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 a b s t r a c t

We identify boundary terms renormalizing the free on-shell actions for massless fields of arbitrary spin, including 
electromagnetism and linearized gravity, with boundary conditions allowing for supertranslation-like asymptotic 
symmetries. Our focus is on null infinity, in any spacetime dimensions. We also comment on the renormalization 
of the corresponding asymptotic charges.

1.  Introduction

The relations between asymptotic symmetries, soft theorems and 
memory effects established in gravity and gauge theories (see [1] for 
a review) have stimulated the investigation of new boundary conditions 
allowing for larger asymptotic symmetries. Extensions of this kind are 
often motivated by the will to interpret a known infrared effect as the 
manifestation of an asymptotic symmetry, but one typically has to han-
dle divergences induced by the weaker boundary conditions that one has 
to impose. A prototypical example is given by 𝐷𝑖𝑓𝑓 (𝑆2) superrotations, 
that have been proposed in [2] to account for subleading soft theorems 
in four-dimensional gravity. The associated surface charges — computed 
using, e.g., the Wald–Zoupas prescription [3] — diverge at null infinity, 
but they have been renormalized profiting from the intrinsic ambigui-
ties present in their definition [4]. This procedure to renormalize surface 
charges has been extensively studied in this and related contexts, see 
e.g. [5–28] and [29–31] for reviews. While it is by now clear that a pre-
scription giving finite surface charges always exists (see, e.g., [17,21]), 
its compatibility with further requirements, like covariance or locality, 
is still under debate [8,16,32,33]. Moreover, other quantities, like the 
on-shell action, might diverge as well.

Other notable asymptotic symmetries that require renormalization 
are supertranslations in asymptotically flat spacetimes of dimension 
𝐷 > 4. These symmetries have been long neglected since, differently 
from 𝐷 = 4, one can define a radiative solution space with boundary 
conditions not allowing for them [34–36]. On the other hand, even when 
𝐷 > 4, supertranslations and their spin-one analogs have been related 
to soft theorems and memory effects in gravity [37–40] and Yang–Mills 
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theories [41–45]. This link also holds for fields of arbitrary spin [46–48]. 
Their surface charges, computed according to standard prescriptions, 
however diverge when 𝐷 > 4 [48]. On top of that, the boundary con-
ditions allowing for these symmetries also lead to a divergent on-shell 
action. As we shall discuss, the only exception is given by the on-shell 
Maxwell action, which, in our setup, is manifestly finite at null infinity 
in any 𝐷.

In this Letter, we focus on the renormalization of the on-shell actions 
for free massless fields of arbitrary spin at null infinity, for the bound-
ary conditions allowing for supertranslation-like asymptotic symmetries 
identified in [46,48]. To this end, we follow the approach of holographic 
renormalization [49–52]. This has been mainly developed on asymptot-
ically Anti de Sitter (AdS) spacetimes, although some studies on how 
to regulate on-shell actions in asymptotically flat spacetimes appeared 
in [53–55]. The links between the renormalization of the on-shell ac-
tion and of the surface charges have also been explored in AdS, see, e.g., 
[5,6,11,12,18], and we shall comment on them in our setup. Aside from 
this application, our findings are a first step towards a systematic treat-
ment of holographic renormalization in flat space, which might open a 
new avenue towards flat space holography (see, e.g., [56] for a review).

Concretely, we propose a boundary counterterm canceling the diver-
gences at null infinity of the on-shell action for free massless fields of 
any spin in 𝐷 > 4. Our boundary terms contain a local combination of 
the bulk fields not involving any derivative along the direction normal 
to the regulating surface, thus guaranteeing that they do not spoil the 
variational principle. They however leave divergences localized at the 
boundary of null infinity that one can handle either by further tuning the 
boundary conditions or by adding appropriate “corner” counterterms. 
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\begin {align}\label {Maxwell-like} S =& -\frac {1}{2} \int \text {d}^Dx \, \Big [ \pr _\alpha \phi _{\mu _s}\, \pr ^{\alpha } \phi ^{\mu _s} - s\, \lambda \, \pr _\alpha \phi _{\beta \mu _{s-1}} \pr ^\beta \phi ^{\alpha \mu _{s-1}} \nonumber \\ &- s\,(1-\lambda )\, \pr \cdot \phi _{\mu _{s-1}}\, \pr \cdot \phi ^{\mu _{s-1}} \Big ] ,\end {align}
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$\phi _{\mu _s} \equiv \phi _{\mu _1 \cdots \mu _s}$


