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Abstract

Objective This systematic review evaluated the diagnostic accuracy of large language models (LLMs) in otolaryngology-
head and neck surgery clinical decision-making.

Data sources PubMed/MEDLINE, Cochrane Library, and Embase databases were searched for studies investigating clinical
decision support accuracy of LLMs in otolaryngology.

Review methods Three investigators searched the literature for peer-reviewed studies investigating the application of LLMs
as clinical decision support for real clinical cases according to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. The following outcomes were considered: diagnostic accuracy, additional examina-
tion and treatment recommendations. Study quality was assessed using the modified Methodological Index for Non-Ran-
domized Studies (MINORS).

Results Of the 285 eligible publications, 17 met the inclusion criteria, accounting for 734 patients across various otolaryn-
gology subspecialties. ChatGPT-4 was the most evaluated LLM (n=14/17), followed by Claude-3/3.5 (n=2/17), and Gemini
(n=2/17). Primary diagnostic accuracy ranged from 45.7 to 80.2% across different LLMs, with Claude often outperform-
ing ChatGPT. LLMs demonstrated lower accuracy in recommending appropriate additional examinations (10-29%) and
treatments (16.7-60%), with substantial subspecialty variability. Treatment recommendation accuracy was highest in head
and neck oncology (55-60%) and lowest in rhinology (16.7%). There was substantial heterogeneity across studies for the
inclusion criteria, information entered in the application programming interface, and the methods of accuracy assessment.
Conclusions LLMs demonstrate promising moderate diagnostic accuracy in otolaryngology clinical decision support, with
higher performance in providing diagnoses than in suggesting appropriate additional examinations and treatments. Emerg-
ing findings support that Claude often outperforms ChatGPT. Methodological standardization is needed for future research.
Level of evidence NA.

Keywords Artificial intelligence - Large language model - Otolaryngology - Otorhinolaryngology - Generative artificial
intelligence
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in medicine and surgery as adjunctive tools for clinical
and basic science research, scientific paper grammar and
spelling improvement, referencing, patient information,
real cases and clinical vignette management [1—4]. Some
practitioners report using LLMs in clinical practice [5, 6],
making the assessment of diagnostic accuracy an important
topic of research. To date, Chatbot Generative Pre-trained
Transformer (ChatGPT) is considered as the most popular
and primary LLM used in Medicine with variable degrees
of diagnostic and treatment accuracy on fictive clinical
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vignettes, real clinical cases, or very rare conditions [3, 4,
7]. In a 2024 state-of-the-art review [3], preliminary data
suggested that ChatGPT reported 47-79% accuracy in pro-
viding a plausible primary diagnosis, and low scores for
selecting the most adequate additional examinations. Since
the publication of this state-of-the-art review, the number
of studies dedicated to the assessment of LLM accuracy
in the management of real clinical cases has substantially
increased, particularly regarding other LLMs, such as
Claude Sonnet, Gemini, Bard, and Large Language Model
Meta Al (LLaMA). Moreover, updated versions of some
LLMs can analyze clinical images, radiological studies,
pathological findings, and video content, which may theo-
retically improve their accuracy [8, 9].

This systematic review evaluated the diagnostic accuracy
of large language models (LLMs) in otolaryngology-head
and neck surgery clinical decision-making.

Materials and methods

The criteria for study inclusion and exclusion were based
on the population, intervention, comparison, outcome, tim-
ing, and setting (PICOTS) framework [10]. The data collec-
tion was performed by three independent authors (RFA, KC
and JRL) according to the PRISMA checklist for systematic
reviews [11].

Types of studies

Retrospective and prospective case series, along with con-
trolled and uncontrolled prospective studies published
between January 2020 and February 2024 were included if
they investigated LLM accuracy or concordance with prac-
titioner decisions in managing real clinical cases from oto-
laryngology settings. The studies were published in English,
Spanish, or French peer-reviewed journals. The authors con-
sidered pre-print papers. Case reports were excluded, and
only studies reporting data for >5 cases were considered.

