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“It's not just about doing bucket list stuff and doing massive things, it's
just about appreciating the mundane fun of life, the mundane elements of
life which can be wonderful that you don't necessarily appreciate when
you're on this treadmill of next, next, next, what we're doing tomorrow?
Never mind tomorrow, enjoy today!”

— Chris Hoy
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Abstract

Sequence-controlled macromolecules (SCMs) are polymeric or oligomeric systems in
which the sequence of monomers is partially or totally regulated. When the control is
absolute, i.e. when all chains contain the exact same sequence and number of
monomers, the material is classified as a sequence-defined macromolecule (SDM), a
specific subclass of SCMs. SCMs are ubiquitous in Nature and perform specific
biological functions, DNA and proteins being prime examples. Proteins, in particular,
have the ability to fold into specific 3D structures, executing functions with very high
selectivity. This remarkable structural control is encoded in their sequence of
monomers, the amino acids, which governs the folding process. The discovery of the
importance of monomer sequence in natural macromolecules sparked a considerable
interest among researchers, fuelling the desire to produce human-made SCMs. The
recent advances in polymer synthesis have enabled the design of a wide range of fully
synthetic SCMs, building on the virtually unlimited library of monomers available to a
polymer chemist. However, this diversity of structures, while very attractive, brings
considerable challenges: how to rationalize the design of synthetic SCMs? Which
backbone and side-chains to use for a given application? What will be the 3D structure
of the system in solution? Currently, synthetic SCMs are designed following “chemical
intuition” rather than sound guidelines.

The aim of this thesis is to address these questions. The 3D structures of various
natural and synthetic SCMs are investigated using the tools of molecular modeling.
Molecular dynamics (MD) simulations, a computational method based on classical
mechanics, allow us to predict the 3D structure and dynamics of (macro)molecular
systems at the atomistic scale, using only their chemical structure as input. Our results
are systematically compared to experimental data, to provide a better understanding
of the links between sequence of monomers, 3D structure, and function.

The first part of the thesis focuses on biorecognition applications, one system targeting
a protein, the other DNA. The simulations give insights on the mechanisms of assembly
and the interactions at the molecular level, helping to understand experimental results.
The second part concerns the study of a supramolecular catalyst made by the assembly
of two complementary SDMs, functionalized with nucleobases for the recognition
between the chains, and catalytic units. MD simulations and network representations
are used to elucidate the formation and dynamics of the catalytic duplex, and help to
rationalize the experimental results of catalytic activity.

In the last part of the thesis, MD simulations are combined with small-angle X-ray
scattering (SAXS) experiments to reveal the 3D structure of purely synthetic
copolymers, in the context of single-chain polymeric nanoparticles. The folding in



water is studied for two different copolymer designs, showing how the nature of the
hydrophilic grafts can influence the resulting nanostructures.

Globally, our thesis provides insights into the sequence-structure-property
relationships in SCMs, towards a rational design of functional macromolecular
systems.



Résumeé

Les macromolécules de séquence contrélée (SCMs) sont des systemes polymériques ou
oligomériques au sein desquels la séquence de monomeres est partiellement ou
totalement régulée. Quand le controle est absolu, c’est-a-dire quand toutes les chaines
contiennent exactement la méme séquence et le méme nombre de monomeres, le
matériau est classé comme macromolécule de séquence définie (SDM), une sous-classe
au sein des SCMs. Les SCMs sont omniprésentes dans la Nature et exercent des
fonctions biologiques spécifiques, 'ADN et les protéines étant des exemples typiques.
Les protéines, en particulier, ont la capacité de se replier en des structures 3D
spécifiques, exécutant des fonctions précises avec une treés haute sélectivité. Cet
exceptionnel contréle structurel est encodé dans leur séquence de monomeres, les
acides aminés, qui gouvernent leur processus de repliement. La découverte de
I'importance de la séquence de monomeres au sein des macromolécules naturelles a
engendré un grand intérét parmi les chercheurs, nourrissant le désir de produire des
SCMs artificielles. Les avancées récentes en synthése des polymeres ont permis la
création d’'une large gamme de SCMs synthétiques, s’appuyant sur une bibliotheque de
monomeres virtuellement illimitée a disposition des chercheurs. Cependant, cette
diversité de structures, bien que tres attrayante, souléve plusieurs questions : comment
rationnaliser le design des SCMs synthétiques ? Quel squelette moléculaire et chaines
latérales utiliser pour une application donnée ? Quelle sera la structure 3D du systeme
en solution ? Actuellement, les SCMs synthétiques sont construites sur base de
« 'intuition chimique » plutot qu’en suivant des principes bien établis.

Le but de cette these est de s’adresser a ces questions. Les structures 3D de diverses
SCMs naturelles et synthétiques sont étudiées en utilisant des outils de modélisation
moléculaire. Les simulations de dynamique moléculaire (MD), une méthode
computationnelle basée sur les lois de la mécanique classique, nous permettent de
prédire la structure 3D et la dynamique de systemes (macro)moléculaires a I’échelle
atomique, en utilisant uniquement leur structure chimique comme point de départ.
Nos résultats sont systématiquement comparés a des données expérimentales, afin de
fournir une meilleure compréhension des liens qui unissent séquence de monomeres,
structure 3D, et fonction.

La premiére partie de la thése se concentre sur des applications de bioreconnaissance,
un systeme ciblant une protéine, 'autre 'ADN. Les simulations nous donnent un
apercu des mécanismes d’assemblage et des interactions au niveau moléculaire, nous
aidant a mieux comprendre des résultats expérimentaux. La deuxieme partie concerne
I’étude d’un catalyseur supramoléculaire obtenu par assemblage de deux SDMs
complémentaires, fonctionnalisées avec des nucléobases pour la reconnaissance entre
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les chaines, et des unités catalytiques. Les simulations de MD et des représentations en
réseau sont utilisées pour élucider la formation et la dynamique du duplexe catalytique,
et nous aident a rationnaliser des mesures expérimentales d’activité catalytique. Dans
la derniére partie, des simulations de MD sont combinées avec des expériences de
diffusion de rayons X aux petits angles pour révéler la structure 3D de copolymeres
purement synthétiques, dans le contexte des nanoparticules polymériques a chaine
unique. Le repliement dans ’eau est étudié pour différents copolymeres, montrant
comment la nature des groupements hydrophiles peut influencer les nanostructures
obtenues.

Globalement, notre these apporte des pistes pour mieux comprendre les liens
séquence-structure-fonction au sein des SCMs, afin d’évoluer vers une conception
rationnelle de systéemes macromoléculaires fonctionnels.

viii



Remerciements

Me voila face a 'immense défi des remerciements ! Une partie que je redoute un peu
d’écrire, par peur de ne pas rendre correctement hommage a toutes les personnes
envers lesquelles je suis reconnaissant. En méme temps, je ne suis pas tres
démonstratif : c’est donc ’occasion idéale de mettre par écrit ce que je n’exprime peut-
étre pas assez.

First of all, I sincerely thank the members of the jury, Prof. Sylvain Gabriele, Prof.
David Beljonne, Dr. Quentin Duez, Dr. Nezha Badi and Dr. Mohsen Sadeghi. I am
really happy to have such a diverse jury, with experts in various domains. Many thanks
for the time you spent reading my manuscript and for your comments.

Ensuite, je tiens a remercier mon promoteur, Mathieu Surin. Ca a été un vrai bonheur
pour moi de travailler sous ta supervision, depuis mon arrivée au labo en Master 1, ou
j'ai été attiré par d’intrigants quadruplexes d’ADN... J’ai toujours ressenti beaucoup de
confiance de ta part, j’ai pu travailler avec beaucoup de liberté et d’autonomie, mais tu
as toujours été disponible pour discuter de mes résultats. Ton soutien et ta positivité
ont été tres importants tout au long de mes années de mémoire et de these, pour
dissiper les doutes — inévitables — qui accompagnent la recherche. Merci !

Plus généralement, j’ai eu énormément de chance d’arriver au CMN, qui est un
environnement de travail absolument parfait pour moi. En ce sens, je remercie toutes
les personnes qui ont contribué et qui contribuent encore a ce que ’'ambiance au labo
soit aussi bonne. Merci a Roberto Lazzaroni, pour toute la bonne humeur et ’énergie
que tu insuffles, pour tous les évenements conviviaux que tu incites a réaliser et qui
permettent de créer un vrai esprit de groupe au sein du labo. Merci aussi a tous les
autres « chefs », Jérome Cornil et ses blagues qui font toujours (parfois ?) mouche,
David Beljonne pour sa gentillesse et sa disponibilité, Claudio Quarti pour ses bons
conseils et sa pédagogie, ainsi que Patrick Brocorens pour ses anecdotes de voyage,
parfois invraisemblables mais toujours passionnantes.

Merci aussi a Laura, pour la bonne humeur que tu apportes, tous les événements que
tu contribues a organiser et toutes ces notes de frais traitées. Encore félicitations a toi
et Alex pour la naissance d’Eliott, beaucoup de bonheur a vous quatre (j’inclus Pippa,
bien stir) ! Je remercie également Pocket, le poete du labo. Sans tes précieux conseils
et ton expérience, bien des mémorant(e)s et doctorant(e)s seraient perdu(e)s ; mais
surtout, ils manqueraient de café, carburant indispensable a la production scientifique.
Je remercie également tous les membres du bureau 157, un véritable concentré
d’excellence, 1’élite de 1’élite ! Merci au chef de bureau, Vincent, d’avoir toléré ma

X



présence dans ce haut lieu de la Science montoise. J’ai en téte tant de magnifiques
instants ou la « solidarité de bureau » — une solidarité, il faut le dire, toute relative — a
triomphé au Dalmuti... Plus sérieusement, j’ai tout de suite eu un bon contact avec toi,
tu m’as vraiment aidé a m’intégrer au labo quand je suis arrivé, et tu as toujours été
disponible lorsque j’avais une question ou un probléeme (pour des scans d’angles de
torsion par exemple...), et pour tout ca je te remercie sincerement. Je remercie
également Corentin, membre d’honneur du bureau. De Templeuve au bureau 157 (c’est
d’ailleurs toi qui m’avais transmis l'invitation officielle, quel honneur), j’ai décidément
toujours suivi ton chemin. Merci pour toute I'aide apportée quand jai débuté ma
these ! Ari, tu es arrivé en digne successeur, comblant les dettes qui t’avaient été
léguées en relancant la tradition des féves (bon, il faudra essayer de re-relancer cette
tradition...), avec en prime le prix de la SRC, et surtout un article dans Chimie Nouvelle.
La grande classe ! And of course, a word for Sarajit. It has been a pleasure to meet you,
and to share the good, and sometimes more difficult, moments of the thesis. I will
always remember our trip in Warwick; the pictures of you enjoying life in the park will
stay in my mind. Thanks to your advice, I discovered good Indian dishes in England!

Pour continuer au CMN (ca en fait du monde, quand méme), je dois remercier quelques
« anciens » (avec tout le respect). Merci a Mathieu Fossépré, pour m’avoir initié et
formé a la modélisation moléculaire. J’ai eu énormément de chance de démarrer ma
theése en pouvant m’appuyer sur les travaux que tu avais déja réalisés, ca m’a beaucoup
aidé pour débuter. Merci aussi a Sinan Kardas, j’ai beaucoup apprécié les moments
passés avec toi et j’aurais aimé te cotoyer un peu plus longtemps. Comme Mathieu, tes
travaux et ton aide ont été tres précieux pour « lancer » ma thése. Je remercie aussi
Alexandre Remson, le prodige du Pays Blanc. Je garde en mémoire ton franc-parler et
ton humour, et la belle collaboration que tu nous as permis de réaliser ! J’étais un peu
dubitatif au départ, pas str du tout qu’on arriverait a quelque chose, mais finalement
ca a donné de belles choses ! Tu as bien fait d’insister. Merci a Maxime Leclercq, c’est
toi qui m’as superbement formé aux mesures CD, et plus généralement qui m’as initié
a la recherche. C’était au cours d'une sombre période de coronavirus, ou le labo était
bien vide. Heureusement que tu étais la pour répondre a mes questions et m’aiguiller !
Je remercie aussi les mémorant(e)s et doctorant(e)s avec qui j’ai pu travailler. Maxime,
ca a toujours été tres cool de travailler avec toi et de partager des moments ensemble.
Méme si tu es désormais blacklisté des boites de Rouen... On se croisera, je 'espere,
encore pour des courses a pied ; au moins sur la ligne de départ, apres je risque d’avoir
un peu de mal a te suivre. Julien, c’était un plaisir de pouvoir discuter de modélisation
avec toi. Méme si c’est sans doute toi qui m’a appris des choses plutot que 'inverse ! Je
suis devenu un peu meilleur réalisateur avec PyMOL grace a tes astuces. Louis, le roi
des protéines et véritable fast learner ; il a suffi de te montrer les commandes une fois,



et puis tu étais lancé. C’est vraiment cool qu’on ait pu collaborer ! Pauline, qui entame
un périlleux voyage dans le monde de la modélisation. Pas simple avec toutes les
techniques que tu dois maitriser, mais je suis stir que tu arriveras a assembler le
«puzzle » de ta these ! Et Cassandra, c’était pas évident pour toi avec un
« encadrement a distance », mais tu t’en es super bien sortie pour ton mémoire, avec
beaucoup d’autonomie. Bon courage pour le FRIA, je croise les doigts pour que ca
passe ! J’ai toujours eu la chance de travailler avec des gens tres a ’écoute, attentifs et
désireux d’apprendre, donc c¢’était un vrai plaisir pour moi, merci a tous !

Encore un mot pour mes camarades de fin de theése, Antoine et Florian, indissociables
jusque dans mes remerciements. Antoine, je me souviens avec émotion des cours du
CECI, ou nous avons tant appris sur le codage en Python... Florian, je ne pourrai jamais
oublier un certain spectacle de Noé€l, ou tes talents de DJ (ainsi que tes muscles
saillants) ont été révélés au grand jour. Je suis vraiment, vraiment content de vous
avoir rencontrés et j’espere que I'on gardera contact !

Et tous les autres que je n’ai pas encore cités, la « nouvelle génération » du CMN (mais
pas que) : Alexis, grace a toi le mot « spintronique » signifie quelque chose pour moi.
Cristina, thanks for the amazing energy that you bring to the lab! Guillermo, your
moves are always perfect, whether on the dance floor or on the chessboard. Isaac,
I’homme qui alterne les masterclass (souvent) et les « masterclaques » (parfois). Loic,
déja un papier, quelle classe ! Bon courage pour ta these, et laisse un peu de répit a
Pocket, pense a sa santé. Louis (Duhayon), sage chercheur le jour et fétard invétéré la
nuit. Mariano, dont ’envie de courir (voire de rouler en vélo) est proportionnelle a
I’alcoolémie, un véritable triathlete dans 'ame. Mohamed, beaucoup trop gentil et trop
honnéte, surtout au grand Dalmuti. Nico, j’espéere que tu auras cette theése en Espagne ;
si pas, tu es plein de ressources et je ne doute pas que tu trouveras une voie qui te plaira.
Tudor, avec toi on ne sait jamais a quoi s’attendre: MMA, béhourd, retraites
spirituelles... C’est trop cool, reste comme tu es ! Zoé, apreés la Suéde, les Etats-Unis :
c’est sympa la chimie, quand méme. Profite bien de ton voyage ! Vous contribuez tous
et toutes a créer cette superbe ambiance qui m’a donné envie de venir au labo jour
apres jour, et je garde vraiment de beaux souvenirs avec chacun de vous. Je suis
heureux de vous avoir rencontrés.

Pour enfin conclure avec la partie CMN, je souhaite adresser un immense merci a
Sébastien Kozlowskyj. Merci pour ta gentillesse, ta disponibilité et ton efficacité pour
résoudre nos problemes informatiques divers et variés. Tu es vraiment indispensable
au bon fonctionnement du labo, et ¢ca a été un plaisir de croiser ton chemin durant ces
quelques années.

xi



J’aimerais ensuite remercier I’ensemble des personnes avec lesquelles j’ai eu la chance
de collaborer durant ma these. Ce n’est pas un hasard si chacun des chapitres de
résultats met en avant une collaboration différente : cette these, ce n’est pas moi, seul
dans mon coin. Elle n’aurait jamais pu voir le jour sans I’aide et les contributions de
toute une série de personnes, et je suis heureux de présenter ce travail comme un
véritable effort collectif. Ces collaborations m’ont aussi permis de me plonger dans des
domaines tres variés, en me nourrissant de I'expertise d’autres chercheurs, ce qui a été
véritablement passionnant et tres enrichissant d’'un point de vue scientifique. Merci
aux groupes d’Alain Jonas et Karine Glinel de 'UCLouvain : je me souviens étre venu
répéter ma présentation pour le FRIA chez vous, et vos conseils ont été précieux pour
Paméliorer. Many thanks to the group of Dr. Andres de la Escosura, in particular to
Noemi Nogal, for her nice spectroscopic results and the energy that she brought in
Mons! Merci au groupe de Sylvain Gabriele, en particulier Alex que j’ai déja cité, pour
la belle collaboration et pour m’avoir encouragé et poussé a approfondir mes résultats.
And many thanks to the group of Anja Palmans, it was an immense pleasure and honor
to work with you. Your mails always brought a smile to my face, your joy and visible
enthusiasm are truly contagious. And I particularly thank Stefan Wijker. This is the
project where the comparisons between simulations and experiments were the most
“direct” and probably the most satisfying. You have always been very available to
answer my questions, and the discussions about our results were very enriching. I also
wish to thank Patrick Norman and Mathieu Linares, for the wonderful welcome that I
received in Sweden. I learned a lot in an amazing environment, and discovered a truly
beautiful country. Je remercie également particulierement Fabrice Saintmont, pour
toute 'aide que tu m’as apportée la-bas, au labo et en dehors !

Et puis, ces années a Mons auront quand méme été marquées par plusieurs personnes
exceptionnelles ; je vais essayer de faire par ordre de connaissance, en espérant que
mes souvenirs ne me trahissent pas. Quentin, rencontre incroyable, deux glandus
arrivés aux TPs de BAC 1 sans avoir de groupe, on s’est retrouvés ensemble par hasard.
Et bah, quelle chance d’étre tombé sur toi. On n’était pas les étudiants les plus brillants,
mais c’était rigolo. Ca a tout de suite super bien accroché de mon co6té, on avait déja
des références communes et le contact a été naturel. Avoir immortalisé notre amitié au
stand Notélé vaut tout 'or du monde... Louis, j’ai en mémoire les temps de midi a jouer
au Mao, les cours suivis de maniere trop peu sérieuse (encore désolé que tu te sois attiré
les foudres de Coulembier...), les TPs de physique (bravo coach). Et puis toutes les
soirées chez toi, surtout en BAC 2 / BAC 3, mémorables. Je n’oublierai jamais ce qu’on
a vécu, un soir, au Connemara... Et puis, c’est toi qui as lancé I'idée de la coloc’ : une
masterclass, merci. Pierre, tah ’époque, comme disent les jeunes, ou la moindre

xii



taquinerie t’énervait. La premiere fois que je t’ai vu, tu as tout de suite su me mettre a
laise (non) grace a une bonne blague bien trash comme tu les aimes et que je ne
pourrais pas relater ici. Et puis on ne s’est plus quittés, méme quand tu es devenu
physicien : six ans de vie commune, quand méme... Barnabé, tu es resté moins
longtemps a la coloc’, mais ca ne t’a pas empéché de réaliser quelques coups d’éclat,
avec bien souvent Pierre comme victime malheureuse (et parfois agresseur, en
retour...). Les deux années ensemble étaient super droles, pleines de superbes
souvenirs. Je retiens notre duo a la manille, avec un talent particulier pour remporter
les « parties en or ». Amandine, malgré tes passions pour certains groupes de rock
énervés et les chats noirs, tu es tout le contraire de « satanique », n’écoute pas les
haters. Par contre, a un moment, il faudra que tu acceptes de jouer a Galérapagos avec
nous... Et a lautre jeu 13, le genre de « Loups-Garous » avec les libéraux... Nathan,
merci d’avoir été 1a pour ramener un peu d’ordre dans le kot ! Grace a toi et Clara, je
me suis enfin intéressé au cyclisme, ce qui m’a permis de vibrer pour le triplé de Remco
aux championnats du monde. Les soirées Top Chef et tes petits desserts me
manqueront ; mais j’ai entendu dire que tu ouvrais bient6t ta boulangerie... Clara, la
cinquiéme coloc’, seule vraie Montoise ! Merci d’avoir égayé les soirées du kot par ta
présence. Je continuerai a suivre, admiratif, tes sorties sur Strava (en espérant que tu
ne rencontres plus de pavés de trop pres...). Tres content pour toi et Nathan que tout
se passe bien pour vous, bien installés dans votre superbe appart’ ! Je vais aussi avoir
un petit mot pour Thomas, respect au deuxieme plus grand fan de la Royale Fanfare
Communale de Huissignies. Et pour finir, Benjamin, « parrain » comme dirait 'autre
(et bient6t « papa » maintenant, encore félicitations a Lia et toi), toujours un vrai
plaisir de te voir. La petite réunion a la Lorgnette pendant le Doudou est déja un
incontournable.

En écrivant tout ca, je me rends compte que neuf ans, quand méme, ca passe vite... Les
premieres années d’unif’ semblent si proches, et en méme temps tout a tellement
changé depuis, certains souvenirs paraissent si lointains. J’espere qu’a I'image des
Montois, la « bande a Pierrick » ne périra pas... Vous méritez bien plus que quelques
lignes dans les remerciements de ma petite thése, mais le plus important sera de ne pas
perdre le contact, malgré la distance, ou que la vie nous emmene. On pourra toujours
se retrouver pour une Taverne. Je vous aime.

Sur ce, je quitte Mons pour retrouver mes origines templeuvoises. Dimitri, on se
connait depuis qu’on est des petits bézots et on ne se lache pas. Je sais que je pourrai
toujours compter sur toi. Merci pour toutes ces soirées gaming, ces week-ends de Mario
Kart (entraine-toi un peu par contre), de Smash Tennis, et de cyclisme acharné (avec
la frite qui suit, a ne surtout pas commander sur Alezy, évidemment), les 100 bornes

xiii



pour aller a la mer, les vacances au lac de Garde, et j’attends impatiemment la suite !
Bastien, tu es un jeune cadre dynamique maintenant, mais tu restes au fond le petit
Satcheu que j’ai toujours connu. Je me souviendrai toujours des innombrables voyages
a Bellewaerde, des matchs de badminton (il faudra qu’on remette ca un jour...), des
sessions gamings nocturnes sur Pokémon (les souterrains sur Diamant/Perle, c’était le
feu). Et comme Dimitri, je sais que je peux te vouer une confiance absolue. Et puis
Adrien, le petit bricoleur. Les vacances avec toi ont été une régalade. Je suis sir que tu
seras prét pour la prochaine lan Smash Bros, un jeu qui permet de mettre en valeur ta
grande sérénité et ton calme a toute épreuve (FAUX). Mais reste comme ca, t’es un
boss ! Je vous aime les gars.

Je vais conclure ces remerciements par le plus important. Merci papa et maman, pour
I’éducation et tout 'amour que vous m’avez donnés. J’ai eu la chance incroyable de
toujours pouvoir faire ce que je voulais, j’ai pu étudier dans les meilleures conditions,
je n’ai eu a me soucier de rien. Durant toutes ces années a Mons, revenir a la maison le
week-end était toujours un vrai bonheur (pas seulement pour faire mes lessives...).
Merci d’avoir toujours été la pour moi, je ne pourrai jamais vous rendre tout ce que
vous m’avez donné, mais je vais faire de mon mieux pour étre quelquun de bien et vous
rendre fiers. Je t’aime papa. Je t’aime maman, j’aurais tant aimé que tu sois la.

Merci Luca, je n'imagine pas la vie sans toi. Rentrer le week-end, c’était aussi te
retrouver. Merci pour tous ces matchs de ping-pong (méme quand la balle ne rebondit
pas), pour tous ces vendredis ou tu es venu me chercher a la gare, pour toutes les fois
ou tu m’as demandé « un p’tit jeu ? », pour m’avoir montré que tout est possible avec
un peu de volonté (méme finir un marathon sans entrainement). Je suis fier de toi,
chapeau l'artiste. Je t’aime.

Merci mamie, je suis heureux que tu sois la. C’est grace a ton bon pain, tous tes gateaux
et ton incroyable tiramisu que j’ai eu ’énergie de terminer cette these. Encore un peu
de temps, et je connaitrai toute I'histoire d’Evregnies et de la « vie d’avant ». Je t’aime
mamie, ne change pas, tu es géniale.

Ces remerciements sont beaucoup trop longs mais tant pis, c’est la moindre des choses
que d’exprimer un peu de gratitude envers tous ceux et toutes celles qui ont contribué
a ce que ces années de mémoire et de these soient aussi formidables. Je vous suis tous
et toutes vraiment redevables. Merci, ¢’était cool !

Xiv



List of abbreviations

AA
AMBER
aMD
AM1-BCC
BO
BTA
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ICD
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MIDAS
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MMPBSA
mRNA
MS/MS
NAB

Amino acid

Assisted model building with energy refinement
Accelerated molecular dynamics

Austin Model 1 with bond charge correction
Born-Oppenheimer
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Critical Assessment of protein Structure Prediction
Circular dichroism

Coarse-grained

Collagen-mimetic peptide

Density functional theory
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Dynamic light scattering

Deoxyribonucleic acid

Dinitrophenyl
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Overview and aim of the thesis

I. Overview and aim of the thesis

Nature has always been a major source of inspiration for humanity. The design of the
ornithopter by Leonardo da Vinci, directly inspired by the wings of birds. Self-cleaning
superhydrophobic surfaces, reproducing the microstructure of the lotus leaf. The
aerodynamic nose of the Shinkansen, Japan’s high-speed train, mimicking the beak of
the kingfisher. The list could continue with countless examples: Nature has developed
many highly efficient architectures over millions of years of evolution. At the molecular
scale, Nature also carries out fascinating biochemical processes, relying on highly
sophisticated chemical structures. Major examples include nucleic acids and proteins.
Among all biomacromolecules, proteins constitute the class operating the broadest
range of functions. Enzymes, for instance, constitute a subclass of proteins dedicated
to catalysis, and display remarkably selective binding and efficient activity, even within
the complex and crowded cellular environment. This efficiency is inscribed in their
highly defined 3D structures. Starting from disordered conformations, many proteins
will spontaneously fold back into their native state in water. This naturally raises a
question: how is the structure of a protein controlled? The answer began to emerge in
the early 20t century, when their chemical structure was elucidated. Proteins are
polymers: long macromolecular chains constituted by the covalent linkage of smaller
molecular units — the monomers. The building blocks of proteins are the amino acids
(AAs), which comprise a relatively limited set of 22 monomers, including two non-
standard residues (selenocysteine and pyrrolysine). A striking particularity of proteins,
shared by other functional biopolymers, is that their sequence of monomers is precisely
controlled. Each protein is characterized by a unique sequence of AAs. This sequence
is the code governing their folding, thus their 3D structure. Beyond the well-known
structure — function, there exists sequence — structure relationships. These links are
not completely understood yet, but many protein structures have been elucidated over
time and are regrouped in sequence — structure databases. The Protein Data Bank, for
example, comprises more than 200,000 experimentally determined structures.[
These extensive datasets are particularly valuable for training machine learning (ML)
algorithms, which are among the most powerful tools available for uncovering complex
relationships between large sets of inputs and outputs. This approach led to the
development of ML models, such as AlphaFold, capable of efficiently predicting the 3D
structure of proteins from their AA sequence alone.[2! It is important to note that ML
algorithms do not “understand” the physico-chemical laws governing folding; they only
extract statistical patterns, relying sequences to structures, from vast datasets. The
achievements of AlphaFold, however, clearly demonstrate that the AA sequence
encodes the information required to determine the 3D structure of a protein.
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Understanding that highly functional biomacromolecules are characterized by a
precisely controlled sequence of monomers, giving rise to a well-organized 3D
structure, inspired researchers to develop artificial systems based on the same
principle. The tools of polymer chemistry offer an ideal platform for such applications.
Since the discovery of the chemical structure of polymers by Staudinger in 1920, the
field has undergone tremendous development.[3! Polymers were initially synthesized
as a disperse, heterogeneous mixture of chains, without control on their individual
length or monomer sequence. Nowadays, many synthesis pathways are available to
produce polymer samples with a very low dispersity, and where the incorporation of
monomer units is partially or totally regulated.[4] These systems are defined as
sequence-controlled macromolecules (SCMs). When the control over sequence and
chain length is absolute, attaining a dispersity of one, the term sequence-defined
macromolecule (SDM) can be used.[5] Natural biopolymers such as proteins and
nucleic acids belong to this subclass of SCMs. Synthetic SCMs provide opportunities to
go beyond these natural examples, offering a virtually unlimited number of
possibilities in terms of chemical diversity — not only with the choice of the side-chains,
but also with the nature of the backbone. The influence of the solvent and
stereochemistry can be further taken into account, allowing researchers to finely tune
the properties of their systems. While this wide chemical space constitutes a fascinating
playground, it significantly complexifies the establishment of sequence — structure
relationships; a task already challenging for proteins, which have a unique backbone
and a limited number of side-chains. Additionally, although synthesis pathways
continue to improve, it remains difficult to obtain synthetic SCMs — let alone SDMs —
with both high yields and sufficient chain lengths. Consequently, it can be very time-
consuming and cost-intensive to produce these macromolecules, especially if one
wants to screen a broad range of sequences for a given system. These elements bring
interrogations: is there really a significant advantage to precisely control the sequence
of monomers for an artificial SCM? Will a defined sequence always translate into a
controlled 3D structure? How to rationalize the design of SCMs, in view of specific
applications?

The aim of this thesis is to address these questions. Our methodology relies on
molecular modeling, a computational method bypassing the constraints of synthesis.
The molecules of interest are built in silico, and their conformations and dynamics are
simulated, helping researchers to identify the most promising compounds for a given
application. The atomistic view offered by molecular modeling provides precious
information on the 3D structure, folding dynamics, and interactions inside single-
chain systems or supramolecular assemblies. This molecular-level knowledge serves to
better understand experimental properties and can be used to guide the design of more
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efficient systems. Our results are systematically compared to experimental
measurements, bringing insights on sequence — structure — function relationships for
various SCMs, including natural and synthetic structures (Figure 1.1). In parallel, this
approach is a step towards the establishment of sequence — structure databases for
synthetic SCMs, analogous to the Protein Data Bank for proteins. Ideally, such
databases could feed ML algorithms and support the development of predictive models
for artificial systems.
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Figure I.1. Schematic representation of different chemical structures investigated in the

thesis and their associated applications.

After this general introduction, the main concepts related to the field of SCMs are
reviewed along with state-of-the-art examples in Chapter II. The discussion
progresses from natural biomacromolecules and the lessons they provide, towards
their translation into human-made SCMs, based on synthetic oligomers and polymers.
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In Chapter III, the fundamentals of our computational approach are explained. This
chapter reviews the basics of quantum mechanics (QM), molecular mechanics (MM),
and the workflow of molecular dynamics (MD) simulations. The limits of the method
and advanced approaches are also described. Finally, the descriptors and tools mainly
used to analyze the molecular conformations and their dynamics are detailed.

Then, Chapter IV regroups results obtained for biorecognition applications for two
distinct systems. The first part concerns the interaction between peptides and an
integrin, studied in the framework of cellular migration. Our results show that subtle
changes in stereochemistry modulate peptide — protein binding. The second part
describes the modeling of supramolecular complexes between DNA and
photoswitchable ligands. The simulations reveal that the trans to cis isomerization of
the ligands impacts the assembly with DNA.

Chapter V focuses on SDMs targeting applications in supramolecular catalysis. Two
complementary strands are functionalized with nucleobases and catalytic moieties.
The mechanisms of recognition between the two strands and the dynamics of the
duplex, responsible for the observed -catalytic activity, are investigated by a
combination of MD simulations and network representations.

In Chapter VI, the folding dynamics and 3D structures of purely synthetic copolymers
in water are studied. The atomistic picture given by the simulations is compared to
small-angle X-ray scattering (SAXS) experimental spectra. Our results show that,
depending on the nature of the hydrophilic grafts, different nanostructures can be
obtained in solution, varying in shape and folding properties.