$\lambda \in \mathbb {R}$


\begin {equation}\label {cov_bnd_term} B_{\lambda } := \frac {\lambda s}{2}\int \text {d}^Dx\, \partial _\alpha \left (\phi _{\beta \mu _{s-1}} \partial ^\beta \phi ^{\alpha \mu _{s-1}}-\partial ^\beta \phi _{\beta \mu _{s-1}} \phi ^{\alpha \mu _{s-1}}\right ) .\end {equation}
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\begin {equation}\label {gauge-symm} \delta _\epsilon \phi _{\mu _s} = \pr _\mu \epsilon _{\mu _{s-1}} \quad \textrm {with} \quad \pr \cdot \epsilon _{\mu _{s-2}} =0,\quad \epsilon _{\mu _{s-3}\alpha }{}^\alpha = 0 ,\end {equation}


\begin {equation}\label {eom_irr} M_{\mu _s} := \Box \phi _{\mu _s} - \pr _{\mu } \pr \cdot \phi _{\mu _{s-1}} + \frac {2}{D+2s-4}\, \eta _{\mu \mu } \pr \cdot \pr \cdot \phi _{\mu _{s-2}} \approx 0 ,\end {equation}
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$\phi $


\begin {equation}\label {doublediv} \pr \cdot \pr \cdot \phi _{\mu _{s-2}} \approx 0 ,\end {equation}


\begin {equation}\label {on-shell-action} S = \int \text {d}^Dx\, \mathcal {L}[\phi ] \approx \frac {1}{2} \int \text {d}^Dx\,\partial _\alpha \hat {\theta }^\alpha [\phi ,\phi ],\end {equation}
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\begin {equation}\label {bilinear0} \begin {split} \hat \theta ^\alpha [\psi ,\phi ] &:= -\, \phi _{\mu _s}\, \partial ^{\alpha } \psi ^{\mu _s} + s\, \lambda \, \phi _{\beta \mu _{s-1}} \partial ^\beta \psi ^{\alpha \mu _{s-1}}\\ &\quad + s\,(1-\lambda )\, \phi ^{\alpha \mu _{s-1}}\, \pr \cdot \psi _{\mu _{s-1}} , \end {split}\end {equation}


\begin {equation}\label {bilinear} \hat {\theta }^\alpha [\psi ,\phi ] = -\, \phi ^{\mu _s} \Gamma ^\alpha {}_{\mu _s} + s\, (1-\lambda ) \Big [ \phi ^\alpha {}_{\mu _{s-1}} \partial \cdot \psi ^{\mu _{s-1}} - \phi ^{\beta \mu _{s-1}} \partial _\beta \psi ^\alpha {}_{\mu _{s-1}} \Big ] ,\end {equation}


$\Gamma ^\alpha {}_{\mu _s} = \pr ^\alpha \psi _{\mu _s} - \pr _\mu \psi ^\alpha {}_{\mu _{s-1}}$
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\begin {equation}\label {eq:deltaL} \delta \mathcal {L}[\phi ] \approx \partial _\alpha \theta ^\alpha [\phi ,\delta \phi ] ,\end {equation}


\begin {equation}\label {eq:gaugevar} \delta _\epsilon \cL [\phi ] = \partial _\alpha B_\epsilon ^\alpha [\phi ] ,\end {equation}


\begin {equation}\label {eq:defsthetaB} \theta ^\alpha [\phi , \delta \phi ] = \hat {\theta }^\alpha [\phi , \delta \phi ] , \quad B_\epsilon ^\alpha [\phi ] = \hat {\theta }^\alpha [\delta _\epsilon \phi , \phi ] \, .\end {equation}


\begin {equation}\label {eq:Noether1} j_\epsilon ^\alpha [\phi ] = \theta ^\alpha [\phi ,\delta _\epsilon \phi ] - B_\epsilon ^\alpha [\phi ],\end {equation}


\begin {equation}\label {eq:Noether2} j_\epsilon ^\alpha [\phi ] \approx \partial _\beta \kappa _\epsilon ^{\alpha \beta }[\phi ],\end {equation}


\begin {equation}\label {eq:kappaalphabeta} \begin {split} \kappa _\epsilon ^{\alpha \beta } &= s(s-1)\, {\epsilon _{\mu _{s-2}}}^{[\alpha } \partial \cdot \phi ^{\beta ]\mu _{s-2}} - s \, \epsilon _{\mu _{s-1}} \partial ^{[\alpha } \phi ^{\beta ]\mu _{s-1}}\\ &\quad + s \, \lambda \, \phi ^{\mu _{s-1}[\alpha } \partial _\mu {\epsilon ^{\beta ]}}_{\mu _{s-2}} + s (1-\lambda )\,\partial ^{[\alpha } \epsilon _{\mu _{s-1}} \phi ^{\beta ]\mu _{s-1}} \end {split}\end {equation}