Populations, inclusion, and exclusion criteria

Studies evaluating LLM performance in real clinical cases
were included if they reported clear methodology, inclusion
and exclusion criteria. Potential overlap between clinical
studies published by the same research teams was assessed,
with smaller cohorts excluded. However, when overlapping
studies presented substantially different outcomes, all rel-
evant studies were included in the analysis.

@ Springer

Outcomes

The following outcomes were evaluated: study design,
number of cases, subspecialty distribution, patient demo-
graphics, LLM configurations, data input methodology,
evaluation metrics (including evaluations of diagnostic
accuracy, primary diagnosis establishment, additional
examination and treatment recommendations), and model
performance comparisons (comparative studies).

Intervention and comparison

The methodology for evaluating LLM outputs and their
comparative assessment versus practitioners, expert panels,
or other LLMs was systematically analyzed.

Timing and setting

There were no criteria for specific timing in the evaluation
process of the LLMs.

Search strategy

The literature research was conducted by two investigators
(RFA, JRL, KC) through PubMed/MEDLINE, Cochrane
Library and Embase databases for relevant peer-reviewed
publications related to the LLM accuracy in clinical deci-
sion-making. The following keywords were used: ‘artificial
intelligence’, ‘large language model’, ‘machine learning’,
‘ChatGPT’, ‘GPT-4’, ‘Claude’, ‘Gemini’, ‘LLaMA’, ‘Bard’,
‘clinical decision’, ‘diagnosis’, ‘treatment’, ‘management’,
‘otorhinolaryngology’, ‘otolaryngology’, ‘accuracy’, ‘per-
formance’, and ‘evaluation’ to identify clinical studies,
reviews, and meta-analyses. The authors considered studies
with and without database abstracts. The papers had avail-
able full texts or titles with the search terms. The findings
were reviewed for relevance, and the reference lists of these
articles were examined for additional pertinent studies.
Potential discrepancies in the literature search results were
resolved by an external senior otolaryngologist.

Bias analysis

The authors carried out a bias analysis with the Methodolog-
ical Index for Non-Randomized Studies (MINORS) tool
[12], which is a validated instrument designed for assessing
the quality of non-randomized studies. The MINORS tool
includes 12 items related to the analysis of methodological
points of studies. The items were scored 0 if absent; 1 when
reported but inadequate; and 2 when reported and adequate.

The inclusion of cases was evaluated in terms of consec-
utive inclusion (0 or 2), while the data collection was rated
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as prospective (2), retrospective analysis of prospectively
collected data (1), or absent (0). The quality of endpoints
was judged as high (2) when authors evaluated the LLM
accuracy in primary and differential diagnosis, additional
examinations, and treatment recommendations; incomplete
(1) when assessing only diagnostic accuracy; and low (0)
when evaluations focused on non-diagnosis accuracy or if
there were lacking clear evaluation criteria. The evaluations
of outcomes by independent judges was ideal (2), while the
evaluation by a single judge or two unblinded judges was
evaluated as inadequate. About the follow-up period, the
assessment of the stability of LLM’s outputs over regener-
ated prompts was evaluated as present/adequate (2) or lack-
ing (0). The study size calculation needed to be carried out
(2), mentioned as unnecessary (1), or absent (0). The ideal
MINORS score was 16 for non-comparative studies and 24
for comparative studies.

Results

Of the 1,132 identified studies, 17 publications met our
inclusion criteria (Fig. 1) [4, 7, 8, 9, 13-25]. All studies
were cross-sectional with either prospective or retrospec-
tive case inclusion. Studies represented various otolaryn-
gology subspecialties: head and neck oncology (n=6) [9,
15, 16, 18, 22, 23], general otolaryngology (n=4) [4, 13,
21], laryngology (n=3) [8, 17, 19], oral and maxillofacial
surgery (n=1) [14], rhinology (n=1) [20], pediatric oto-
laryngology (n=1) [24], otology (n=1) [25], and very rare
otolaryngological disorders (n=1) (Table 1).” Excluding
a potential overlap study [4], the present review included
findings of 734 patients. Among studies reporting data of
clinical/histopathological images, [8, 9, 22, 25] it was not
possible to determine the patient count in one study [25].
Studies used the following LLMs for their analyses: Chat-
GPT-4 (n=14/17), [4, 8, 9, 14-18, 20-25] ChatGPT-3.5
(n=3/17)[13, 14, 19], ChatGPT-40 n=1/17) [ 7], Claude-3.0
Opus (n=17) [15], Claude-3.5 Sonnet (n=1/17) [ 7], Google
Bard (n=1/17) [13], Gemini-1.5-Pro (n=1/17) [7], Gemini
Advanced (n=1/17) [16], Llama-2.0 (n=1/17) [17], and
Bing-GPT4 (n=1/17) [13].