To conclude, a summary of our results is presented in Chapter VII. Insights collected
on the various systems are regrouped, and our findings concerning the establishment
of sequence — structure — function relationships for synthetic SCMs are discussed.
Finally, perspectives for future research in the field of SCMs, and the role that
molecular modeling could play, are mentioned.
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I1. Sequence control in macromolecules — From natural
inspiration to the design of original systems

Sequence-controlled macromolecules (SCMs) constitute an emerging research area,
and at the same time have always been exploited by living organisms. The main
concepts related to sequence and structural control in biomacromolecules are reviewed
along this introductory chapter (Section II.1). Proteins and nucleic acids are taken as
examples, as they are either directly involved in the systems studied during this thesis
(see Chapters IV-A and IV-B for proteins and DNA, respectively), or served as a
major source of inspiration for the design of novel macromolecules (see Chapters V
and VI, for DNA- and protein-inspired systems, respectively). These amazing
compounds can be used in their native form, but researchers have also explored ways
to introduce small modifications to their scaffold and to design artificial biomimetic
systems for targeted applications (Section I1.2). Nowadays, the knowledge acquired
on biomacromolecules and the improvements in controlled polymer synthesis allow to
go even further, with the design of entirely original systems (Section I1.3). SCMs are
already demonstrating their interest for various applications. Here, a focus is made on
three areas of research, namely biorecognition, catalysis, and information storage.

II.1. Biomacromolecules: a lesson on sequence and
structural control

II.1.1. Protein
I1.1.1.1. A brief history and the different structural levels of proteins

The first documented usage of the word “protein” is attributed to Jons Jacob Berzelius,
in a letter addressed to Gerardus Johannes Mulder, and dates back to 1838, less than
200 years ago.['] Mulder, later that same year, published the paper “Sur la composition
de quelques substances animales”, in the Bulletin des Sciences Physiques et Naturelles
en Néerlande. In this work, he described fibrin, albumin and gelatin as essential
organic substances found in the animal and vegetal bodies, and formally coined the
term “protein”. However, despite the understanding that these compounds could be
regrouped in a new, particular molecular class, there was limited knowledge on their
exact chemical nature. The suggestion that proteins are made of an ensemble of
covalently linked small molecular fragments — the amino acids (AAs) — was put
forward around 1902 by the groups of Emil Fischer and Franz Hofmeister.[2]
Hydrolysis experiments revealed that whole proteins could be decomposed into
smaller AAs, which was a major discovery at the time. A total of 22 genetically encoded
AAs are known to be incorporated into proteins, including two non-standard residues
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(selenocysteine and pyrrolysine), which are rarely found. With the exception of glycine,
all of them are chiral, i.e. non-superimposable to their mirror image. Consequently,
each AA (except glycine) can exist in two forms, sharing the same chemical
composition but differing in their 3D arrangement, called enantiomers. Natural
proteins are nearly exclusively composed of L-enantiomers, which also makes them
chiral structures. The sequence of AAs constituting a polypeptide chain is called its
primary structure. Decoding the sequence of a protein seemed unattainable in 1948,
when Raymond M. Fuoss wrote: “We may, for instance, never learn the detailed
sequence of amino acids in a protein molecule [...]”.[3] Only seven years later, Sanger
published his work on the sequencing of insulin, a chain of 51 AAs, for which he was
awarded his first Nobel Prize in Chemistry in 1958.[4] In parallel to the discoveries
related to their primary structure, polypeptides were investigated on a structural level,
notably using X-ray diffraction. At first, short peptides were studied, which allowed to
elaborate models for what is now known as the secondary structures of proteins. These
are local folded motifs, resulting from a particular organization of the AAs, such as the
a-helix or the B-sheet. In 1932, William T. Astbury detected two forms — that he named

Anti-parallel

a-helix pleated sheet

R (22

Figure II.1. Drawings of the a-helix and the anti-parallel pleated sheet (the [B-sheet)

structures published by Pauling and Corey in 1951. Hydrogen bonding interactions are
represented as dotted lines. Adapted from Refs. 6 and 8.

8



Sequence control in macromolecules — From natural inspiration to the design of original systems

a and B — for various fibres, depending on their stretching.[5s] With more accurate
information on bond distances and angles, Pauling and Corey established, in 1951, a
precise picture of the a-helix as well as the existence of parallel and anti-parallel
pleated sheets.[6-8] These structures are maintained by well-organized intramolecular
hydrogen bonding interactions (Figure II.1). When discussing about secondary
structures, it is important to cite the work of Ramachandran and his famous diagram,
published in 1963.91 He further refined the so-called "Pauling-Corey coordinates” by
defining the authorized boundaries for the backbone dihedral angles ® and @’ (Figure
I1.2). His diagram reveals that the conformational space available to the peptide
backbone is quite restricted, many regions being inaccessible due to steric hindrance.
The highly ordered secondary structures combine with one another, sometimes
including more flexible regions, to constitute the tertiary structure, i.e. the entire 3D
structure of the protein. Myoglobin was the first protein whose 3D structure was
elucidated, in 1958.[10] Interestingly, the researchers noted that the model was “more
complicated than has been predicated by any theory of protein structure”, and were
surprised by the lack of symmetry and regularities along the chain. This marked an
early encounter with the ever-present challenge of predicting the 3D structure of a
protein. The same group published a higher-resolution model in 1960, demonstrating
clearly for the first time that a-helices exist inside globular proteins.[*t] The last
structural level of proteins, the quaternary structure, designs functional complexes
made by the assembly of several polypeptide chains. A prime example is hemoglobin,
a four-protein complex, which was the first experimentally determined quaternary
structure.[12] These remarkable works on the structure of myoglobin and hemoglobin,
which were pivotal in the history of protein science, were awarded the Nobel Prize in
Chemistry in 1962.

S
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Figure II.2. Illustration of a polypeptide chain (left) and Ramachandran plot (right), showing
the allowed values of the ® and ®’ dihedral angles. Adapted from Ref. 9.
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I1.1.1.2. Sequence — structure — function relationships in proteins

Most proteins display the exceptional ability to fold into a unique and well-defined 3D
structure, known as the native structure. The folding process must be extremely
efficient, as a protein’s ability to perform its biological functions is rooted in its 3D
structure. Yet, proteins remain highly flexible entities and are essentially stabilized by
non-covalent interactions. This structural flexibility is essential to many of their
biological functions, and proteins often undergo conformational changes in response
to external stimuli, such as the binding to another receptor or to a substrate.[3
Consequently, native structures cannot be too thermodynamically stable, which opens
the door to failures of the folding process. Misfolded proteins are not only inactive:
they are prone to interact with other chains, potentially leading to the formation of very
stable aggregates, which play a role in several neurodegenerative diseases.['4]
Intramolecular folding and intermolecular aggregation are two competing
phenomena. The former ended to be a very complex process, optimized during
thousands of years of evolution, to circumvent the latter. A whole family of proteins is
even dedicated to assisting folding: the molecular chaperones.[:5]

The search for the native structure is anything but random, as illustrated by the famous
Levinthal’s paradox.l'®] However, there is no clear consensus about the exact folding
mechanisms, although several important principles are generally accepted. The first
step of a protein folding would involve the formation of the secondary structures,
driven by nonspecific and local interactions, essentially hydrophobic effects and
hydrogen bonds.['7] These structures are conformationally restricted to the regions
shown in the Ramachandran plot, due to steric hindrance. Further organization of the
secondary structures would form a network of longer-range intramolecular
interactions.[*8] The protein would then sample several intermediate states (sometimes
described as “molten globule” states), until finally reaching its most stable, native
structure. The folding process would follow a “funnel-shaped” pathway in the potential
energy of the system, where the formation of partially folded and compact
intermediates would reduce the conformational space and quicken the search towards
the lowest energy structure (Figure I1.3). Conflicting views address the sampling of
these intermediates, sometimes with different interpretations of the same
experimental results. Some argue that folding occurs through a unique pathway, were
intermediate states are sampled in a specific order through cooperative processes
(Figure I1.3 A).['91 Others express the view of a rather chaotic process, where multiple
pathways can lead to the native structure from a wide conformational ensemble of
compact intermediates (Figure I1.3 B).[18,20]
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Figure II.3. Simplified funnel-shaped representations of the folding mechanism. (A) The
protein would go from its unfolded (U) to its native (N) state by sampling a series of
intermediates in a defined order, through the cooperative sequential formation of secondary
structures. (B) Other view of the folding process, where the fast formation of the secondary
structures would lead to compact, partially folded states (i.e. molten globules). The protein can

fold into its native structure through multiple pathways. Adapted from Ref. 19.

A crucial point is that the formation of the secondary structures is mainly driven by
local effects, thus strongly depends on the sequence order of the AAs. This well-
organized, unique suite of monomers encodes all the information governing the folding
and the formation of the native structure.l2t] Replacing or modifying as little as one AA
can sometimes strongly impact the folding of a protein and its biological functions.[22-
24] Despite all the work carried out over the years and the understanding of some key
steps of protein folding, researchers have not yet unraveled all the mysteries relating a
given sequence of AAs to a given native structure. Establishing sequence — structure —
function relationships remains challenging. However, a lot of data has been acquired
and huge databases, such as the Protein Data Bank (PDB), regroup the sequence of
proteins and their associated 3D structure.[25! This is particularly useful to feed
machine learning (ML) algorithms, which constitute a method of choice to uncover
relationships between a series of inputs (sequences) and outputs (structures). In 2020,
AlphaFold, an ML algorithm developed by Google DeepMind, entered the Critical
Assessment of protein Structure Prediction (CASP), a competition testing the efficiency
of different methods to predict the structure of proteins.[2¢] During CASP, researchers
receive the AA sequences of several proteins whose experimental structures have
recently been established but are not yet public. AlphaFold won the competition,
displaying an outstanding accuracy in its predictions. The success of AlphaFold, which
is able to predict the structure of a protein solely from its AA sequence and a large
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dataset of known sequence — structure pairs, provides further evidence that the
sequence of monomers dictates the 3D structure of proteins. An updated version,
AlphaFold3, was released in 2024.[271 This new iteration enables structural predictions
of various biomacromolecules, small ligands, and supramolecular complexes made by
the assembly of several components. Unfortunately, AlphaFold only brings us from
point A (sequence) to point B (structure), without giving any information on the
pathway connecting them.

The precise sequence — structure control found in proteins allows the emergence of
remarkable functions. The chaperones, mentioned earlier, are an interesting example.
Enzymes constitute another impressive family of proteins, dedicated to catalysis. They
display exceptional selectivity towards their substrates, even within the crowded and
complex cellular environment.[28] Substrate recognition by the active site of the enzyme
occurs through shape complementarity and the formation of stabilizing interactions.
Among all potential substrates, those most stably bound are selectively transformed
into the desired product. Similarly, antibodies display a specific binding site, enabling
the selective recognition and neutralization of pathogens. Biological processes rely on
a myriad of host — guest interactions that depend directly on the 3D structures of the
proteins involved; structures that are themselves encoded in the AA sequence.
Therefore, the biosynthesis of proteins — a process called translation — must be
perfectly controlled. To this end, Nature developed a complex machinery involving
ribonucleic acids (RNAs).

I1.1.2. Ribonucleic acid

RNAs constitute another major class of sequence-defined biomacromolecules. They
belong to the group of nucleic acids, along with deoxyribonucleic acids (DNAs). Their
polymeric backbone is made of a sugar — the ribose for RNA — and a phosphate moiety.
Like proteins, natural nucleic acids are chiral, the sugar component existing exclusively
in its D-enantiomeric form. Each ribose is linked to a nitrogenous base, or nucleobase.
While proteins are built on 22 different AAs, RNAs rely on a smaller set of four different
monomers, distinguished by the nature of the nucleobase, which can be the adenine
(A), uracil (U), cytosine (C) or guanine (G). The sugar — phosphate — nucleobase triad
constitutes the nucleotides, i.e. the monomers forming nucleic acids, which are linked
together by covalent phosphodiester bonds. The nucleobases are complementary by
pairs, forming A---U and C---G dimers through hydrogen bonding interactions, known
as the Watson-Crick pairing. Although this allows the hybridization of two RNA
strands to form a double helix, single-stranded structures are more frequent in living
organisms. RNA is chemically nearly identical to DNA, but in terms of folding and
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functions, it is much closer to proteins. However, RNAs are more flexible, making the
determination of their 3D structures even more challenging. This underlines once
more the complexity of establishing sequence — structure relationships, even for
polymers made with only four different monomers. ML models are currently
investigated for predicting the 3D structures of RNAs, although the available data is
much sparser (RNA-only structures account for less than 1 % of the PDB).[29] Even
AlphaFolds displays important errors on some RNA structures, especially on less
common motifs.[30] More generally, ML models are far from accurately predicting the
conformational landscape of nucleic acids, as illustrated in Figure I1.4.
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RNAs are able to fold into a wide variety of conformations, stabilized by intramolecular
stacking interactions and hydrogen bonds involving the nucleobases, allowing it to
perform various biological functions.[3:] A well-known example is the synthesis of
proteins, which involves different RNA species. As mentioned at the end of the
previous section, this process is called translation. The information required to build a
specific protein is encoded in the sequence of nucleobases of a single-stranded
messenger RNA (mRNA). This sequence is deciphered by the ribosome, a complex
macromolecular machine made of proteins and RNA. Inside the ribosome, the mRNA
sequence is decoded three nucleotides at a time — these triplets are called codons — by
other polynucleotides called transfer RNAs (tRNAs). Each tRNA contains a recognition
site made of a sequence of three nucleotides, able to bind only to the matching codon
through the complementary hydrogen bonding pattern of the nucleobases. At its
opposite end, the tRNA carries an AA. Therefore, to each codon corresponds one
specific AA. During translation, tRNAs bind to the successive codons of mRNA,
bringing the AAs one after another to form the polypeptide chain. After complete
decoding of the mRNA strand, the synthesized protein is released into the cytoplasm.
Its structure can subsequently be modified through post-translational modifications
(PTMs), i.e. the chemical attachment of a functional group to the protein after its
biosynthesis.

RNAs are another example of the prime importance of the sequence control in
biomacromolecules. As for proteins, their biosynthesis must be perfectly controlled
and cannot bear mistakes: an error in the mRNA sequence would lead to an erroneous
codon, possibly translating into the wrong AA. The biosynthesis of RNA is templated
by DNA itself, along a process called transcription.

I1.1.3. Deoxyribonucleic acid

When mentioning the molecules of life, DNA, the carrier of genetic information, often
comes first to mind. The chemical structure of this biopolymer is nearly identical to the
one of RNA, with two notable differences. First, the sugar in DNA is deoxyribose. Then,
the uracil nucleobase of RNA is replaced by thymine (T). As U, T is complementary to
A. In terms of structure, however, DNA displays a significantly different behaviour. In
eukaryote cells, it is essentially found in a double helix conformation, formed by the
supramolecular assembly of two complementary DNA strands. This structure was
officially elucidated in 1953 by Watson and Crick, with inputs from many other
researchers, notably X-ray experimental data from Rosalind Franklin.[32] The DNA
double helix is an extremely conserved and protected structure, as it contains all the
information necessary to the proper functioning of cells: its sequence of nucleotides is
the code governing protein biosynthesis. During transcription, the DNA double helix
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is locally unwound at a specific site, making the targeted sequence of nucleotides
accessible. One of the two strands then serves as a template for synthesizing the
complementary RNA sequence, following base pairing rules. The synthesized RNA can
then undergo maturation steps to produce the mRNA, which will be used to synthesize
proteins. The process of transcription is catalyzed by RNA polymerase, assisted by a
variety of enzymes and complex molecular machineries. Along transcription and
translation, the control of sequence is propagated from DNA to proteins, through RNA
intermediates. This process is extremely complex and involves three different
biological “languages”: the DNA tetrad A-T-C-G; the RNA tetrad A-U-C-G; and finally,
the 22 amino acids of proteins. It opens the door to dramatic butterfly effects, as one
single mutation in the DNA code, i.e. the insertion, deletion or substitution of one
nucleotide, may disrupt this flow of information and lead to inactive, misfolded, and
potentially harmful proteins. Such complexity explains the highly evolved machinery
that Nature has built to synthesize proteins.

As described along this entire first section, sequence control is a central characteristic
of the highly functional biomacromolecules of life, translating into an absolute control
of their 3D structures and functions. Their fascinating properties naturally triggered a
major interest for many researchers, eager to explore the possibilities offered by their
particular chemistry and seeking ways to expand their use beyond natural contexts.
This idea is not new: in 1902, Emil Fischer stated in his Nobel Lecture: “To equal
Nature here, the same means have to be applied, and I therefore foresee the day when
physiological chemistry will not only make extensive use of the natural enzymes as
agents, but when it will also prepare synthetic ferments for its purposes.” As will be
covered in the next section, the future proved him right.

II.2. Mimicking or modifying Nature’s building blocks

II.2.1. Chemical synthesis of (modified) biopolymers

Before using biopolymers for specific applications or simply to study their sequence —
structure — function relationships, they must be produced. To this end, one must either
extract them from their environment, or directly synthesize them. The latter offers the
advantage that any polypeptide or polynucleotide can be formed, without being limited
by the sequences biologically available.[33.34] The chemical synthesis of biopolymers has
greatly benefitted from advances in solid-phase synthesis, notably with Merrifield’s
work on polypeptides in the 1960s and the development of phosphoramidite chemistry
for polynucleotides in the 1980s.[353¢] In these approaches, the growing chain is
covalently linked to a solid support, typically a column, and monomers functionalized
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with a protecting group are added iteratively. Between each addition, the column is
washed to remove the excess of reagents. A deprotection step is then performed before
coupling the next monomer, guaranteeing sequence control. Once the desired chain
has been assembled, it is cleaved from the solid support and purified. These methods
are still routinely used to produce tailor-made biomacromolecules and are now
commonly automated. In general, solid-phase approaches allow the formation of
relatively short biopolymers (around 50-100 monomers), which can subsequently be
coupled through ligation steps to create longer chains. Nevertheless, several recent
advances in biopolymer synthesis have been made to improve standard protocols. One
trend concerns the miniaturization of the synthesis sites and devices, with the advent
of microarray-based methods,[37-411 or the use of microfluidic technologies.[40:42.43]
Flow chemistry also constitutes a promising area. Automated protocols have recently
been optimized for the synthesis of long polypeptides,l44] enabling the incorporation of
site-specific modifications,[45! or the formation of synthetic covalent dimers that mimic
the quaternary structure of complex natural dimers.[45] Another interesting way of
making proteins is to divert their biosynthesis pathway, by directly modifying the DNA
sequence through genetic engineering. These approaches have become extremely
powerful since the emergence of genetic edition tools such as the CRISPR/Cas9
enzyme, which allow scientists to bring changes on precise locations of the genome.[46!
An example used this process to biosynthesize proteins functionalized with fluorescent
tags, to facilitate their localization and study their functions in the cell.[47] Concerning
DNA synthesis, an elegant approach harnesses a natural enzyme belonging to the class
of DNA polymerases, the terminal deoxynucleotidyl transferase.l48] This enzyme
enables the controlled addition of nucleotides to a growing chain and even tolerates
modified nucleotides, allowing the formation of tailored DNA strands.[49]

I1.2.2. Twisting proteins to create artificial systems

As mentioned in the previous section, the synthesis pathways developed for
biopolymers can be adapted to incorporate (stereo)chemical modifications or
unnatural monomers into their structures. This approach is extremely attractive, as it
allows site-specific modifications on known and efficient scaffolds. Many different
unnatural AAs have been studied to bring new side-chains while keeping intact the
natural peptide backbone.[50] An interesting application consists in the modification of
proteins with stimuli-responsive AAs. For example, one group introduced a photo-
crosslinkable AA into a protein to identify its interaction partners.[5:] Upon irradiation
with UV light, a covalent bond was formed between the protein and its binders,
permitting their isolation and characterization. Another group added a photolabile
protecting group to a tyrosine residue in an interleukin receptor.[521 The binding of the
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interleukin to its receptor was significantly lowered before irradiation. After exposure
to UV light, thus removal of the photo-responsive protecting group, the complex could
be formed with normal affinity. Here, a slight modification on a single AA allowed
researchers to modulate an interaction, having repercussions on a whole
phosphorylation cascade, which offers interesting perspectives for therapeutic
applications. Another important application of unnatural AAs concerns the
improvement of the activity and stability of natural enzymes, or even the addition of
catalytic functions to non-enzymatic proteins. These systems constitute an ideal
starting point to design biocatalysts with novel properties. For example, a protein was
transformed into an artificial endonuclease — an enzyme able to cleave phosphodiester
bonds within nucleic acids — by incorporating an unnatural AA containing a bipyridyl
moiety (Figure II.5).53] The naturally occurring protein recognizes and binds short
double-stranded RNAs of 19 to 25 nucleotides in length in a size-selective and
sequence-independent manner. After the site-specific introduction of the bipyridyl
moiety and in the presence of copper, the artificial enzyme was able to cleave short
non-coding RNAs with high specificity, a function not observed in any known natural
endonuclease. Another work attempted to slightly modify a histidine — an AA involved
in the catalytic center of many biocatalysts — by attaching a vinyl moiety to one of its
nitrogen atoms.[54] This modification increases the electron-withdrawing behaviour
and lowers the pKa of the imidazole ring, leading to improved catalytic properties at
pH = 5.5. These impressive examples confirm the possibility to create systems with
novel or improved properties, by modifying enzymes at the level of a single AA. Once
the role of each monomer unit in the sequence has been understood and related to its
position in the 3D structure, thus when sequence — structure information has been
deciphered, it becomes possible to precisely engineer remarkable functional systems.
Many successful examples make use of unnatural AAs, but not all changes on the
precise monomer sequence of proteins are tolerated. An ML model was recently
proposed to rationalize the design of proteins containing unnatural AAs, by identifying
positions in the primary structure that would be likely to tolerate substitutions.[55] At
the time of publication, the training dataset included 1221 unnatural AA substitution
sites, with a marked imbalance between the number of successful and unsuccessful
cases (1064 and 157, respectively). The ML model would undoubtedly benefit from
more examples of failed modifications, to better capture statistical trends underlying
prohibited substitutions. Unfortunately, successful results are more prone to be
published, which is detrimental to the development of reliable ML algorithms.
Nevertheless, the model achieved reasonable predictive accuracy and was
experimentally validated in a test case.
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Figure II.5. Design of an artificial endonuclease through insertion of an unnatural AA (UAA)
into a non-enzymatic protein. (A) Schematic representation of the process; after the site-
specific insertion of a bipyridyl moiety (depicted as the small red ball) the protein is able to cut
an RNA strand. (B) Crystal structure of the binding pocket of the protein before modification,
assembled with a short double-stranded RNA (PDB ID: 1RPU). The AA in red is the one that is
replaced by the unnatural AA. Adapted from Ref. 53.

Other SCMs were designed with the idea of modifying the natural peptide backbone.
These peptidomimetic systems constitute a broad range of chemical structures. Their
synthesis generally relies on solid-phase protocols and iterative approaches, ensuring
sequence control. Note that some of these structures are purely artificial, despite their
resemblance to natural peptides. They could as well have been discussed in Section
I1.3, which focuses on synthetic SCMs. However, we made the choice to integrate them
in this section due to their strong biomimetic character. One of the most minimal
structural modifications to a peptide backbone is the inversion of the stereochemistry
of its building blocks, the L-AAs. Their D-enantiomers are exploited in diverse
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applications, such as the development of “mirror-image life” and racemic protein
crystallography.[5¢] More interestingly, D-AAs are less efficiently recognized by natural
biomolecules, such as proteases — enzymes specialized in protein degradation — which
essentially interact with natural AAs. This property is exploited in the design of peptide
drugs, notably through mirror-image phage display.[571 This strategy was recently
followed to isolate D-peptides able to disrupt the activity of the epidermal growth
factor, a protein associated to the uncontrolled proliferation of tumour cells.[58]
However, mirror-image phage display has had few practical applications, essentially
because it requires the synthesis of long D-polypeptide targets, which remains
challenging. The recent developments of automated flow chemistry protocols
(mentioned in the previous section) could renew interest for this technique and allow
the emergence of more protease-resistant D-peptide drugs.[59! The influence of peptide
chirality is investigated in the framework of cellular migration in our thesis, see
Chapter IV-A. Among peptidomimetic SCMs, peptoids constitute a molecular class
that attracted great attention in recent years. In contrast to peptides, the side-chain is
carried by the nitrogen atom instead of the a-carbon. This apparently trivial
modification implies two major changes: the peptoid backbone is achiral and does not
possess hydrogen bond donors, which prevents intramolecular interactions in the
backbone. Therefore, the folding and secondary structures of these SCMs are
essentially dictated by the nature of their side-chains. This simpler network of
interactions makes peptoids ideal targets to study sequence - structure
relationships.[60] For instance, the placement of hydrophobic units in the sequence was
shown to affect the dynamics of hydration water in short amphiphilic polypeptoids.[6:]
The researchers even found that changes in the sequence had more impact than the
peptoid conformation on water behaviour. They attributed this observation to the
inability of the chains to bury water molecules even when being compact, due to their
small size, and the stronger impact of local chemical environment on water. Sequence
— structure relationships were studied on longer amphiphilic polypeptoids by varying
the position of hydrophobic units in the chains.[¢2] The results, combining experiments
and simulations, showed that different conformational ensembles were obtained
depending on the distribution of hydrophobic moieties in the primary structure.
Beyond single-chain systems, the supramolecular assembly of small peptoids into
nanohelices was also demonstrated.[¢3] Impressively, the nanohelix handedness could
be controlled by the incorporation of a single chiral side-chain. The versatility of
peptoids makes these SCMs attractive for various applications. An interesting example
concerns the storage of solar energy, using photoswitchable azobenzene compounds as
side-chains.[64] Azobenzene molecules can undergo trans to cis photoisomerization
upon irradiation with UV-Vis light, and spontaneously revert back to their more stable
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trans form after some time, releasing energy in the form of heat during the process. In
this example, the position of the azobenzene side-chain in the sequence affects its
spectroscopic properties and the kinetics of retro-isomerization, which are crucial
parameters for the storage of solar energy. Another promising area for peptoids is
artificial catalysis, where the formation of specific secondary structures can
advantageously be exploited to build well-defined catalysts. Peptoids functionalized
with chiral substituents were shown to fold into helices of preferred handedness, and
displayed enantioselective catalysis when covalently bound to an achiral 2,2,6,6-
tetramethyl-1-piperidinyloxyl (TEMPO) catalytic unit.[65] Interestingly, when the
TEMPO moiety was grafted on the center of the peptoid rather than at its extremity,
the enantioselective behavior was nearly fully lost, demonstrating an important effect
of sequence.

I1.2.3. Exploiting and modifying nucleic acids for novel applications

As the relation between the sequence of AAs and the resulting 3D structure of a protein
is not always straightforward, despite the advances of predictive ML models, full tailor-
made proteins are rarely built. Instead, new functions are introduced into known
scaffolds through site-specific modifications, or simpler mimetic systems are designed.
On the other hand, nucleic acids are much easier to program, therefore much easier to
use “as is”. Not at the single-chain level, because RNAs and DNAs are also able to form
various secondary structures, but at the level of their assemblies, which is much more
easily programmable. Two complementary strands will form a double helix, following
the simple rules of Watson-Crick pairing. Therefore, high order self-assembled
architectures can be engineered through a perfect control over the sequence of
nucleotides (Figure I1.6). A beautiful example is shown by DNA origamis.[¢6] These
structures are formed by combining a long single-stranded DNA (ssDNA) scaffold with
many short oligonucleotides playing the role of staples (Figure I1.6 A). The long
ssDNA (typically extracted from a virus) can be folded into a variety of nanostructures
through complementary base pairing on specific locations. Recent improvements in
the protocols of assembly make possible the formation of many controlled DNA
nanostructures, including nanogrids and very complex 3D shapes.l67:68]1 A freely
available software allows users to determine the sequence of the oligonucleotides
necessary to build their desired 2D or 3D shape, without even requiring the use of an
ssDNA scaffold.[®9] Beyond being beautiful scientific accomplishments, these nucleic
acid-based nanostructures are envisioned for various applications, such as templating
of nanomaterials, drug delivery, nanophotonics, etc.[’2] An interesting example
concerns the development of a DNA tweezer, able to reversibly control the activity of
an enzyme (Figure II.6 B).”2] The structure, composed of two DNA arms
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functionalized with an enzyme and its cofactor, can switch between closed (active) and

open (inactive) forms. This switching is governed by a central regulatory oligomer. In

the absence of a complementary strand, the oligomer folds into a hairpin structure,

bringing the two arms into proximity and favoring the formation of the active enzyme-
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cofactor complex. Upon hybridization with a strand of complementary sequence, the
conventional double helix conformation is retrieved, which spatially separates the
arms and disables enzymatic activity. Reversible activation / deactivation cycles were
demonstrated, confirming the possibility to regulate the activity of an enzyme through
a precisely engineered DNA nanomachine.

Researchers also aimed at expanding the functions of nucleic acids by modifying their
structure, either the ribose-phosphate backbone or the nucleobases. These synthetic
systems are called xenonucleic acids (XNAs). Similarly to unnatural AAs for proteins,
a variety of new nucleobases were designed to enrich the A-C-G-T/U biological
alphabet.[72] For instance, an ssDNA was functionalized with a pH-responsive artificial
nucleobase for targeting cancer cells.[73] The lower pH of the microenvironment of
these cells triggers a switch of the nucleobase, which becomes able to recognize and
inhibit receptors involved in cell migration. In our thesis, an unnatural nucleobase was
investigated for the supramolecular assembly of a catalytic complex, see Chapter V.
Another example of XNA is the peptide nucleic acid (PNA), an interesting hybrid
structure between a peptide-like backbone and nucleobases as side-chains.[74] PNA-
DNA complexes were shown to be more stable than their DNA-DNA counterpart
because of the absence of electrostatic repulsion between the phosphate groups, as
PNAs are not negatively charged.

The various examples shown throughout this section illustrate the interest of using the
scaffold of well-defined natural SCMs, which are ideal targets for site-specific
modifications and constitute important inspirations for the design of biomimetic
compounds. The next step towards artificial systems is to apply the fantastic lesson
taught by Nature into fully human-made macromolecules.

I1.3. Lesson learned! Applying sequence control to
synthetic macromolecules

I1.3.1. Controlling polymer synthesis towards artificial SCMs

Advances in polymer synthesis in the past 15-20 years have allowed researchers to go
beyond the heterogeneous mixture of chains associated with polymer chemistry. As a
reminder, there is a distinction between “sequence control” and “sequence definition”:
the latter refers to perfectly uniform samples in which all chains share the exact same
ordering and number of monomers (SDMs), whereas the former also includes samples
with low dispersity and partial sequence regulation (SCMs) (Figure I1.7).[75]
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Figure IL.7. Illustration of the meaning of the terms “sequence control” and “sequence
definition”. “Polymer” is replaced by the more general term “macromolecule” in our thesis.
Adapted from Ref. 75.

Traditional step-growth and chain-growth polymerization pathways have been
considerably improved, notably through so-called “living” and controlled radical
approaches.[76] By reversibly modulating the reactivity of the growing chains, a better
control on monomer incorporation is gained, leading to SCMs with lower dispersity
and the formation of complex multiblock systems. However, these methods still follow
statistical rules: their improvement narrows the gaussian distribution of chain lengths
within a sample, but the control over sequence and degree of polymerization (DP) is
still not absolute.

The synthesis of perfectly controlled macromolecules generally relies on iterative
approaches and the stepwise incorporation of monomer units.[77l While these are
efficient for controlling the sequence, they generally only give access to oligomers of
limited length. For example, if each monomer addition is realized with a yield of 99 %,
the overall yield to reach a 16-mer is about 86 %. If the yield of each step decreases to
95 %, which remains very high, the overall yield drops to approximately 46 %.
Therefore, synthesis protocols must be extremely well optimized to reach high DP; they
often exploit orthogonal reactions and click-chemistry. Nevertheless, the SDMs formed
by such step-by-step approaches remain generally limited to around 20 monomer
units.[78]

This introductory section does not aim to thoroughly cover synthetic strategies to reach
SCMs; the interested reader is directed to excellent papers reviewing this
topic.[76:77.79:80] Two key points should be highlighted: first, the synthesis of SCMs and
SDMs remains challenging and their large-scale production is still limited; second,
SCMs are attainable through various pathways, allowing the use of many diverse
backbones and side-chains.[78] While it is already difficult to predict the 3D structure
of proteins, made with a unique backbone and a limited number of different side-
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chains, the huge chemical space offered by synthetic SCMs brings considerable
challenges.[81] In addition to sequence, stereochemistry can also be controlled to
further increase an already complex conformational landscape.l82] Despite these
challenges, the influence of sequence has already been demonstrated for SCMs in
various applications, reinforcing the promise of sequence control in synthetic chains.

I1.3.2. Synthetic SCMs for biorecognition

Many biological processes rely on specific ligand — receptor interactions. The use of
synthetic SCMs as ligands emerged rapidly, due to their conceptual resemblance with
biomacromolecules. Precisely controlling the position of each monomer unit onto a
polymer backbone is very attractive to establish well-defined interaction networks and
to develop selective systems towards biological receptors of interest.