\begin {equation}\label {eq:isolatinglambda} \kappa _\epsilon ^{\alpha \beta } = \kappa _\epsilon ^{\alpha \beta }\bigg |_{\lambda =0} + \lambda s\, \phi _{\mu _{s-1}}{}^{[\alpha } \delta _\epsilon \phi ^{\beta ]\mu _{s-1}}\,.\end {equation}
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\begin {equation}\label {symmetry} \hat {\theta }^\alpha [\phi , \delta _\epsilon \phi ] \approx \hat {\theta }^\alpha [ \delta _\epsilon \phi , \phi ] + \partial _\beta \kappa _\epsilon ^{\alpha \beta }[\phi ] \, .\end {equation}


\begin {equation}\label {Bondi-coords} \text {d}s^2 = - \text {d}u^2 - 2\, \text {d}u \, \text {d}r + r^2 \gamma _{ij} \text {d}x^i \text {d}x^j ,\end {equation}


$u := t -r$
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\begin {equation}\label {Bondi-like} \phi _{r\mu _{s-1}} = 0 , \quad \gamma ^{ij} \phi _{ij\mu _{s-2}} = 0 \quad \Rightarrow \quad g^{\alpha \beta } \phi _{\alpha \beta \mu _{s-2}} = 0 \, .\end {equation}


$D$


\begin {equation}\label {falloffs} \phi _{u_{s-k}i_k} := \phi _{\underbrace {\scriptstyle {u\,\cdots \,u}}_{s-k} i_1 \cdots i_k} = \cO (r^{k-1})\end {equation}
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\begin {equation}\label {on-shell} \phi _{u_{s-k}i_k} = r^{k-1} \frac {k(D+k-5)!}{s(D+s-5)!}\, (\cD \cdot )^{s-k} \hat {C}_{i_k}(\hat {x}) + \cO \left (r^{-\frac {D-2}{2}+k}\right ) ,\end {equation}
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\begin {equation}\label {eq:hatCi1is} \hat {C}_{i_s}(\hat {x}) := \frac {1}{[(s-1)!]^2}\, \mathcal {D}_{\langle i_1}\cdots \mathcal {D}_{i_s\rangle } T(\hat {x})\,.\end {equation}
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\begin {equation}\label {decomposition} \phi = \delta _\epsilon \phi + \phi _\text {rad} ,\end {equation}
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\begin {equation}S_{\text {reg}} := \int _{r \leq R} \text {d}^Dx \, \cL [\phi ] \, . \label {Xeqn23}\end {equation}


\begin {equation}\label {eq:Sreg} \begin {split} S_\text {reg} &\approx \frac {1}{2} \int _{r = R} \text {d}^{D-1}x\, \Big (\, \hat {\theta }^r[\delta _\epsilon \phi ,\delta _\epsilon \phi ] + 2\,\hat {\theta }^r[\delta _\epsilon \phi ,\phi _\text {rad}]\\ &\quad + \hat {\theta }^r[\phi _\text {rad},\phi _\text {rad}] + \partial _\mu \kappa _\epsilon ^{r\mu }[\phi ]\, \Big ) , \end {split}\end {equation}


\begin {equation}\label {theta^r} \begin {split} \hat {\theta }^r[\psi ,\phi ] =& r^{D-2s-3} \sqrt {\gamma }\, \Big \{ - \phi ^{i_s} \Big [ r\pr _r - (1-\lambda ) s - r \pr _u \Big ] \, \psi _{i_s} \\ & - s\,r\, \Big [ \lambda \, \phi ^{i_{s-1}j} \cD _j \psi _{u i_{s-1}} + (1-\lambda )\, \phi _u{}^{i_{s-1}} \cD \cdot \psi _{i_{s-1}} \Big ] \\ & + s\,r^2 \phi _u{}^{i_{s-1}} \Big [ r\pr _r - 2\lambda (s-1) + (1-\lambda ) (D-2) \Big ] \, \psi _{u i_{s-1}} \Big \} , \end {split}\end {equation}
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\begin {equation}\label {T_rel} (s-1) \, \mathcal {D} \cdot \delta _\epsilon \phi _{i_{s-1}} =rs(D+s-5)\,\delta _{\epsilon } \phi _{ui_{s-1}} \,.\end {equation}
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$\delta _\epsilon A_u =0$
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\begin {equation}\label {eq:thetarewritingepsilon} \begin {split} & r^{2s+3-D}\,\hat {\theta }^r[\delta _\epsilon \phi , \phi ] = \\ & \ \sqrt {\gamma }\, \Big \{ (1-\lambda s)\, \phi ^{i_s} \delta _\epsilon \phi _{i_s} + \frac {\lambda (s-1)}{D+s-5}\, \cD \cdot \phi ^{i_{s-1}} \cD \cdot \delta _\epsilon \phi _{i_{s-1}} \\ & \ \phantom {\sqrt {\gamma }} - \frac {s\, r^2}{s-1} \left [ \lambda s (s-1) + (1-\lambda ) (D-4) \right ] \phi _u{}^{i_{s-1}} \delta _\epsilon \phi _{ui_{s-1}} \Big \} , \end {split}\end {equation}