Evaluation methodologies

Expert panel was used in the majority of studies (n=15/17),
ranging from 2 to 57 independent experts (Table 1) [4, 7,
8, 13-22, 24, 25]. Alami et al. compared the accuracy of
LLM in oncological case decisions against both NCCN
guidelines and multidisciplinary oncological board determi-
nations [23]. In the study of Schmidl et al., LLM was evalu-
ated for diagnostic accuracy in clinical oncological cases

(carcinomas) and leukoplakia without expert assessment of
the LLM responses [9]. The profile of experts consisted of
otolaryngologists-head and neck surgeons (n=10/15) [4, 7,
8, 13, 15, 18-21, 24], dental or maxillofacial practitioners
(n=1/15) [14], or association of otolaryngologists with the
following specialists: maxillofacial surgeons (n=1/15) [16],
speech-therapist (n=1/15) [17], pathologist (n=1/15) [22],
and pediatricians [25].

The accuracy evaluation of LLM was carried out with
the following tools: validated artificial intelligence perfor-
mance instrument (AIPI) (n=12/17), [4, 7-9, 14-18, 20, 21,
24] a binary evaluation (yes/no) (n=2/17) [13, 22], variable
Likert-scale (n=3/17) [8, 9, 14], total disagreement score
(n=1/17)[16], and a modified version of the Ottawa clinical
assessment tool (n=1/17) [19].

Large language model accuracy for diagnoses

ChatGPT-3.5/4/40, Claude-3/3.5, Bard, Gemini, and Bing-
GPT4 were assessed for primary diagnostic accuracy in at
least one study (Table 2), whereas only ChatGPT-3.5/4/40,
Claude-3/3.5, and Gemini were evaluated across multiple
investigations. There were substantial consistent ranges of
primary diagnosis accuracy values across studies for the
several versions of ChatGPT and Claude Sonnet (Table 2).
Tomo et al. compared the accuracy of ChatGPT-3.5 versus
ChatGPT-4 for oral and maxillofacial conditions associated
with typical pictures [14]. While they reported similar sta-
bility of both LLM versions through regenerated prompts,
ChatGPT-4 surpassed ChatGPT-3.5 for primary diagnosis
accuracy with 80.2% versus 61.8% of correct diagnoses.
ChatGPT-4 was compared to Claude-3 and 3.5 in two stud-
ies [7, 15]. Schmidl et al. showed that both LLMs were sim-
ilar in terms of oncological treatment recommendations and
explanations, but Claude-3 demonstrated higher accuracy
for diagnostic work-up than ChatGPT-4 [15]. ChatGPT-40
and Claude-3.5 were challenged for the diagnosis of very
rare conditions in otolaryngology (case reports) [7]. In this
study, Claude-3.5 reported a significantly higher rate of
accurate primary diagnosis than ChatGPT-4 (54.3% ver-
sus 45.7%); the advantage of Claude-3.5 over ChatGPT-40
being stable when considering common otolaryngological
consultation situations [7].