An original approach used the sequence-defined peptide backbone of the human serum
albumin (HSA) as a scaffold to precisely introduce functional groups (Figure I1.8).[83]
The researchers exploited the presence of a unique cysteine residue on the outer
surface of the protein in its native state to site-specifically substitute it by a biotin.
Then, long polyethylene glycol (PEG) chains were introduced to replace surface-
accessible carboxylate moieties, leading to the formation of a brush polymer.
Subsequently, the biotin was used to recruit streptavidin, a protein having a very high
affinity towards biotin. The streptavidin could, in turn, recruit other units, such as an
antibody (as shown in Figure I1.8). This work demonstrates the possibility to design
a precisely functionalized brush polymer by exploiting the defined sequence of a
protein scaffold.
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Figure II.8. Protein scaffold functionalized with a biotin grafted to the residue cysteine 34,
before the addition of long PEG chains, leading to the formation of the brush polymer. The
biotin, through interactions with streptavidin, can be used to recruit different compounds,
such as an antibody. Adapted from Ref. 83.

Another intensive research area concerns the targeting of lectins, i.e. protein receptors
able to specifically bind glycans and involved in the regulation of many biological
processes. Multivalency, i.e. the presence of multiple interaction sites between a ligand
and a receptor, was shown to be advantageous in lectin binding. Therefore, using
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polymer backbones able to carry multiple copies of a glycan ligand is thought to be a
promising approach to interact with lectin receptors. However, traditional disperse
glycopolymers may lack selectivity in the binding due to their heterogeneous nature,
preventing the specific targeting of one lectin over another. For this reason, precision
glycopolymers with an absolute control of sequence and stereochemistry were
designed and tested against eight kinds of lectins.[84] Interestingly, it was shown that
the equilibrium association constant (Ka) for a given receptor varies by one order of
magnitude between two stereoisomers. Glycopolymers containing alternating
stereoisomers were, in most cases, more efficient than their full R or full S isotactic
counterparts. This behavior was attributed to their ability to sample more diverse
conformational landscapes, as suggested by MD simulations. An important
contribution of this work is the demonstration that lectin binding is strongly influenced
by small conformational and stereochemical modifications of the glycopolymer carrier.
Such fine structure — function relationships could only be accessed through SDMs,
devoid of the heterogeneity of traditional samples. Another research group attempted
a similar work, playing with tacticity, but without an absolute control on the length of
the produced glycopolymers.[85] While an effect of stereochemistry was again observed
on the binding to lectins, the lack of absolute sequence control, leading to differences
in DP between the stereoisomers, made the comparison more difficult. In general, the
longer chains were more efficient, as expected due to their higher multivalency.
Another group aimed to target galectin-3, a particular lectin recognizing [3-
galactosides.[86] To this end, they synthesized SDMs functionalized with several copies
of a sugar, ensuring multivalency, but also with nonglycosidic moieties. In particular,
the incorporation of aromatic motifs between the glycans was shown to improve the
binding to the targeted receptor, galectin-3, while decreasing the affinity towards a
similar receptor, galectin-1. It shows that site-specific modifications of SDMs
constitute an interesting tool to modulate the selectivity of interactions.

Sequence control was also exploited to design synthetic mimics of antibodies,
dedicated to peptide recognition.l87] Natural antibodies are protein complexes
presenting specific recognition sites towards antigens, i.e. any foreign body identified
as harmful for the organism, and are able to trigger their elimination after binding.
Here, poly(NN-isopropyl acrylamide) nanoparticles were functionalized with sequence-
defined oligomers designed to recognize melittin, a peptide found in bee venom, and,
upon binding, inhibit its hemolytic activity. Satisfyingly, the nanoparticles decorated
with the SDM showed much stronger affinity for melittin than nanoparticles
functionalized with randomly incorporated monomers or truncated oligomers.
Furthermore, slight modifications in the AA sequence of the melittin led to a significant
decrease in the binding of the nanoparticles, demonstrating that sequence
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complementarity improves the recognition process. Another strategy to stimulate the
immune system consists of using SDMs to recruit antibodies.[88] Recently, sequence-
defined heptamers functionalized with three copies of a dinitrophenyl (DNP) ligand,
able to interact with anti-DNP antibodies, were designed. Three SDMs were compared,
by varying the number of spacing units between the DNPs (zero, one or two). Initially,
the addition of spacing units was envisioned as a way to promote multivalent binding,
by making the ligands accessible to several antibodies. Counter-intuitively, the most
efficient antibody-recruiting molecule was the one without spacers between the DNPs.
MD simulations revealed that the three molecules formed similar globular folded
structures, and that the addition of spacers led to the burying of the DNPs inside the
core, making them less accessible. This example shows again the importance of
sequence control, and the complexity of designing efficient systems following chemical
intuition. MD simulations were of utmost importance to understand and rationalize
the experimental behavior. We also studied biomolecular SDMs in our thesis,
exploiting sequence-specific interactions for biorecognition (see Chapter IV-A and
IV-B).

I1.3.3. Synthetic SCMs for catalysis

Artificial enzymes have already been mentioned in this thesis, notably through the
incorporation of site-specific modifications to protein backbones or with
peptidomimetic systems. Synthetic SCMs are promising in the field of catalysis, as
controlled folding and well-organized 3D structures could be attained through the
control of sequence, as observed for natural enzymes, with the versatility of polymer
chemistry.

Impressive sequence effects were exhibited by trifunctional oligomers dedicated to the
aerobic oxidation of alcohols.[89] The chains carry a TEMPO unit, an imidazole, and a
copper complex: they constitute a catalytic triad of interest, where all three functional
groups must be spatially close for an efficient catalysis.[90] Therefore, their
incorporation onto the same scaffold should increase their probability of encounter
compared to free monomers in solution. Two trimers were synthesized, differing only
by the position of two monomers in their primary structure. They were densely grafted
on a surface, to promote cooperative interchain interactions and reduce folding and
conformational flexibility. The best oligomer displayed a turnover frequency (TOF) five
times higher than the other, a remarkable difference given the very small sequence
modification. The effect of sequence was markedly less important for the oligomers
diluted in solution, where the folding probably blurred the role of primary structure.
Following this work, MD simulations and network representations were applied on
very similar catalytic trimers to rationalize their activity (Figure I1.9).[91 The results

26



Sequence control in macromolecules — From natural inspiration to the design of original systems

indicated that all trimers adopted similar globular yet very flexible conformations in
acetonitrile, regardless of the sequence. However, network representations helped to
rationalize the measured catalytic activities by revealing a higher and more efficient
intrachain connectivity for the most efficient system. In contrast, in the less active
catalyst, the interactions between the functional groups were hindered by non-catalytic
units, typically backbone atoms. Impressively, despite the flexibility of the chains, the
influence of the sequence was still apparent in the intrachain connectivity patterns.

/=N
o~
NOVEW'Q:‘*\,MSTJ\E A o HQ TOF
IP >L/\2J ) 0N TN °/\(7f =1
e o = (min-)
! §
0— £
’\N
3.25x 10"
m ‘
S B
1< ]
v 9
,W{"
104 nodes ; 691 edges 8 mo dLIes
(8 /j‘?
Cu
N r:"\
H =N o H
PI >‘:s‘l/;s;j/ojn\/\/&yk/o\lo)ku/\/\“mggolru J:]
- =/
- C @ 1.93 x 10
14
U“\/ 7
LF f[ $ E
3 ]
MZ( i
ok
H N=N NS?N o Q
I"P G S8 At e S s
T
Z Cu.
i g ' 3.61 x 102

o A S
% 4\ : S ‘
% ,;/’:/ Q 104 nodes ; 600 edges

Figure II.9. Chemical structures, final MD snapshots, network representations and

8 modules

modularizations of the investigated catalytic trimers. The sequence of the chains is given by
the order of the letters T (TEMPO), I (Imidazole) and P (Copper complex). The number of
edges in the network representations, related to intrachain connectivity, follows the same trend
than the experimental catalytic activities. The TOFs are given for a catalyst concentration of 5
mol % (relative to substrate concentration). Adapted from Ref. 91 and reproduced from Ref.
81.
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In another work, a catalytic trimer was shown to catalyze the elongation of a polymer
bearing a complementary substituent.[92l Here, two monomers bearing
complementary recognition units — named “A” and “D”, for “acceptor” and “donor”,
respectively — were mixed with a linker moiety, following a combinatorial approach.
The monomers can reversibly oligomerize through the formation of dynamic covalent
imine bonds. Researchers thought that, by adding a trimer of sequence “AAA” to the
mixture, the complementary trimer “DDD” would preferentially form. Instead, they
found that “AAA” catalyzed the polymerization of pure “Dn” oligomers. Interestingly, a
dimer of sequence “AA” did not show any catalytic activity. It seems that the trimer was
able to bind to the extremity of a “Dn” growing chain through complementary A-D
interactions, and that this binding facilitated further oligomerization. This discovery
shows that the design of SCMs bearing recognition units at precise positions allows the
emergence of remarkable catalytic effects.

All these works highlight the interest of precisely engineered polymer chains for
catalytic applications, especially in the case of multifunctional catalysts, where
important sequence effects were demonstrated. Computational approaches able to
predict the folding of synthetic SCMs are particularly needed for this kind of
applications, where the 3D structure strongly impacts the efficiency of the system. Such
an approach was undertaken recently on polyurethanes, where the design of the chain
was optimized through MD simulations before synthesizing the most promising
sequence.[93] Catalysis is also explored in our thesis, with the formation of a sequence-
defined supramolecular duplex (see Chapter V). We also used MD simulations to
predict the single-chain folding of different polymers, an important step towards the
design of efficient catalytic systems (see Chapter VI).

I1.3.4. Synthetic SDMs for information storage

Information storage is a topic of intense research. Nowadays, most of the data
generated is stored digitally. “Information” can be viewed as a simple binary sequence
of “0” and “1”, which can represent any kind of data: audio files, images, text, etc. The
amount of data produced every day is estimated to be around 10" gigabytes, a number
that increases at an uncontrollable pace. The current devices used to store data, such
as hard disk drives (HDDs) and solid-state drives (SSDs), may become insufficient in
terms of storage density. Additionally, their stability over time and energy
consumption constitute other improvable factors. Pursuing an ideal of more stable and
compact storage devices, SDMs have emerged as a pertinent alternative. Indeed, the
“0” and “1” of a binary code can be represented by two monomers in a primary
structure. DNA, for instance, stores all the genetic information in its sequence of

nucleotides and is considered as a viable platform, especially for long-term storage
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applications.[94] The storage density of DNA is considerably higher than current
methods, with a maximum of 2 bits per nucleotide. Theoretically, all the information
produced in the world in one year could be stored in some grams of DNA. Logically,
synthetic SDMs are also envisioned for information storage. This is the most obvious
and probably simpler application, as there is no problematic of controlled folding or
precise engineering of interactions with complex binding sites, in complex
environments. Here, everything is related to the primary structure itself, which implies
that the sequence must be perfectly controlled. New methods to sequence SDMs, i.e. to
decode their primary structure, need to be developed. Currently, tandem mass
spectrometry (MS/MS) is the most commonly used technique. Briefly, the idea is to
break the polymer chain into a series of fragments, which are subsequently put in order
based on their fragmentation patterns, to reconstruct the whole sequence. The
advantage of synthetic polymers envisioned for data storage is that their chemical
structure can be optimized to contain predictable fragmentation sites, facilitating the
readout.[95] For example, researchers developed an algorithm to automatically
sequence oligo(amide-urethane)s from their MS/MS spectra.l9¢l To simplify the
readout, both extremities of the chain are decorated with a different moiety, allowing
a software to easily understand the sense of reading. The efficiency of the algorithm
was demonstrated by its ability to decode a sentence written with several oligomers
(Figure I1.10). In the same work, another software was used to write and read a QR-
code. A QR-code can be seen as a binary sequence of “0” and “1”, and was converted
into a series of sequence-defined oligomers. After synthesis of the library of oligomers,
the software was able to re-convert them into a binary sequence, thus to rebuild the
QR-code. Here, an advantage of synthetic SDMs is the possibility to use a broad range
of monomers, which enables a dense storage capacity despite limited chain length.
Following the idea of maximizing storage density, “dual” SDMs, storing information
not only in the side-chains, but also in the backbone, were designed.[971 This method
significantly increases the storage capacity, as a “dual” pentamer contains nearly as
much information than a decamer without information in its backbone. Another group
followed the opposite approach and managed to synthesize very long SDMs, up to 256
units with satisfying yield, incorporating only two different co-monomers.[98]
Impressively, these systems possess a density of information storage 50 % higher than
that of DNA.

Information-containing macromolecules can also be used for -cryptographic
applications. One group designed “molecular keys” using SDMs.[99] In this practical
example, a molecule was adsorbed onto paper, here an envelope, containing a coded
message. The molecule acts as a password; using MS/MS, the specific sequence of the
molecule could be deciphered and converted into digital information, enabling
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Figure II.10. General chemical structure of SDMs dedicated to information storage and
practical example with the writing of a sentence. Each monomer is decorated with a functional
group, and each functional group is associated to a letter. The oligomers can be sequenced by
MS/MS, showing that it is possible to store and extract information using SDMs. Adapted from
Ref. 96.

decryption of the message. This proof-of-concept illustrates the potential of SDMs in
anti-counterfeiting applications.

SDMs for information storage applications are not yet a completely mature field and
will particularly benefit from improvements in the synthesis pathways, especially in
terms of increased DP and speed of the reading/writing processes. In this respect, a
fully automated protocol has recently been proposed to synthesize and sequence
oligourethanes.[*00] Tt seems likely that precision macromolecules will find practical
applications in the medium term, notably for long-term data storage, where their very
high storage density should be a highly valuable advantage.

II.4. Conclusion

Less than 200 years ago, practically nothing was known about proteins or nucleic acids
— there were not even words to describe them. Nowadays, researchers are not only able
to build tailor-made biopolymers, fulfilling the dream of artificial enzymes mentioned
by Fischer in 1902, but also to functionalize them with many unnatural substituents.
This is due in large part to the knowledge gained on sequence — structure relationships.
By “simply” controlling the order in which the monomers are inserted into the chains,
complex 3D structures and supramolecular assemblies were designed. Since about 15
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years ago, advances in polymer synthesis have enabled the emergence of a new field of
research, dedicated to purely synthetic SCMs. The exquisite control of sequence
displayed by functional biomacromolecules, combined with the chemical diversity
offered by polymer chemistry, is seen as a way to design novel highly performant
nanomaterials. The field is still very young and SCMs, while they carry a lot of
promises, have to go beyond proofs-of-concept and to demonstrate their suitability for
practical applications. However, it is now clear that playing with the order of
monomers impacts the properties of the chains, sometimes even within flexible
systems. Information storage will probably be the first area to benefit from SCMs, as it
does not directly depend on a fine 3D organization or the establishment of specific
interactions. For applications having these requirements, such as catalysis or
biomolecular recognition, a more fundamental understanding of sequence — structure
— function relationships is required. Computational approaches such as molecular
modeling will be essential to reach this goal. This is the approach followed in this thesis,
and the details of our methodology are explained in the next chapter. In parallel to this
fundamental understanding, we can hope that expanding the database of known
sequence — structure pairs will lead to the development of predictive ML models, which
could help to rationalize the design of SCMs, despite the immensity of the chemical
space that has been opened.
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Methodology

II1. Methodology

This chapter aims at providing the reader with a brief yet comprehensive introduction
to the computational methods employed in this thesis. The first section is mainly
dedicated to non-experts and beginners in the field, starting with a quick review of the
theoretical foundations governing the behavior of atoms and molecules, i.e. quantum
physics. Then, the principles of molecular mechanics (MM) and molecular dynamics
(MD) simulations are concisely explained, focusing on the main concepts and the steps
that one has to follow to predict the time evolution of a molecular system (Section
II1.1). Then, more advanced topics are introduced, including the limitations of MD
simulations and methodological advances designed to enhance the speed or accuracy
of conventional approaches. Recent literature examples illustrating the use of some of
these methods are discussed, showing their successes but also, in some cases, their
failures (Section II1.2). Finally, several descriptors and tools used throughout this
thesis to characterize and analyze molecular conformations are explained (Section
II1.3). The detailed simulation protocols and parameters will be further developed in
their corresponding chapters.

I11.1. Basics of Molecular Dynamics Simulations

II1.1.1. Fundamentals of quantum chemistry

The ability to model molecular systems through computer simulations resides in the
existence of physical models capable of predicting their properties. The most accurate
mathematical framework currently available to describe the behavior of the
infinitesimally small components of matter, such as atoms and molecules, relies on the
laws of quantum mechanics (QM), established about a century ago.l*] All the
information about a chemical system in a stationary state, i.e. one whose observable
properties remain constant over time, can be accessed by solving the time-independent
Schrodinger equation (Equation IT1.1).

Hy = Ey (I11.1)

Where H is the Hamiltonian operator, ¥ is the wavefunction of the system and E is the
corresponding energy eigenvalue.

Unfortunately, solving the Schrodinger equation exactly is impossible for most
chemical systems due to its mathematical complexity.[t:2] Analytical solutions are only
available for very simple systems, such as hydrogenoid species containing a single
electron.[3! The only way to use the Schrodinger equation to get knowledge on chemical
systems is to introduce approximations. The Born-Oppenheimer (BO) approximation
is probably the most well-known, and consists of decoupling the movements of the
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electrons from that of the nuclei.l4] Since electrons are much lighter and thus much
faster than the nuclei, the coordinates of the latter can be considered fixed. This leads
to the so-called electronic Schrodinger equation. This first step simplifies the problem,
but obtaining exact solutions to the electronic Schrodinger equation remains extremely
challenging in most cases. To address this and reach approximate solutions, several
methods have been developed, such as Hartree-Fock,[5! post-Hartree-Fock,¢] density
functional theory,l”] or hybrid approaches.[8] Each of these is based on diverse
assumptions, with several levels of approximations. They provide a flexible theoretical
framework to study a given system, depending on the properties of interest, the
targeted accuracy, and the computational resources at hand.[91 Nonetheless, using the
mathematical framework of QM remains computationally demanding and limits its use
to relatively small systems, typically ranging between a few atoms to a few thousand.[2]

II1.1.2. The simpler framework of molecular mechanics

Chemical systems can also be described using a much simpler approach based on
classical mechanics, known as molecular mechanics (MM), in which atoms and
molecules are treated as classical particles. This allows the study of much larger
systems, with up to several million atoms.[r0] Using MM models, molecules are
represented as balls connected by sticks, or springs (Figure III.1). Obviously,
chemical systems cannot be described as simple hard spheres: each ball, i.e. each atom,
is characterized by an atom type and a partial charge. The atom types serve to identify
the chemical elements and also account for their bonding environment. For instance,
carbon atoms in a carbonyl group and in a phenyl ring will have different atom types.
Then, the partial charges describe the electrostatic properties of the system. In MM
models, contrary to quantum chemical approaches, the electrons are not explicitly
represented. Their effect, and the electrostatic potential that they generate, is implicitly
taken into account through point charges, directly located on the nuclei. Therefore,
MM does not give access to the electronic properties of materials and does not allow
the formation or breaking of covalent bonds.

o) Atom type

0.13

H, )
Partial charge

Figure III.1. Chemical structure (left) and “ball and sticks” representation (right) of a
molecule. An example of atom type (in black) and partial charge (in blue) is shown for one

carbon atom on the 3D representation.
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Knowing the atomic coordinates of a system, all the information needed to compute its
potential energy and related properties using MM is provided by a force field (FF). A
force field contains both the functional form and an ensemble of parameters required
for these calculations (Figure III.2). The philosophy behind FFs is that the potential
energy of the whole system can be decomposed into a sum of independent terms, each
described by a specific mathematical expression. For example, bond stretching is
usually modelled as a harmonic potential: deviation from the equilibrium bond length
will result in an energy penalty, proportional to the square of the deviation (as shown
in the red box in Figure II1.2). To evaluate each term, the atomic coordinates and a
set of parameters, which are tabulated in the FF (see kv and req in Figure II1.2), are
required. These parameters generally come from QM calculations or experimental
data. Many different FFs exist, each distinguished by its set of atom types, parameters,
and the mathematical expressions of the potential energy and its individual terms.
Consequently, selecting an appropriate FF depends on the molecular class under study,
as different FFs will lead to different levels of performance and accuracy.

Bonded terms Non-bonded terms

Epotential =[Ebond + Eangle + Edihedral]'l{evdw + ECoulomb]

( —> Variable: measured during the MD simulation

N
Epond = k,b (r - req)z ™

= %7

Parameters tabulated in the force field

S /

Ebond

kR

(kcat.mgl-l.A-Z)
c3-c3 232.5 1.538 o
c2-c2 481.8 1.334 r;q >
cl-cl 837.3 1.198 Coordinates (r)

Figure III.2. General expression of the potential energy, decomposed into a sum of terms, as
expressed by a force field. A detailed example is provided for the bonding energy, Eyond, here
described as a harmonic term. Examples of ki (the force constant) and req (the equilibrium
bond length), two FF parameters, are shown in the purple box. The terms ¢3, c2 and c1 refer to
the atom types of sp3, sp2 and sp* carbon atoms, respectively. The variation of the bonding

energy with respect to the bond length, r, is displayed in the red box.
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I11.1.3. The workflow of molecular dynamics simulations

Molecular dynamics (MD) simulations build upon MM models, using force fields to
calculate the potential energy and the forces acting on the atoms, in order to predict
the temporal evolution of chemical systems. Note that, in reality, MD simulations
following the laws of quantum mechanics are possible — they are called ab initio MD
simulations.['!] In practice, they are limited to very small systems and timescales, and
are generally not adapted to the study of (bio)macromolecules.

At the beginning of an MD simulation, only the initial structure of the system is known,
i.e. a set of atomic coordinates r(0). The purpose of the simulation is to predict the suite
of conformations that the system will adopt over time — its trajectory. As the real,
continuous trajectory cannot be solved analytically, it is approximated by a series of
discrete states, separated by a timestep At. The movements of the atoms, treated as
classical particles, are computed by integrating Newton’s equations of motion using a
numerical integrator such as the Verlet algorithm.[2] This integrator estimates the next
set of coordinates, r(0 + At), through a Taylor series expansion around r(0) (Equation
I11.2).

At?
r(0 + At) = r(0) + v(0)At + a(O)T (I11.2)
Where v(0) and a(0) are the initial sets of velocities and accelerations, respectively.
In this equation, the coordinates r(0) are known. The velocities v(0) are initialized
“randomly”, following a Maxwell-Boltzmann distribution (thus depending on the

temperature of the system) (Equation II1.3).
1/2

FO = (gp) (IIL3)

Where f(v) is the probability density function describing the likelihood of finding a
particle with a given velocity v, m is the mass, k is the Boltzmann constant, and T'is the
temperature.

The last unknown part in Equation III.2 is the acceleration, a(0). From Newton’s
second law of motion and the fact that a force can be expressed as the derivative of the
potential energy with respect to the coordinates, we can link the acceleration a, the

forces F and the potential energy Er (Equation II1.4).

dEp
F=ma = _W (III.4)

Therefore, after computing the potential energy of the system using the force field, the
corresponding set of forces — and hence the atomic accelerations — can be determined.
Knowing r(0), v(0) and a(0), it is then possible to solve Equation III.2 and obtain r(o
+ At). With this new set of coordinates, the accelerations a(0 + At) can be computed,
as the potential energy only depends on the atomic positions (and the parameters
defined in the force field). Finally, Equation IIL.5 can be used to compute v(0 + At).
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2
v(0 + 4t) = v(0) + [a(0) + a(0 + At)] ATt (I1l.5)

The iterative process supporting MD simulations is summarized in Figure II1.3.
This procedure, which decomposes the continuous trajectory into a series of discrete
states, would only yield the exact coordinates for infinitesimally small timesteps, At.
However, using longer timesteps is desirable, as it allows to reach a given simulation
time with fewer steps, thus at lower computational cost. In practice, At is often set to
1 fs (1015 s), about ten times smaller than the timescale of the fastest motions in the
system — typically, vibrations involving hydrogen atoms. Nowadays, various methods
enable the use of longer timesteps, as will be discussed in Section II1.2.3.

/Starting structu re\

) !

( Potential energy )
\With the force field)

\ 4

Coordinates r(0) p v .
From the starting [ ] Forces acting on
R d

structure Velocitic_es_ Y(q) the atoms
andomly initialize

s

\4

:Accelerations a(O):

A 4 v A4

Updated set of coordinates

v

Updated set of accelerations

v

Updated set of velocities

SO— Q= M~—

Figure III.3. Workflow of a MD simulation. Based on the structure provided by the user, the
first sets of coordinates, velocities and accelerations are initialized. They allow the computation
of a new set of coordinates (i.e. the next molecular conformation), from which the accelerations
can be calculated with the information contained in the force field. These accelerations, in turn,

serve to calculate the velocities.
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II1.1.4. MD simulations are an ideal tool to model
(bio)macromolecular systems

The much lower computational cost required to run classical MD simulations, in
comparison to QM approaches, makes it a method of choice to treat macromolecular
systems. In particular, several MD engines were initially developed for studying
biomolecules, especially proteins and nucleic acids. The software used throughout this
thesis, the Assisted Model Building with Energy Refinement (AMBER), follows this
trend.l'3] AMBER contains a variety of FFs dedicated to the modelling of proteins,
nucleic acids, sugars, solvents, and so on. It also includes tools to build custom organic
molecules. The general amber force field (GAFF), implemented in 2004, provides
parameters for most organic compounds, and is compatible with the other AMBER
FFs.[141 GAFF is parametrized against a wide range of molecular structures commonly
found in ligands. An updated version of the force field, GAFF 2, was released in 2015
(and, later, GAFF 2.11 released in May 2016) and seems to display slightly improved
performances than the original version.l's] When building a custom molecule, it is also
necessary to compute its partial charges. Two different models were used in this thesis:
the restrained electrostatic potential (RESP),l1¢] and the Austin Model 1 with bond
charge correction (AM1-BCC).[»71 They both aim to reproduce the electrostatic potential
of the molecules calculated at the Hartree-Fock/6-31G* level of theory (a QM method),
against which GAFF was parametrized. The set of partial charges used, and its accuracy
to represent the true electrostatic potential, can have a dramatic influence on the
conformations adopted by a chemical system, as will be discussed in Chapter VI. In
addition, AMBER offers very practical tools to build oligomers and polymers, as it is
possible to constitute its own library of custom monomeric units. The monomers can
then be combined in any desired sequence to constitute a tailor-made oligomer or
polymer, just as one would build a protein or a nucleic acid by inputting its sequence
of amino acids or nucleotides, respectively. This methodology has often been used by
our group, as described in a recent review.[18]

Another important aspect of (bio)molecular simulations concerns the treatment of the
solvent. It can be described implicitly, i.e. without including the solvent molecules in
the system. The Generalized Born model,['9] an approximated version of the Poisson-
Boltzmann equation, is commonly used. This model treats the solvent as a continuum,
whose screening effect on the electrostatic interactions depends on its dielectric
constant and the degree of burial of atoms in the 3D structure. The other possibility is
to describe the solvent molecules explicitly. This approach, more accurate, allows to
directly probe the interactions between the solvent and solute molecules. However, it
significantly increases the number of atoms in the system and, therefore, the
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computational cost. It also imposes the use of periodic boundary conditions (PBC)
(Figure II1.4). The principle of PBC is to replicate the simulation box in all directions
by creating mirror images, approximating an infinite system. It minimizes edge effects
at the boundaries of the box, preventing molecules at the edges from being exposed to
vacuum. It also ensures that a molecule diffusing out of the box is replaced by another
molecule from a mirror image, as illustrated in Figure I11.4.

o % o T -, 1% 9
o Cutoff .
® 8| - % )
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& ¢ » Y \\d) & //'l » Y &» Y
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Figure III.4. Illustration of the PBC in two dimensions. The central simulation box, in red,
contains a solute and water molecules. It is replicated in the left and right directions. If the
water molecule in the upper left corner leaves the simulation box to the left (purple arrow), it
is replaced by its mirror image from the opposite side. The cutoff, i.e. the distance at which the
models used to compute the non-bonded interactions (van der Waals and Coulomb) change, is

also illustrated (further details are provided in the text).

In MD simulations, the heavier burden on the computational cost consists in treating
the non-covalent interactions, i.e. van der Waals (vdW) and electrostatic terms. Their
number typically scales with the square of the number of atoms, which can become
very large, especially in the case of simulations in explicit solvent. Therefore, non-
covalent interactions are generally truncated at a threshold distance, known as the
cutoff (as illustrated in Figure III.4). The van der Waals terms are computed using a
Lennard-Jones potential for pairs of particles whose distance is within the cutoff, and
a continuum model is applied as a correction for long-range interactions. Electrostatic
terms are calculated through the particle mesh Ewald (PME) scheme, which treats the
electrostatic interactions as a sum of short-range and long-range terms.[20]
Electrostatic forces for particles whose distance is within the cutoff are calculated in
the real space, using direct summation. Long-range interactions are computed in the
reciprocal space, using Fourier transforms.

These concepts constitute a basis to understand the functioning of computational
simulations, in particular classical MD simulations. In the next part, recent
developments in the field, aiming to improve the accuracy of the simulations and the
exhaustivity of the sampling, are discussed.
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III.2. Limits of MD simulations and how to push their
boundaries

III.2.1. MD simulations are based on many (many, many)
approximations

The “computational microscope” offered by MD simulations is an extremely powerful
tool, giving researchers precious insights on the 3D structure and dynamics of
(bio)molecular systems.[21] The field has considerably evolved since the first
biomolecular simulation published, in 1997, which studied the dynamics of the bovine
pancreatic trypsin inhibitor during 8.8 ps.[22] 20 years later, in 2007, the first
microsecond timescale simulation of B-DNA was published.[23] The significant
improvements in MD algorithms,[24] the optimization of GPU codes,[25] and the
remarkable evolution of the computational resources have made the simulation of
hundreds of thousands of atoms on the microsecond timescale routine. MD
simulations have achieved many successes over the years and, more generally, the field
of computational chemistry is now well established, as evidenced by the 1998, 2013,
and 2024 Nobel Prizes in Chemistry.

However, simulations are far from infallible. Their classical nature already represents
a considerable approximation. The accuracy of a simulation is dictated by the quality
of the parameters contained in its FFs, which may, in some cases, completely fail to
describe certain properties of a particular molecular system. A striking example is the
case of TIP3P, one of the most widely used water model in biomolecular simulations.[26]
It happens that TIP3P (and other common water models) is unable to correctly
reproduce the behavior of bulk water, predicting several macroscopic properties with
significant errors (Figure IIL.5).[271 A new water model called OPC was proposed in
2014, and seems to constitute a significant improvement.[28]

It shows the complexity of finding good FF parameters, even for water. Another lesson
can be drawn from this example: a simulation does not need to be perfectly accurate to
give meaningful results. The failure of TIP3P to reproduce several properties of bulk
water does not mean that it is completely unsuitable to study the folding and dynamics
of biomacromolecules. It is the role of the researcher to keep a critical eye on the
outcome of a simulation, to know the limits of its model, and to take them into account
when drawing conclusions. Nevertheless, it is highly desirable to develop more
accurate force fields. Improved versions are continuously released, even for well-
known biomolecules — see for example ff19SB (for proteins)[29] and tumucifs°! or
OL24[31 (for DNA), available since 2020, 2021 and 2025, respectively. Finding valid
FF parameters for synthetic systems is even more challenging, given their enormous
chemical diversity. Most FFs dedicated to synthetic molecules are rather general: they
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Figure IIL.5. Relative errors between the predicted theoretical and experimental values of
several macroscopic properties of water for five widely used water models. Reproduced from
Ref. 27.

contain parameters to describe a wide range of atoms, bonds, angles and torsions.
However, their accuracy is limited, as one single FF cannot perfectly reproduce every
chemical system. Consequently, when modeling a synthetic compound, it is good
practice (and sometimes mandatory) to reparametrize the FF, i.e. to adjust its
parameters to describe more accurately the molecule of interest. In general, the
parameters are refined by comparison with QM calculations. This task can be very
tedious, although several tools exist to simplify and automatize it. Within the AMBER
suite of programs, mainly used in this thesis, we can cite Paramfit!32] or mdgx.[33!

