[36] Much larger aggregates were detected experimentally 

for the p(G-B) copolymers. This is probably due to the larger size of the hydrophobic 

BTA grafts, which facilitates interparticle contacts, and to their ability to make H-

bonds with BTA units of other chains. The formation of large aggregates was 

demonstrated to be dependent on the percentage of BTA units in the chain, for similar 

polymers.[11] Given the higher computational cost associated with the simulation of 

such multichain systems and the uncertainty concerning the number of chains 

comprised in the p(G-B) aggregates, we did not investigate them by MD simulations. 

Figure VI.12. Comparison between simulated and experimental SAXS curves for the p(G-D) 

copolymer. (A) Experimental (black squares) and simulated SAXS curves in water for the p(G-

D) systems comprising one (red circles) or three (blue diamonds) chains. The curve generated 

from two chains is not shown, for the sake of clarity. The experimental polymer concentration 

is 2.5 mg.mL-1. The χ² values, assessing the accuracy of fit, are given in the table next to the 

graph. They were also calculated without the first 50 points, because the upturn detected 

experimentally in the low-q region of the spectrum (q < 0.1 nm-1) is caused by a population of 

larger aggregates, that our simulations cannot reproduce. (B) Final snapshot of p(G-D) 

comprising one, two or three chains generated from the aMD simulations and used to simulate 

the SAXS curves. The glucose and dodecyl units are colored in blue and green, respectively. 



Chapter VI 

146 
 

VI.5. Comparison between Jeffamine- and glucose-based 

(co)polymers  

As described in the two preceding sections, the nature of the hydrophilic grafts has a 

strong impact on the morphology of the chains in water. While the Jeffamine-based 

systems remain quite extended and form worm-like structures, the glucose-based 

copolymers are able to fold into core-shell SCPNs (with the competition of 

intermolecular aggregation). This is well reflected by measurements of the asphericity 

parameter, which show that the p(G-D) and p(G-B) systems are the more spherical 

systems, although they do not form perfect spheres, in agreement with the ellipsoidal 

core-shell structures detected experimentally (Figure VI.13).  

Figure VI.13. Distribution of the asphericity parameter for each system, computed over the 

last 400 ns of the simulations. The lines delimiting a box represent the first and third quartiles. 

The line inside a box indicates the mean value. The error bar is given as mean ± 1.5 x standard 

deviation. Statistics are summarized in the table. 

The Jeffamine-based polymers exhibit higher values, as expected given their extended, 

rod-like character. The p(J-BD) copolymers, more compact due to the formation of the 

hydrophobic domains, display lower values than p(J). Among them, p(J-b-BD) is 

significantly more spherical, although it remains extended (see snapshots in Figure 

VI.S4). We attribute this behavior to the formation of the dense hydrophobic core 

located at the center of the chain, as preorganized in the primary structure, 

demonstrating that the sequence of monomers influences the morphology of the 

system. In both polymer families, the introduction of hydrophobic grafts induces 

compaction of the main chain, with a stabilization around local or global hydrophobic 

domains. The formation of these domains is associated with reduced backbone 

mobility, as indicated by a larger decrease in root mean square fluctuation (RMSF) 

values for the copolymers compared to their fully hydrophilic counterparts throughout 

the simulations (Figure VI.14). This effect is particularly pronounced in the p(G-D) 

and p(G-B) systems, whose conformational flexibility significantly drops upon folding 



Revealing the folding of single-chain polymeric nanoparticles at the atomistic scale by combining 
computational modeling and X-ray scattering 

 

147 
 

into compact globules, as already evidenced by the reduced fluctuations of their 

dihedral angles (Figure VI.10).  

Figure VI.14. Distribution of the RMSF values over the (A) first and (B) last 400 ns of the 

simulations. (C) Table summarizing the data. 