Accuracy for differential diagnoses was evaluated in 4
studies [7, 8, 19, 21]. The differential diagnosis accuracy
ranges from 28.3 to 90% for ChatGPT. The lowest accu-
racy (28.3%) was found when considering differential
diagnoses of laryngology images [8], whereas ChatGPT-4
performances were substantially higher for otological [25],
and histopathological [22] images. For studies evaluating
the differential diagnosis accuracy in clinical cases without
image interpretation, the differential diagnosis accuracy
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Identification of studies via databases and registers

Records removed before
screening.
Duplicate records removed
(n=189)
Records marked as ineligible
by automation tools (n=325)
Records removed for other
reasons (n=130)

Fig. 1 Chart flow. Three independent investigators conducted the literature search
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Table 1 (continued)

Results

Tools Outcomes

LLMs

Expert/panel

Subspecialty & cases

References

ChatGPT-4>PED

ChatGPT-4 versus human (performance)

8 OTOR, 6 EOTO

54.3% —45.7% —28.6%

PD accuracy (Claude-ChatGPT-Gemini) RD
DD accuracy (Claude-ChatGPT-Gemini) RD
PD accuracy (Claude-ChatGPT-Gemini) CD

acute otitis media; BVFP

AIPI
general dental surgeons; HN

2 independent OTO  ChatGPT-40

35)

Rare General OTO (n

Lechien [7]

Claude > ChatGPT > Gemini
88.6% —77.1% —71.4%
common disease; DD

Likert scale; MF

not provided; OCAT

Claude-3.5

Gemini-1.5

Amsterdam Clinical Challenge Scale; AOM

differential diag-

bilateral vocal fold paralysis; CD

head and neck; LA =Ilaryngologist; LS

Abbreviations: Abbreviations: ACCS

nosis; DS

medical
otitis media

Quality Assessment of Medical

Total disagreement score; TT

maxillofacial surgeon; MH=
Ottawa clinical assessment tool; OME
pediatricians; QAMALI

experienced OTO; GDS

multidisciplinary oncology meeting; NCCN

dental students; EOTO

National Comprehensive Cancer Network; NP=

oral pathology training dental practitioner; OTOR

history; MOM
with effusion; OPT

resident in otolaryngology; PD=primary diagnosis; PED=

second line treatment; SP

treatment

speech language pathologist; TDS =

specificity; SPL

rare disease; SE=sensitivity; SLT

Artificial Intelligence; RD

ranged from 63.5 to 90% [19, 21], with Claude-3.5 demon-
strating superior performance compared to ChatGPT-40 and
Gemini-1.5 [7].

Large Language model accuracy for additional
examinations and treatments

The performance of LLMs, particularly ChatGPT-3.5 and 4,
in recommending the most appropriate additional examina-
tions was investigated in seven studies [4, 8, 18-21, 24].
ChatGPT-3.5/4 recommended adequate additional exami-
nations in 10 to 29% of cases (Table 2), which represents
a lower mean accuracy rate compared to those related to
primary and differential diagnoses. The low accuracy of
ChatGPT in proposing adequate additional examinations
is related to its inability to select the most appropriate
examinations. This finding was illustrated in 5 studies with
a significantly higher number of recommended additional
examinations per patient from ChatGPT versus otolaryn-
gologists [8, 18-20, 24]. Schmidl et al. compared diagnostic
work-up performance of Claude-3 versus ChatGPT-4, dem-
onstrating that Claude-3 more effectively selected appro-
priate additional examinations than ChatGPT-4 [15]. Apart
from the study by Schmidl et al., the capability of LLMs
to recommend adequate additional examinations was not
extensively evaluated for the other LLMs.