$\cD _i$


$\cO (R^{D-5})$


\begin {equation}\label {eq:Ssub} S_\text {sub} := S_\text {reg} + \int _{r=R} \text {d}^{D-1}x\,\mathcal {L}_\text {ct},\end {equation}


$s\ge 2$


\begin {align}\label {eq:Lct} \cL _\text {ct} & = \frac {\sqrt {-g}}{2R}\, \Big \{ (\lambda s - 1)\, \phi ^{i_s} \phi _{i_s} - \frac {R^2\lambda (s-1)}{D+s-5}\, \cD \cdot \phi ^{i_{s-1}} \cD \cdot \phi _{i_{s-1}} \nn \\ &\quad + \frac {s}{s-1} \left [ \lambda s (s-1) + (1-\lambda ) (D-4) \right ] \phi _u{}^{i_{s-1}} \phi _{ui_{s-1}} \Big \} ,\end {align}
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\begin {align}\label {eq:Lcts=1} \cL _\text {ct} & = \frac {\sqrt {-g}}{2R}\,(\lambda - 1) \left ( A^{i} A_{i} - 2R\,A_u\,\mathcal {D}\cdot A \right ) .\end {align}


\begin {equation}\label {eq:Lcts=1cov} B_\lambda = -\frac {\lambda }{2R} \int _{r=R} \sqrt {-g} \left ( A^{i} A_{i} - 2R\,A_u\,\mathcal {D}\cdot A + (D-2)\, A_u^2\right ) .\end {equation}
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\begin {equation}\label {eq:sub} \begin {split} S_\text {sub} &\approx \frac {1}{2} \int _{r=R} \text {d}^{D-1}x \sqrt {\gamma }\, C^{i_s} \partial _u C_{i_s} \\ &\quad - \frac {1}{2} \oint \text {d}^{D-2}x \, \kappa _\epsilon ^{ur}[\phi ] \bigg {|}_{u=-\infty }^{u=+\infty }+ \cO (R^{-1}) , \end {split}\end {equation}
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\begin {equation}\phi _{u_{s-k}i_k} = r^{3-D+k} \cU _{i_k}{}^{\!(k)}(u,\hat {x}) + \cO (r^{2-D+k}) \label {Xeqn34}\end {equation}
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\begin {equation}\label {eq:ren} \begin {split} S_\text {ren} :=& \lim _{\substack {R \to \infty }} S_\text {sub} = \frac {1}{2} \int _{\mathscr {I}^+} \text {d}^{D-1}x\,\sqrt {\gamma }\,C^{i_s} \partial _u C_{i_s} \\ &+\frac {1}{2}\, s (-1)^{s}(D+s-4) \oint \text {d}^{D-2}x\,\sqrt {\gamma }\,T\,\mathcal {U}^{(0)}\bigg {|}_{u=-\infty }^{u=+\infty }\,. \end {split}\end {equation}


$u \to \pm \infty $


\begin {equation}\delta S_\mathrm {sub} \approx \int _{r = R} \text {d}^{D-1}x \, \theta ^r_\mathrm {sub}[\phi ,\delta \phi ] \label {Xeqn36}\end {equation}


\begin {equation}\label {eq:thetasubthetarLct} \theta ^r_\mathrm {sub}[\phi ,\delta \phi ] := \theta ^r[\phi ,\delta \phi ] + \delta \mathcal {L}_\mathrm {ct} \,.\end {equation}


\begin {equation}\label {eq:thetasubev} \theta ^r_\mathrm {sub}[\phi ,\delta \phi ] = \theta ^r[\phi _\mathrm {rad},\delta \phi _\mathrm {rad}] + \partial _u \kappa ^{ru}_{\delta \epsilon }[\phi ] \,.\end {equation}
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\begin {equation}\theta ^r_\mathrm {ren}[\phi ,\delta \phi ] := \lim _{\substack {R \to \infty \\ u = \text {const}}} \theta ^r_\mathrm {sub}[\phi ,\delta \phi ], \label {Xeqn39}\end {equation}