Simulations and experiments both demonstrated that the nature of the hydrophilic 

grafts strongly impacts the morphology of the chains in water. Global folding of the 

Jeffamine-based copolymers is prevented by the highly polar Jeffamine grafts, which 

remain extended and interact with many water molecules. This behavior is well 

reflected by the average number of H-bonds performed by each kind of side-chain with 

the solvent (Figure VI.15). A Jeffamine chain performs, on average, 18 H-bonds with 

water molecules per conformation, which is significantly more than the glucose units 

(6 H-bonds per conformation). Jeffamine – water interactions significantly contribute 

to the limited flexibility of these polymers, preventing complete folding. This graph 

also indicates that the number of interactions with the solvent for a given side-chain is 

independent of the system to which the graft belongs. For instance, a Jeffamine graft 

performs 18 H-bonds whether it is in the fully hydrophilic p(J) or in a p(J-BD) 

copolymer. The local folding of the Jeffamine-based copolymers is also related to the 

weaker hydrophobic driving force, compared to the glucose-based analogues. The long 

Jeffamine grafts efficiently shield the dodecyl and BTA units, as indicated by 

measurements of their SASA values (Figure VI.16). The dodecyl and BTA grafts are 

slightly more exposed to the solvent in the p(G-D) and p(G-B) systems than in the p(J-

BD) copolymers, suggesting that the latter do not require global compaction to shield 

their hydrophobic groups. In contrast, the glucose moieties being much shorter, the 

glucose-based copolymers must fold into compact structures around a single 

hydrophobic core to minimize the exposure of their hydrophobic units to water. 
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Figure VI.15. Number of H-bonds with the solvent per conformation, for each kind of side-

chain in each system, averaged over the last 400 ns of the simulations. Statistics are 

summarized in the table below. 

Figure VI.16. SASA value for each kind of hydrophobic moiety in each system, averaged over 

the last 400 ns of the simulations. Statistics are summarized in the table below. 
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VI.6. Role of the BTA units in the folding process 

Finally, we investigated more specifically the role played by the BTA grafts, which are 

often introduced with the aim of forming “structured” hydrophobic domains through 

their helical stacking.[9,10] Interactions between BTA units have been supported by 

circular dichroism (CD) experiments in various systems[9,11,20]; however, such 

measurements do not distinguish between intra and interchain interactions, nor do 

they provide a direct visualization of the spatial organization of the BTAs. All-atom MD 

simulations offer a powerful approach to probe their role in the folding process of 

SCPNs.  

Overall, the BTA units appear to contribute to the folding primarily through their 

hydrophobic nature. In the p(J-BD) systems, their alkyl chains merge with the dodecyl 

units in the hydrophobic domains (see snapshot and zoom in Figure VI.4 B), while 

in the p(G-B) copolymers, they constitute the central hydrophobic core of the core-

shell structures (see snapshot in Figure VI.8 B). However, unlike the dodecyl grafts, 

the BTAs are amphiphilic, with three amide moieties surrounding their aromatic core. 

Figure VI.17. Final MD snapshots zooming on hydrophobic clusters belonging to the (A) p(J-

r-BD), (B) p(J-b-BD) and (C) p(G-B) systems. For each system, a focus is made on the BTA 

cores (represented in red), where H-bonds are shown as black dots. The snapshots show that 

the BTA cores are mainly found at the periphery of the hydrophobic clusters and do not form 

well-organized helices, although they perform some H-bonds. Hydrophilic grafts are not 

shown, for the sake of clarity. 
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These polar parts are essentially found at the periphery of the hydrophobic domains, 

where they contribute to the shielding of the hydrophobic groups (Figure VI.17). This 

is reflected by the number of H-bonds performed by the BTA units with the solvent, 

around three per conformation (see Figure VI.15). These numerous BTA – water 

interactions are in competition with the establishment of persistent contacts between 

the BTA units, as indicated by their weak number of H-bonds and π-type interactions1 

(Figure VI.18). The p(J-b-BD) system displays slightly more interactions: in this 

copolymer, all the BTA units are preorganized into the same hydrophobic core, 

increasing their chances of encounter in comparison to the other Jeffamine-based 

microstructures, where BTAs are dispersed into several hydrophobic clusters. 