ChatGPT-3.5 and particularly ChatGPT-4 were the most
extensively evaluated LLMs for treatment recommendation
accuracy across otolaryngological subspecialties (Table 2).
The accuracy of ChatGPT in proposing appropriate thera-
peutic options demonstrated marked subspecialty variability,
ranging from 16.7 to 60%. Oncological applications yielded
the highest accuracy rates (55-60%) [18, 19], while sig-
nificantly lower performance was observed in laryngology
(25%) and rhinology (16.7%) [20]. Treatment recommen-
dations were compared across LLMs in 3 studies [15-17].
Lorenzi et al. suggested better therapeutic oncological rec-
ommendations from ChatGPT-4 over Gemini [16], which
was attributed to ChatGPT-4’s superior adherence to clinical
guidelines compared to Gemini. Alami et al. [23]. corrobo-
rated this finding, demonstrating that ChatGPT-4 exhibited
high rates of adherence to clinical oncological guidelines
when proposing primary or alternative therapeutic recom-
mendations. The potential superiority of ChatGPT-4 over
other LLMs in oncology was not supported by the findings
of Schmidl et al., who did not find significant differences
between Claude-3 and ChatGPT-4 [15]. In laryngology,
Dronkers et al. compared the therapeutic recommendations
of Llama-2 versus ChatGPT-4 for bilateral vocal cord paral-
ysis. In this specific topic, ChatGPT-4 surpassed Llama-2
with 50% versus 15% of correct management [17].
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Table 2 Summary of accuracy findings of large Language models
LLM Accuracy Findings
Primary Differential Diagnosis Additional Treatment Recommendations Image-Based
Diagnosis Examinations Diagnosis
ChatGPT-3.5 46-89% 90% 10% 60% N/A
ChatGPT-4/40 28.5-82.3%  28.3-90% 12.5-29% 16.7-60% 22.5-89.2%
Claude-3/3.5 54.3-88.6%  Higher than ChatGPT/Gemini N/A N/A Higher than
ChatGPT/Gemini
Google Bard 82% N/A N/A N/A N/A
Google Gemini 28.6-71.4%  Lower than Claude/ChatGPT N/A Lower than Claude/ChatGPT N/A
Llama-2 N/A N/A N/A 15% (vs. 50% for GPT-4) N/A
Bing-GPT4 74% N/A N/A N/A N/A
Abbreviations: LLM =large language model; NA=not available
Table 3 Bias analysis
Studies Clearly Inclusion of Prospective Endpoints  Unbiased Study size  <5% oflost Follow-up Total
Stated  consecutive  data appropriate  endpoint prospective  of Output
Aim patients collection  quality assessment calculation  follow-up stability MINOR (/16)
Warrier [13] 2 0 1 1 1 0 - 0 5
Tomo [14] 2 0 1 1 2 0 - 2 8
Schmidl [15] 2 2 2 2 2 0 - 0 10
Lorenzi [16] 2 0 1 2 2 0 - 0 7
Lechien [4] 2 1 2 2 2 0 - 0 9
Dronkers [17] 2 0 1 1 1 0 - 0 5
Lechien [18] 2 2 2 2 2 0 - 2 12
Lechien [19] 2 1 2 2 2 0 - 0 9
Radulesco [20] 2 2 2 2 2 0 - 2 12
Lechien [21] 2 2 2 2 2 0 - 2 12
Sievert [22] 2 0 2 1 2 0 - 2 9
Schmidl [9] 2 0 2 1 2 0 - 0 7
Alami [23] 2 1 0 1 0 0 - 0 4
Maniaci [8] 2 2 2 2 2 0 - 2 12
Maniaci [24] 2 0 1 2 2 0 - 2 9
Noda [25] 2 2 1 1 2 0 - 0 8
Lechien [7] 2 0 2 2 2 0 - 0 8

Table 4 Summary of large Language model performance

Clinical function

Performance summary

Implications for practice

Primary diagnosis (text-based)
Differential diagnosis (text-based)

Image interpretation (multimodal

LLMs)

Recommendation of additional

investigations

Therapeutic recommendation

Rare disease identification

and Claude [4, 7, 14, 15]

18-21, 24].

weak in laryngology and rhinology [17, 20]
Claude-3.5>ChatGPT-4o (54% vs. 45.7%) [7]

Moderate to high accuracy (45-80%) across ChatGPT

High accuracy in head and neck oncology and general
ORL (up to 90%) [7, 15, 19, 21]

Highly variable. High with context (up to 93.3%) [9,
22, 25], poor without context [8]

Low reliability (10-29%) in all subspecialties [4, 8,

Variable. Stronger in oncology (55-60%) [15, 18],

May be used as a second opinion generator in
common and rare conditions.

Valuable adjunct for refining differential diag-
noses in complex or overlapping presentations.
Effective only when paired with structured
clinical data; not standalone.