\begin {equation}\theta ^r_\mathrm {ren}[\phi ,\delta \phi ] \approx \sqrt {\gamma }\left ( \delta C^{i_s}\,\partial _u C_{i_s} + s(-1)^{s}(D+s-4)\, \partial _u \left ( \delta T \, \mathcal {U}^{(0)} \right ) \right ) . \label {Xeqn40}\end {equation}
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\begin {equation}\label {eq:THETARENr} \theta ^r_\text {ren}[\phi ,\delta _\epsilon \phi ] = s(-1)^{s}(D+s-4)\, \sqrt {\gamma }\, T \, \partial _u\mathcal {U}^{(0)} \, .\end {equation}
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\begin {equation}\label {eq:IWambi} \theta ^\alpha [\phi ,\delta \phi ] \to \theta ^\alpha [\phi ,\delta \phi ] + \delta Z^\alpha [\phi ] + \partial _\beta Y^{\alpha \beta }[\phi ,\delta \phi ] ,\end {equation}
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\begin {equation}\omega ^\alpha _\epsilon := \delta \theta ^\alpha [\phi ,\delta _\epsilon \phi ] - \delta _\epsilon \theta ^\alpha [\phi ,\delta \phi ] , \label {Xeqn44}\end {equation}


\begin {equation}\label {eq:identitytheta} \omega ^\alpha _\epsilon \approx \partial _\beta \kappa ^{\alpha \beta }_\epsilon [\delta \phi ]\,.\end {equation}
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\begin {equation}\omega ^\alpha _\epsilon \to \omega ^\alpha _\epsilon + \partial _\beta \Big ( \delta Y^{\alpha \beta }[\phi ,\delta _\epsilon \phi ] - \delta _\epsilon Y^{\alpha \beta }[\phi ,\delta \phi ] \Big ) , \label {Xeqn46}\end {equation}
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\begin {equation}\label {eq:s1Cur2} Y^{ru} = \int \mathrm {d}r \, \theta ^u ,\end {equation}


\begin {equation}\label {eq:theta_sub} \theta ^r_\text {sub} = \theta ^r + \delta Z^r + \partial _u \int \mathrm {d}r \, \theta ^u \, .\end {equation}


$r \to \infty $


\begin {equation}\partial _r \theta ^r_\text {sub} = \partial _r \theta ^r + \delta \left ( \partial _r Z^r \right ) + \partial _u \theta ^u \approx \delta \left ( \mathcal {L} + \partial _r Z^r \right ) - \partial _i \theta ^i. \label {Xeqn49}\end {equation}
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\begin {equation}\theta ^{\alpha }[A,\delta A] = -\sqrt {-g} F^{\alpha \nu }\delta A_\nu ,\qquad \kappa _\epsilon ^{\alpha \beta } = -\sqrt {-g} F^{\alpha \beta }\,\epsilon , \label {Xeqn50}\end {equation}


\begin {equation}\theta ^u[A,\delta A] = r^{D-4} \sqrt {\gamma } \, \partial _r A_i\, \gamma ^{ij} \delta A_j \, . \label {Xeqn51}\end {equation}


\begin {equation}\label {eq:s1Cur3} Y^{ur} = \sum _{k = \frac {D-2}{2}}^{D-4} r^{D-3-k} \frac {k-1}{D-3-k} \sqrt {\gamma } \, A_i^{(k-1)} \gamma ^{ij} \delta A^{(0)}_j + \mathcal {O}(1) ,\end {equation}
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\begin {equation}\begin {split} &\oint \kappa _\epsilon ^{ur} \text {d}^{D-2}x =r^{D-2} \oint \text {d}^{D-2}x\,\sqrt {\gamma }\,F_{ur} T \\ &\qquad =-\sum _{k=\frac {D-2}{2}}^{D-4} r^{D-3-k} \frac {k-1}{D-3-k} \oint \text {d}^{D-2}x\,\sqrt {\gamma }\, A_i^{(k-1)} \gamma ^{ij} \partial _j T \\ &\qquad +(D-3)\oint \text {d}^{D-2}x \sqrt {\gamma }\,T\,A_u^{(D-3)} +\mathcal {O}(r^{-1})\,. \end {split} \label {Xeqn53}\end {equation}
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\begin {equation}\label {eq:leading-singularity} Y^{ur} = r^{\frac {D-4}{2}} \sqrt {\gamma } \, A_{i}^{(\frac {D-4}{2})}\,\gamma ^{ij}\,\delta A_j^{(0)} + \mathcal {O}(r^{\frac {D-6}{2}}) \, .\end {equation}


${A}_\mu $


${A}_i \gamma ^{ij} \delta {A}_j$


${A}_u \delta {A}_u$


$1/r$


$u$


$1/r$


$u \to -\infty $


$u_1$


$\mathscr {I}^+_-$


$r$


$D > 4$


$s$


$\log r$


\begin {equation}\label {Lagrlambda} {\cal L} = \lambda \, {\cal L}_1 + (1 - \lambda )\, {\cal L}_2 ,\end {equation}