Interestingly, in the p(G-B) systems, which also regroup all their BTA units within the 

same hydrophobic core, the number of interactions between BTAs is almost zero, on 

average. This could be due to the strong decrease in backbone flexibility accompanying 

the formation of the globule, which limits the reorganization of the BTA cores after 

folding. Additionally, the BTAs are slightly more exposed to their solvent in the p(G-B) 

systems (see SASA measurements, Figure VI.16), which could further favor BTA – 

water over BTA – BTA interactions. The more efficient screening performed by the long 

Jeffamine grafts seems to increase the contacts between BTAs, although the 

interactions remain limited. Our simulations provide a very different picture than the 

one commonly used to describe the role of BTAs in such SCPNs, often representing 

them in well-organized supramolecular helices within the hydrophobic domains.[9,10] 

This should make us reconsider the “structuring” effect of these units, and their ability 

to transmit their chirality; for example, it was shown in similar polymers bearing 

catalytic units that, despite efficient catalytic properties and the presence of chiral BTA 

groups, the reactions were performed without enantioselectivity.[61] The measured CD 

signals, which undoubtedly confirm the presence of BTA interactions, could originate 

from transient contacts between BTAs located within the same hydrophobic domains, 

rather than from the formation of well-organized supramolecular helices. 

Intermolecular interactions within larger aggregates could also contribute to the CD 

response. Of course, we cannot rule out the possibility that our simulations misbalance 

BTA – water and BTA – BTA interactions, although similar simulation protocols have 

previously been successfully applied to study BTA-based supramolecular 

assemblies.[62,63] 

 

1
 π-type interactions are counted between aromatic cycles following these geometric criteria: the distance 

between their centers of mass must be ≤ 5 Å, and the angle between their planes must be < 45 ° or > 135 °. 
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Figure VI.18. Data on the interactions between BTA units. (A) Average number of H-bonds 

and (B) π-type interactions per conformation, measured during the whole simulations. Data 

is shown as mean ± standard deviation. The pale lines represent the distribution of 

measurements. (C) Table summarizing the data.  

VI.7. Conclusion 

Throughout this chapter, we have demonstrated that atomistic scale MD simulations 

constitute a promising tool to gain insight into the folding behavior of amphiphilic 

heterograft polymers. The current computational power using GPUs is now adapted to 

treat these very large systems (more than 30,000 atoms for p(J) in a box of ~ 

2,500,000 atoms of solvent) at the atomistic scale. A combination of MD simulations 

and SAXS experiments revealed that Jeffamine-based copolymers adopt globally 

extended structures capable of forming local hydrophobic domains. Copolymers 

functionalized with hydrophilic glucose grafts are instead capable of global folding into 

core-shell structures comprising a single central hydrophobic core. Importantly, our 

combined MD and SAXS approach allowed us to elucidate, at the atomistic level, the 

formation of small aggregates for the p(G-D) particles. These aggregates, which are 

very similar in size and shape to the SCPNs formed by the same system, could not have 

been detected by experiments or simulations alone. Their presence could only be 

confirmed by confronting the simulated SAXS curves to the experimental ones. 

Additionally, comparing our theoretical results to experiments was crucial, as we have 

seen that MD simulations done with inaccurate parameters can lead to completely 

wrong predictions. This demonstrates the robustness of our approach, and the 

complementarity between MD simulations and SAXS experiments to elucidate the 3D 

structure of SCPNs. The atomistic view provided by the simulations allowed us to 

investigate the influence of the primary structure on the folded conformations and 
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internal organization of the Jeffamine-based copolymers, revealing differences 

between random, blocky or multiblocky microstructures. These systems are 

particularly interesting to study sequence – structure relationships, as their limited 

folding permits to retain the information encoded in the sequence into the 3D 

structures. This property could be valuable for various applications: for instance, a 

recent example showed that the distribution of catalytic units within the sequence of 

an SCPN influenced its catalytic activity.[64] Atomistic MD simulations, especially 

accelerated methodologies, are now at a timely stage to be used as a predictive tool to 

guide the design of SCPNs for targeted applications, before embarking on lengthy 

synthesis procedures. 