II1.2.2. Enhancing the accuracy of MD simulations

Beyond parameters adjustment, other methods exist to enhance the accuracy of MD
simulations, i.e. to bridge the gap between classical and QM approaches. Polarizable
FFs, for instance, aim at improving the representation of the electrostatic properties of
the molecules, which are modeled as fixed atomic charges in classical approaches.[34]
The most intuitive way to account for the deformability of the electronic cloud is to
introduce extra particles carrying a fraction of the atomic charges. This is the basis of
the Drude oscillator model.[35] Each atom is assigned an additional pseudo-particle,
called the Drude particle. The atomic partial charge is distributed between the nucleus
and its Drude oscillator, which is free to move, allowing the atom to respond to its
electrostatic environment. This improved description of the charge distribution has
been successful in different biomolecular applications, including studies of base-
flipping in DNA,36] the structural dynamics of RNA hairpinsf37] and mannose
disaccharides,[38] as well as for computing the free energy of hydration for most amino
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acids.[39] However, the model failed to correctly describe a highly flexible RNA
structure, probably due to an overstabilization of hydrogen bonding interactions.[4°]
Machine learning (ML) FFs are also becoming a common tool in computational
chemistry. Their purpose, similarly to traditional FFs, is to establish relationships
between a set of atomic coordinates and the potential energy of the system, the forces
acting on the atoms, or both. However, the construction of the mathematical model is
completely different. An MLFF does not need to decompose the potential energy of the
system into a sum of individual terms (as expressed in Figure II1.2): it can build any
mathematical model. The MLFF is trained on an extensive database of molecular
structures with known potential energy, computed at the QM level.[41] From this
dataset, a functional representation of the potential energy surface is extracted. The
MLFF must then be tested against a validation set, i.e. another ensemble of structures
with known potential energy. If the error of the MLFF on the validation set is
sufficiently low, it can be used for MD simulations. The QM method used to compute
the potential energy fixes the upper limit of accuracy of the ML algorithm, as it will, at
best, perfectly reproduce the method used for training. MLFFs can be viewed as an
intermediate between QM methods and traditional FFs, being more accurate (if
correctly trained) but less computationally efficient (due to their more complex
functional form) than the latter.[42] Very promising results were published recently for
the use of MLFFs in biomolecular simulations, to compute the relative energy,43! or
even to perform MD simulations on proteins.[44] In that study, the model was trained
on small fragments, and then applied to simulate a 46-residue protein in explicit water
(more than 25,000 atoms). Although limited to the nanosecond timescale, it
demonstrates that MD simulations with MLFFs, reaching ab initio accuracy, are
achievable on macromolecular systems.

Finally, another way to improve the accuracy of MD simulations is to use hybrid
QM /MM approaches, treating a small part of the system at the QM level and describing
the rest with MM.[45] This is particularly useful in biomolecular simulations, where the
computational cost of running pure ab initio MD simulations would be prohibitive,
while a sub-part of the system requires QM accuracy. A typical example of these
multiscale approaches is host-guest chemistry, such as enzymatic catalysis or ligand
binding. The active site, where the reaction or binding occurs, is treated at the QM
level, while the surrounding protein scaffold and the solvent are described using FFs.
The main challenge associated to QM/MM simulations lies in computing the
interactions at the interface between atoms in the “MM region” and atoms in the “QM
region”. A recent example made use of QM/MM methods to correctly estimate the
unbinding rate constant of a ligand.[46] Classical FFs from AMBER were accurate to
describe the stable bound state, but overestimated the potential energy of the
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transition state, thus overestimating the unbinding rate constant. The QM/MM
approach was necessary to correctly describe the change in electrostatic properties
between the bound and transition states. It illustrates a disadvantage of the fixed point
charges used by classical FFs. Another example took advantage of QM/MM
simulations to investigate the reaction mechanisms of four inhibitors of a SARS-CoV-
2 enzyme, the main protease, which plays a part in viral replication.[47] The four ligands
are able to form a covalent bond with a cysteine in the active site of the enzyme — a
chemical reaction that cannot be captured with classical MD simulations — thereby
inhibiting its activity.

II1.2.3. Enhancing the speed of MD simulations

In addition to the efforts aimed at improving the accuracy of MD simulations, several
approaches have been developed to accelerate conformational sampling. It is now
routine to run microsecond-long simulations, but this timescale remains too short to
probe many biomolecular processes. One way to increase the speed of a simulation is
to increase the timestep, i.e. to reduce the frequency at which the equations of motions
need to be solved. The problem in increasing the timestep is that it quickly leads to
numerical instabilities, when the forces change importantly between two steps. The
typical value of the timestep is 1 fs, as mentioned earlier. However, algorithms are
commonly applied to freeze the vibrations including hydrogen atoms, such as
SHAKE, 481 SETTLE,[491 or LINCS,[50] allowing the use of a 2-fs timestep. More recently,
the hydrogen mass repartitioning (HMR) scheme was used in MD simulations,
enabling the use of timesteps of 4 fs.[51] The principle of HMR is to redistribute the
mass of the heavy atoms to their bonded hydrogen atoms, such as to increase their
mass and to slow down their vibration frequency. This strategy proved effective to
simulate biological membranes.[52] The increased timestep did not alter the computed
properties, in comparison to simulations using a 2-fs timestep, and brought a speedup
comprised between 40 to 90 %, depending on the system and the computational
architecture. However, the method may apparently slow down protein-ligand
binding.[s31 Here, the increased timestep led to faster diffusion of the ligand and
increased protein dynamics compared to classical MD. This apparently complicated
the stabilization of metastable states encountered in the binding process. Although
appealing, increasing the timestep may not be an ideal choice to reduce the
computational time in every case, especially when key binding intermediates must be
sampled.

Different methods were also developed to improve the sampling efficiency, to find
more quickly local minima on the potential energy surface.[54! In particular, accelerated
molecular dynamics (aMD) simulations use a bias potential to lower the energy
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barriers between minima.[l551 When the potential energy of the system falls below a
threshold, a boost potential is applied. The idea is to artificially flatten the potential
energy surface, preventing the system from being trapped for long times in local
minima. Accelerated simulations were performed on ligand-protein binding studies
and permitted to identify the same binding sites than those detected by conventional
MD simulations in much shorter simulation time.[5¢] A similar approach was followed
to compute the thermodynamic and kinetic properties of binding of several guests to a
cyclodextrin host.[57] The accelerated protocol allowed to sample several
binding/unbinding events in 300 ns, while several microseconds were required with
conventional MD. These two methods (HMR and aMD) were exploited in this thesis to
study the dynamics of large heteropolymers in a reasonable computational time
(Chapter VI).

Finally, we can cite coarse-grained (CG) approaches, which reduce the computational
cost — thus the computational time — by decreasing the number of particles in the
system. To do so, several atoms are merged into the same particle — for example, one
amino acid could be represented by only one particle, instead of taking into account all
its atoms. Consequently, the system is described with a lower resolution than in all-
atom MD simulations. CG models necessarily miss finer atomic details, such as
directionality of H-bonds[58] or interactions with the solvent,[58:591 and lack flexibility
in the description of the secondary structures of proteins.[59] Still, this method is
popular to study biomolecular systems,[58:60] notably with the well-known MARTINI
force field.[591 Originally developed to model lipids, its scope has been expanded over
the years, making it a general force field, even applicable to model organic polymers.
CG methods provide a way to study systems of a size that all-atom MD simulations
could never reach. A particularly striking example is the building of a whole cell using
tools from the MARTINI ecosystem.[6t] Although no MD simulations were actually
launched, being able to develop a computational model for an entire cell with all its
components, containing more than six billion atoms, remains remarkable.

I11.3. Common molecular descriptors and analyses

Several descriptors are used throughout this thesis to characterize the conformations,
dynamics and interactions of molecular systems. They are explained hereafter to clarify
their meaning to the reader. Most of the analyses were performed with the cpptraj
module of AMBER and in-house scripts.[¢2]

The root mean square deviation (RMSD) is the average deviation of the atomic
coordinates of a structure by comparison to the atomic coordinates of a reference
structure (Equation IIL.6). The reference structure is often chosen as the initial
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conformation of the MD simulation. The evolution of the RMSD over time gives
insights on the flexibility of the system, and its convergence can indicate the
stabilization of a given conformation.

iza[x:(6) — x;(ref)]*
N

RMSD(¢) = \/ (I11.6)

Where N is the number of atoms, and xi(t) and xi(ref) are the coordinates of atom 7 in
the structure generated at time ¢ and in the reference structure, respectively.

The root mean square fluctuation (RMSF) is a similar measurement, but is more local.
The RMSF computes the positional fluctuations of an atom around its average
coordinates (Equation IIL.7). It is often averaged over groups of atoms, typically
monomer units, providing insights into the distribution of flexible and rigid regions
within a molecule.

M () — (v ))?
— j t,=1<xl(;1> (x:)) S

Where M represents the number of input structures, xi(tj) represents the coordinates
of atom 7 in the structure generated at time ¢, and (xi) denotes the average coordinates
of atom i, computed over all input structures. Note that the RMSD involves a sum on
the number of atoms, thus being a descriptor of the global structure, while the RMSF
involves a sum on all snapshots for one atom (or one group of atoms), thus being an
average local descriptor.

The radius of gyration (Rg) is a measure of the size and compactness of a system. It
computes the average distance of the atoms from their geometric center (Equation
ITI1.8). The evolution of the Rg as a function of time can be tracked to follow the folding
of a molecule.

(II1.8)

_ \/2?21(351' - xcenter)2
R; = N

Where N is the number of atoms, xi represents the coordinates of atom i, and xcenter
denotes the coordinates of the geometric center.

The solvent-accessible surface area (SASA) measures the extent of a molecular surface
that can be probed by a solvent molecule (Figure III.6). It reflects the exposure of a
molecule to its surrounding environment. The SASA can be decomposed by sub-parts
of the whole system, such as monomeric units, revealing which regions are buried and
which ones are exposed. The SASA was determined using the linear combination of
pairwise overlaps (LCPO) method.[63] In this model, atoms are approximated as perfect
spheres, with a radius equal to their van der Waals radius plus that of a solvent probe
(typically 1.4 A, to represent a water molecule).
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Solvent probe.....

SASA,

Figure III.6. 2D schematic representation of the SASA of an atom i. The solvent probe (in
purple) defines the accessible region (in green), while the occluded area (in red) is inaccessible
due to overlaps with neighboring atoms j and k.

Analyses can also be carried out in the form of images, such as “heatmaps”, which were
often used in this thesis to highlight and localize relationships between pairs of
variables. Many kinds of data can be represented, such as distances, interactions, free
enthalpy of binding, and so on. A very simple example is shown in Figure IIL.7.

Finally, network representations were used to investigate the connections inside
supramolecular assemblies, using the Cytoscape 3.9.1 software.l64] The 3D
conformations generated during the MD simulations are converted into 2D networks,
where each heavy atom, i.e. any atom except hydrogen, constitutes a node (Figure
II1.8). Two nodes are connected, i.e. linked to each other by an edge, if their distance
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Figure IIL.7. Illustration of a distance heatmap. The molecule investigated is a tetramer
bearing four functional units, represented by the letters A-D. The heatmap is built based on
the 3D structure shown on the left. At the crossing of two letters, on the x and y axes, is found
a square, whose color indicates the distance between the two units (see the scale on the right).
As an example, the distance between the units A and C was measured on the 3D structure and
corresponds to the squares circled in red on the heatmap, which is symmetric with respect to

the diagonal.
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in the 3D structure is inferior than a cutoff distance typical of short-range interactions
(around 5 A). Network representations are a useful visualization tool, and an
interesting way to investigate the connectivity and recognition inside molecular
systems. It has been commonly applied to biomolecular systems or in materials
science.[65.66] Two descriptors are used in this thesis to mathematically describe the
connectivity inside a network. The betweenness centrality of a node describes the
number of shortest paths, i.e. the shortest sequence of nodes that must be traversed to
go from one node to another, involving this node. The closeness centrality indicates
how long are the paths connecting one node to all the others. A node able to reach all
the others with short paths will have a high closeness centrality. Networks were further
studied with the partition algorithm Infomap,®7] which detects groups of highly
connected nodes. These nodes are regrouped into the same particle, called “module”
or “community”. This approach allows a coarse-grained representation of the network,
simplifying the visualization of the most important connections between specific
moieties.

3D structure 2D network

P =

Figure II1.8. Representation of the conversion of a molecular 3D structure into a 2D network.

Only the heavy atoms, i.e. not hydrogen atoms, are conserved in the network representation.
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Chiral mismatch in collagen-mimetic peptides modulates cell migration through integrin-mediated
molecular recognition

IV. Exploiting sequence-controlled architectures to
master biorecognition

The results section of this thesis starts with systems involved in biorecognition
applications, where the defined sequence and programmable folding of biopolymers
help us to target them. This section is divided in two parts. The first one is dedicated to
the study of the interactions between an integrin and different peptides. We will see
how subtle stereochemical modifications can influence the intrinsic conformation of
the peptides, and how it affects their binding to a protein receptor involved in cellular
migration (Section IV-A). In the second part, we will investigate the supramolecular
assembly of small organic molecules around a DNA template. The synthetic molecules,
functionalized with nucleobases, are able to recognize a single-stranded DNA bearing
the complementary unit. Furthermore, these synthetic molecules are
photoisomerizable, and the switch between trans and cis configurations allows us to
modulate the assembly with DNA (Section IV-B).

IV-A. Chiral mismatch in collagen-mimetic peptides
modulates cell migration through integrin-mediated
molecular recognition

Part of this work is reported in: Chiral mismatch in collagen-mimetic peptides
modulates cell migration through integrin-mediated recognition.

A. Remson, D. Dellemme, M. Luciano, M. Surin, S. Gabriele. Deposited on bioRxiv
(author preprint): https://doi.org/10.1101/2024.07.23.604866.

IV-A.1. Introduction

Many cellular processes rely on interaction cascades, where specific host-guest
recognitions trigger conformational changes that propagate from one molecular
species to the next.['2] These interactions take place in the crowded cellular
environment, involving many proteins and small molecules, yet they are extremely well
regulated: the same receptor, when activated by different ligands, can trigger different
responses.[3] The specificity of these recognition events arises from the highly
controlled 3D structures of proteins, whose sequence-encoded folding generates well-
defined binding sites. All these interactions mediate the behavior of cells, which
respond to the stimuli that they perceive when probing their environment. As a
consequence, the physicochemical parameters characterizing the cell environment, i.e.
the extracellular matrix (ECM), can strongly influence the internal organization of cells
and the processes in which they are involved. For instance, matrix rigidity was shown
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to impact cell shape, polarization, adhesion and migration.[4.51 Modifications on the
microstructure of the matrix, such as the presence of curvatures or other patterns, also
modify cell properties.[56] A recent example showed that matrix viscoelasticity and
stiffness influence cell spreading and migration, and that spatial confinement can alter
the way cells respond to the mechanical properties of their environment.[”l Another
characteristic of biological components is their chirality. This property is found at all
scales in living matter, from proteins and nucleic acids, built on chiral monomers, to
organs such as the heart. Cells contain intrinsically chiral components, such as actin
filaments, helical supramolecular polymers that are part of the cytoskeleton.
Interestingly, the dynamic network of actin filaments was shown to self-organize into
chiral motifs, twisted radial fibres rotating in a counter-clockwise manner, when cells
are confined on circular micropatterns.[8! This chiral organization could even induce
the chiral motion of other cellular components. Impressively, the sense of rotation
could be reversed, from counter-clockwise to clockwise, through the overexpression of
a-actinin-1, a protein involved in the crosslinking of actin filaments. Another group
found that cell aggregates embedded within a 3D hydrogel environment spontaneously
exhibit rotational motions, the sense of rotation being regulated by the same
mechanism involving actin filaments and a-actinin-1.191 Chirality was also
demonstrated to propagate from the molecular scale to an entire organism.[0] The
localized overexpression of myosin 1D, a molecular motor, was sufficient to induce a
complete twist of the body of a larva and perturb its movements. Despite these
examples and the known importance of chirality in living systems, the impact of the
stereochemistry of ECM components on cell behavior has remained largely unexplored
until now.

To bridge this gap, three peptide-coated surfaces of varying chirality were engineered
as representative models of the ECM components, and exploited to study the adhesion
and migration of epithelial keratocytes, cells derived from fish scales. Collagen, the
most abundant component of the ECM, was chosen as the natural coating, acting as a
control.['] Then, two collagen-mimetic peptides (CMPs), able to reproduce the triple
helix structure of collagen, were designed.[*2] The two CMPs share the same sequence
of AAs and differ only in their stereochemistry. The first CMP contains only L-AAs,
while the second consists of a block of L-AAs followed by a block of D-AAs; they are
referred to as homochiral and heterochiral CMPs, respectively. Experiments showed
differences in cell adhesion and migration on these substrates of opposite chirality. In
particular, the heterochiral CMP, which contains a “chiral mismatch” at the junction
between its natural L and unnatural D-AAs, displayed a lower ability to support cell
adhesion and migration. These results reveal that the stereochemistry of the ECM
components impacts cell behavior. At the molecular level, integrins, a family of

62



Chiral mismatch in collagen-mimetic peptides modulates cell migration through integrin-mediated
molecular recognition

transmembrane proteins expressed by cells, are known to mediate cellular migration
through interactions with the ECM components.[:3] Therefore, inhibition experiments
were carried out and identified the a:f3: integrin, a well-known collagen receptor, as
sensitive to the ECM chirality. It led us to investigate the behavior of collagen and the
CMPs in interaction with this integrin at the atomic scale, by means of molecular
dynamics (MD) simulations. Our results suggest that the chiral mismatch in the
heterochiral CMP destabilizes its triple helix conformation, reducing its interactions
with the binding site of the integrin. This perturbation at the molecular level could
contribute to the decreased cell adhesion on this substrate. All the experimental results
presented in this chapter were obtained by Alexandre Remson.[4]

IV-A.2.Design of the peptide substrates and simplified
models for MD simulations

Collagen I being the major component of the ECM, it was chosen as the control
substrate to probe the effect of ECM chirality on cell migration.[*2] Collagen forms a
left-handed helix at the single-chain level, with a conformation known as polyproline
type II (PPII), but self-assembles into a supramolecular right-handed triple helix
(Figure IV.1 A).[*2] To mimic collagen, the two CMPs incorporate an AA sequence
(PPG)1o, P and G refer to as proline and glycine, respectively. A long sequence with this
triplet was shown to reproduce a conformation similar to PPII.['5] The effect of chirality
is incorporated in this sequence: the proline residues have the natural L chirality in the
homochiral CMP, while they have the artificial D chirality in the heterochiral CMP. The
formation of PPII conformations with opposite chirality for the two CMPs, both in
solution and in the solid state, was confirmed by circular dichroism (CD)
spectroscopy.*4] A sequence (PEG). precedes the (PPG)o part, E refers to as glutamate.
This AA was shown to play an important role in the recognition between collagen and
a integrins, and was therefore integrated into the CMPs.[16] Before the (PEG)- residues,
four lysines were added to improve solubility in water. Finally, a glycine unit links the
CMPs to a fluorescent dye commonly wused with peptides (5-
Carboxytetramethylrhodamine, TAMRA). All lysines and the (PEG)- residues have the
natural L chirality in both CMPs. Therefore, the only difference between the
homochiral and the heterochiral CMPs is the stereoinversion in the (PPG)io section
(Figure IV.1 B). For the MD simulations, simplified peptide models were employed,
retaining only the AAs relevant to the interaction with the integrin and to reduce
computational cost. Collagen type I was represented by a sequence of 21 AAs
containing the binding motif “GFOGER”, known to be involved in the interaction with
collagen-binding integrins (Figure I'V.1 C).['7] For the CMPs, only the (PEG). part and
a (PPG)s section were considered, as this minimal model contains the glutamate
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residue, necessary for the binding, and the (PPG) triplets which induce the formation
of the supramolecular triple helix and contain the chiral information distinguishing the
two CMPs (Figure IV.1 D).

A NATURAL COLLAGEN TYPE | B COLLAGEN-MIMETIC PEPTIDES (CMPS)

Single-chain = left-handed helix TAMRA-Gly-(Lys),-(Pro-Glu-Gly),-(Pro*-Pro*-Gly),,
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Figure IV.1. Structures of the peptides investigated. (A) Cartoon representation of collagen
type I, highlighting the formation of a supramolecular right-handed triple helix from left-
handed single-chains. (B) AA sequence and chemical structure of the CMPs. “Pro*” indicates
prolines that have the opposite chirality between the two CMPs. (C), (D) Cartoon
representation of the simplified models of the peptides, shown as triple helices, used for the
MD simulations. Two snapshots, illustrating the first (at 1 ns) and last (at 1000 ns)
conformations, are superimposed for each system. The AA sequence is given below (G: glycine;
P: proline; O: hydroxyproline; F: phenylalanine; E: glutamate; R: arginine). The letters “L” and
“D” preceding the AA letters indicate their chirality.

IV-A.3.Cell migration involves peptide-integrin interactions
mediated by a glutamate residue

The migration of epithelial cells was experimentally studied on the three substrates,
and a significant impact of the chirality on cell migration speed was observed. Similar
speed values were found on collagen and the homochiral CMP (8.78 + 3.01 um/min
and 8.64 + 2.67 um/min, respectively), but the migration was significantly slower on
the heterochiral CMP (6.50 + 2.14 um/min). In addition, cells performed less focal
adhesions on this substrate. These results indicate that cells are sensitive to the
chirality of their matrix. We hypothesized that this behavior could be attributed to
interactions between collagen (or the CMPs) and integrins, which are protein receptors
expressed by the cell to mediate adhesion and migration through specific interactions
with components of the ECM (Figure IV.2 A).[4] Integrins constitute a class of 24
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Figure IV.2. Summary of the investigated cell-matrix interactions. (A) Schematic
representation of the interaction between collagen, found in the ECM, and the I-domain of the
collagen-binding integrin a,f;, expressed by the cell. The zoom shows the binding site, where
the collagen triple helix coordinates the divalent cation (Mg2*, represented as a cyan sphere)
in the MIDAS with a glutamate residue. The left part of the figure was created with
BioRender.com. (B) Results of inhibition experiments performed by Alexandre Remson,
showing the modulation of cell migration speed before (in blue) and after (in red) inhibition of
the a,p; integrin on the collagen (left), homochiral CMP (middle) and heterochiral CMP (right)
substrates. (C), (D) Final MD snapshots of the heterochiral CMP and homochiral CMP, in
interaction with the I-domain of the a,f3, integrin. In (D), a zoom is made on the binding site
to show the Mg2* complexation, made by AAs of the I-domain, the glutamate residue of the
CMP and completed by water molecules.
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heterodimeric proteins, composed of the association between an a and a § subunit.[3!
There exists a subclass of integrins dedicated to collagen-binding (aif31, a=p1, aioP: and
au:P1) whose selectivity depends on the collagen type.[:8] However, they all share the
presence of a particular I-domain, carried by the a subunit, responsible for binding.[3!
This domain contains a cavity hosting a divalent cation, known as the metal-ion
dependent adhesion site (MIDAS).['9] Binding to MIDAS was shown to be strongly
influenced by the presence of a glutamate residue (which is present in the GFOGER
motif in collagen), able to coordinate the central cation (see the zoom in Figure IV.2
A). Inhibition experiments were thus carried out to identify the cell receptors involved
in the migration of our keratocytes. Antibodies were added to block the binding site of
collagen-binding integrins, preventing their interactions with the peptides. These
experiments showed a particularly strong response from the aif: integrin, in
agreement with other studies highlighting its role in cell migration.[20:21] Once again,
the results were similar for collagen and the homochiral CMP, with a cell speed
decrease of 20 to 25 % upon a.f: inhibition. In contrast, the migration speed on the
heterochiral substrate was not significantly affected (Figure IV.2 B).

Based on these results, MD simulations were carried out to better understand the
impact of chirality on the intermolecular interactions between the a:f3: integrin and the
peptides. The simulations were realized with the AMBER suite of programs, by placing
either collagen, the homochiral CMP or the heterochiral CMP in the binding site of the
I-domain of the aif: integrin (see Figure IV.2 A, C, D), in explicit water boxes
containing Na+ and Cl- ions (see details of the simulation protocol in Section IV-
A.5).[22] As with collagen, the CMPs contain glutamate residues, that serve as
coordinating units for a divalent cation located in the MIDAS (Figure IV.2 C, D).
Here, glutamate can coordinate a Mg2+ ion in the binding site, thus completing its
coordination sphere (see the zoom in Figure IV.2 D). In all cases, the glutamate
maintains its interaction with the ion during the whole simulations, ensuring that the
triple helices remained bound to the domain. The fact that the two CMPs did not
disassemble from the MIDAS shows that the full AA sequence “GFOGER” is not
mandatory for the binding. This agrees with several studies suggesting that recognition
could occur with other, similar motifs of the general type GXX’GEX”, although with
generally lower affinity.[23]1 Our CMPs contain the (PEG)- triplets which, if written
reversely as (GEPGEP), match this binding pattern. There is not a unique sequence
that fits the binding site, but a common feature of the ligands is the presence of a
glutamate moiety. For comparison, we realized simulations on pure L- or D-(PPG)10
triple helices, which lack the (PEG) triplets, in interaction with the I-domain. The
peptides were markedly less stabilized, displaying very few intermolecular hydrogen
bonding interactions (see Figure IV.5), with possible complete unbinding. In line
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with our results, the absence of binding of (PPG):0 sequences to the similar I-domain
of the a-f: integrin was demonstrated experimentally by others.[23] Our simulations
thus highlight the crucial role of the glutamate moiety, without which the recognition
seems unlikely. This observation confirms the findings of other studies.l*¢] Even a
single AA mutation, replacing the glutamate by an aspartate, which is only one
methylene shorter, strongly weakens the binding.[17:24]

IV-A.4.Interactions with the integrin are perturbed by the
presence of a chiral mismatch

Based on the previous observations, the presence of D-AAs causing a chiral mismatch
in the heterochiral CMP does not seem to completely prevent the interaction with
integrin, thanks to the glutamate residue. This is not unexpected, as cells are able to
adhere and spread on this substrate, although with less efficiency than on its
homochiral counterpart or on collagen. The stereochemical modification seems to act
more as a modulation of the interactions than as an ON/OFF switch. We therefore
investigated the peptide-integrin interactions during the simulations in more details.
The anchoring of the peptide in the binding site was evaluated by measuring the
contact surface between the triple helix and the I-domain (Figure IV.3).
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Figure IV.3. Measurements of the contact surface between the peptides and the I-domain of
the integrin. (A) Equation used to compute the contact surface, and surface representation of
the different species involved. (B) Distribution of the contact surface values for each system.
The lines delimiting a box represent the first and third quartiles, whose values are annotated
at the edges of the box. The line inside a box indicates the mean value. The error bar is given
as mean + 1.5 x standard deviation. The average values and standard deviations are given in
the table.
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The heterochiral CMP displays the lowest value, although the three peptides show
similar levels overall, which is consistent with the fact that binding is maintained in all
cases. Similarly, the number of intermolecular hydrogen bonds, both direct and water-
mediated (so-called “bridging” H-bonds, i.e. between two species via a water molecule)
was found to be slightly higher for the homochiral CMP than for its heterochiral
counterpart (Figure IV.4).
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Figure IV.4. Number of (A) intermolecular H-bonds and (B) intermolecular bridging H-
bonds per conformation measured during the whole simulations between the three peptides
and the I-domain of the integrin. Data is shown as mean + standard deviation. The pale lines
represent the distribution of the measurements during the whole simulations. Statistics are

given in the tables below.

Collagen is involved in more intermolecular H-bonds, which is expected due to the
presence of the full GFOGER binding motif, as well as the presence of other
hydroxyproline units in the collagen sequence. In contrast, the CMPs can only form H-
bonds through their glutamate residues and the backbone amide bonds. To localize the
AAs of the I-domain interacting with the peptides, a heatmap of the intermolecular H-
bonds was drawn (Figure IV.5). On the x-axis on the heatmap are represented the
AAs of the binding site involved in H-bonds with the peptides, while the different
peptides studied are displayed on the y-axis. At the crossing of the axes are found
colored rectangles, whose color indicates the number of H-bonds detected between a
peptide and the corresponding AA of the binding site. In addition to collagen and the
two CMPs, the heatmap features the pure L- and D-(PPG)1o chains. The first striking
observation is that the (PPG):o peptides form very few interactions, regardless of their
stereochemistry. The addition of the glutamate units in the CMPs significantly
increases their anchoring in the binding site, thus their number of intermolecular H-
bonds. The pattern of interactions of the CMPs approaches that of collagen, although
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Figure IV.5. Heatmap of the intermolecular H-bonds between the five simulated peptides
and the I-domain of the integrin (left), and top view of the I-domain (right). The heatmap
displays the AAs of the binding site (represented by their one-letter code and their residue
number) on its x-axis, and the five peptides on its y-axis. At the crossing of the x and y axes is
found a rectangle, whose color indicates the frequency of the intermolecular H-bonds (the
brightest the color, the more frequent the interaction). The red, blue and green rectangles on
the heatmap highlight the position of the AAs in the binding site (see associated colored areas

on the top view of the I-domain).

there are some differences. Three groups of AAs can be distinguished, based on their
position in the binding site (see red, blue and green colored rectangles in the heatmap
and associated areas on the snapshot in Figure IV.5). The heterochiral CMP
essentially interacts with AAs located in the blue area, and performs much fewer H-
bonds with the other parts of the I-domain. Furthermore, it does not feature very
persistent interactions, its most frequent hydrogen bond (with tyrosine T80) occurring
less than 40 % of the time. In contrast, the homochiral CMP shows interactions in all
three areas and forms persistent interactions with a serine (S14) and an arginine
(R147). Interestingly, this H-bond is located in an area where the collagen does not
really interact. This could suggest that the CMP is stabilized by interactions with other
AAs than natural collagen, despite their identical stereochemistry. This is reasonable,
as collagen mainly interacts through its polar side-chains, while the CMPs essentially
contain apolar substituents (glycine and proline residues), thus mainly interact
through their backbone amides and free glutamate residues. Therefore, the similar but
not identical behavior of cells on collagen and the homochiral substrates observed
experimentally could be explained by such differences in the sequence of AAs, the CMP
containing the necessary units to interact, but finding other mechanisms to stabilize in
the binding site of the integrin. Additionally, the homochiral CMP displays a very
persistent intermolecular bridging H-bond, occurring between one of its free glutamate
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and another glutamate residue on the I-domain (Figure IV.6). This bond is found
more than 90 % of the time, and could be another interaction helping the homochiral
CMP to stabilize in the binding site. In comparison, the most persistent bridging
intermolecular H-bonds for collagen and the heterochiral CMP are found less than 50
% of the time.

Figure IV.6. Final snapshot of the MD simulation of the homochiral CMP, showing its most
persistent bridging intermolecular H-bond, which occurs between one of its glutamate residue
and another glutamate (GLU 217) exposed on the I-domain, through interaction with two water

molecules. H-bonds are represented as black dots.

Overall, the heterochiral CMP displays less interactions with the binding site than its
homochiral counterpart, and more importantly, does not feature persistent
interactions, in marked contrast to the homochiral CMP.

Based on these atomic-scale investigations, our hypothesis to explain the less efficient
interactions observed between the heterochiral CMP and the integrin is related to an
increased internal flexibility caused by the chiral mismatch in this peptide. The
stereochemical inversion of the AAs in the (PPG); section induces the formation of a
left-handed triple helix, while the (PEG)- segment, composed of L-prolines, cannot
follow this handedness. This brings conformational disorder in the supramolecular
assembly of the triple helix at the junction between the L- and D-AAs, located right in
the binding site. This disorder is detrimental to the recognition, especially because the
triple helix structure was deemed essential for the binding, as GFOGER-containing
peptides lacking a triple helix structure were shown to be unable to interact with the I-
domain of a:f3: or support cell adhesion.[7] The higher flexibility of the (PEG)- part in
the heterochiral CMP, compared to the homochiral CMP and collagen, is shown by
RMSF measurements (Figure IV.7). In contrast, the (PPG); part is similarly stable in
both CMPs, indicating that stereoinversion alone does not compromise the integrity of
the triple helix, as destabilization is localized at the chiral mismatch.
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Figure IV.7. RMSF measurements for each AA in the first (left), second (middle) and third
(right) chains forming the triple helix, for all systems. The higher the RMSF value, the more
flexible is the residue. The sequences of the CMPs and collagen are written in black and blue

on the x-axis, respectively.

This can be observed on the superimposed first and final snapshots obtained for all
peptides, presented in Figure IV.1 D, where the (PEG)- part of the heterochiral CMP
is visibly disordered. This lack of stability is also reflected by the number of H-bonds
inside the supramolecular triple helix, between the three peptide chains, measured for
all systems (Figure IV.8). In the last 12 AAs, i.e. inside the (PPG); triple helix, the
chiral inversion does not seem to impact the network of H-bonds (around 6 H-bonds
per conformation for both CMPs). However, the heterochiral CMP displays much less
interactions within its first nine AAs (around 1 H-bond per conformation), i.e. in the
(PEG)- part, compared to the homochiral CMP (around 4 H-bonds per conformation),
see Figure IV.8 C. The increased flexibility of the heterochiral CMP and the partial
loss of the triple helix conformation could explain the less efficient interactions with
the integrin, thus the lower affinity of cells for this substrate. As cells have less
adhesions with this matrix, their ability to exert contractile forces necessary for their
displacement will be reduced, leading to a slower migration speed.
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Figure IV.8. Estimates of the number of H-bonds inside the supramolecular triple helix. (A)
Number of H-bonds between the first nine (left) and last twelve (right) AAs of the three peptide
strands inside the triple helix for collagen (blue), homochiral CMP (red), and heterochiral CMP
(green). Data is shown as mean + standard deviation. The pale lines represent the distribution
of the measurements during the whole simulations. (B) Table summarizing the data. (C) Final
MD snapshot of the heterochiral CMP showing that H-bonds (displayed as pink dots) are
maintained in the (PPG); part, while they vanish in the more disordered (PEG), part

(represented in gray).
IV-A.5. Conclusion

In agreement with the experimental results, our simulations indicate that the
heterochiral CMP is not able to interact with the a:p: integrin as efficiently as natural
collagen and the homochiral CMP. We attribute this behavior to the chiral mismatch
present in the sequence of the heterochiral CMP, where the triple helix conformation
is disorganized at the junction between the L- and D-AAs. This could explain the lower
number of cell-matrix adhesions on the heterochiral substrate, thus resulting in slower
migration. It is remarkable that a small stereochemical perturbation has such an
impact on the supramolecular assembly of two peptides sharing the exact same
sequence of monomers, leading to major differences in their interactions with
important cellular receptors. Our simulations also confirmed the major role of the
glutamate moiety, without which binding in the MIDAS cavity is not possible.