LLMs tend to over-request. Clinical oversight
is essential.

May assist in guideline adherence in oncology;
less reliable in functional or surgical cases.
Promising tool in identifying overlooked con-
ditions; requires expert verification.

Bias analysis

The mean MINORS was 8.6 + 2.5 (Table 3). Heterogeneity
among included articles in LLM prompts, inclusion/exclu-
sion clinical case criteria, and accuracy outcomes precluded

statistically pooling the data into a formal meta-analysis,
thereby limiting the analysis to a qualitative rather than
quantitative summary of the available information. There
was substantial heterogeneity across studies for the inclu-
sion of consecutive clinical cases from the consultation, and
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the prospective collected data inclusion in the LLM’s inter-
face. The LLM’s responses were appropriately analyzed in
all studies with at least two independent judges (Table 3).
There were no investigations with sample size prospective
calculation. The LLM’s responses were regenerated at least
one time in 8 studies, all of them reporting moderate-to-high
stability of outputs [8, 14, 18, 20-22, 24].

Discussion

The increasing clinical integration of LLMs underscores
the need for rigorous performance assessment in otolaryn-
gology [26]. A comprehensive state-of-the-art review pub-
lished in September 2024 examining the use of ChatGPT in
otolaryngology identified only five studies that objectively
evaluated the diagnostic accuracy in real otolaryngologic
case series [6]. As of March 2025, the present systematic
review reports findings from 17 publications, representing a
substantial increase in peer-reviewed literature on this sub-
ject within a six-month period.

The present discussion primarily addresses ChatGPT
performance metrics, as this platform represents the most
extensively validated LLM in the contemporary medical
literature. Although it remains the most widely evaluated
and validated LLM in the otolaryngologic literature, recent
investigations have revealed that alternative models such as
Claude-3.0 and 3.5 may exhibit superior diagnostic reason-
ing in specific clinical contexts. For instance, Claude-3.5
outperformed ChatGPT-4 in the accurate identification of
rare otolaryngological conditions and demonstrated higher
consistency in formulating guideline-concordant diagnos-
tic workups in head and neck oncology [7,15.] Thus, these
results may reflect a more refined handling of clinical sub-
tleties and a better integration of contextual cues in Claude’s
architecture. Conversely, Gemini’s performance was more
variable and often lagged both Claude and ChatGPT in
diagnostic accuracy and therapeutic relevance [7,16.] How-
ever, its potential for rapid evolution may position it as a
competitive model in future iterations. While the current
evidence base for Claude and Gemini remains limited rela-
tive to that of ChatGPT, these early comparative findings
underscore the importance of broadening LLM evaluation.

The findings of this systematic review support that Chat-
GPT exhibits varying degrees of accuracy in diagnosis-
making, additional examination selection, and treatment
recommendations. ChatGPT exhibited highest accuracy
in proposing correct primary or differential diagnoses,
followed by indicating the most appropriate treatments
and additional examinations. While most studies reported
moderate-to-high stability of regenerated outputs [14, 20,
22], the accuracy of ChatGPT’s responses appeared to be
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influenced by several interconnected factors, including the
subspecialty of clinical cases, disease rarity (case reports
versus common conditions), the inclusion of images, and the
type of images (pathology, imaging, clinical) [8, 14, 18, 20,
21, 25]. Radulesco et al. evaluated the performance of Chat-
GPT-4 in the clinical management of 40 rhinological cases
[20]. In this study, ChatGPT-4 proposed a correct diagnosis
in 50.8% of cases, which was lower than the primary diag-
nosis accuracy rates of studies using standardized protocols
in general otolaryngology [21], otology [25], head and neck
[18], and maxillofacial surgery [14]. In laryngology, Mani-
aci et al. similarly observed low diagnostic accuracy [8],
which was particularly related to the ChatGPT’s capability
to recognize laryngeal lesions in the uploaded images. Spe-
cifically, their findings revealed that ChatGPT-4 exhibited
limited capability in analyzing clinical laryngeal images
[8]. The observation of ChatGPT-4’s lowest accuracy when
interpreting laryngological clinical images was not cor-
roborated in maxillofacial and oncological subspecialties,
where the model achieved superior diagnostic concordance
rates: 80.2% for maxillofacial clinical images (surpassing
ChatGPT-3.5’s 64.9%) [14], and 71.2% when analyzing
histopathological oncological specimens [22]. Importantly,
Schmidl et al. demonstrated that the accuracy of ChatGPT-4
in analyzing clinical images was significantly influenced by
the inclusion of medical information, with highest accuracy
achieved when clinical images are inputted with patient’s
clinical information (73.3-93.3%) compared to when they
are presented without context (26—-86.7%) [9].