 

VI.8. Simulation protocol 

MD simulations were carried out using the AMBER package.[51] The polymer chains 

were assembled in several steps. First, the monomeric units and chain-ends were built 

individually with the Avogadro 1.2.0 software.[65] Each of these residues was then 

assigned atomic partial charges following the AM1-BCC[54] or the RESP[56] 

methodology (as discussed in Section VI.3), using the antechamber module of 

AMBER. The QM calculations were done with the Gaussian 16 software.[66] The 

polymer chains were then built by assembling the monomers in the desired sequence, 

with randomized chirality, using the sequence command of the LEaP module of 

AMBER. The ratio between the α and β anomers of the glucosamine monomers was set 

as 60 % α and 40 % β, as measured experimentally in aqueous solution.[67] Three 

different sequences were investigated for the p(J-BD) copolymers, to study the effect 

of the primary structure on the 3D structures. The first one is a random copolymer, 

denominated as p(J-r-BD). The second one is a bloc copolymer, denominated as p(J-

b-BD), in which all dodecyl and BTA side-chains are placed consecutively in the center 

of the chain. The third one is a multiblock copolymer, p(J-mb-BD). The dodecyl and 

BTA grafts are distributed in three clusters, at the beginning, the middle and the end 

of the copolymer. The glucose-based copolymers, p(G-D) and p(G-B), were only 

studied as random copolymers. Each polymer was simulated in three replicas, 

identified by the Roman numerals I, II and III. For the Jeffamine-based systems, the 

same sequence was used for all three replicas, i.e. p(J-r-BD) I, II and III all have the 

same sequence of monomers. For the glucose-based systems, a new (random) 

sequence was inputted for each replica. All force field parameters for the polymers and 

their side-chains (Jeffamine, glucose, dodecyl, BTA and Nile Red) were given by GAFF 

2.11.[52] The starting structure of the polymer chains were reworked by hand to remove 

most of the steric clashes using the PyMOL software, which was also used to produce 

all the MD snapshots.[68] This step was followed by a geometry optimization in implicit 
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solvation, with 1,000 steps of steepest descent followed by 9,000 steps of conjugated 

gradient. The stable molecules were then solvated in rectangular water boxes, ensuring 

a minimal distance between any solute atom and the edge of the box of 25 and 40 Å for 

the Jeffamine- and glucose-based systems, respectively. One Na+ ion was added to 

bring the system to electroneutrality. The OPC3 water model was used to describe the 

solvent.[69] The hydrogen mass repartitioning (HMR) scheme was applied on all solute 

atoms, enabling the use of a timestep of 4 fs.[70] All subsequent simulations were 

performed with the GPU version of AMBER. The MD protocol followed five steps. First, 

a 10,000 steps minimization (1,000 steps of steepest descent and 9,000 steps of 

conjugated gradient) was carried out on the solvent molecules and ion only, using 

positional restraints on the solute with a force constant of 25 kcal.mol-1.Å-2. A second 

minimization step was carried out without restraints, with the same methodology. 

Then the system was heated in 1 ns from 10 to 300 K in the NVT ensemble, with 1 more 

ns of equilibration under these conditions. During heating, positional restraints were 

applied on the solute atoms with a force-constant of 10 kcal.mol-1.Å-2. The temperature 

was maintained at 300 K with a Langevin thermostat, using a collision frequency of 1 

ps−1. The system was then equilibrated for 10 ns in the NPT ensemble. The pressure 

was maintained at 1 bar with a Monte Carlo barostat, and the pressure relaxation time 

was set at 2 ps. Finally, the production phase of the simulation was launched in the 

same conditions for 2 µs. This portion of the simulation was analyzed, saving a 

snapshot each ns. For all these steps, the cutoff for non-bonded interactions was fixed 

at 8.0 Å and the long-range electrostatic interactions were treated by the particle mesh 

Ewald method. The SHAKE algorithm was applied to constrain bonds involving 

hydrogen atoms. Note that the simulations on the Jeffamine-based (co)polymers were 

restarted after 1.2 µs: the last snapshot was extracted and re-solvated in a smaller 

solvent box, and the simulation was extended until 2 µs, such as to save computational 

time. 