Of course, our simulations only capture a minor fraction of the complexity of cell
migration, which involves much more interaction partners and components of the
ECM, and cannot entirely explain the differences between the two CMPs. However, we
believe that the information brought by the MD simulations is particularly valuable to
better understand the impact of small changes in the primary structure on
(supra)molecular conformations and cellular processes. This work highlights clearly
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the sensitivity of cells to their environment, and how modifications at the atomic scale
can lead to perturbations in cell behavior. Chirality is an important factor that
researchers can use to modulate the physicochemical properties of the ECM and better
understand cell behavior in response to perturbations in their environment.

IV-A.6.Simulation protocol

MD simulations were carried out with the AMBER package.[22] The structures of the I-
domain of the a:p: integrin and of the (PPG):o0 triple helix were directly taken from the
Protein Data Bank (PDB), with PDB ID: 1qcyf25! and 1k6f,[15:25] respectively. To build
the collagen-mimetic peptides (PEG).-(PPG)s, the backbone of the (PPG):o triple helix
was reproduced, and its length and AA composition was subsequently adapted with the
LEaP module of AMBER. The D-enantiomers were obtained by creating the mirror
image of the L-enantiomers using LEaP. The structure of collagen was extracted from
a crystal structure of its complex with the I-domain of the a-f: integrin (PDB ID:
1dzi).[9] This binding mode was reproduced for the simulations of collagen and the
CMPs in interaction with the I-domain of a:f3:. This assumption seems reasonable,
given the high structural similarity between the I-domains of a1 and ax[:.[26]
Collagen, the homochiral and heterochiral CMPs, the L- and D-(PPG)1o triple helices
and the I-domain of a:[3: were described with the ff19SB force field.[27] The peptide — I-
domain complexes were solvated in explicit water boxes, using the 4-point OPC water
model.[28] NaCl ions were added at a concentration of 0.15 M, using the “SPLIT”
method.[29] The simulations started with a geometry optimization performed by
molecular mechanics to get a stable starting structure. A first phase served to stabilize
the solvent molecules and the Na+ and Cl- ions, which underwent 1,000 steps of
steepest descent followed by 9,000 steps of conjugated gradient, with restraints on the
solute atoms. The second phase of optimization was performed with the same protocol,
without any constraints. Next, a heating step of 2 ns was performed in the NVT
ensemble. The system was brought to a temperature of 300 K in 1 ns, and was
maintained at this temperature for a further 1 ns (and for the rest of the simulation)
using a Langevin thermostat, with a collision frequency of 1 ps-.. Positional restraints
were applied to all solute atoms during heating, with a force-constant of 10 kcal.mol-
1.A-2, Then, the system was equilibrated during 10 ns in the NPT ensemble at a pressure
of 1 bar using a Monte Carlo barostat, with a pressure relaxation time of 2 ps. Finally,
the production phase of 1 us was launched in the NPT ensemble. Five independent
replicas were launched for each peptide — I-domain complex, starting from the same
structure optimized by molecular mechanics. A timestep of 2 fs was used with the
SHAKE algorithm to constrain bonds involving hydrogen atoms. A cutoff of 12.0 A was
used for non-bonded interactions and the particle mesh Ewald method was used to
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treat long-range electrostatic interactions. A snapshot was extracted each ns of the
production phase for further analyses (5,000 conformations for each system when
considering the five replicas). The cpptraj module of AMBER and in-house scripts were
used to analyze the simulations.[30] The solvent-accessible surface area (SASA) values
were computed using the LCPO algorithm, using a van der Waals radius of 1.4 A for the
solvent probe. These values were injected in the equation shown in Figure IV.3 A to
determine the contact surfaces. RMSF values were computed for each amino acid of
the triple helices, after removal of the translational and rotational movements.
Hydrogen bonds were detected using geometric criteria: the distance between the
acceptor and the donor heavy atom must be < 3.0 A&, and the angle between the donor,
the hydrogen atom and the acceptor must be > 135°. The PyMOL 2.5.4 software was
used to produce the snapshots.[3 The solvent water molecules were hidden on the
snapshots, for the sake of clarity. Statistics given in the tables are always calculated on
the 5,000 conformations for each system.
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IV-B. Selectivity in the chiral self-assembly of
nucleobase-arylazopyrazole photoswitches along DNA
templates

Part of this work is reported in: Selectivity in the chiral self-assembly of nucleobase-
arylazopyrazole photoswitches along DNA templates.
N. Nogal, S. Guisan, D. Dellemme, M. Surin, A. de la Escosura, J. Mater. Chem. B,

2024, 12, 3703-3709.

IV-B.1. Introduction

The possibility to control the nucleobase sequence of DNA allows the emergence of
programmable assemblies, such as DNA origamis and various 2D and 3D
nanostructures.['-4] Its controllable architecture can be functionalized with the
covalent attachment of synthetic components, to expand the range of applications.[5:6]
The grafted units can promote the formation of networks of non-covalent interactions,
allowing the formation of complex supramolecular assemblies involving DNA
strands.[7-13] The programmable structure of DNA can also be exploited without
modifications, to template the organization of molecules at the nanoscale. These pure
supramolecular approaches are attractive, as they make use of readily available DNA
strands, avoiding the challenges associated with the synthesis of modified
polynucleotides. For instance, DNA can guide the supramolecular assembly of
chromophores, modulating donor-acceptor coupling to control energy transfer.[14-16]
Specific secondary structures of DNA can be targeted by tailor-made ligands, in view
of biosensing applications.'7-231 The templating effect of DNA can also be used to direct
supramolecular polymerization, to preorganize monomers before their coupling into a
covalent polymer of defined sequence, or to build various highly controlled
nanostructures.[t.24-28] Another advantage of using supramolecular interactions is their
dynamic and reversible nature, meaning that external stimuli can be exploited to
design responsive and adaptable systems. Light is a particularly attractive stimulus,
providing fine spatial and temporal resolution without introducing contaminants in
the system. Light-responsive molecules able to reversibly change their configuration
upon irradiation, such as azobenzene derivatives, have emerged as promising systems
for a wide range of applications, including energy harvesting, catalysis or
bioimaging.[29-321 Combining light-responsive components with programmable DNA
templates opens new avenues for the development of functional nanomaterials.[33.34]
Several examples have demonstrated the possibility to control the supramolecular
assembly of photoswitchable ligands with DNA and to selectively stabilize specific DNA
conformations using light.[35-37] For instance, an azobenzene derivative was
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incorporated inside a gene to regulate its expression in vitro.[38] In the trans
configuration, the molecule intercalates into the DNA double helix, blocking RNA
polymerase binding and thereby inhibiting transcription. Upon photoisomerization to
the cis configuration, transcription resumes, demonstrating the possibility of
temporally regulating gene expression. More recently, a short oligothymine single-
strand was combined with a complementary photoswitchable molecule bearing two
adenine bases to develop a photo-responsive hydrogel.[39] The molecule can form H-
bonds with two ssDNAs simultaneously, leading to the formation of a network
composed of large twisted fiber bundles after several weeks of equilibration. Upon
irradiation with UV light, which alters the photoswitch conformation, local shrinking
of the hydrogel was observed on the illuminated area. These examples, among many
others, demonstrate the interest of combining DNA and stimuli-responsive
components to develop adaptable nanomaterials.

In our work, novel photoswitches based on an arylazopyrazole unit were designed.
Arylazopyrazoles are easier to photoisomerize and exhibit greater thermal stability
than azobenzenes.[40.41] Our compounds are decorated with a nucleobase, either
thymine or adenine, with the goal to assess their supramolecular organization
templated by complementary oligonucleotides. This design is motivated by previous
works that made use of short ssDNAs, such as oligoadenine (dAn) or oligothymine
(dTn), to template the self-assembly of molecules bearing a complementary recognition
unit.[25:39.42-441  Chiroptical spectroscopy experiments revealed that both
arylazopyrazoles can bind to their complementary DNA strand and adopt a chiral
organization in their trans configuration, while partial disassembly occurs upon
photoisomerization into the cis configuration (Figure IV.9). Molecular dynamics
(MD) simulations were carried out to shine light on the binding modes of the
arylazopyrazoles in their trans and cis configurations with their DNA partner. Our
results show that the trans form allows the emergence of stabilizing mt-type interactions
between the molecules wrapped around DNA, which helps to maintain the
supramolecular assembly. In the cis configuration, these interactions are partially lost,
leading to the formation of more disordered aggregates and less persistent H-bonds
with the template. All the experimental results presented in this chapter were obtained
by Noemi Nogal,[45] and the compounds were synthesized by Santiago Guisan, in the
frame of a collaboration with the group of Dr. A. de la Escosura at Universidad
Autonoma de Madrid.
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Figure IV.9. Cartoon representation of the investigated systems. Partial disassembly occurs
upon irradiation with UV light and isomerization of the molecules into their cis configuration.
Ligands are colored in blue, while DNA nucleosides are shown in red. The DNA backbone is

represented as a yellow tube.

IV-B.2.Design of the ligands and reparametrization of the
force field for the MD simulations

Two arylazopyrazole derivatives were designed, having the same conjugated region and
functionalized with either the adenine (Azo-A) or the thymine (Azo-T) nucleobase
(Figure IV.10 A). Upon irradiation with UV light (365 nm), these molecules undergo
trans to cis photoisomerization. The reversible reaction occurs upon irradiation with
visible light (465 nm). The photoswitches are combined with a complementary ssDNA,
with which they are able to assemble through hydrogen bonding interactions (Figure
IV.10 B). MD simulations were performed using the AMBER package on assemblies
of 10 arylazopyrazole molecules (Azo-A or Azo-T) with their complementary
oligonucleotide template of 20 nucleobases (dT20 or dAso), reproducing the
experimental stoichiometry, in explicit water boxes containing Na+ and Cl-ions.[46] The
carboxylate group at the end of each azo compound was modeled in its deprotonated
form, as the pKa value of benzoic acid is around four.[47] Independent simulations were
run for each assembly (Azo-A/dT20 and Azo-T/dA20), with all azo compounds either in
the trans or cis configuration preorganized along the DNA template. Two replicas were
run for each condition, giving a total of eight simulations. Complementary H-bonds
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Figure IV.10. Chemical structures of the systems studied. (A) Structure of Azo-A and Azo-T
and illustration of their photoswitchable trans and cis configurations, upon irradiation with
visible (465 nm) or UV (365 nm) light. Adenine and thymine nucleobases are represented in
blue and red, respectively, and the conjugated region is depicted in lighter colors. (B)
Representation of the supramolecular assemblies studied, involving oligonucleotides

comprising 20 nucleobases (dT-, or dA.,) and the complementary arylazopyrazole molecule.

between the nucleobases (as represented in Figure I'V.10 B) were constrained for 250
ns to allow equilibration of the supramolecular complex without ligand unbinding,
followed by 1 us of unrestrained simulation (see full details of the protocol in Section
IV-B.6).

Given the particular structure of the azo compounds, which contain an extended
conjugated region including several heteroatoms, we carried out a reparametrization
of the torsional parameters of the GAFF 2.11 force field (Figure IV.11). The
reparametrization was done with the mdgx module implemented in AMBER. In short,
two fragments containing the dihedral angles of interest, ®: to ®,4, were built (Figure
IV.11 A). Hundreds of conformers were generated and optimized with the default
GAFF 2.11 parameters to sample the torsions in the interval [-180 ° ; 180 °]. Then, the
energy of these conformers was obtained at the MM and QM levels, with the QM energy
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Figure IV.11. Reparametrization of the four dihedral angles, @, to ®,. (A) Chemical structure
of the two fragments used for the reparametrization. (B) Relative potential energy curves, in
kcal/mol, as a function of the dihedral angle for the four torsions. The energy curves obtained
at the QM level, with the default GAFF 2.11 parameters and the modified parameters are shown
in black, red and blue, respectively.

serving as the reference data. Finally, new dihedral parameters were generated in order
to reduce the gap between the MM and QM energies. The results of the
reparametrization of the four dihedral angles are displayed in Figure IV.11 B. The
curves generated with the refined force field parameters (in blue in Figure IV.11 B)
are not perfectly matching the QM reference curves (in black in Figure IV.11 B),

83



Chapter IV-B

especially for the torsion ®,4. The height of the barrier is also too high for ®;. However,
the new profiles represent a considerable improvement compared to the curves
obtained with the initial force field parameters (in red in Figure IV.11 B), coming
from GAFF 2.11. It reveals significant flaws in this force field’s ability to accurately
reproduce the conformations of extended conjugated systems, especially when they
involve heteroatoms and combinations of aromatic cycles and double bonds. In
particular, the parameters describing ®: were completely erroneous, with minima and
maxima of the potential energy surface inverted compared to the QM reference.
Although not perfect, our modifications will ensure that the conjugated region keeps
its planarity and will prevent spontaneous trans-cis isomerization (with a barrier of
more than 30 kcal/mol between the trans and cis states, see ®- curves), which is the
expected behavior according to the QM torsional profiles. Further refinement of these
parameters may be needed in view of more sophisticated analyses sensitive to small
conformational changes, such as the simulation of CD spectra. However, these
approaches were not undergone in this work and are envisioned as perspectives:
preliminary attempts have been realized and will be discussed in Section IV-B.5.

IV-B.3. DNA templating organizes the stacking of the trans
isomers and requires high ionic strength

Experimental CD spectra indicate that both azo compounds in their trans
configuration are able to interact with their complementary DNA template (Figure
IV.12). This can be stated by the appearance of a strong induced CD (ICD) signal
between around 325 and 450 nm. Only the achiral ligands absorb light in this region,
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Figure IV.12. Experimental CD spectra of the Azo-A/dT., and Azo-T/dA., complexes,
represented by the blue and red curves, respectively. The spectra were measured at NaCl

concentrations of 1 M (left) and 5 M (right).
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and they do not present a chiral signature alone in solution: this signal means that they
acquire a chiral organization upon interaction with the ssDNA template. The
chiroptical spectra provide two further valuable insights. Firstly, a high ionic strength
promotes the supramolecular assembly, as shown by the significantly stronger
intensity of the ICD signals at a NaCl concentration of 5 M compared to 1 M. Secondly,
the signs of the ICD signals are opposite for the two azo compounds, which is surprising
given that they are expected to bind to ssDNAs with the same helical sense. MD
simulations were therefore carried out on assemblies of the azo compounds in their
trans configuration with their complementary ssDNA, to better understand the
interactions stabilizing the supramolecular complexes. In all cases, the number of H-
bonds between the complementary nucleobases of the ligands and of their template
instantaneously decreased after removal of the restraints (Figure IV.13 A). The azo
compounds quickly reorganized along the DNA strand, although some ligands are still
H-bonded at the end of the simulation, with around 5 to 9 H-bonds remaining between
complementary nucleobases. In marked contrast, the number of m-type interactions!
stayed generally stable after removal of the restraints (Figure IV.13 B).
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Figure IV.13. Interactions between the trans azo compounds and their complementary DNA
template. (A) Evolution of the number of H-bonds between the complementary nucleobases
of the arylazopyrazoles and the DNA template. (B) Evolution of the number of n-type
interactions between the arylazopyrazoles. Blue and red curves represent the Azo-A/dT2, and
Azo-T/dA.o systems, respectively. The running average including the five previous and five
subsequent conformations is displayed, for ease of visualization. (C) Table summarizing the

average number of interactions during the last 500 ns of the simulation.

' m-type interactions are counted between aromatic cycles following these geometric criteria: the distance
between their centers of mass must be < 5 A, and the angle between their planes must be < 45 ° or > 135 °.
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The organization of the trans azo compounds can be observed on the final snapshot of
the MD simulation of the Azo-A/dT20 assembly, showing the molecules wrapped
around the oligonucleotide (Figure IV.14 A). Although several ligands have lost their
H-bonds, m-type interactions between their large conjugated regions stabilize the
formation of a well-organized stack around the template, as shown by the zoom in
Figure IV.14 B. Additionally, the H-bonding and m-type interactions occurring
during the last 500 ns of the simulation were localized using heatmaps (Figure IV.14
C, D). The heatmap of H-bonds represents the azo compounds and the nucleotides of
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Figure IV.14. Overview of the simulation of the Azo-A trans/dT., complex (first replica). (A)
Final MD snapshot showing the 10 azo compounds (in blue) wrapped around the DNA strand
(represented as a yellow tube with the nucleosides in red). (B) Zoom on five arylazopyrazoles
forming a well-ordered stack. (C) Heatmap of H-bonds between the complementary
nucleobases of the 10 azo compounds (represented on the x-axis, from Azo-A 1 to Azo-A 10)
and of the DNA template (the 20 nucleotides are depicted in the y-axis, from dT; to dT»). (D)
Heatmap of m-type interactions between the 10 arylazopyrazole molecules (represented on the

x- and y-axes).
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the template on the x- and y-axes in Figure I'V.14 C, respectively. It clearly shows that
five ligands remain engaged in interactions with nucleobases along the dT2o strand.
Simultaneously, the organized packing of the molecules is maintained at the
microsecond timescale, with persistent m-type interactions occurring between
neighboring arylazopyrazoles (displayed on the x- and y-axes in Figure IV.14 D), as
indicated by the colored squares all along the diagonal of the heatmap. A similar
behavior was observed for the four simulations of the trans isomers (see the left
column of Figures IV.S1 and IV.S2 for the replica of Azo-A trans/dT2o and for the
simulations of Azo-T trans/dA-o). These heatmaps confirm that molecules dissociated
from the template can remain efficiently stacked; see for example Azo-A 7, which forms
very few H-bonds with the oligonucleotide but maintains m-type interactions with its
neighbors Azo-A 6 and Azo-A 8. Overall, the molecules seem to be stabilized essentially
by their m-type interactions, whereas H-bonds with the template help to order the
stacks of azo compounds. The ligands that bind efficiently to the oligonucleotide can
serve as “anchors” for the stacking of other units, which may remain within the chiral
templated stacks even without forming direct H-bonds with the template. This
tendency to favor m-type interactions over H-bonds with a DNA template was observed
for other compounds presenting an extended conjugated region.[48-50] The stacking
mode of the azo compounds in their trans configuration may also explain the
important role played by the salt concentration. Within the stacks, the nucleobases are
directed towards the template, which brings the negatively charged carboxylate groups
at the other end of the molecules closer together. Increasing salt concentration helps
to decrease the electrostatic repulsion, thus stabilizing the assemblies. The attraction
of Na* ions towards the carboxylate moieties is illustrated by radial distribution
functions (RDFs) (Figure IV.15). Interestingly, the density of Na+ ions close to the
carboxylates is slightly higher for the molecules in their trans configuration than for
those in their cis configuration, with higher RDF values for the first three peaks. This
could arise from weaker m-type interactions between the cis azo compounds, as will be
discussed in the next section, leading to less proximity between the carboxylates, thus
a lower local density of cations. Finally, the organization of the trans azo compounds
was investigated by measuring the rotation between consecutively stacked units. To
this end, a vector was defined along the conjugated region (see illustration in Figure
IV.16 A), and the angle between consecutive vectors was measured during the first
250 ns, i.e. when the H-bonds are constrained, to analyze the organization of “ideal”
stacks. The average angle between the conjugated region of two stacked molecules is
23.9 + 17.6 ° (with a median value of 20 °). In comparison, the helical twist between
consecutive nucleobases in dsDNA in its B-form is about 34°. This shows that the
rotation around the azo units does not strictly follow the natural helical twist of the
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Figure IV.15. RDF measured for the first replica of the Azo-A/dT., complex, for the trans
(left) and cis (right) isomers. RDFs for the other simulations (second replica of Azo-A and
simulations of Azo-T) follow a very similar trend (data not shown). The RDF value indicates
the density of ions (Na* or CI', in blue and red, respectively), normalized by the average density
of ions in the full simulation box, as a function of the distance from the carbon atom of the
carboxylate groups. For instance, a value of six means that the ion density is six times higher
than in the bulk, indicating a strong local attraction. The RDF values for the first three peaks

of the Na+ distribution are indicated in the table (statistics calculated on all replicas).

DNA template, which may explain the vanishing of H-bonds for several molecules,
unable to maintain both H-bonds and n-type interactions, and prioritizing the latter.

Globally, our simulations reveal similar trends for the Azo-A trans/dT2o and the Azo-
T trans/dA2o complexes, without obvious differences in the assembly. The reason
behind the apparition of ICD signals of opposite signs remains unclear. However, other
ligands presenting a large aromatic region were shown to interact with an ssDNA
strand without following its helicity.[48] Ligands maintaining strong stacking
interactions when assembled along DNA templates can form complex chiral structures,
whose interpretation is not straightforward. Further work is needed to get more precise
information on the nature of these ICD signals.
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Figure IV.16. Measurements of the rotation between pairs of stacked azo compounds. (A)
Schematic representation of the methodology used to compute the rotation angle, using vectors
defined along the conjugated region. (B) Distribution of the rotation angle values. The lines
delimiting the box represent the first and third quartiles, whose values are annotated at the
edges of the box. The line inside the box indicates the mean value. The error bar is given as

mean =+ 1.5 x standard deviation. (C) Table summarizing the data.

IV-B.4. Trans to cis photoisomerization disorganizes ligands
stacking and weakens the supramolecular assembly

Chiroptical spectra show a complete loss of the ICD signal when the molecules are
switched in their cis configuration. To shine light on the effect of photoisomerization
on the supramolecular assembly, MD simulations were also performed on the cis azo
compounds organized along their complementary DNA template, following the same
methodology than before. Similarly than for the trans compounds, the number of H-
bonds quickly decreased after removal of the restraints (Figure IV.17, A). However,
here, the interactions are nearly completely lost at the end of the simulations, except
in one case (replica of Azo-A, light blue curve). This outlier suggests that, although
binding to the template seems weaker for the cis isomers, the photoisomerization does
not always imply a complete dissociation. The number of m-type interactions between
the arylazopyrazoles is also significantly lower for the cis isomers, with on average
around 10 interactions per conformation at the end of the simulation (against around
19 for the trans compounds) (Figure IV.17, B). The lack of planarity of the
conjugated region for the cis isomers prevents the formation of well-organized stacks
along the template. Instead, highly disordered and dense aggregates are formed
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(Figure IV.18 A, B). Given the major role of m-type interactions in maintaining the
assembly of the trans isomers, it is unsurprising that the molecules in their cis form
quickly lose interactions with the oligonucleotide. Consequently, dissociation from the
template is more likely for these isomers (see final MD snapshots of the other
simulations in Figure IV.S3). This can be observed on the heatmap of H-bonds, with
only one molecule still forming H-bonds with the oligonucleotide at the end of the
simulation (Azo-A 2 with the nucleotide dTy) (Figure IV.18 C). The heatmap of n-
type interactions also shows that interactions are much weaker for the cis compounds,
in comparison to the same heatmap for their trans counterparts (see Figure IV.14
D). H-bonds and stacking heatmaps for the other simulations (replica of Azo-A
cis/dT20 and the simulations of Azo-T cis/dA-o) are presented in the right column of
Figures IV.S1 and IV.S2. Except for the replica of Azo-A cis mentioned earlier,
where H-bonds remained surprisingly well-organized despite the apparent disorder of
the ligands, these heatmaps confirm that the trans isomers bind more efficiently to the
template and establish a stronger network of m-type interactions. Therefore, in
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Figure IV.17. Interactions between the cis azo compounds and their complementary DNA
template. (A) Evolution of the number of H-bonds between the complementary nucleobases
of the arylazopyrazoles and the DNA template. (B) Evolution of the number of n-type
interactions between the arylazopyrazoles. Blue and red curves represent the Azo-A/dT2, and
Azo-T/dA.o systems, respectively. The running average including the five previous and five
subsequent conformations is displayed, for ease of visualization. (C) Table summarizing the

data during the last 500 ns of the simulation.
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Figure IV.18. Overview of the simulation of the Azo-A cis/dT., complex (first replica). (A)
Final MD snapshot showing the 10 azo compounds (in blue) wrapped around the DNA strand
(represented as a yellow tube with the nucleosides in red). (B) Zoom on five arylazopyrazoles
forming a disordered aggregate. (C) Heatmap of H-bonds between the complementary
nucleobases of the 10 azo compounds (represented on the x-axis, from Azo-A 1 to Azo-A 10)
and of the DNA template (the 20 nucleotides are depicted in the y-axis, from dT; to dTs). (D)
Heatmap of n-type interactions between the 10 arylazopyrazole molecules (represented on the

x- and y-axes).

addition to the partial disassembly from the oligonucleotide, the loss of the ICD signal
observed for the cis isomers could also stem from the formation of highly disordered
aggregates that do not strongly interact with the template, hence do not follow its
helical structure.
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IV-B.5. Conclusion

The binding modes of the azo compounds along their complementary DNA templates
were shown to be strongly influenced by their configuration. In the trans form, a
combination of H-bonds between complementary nucleobases and mn-type
interactions, with a predominance of the latter, is key to induce and maintain the
supramolecular assembly. Although some molecules do not maintain their H-bonds
with the template, they remain stacked with other ligands, ensuring that the chirality
of DNA is transmitted to the azo compounds. These supramolecular stacks are
stabilized by the presence of a high concentration of Na+* ions. Inversely, the cis
isomers, lacking planarity in their conjugated region, are not able to maintain ordered
ni-type interactions. This significantly weakens the binding to the DNA strand, and
leads to partial disassembly from the template and the formation of disordered
aggregates. These results are in line with the experimental CD spectra, which indicate
the need of a high ionic strength to promote supramolecular assembly, and loss of the
ICD signals upon photoisomerization into the cis configuration.

However, our simulations do not explain the unexpected nature of the ICD signals,
which are of opposite signs for the two azo compounds. As mentioned previously, the
sign of the ICD signal is not always dictated by the chirality of the DNA template in the
case of strongly conjugated molecules.[48] Therefore, a deeper understanding of these
chiroptical experiments would require theoretical calculations of CD spectra based on
conformations extracted from MD simulations. This constitutes a perspective to this
work, and new simulations have already been performed using the GROMACS
package, with a more accurate reparametrization of the force field.[51] CD spectra have
begun to be simulated with the VeloxChem software from these new simulations, in
collaboration with the group of M. Linares and P. Norman at KTH Royal Institute of
Technology in Stockholm. An example for each azo compound is shown in Figure
IV.S4.[521 In brief, these first attempts suggest that very small conformational
modifications can induce a completely opposite response. Our goal now is to
understand which structural parameters determine the sign of the ICD signals, in order
to correlate the experimental observations with an accurate atomic-scale picture of the
assemblies.

IV-B.6.Simulation protocol

Concerning the reparametrization step, 540 conformers were generated for the
fragment 1 to scan the @, > and @3 dihedral angles. New parameters were derived for
all three angles based on this scan. For the fragment 2 and the reparametrization of @,
400 conformers were generated. Individual scans, presented in Figure IV.11, were
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then realized to evaluate the quality of the new parameters. The QM calculations were
performed with the Gaussian 16 software, using the MP2 method (post-Hartree-Fock)
and the cc-pvdz basis set.[53]1 Using fragments instead of the whole azo compounds has
two interests: it reduces the number of atoms for the QM calculations, thus reducing
computational cost, and allows to use the same set of new parameters for both Azo-A
and Azo-T, which seems reasonable as their conjugated part is the same.

To build the azo compounds, the structure of the molecule was divided in 3 fragments,
modeled with the Avogadro 1.2.0 software.[54] The assembly of the fragments and all
subsequent operations were carried out with the AMBER package.[4¢] The calculations
of the atomic partial charges were performed with the antechamber module of
AMBER, using the semi-empirical AM1-BCC method.[55] All force field parameters for
the azo compounds were given by GAFF 2.11, except the reparametrized ones.[5¢] The
fragments were assembled using the LEaP module of AMBER. The oligonucleotides
were built with the Nucleic Acid Builder (NAB) tool implemented in AMBER and the
DNA  force field parameters were given by  Parmbsc1.571  The
arylazopyrazoles/oligonucleotide supramolecular complexes were built within LEaP.
The azo units were preorganized along the template (pairing of the complementary
nucleobases) using PyMol 2.5.4.1581 The Azo-A/dT20 and Azo-T/dA20 complexes were
simulated independently, in 2 replicas for each isomer (trans and cis), giving 8
independent simulations. All systems were solvated in truncated octahedral water
boxes, with at least 25.0 A between any solute atom and the edge of the box, in order
to let enough space for the ligands to have the possibility to dissociate from the
template. The 4-point OPC water model was used to describe the solvent and a NaCl
concentration of 5 M was used to reproduce the experimental conditions, following the
“SPLIT” method.[59-60] All MD simulations were performed with the GPU version of
AMBER. They started with a geometry optimization performed by MM to get a stable
starting point. 1,000 steps of steepest descent were followed by 9,000 steps of
conjugated gradient on the solvent and salt residues. A second geometry optimization
was done with the same protocol, on the whole system. Then, a heating step of 2 ns was
performed in the NVT ensemble to bring the system to a temperature of 300 K, using
positional restraints on the solute atoms with a force constant of 10 kcal.mol-.A-2. The
temperature was maintained at 300 K with a Langevin thermostat, using a collision
frequency of 1 ps. The system was equilibrated during 10 ns in the NPT ensemble with
a Monte Carlo barostat, with restraints to maintain the H-bonds between the
complementary nucleobases of the arylazopyrazole units and the DNA template: a
force constant of 40 kcal.mol.A-2 was applied as soon as the distance between the
donor and the acceptor of the H-bond exceeded 2.2 A. These restraints were extended
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for 250 ns, to let the system stabilize without disassembly of the ligands, followed by 1
us of unrestrained simulation. A timestep of 2 fs was used and the SHAKE algorithm
was applied to constrain bonds involving hydrogen atoms. To switch the azo units into
their cis form, a constraint on the ®. dihedral angle was imposed: a force constant of
100 kecal.mol.A-2 was applied as soon as the dihedral angle was going out of the range
[-30.0 ; 30.0] degrees. In practice, this force constant helped the arylazopyrazoles to
bypass the torsional barrier leading from the trans to cis configuration at the beginning
of the simulation. Spontaneous back isomerization from cis to trans did not occur
afterwards. A cut-off of 12.0 A was selected for non-bonded interactions and the
particle mesh Ewald (PME) scheme was used to treat electrostatic interactions. A
snapshot was saved each ns and extracted for further analyses. PyMol 2.5.4 was used
to visualize the snapshots and to create images.[58!