The integration of image-based reasoning into LLMs,
as exemplified by GPT-4 Vision, represents a significant
evolution in Al-assisted clinical decision-making. While
multimodal configurations theoretically enhance diagnos-
tic capability by enabling visual pattern recognition, their
actual performance remains highly context dependent.
Schmidl et al. [9]. demonstrated that diagnostic accuracy
for oncological lesions markedly improved when clinical
images were paired with structured patient data, rising from
26% with isolated image interpretation to 93.3% when con-
textual clinical information was included. Similar findings
were reported in otologic disease classification using GPT-4
Vision, where high performance was contingent on multi-
modal input structures [25]. Conversely, when deprived of
clinical context, LLMs frequently failed to extract relevant
features or prioritize differentials appropriately, even more
so in laryngological applications [8].

The present systematic review suggests similar vari-
ability in ChatGPT’s accuracy for proposing appropriate
treatments in the management of real clinical cases. In the
therapeutic domain, ChatGPT-4 exhibited superior treat-
ment recommendation concordance for oncological cases,
demonstrating statistically significant adherence to both
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multidisciplinary tumor board consensus protocols and
international evidence-based guidelines for head and neck
cancer management [15, 18, 23]. Although the majority
of studies investigated only ChatGPT, emerging evidence
suggests Claude’s superior performance in specific clinical
applications, including the recommendations of guideline-
concordant oncological diagnostic workups [15], and the
establishment of accurate primary and differential diagnoses
across both common and very rare otolaryngological disor-
ders [7].

The lack of comparison of ChatGPT performance with
other LLMs is the primary limitation of the current research
[3]. In the otolaryngological literature, comparative analy-
ses between ChatGPT and alternative large language mod-
els (e.g., Google Bard, Claude, Gemini) remain limited [3],
with a few existing studies evaluating performance across
multiple clinical domains including patient information,
clinical decision support, general knowledge related to
diseases.

The rapid advancement in LLM capabilities and emerg-
ing comparative efficacy data support the need to conduct
prospective comparative studies evaluating LLM diagnostic
concordance, therapeutic recommendation accuracy, and
clinical workflow integration using standardized clinical
vignettes from diverse subspecialties. Finally, the absence
of a quantitative meta-analysis was related to the important
heterogeneity across studies for input/prompt forms, sub-
specialties, evaluation metrics, and diagnostic reference
standards making statistical aggregation inappropriate and
potentially misleading. In accordance with best practices
in diagnostic accuracy research and international guid-
ance such as PRISMA, a structured qualitative synthesis
was deliberately chosen to preserve analytical integrity and
ensure a contextually valid interpretation of findings. Future
studies with standardized protocols could address the het-
erogeneities highlighted in the present review, which con-
stitute another primary limitation, restricting the ability to
draw valid conclusions.

To facilitate clinical translation, we summarized the spe-
cific domains where current LLMs demonstrate robust per-
formance versus where their application remains limited.

Conclusion

Large language models, especially ChatGPT, demonstrate
promising moderate diagnostic accuracy in otolaryngology
clinical decision support, with higher performance in pro-
viding diagnoses than in suggesting appropriate additional
examinations and treatments. The inclusion of clinical
images, the rarity of cases, and the subspecialty could influ-
ence the performance of LLMs. Although emerging findings

support that Claude often outperforms ChatGPT, the lack
of comparison between ChatGPT performance and other
LLMs is the main limitation of the current research. Meth-
odological standardization is needed for future research.
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