 

Accelerated MD (aMD) simulations were performed for 400 ns on the p(J) and p(J-r-

BD) systems (starting from the snapshot extracted after 1.2 µs) and for 300 ns on the 

p(G-D) copolymer (starting from the initial extended conformation).[53] The building 

of the system and the first four steps of the simulations, before the production phase, 

followed the protocol described above. However, the HMR scheme was not applied and 

the timestep was set to 2 fs. The p(G-D) aggregates of two or three chains were 

simulated with the same aMD protocol, for more than 1 µs. The macromolecules 

started as fully extended chains, with initial intermolecular contacts between some 

dodecyl moieties, such as to promote intermolecular assembly instead of single-chain 

folding. The basic principle of aMD is to provide a boost on the energy when the system 
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reaches stable states, to facilitate transitions between local minima separated by high 

energy barriers. Here, two boosts were applied: one on the dihedral energy, and one on 

the potential energy. They depend on two boost parameters, E and α, which were 

determined as follows for the dihedral energy: 

�� = �4 � �	
��
�
�� + �
��

,��� (VI.I) 

�� = �0.8 � �	
��
�
�� (VI.II) 

With ED and αD, the dihedral boost parameters, Nresidues, the number of solute residues 

and Edihed,avg, the average dihedral energy, measured during the 10 ns of equilibration 

in the NPT ensemble. Similarly, the boost parameters for the potential energy, EP and 

αP: 

�� = �0.2 � ������� + ����,��� (VI.III) 

�� = �0.2 � ������� (VI.IV) 

With Natoms, the total number of atoms in the system (including solvent) and Epot,avg, 

the average potential energy, measured during the 10 ns of equilibration in the NPT 

ensemble. Note that the boost parameters may be adapted for a higher or lower 

acceleration.  

 

After the simulations, all analyses were done with the cpptraj module of Amber.[71] The 

root mean square deviation (RMSD) values were computed after removal of the 

translational and rotational movements, taking the first snapshot of the production 

phase as the reference structure. The radius of gyration (RG) is a measure of 

compactness and gives the average distance of an atom to the geometric center of the 

system. The RG was measured on all atoms except hydrogens. The solvent-accessible 

surface area (SASA) measures the exposure of a group of atoms to its surrounding 

environment. The higher the SASA, the more the moiety is exposed. SASA values were 

calculated with the LCPO algorithm, using a van der Waals radius of 1.4 Å for the 

solvent probe.[72] Root mean square fluctuations (RMSF) are an indicator of the 

mobility of an atom or group of atoms. The higher the RMSF, the greater the positional 

fluctuations. First, translational and rotational movements were suppressed by 

aligning all structures to a reference, generally the first conformation of the production 

phase (for the RMSF calculated in the last 400 ns, the reference structure was the first 

of this time interval). Then, RMSF values were computed for each monomer on the 

backbone carbon atom bearing the side-chain. The fluctuations of the dihedral angles 

were measured for all bonds in the backbone as their average deviation to their mean 

value. The fluctuation of one angle θA around its mean value θmean, calculated for the N 

conformations sampled, was computed as follows: 
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To avoid the problem of working with a periodic variable, the mean dihedral angle was 

computed in the cartesian space.[73] Each individual angle, expressed in degrees in the 

range [-180 ° ; 180 °], is converted in (x,y) coordinates. The average values over the N 

conformations of the x and y coordinates define the mean dihedral angle in the 

cartesian space. This angle is then converted back to polar coordinates, in degrees, as 

θmean. In the formula, the addition of 180 ° and the application of modulo 360 are done 

to ensure that θi – θmean values are expressed in the range [0 ° ; 360 °]. Then, 180 ° are 

subtracted to measure the difference in the desired [-180 ° ; 180 °] interval, and the 

absolute value is taken, as we are only interested in the absolute difference. The 

hydrogen bonds were detected with the hbond command of cpptraj, with distance and 

angle cutoffs of 3.0 Å and 135°, respectively. π-type interactions (parallel stacking) 

were detected using geometric criteria: two aromatic units are considered in 

interaction if the distance between their centers of mass is less than or equal to 5.0 Å 

and if the angle between the normal vectors of their planes is < 45 or > 135°. The 

asphericity parameter, whose value ranges between 0 for a perfect sphere and 1 for rod-

like conformations, was computed based on the gyration tensor values, as described 

elsewhere.[74] The simulated SAXS curves were generated using the CRYSOL 3.2.1 

software.[75] The average displaced solvent volume per atomic group, the contrast of 

the hydration shell and the relative background used to generate the simulated SAXS 

curves were optimized against the experimental SAXS curves (experimental 

concentration of 1.5 mg.mL-1 and 2.5 mg.mL-1 for the Jeffamine- and glucose-based 