\begin {align}& {\cal L}_1 := -\frac {1}{2}\, \pr _\rho \phi _{\mu _s}\, \pr ^{\rho } \phi ^{\mu _s} + \frac {s}{2}\, \pr _\rho \phi _{\sigma \mu _{s-1}} \pr ^\sigma \phi ^{\rho \mu _{s-1}} , \\ & {\cal L}_2 := -\frac {1}{2}\, \pr _\rho \phi _{\mu _s}\, \pr ^{\rho } \phi ^{\mu _s} + \frac {s}{2}\, \pr \cdot \phi _{\mu _{s-1}}\, \pr \cdot \phi ^{\mu _{s-1}}\, .\end {align}


$\hat {\theta }^{\alpha }[\psi ,\phi ]$


${\cal L}_1$


${\cal L}_2$


$\lambda $


${\cal L}_1$


\begin {equation}\hat {\theta }^{\alpha }_1 [\psi , \phi ] = \phi _{\mu _s} \, \partial ^{\mu } \psi ^{\alpha \mu _{s-1}} \, - \, \phi _{\mu _s} \, \partial ^{\alpha } \psi ^{\mu _s} , \label {Xeqn56}\end {equation}


\begin {equation}\begin {split} j^{\alpha }_1 & = \hat {\theta }^{\alpha }_1 [\phi , \delta _{\epsilon } \phi ] - \hat {\theta }^{\alpha }_1 [\delta _{\epsilon } \phi , \phi ] \\ & = \pr _{\mu } \epsilon _{\mu _{s-1}} \pr ^{\mu } \phi ^{\alpha \mu _{s-1}} - \pr _{\mu } \epsilon _{\mu _{s-1}} \pr ^{\alpha } \phi ^{\mu _s} - 2 \, \pr ^2{}_{\!\!\!\mu }\, \epsilon ^{\alpha }{}_{\mu _{s-2}} \phi ^{\mu _s} , \end {split} \label {Xeqn57}\end {equation}


$\pr ^2_{\mu }$


$\pr ^2{}_{\!\!\!\mu } A_{\mu }$


$\pr _{\alpha } \pr _{\beta } A_{\gamma } + \pr _{\gamma } \pr _{\alpha } A_{\beta } + \pr _{\beta } \pr _{\gamma } A_{\alpha }$


\begin {equation}\begin {split} & \pr _{\mu } \epsilon _{\mu _{s-1}} \pr ^{\mu } \phi ^{\alpha \mu _{s-1}} - \pr _{\mu } \epsilon _{\mu _{s-1}} \pr ^{\alpha } \phi ^{\mu _s} = s\pr _{\beta }\big [\epsilon _{\mu _{s-1}} \big ( \pr ^{\beta } \phi ^{\alpha \mu _{s-1}} + \pr ^{\mu } \phi ^{\alpha \beta \mu _{s-2}} \\ & - \pr ^{\alpha } \phi ^{\beta \mu _{s-1}}\big )\big ] - s \epsilon _{\mu _{s-1}} \big (\Box \phi ^{\alpha \mu _{s-1}} + \pr _{\mu } \pr \cdot \phi ^{\alpha \mu _{s-2}} - \pr ^{\alpha } \pr \cdot \phi ^{\mu _{s-1}}\big ) , \end {split} \label {Xeqn58}\end {equation}


\begin {equation}\begin {split} - 2 \, \pr ^2_{\mu }\, \epsilon ^{\alpha }{}_{\mu _{s-2}} \phi ^{\mu _s}\, =& -s (s-1) \big [\pr \cdot \pr \cdot \phi _{\mu _{s-2}} \epsilon ^{\alpha \mu _{s-2}} \\ & + \pr _{\beta } \big (\phi ^{\beta \gamma \mu _{s-2}}\pr _{\gamma } \epsilon ^{\alpha }{}_{\mu _{s-2}} - \pr \cdot \phi ^{\beta \mu _{s-2}}\epsilon ^{\alpha }{}_{\mu _{s-2}} \big ) \big ]\, . \end {split} \label {Xeqn59}\end {equation}


$j^{\alpha }_1 \approx \pr _{\beta } \kappa ^{\alpha \beta }_1$


\begin {equation}\kappa ^{\alpha \beta }_1 = s \phi ^{\mu _{s-1} [\alpha }\pr _{\mu } \epsilon ^{\beta ]}{}_{\mu _{s-2}} + s (s-1) \epsilon _{\mu _{s-2}}{}^{[\alpha } \pr \cdot \phi ^{\beta ] \mu _{s-2}} - s \epsilon _{\mu _{s-1}} \pr ^{[\alpha } \phi ^{\beta ] \mu _{s-1}} , \label {Xeqn60}\end {equation}