To analyze the trajectories, the cpptraj module implemented in AMBER was used.[61]
Hydrogen bonds were detected with geometric criteria: the distance between the
acceptor and the donor heavy atoms must be < 3.0 A and the angle between the donor,
the hydrogen atom and the acceptor must be > 135°. H-bonds were measured between
the atoms of the nucleobases of the azo compounds and of the oligonucleotide. n-type
interactions between the aromatic cycles were detected with geometric criteria: two
cycles are considered stacked if the distance between their centers of mass is < 5 A and
if the angle between them is < 45° or > 135 °. The aromatic interactions were calculated
for all pairs of aromatic cycles of the azo compounds, and were summed “by molecule”
for the heatmaps (two molecules perfectly superimposed would form four interactions,
as they possess four aromatic cycles). The heatmaps were computed over the last 500
ns of the simulations. Radial distribution functions were computed between the carbon
atom of the carboxylate moiety of each arylazopyrazole and the Na+* or Cl- ions, over
the last 500 ns, with a bin spacing of 0.1 A. The density value used for normalization
was calculated as the ratio between the number of ions in the box and the average
volume of the simulation box. To measure the rotation between the conjugated parts
of consecutive azo compounds, a vector was defined for each ligand, as represented by
the purple arrows in Figure IV.16 A. The rotation angle between two stacked
molecules was calculated from the dot-product of their vectors and was measured for
each pair of consecutive azo compounds (Azo 1 — Azo 2; Azo 2 — Azo 3; Azo 3 — Azo 4;
and so on). This angle was measured during the first 250 ns, when the H-bonds were
constrained. As the stacks may present discontinuities, with two consecutive azo
compounds not interacting, a criterion was added to remove these pairs from the
calculation. We decided to exclude the pairs whose rotation angle was superior than or
equal to 100° (which clearly indicates that the conjugated part are not superimposed)
at least 10 % of the time.
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IV-B.7. Additional data
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Figure IV.S1. Additional heatmaps of H-bonds, for the replicas of the trans and cis Azo-
A/dT., and both replicas of Azo-T/dA.,. Except for the replica of Azo-A in cis, the results

generally indicate significantly more H-bonds for the trans isomers.
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results generally indicate significantly more stacking interactions for the trans isomers.
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Azo-A trans (replica) Azo-T trans Azo-T trans (replica)

Azo-A cis (replica) Azo-T cis

Figure IV.S3. Final MD snapshots of the six simulations not shown in the main text (replica
for trans and cis Azo-A/dT.,o, and simulations of Azo-T/dAs,).
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Figure IV.S4. Preliminary results of CD spectra simulation. (A) Experimental CD spectra

measured at a NaCl concentration of 5 M. (B) Simulated CD spectra for both compounds

measured on stacks extracted from one frame of the MD simulations (these curves were

selected to show that it is possible to retrieve features similar to the experimental spectra, but

are only issued from one frame; a more rigorous methodology will have to be implemented to
get reliable results). The spectra were simulated by TD-DFT with the CAM-B3LYP functional
and the def2-svpd basis set. (C) Structure of the stacks used to calculate the CD spectra. The

nucleobases were stripped from the molecules and replaced by methyl groups to reduce

computational cost, as the chromophore of interest is constituted by the conjugated region.
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V. Dynamic self-assembly of supramolecular catalysts
from precision macromolecules

The next results chapter of our thesis focuses on the supramolecular assembly of two
SDMs forming a catalytic duplex. Taking a step further from natural systems towards
artificial materials, we studied oligomers with a purely synthetic backbone,
functionalized with nucleobases — inspired by the recognition mechanisms of nucleic
acids — and catalytic units that must self-assemble in close spatial proximity,
reminiscent of enzymatic active sites. MD simulations combined with network theory
were used to characterize the 3D structure and dynamics of the supramolecular
complex. This approach helped to rationalize experimental trends in catalytic activity
and provided insights for improving molecular design.

Part of this work is reported in: Dynamic self-assembly of supramolecular catalysts
from precision macromolecules.

Q. Qin, J. Li, D. Dellemme, M. Fossépré, G. Barozzino-Consiglio, I. Nekkaa, A.
Boborodea, A. E. Fernandes, K. Glinel, M. Surin, A. M. Jonas, Chem. Sci., 2023, 14,

0283-9292.

V.1. Introduction

Living systems rely on many complex metabolic pathways, such as the Krebs cycle,
photosynthesis, or the urea cycle, enabling energy production and the degradation of
harmful species.[*] These processes involve cascades of chemical reactions, which must
be highly efficient and tightly regulated to ensure the proper functioning of living
organisms. This role is fulfilled by enzymes, biocatalysts displaying well-defined
catalytic pockets able to host specific substrates, which are stabilized by shape
complementarity with the active site and interactions involving a series of ideally
positioned amino acids. After binding of the substrate, its transformation is catalyzed
by the cooperative action of several chemical groups, assembled in spatially close
positions. This mechanism is very dynamic, the conformational flexibility of the
enzyme ensuring accessibility to and from the catalytic pocket and the realization of
the reaction transition state.[23] The remarkable efficiency and selectivity displayed by
enzymes have long attracted the interest of researchers, but the translation of such self-
assembled multifunctional catalysts into synthetic systems remains challenging. A key
parameter consists in maximizing the probability of encounter of the different
components forming the catalytic site. Various approaches have been investigated,
including the use of natural SDMs, such as peptides or DNA, which can fold and self-
assemble into programmable and well-defined nanostructures, and guide the
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organization of catalytic components.[4-14] Preorganizing the catalytic units within
synthetic polymer backbones able to form controlled structures in solution is another
option, with the examples of single-chain polymeric nanoparticles (SCPNs), foldamers
or even supramolecular polymers.[*5-20] More recently, synthetic SDMs have been
envisioned as a very promising avenue to approach the efficiency of biocatalysts.[21.22]
Distributing the catalytic units at precise locations within a defined primary structure
could help in building artificial systems mimicking the organization of enzymes,
without reproducing their full size and complexity. Additionally, the order of
monomers can be used to modulate the catalytic properties.['8:23-251 Impressive
sequence effects were demonstrated for short catalytic trimers grafted on silica
particles, the primary structure influencing interchain interactions and the spatial
proximity of the catalytic units, thus the catalytic activity.[23] The role of the sequence
was also demonstrated at the single-chain level for similar trimers, whose catalytic
properties were rationalized by MD simulations and network analyses.[24]

Our work follows this trend, aiming at exploiting SDMs to optimize the spatial
proximity and organization of the components of a multifunctional catalytic system.
However, instead of relying on single-chain folding, our approach requires the
supramolecular assembly of two complementary sequence-defined oligomers. The
catalytic units are distributed among the two chains, which must therefore self-
assemble into a supramolecular duplex to form the active center. To this end, our SDMs
are also functionalized with complementary recognition units. Several examples have
shown that synthetic SDMs can be advantageously used to precisely position
recognition motifs and promote the formation of controlled assemblies.[26-30]
Consequently, encoding a programmed recognition into synthetic SDMs to maximize
the encounter of catalytic wunits, replicating the sequence control of
biomacromolecules, constitutes an interesting strategy in view of approaching artificial
enzymes. MD simulations were carried out on the supramolecular complex formed by
the assembly of the two oligomers to better understand its 3D structure and dynamics
in solution. Our results indicate the formation of a disordered globular duplex,
stabilized by a myriad of interactions and inside which the individual oligomers retain
a high flexibility (Figure V.1). However, with the support of network representations,
we were able to demonstrate the important role played by the recognition units in the
supramolecular assembly, showing that persistent and specific interactions arise in the
globule. Our results, combined with experiments, give precious insights into the role
of each monomer unit on the properties of the complex, helping us to rationalize
peculiar trends in catalytic activity. All the experimental results presented in this
chapter were obtained by Qian Qin, Jie Li, Gabrielle Barozzino-Consiglio and Adrian
Boborodea, in the frame of a collaboration with the group of Profs. K. Glinel and A. M.
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Jonas at the Université Catholique de Louvain.[311 The compounds were synthesized by
Qian Qin, Jie Li and Imane Nekkaa.

OH

e iy
>’7‘ ",
w« ) ‘24 o

Figure V.1. Illustration of the globular supramolecular duplex formed by the assembly of two
sequence-defined oligomers (one chain is represented in red, the other in blue), involved in the
aerobic oxidation of alcohols. Each colored unit represents a side-chain of the oligomers (see

their chemical structure in Figure V.2).

V.2. Design of the oligomers and supramolecular
assemblies studied by MD simulations

To explore whether a supramolecular catalytic center can be encoded within self-
assembled SDMs, we selected a multifunctional catalytic system developed for the
aerobic oxidation of alcohols, based on 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO), Cu®-complexes (involving bidentate nitrogen ligands, such as bipyridine)
and imidazoles.[32-35] The exact catalytic mechanism is still under discussion, but
recent studies corroborate the formation of a four-membered intermediate composed
of a dinuclear copper complex supported by two auxiliary ligands and interacting with
a TEMPO moiety (Figure V.2 A).[36-38]1 These five units were therefore attached as
side-chains in two oligomeric strands, Oa and Ob, based on an oligo(urethane triazole)
backbone (Figure V.2 B). The first oligomer, Oa, contains the TEMPO radical (M)
and a pyridyltriazole-copper complex (P), while Ob contains two imidazole co-ligands
(I and I’ having different spacer lengths for optimal accessibility) and the second P unit
(Figure V.2 C). For the system to be active, Oa and Op must self-assemble; they were
therefore both functionalized with two nucleobases, selected as the recognition units.
These substituents, well-known for driving the secondary structures of nucleic acids,
have been successfully used to control the supramolecular assembly of various
synthetic systems.[39-42] Oa is decorated with a guanine (G) and a thymine (T), and Op
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with a cytosine (C) and a 2,6-diamidopyridine (D) unit, complementary through G---C
and T---D hydrogen bonding interactions. The unnatural nucleobase D was preferred
to the natural adenine because it can form three H-bonds with the thymine, instead of
two for adenine. Finally, the oligomers carry hexyl side-chains (Cs) on both extremities,
to improve solubility in the acetonitrile : dimethylsulfoxide 95 : 5 v/v solvent mixture
and possibly contribute to stabilization of the self-assembled structure. In summary,
the supramolecular catalyst is made by the combination of an hexamer, Oa, of sequence
Ce-G-M-P-T-Cs (catalytic units shown in bold), and an heptamer, Ob, of sequence Ce-
C-I’-I-P-D-Cs. To demonstrate that all five units are required for catalytic activity, two
alternative oligomers were designed as substitutes to Ob: Ob= and Obs, lacking a P and
an I group, respectively, yielding the incomplete catalytic centers Oa/Ob2 and Oa/Obs.
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Figure V.2. Overview of the catalytic system studied. (A) Simplified catalytic mechanism of
the aerobic oxidation of alcohols, showing the formation of the five-membered intermediate
(shown in the right part of the cycle). The substrate transformation is highlighted in the red
rectangle (shown in the left). (B) General chemical structure of the oligo(urethane triazole)
backbone and side-chains library. (C) Chemical structure of the complete O./Oy catalytic
duplex. The catalytic center is shown in the red dotted circle. Adapted from Ref. 31.
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MD simulations were realized on the complete catalytic system, O./Ob, to elucidate the
mechanisms of interaction between the two chains. Simulations were also carried out
on an incomplete duplex, Oa/Ob2, which will be shortly discussed in comparison of
Oa/Ob. The simulations were performed with the AMBER package, using an implicit
solvent model with the dielectric constant of acetonitrile at 20 °C. Two independent
replicas of 10 us were generated for each duplex, with the Oa and Ob (or Ob2) chains
being separated by more than 50 A in the starting structure, to avoid initial contacts.
Additional simulations were performed on the individual chains Oa and Ob for 5 ps, in
two replicas (see Section V.7 for full details of the simulation protocol).

V.3. The oligomers quickly fold and assemble into a highly
dynamic globular duplex

At the beginning of the simulations, the two strands (Oa and Ob) are separated, and the
system is characterized by high radius of gyration (Rc) values (see inset in Figure V.3
A). The oligomers quickly assembled, within 10 ns, as indicated by the sharp decrease
in the Rg for both replicas. The chains formed a compact and globular heteromolecular
duplex, which remained stable during the whole simulations, as indicated by the R of
the system oscillating around 10 A. This value is in very good agreement with
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Radius of gyration (A)
Radius of gyration (A)

0 2000 4000 6000 8000 10000 0.-.;0:, OaIOb(IrepIica)
Time (ns)
Radius of gyration (A) Average * Std. dev. Initial Final
0./0p 10.2%+0.4 31.6 10.1
0,/0, (replica) 10.2%0.5 39.2 9.9

Figure V.3. Data on the radius of gyration of the O./Op, duplex. (A) Evolution of the radius of
gyration for both replicas of the O./Op duplex over time, with an inset showing the fast decrease
occurring in the first 10 ns. (B) Distribution of values for the whole simulations. The lines
delimiting a box represent the first and third quartiles, whose values are annotated at the edges
of the box. The line inside a box indicates the mean value. The error bar is given as mean + 1.5

x standard deviation. (C) Table summarizing the data.
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experimental measurements of the hydrodynamic radius (Ru), comprised between 8.6
and 14.6 A for solutions of equimolar mixtures of Oa and Oy in dilute regimes (between
1 and 5 mM). These radii were calculated with the Stokes-Einstein equation, using
diffusion coefficients measured by DOSY.[31 Inside the stable globule, the two strands
undergo significant folding and remain highly flexible, allowing the different units to
dynamically reorganize. This is shown by the end-to-end distance values measured for
0. and Ob, ranging from around 5 to 30 A (Figure V.4). It indicates that the chains
can adopt very extended or very compact conformations in the duplex, without
affecting its global globular shape.

- N
(3} o
1 1

End-to-end distance (A)
)

(3}
1

o, O, (replica) O, O, (replica)

End-to-end
distance (A)

Average *
Std. dev.

O, O, (replica) O, Oy, (replica)

15.9+5.3 16.0 + 5.2 15.3+ 5.3 16.1 £ 5.1

Figure V.4. Distribution of the end-to-end distance values for the O, and Oy oligomers,
measured for both replicas of the O./O, duplex simulations. The lines delimiting a box
represent the first and third quartiles, whose values are annotated at the edges of the box. The
line inside a box indicates the mean value. The error bar is given as mean + 1.5 x standard

deviation. Statistics are given in the table below.

These observations reveal the formation of a disordered and highly dynamic
supramolecular complex, where the side-chains appear randomly mixed within the
globule, in marked contrast with the idealized 2D representation where each unit is
precisely positioned along a linear backbone (see Figure V.2 C). During the
simulations, the chains explore a large conformational space allowed by their intrinsic
flexibility, arising from the presence of many freely rotatable bonds in their backbone
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and side-chains. Globular and folded conformations are stabilized by a vast network of
interactions, in particular m-type interactions! between the large number of triazole
rings, but also with the nucleobases, imidazole moieties and pyridyl groups (Figure
V.5 A). The oligomers also present many H-bond donors and acceptors, such as the
ether and urethane moieties in the backbone, as well as the nucleobases (Figure V.5
A). Interestingly, we found very few hydrogen bonding interactions involving the
triazole rings, which is in line with NMR measurements realized on monomer units.[43!
We detected slightly more ni-type interactions (around six per conformation) than H-
bonds (around four per conformation) (Figure V.5 B). The heatmap of m-type
interactions highlights a homogeneous distribution of the stacking, involving all
monomers and side-chains (although some units perform more interactions, in
particular G) (Figure V.5 C, see Figure V.11 in Section V.7 for explanations on the
per-residue decomposition adopted in the heatmap). While the total number of mt-type
interactions is significant, the contacts are weakly persistent, with only slightly more
than one interaction every 20 conformations, on average, for the most frequent residue
— residue interactions (see the white spots on the heatmap, corresponding to an
average of 0.06 interaction per conformation). It shows that, within the globule, all
residues dynamically interact together and can spatially regroup, even if they seem far
from each other in the 2D representation.

Overall, these results indicate that a defined sequence of monomers does not
necessarily translate into a well-defined 3D structure, particularly in the case of highly
flexible chains displaying a large number of interaction sites. Such characteristics
promote the formation of a disordered, globular system able to dynamically reorganize,
thereby partially blurring the influence of the primary structure. The nucleobases,
which contain H-bond donors and acceptors in addition to being aromatic structures,
also contribute to many unspecific interactions, contrary to their organized behavior
typically adopted within nucleic acids. However, in natural systems, these groups are
combined with a rather rigid backbone, short side-chains, and a structure promoting
well-defined stacking.[44] The chemistry of our system is very different, and the
nucleobases are not tightly paired with their complementary partner. While the
dynamic behavior of the assembly is not optimal to favor duplex formation over other
poly(oligomeric) species, it could reveal advantageous for the catalytic process, which
requires conformational flexibility for substrate binding and product release, as
observed for enzymes.

' mi-type interactions are counted between aromatic cycles following these geometric criteria: the distance
between their centers of mass must be < 5 A, and the angle between their planes must be < 45 ° or > 135 °.
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Figure V.5. Overview of the interactions stabilizing the O,/Oy globule. (A) Chemical structure

of the O,/Oy, duplex, highlighting the various interaction sites. The triazoles were not counted

as H-bond acceptors, as they mainly perform aromatic interactions. (B) Number of H-bonds

and m-type interactions per conformation measured during the whole simulations. Data is

shown as mean + standard deviation. The pale lines represent the distribution of

measurements. Statistics are given in the table below. (C) Heatmap showing the

decomposition of the m-type interactions by residue pairs (see Figure V.11 for explanations

on the per-residue decomposition). Each square, localized at the crossing of two residues,

indicates the number of interactions per conformation detected between these residues. The

heatmap is symmetrical with respect to the diagonal.

V.4.

Specific interactions arise in the disordered duplex

Given the formation of a disordered globular duplex made of highly flexible chains, it

seems that all monomers and side-chains contribute to a network of rather unspecific

interactions. Interestingly, while this is true for the m-type interactions, a different

behavior is observed for the H-bonds, as evidenced by a heatmap, used once more to

localize the interactions (Figure V.6 A). This heatmap displays three bright spots,

indicating persistent interaction sites, while the other residue pairs contribute to a

lesser extent to the network of H-bonds. The two most frequent H-bond sites (white

squares) are located for the G---C and T---D pairs of residues, i.e. the complementary

recognition units. In addition to these interactions, G---D pairing (yellow square)
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provides a significant but less frequent mechanism of stabilization. This graph
demonstrates that, despite the apparent disorder of the globule, specific hydrogen
bonding interactions are able to emerge. A similar conclusion can be drawn from a
second heatmap, showing the enthalpy of binding decomposed by residue pairs,
highlighting the most stabilizing residue — residue interactions (darkest blue squares)
in the duplex (Figure V.6 B). These are localized for the pairs G---D, T---D and G---
C, in excellent agreement with the heatmap of H-bonds. These analyses demonstrate
that the recognition units play their role efficiently in the supramolecular assembly,
although the duplex adopts compact conformations that allow all units to interact.
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Figure V.6. Localization of the interactions stabilizing the supramolecular assembly. A
cartoon representation of the primary structure of the O,/Oy duplex is displayed above the
heatmaps. (A) Heatmap showing the decomposition of H-bonds by residue pairs. (B)

Heatmap showing the decomposition of the enthalpy of binding by residue pairs.

Another way to study the intermolecular contacts stabilizing the assembly is the use of
network theory. The 3D conformations generated during the simulations can be
converted into 2D networks, where each atom (except hydrogens) constitutes a node
(Figure V.7). Two nodes are connected by an edge if they are spatially close: here, the
distance cutoff was set at 5 A, to take into account contacts through H-bonds and 7-
type interactions. We computed an average network from the whole simulations to
highlight the most persistent contacts, thus the strongest contributions to the assembly
(see full details of the methodology in Section V.7). In line with the previous
heatmaps, the network indicates that interchain connections arise dominantly from
the nucleobases, especially through G---C, T---D and G---D pairings, whereas
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3D structure

A 0,

Figure V.7. Structure of the O,/Oy duplex. (A) MD snapshot illustrating the globular
structure of the assembly, with one color by oligomer chain (left) and with one color by
substituent (right). The color code of the side-chains is the same as in the other figures. (B)
Network representation of the system, highlighting the persistent contacts observed during the
MD simulations. The nodes belonging to O, and Oy, are circled in red and blue, respectively,
with the same color code for the functional groups. (C) Modular representation of the network.
The modules in yellow contain backbone or chain-ends nodes. Intramolecular connections
relying nodes belonging to O, or O, are represented by red and blue lines, respectively.
Intermolecular connections between O, and O, are represented by purples lines. The

nucleobases T and D are merged in the same module, indicating high connectivity.

intrachain connectivity replicates the primary structure of the oligomers (Figure V.7
B). These visual observations are confirmed by several descriptors, such as the
betweenness and closeness centralities, which are presented with their Z-values, i.e.
the number of standard deviations by which the value is below or above the mean value
(Figure V.8). The betweenness describes the importance of a node to create
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connections between the other nodes, while the closeness is related to the ability of a
node to communicate with all the others (see more details in Section V.7). These two
values are particularly high for the nodes belonging to the nucleobases, as expected
given their strong contribution to the persistent contacts between the two chains.

m  Betweenness
e Closeness

Z-value

'2 T T T T
0 100 200 300 400
G T C
Node index
Hexyl tails (Cs) ca(tsllyt:ﬁ,:l:;'ts N(lg,lﬁ.?g?sD‘;s Average (all nodes)

Closeness 0.12 £ 0.01 0.12 £ 0.01 0.20 + 0.01 0.15%0.03

Closeness (Z-value) -0.46 -0.45 0.86 0
Betweenness (x102?) 0.15%+0.12 0.20 + 0.32 3.62+4.80 1.37£2.62

Betweenness (Z- 118 -1.00 1.68 0

value)

Figure V.8. Characterization of the connectivity inside the network with the betweenness and
closeness centralities (see definitions in Section V.7), presented with their Z-value. The nodes
belonging to the nucleobases (G, T, C and D) are highlighted in the graph, showing that higher

Z-values are located for these nodes. Statistics are given in the table below.

A modular representation of the network gives a simpler, coarse-grained view of the
system and shows again that the catalytic modules (M, I, I and P in Figure V.7 C) are
connected through links involving the nucleobases. The network representations also
suggest that the Ces units do not contribute to the assembly, and do not tend to intertwin
with each other, as could be thought when looking at the 2D structure. Viewing them
on the 3D structures (see units in black in Figures V.1 and V.7 A, right), it appears
likely that they are too short, compared to the size of the globule, to contribute to the
binding. Overall, our simulations indicate that the duplex is stabilized by a vast
network of dynamic interactions involving all residue pairs, no matter their position in
the sequence, with more persistent contacts emerging dominantly between the
recognition units, ensuring some specificity in the recognition.
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Interestingly, the recognition pattern of the incomplete catalytic system Oa/Ob- follows
the same trend (Figure V.S1 in Section V.8). This is not unexpected, Ob- having the
same sequence as Ob except for one P monomer. Our simulations suggest that it is
possible to bring small modifications in the composition of the catalytic center without
affecting the mechanisms of assembly between the oligomers. It means that variations
in the catalytic activity between the Oa/Ob and Oa/Ob2 systems can be directly related
to the contribution of individual catalytic units, making our SDMs particularly
interesting to study the role of each monomer in the catalytic mechanism.

V.5. Rationalizing the trends in catalytic activities by
combining MD simulations and experiments

For an efficient catalysis, the substrate must interact with the catalytic moieties when
the Oa/Ob duplex is formed. We therefore investigated the accessibility of the different
functional units to their surrounding environment (Figure V.9). Two variables were
used: the average distance from the geometric center of the globule, and the ASASA,
i.e. the difference in accessibility of one residue in the duplex compared to its
accessibility when the oligomer is alone (see Section V.7 for details on the
methodology). When looking at the distance from the geometric center, it appears that,

on average, the nucleobases tend to be located closer to the center of the globule than
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Figure V.9. Data on the accessibility of the different residues in the O./Oy duplex to their
environment. (A) Average distance of each functional unit from the geometric center of the
assembly. (B) Average ASASA value of each functional unit, measured as the difference
between the SASA of this unit in the O./Oy duplex and the SASA of the unit in the O, or Oy
chain alone. A high negative ASASA value indicates that the residue is significantly hindered
by the formation of the assembly. (C) Table summarizing the data for each kind of

substituents. For detailed statistics on the individual residues, see Table V.S1in Section V.8.
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the hexyl tails or the catalytic units (Figure V.9 A). The only exception to this trend
is the TEMPO moiety (M), which is one of the five units with the shortest average
distance to the geometric center. The measurements of ASASA confirm this trend
(Figure V.9 B). The nucleobases present the greater decrease of accessibility going
from the isolated oligomers to the intermolecular duplex, as indicated by their higher
negative ASASA values. Again, the hexyl tails and catalytic units display similar values,
with a lower decrease of their SASA upon formation of the globule, at the exception of
the TEMPO moiety. Although the differences between the different kinds of
substituents are rather small, these two descriptors reveal that, on average, the hexyl
tails and catalytic units spend more time at the periphery of the globule, indicating that
substrates should be able to interact with the catalytic moieties. The nucleobases, on
the other hand, tend to be more isolated from their environment, located more often
at the interface of the two oligomers. This view is concordant with our network
representations, and the fact that the nucleobases significantly contribute to
intermolecular interactions.

With all this information in hand, we can now bring some insights into the
experimental trends in catalytic activity. The systems were tested in the aerobic
oxidation of benzyl alcohol into benzaldehyde, for different temperatures between 30
and 60 °C and at different molar concentrations of catalyst. Cu® was introduced in
stoichiometric amount with respect to P groups, and catalyst concentration is
expressed as the content in molar units relative to the molar concentration of
introduced alcohol (0.2 M). The catalytic activity is represented by the turnover
frequency (TOF) (Figure V.10). The complete O./Ob system presents a peculiar bell-
shaped curve, with a maximum TOF at around 1 mol % of catalyst concentration, and
a decrease of activity at higher concentrations (Figure V.10 A). We attribute this
behavior to the formation of poly(oligomeric) aggregates at higher concentrations,
where an important steric crowding would decrease accessibility to the catalytic center.
These complexes would be stabilized by various unspecific interactions, involving the
backbone H-bond donors and acceptors and the numerous aromatic rings. The
maximum of catalytic activity for the O./Ob system is presumably reached when the
heteromolecular duplex is predominant in solution. In comparison, the incomplete
Oa/Ob2 and Oa/Obz complexes exhibit a significantly lower TOF (Figure V.10 B).
Additionally, their activity continues to increase well after 1 mol % of catalyst, meaning
that, contrarily to Oa/Ob, they benefit from the formation of poly(oligomeric) species.
This is not surprising if we consider that these systems require the assembly of at least
three chains to regroup all five catalytic units, and it demonstrates that only one
missing catalytic moiety in the chains is enough to significantly decrease the catalytic
activity. Individual chains, which also contain an incomplete sequence of catalytic
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units, equally display a very low TOF (diamonds in Figure V.10 C). A mixture of
monomeric units with the same composition as the complete duplex displays a
completely different trend, the catalytic activity increasing linearly with the
concentration, as expected for a system relying on random encounters (crosses in
Figure V.10 C). For the same reason, a mixture of MP dimers and I'P trimers, i.e.
oligomers lacking the hydrogen binding units and the hexyl tails, also display a linear
evolution of the TOF with respect to the catalyst concentration (pentagons in Figure
V.10 C). The most striking feature of the Oa/Op system is its resistance to dilution. It
is the only system able to maintain a catalytic activity even at very low catalyst
concentrations, a particularity that we ascribe to its self-assembling properties, leading
to the formation of active heteromolecular duplexes in solution. Upon dilution, the
TOF of the other systems quickly decreases, either because they lack recognition units
or because catalytic units are missing when forming duplexes. Therefore, the unique
catalytic properties of the Oa/Op system must emerge from the formation of self-
assembled duplexes, maintained through various interactions, with a particularly
important role of the nucleobases and the presence of the five required catalytic
moieties. However, the presence of a large number of interaction sites favors the
formation of aggregates at higher concentrations, limiting the efficiency of the system

above 1 mol % of catalyst.
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Figure V.10. Experimental measurements of the catalytic activity of the self-assembled
oligomers. The TOF was calculated as the slope of the yield of oxidation versus time, divided
by the molar content in M units in the catalyst. (A)-(C) TOF versus catalyst concentration at
four temperatures (colors as indicated), for (A) the complete O,/ Oy, system, (B) the incomplete
0./Op. (circles) and O./On; (open triangles) systems and (C) various control systems.

Reproduced from Ref. 31.
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V.6. Conclusion

We investigated the possibility to exploit precisely designed SDMs to build a complex
multifunctional catalytic system, requiring the supramolecular assembly of two
oligomers to be active. MD simulations revealed the formation of a globular duplex,
inside which each chain is strongly folded and highly flexible. Our results indicate that
2D chemical structures can be misleading: here, this representation suggests the
formation of a well-organized duplex, where each monomer unit faces a partner in the
other chain in a precisely programmed manner. The 3D view given by the simulations
provides important information on the supramolecular assembly of the two chains,
stabilized by a myriad of interactions, and where the primary structure is partially
blurred by the flexibility of the oligomers. Despite the apparent disorder in the duplex,
heatmaps and network representations demonstrated that interactions involving the
nucleobases contribute dominantly to the duplex stabilization, in particular through
complementary H-bond pairings. Additionally, our simulations indicate that the
catalytic units tend to remain accessible to their environment, at the periphery of the
globule, while the nucleobases spend more time at the interface of the two chains. The
simulations helped us to understand the peculiar trends in catalytic activity, where the
0a/0pb system revealed to be particularly efficient at high dilution. Such resistance to
dilution was not observed on any other system, which either lacked the recognition
units or only one catalytic moiety. These results indicate that the formation of the self-
assembled duplex containing all five catalytic units is key to catalytic activity. Precisely
controlling the monomeric composition of the system is therefore crucial, which is an
important validation of our approach combining supramolecular assembly and
catalytic activity inside SDMs. Additionally, such SDMs are very powerful in view of
mechanistic studies, to probe the role of each substituent in the catalytic mechanism.
However, it seems likely that the precise monomer ordering in our chains is not crucial
for their activity, given the high flexibility of the system. Still, it allowed us to place the
nucleobases far from each other inside the chains, which revealed to be very efficient
to minimize intramolecular interactions, which would be detrimental to the
intermolecular assembly. In comparison, tetramers with the same oligo(urethane
triazole) backbone functionalized with four adjacent nucleobases displayed important
intramolecular interactions.l43] MD simulations, combined with network theory,
revealed to be a very precious tool to decipher the structure, dynamics and mechanisms
of assembly of this complex supramolecular system, presenting a large number of
interaction sites and an important flexibility.

Based on our simulations, several leads could be considered to improve the molecular
design of the chains. Ideally, the equilibrium of species in solution should be even more
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biased towards duplex formation, through supplementary interactions. It could be
interesting to increase the number of recognition units, for example by replacing the
hexyl tails, which seem too short to contribute to the stability of the duplex, by
additional nucleobases. The nucleobases could also be substituted by other H-bonding
units containing either only donor or only acceptor sites, thus promoting duplex
formation over intramolecular folding, as demonstrated by others.[4546] Modifying the
chemical nature of the backbone may also be an option, to avoid the presence of
numerous unspecific interaction sites, such as the carbamate units and the triazole
rings, which promote aggregation at higher concentrations. Increasing the rigidity of
the backbone to better retain the information encoded in the primary structure, thus
increasing the specificity of the recognition, could also be envisioned. Of course, while
these options are trivial from the point of view of a computational chemist, it may bring
significant synthetic challenges; the triazole rings, for example, are unavoidable when
using the click chemistry route exploited here. In conclusion, while there are plenty of
alternative designs to test, it remains difficult to embark into lengthy syntheses without
a clearer picture of the systems that are really worth the effort. Computational methods
and a better fundamental understanding of sequence — structure relationships, leading
to accurate predictive models, will be important tools to rationalize the design of such
complex sequence-defined nanomaterials in the future.

V.7.  Simulation protocol

The oligomeric chains were built as a series of fragments, or residues, with the
Avogadro software (Figure V.11).[47]
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Figure V.11. Chemical structure of the complete O./Oy catalytic system. The two strands, Oa
and Oy, are decomposed into a series of 28 residues, separated by black dots. The residues

containing the functional side-chains are identified by letters.