(co)polymers, respectively). The discrepancy between the simulated and experimental 

curves is quantified by CRYSOL with a χ² value, which compares, for each data point 

(each q value), the simulated intensity and the experimental intensity. The higher the 

χ² value, the less the curves overlap (see Ref. 75 for mathematical details). For the p(J) 

system, three average curves were obtained, at different times: in the range 520 – 700 

ns, in the range 1820 – 2000 ns and in the last 100 ns of the accelerated simulation, to 

ensure that the conformations probed during the simulations remain in agreement 

with the experimental SAXS spectra over time. 10 conformations of each replicate (p(J) 

I, p(J) II and p(J) III), one conformation each 20 ns (or each 10 ns for the aMD 

simulations) were extracted to compute the average curves. Similarly, the scattering 

curves of p(J-BD) were obtained by averaging over the three replicas of the three 

sequences, p(J-r-BD), p(J-b-BD), and p(J-mb-BD). The scattering curves of p(G-D) for 

one, two or three chains were obtained by averaging the spectra obtained for 10 

conformations, generated through aMD simulations. 
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VI.9. Additional data 

Figure VI.S1. Evolution of the RMSD values over time for the (A) p(J), (B) p(J-r-BD), (C) 

p(J-b-BD), (D) p(J-mb-BD), (E) p(G), (F) p(G-D), (G) p(G-B) systems and (H) p(G-D) 

aggregates of two and three chains. In some cases, all replicas of the same microstructure do 

not converge to the same RMSD value, reflecting that different conformations may be obtained 

from a given primary structure. 
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Figure VI.S2. Development of the RG for the Jeffamine-based (co)polymers during the 2000 

ns simulations. (A) p(J), (B) p(J-r-BD), (C) p(J-b-BD) and (D) p(J-mb-BD). 

Figure VI.S3. Development of the RG for the glucose-based (co)polymers during the 2000 ns 

simulations. (A) p(G), (B) p(G-D), (C) p(G-B) and (D) p(G-D) aggregates. 
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Figure VI.S4. MD snapshots of the three replicas of all systems. 
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VII. Conclusion and perspectives 
 

Throughout our thesis, we attempted to get a glimpse into sequence – structure – 

function relationships for a variety of SCMs and SDMs, from the impressive properties 

displayed by the biomacromolecules of life to purely artificial systems, designed 

following chemical intuition. After reviewing the most important results gathered from 

our work, we will regroup the general lessons we could learn, and provide a general 

opinion on the current and future roles that we envision for human-made SCMs and 

SDMs. 

 

The defined sequence and folding properties of natural SDMs were harnessed for 

biorecognition applications in Chapter IV. In Chapter IV-A, we investigated the 

interaction between collagen-mimetic peptides and a collagen-binding receptor. MD 

simulations showed that very subtle changes, here concerning the stereochemistry of a 

small number of AAs in the peptide, could strongly affect its interactions with the 

receptor. This molecular-level information could be connected to experimental 

observations showing a reduced ability of this peptide to support cell adhesion and 

migration. In Chapter IV-B, MD simulations helped us understand how light-

induced trans to cis isomerization could affect the binding of photoswitchable ligands 

to a complementary DNA template. Our results indicated that hydrogen bonding 

interactions between the ligands in their trans configuration and the template were 

reinforced and even dominated by a vast network of π-type interactions between the 

ligands. These interactions were weaker for the molecules in their cis configuration, 

leading to more disordered assemblies and weaker H-bonds with the template. These 

examples demonstrate that natural SDMs are very sensitive to small changes in the 3D 

structure of their ligands. 