\begin {equation}\label {onshell} \begin {split} & \pr \cdot \pr \cdot \phi _{\mu _{s-2}} \approx 0 ,\\ & \epsilon ^{\mu _{s-1}} \big (\Box \phi _{\mu _s} - \pr _{\mu } \pr \cdot \phi _{\mu _{s-1}}\big ) \approx 0 \, . \end {split}\end {equation}


${\cal L}_2$


\begin {equation}\hat {\theta }^{\alpha }_2 [\psi , \phi ] = s\, \phi ^{\alpha \, \mu _{s-1}} \, \pr \cdot \psi _{\mu _{s-1}} \, - \, \phi ^{\mu _s} \, \pr ^{\alpha } \psi _{\mu _s} , \label {Xeqn62}\end {equation}


\begin {equation}\label {omega} \begin {split} j^{\alpha }_2 \, = & \, s\big (\partial ^{\alpha } \epsilon ^{\mu _{s-1}} + \partial ^{\mu } \epsilon ^{\alpha \mu _{s-2}}\big ) \pr \cdot \phi _{\mu _{s-1}}\, - \, \partial _{\mu } \epsilon _{\mu _{s-1}} \partial ^{\alpha } \phi ^{\mu _s} \\ & - s \phi ^{\alpha \mu _{s-1}} \Box \epsilon _{\mu _{s-1}} \, + \, \phi ^{\mu _s} \pr ^{\alpha } \pr _{\mu } \epsilon _{\mu _{s-1}}\, . \end {split}\end {equation}


\begin {equation}\phi ^{\alpha \mu _{s-1}} \Box \epsilon _{\mu _{s-1}} = \Box \phi ^{\alpha \mu _{s-1}} \epsilon _{\mu _{s-1}} \, + \, \partial _\beta \left (\phi ^{\alpha \mu _{s-1}} \partial ^\beta \epsilon _{\mu _{s-1}} - \pr ^\beta \phi ^{\alpha \mu _{s-1}} \epsilon _{\mu _{s-1}} \right ) \label {Xeqn64}\end {equation}


$\Box \phi ^{\alpha \mu _{s-1}}$


\begin {equation}\begin {split} j^{\alpha }_2 & = \partial _\beta \kappa ^{\alpha \beta }_2 +s \epsilon ^{\mu _{s-1}} \big (\Box \phi _{\alpha \mu _{s-1}} - \pr _{\alpha } \pr \cdot \phi _{\mu _{s-q}} - \pr _{\mu } \pr \cdot \phi _{\alpha \mu _{s-2}}\big ) \\ &\quad + s (s-1) \epsilon ^{\alpha \mu _{s-2}} \partial \cdot \partial \cdot \phi _{\mu _{s-2}} \approx \partial _\beta \kappa ^{[\alpha \beta ]}_2 , \label {eq:omegakappa} \end {split}\end {equation}


\begin {equation}\kappa ^{\alpha \beta }_2 = s(s-1) \epsilon _{\mu _{s-2}}{}^{[\alpha } \partial \cdot \phi ^{\beta ] \mu _{s-2} } \, + \, s \pr ^{[\alpha } \epsilon _{\mu _{s-1}} \phi ^{\beta ] \mu _{s-1}} \, - \, s \epsilon _{\mu _{s-1}} \partial ^{[\alpha } \phi ^{\beta ] \mu _{s-1}} \, . \label {Xeqn65}\end {equation}


$j^{\alpha }_\epsilon \approx \partial _\beta \kappa _\epsilon ^{\alpha \beta }$


\begin {equation}\begin {split} \kappa _\epsilon ^{\alpha \beta } &= \lambda \kappa ^{\alpha \beta }_1 + (1-\lambda ) \kappa ^{\alpha \beta }_2 \\&= s(s-1) {\epsilon _{\mu _{s-2}}}^{[\alpha } \partial \cdot \phi ^{\beta ]\mu _{s-2}} - s \, \epsilon _{\mu _{s-1}} \partial ^{[\alpha } \phi ^{\beta ]\mu _{s-1}}\\ &\quad + s \, \lambda \, \phi ^{\mu _{s-1}[\alpha } \partial _\mu {\epsilon ^{\beta ]}}_{\mu _{s-2}} + s (1-\lambda ) \partial ^{[\alpha } \epsilon _{\mu _{s-1}} \phi ^{\beta ]\mu _{s-1}}\,. \end {split} \label {Xeqn66}\end {equation}


$\lambda $


$\kappa ^{\alpha \beta }_\epsilon $


\begin {equation}\kappa _\epsilon ^{\alpha \beta } = \kappa _2^{\alpha \beta } + \lambda s\, \phi _{\mu _{s-1}}{}^{[\alpha } \delta _\epsilon \phi ^{\beta ]\mu _{s-1}}\,. \label {Xeqn67}\end {equation}