These fragments were subsequently connected to one another to form the complete
strands. The calculations were then performed with the AMBER simulation package,
while free energy calculations were performed with the 2020 version of ambertools.[48]
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The atomic partial charges were assigned to the fragments using the antechamber
module of AMBER with the semi-empirical AM1-BCC method.[49] Structural
parameters and partial charges of the TEMPO radical were used as reported by
Stendardo et al. after an ab initio reparametrization.[50] Structural parameters and
partial charges of the pyridyltriazole copper ligands were obtained by calculations at
the quantum chemical level using density functional theory (DFT) with the B3LYP/6-
31G** model and extra basis sets LanL.2DZ and MIDI! for the copper and iodine atoms,
respectively. All other force field parameters were given by GAFF 2.11.[5t1 The
individual molecular fragments were connected in the desired sequence with the LEaP
module of AMBER to constitute the complete oligomeric chains. When building the
0a/Op catalytic system, Ob was translated by 40 A in the x, y and z directions from Oa
in order to avoid contacts between the two oligomers in the starting structure. A
geometry optimization was then performed by MM, with a total of 10,000 steps
distributed in 1,000 steps of steepest descent and 9,000 steps of conjugated gradient,
in order to get a stable starting point for the subsequent MD simulations. These were
carried out with an implicit solvent model, the Generalized Born (GB) model, to ensure
a sufficient conformational sampling in a reasonable computational time.[521 The
dielectric constant was set as the one of acetonitrile at 20 °C (& = 37.5). For the catalytic
system, constituted of the two strands Oa and Ob, two replicas of 10 us were realized
(same for the Oa/Ob- duplex). Each oligomer was also simulated alone in two replicas
of 5 us. The timestep was fixed to 1 fs and the temperature was maintained at 300 K
with a Langevin thermostat, with a collision frequency of 1 ps. A bond restraint was
applied in the simulations of the two strands to avoid that they translate in opposite
directions and never meet each other, as we are not in periodic conditions: when the
distance between the chains exceeds about 75 A, a force constant of 10 kcal.mol-.A2 is
activated to prevent the chains from moving further away. An infinite cut-off was
selected for the non-bonded interactions. A snapshot was saved each ns during the MD
simulations and extracted for further analyses, giving a total of 20,000 conformations
for the catalytic duplexes and 10,000 for each oligomeric chain alone. The GPU version
of AMBER was used for all minimizations and MD simulations. PyMOL 2.5.4 was used
to visualize the snapshots and to extract images.[53

The analyses of the simulations were performed using the cpptraj module of
AMBER.[54] Radii of gyration (Rc) were computed with respect to heavy atoms (all
atoms except hydrogens). End-to-end distances were calculated as the distance
between the carbon directly linked to the silicon in the tert-butyl moiety at one end,
and the carbon in para position of the phenyl ring at the other end. Hydrogen bonds
were detected with the default cpptraj parameters, i.e. a distance cutoff of 3.0 A
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between the acceptor and the donor heavy atom and an angle cutoff of 135 ° between
the donor, the hydrogen atom and the acceptor. n-type interactions (parallel stacking)
were detected using geometric criteria: two aromatic units are considered in
interaction if the distance between their centers of mass is < 5.0 A and if the angle
between the normal vectors of their planes is < 45° or > 135 °. The heatmaps of H-
bonds and m-type interactions were built with in-house scripts. The residue
decomposition follows the sequence order, and corresponds to the fragments used to
build the chains, as is represented in Figure V.11. To compute the distance of each
side-chain to the geometric center, only the heavy atoms located after the triazole ring
were included in the calculation. For instance, for a Cs unit, only the six carbon atoms
of the hexyl tail were considered: the distance is measured between the geometric
center of these six carbon atoms and the geometric center of the globule (same
approach for the other side-chains). The first 100 ns were not included in this
calculation, to let the duplex form and equilibrate. Solvent-accessible surface area
(SASA) values were calculated with the LCPO model, as implemented within
cpptraj.l551 The per-residue ASASA was computed as the difference between the SASA
calculated for a residue in the simulation of the O./Ob duplex and the SASA of the same
residue calculated in the simulation of the individual chains, Oa or Ob, using the per-
residue scheme shown in Figure V.11. The ASASA can only be inferior or equal to
zero: a residue that would be located far from the interface of the two strands, without
contact with the second chain, would have a ASASA of zero, meaning that it is equally
accessible with or without the second chain. Binding enthalpy calculations were
performed with the Molecular mechanics Poisson-Boltzmann surface area (MMPBSA)
method, using the parallelized version of the Python program MMPBSA.py 14.0,
implemented in AMBER.[5¢] The binding enthalpy is given as the difference between
the energy calculated for the complex (here, the complete catalytic system) and the sum
of energies for the receptor (Oa) and ligand (Ob) alone. The multiple-trajectory
approach was followed, which means that the conformations for the complex, receptor
and ligand were obtained from independent simulations. MMPBSA.py post-processes
the trajectories and calculates the energy of each frame with an implicit representation
of the solvent. The energy is divided in two parts: an internal contribution and a
solvation contribution. The internal contribution was given by the force field and can
be seen as the energy of the system in vacuum (bonds, angles, dihedrals, van der Waals
and electrostatics). The solvation contribution is further divided into a polar and a non-
polar part. The polar part represents the electrostatic interactions between the solute
and the solvent and was obtained by solving the PB equation with a finite difference
method. The non-polar part was calculated as the sum of a favorable “dispersion term”
and an unfavorable “cavity term”, representing the stabilizing solute — solvent
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dispersion interactions and the cost of creating a cavity in the solvent, respectively.
These two terms are proportional to the SASA. Several calculations were carried out by
varying the internal dielectric constant, i.e. the dielectric constant of the solute, ranging
from 1 to 4. The default value is set to 1, but in some cases, a better agreement with
experimental results was obtained with higher values of the internal dielectric
constant.[57:58] In our case, a better agreement was reached with an internal dielectric
value of 4 (note that this parameter did not affect the qualitative trend observed in the
residue — residue interactions). The first 100 ns of each replica were skipped for the
calculations to let the systems reach equilibrium, giving a total of 19,800
conformations for the O./Ob duplex and 9,800 conformations for the oligomeric
strands alone. The external dielectric constant was fixed at 37.5, as in the MD
simulations. MMPBSA.py offers the possibility to decompose the energy by residue
and by pairs of residues (using the same residue division as the one shown in Figure
V.11). The residue pairwise decomposition scheme was used to highlight pairs of
residues playing an important part in the binding of the two oligomeric chains.

The 2D networks were built from the 3D conformations generated during the
simulations. In this representation, all heavy atoms constitute nodes, and two nodes
are connected by an edge if their distance is inferior than or equal to 5 A. This cutoff
value allows to take into account hydrogen bonding interactions as well as m-type
interactions. In practice, one network file was created for each conformation as soon
as the duplex was formed (interchain distance < 14 A) using in-house scripts, resulting
in a total of 19,988 networks for O./Ob and 19,953 for Oa/Ob2. These files, representing
one conformation each, have been used to build one global network for each system,
following this procedure: two nodes are considered connected by an edge only if they
have been in contact during at least 10 % of the MD time, i.e. if their contact was
detected in at least 10 % of the 19,998 conformations for Oa/Ob and of the 19,953
conformations for Oa/Ob2. The resulting network is thus focusing on persistent
contacts. All edges are undirected and unweighted. To analyze and visualize the
network, the Cytoscape 3.9.1 software was used with its included analyzer
NetworkAnalyzer 4.4.8.159:601 Two descriptors were chosen to characterize the nodes
inside the network. The betweenness centrality C» for one node is proportional to the
number of shortest paths connecting two other nodes passing through this node, i.e.
the importance of the node to put the other ones into communication. The closeness
centrality Cc for one node reflects the reciprocal of the average shortest paths length
connecting this node to all the other nodes in the network: the higher the closeness,
the more “central” is the node in the network, the more easily it communicates with
the other nodes. The network file was then submitted to the Infomap algorithm, in
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order to detect communities or modules, which are defined as highly connected groups
of nodes. The resulting modular representation can thus be considered as a coarse-
grained view of the previous network. Various methods exist to decipher the modular
topology of a network: the one that we used is called the map equation.[61.621 1t is a flow-
based method, which means that it focuses on “how is flowing, propagating the
information from one node to another?”. The propagation of information is
materialized by a random walker that can move on the edges between nodes while an
information cost, in bits, is associated with the movements of the walker. The main
idea behind the map equation is that finding modules in the network can be seen as an
encoding problem: to reduce at best the information cost associated to the random
walk, it is necessary to efficiently partition, modularize the network. The map equation,
based on Shannon’s source coding theorem, gives the theoretical lower limit of the
information cost associated with one step of the random walker, on average, on the
network.[3] Infomap is the algorithm used to minimize the map equation. The
principle is as follows: each node begins in its own module. Then, the nodes are moved
into their neighboring module that reduces the most the map equation. This operation
is repeated, the newly formed modules are merged with their neighbors, until no more
minimization can be attained. The main goal of Infomap is thus to find the best
partition of the network, i.e. the optimal organization of nodes inside the optimal
number of modules, to reduce the most efficiently the information cost associated with
the movements of a random walker. A two-level partition of the network was chosen,
such as there is only one layer of modules containing the nodes (no possibility to have
“modules inside a module”). Visualization and analysis of the network were done with
the 2.6.0 version of the web server utility of Infomap.
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V.8. Additional data

o, @

Number of H-bonds
per conformation

0.30

0.23

0.15

0.08

CeGMP TC CaC | 1 DCg 0.00
da 0;2

Figure V.S1. Overview of the mechanisms of assembly of the incomplete O,/Op. duplex. A
cartoon representation of the primary structure of the incomplete O,/Ov. duplex is displayed
above. (A) Network representation of the system, highlighting the persistent contacts observed
during the MD simulations. The nodes belonging to O, and O, are circled in red and blue,
respectively, with the same color code as in the other figures for the functional groups. (B)
Modular representation of the network. The module in yellow contains backbone or chain-ends
nodes. Intramolecular connections relying nodes belonging to O, or Oy, are represented by red
and blue lines, respectively. Intermolecular connections between O, and Oy. are represented

by purples lines. (C) Heatmap showing the decomposition of H-bonds by residue pairs.
Ce G M T Ce Ce C I' | D Ce

Distance
from 1.5 8.1 10.3 14 10.8 15 1.1 10.5 1.4 121 1.5 104 1.5

geometric | #22 *31 *23 *22 %26 *22 *23 *33 *20 *23 +21 *22 +22
center (A)

Delta SASA| -37.5 -86.1 -522 -36.1 -47.6 -334 -355 423 -295 -21.7 -185 499 -18.2
(A?) *08 +08 *09 +06 *09 %07 *09 *09 +11 *08 *06 =*10 *0.8

Table V.S1. Statistics on the accessibility of the O,/Oy, functional units to their environment.
The distance from the geometric center is given as mean + standard deviation. The ASASA is
given as difference between means (meancomplex — Me€aNchain alone, a$ €xplained in Section V.7)

+ standard error of the difference between the two means.
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Revealing the folding of single-chain polymeric nanoparticles at the atomistic scale by combining
computational modeling and X-ray scattering

VI. Revealing the folding of single-chain polymeric
nanoparticles at the atomistic scale by combining
computational modeling and X-ray scattering

The last results chapter of our thesis is dedicated to the study of purely synthetic
polymers, whose folding in water was studied by a combination of MD simulations and
experiments, in particular small-angle X-ray scattering (SAXS). Despite their artificial
nature, these systems aim to reproduce the controlled folding properties of natural
SDMs. We applied our methodology to elucidate the 3D structure and folding dynamics
of two families of polymers functionalized with different types of hydrophilic side-
chains. Unlike the other systems studied during our thesis, these macromolecules are
not characterized by a perfect control over the sequence of monomers. However,
sequence effects were investigated in silico, in order to understand whether controlling
the primary structure would be beneficial for these chains.

Part of this work is reported in: Revealing the folding of single-chain polymeric
nanoparticles at the atomistic scale by combining computational modeling and X-
ray scattering.

S. Wijker, D. Dellemme, L. Deng, B. Fehér, I. K. Voets, M. Surin, A. R. A. Palmans, ACS
Macro Lett., 2025, 14, 426-433.

VI.1. Introduction

As a core concept in this thesis, functional biomacromolecules display exquisite
properties, acquired through their well-defined 3D structure and programmed folding
process. Enzymes and many biological receptors need to fold to acquire their function,
and their activity can be modulated through small conformational changes.[*:2] The
field of single-chain polymeric nanoparticles (SCPNs) aims to reproduce this ability in
synthetic materials, enabling them to acquire a function through controlled folding in
solution.[3-5] To control the conformations of the polymer chains in solution, it is
tempting to take inspiration from protein folding. Solvophilic/solvophobic effects and
non-covalent interactions, such as hydrogen bonding, metal coordination or host-guest
complexation have been extensively used to design SCPNs.[6-18] Introducing covalent
intramolecular crosslinks is also an efficient way to stabilize single-chain systems, and
this approach is sometimes combined with supramolecular interactions and
amphiphilic effects to get a better control on the folded structures.[r9-21] Recently, an
SCPN was designed to collapse in water due to hydrophobic effects and supramolecular
interactions, while remaining in a random coil state in tetrahydrofuran (THF).[20]
Using photoinduced covalent crosslinking, the compact and extended conformations

131



Chapter VI

in water could be “locked” and retained when introducing the SCPN in THF. SCPNs
are envisioned for various applications, notably for catalysis in water or in complex
media.l22-29] Biomedical applications are also strongly investigated, with examples in
drug delivery, cellular targeting, bioimaging, or biosensing.[30-33] For such
applications, which operate in complex biological media, it is crucial to assess the
conformational stability of SCPNs.[19:34] More generally, it is of utmost importance to
resolve the 3D structure of SCPNs, as their morphology is key to their function.
However, getting a precise picture of the 3D structure of such nanoparticles in solution,
in particular concerning their internal structure, remains challenging.[3536] Typically,
techniques such as dynamic light scattering (DLS), size exclusion chromatography
(SEC), or nuclear magnetic resonance (NMR) are used to obtain information on the
size of the nanoparticles. These methods can detect size variations, enabling a
distinction between presumably extended and folded chains. A decrease in the
measured size is generally attributed to the efficient folding of the system, without
providing any information on its conformation in solution. As discussed in this
chapter, it is very difficult to distinguish pure single-chains from small aggregates
based on size measurements alone. Fluorescent probes were also used to investigate
the formation of hydrophobic compartments in surface-immobilized SCPNs, allowing
single-chain resolution.[371 While being impressive, this example does not provide clear
information on the 3D structure of the chains, and does not unequivocally demonstrate
SCPN formation. The introduction of scattering techniques such as small-angle X-ray
scattering (SAXS) and small-angle neutron scattering (SANS) were important to get
finer insights on the 3D structure of SCPNs in solution. These methods challenged the
naive view that ‘any’ copolymer structure composed of the correct ratio of hydrophilic
and hydrophobic grafts would form a globular core-shell structure.[9:10.381 It is now well
established that the conformational landscape of SCPNs more closely resembles that
of intrinsically disordered proteins than that of globular proteins.[39] The
improvements in computational power have also enabled the use of MD simulations,
with the unique ability to provide a direct picture of the 3D structure of SCPNs in
solution, to investigate their internal structure, and to reveal their folding
dynamics.[40-42] Recently, MD simulations based on a very simple physical model were
combined with machine learning to provide a complete mapping of the conformational
landscape of SCPNs based on the position of their cross-linking units.[43!

Our work aims at combining the structural information brought by MD simulations
and SAXS experiments. While the theoretical investigation provides a picture of
unmatched atomistic resolution on the structure of SCPNs, it is necessary to compare
our models to experiments to validate their robustness. We applied our MD protocol
to two different kinds of polymers, distinguished by the nature of their hydrophilic
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grafts. Our results indicate that very different morphologies are obtained in water.
Furthermore, the combination of MD simulations and SAXS allowed us to reveal the
formation of small aggregates having a very similar size and shape than the single-
chain systems for one polymer family, demonstrating the interest of our approach. This
work has been carried out through a collaboration with the group of Prof. A. Palmans
at Technische Universiteit Eindhoven. All the experimental results were obtained by
Stefan Wijker and Bence Fehér.[44] The polymers were synthesized by Stefan Wijker
and Linlin Deng.

VI.2. Design of the two polymer families studied by MD
simulations in water

Two families of polymers and random copolymers were designed through sequential
amine postfunctionalization of poly(pentafluorophenyl acrylate), and functionalized
with five different kinds of grafts (Figure VI.1). The two families are mainly
distinguished by the nature of their hydrophilic grafts, added to impart water
solubility, which are either JeffamineM1000 (J, v in Figure VI.1) or glucosamine (G,
w), giving rise to p(J) and p(G), respectively. JeffamineM1000 is an oligoether with a
molecular weight of around 1000 g/mol and an average degree of polymerization (DP)
of 22 (~19 ethylene oxide and ~3 propylene oxide). In comparison, glucosamine is a
much smaller graft of high hydrophilicity, owing to its many hydroxyl groups. In
addition to these fully hydrophilic polymers, random copolymers were designed. They
incorporate hydrophobic and/or supramolecular side-chains, which are dodecylamine
(D, x in Figure VI.1) and a chiral benzenetricarboxamide (BTA) derivative (B, y),
respectively. Both units induce the formation of hydrophobic domains, and the chiral
BTAs are also able to self-assemble into cylindrical helical stacks with preferred
handedness via 3-fold hydrogen bonding. The Jeffamine-based copolymers, p(J-BD),
incorporate both substituents, while the glucose-based copolymers contain either
dodecyl or BTA, in p(G-D) and p(G-B), respectively. Additionally, the glucose-based
polymers contain one Nile Red substituent (z in Figure VI1.1), a fluorescent dye whose
emission wavelength depends on the polarity of its environment.[45! A last difference
between the Jeffamine- and glucose-based (co)polymers is their length, with an
average DP of 186 and 103, respectively.

The five polymers were studied by MD simulations at the atomistic scale. While a
coarse-grained (CG) modeling approach has been successfully applied elsewhere and
is computationally faster, it misses the information at the atomic level, such as
hydrogen bonds between different units or with the water solvent, which is important
for the systems investigated here.l41.46] Also, applying CG models to synthetic polymers
would require a challenging parametrization, particularly when dealing with a variety
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of complex side-chains. [47-50] All-atom approaches tend to rely on more transferable
force fields, offer access to finer atomistic details and information on the dynamics of
the system. With the current computational power at hand, an all-atom approach
seems more appropriate to study single-chain systems. Thus, MD simulations were
performed for each polymer as an isolated single chain in explicit water boxes, starting
from fully extended conformations and simulated on the 2 ps time scale. Three
independent simulation replicas were run for each system with the AMBER package,
using parameters coming from GAFF 2.11 to describe the polymers (see details of the
protocol in Section VI.8).[51.521 To explore sequence effects, p(J-BD) was simulated as
random (7), block (b), and multiblock (mb) polymer chains. These structures are
denominated as p(J-r-BD), p(J-b-BD) and p(J-mb-BD), respectively. The p(G-D) and
p(G-B) copolymers were only simulated as random sequences.

* v w X z *
0 o
HN (0) Hf;l HN HN. SO
2\\ HO_
0 5

(0]
Y
Polymer | v (%) w (%) x(%) z(%) DP(-)
p(J) 100 0 0 0 186
p(J-BD) 81 0 15 0 186
p(G) 0 99 0 1 103
p(G-D) 0 84 15 1 103
p(G-B) 0 94 0 1 103

Figure VI.1. General chemical structure of the (random co)polymers studied and details of

their monomeric composition. Adapted from Ref. 44.

All systems were properly equilibrated after 2 us of simulation, as indicated by the
convergence of their root mean square deviation (RMSD) values (Figure VI.2).
Larger fluctuations are observed for the p(G) system, showing that this macromolecule
remains flexible and does not stabilize into one specific conformation.
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Figure VI.2. Evolution of the RMSD values over time for the (A) Jeffamine-based
(co)polymers and for the (B) glucose-based (co)polymers. Only the first replica is displayed,
for the sake of clarity; see Figure VI.S1 in Section V1.9 for all replicas.

VI.3. Jeffamine-based polymers form worm-like structures
in water

The Jeffamine-based (co)polymers, starting from a fully elongated structure, tend to
rapidly coil in water. However, the fully hydrophilic systems remain quite extended,
with a radius of gyration (Rc) of around 10 nm (Figure VI.3). The introduction of
hydrophobic grafts in the copolymers leads to more compact conformations at the end
of the simulations (Rg = 6.5 to 8 nm), no matter their microstructure (random, block
or multiblock). This trend is consistent with the experimentally derived Rc values from
SAXS where p(J) displays higher values than p(J-BD) (R¢ = 11.1 nm for p(J) and
Re = 9.3 nm for p(J-BD)). Given the fact that experimental samples have a molar mass
dispersity (both polymers) as well as heterogeneity in microstructures (for p(J-BD)),
the simulated R values are well in line with the experimentally derived ones. The
worm-like structure of the Jeffamine-based polymers can be observed in the snapshots
presented in Figure V1.4 (see Figure VI.S4 for the final snapshots of all systems).
Although the copolymers display more compaction, they do not completely fold, but
rather form “kinked tube” with local folding around the hydrophobic groups, as shown
in Figure V1.4 B. The information encoded in the primary structure is retained: units
that are far in the sequence remain far in the 3D structures. For the random copolymer,
p(J-r-BD), hydrophobic moieties close to each other in the sequence are able to merge
into the same cluster, but do not meet units at the other end of the copolymer (see red
and pink circles in Figure V1.4 B). Consequently, multiple local hydrophobic pockets
form along the chain. This is also observed in p(J-mb-BD), where the hydrophobic
groups were preorganized into three different clusters, which never merge during the
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simulations. P(J-b-BD) contains a single central hydrophobic core, which does not split
into smaller clusters. The simulations reveal that controlling the sequence of the
Jeffamine-based copolymers, in particular the distribution of hydrophobic groups,
could be exploited to control their morphology in water.
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p(J-b-BD) 119 £1 65+3 66 +4 66
p(J-mb-BD) 1182 787 767 77

Figure VI.3. Data on the R for the Jeffamine-based systems. (A) Development of the Rg for
each system over time. Only one replica is shown, for the sake of clarity (see Figure VI.S2 in
Section V1.9 for all replicas). (B) Distribution of the R¢ values over the last 400 ns of the
simulations for each system, averaged over the three replicas. The lines delimiting a box
represent the first and third quartiles, whose values are annotated at the edges of the box. The
line inside a box indicates the mean value. The error bar is given as mean + 1.5 x standard

deviation. (C) Table summarizing the data.

To validate our theoretical model, the 3D structures obtained from the MD simulations
were used to simulate SAXS curves, which were compared to experimental SAXS
measurements (Figure VI.5). Basically, in SAXS, the intensity of the light scattered
by a sample, I(q), is measured as a function of the scattering vector, g, which is directly
related to the scattering angle 6. Information about the size, shape and internal
structure of the nanoparticles can be extracted from the evolution of the scattering
curve. Different scales are probed depending on the g value: large distances at small g
(the whole particle contributes to the scattering) and small distances at high g (as
contributions coming from atoms separated by a large distance disappear, due to
destructive interference). Therefore, the scattering intensity reaches its maximum
value at small g, where it generally forms a horizontal plateau, and decreases with
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increasing q. At some point, the signal may become too low to emerge from the
background, which explains the important noise observed at high g in Figure VI.5.
SAXS curves were simulated at different times (520 — 700 ns and 1820 — 2000 ns),
and from additional accelerated MD (aMD) simulations, to ensure sufficient
sampling.[53] This method applies a boost to the dihedral and potential energy of the
system, helping it to escape local minima, thus improving sampling efficiency (full
details on the aMD protocol is given in Section VI.8). Although MD simulations and
SAXS experiments scan the matter at a different scale (with ideal systems with no
molar mass dispersity for MD and disperse, heterogeneous mixture of chains with
different microstructures for SAXS), the agreement between the experimental and
simulated data is remarkable. The quality of the fit can be assessed

A p(J) ~ 33,000 atoms

Fully hydrophilic polymer >
Worm-like structure

B p(J-r-BD) ~ 29,000 atoms
T T OnrIIr 1 T InITr Kt 1

¥, Local folding between neighboring
hydrophobic groups

mmm Jeffamine mmmm Dodecyl BTA mmmm Backbone

Figure VI.4. Final MD snapshot of the Jeffamine-based (co)polymers. The number of atoms
is given for each system, and the sequence of monomers is represented as a colored bar (see
bottom legend). (A) Fully hydrophilic polymer, p(J). (B) Copolymer with the random
sequence, p(J-r-BD). Clusters of hydrophobic groups are highlighted in the sequence and in

the 3D structure, with the same color.
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through the x2 values, displayed in the tables in Figure V1.5 (the higher the x2 value,
the less the curves overlap; see Section VI.8 for details). The global shape of the
experimental scattering curves is in good agreement with that expected for graft
polymers with extended conformations forming worm-like chains (see Ref. 44 for in-
depth analysis of the scattering curves). Notably, two different power law regimes are
detected, i.e. the curves display different slopes, at intermediate q (0.1 < g < 0.6 nm)
and high g (0.6 < g < 1.5 nm), in agreement with the curves expected for semi-flexible
polymer chains. The scattering curve of p(J-BD) lacks a clear oscillation around
g = 1 nm, which indicates that p(J-BD) does not form a defined, single hydrophobic
interior as expected in core-shell structures.[8! Overall, the comparison with
experimental SAXS data corroborates that MD simulations reflect the nature of the
formed structures well, namely as extended worm-like chains for p(J) and
p(J-BD), and the formation of local hydrophobic pockets in p(J-BD). A careful
validation against experimental measurements turned out to be extremely important.
We found that the model used to compute the partial charges of our polymers, thus the
representation of their electrostatic properties, strongly influenced the resulting
conformations. Initially, we computed the partial charges with the AM1-BCC model,
which is very common and often used by our group.[5455] This method led to
underestimated absolute values for the charges on the oxygen and carbon atoms of the
Jeffamine grafts, giving them a low polarity (Figure VI.6 A). It resulted in the
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p(J) - 1820 to 2000 ns 25+0.8 p(J-BD) - 1820 to 2000 ns 53+28
p(J) - aMD 3.5+1.0 p(J-BD) - aMD 3.0+0.6

Figure VI.5. Experimental (black squares) and simulated (colored shapes) SAXS curves in
water for the (A) p(J) polymer and (B) p(J-BD) copolymers. Simulated curves were generated
from two time intervals during the conventional MD simulations, and from aMD simulations.
The experimental polymer concentration is 1.5 mg.mL. The x2 values, assessing the accuracy

of fit, are given in the tables below.
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formation of a fully folded, compact globule, which was contradictory to experimental
results. Turning to the RESP methodology to compute the partial charges, we obtained
much better results, with the formation of the worm-like chains discussed above.[5¢!
Simulations on simple PEG chains indicated the same trend, with much more compact
chains when the charges are computed using the AM1-BCC model (Figure VI.6 B).
The atomic charges were recently shown to strongly influence the interactions of
polyethers with water, explaining the sensitivity of the system to partial charges.[57]
This example demonstrates to which extent small inaccuracies on charge description
can lead to wrong predictions on the shape and size of macromolecular structures.
However, precious information can be extracted from this error. First, it gives us an
idea of the minimal size that a p(J) particle could reach if fully collapsed, the globule
having an R of about 3.5 nm. Then, it demonstrates that folding could occur at the
microsecond timescale if the Jeffamine chains were less polar, thus not interacting with
water. In other words, the Jeffamine grafts limit the flexibility of the backbone not only
because they are long and generate steric hindrance, but also because they are polar,
thus stay extended in the solvent and attract a lot of water molecules.
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Figure VI.6. Investigation of the effect of the set of partial charges (AM1-BCC or RESP) on
the conformations adopted by (A) the p(J) polymers and (B) simple PEG chains. The typical
value of the charges computed on the atoms in the middle of a Jeffamine graft are represented

in red and green for the oxygen and carbon atoms, respectively.
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VI.4. Glucose-based polymers form core-shell structures in
water

The fully hydrophilic p(G) polymers, as their Jeffamine-based counterpart, quickly coil
in water but do not fold, and their Rc oscillates around 3 nm (Figure VI.7). The
glucose-based copolymers, however, display a completely different behavior: p(G-D)
and p(G-B) both fold into core-shell nanoparticles (Rc = 2 nm). The small glucose
residues form a shell around a hydrophobic core comprising the dodecyl or BTA grafts
and the Nile Red moiety, as can be seen in the snapshots in Figure VI.8.
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Figure VI.7. Data on the Rg for the glucose-based systems. (A) Development of the Rg for
each system over time. Only one replica is shown, for the sake of clarity (see Figure VI.S3 in
Section V1.9 for all replicas). (B) Distribution of the R¢ values over the last 400 ns of the
simulations for each system, averaged over the three replicas. The lines delimiting a box
represent the first and third quartiles, whose values are annotated at the edges of the box. The
line inside a box indicates the mean value. The error bar is given as mean + 1.5 x standard

deviation. (C) Table summarizing the data.

This can also be inferred from the significant decrease in solvent-accessible surface
area (SASA) of Nile Red during the simulations, indicating a reduction of Nile Red
exposure to its environment during chain folding (Figure VI.9). The SASA of Nile
Red decreases even in the fully hydrophilic p(G) polymers, which tend to coil around
it to shield it from water. It shows that the presence of a single hydrophobic unit can
induce local structuration of the chain. However, the SASA values are lower in the
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A P(G) ~ 3,000 atoms

Fully hydrophilic polymer 2>
Worm-like structure

B p(G-D) ~ 3,500 atoms p(G-B) ~ 4,000 atoms
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Global folding, formation of a
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Figure VI.8. Final MD snapshots of the glucose-based (co)polymers. The number of atoms is
given for each system, and the sequence of monomers is represented as a colored bar (see
bottom legend). (A) Fully hydrophilic polymer, p(G). (B) From left to right: p(G-D) simulated
by conventional MD, p(G-D) simulated by aMD, p(G-B) simulated by conventional MD.

copolymers, where Nile Red is incorporated into hydrophobic domains and more
efficiently shielded. The presence of Nile Red in hydrophobic compartments in the
p(G-D) and p(G-B) systems was also detected experimentally, in agreement with the
simulations.[44] The folding of the backbone in p(G-D) and p(G-B) allows hydrophobic
units that are far in the sequence to become spatially close in the 3D structure, as can
be seen in Figure VI.8. Hydrophobic groups quickly merge with their neighbors, and
the formed clusters merge together until forming a single hydrophobic core. Inside
these globules, the backbone dynamics are strongly reduced, as indicated by the
decrease of the dihedral angles’ fluctuations along the backbone, showing that the
conformational space is reduced as the polymer folds into a compact core-shell
structure (Figure VI.10). A similar trend was observed in other folded amphiphilic
copolymers.[40] The compact p(G-D) and p(G-B) conformations are further stabilized
by intramolecular hydrogen bonds that increase in number over time, while these
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Figure VI.9. Distribution of the SASA values measured for the Nile Red moiety in the
different glucose-based polymers, averaged over the first and last 400 ns of the simulation. The
lines delimiting a box represent the first and third quartiles, whose values are annotated at the
edges of the box. The line inside a box indicates the mean value. The error bar is given as mean

+ 1.5 x standard deviation. Statistics are summarized in the table below.

remain constant for p(G) (Figure VI.11). The folding of p(G-D) and p(G-B) is
reminiscent of the early stages of protein folding and the formation of “molten
globules”, characterized by nonspecific and local interactions between side-chains
promoted by hydrophobic effects, and increasing backbone rigidity.[58-60]

During their folding, the copolymers may remain trapped for several hundreds of
nanoseconds in partly folded states, when the hydrophobic units are grouped in two or
more clusters (see Figure VI.8 B, structure on the left). As mentioned above, the
formation of these stable clusters decreases the flexibility of the backbone. To avoid
spending too much time in these metastable states, aMD simulations are particularly
useful, and this protocol was successfully applied to the p(G-D) systems (see Figure
VI.8 B, structure on the middle). The fully folded structure comprising a single
hydrophobic core was formed after 300 ns, compared to 2 ps (or more) with
conventional MD simulations. In contrast, the p(G-B) systems folded without the need
for the accelerated protocol despite containing only 5 % of hydrophobic monomers,
compared to 15 % for the p(G-D) systems. However, the presence of more hydrophobic
units means that more encounters between the hydrophobic groups are required to
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Figure VI.10. Percentage of the backbone dihedral angles undergoing fluctuations superior
than 20° in the glucose-based systems, over the first and last 400 ns of the simulations.

Statistics are summarized in the table below.

form the complete hydrophobic core. Additionally, in terms of carbon content, one BTA
unit, which bears three alkyl chains, is roughly equivalent to three dodecyl groups. The
larger size of the BTA grafts probably increases the likelihood of hydrophobic contacts
along the chain, which overall leads to a more efficient folding. The 3D structures of
the p(G-D) copolymer generated from the MD simulations were used to simulate SAXS
curves, in order to compare them to the experimental SAXS measurements (Figure
VI.12). The p(G-D) particles being much smaller than the p(J) and p(J-BD) polymers,
the horizontal plateau extends to higher g values, up to around q = 0.4 nm-. The
experimental curve indicates the formation of core-shell nanoparticles of small size (Rc
= 3.8 nm), owing to the oscillation in the scattering curve around q = 1 - 2 nm-.
Surprisingly, the simulated SAXS curve for a single-chain of p(G-D) did not match the
experimental curve well, although the 3D structures from MD show the formation of
core-shell structures. We attributed this discrepancy to the presence of aggregates in
solution, as suggested by the upturn below g = 0.1 nm-. To support this hypothesis,
mixtures of two and three chains were simulated for the p(G-D) copolymer, starting
from extended chains. As observed in Figure VI.12 A, the overlap between the
experimental and simulated curves is significantly improved when considering
multichain aggregates (see also the x2 values in the table). The maximum of the peak
around g = 1 — 2 nm appears at a smaller g for the aggregate comprising three chains
compared to the single-chain system, which is consistent with the formation of a larger
hydrophobic core. An equilibrium of species, comprising SCPNs but also small
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Figure VI.11. Distribution of the number of intramolecular H-bonds in the different glucose-
based polymers, averaged over the first and last 400 ns of the simulations. The lines delimiting
a box represent the first and third quartiles, whose values are annotated at the edges of the
box. The line inside a box indicates the mean value. The error bar is given as mean + 1.5 x

standard deviation. Statistics are summarized in the table below.

aggregates, probably coexist in solution. This would be in line with DLS measurements,
which show a wide distribution of sizes for the p(G-D) particles, from about 2 to 10
nm.l44] Aggregation likely occurs in the early steps of folding, before the complete
shielding of the hydrophobic moieties, similarly to what happens to misfolded proteins
that expose hydrophobic groups and thus tend to aggregate. This example
demonstrates the robustness of our approach combining MD simulations and SAXS,
as it allows to distinguish particles of similar shape, core-shell structures, but of slightly
different size (see the similarity between structures comprising one, two or three
chains, in the snapshots in Figure VI.12 B). Such resolution is difficult to attain using
experimental means alone. It also demonstrates that aggregate formation is not
necessarily accompanied by a strong increase in Rg, making it very difficult to infer
SCPN formation by measuring the size of the particles in solution. It seems likely that
some experimental results describing the formation of SCPNs were in fact
characterizing mixtures of single-chain systems and small aggregates, which could
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explain, in part, the surprisingly wide range of sizes reported in the literature for SCPNs
of similar molecular weights.[36] Much larger aggregates were detected experimentally
for the p(G-B) copolymers. This is probably due to the larger size of the hydrophobic
BTA grafts, which facilitates interparticle contacts, and to their ability to make H-
bonds with BTA units of other chains. The formation of large aggregates was
demonstrated to be dependent on the percentage of BTA units in the chain, for similar
polymers.[11] Given the higher computational cost associated with the simulation of
such multichain systems and the uncertainty concerning the number of chains
comprised in the p(G-B) aggregates, we did not investigate them by MD simulations.