In Chapter V, we investigated the possibility to precisely preorganize catalytic and 

recognition units within two synthetic SDMs, which need to self-assemble to form an 

active supramolecular catalyst. Our results indicated that the molecules were highly 

flexible and adopted folded conformations, leading to the generation of a disordered 

and globular duplex, where all functional groups could interact. This shows that 

precisely controlling both sequence and stereochemistry (as the SDMs are 

enantiopure) does not necessarily imply the formation of well-defined 3D structures, 

unlike what is observed for natural SDMs. However, controlling the monomeric 

composition was essential for achieving high catalytic activity, and specific interactions 

were detected between the complementary recognition units despite the apparent 

disorder within the supramolecular duplex. 
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In Chapter VI, we studied the folding and 3D structures of purely synthetic 

amphiphilic SCPNs in water. Our results revealed that, depending on the nature of the 

hydrophilic grafts, very different morphologies were obtained. In particular, polymers 

functionalized with oligo(ethylene oxide) grafts adopted extended, worm-like 

structures, with local folding around the hydrophobic moieties. Sequence effects were 

studied for these polymers in silico, and it was shown that their restricted folding 

allowed them to retain the information encoded in their sequence within their 3D 

structure. This work demonstrates that MD simulations are reaching a stage where 

they can be reliably used as a predictive tool to guide the design of SCPNs. Recently, a 

strategy combining MD simulations and machine learning (ML) has been applied to 

predict the conformational landscape of SCPNs.[1] While this study relied on a 

simplified physical model to describe the polymers, we now have the computational 

resources to investigate more complex systems with all-atom MD simulations, 

accounting for realistic chemical structures that incorporate diverse functional groups. 

 

Our results revealed that sequence and chirality are of crucial importance when 

interactions with natural SDMs are involved. In Chapter IV-A, the presence of a 

glutamate moiety inside an AA recognition motif GXX’GEX’’ was crucial for the 

binding to the receptor. Sequence alone, however, is not enough: two peptides 

distinguished only by their chirality displayed different behaviors. In view of creating 

synthetic SDMs replicating the properties of biomacromolecules, a particular attention 

should be directed to stereochemistry, as indicated by others.[2] This contrasts with 

traditional polymers, for which tacticity is generally neglected. Mismatches between R- 

and S-monomers along the chain could be detrimental to the formation of controlled 

structures. The importance of sequence was also demonstrated for synthetic SDMs in 

Chapter V, as only one missing catalytic unit could significantly decrease the catalytic 

activity of the duplex. This work also revealed that synthetic SDMs could display very 

different properties than their natural counterparts. While proteins and nucleic acids 

rely on a rather rigid backbone, the oligomers presented here probably incorporate too 

many rotatable bonds between their functional units to retain the information encoded 

in their primary structure. This led to very flexible chains, where the precise monomer 

ordering does not seem to be crucial for the catalytic activity. Other SDMs, based on 

different chemistries, also exhibited an important flexibility.[3] While sequence effects 

were clearly demonstrated even within flexible and folded systems, they were 

sometimes counter-intuitive, difficult to predict, and challenging to rationalize.[4,5] 

Therefore, while the ability to undergo conformational changes is required for some 

applications, it seems important to find an optimized balance between flexibility and 

rigidity within synthetic SDMs. Currently, they generally do not tend to adopt well-
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defined 3D structures. We mentioned in Chapter I the idea of constituting databases 

of MD-generated structures, to train ML algorithms aimed at developing accurate 

predictive models for artificial SCMs. However, for such models to be efficient, very 

large datasets of well-resolved structures are required, as illustrated with the Protein 

Data Bank for proteins. We saw in Chapter II that ML algorithms already struggle 

with single-stranded nucleic acids, which can adopt a variety of folded structures and 

for which experimental data remains sparse. If these natural SDMs based on a well-

known backbone and functionalized with only four different monomers are already 

challenging, it seems very difficult to envision accurate predictive models for synthetic 

SDMs. To make progress, general design principles may need to be established in order 

to reduce the conformational space. One direction could be to restrict the number of 

rotatable bonds between functional units, favoring short backbones and side-chains, 

as observed in natural SDMs. This strategy would at least limit folding for short chains, 

giving more weight to the encoded primary structure, and facilitating the 

establishment of sequence – structure relationships, before gradually increasing the 

complexity of the studied systems. 

 

Based on these lessons, what can we expect for the future? The field of SCMs and SDMs 

has attracted a considerable interest, driven by the possibility to design “artificial 

proteins” with completely novel chemistries. Several examples, in the literature and in 

our thesis, have demonstrated the promises of synthetic SCMs. However, although 

significant progress has been made in the past 15 years, the synthesis of SDMs still 

essentially rely on tedious step-by-step approaches. Without innovations and the 

discovery of new synthetic methodologies, an absolute control over the sequence of 

long polymer chains (more than ~20 units) still seems far of reach.[6] In the same time, 

we have seen that characterizing the 3D structures of such molecules remains 

extremely challenging, even for short chains. In the medium term, the practical 

applications of SDMs are likely to remain limited. Among them, information 

storage stands out. The impossibility to reach high DP for synthetic SDMs is mitigated 

by the possibility of incorporating large monomer libraries, which easily outperform 

the four nucleobases of DNA, also considered for such applications. Another advantage 

of SDMs over DNA is the possibility of adapting the backbone chemistry to the 

detection method, for instance by designing backbones with predictable fragmentation 

patterns suitable for MS/MS. Moreover, the polymer can be tailored for stability under 

any desired conditions, whereas DNA imposes constraints for long-term storage. 

Beyond applications, SDMs provide an ideal platform for fundamental studies, 

enabling precise investigation of the role of specific monomer units. This was 

illustrated in our thesis in Chapter IV-A, with the role of glutamate, and in Chapter 
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V, where all five catalytic units were required to achieve efficient catalysis. Therefore, 

there remains a lot of efforts to engage in fundamental research before any practical 

application, in particular on investigating the role of individual functional units within 

complex processes. This is extremely valuable to study catalytic mechanisms or 

(bio)recognition phenomena. For applications where the control over the 3D structure 

is required, SDMs do not appear to be the best option. While there is something 

beautiful in trying to reproduce the absolute sequence and structure definition of 

proteins or nucleic acids into synthetic materials, we are still far from being able to 

rationally implement these design principles into functional systems. To mimic natural 

biomacromolecules, SCPNs incorporating a limited control over their primary 

structure appear more promising. This is particularly true for systems with restricted 

folding, such as the Jeffamine-based polymers studied in Chapter VI. SCMs based on 

this design, with block or multiblock architectures, could be ideal targets to study 

sequence – structure – function relationships, as the information encoded in their 

sequence is retained in their 3D structure. Polydispersity and the lack of absolute 

sequence definition would not be problematic, provided that the global morphology 

can be tuned by adjusting the ratio and nature of solvophilic and solvophobic units. 

Furthermore, the design of such single-chain systems can now be rationalized using 

all-atom MD simulations, enabling the investigation of sequence – structure 

relationships in silico to guide the development of efficient sequence-controlled 

SCPNs. For these systems, where clearer links between sequence and structure appear, 

the emergence of predictive ML algorithms seems more realistic. In this sense, 

sequence-controlled SCPNs may represent a major step towards synthetic materials 

with protein-like levels of control, opening the door to a new generation of functional 

artificial macromolecules. 

 

The modeling strategy used in our thesis will also undoubtedly benefit from further 

advances in computational resources and the development of new methodologies. The 

simulation of natural SDMs is steadily improving, in particular concerning proteins, 

with the help of ML predictive tools such as AlphaFold[7] and the emergence of ML 

force fields approaching QM accuracy within reasonable timescales.[8] Another 

particularly exciting perspective is the ability to simulate more realistic biological 

environments. For instance, in Chapter IV-A, the interactions between peptides and 

the binding site of an integrin were investigated in isolation, neglecting the influence 

of the surrounding cellular context. In the future, we can envision the simulation of 

increasingly complex biological environments, potentially up to whole-cell models, 

through multiscale approaches exploiting coarse-grained (CG) representations and ML 

tools.[9] This would allow us to study protein-ligand complexes in realistic cellular 
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environments, and to explore how these complexes influence and are influenced by the 

myriad of other cellular components with which they dynamically interact. Advances 

in this direction would make MD simulations an even more powerful computational 

microscope, capable of observing dynamic cellular processes with atomistic resolution. 
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