A [0 Experimental
0.1 o O p(G-D)-1 chain
<& p(G-D)- 3 chains
. 2. XZ excluding 50
- Simulated curves Xz (-) first points (-)
E p(G-D) - 1 chain 116.1 £ 6.6 51.6+3.8
E, p(G-D) - 2 chains 174 +28 3.6+0.7
0.001 5 p(G-D) - 3 chains 11.3+1.0 3.0+04
0.0001 T T
0.1 1
q (nm™)

R, =1.8 nm R, =2.6 nm R, =3.0 nm

Figure VI.12. Comparison between simulated and experimental SAXS curves for the p(G-D)
copolymer. (A) Experimental (black squares) and simulated SAXS curves in water for the p(G-
D) systems comprising one (red circles) or three (blue diamonds) chains. The curve generated
from two chains is not shown, for the sake of clarity. The experimental polymer concentration
is 2.5 mg.mL. The x2 values, assessing the accuracy of fit, are given in the table next to the
graph. They were also calculated without the first 50 points, because the upturn detected
experimentally in the low-q region of the spectrum (g < 0.1 nm™) is caused by a population of
larger aggregates, that our simulations cannot reproduce. (B) Final snapshot of p(G-D)
comprising one, two or three chains generated from the aMD simulations and used to simulate

the SAXS curves. The glucose and dodecyl units are colored in blue and green, respectively.
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VI.5. Comparison between Jeffamine- and glucose-based
(co)polymers

As described in the two preceding sections, the nature of the hydrophilic grafts has a
strong impact on the morphology of the chains in water. While the Jeffamine-based
systems remain quite extended and form worm-like structures, the glucose-based
copolymers are able to fold into core-shell SCPNs (with the competition of
intermolecular aggregation). This is well reflected by measurements of the asphericity
parameter, which show that the p(G-D) and p(G-B) systems are the more spherical
systems, although they do not form perfect spheres, in agreement with the ellipsoidal
core-shell structures detected experimentally (Figure VI1.13).

1.0
Asphericity Average * Std. dev.
. 0.8
3 p(J) 0.72 +0.04
[]
5 p(J-r-BD) 0.54+0.19
H] 0.6 4
= p(J-b-BD) 0.37 £0.13
5
T 044 p(J-mb-BD) 0.57 +0.16
=
& p(G) 0.37 £ 0.15
< .2
0.18 £ 0.13
0.0 0.10 +0.05

pW)  p(J-r-BD) p(J-b-BD) p(J-mb-BD) p(G) P(G-D)  p(G-B)

Figure VI.13. Distribution of the asphericity parameter for each system, computed over the
last 400 ns of the simulations. The lines delimiting a box represent the first and third quartiles.
The line inside a box indicates the mean value. The error bar is given as mean =+ 1.5 x standard

deviation. Statistics are summarized in the table.

The Jeffamine-based polymers exhibit higher values, as expected given their extended,
rod-like character. The p(J-BD) copolymers, more compact due to the formation of the
hydrophobic domains, display lower values than p(J). Among them, p(J-b-BD) is
significantly more spherical, although it remains extended (see snapshots in Figure
VI.S4). We attribute this behavior to the formation of the dense hydrophobic core
located at the center of the chain, as preorganized in the primary structure,
demonstrating that the sequence of monomers influences the morphology of the
system. In both polymer families, the introduction of hydrophobic grafts induces
compaction of the main chain, with a stabilization around local or global hydrophobic
domains. The formation of these domains is associated with reduced backbone
mobility, as indicated by a larger decrease in root mean square fluctuation (RMSF)
values for the copolymers compared to their fully hydrophilic counterparts throughout
the simulations (Figure VI.14). This effect is particularly pronounced in the p(G-D)
and p(G-B) systems, whose conformational flexibility significantly drops upon folding
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into compact globules, as already evidenced by the reduced fluctuations of their
dihedral angles (Figure VI.10).

Distribution of the RMSF values Distribution of the RMSF values
A over the first 400 ns B over the last 400 ns

30 30
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Last 400 ns 10+3 9+2 8+3 8+3 1243 5+2 4+2

Average * Std. dev.
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Figure VI.14. Distribution of the RMSF values over the (A) first and (B) last 400 ns of the

simulations. (C) Table summarizing the data.

Simulations and experiments both demonstrated that the nature of the hydrophilic
grafts strongly impacts the morphology of the chains in water. Global folding of the
Jeffamine-based copolymers is prevented by the highly polar Jeffamine grafts, which
remain extended and interact with many water molecules. This behavior is well
reflected by the average number of H-bonds performed by each kind of side-chain with
the solvent (Figure VI.15). A Jeffamine chain performs, on average, 18 H-bonds with
water molecules per conformation, which is significantly more than the glucose units
(6 H-bonds per conformation). Jeffamine — water interactions significantly contribute
to the limited flexibility of these polymers, preventing complete folding. This graph
also indicates that the number of interactions with the solvent for a given side-chain is
independent of the system to which the graft belongs. For instance, a Jeffamine graft
performs 18 H-bonds whether it is in the fully hydrophilic p(J) or in a p(J-BD)
copolymer. The local folding of the Jeffamine-based copolymers is also related to the
weaker hydrophobic driving force, compared to the glucose-based analogues. The long
Jeffamine grafts efficiently shield the dodecyl and BTA units, as indicated by
measurements of their SASA values (Figure VI1.16). The dodecyl and BTA grafts are
slightly more exposed to the solvent in the p(G-D) and p(G-B) systems than in the p(J-
BD) copolymers, suggesting that the latter do not require global compaction to shield
their hydrophobic groups. In contrast, the glucose moieties being much shorter, the
glucose-based copolymers must fold into compact structures around a single
hydrophobic core to minimize the exposure of their hydrophobic units to water.
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Figure VI.15. Number of H-bonds with the solvent per conformation, for each kind of side-

chain in each system, averaged over the last 400 ns of the simulations. Statistics are

summarized in the table below.
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Figure VI1.16. SASA value for each kind of hydrophobic moiety in each system, averaged over

the last 400 ns of the simulations. Statistics are summarized in the table below.
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VI.6. Role of the BTA units in the folding process

Finally, we investigated more specifically the role played by the BTA grafts, which are
often introduced with the aim of forming “structured” hydrophobic domains through
their helical stacking.[9:10] Interactions between BTA units have been supported by
circular dichroism (CD) experiments in various systems[9:120l; however, such
measurements do not distinguish between intra and interchain interactions, nor do
they provide a direct visualization of the spatial organization of the BTAs. All-atom MD
simulations offer a powerful approach to probe their role in the folding process of
SCPNs.

Overall, the BTA units appear to contribute to the folding primarily through their
hydrophobic nature. In the p(J-BD) systems, their alkyl chains merge with the dodecyl
units in the hydrophobic domains (see snapshot and zoom in Figure VI.4 B), while
in the p(G-B) copolymers, they constitute the central hydrophobic core of the core-
shell structures (see snapshot in Figure VI.8 B). However, unlike the dodecyl grafts,
the BTAs are amphiphilic, with three amide moieties surrounding their aromatic core.

A p(J-r-BD) B p(J-b-BD) c p(G-B)

BTA (alkyl tails) mmmm BTA (core + amide groups) mmsm Dodecyl wmmmm Backbone

Figure VI.17. Final MD snapshots zooming on hydrophobic clusters belonging to the (A) p(J-
r-BD), (B) p(J-b-BD) and (C) p(G-B) systems. For each system, a focus is made on the BTA
cores (represented in red), where H-bonds are shown as black dots. The snapshots show that
the BTA cores are mainly found at the periphery of the hydrophobic clusters and do not form
well-organized helices, although they perform some H-bonds. Hydrophilic grafts are not

shown, for the sake of clarity.
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These polar parts are essentially found at the periphery of the hydrophobic domains,
where they contribute to the shielding of the hydrophobic groups (Figure VI1.17). This
is reflected by the number of H-bonds performed by the BTA units with the solvent,
around three per conformation (see Figure VI.15). These numerous BTA — water
interactions are in competition with the establishment of persistent contacts between
the BTA units, as indicated by their weak number of H-bonds and m-type interactions!
(Figure VI1.18). The p(J-b-BD) system displays slightly more interactions: in this
copolymer, all the BTA units are preorganized into the same hydrophobic core,
increasing their chances of encounter in comparison to the other Jeffamine-based
microstructures, where BTAs are dispersed into several hydrophobic clusters.
Interestingly, in the p(G-B) systems, which also regroup all their BTA units within the
same hydrophobic core, the number of interactions between BTAs is almost zero, on
average. This could be due to the strong decrease in backbone flexibility accompanying
the formation of the globule, which limits the reorganization of the BTA cores after
folding. Additionally, the BTAs are slightly more exposed to their solvent in the p(G-B)
systems (see SASA measurements, Figure VI1.16), which could further favor BTA —
water over BTA — BTA interactions. The more efficient screening performed by the long
Jeffamine grafts seems to increase the contacts between BTAs, although the
interactions remain limited. Our simulations provide a very different picture than the
one commonly used to describe the role of BTAs in such SCPNs, often representing
them in well-organized supramolecular helices within the hydrophobic domains.[9::0]
This should make us reconsider the “structuring” effect of these units, and their ability
to transmit their chirality; for example, it was shown in similar polymers bearing
catalytic units that, despite efficient catalytic properties and the presence of chiral BTA
groups, the reactions were performed without enantioselectivity.[62] The measured CD
signals, which undoubtedly confirm the presence of BTA interactions, could originate
from transient contacts between BTAs located within the same hydrophobic domains,
rather than from the formation of well-organized supramolecular helices.
Intermolecular interactions within larger aggregates could also contribute to the CD
response. Of course, we cannot rule out the possibility that our simulations misbalance
BTA — water and BTA — BTA interactions, although similar simulation protocols have
previously been successfully applied to study BTA-based supramolecular
assemblies.[62:63]

' n-type interactions are counted between aromatic cycles following these geometric criteria: the distance
between their centers of mass must be < 5 A, and the angle between their planes must be < 45 ° or > 135 °.
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Figure VI.18. Data on the interactions between BTA units. (A) Average number of H-bonds
and (B) m-type interactions per conformation, measured during the whole simulations. Data
is shown as mean + standard deviation. The pale lines represent the distribution of

measurements. (C) Table summarizing the data.
VI1.7. Conclusion

Throughout this chapter, we have demonstrated that atomistic scale MD simulations
constitute a promising tool to gain insight into the folding behavior of amphiphilic
heterograft polymers. The current computational power using GPUs is now adapted to
treat these very large systems (more than 30,000 atoms for p(J) in a box of ~
2,500,000 atoms of solvent) at the atomistic scale. A combination of MD simulations
and SAXS experiments revealed that Jeffamine-based copolymers adopt globally
extended structures capable of forming local hydrophobic domains. Copolymers
functionalized with hydrophilic glucose grafts are instead capable of global folding into
core-shell structures comprising a single central hydrophobic core. Importantly, our
combined MD and SAXS approach allowed us to elucidate, at the atomistic level, the
formation of small aggregates for the p(G-D) particles. These aggregates, which are
very similar in size and shape to the SCPNs formed by the same system, could not have
been detected by experiments or simulations alone. Their presence could only be
confirmed by confronting the simulated SAXS curves to the experimental ones.
Additionally, comparing our theoretical results to experiments was crucial, as we have
seen that MD simulations done with inaccurate parameters can lead to completely
wrong predictions. This demonstrates the robustness of our approach, and the
complementarity between MD simulations and SAXS experiments to elucidate the 3D
structure of SCPNs. The atomistic view provided by the simulations allowed us to
investigate the influence of the primary structure on the folded conformations and
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internal organization of the Jeffamine-based copolymers, revealing differences
between random, blocky or multiblocky microstructures. These systems are
particularly interesting to study sequence — structure relationships, as their limited
folding permits to retain the information encoded in the sequence into the 3D
structures. This property could be valuable for various applications: for instance, a
recent example showed that the distribution of catalytic units within the sequence of
an SCPN influenced its catalytic activity.l64] Atomistic MD simulations, especially
accelerated methodologies, are now at a timely stage to be used as a predictive tool to
guide the design of SCPNs for targeted applications, before embarking on lengthy
synthesis procedures.

VI.S8. Simulation protocol

MD simulations were carried out using the AMBER package.l5] The polymer chains
were assembled in several steps. First, the monomeric units and chain-ends were built
individually with the Avogadro 1.2.0 software.l651 Each of these residues was then
assigned atomic partial charges following the AM1-BCCl54! or the RESPI50]
methodology (as discussed in Section VI.3), using the antechamber module of
AMBER. The QM calculations were done with the Gaussian 16 software.l¢¢] The
polymer chains were then built by assembling the monomers in the desired sequence,
with randomized chirality, using the sequence command of the LEaP module of
AMBER. The ratio between the a and 3 anomers of the glucosamine monomers was set
as 60 % a and 40 % [, as measured experimentally in aqueous solution.l¢7! Three
different sequences were investigated for the p(J-BD) copolymers, to study the effect
of the primary structure on the 3D structures. The first one is a random copolymer,
denominated as p(J-r-BD). The second one is a bloc copolymer, denominated as p(J-
b-BD), in which all dodecyl and BTA side-chains are placed consecutively in the center
of the chain. The third one is a multiblock copolymer, p(J-mb-BD). The dodecyl and
BTA grafts are distributed in three clusters, at the beginning, the middle and the end
of the copolymer. The glucose-based copolymers, p(G-D) and p(G-B), were only
studied as random copolymers. Each polymer was simulated in three replicas,
identified by the Roman numerals I, IT and III. For the Jeffamine-based systems, the
same sequence was used for all three replicas, i.e. p(J-r-BD) I, II and III all have the
same sequence of monomers. For the glucose-based systems, a new (random)
sequence was inputted for each replica. All force field parameters for the polymers and
their side-chains (Jeffamine, glucose, dodecyl, BTA and Nile Red) were given by GAFF
2.11.[52] The starting structure of the polymer chains were reworked by hand to remove
most of the steric clashes using the PyMOL software, which was also used to produce
all the MD snapshots.[68] This step was followed by a geometry optimization in implicit
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solvation, with 1,000 steps of steepest descent followed by 9,000 steps of conjugated
gradient. The stable molecules were then solvated in rectangular water boxes, ensuring
a minimal distance between any solute atom and the edge of the box of 25 and 40 A for
the Jeffamine- and glucose-based systems, respectively. One Na+* ion was added to
bring the system to electroneutrality. The OPC3 water model was used to describe the
solvent.[®9] The hydrogen mass repartitioning (HMR) scheme was applied on all solute
atoms, enabling the use of a timestep of 4 fs.[70] All subsequent simulations were
performed with the GPU version of AMBER. The MD protocol followed five steps. First,
a 10,000 steps minimization (1,000 steps of steepest descent and 9,000 steps of
conjugated gradient) was carried out on the solvent molecules and ion only, using
positional restraints on the solute with a force constant of 25 kcal.mol.A-2. A second
minimization step was carried out without restraints, with the same methodology.
Then the system was heated in 1 ns from 10 to 300 K in the NVT ensemble, with 1 more
ns of equilibration under these conditions. During heating, positional restraints were
applied on the solute atoms with a force-constant of 10 kcal.mol.A-2. The temperature
was maintained at 300 K with a Langevin thermostat, using a collision frequency of 1
ps—t. The system was then equilibrated for 10 ns in the NPT ensemble. The pressure
was maintained at 1 bar with a Monte Carlo barostat, and the pressure relaxation time
was set at 2 ps. Finally, the production phase of the simulation was launched in the
same conditions for 2 ps. This portion of the simulation was analyzed, saving a
snapshot each ns. For all these steps, the cutoff for non-bonded interactions was fixed
at 8.0 A and the long-range electrostatic interactions were treated by the particle mesh
Ewald method. The SHAKE algorithm was applied to constrain bonds involving
hydrogen atoms. Note that the simulations on the Jeffamine-based (co)polymers were
restarted after 1.2 ps: the last snapshot was extracted and re-solvated in a smaller
solvent box, and the simulation was extended until 2 us, such as to save computational
time.

Accelerated MD (aMD) simulations were performed for 400 ns on the p(J) and p(J-r-
BD) systems (starting from the snapshot extracted after 1.2 us) and for 300 ns on the
p(G-D) copolymer (starting from the initial extended conformation).[53] The building
of the system and the first four steps of the simulations, before the production phase,
followed the protocol described above. However, the HMR scheme was not applied and
the timestep was set to 2 fs. The p(G-D) aggregates of two or three chains were
simulated with the same aMD protocol, for more than 1 us. The macromolecules
started as fully extended chains, with initial intermolecular contacts between some
dodecyl moieties, such as to promote intermolecular assembly instead of single-chain
folding. The basic principle of aMD is to provide a boost on the energy when the system

153



Chapter VI

reaches stable states, to facilitate transitions between local minima separated by high
energy barriers. Here, two boosts were applied: one on the dihedral energy, and one on
the potential energy. They depend on two boost parameters, E and a, which were
determined as follows for the dihedral energy:

Ep = (4 x Nyesiques) + Edihed,avg (VLI)
ap = (0.8 X Nyesiques) (VL.ID)

With Ep and ap, the dihedral boost parameters, Nresidues, the number of solute residues
and Edihed,avg, the average dihedral energy, measured during the 10 ns of equilibration
in the NPT ensemble. Similarly, the boost parameters for the potential energy, Ep and
ap:

Ep = (0.2 % Natoms) + Epot.avg (VLIID)
ap = (0.2 x Nytoms) (VL.IV)

With Natoms, the total number of atoms in the system (including solvent) and Epot,avg,
the average potential energy, measured during the 10 ns of equilibration in the NPT
ensemble. Note that the boost parameters may be adapted for a higher or lower
acceleration.

After the simulations, all analyses were done with the cpptraj module of Amber.[71 The
root mean square deviation (RMSD) values were computed after removal of the
translational and rotational movements, taking the first snapshot of the production
phase as the reference structure. The radius of gyration (Rg) is a measure of
compactness and gives the average distance of an atom to the geometric center of the
system. The Rc was measured on all atoms except hydrogens. The solvent-accessible
surface area (SASA) measures the exposure of a group of atoms to its surrounding
environment. The higher the SASA, the more the moiety is exposed. SASA values were
calculated with the LCPO algorithm, using a van der Waals radius of 1.4 A for the
solvent probe.[72] Root mean square fluctuations (RMSF) are an indicator of the
mobility of an atom or group of atoms. The higher the RMSF, the greater the positional
fluctuations. First, translational and rotational movements were suppressed by
aligning all structures to a reference, generally the first conformation of the production
phase (for the RMSF calculated in the last 400 ns, the reference structure was the first
of this time interval). Then, RMSF values were computed for each monomer on the
backbone carbon atom bearing the side-chain. The fluctuations of the dihedral angles
were measured for all bonds in the backbone as their average deviation to their mean
value. The fluctuation of one angle 04 around its mean value Omean, calculated for the N
conformations sampled, was computed as follows:
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YV [(84; — Omean + 180) modulo 360] — 180 |
N

To avoid the problem of working with a periodic variable, the mean dihedral angle was

(VL.V)

computed in the cartesian space.[73] Each individual angle, expressed in degrees in the
range [-180 ° ; 180 °], is converted in (x,y) coordinates. The average values over the N
conformations of the x and y coordinates define the mean dihedral angle in the
cartesian space. This angle is then converted back to polar coordinates, in degrees, as
Omean. In the formula, the addition of 180 ° and the application of modulo 360 are done
to ensure that 0; — Omean values are expressed in the range [0 ° ; 360 °]. Then, 180 ° are
subtracted to measure the difference in the desired [-180 ° ; 180 °] interval, and the
absolute value is taken, as we are only interested in the absolute difference. The
hydrogen bonds were detected with the hbond command of cpptraj, with distance and
angle cutoffs of 3.0 A and 135°, respectively. n-type interactions (parallel stacking)
were detected using geometric criteria: two aromatic units are considered in
interaction if the distance between their centers of mass is less than or equal to 5.0 A
and if the angle between the normal vectors of their planes is < 45 or > 135°. The
asphericity parameter, whose value ranges between o for a perfect sphere and 1 for rod-
like conformations, was computed based on the gyration tensor values, as described
elsewhere.[74] The simulated SAXS curves were generated using the CRYSOL 3.2.1
software.[75] The average displaced solvent volume per atomic group, the contrast of
the hydration shell and the relative background used to generate the simulated SAXS
curves were optimized against the experimental SAXS curves (experimental
concentration of 1.5 mg.mL* and 2.5 mg.mL for the Jeffamine- and glucose-based
(co)polymers, respectively). The discrepancy between the simulated and experimental
curves is quantified by CRYSOL with a x2 value, which compares, for each data point
(each g value), the simulated intensity and the experimental intensity. The higher the
¥2 value, the less the curves overlap (see Ref. 75 for mathematical details). For the p(J)
system, three average curves were obtained, at different times: in the range 520 — 700
ns, in the range 1820 — 2000 ns and in the last 100 ns of the accelerated simulation, to
ensure that the conformations probed during the simulations remain in agreement
with the experimental SAXS spectra over time. 10 conformations of each replicate (p(J)
I, p(J) II and p(J) III), one conformation each 20 ns (or each 10 ns for the aMD
simulations) were extracted to compute the average curves. Similarly, the scattering
curves of p(J-BD) were obtained by averaging over the three replicas of the three
sequences, p(J-r-BD), p(J-b-BD), and p(J-mb-BD). The scattering curves of p(G-D) for
one, two or three chains were obtained by averaging the spectra obtained for 10
conformations, generated through aMD simulations.
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VI.9. Additional data

Data on the RMSD for all systems
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Figure VI.S1. Evolution of the RMSD values over time for the (A) p(J), (B) p(J-r-BD), (C)
p(J-b-BD), (D) p(J-mb-BD), (E) p(G), (F) p(G-D), (G) p(G-B) systems and (H) p(G-D)
aggregates of two and three chains. In some cases, all replicas of the same microstructure do

not converge to the same RMSD value, reflecting that different conformations may be obtained

from a given primary structure.
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Conclusion and perspectives

VII. Conclusion and perspectives

Throughout our thesis, we attempted to get a glimpse into sequence — structure —
function relationships for a variety of SCMs and SDMSs, from the impressive properties
displayed by the biomacromolecules of life to purely artificial systems, designed
following chemical intuition. After reviewing the most important results gathered from
our work, we will regroup the general lessons we could learn, and provide a general
opinion on the current and future roles that we envision for human-made SCMs and
SDMs.

The defined sequence and folding properties of natural SDMs were harnessed for
biorecognition applications in Chapter IV. In Chapter IV-A, we investigated the
interaction between collagen-mimetic peptides and a collagen-binding receptor. MD
simulations showed that very subtle changes, here concerning the stereochemistry of a
small number of AAs in the peptide, could strongly affect its interactions with the
receptor. This molecular-level information could be connected to experimental
observations showing a reduced ability of this peptide to support cell adhesion and
migration. In Chapter IV-B, MD simulations helped us understand how light-
induced trans to cis isomerization could affect the binding of photoswitchable ligands
to a complementary DNA template. Our results indicated that hydrogen bonding
interactions between the ligands in their trans configuration and the template were
reinforced and even dominated by a vast network of m-type interactions between the
ligands. These interactions were weaker for the molecules in their cis configuration,
leading to more disordered assemblies and weaker H-bonds with the template. These
examples demonstrate that natural SDMs are very sensitive to small changes in the 3D
structure of their ligands.

In Chapter V, we investigated the possibility to precisely preorganize catalytic and
recognition units within two synthetic SDMs, which need to self-assemble to form an
active supramolecular catalyst. Our results indicated that the molecules were highly
flexible and adopted folded conformations, leading to the generation of a disordered
and globular duplex, where all functional groups could interact. This shows that
precisely controlling both sequence and stereochemistry (as the SDMs are
enantiopure) does not necessarily imply the formation of well-defined 3D structures,
unlike what is observed for natural SDMs. However, controlling the monomeric
composition was essential for achieving high catalytic activity, and specific interactions
were detected between the complementary recognition units despite the apparent
disorder within the supramolecular duplex.
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Chapter VII

In Chapter VI, we studied the folding and 3D structures of purely synthetic
amphiphilic SCPNs in water. Our results revealed that, depending on the nature of the
hydrophilic grafts, very different morphologies were obtained. In particular, polymers
functionalized with oligo(ethylene oxide) grafts adopted extended, worm-like
structures, with local folding around the hydrophobic moieties. Sequence effects were
studied for these polymers in silico, and it was shown that their restricted folding
allowed them to retain the information encoded in their sequence within their 3D
structure. This work demonstrates that MD simulations are reaching a stage where
they can be reliably used as a predictive tool to guide the design of SCPNs. Recently, a
strategy combining MD simulations and machine learning (ML) has been applied to
predict the conformational landscape of SCPNs.[tl While this study relied on a
simplified physical model to describe the polymers, we now have the computational
resources to investigate more complex systems with all-atom MD simulations,
accounting for realistic chemical structures that incorporate diverse functional groups.

Our results revealed that sequence and chirality are of crucial importance when
interactions with natural SDMs are involved. In Chapter IV-A, the presence of a
glutamate moiety inside an AA recognition motif GXX’GEX” was crucial for the
binding to the receptor. Sequence alone, however, is not enough: two peptides
distinguished only by their chirality displayed different behaviors. In view of creating
synthetic SDMs replicating the properties of biomacromolecules, a particular attention
should be directed to stereochemistry, as indicated by others.[2] This contrasts with
traditional polymers, for which tacticity is generally neglected. Mismatches between R-
and S-monomers along the chain could be detrimental to the formation of controlled
structures. The importance of sequence was also demonstrated for synthetic SDMs in
Chapter V, as only one missing catalytic unit could significantly decrease the catalytic
activity of the duplex. This work also revealed that synthetic SDMs could display very
different properties than their natural counterparts. While proteins and nucleic acids
rely on a rather rigid backbone, the oligomers presented here probably incorporate too
many rotatable bonds between their functional units to retain the information encoded
in their primary structure. This led to very flexible chains, where the precise monomer
ordering does not seem to be crucial for the catalytic activity. Other SDMs, based on
different chemistries, also exhibited an important flexibility.[3] While sequence effects
were clearly demonstrated even within flexible and folded systems, they were
sometimes counter-intuitive, difficult to predict, and challenging to rationalize.[4.5]
Therefore, while the ability to undergo conformational changes is required for some
applications, it seems important to find an optimized balance between flexibility and
rigidity within synthetic SDMs. Currently, they generally do not tend to adopt well-
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defined 3D structures. We mentioned in Chapter I the idea of constituting databases
of MD-generated structures, to train ML algorithms aimed at developing accurate
predictive models for artificial SCMs. However, for such models to be efficient, very
large datasets of well-resolved structures are required, as illustrated with the Protein
Data Bank for proteins. We saw in Chapter II that ML algorithms already struggle
with single-stranded nucleic acids, which can adopt a variety of folded structures and
for which experimental data remains sparse. If these natural SDMs based on a well-
known backbone and functionalized with only four different monomers are already
challenging, it seems very difficult to envision accurate predictive models for synthetic
SDMs. To make progress, general design principles may need to be established in order
to reduce the conformational space. One direction could be to restrict the number of
rotatable bonds between functional units, favoring short backbones and side-chains,
as observed in natural SDMs. This strategy would at least limit folding for short chains,
giving more weight to the encoded primary structure, and facilitating the
establishment of sequence — structure relationships, before gradually increasing the
complexity of the studied systems.

Based on these lessons, what can we expect for the future? The field of SCMs and SDMs
has attracted a considerable interest, driven by the possibility to design “artificial
proteins” with completely novel chemistries. Several examples, in the literature and in
our thesis, have demonstrated the promises of synthetic SCMs. However, although
significant progress has been made in the past 15 years, the synthesis of SDMs still
essentially rely on tedious step-by-step approaches. Without innovations and the
discovery of new synthetic methodologies, an absolute control over the sequence of
long polymer chains (more than ~20 units) still seems far of reach.[®] In the same time,
we have seen that characterizing the 3D structures of such molecules remains
extremely challenging, even for short chains. In the medium term, the practical
applications of SDMs are likely to remain limited. Among them, information
storage stands out. The impossibility to reach high DP for synthetic SDMs is mitigated
by the possibility of incorporating large monomer libraries, which easily outperform
the four nucleobases of DNA, also considered for such applications. Another advantage
of SDMs over DNA is the possibility of adapting the backbone chemistry to the
detection method, for instance by designing backbones with predictable fragmentation
patterns suitable for MS/MS. Moreover, the polymer can be tailored for stability under
any desired conditions, whereas DNA imposes constraints for long-term storage.
Beyond applications, SDMs provide an ideal platform for fundamental studies,
enabling precise investigation of the role of specific monomer units. This was
illustrated in our thesis in Chapter IV-A, with the role of glutamate, and in Chapter
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V, where all five catalytic units were required to achieve efficient catalysis. Therefore,
there remains a lot of efforts to engage in fundamental research before any practical
application, in particular on investigating the role of individual functional units within
complex processes. This is extremely valuable to study catalytic mechanisms or
(bio)recognition phenomena. For applications where the control over the 3D structure
is required, SDMs do not appear to be the best option. While there is something
beautiful in trying to reproduce the absolute sequence and structure definition of
proteins or nucleic acids into synthetic materials, we are still far from being able to
rationally implement these design principles into functional systems. To mimic natural
biomacromolecules, SCPNs incorporating a limited control over their primary
structure appear more promising. This is particularly true for systems with restricted
folding, such as the Jeffamine-based polymers studied in Chapter VI. SCMs based on
this design, with block or multiblock architectures, could be ideal targets to study
sequence — structure — function relationships, as the information encoded in their
sequence is retained in their 3D structure. Polydispersity and the lack of absolute
sequence definition would not be problematic, provided that the global morphology
can be tuned by adjusting the ratio and nature of solvophilic and solvophobic units.
Furthermore, the design of such single-chain systems can now be rationalized using
all-atom MD simulations, enabling the investigation of sequence — structure
relationships in silico to guide the development of efficient sequence-controlled
SCPNs. For these systems, where clearer links between sequence and structure appear,
the emergence of predictive ML algorithms seems more realistic. In this sense,
sequence-controlled SCPNs may represent a major step towards synthetic materials
with protein-like levels of control, opening the door to a new generation of functional
artificial macromolecules.

The modeling strategy used in our thesis will also undoubtedly benefit from further
advances in computational resources and the development of new methodologies. The
simulation of natural SDMs is steadily improving, in particular concerning proteins,
with the help of ML predictive tools such as AlphaFold[”] and the emergence of ML
force fields approaching QM accuracy within reasonable timescales.[8] Another
particularly exciting perspective is the ability to simulate more realistic biological
environments. For instance, in Chapter IV-A, the interactions between peptides and
the binding site of an integrin were investigated in isolation, neglecting the influence
of the surrounding cellular context. In the future, we can envision the simulation of
increasingly complex biological environments, potentially up to whole-cell models,
through multiscale approaches exploiting coarse-grained (CG) representations and ML
tools.[9] This would allow us to study protein-ligand complexes in realistic cellular
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environments, and to explore how these complexes influence and are influenced by the

myriad of other cellular components with which they dynamically interact. Advances

in this direction would make MD simulations an even more powerful computational

microscope, capable of observing dynamic cellular processes with atomistic resolution.
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