$\lambda $


\begin {equation}\mathcal {L}_1-\mathcal {L}_2 = \partial _\alpha \mathcal {E}^\alpha \label {Xeqn68}\end {equation}


\begin {equation}\mathcal {E}^\alpha [\phi ] = \frac {s}{2}\left (\phi _{\beta \mu _{s-1}} \partial ^\beta \phi ^{\alpha \mu _{s-1}}-\partial ^\beta \phi _{\beta \mu _{s-1}} \phi ^{\alpha \mu _{s-1}}\right ) \label {Xeqn69}\end {equation}


\begin {equation}\theta ^{\alpha }_1[\phi ,\delta \phi ] - \theta ^{\alpha }_2[\phi ,\delta \phi ] = \delta \mathcal {E}^\alpha [\phi ] + \frac {s}{2}\,\partial _\beta \left (\phi _{\mu _{s-1}}{}^{[\alpha }\delta \phi ^{\beta ]\mu _{s-1}}\right ). \label {Xeqn70}\end {equation}


$\theta _\text {sub}$


$R\to \infty $


\begin {equation}\label {eq:Lctback} \begin {split} \mathcal {L}_\mathrm {ct} &\approx -\hat {\theta }^r[\delta _\epsilon \phi ,\phi _\text {rad}] - \tfrac {1}{2} \hat {\theta }^r[\delta _\epsilon \phi ,\delta _\epsilon \phi ] \\ &\approx - \hat {\theta }^r[\delta _\epsilon \phi ,\phi ] + \tfrac {1}{2} \hat {\theta }^r[\delta _\epsilon \phi ,\delta _\epsilon \phi ], \end {split}\end {equation}


\begin {equation}\begin {split} \theta ^{\alpha }[\phi ,\delta \phi ] &\approx \hat \theta ^{\alpha }[\delta _\epsilon \phi ,\delta \phi ] + \hat \theta ^{\alpha }[\phi _\text {rad},\delta _{\delta \epsilon } \phi ] + \hat \theta ^{\alpha }[\phi _\text {rad},\delta \phi _\text {rad}] \\ &\approx \hat {\theta }^{\alpha }[\delta _\epsilon \phi ,\delta \phi ] + \hat {\theta }^{\alpha }[\phi ,\delta _{\delta \epsilon }\phi ] - \hat {\theta }^{\alpha }[\delta _{\epsilon }\phi ,\delta _{\delta \epsilon } \phi ] \\ & \quad + \hat \theta ^{\alpha }[\phi _\text {rad},\delta \phi _\text {rad}], \end {split} \label {Xeqn72}\end {equation}


$\delta (\delta _\epsilon \phi _{\mu _s}) = \partial _\mu \delta \epsilon _{\mu _{s-1}}=\delta _{\delta \epsilon } \phi _{\mu _s}$


\begin {equation}\begin {split} \theta ^{\alpha }[\phi ,\delta \phi ] &\approx \hat {\theta }^{\alpha }[\delta _\epsilon \phi ,\delta \phi ] + \hat {\theta }^{\alpha }[\delta _{\delta \epsilon }\phi ,\phi ] - \hat {\theta }^{\alpha }[\delta _{\epsilon }\phi ,\delta _{\delta \epsilon } \phi ] \\ & \quad + \hat \theta ^{\alpha }[\phi _\text {rad},\delta \phi _\text {rad}] + \partial _\beta \kappa ^{\alpha \beta }_{\delta \epsilon }[\phi ]\,. \end {split} \label {Xeqn73}\end {equation}


$\alpha =r$


\begin {equation}\begin {split} & \hat {\theta }^r[\delta _\epsilon \phi , \delta _{\delta \epsilon }\phi ] - \hat {\theta }^r[\delta _{\delta \epsilon } \phi , \delta _{\epsilon }\phi ] \approx \partial _\beta \kappa ^{r\beta }_{\delta \epsilon }[\delta _\epsilon \phi ] \approx \partial _i \kappa ^{ri}_{\delta \epsilon }[\delta _\epsilon \phi ] , \end {split} \label {Xeqn74}\end {equation}


$\theta ^r[\phi ,\delta \phi ]$


\begin {equation}\label {eq:thetaback} \begin {split} \theta ^r[\phi ,\delta \phi ] &\approx \delta \left ( \hat {\theta }^r[\delta _\epsilon \phi ,\phi ] - \frac {1}{2} \hat {\theta }^r[\delta _\epsilon \phi ,\delta _\epsilon \phi ] \right ) \\ & \quad + \theta ^r[\phi _\mathrm {rad},\delta \phi _\mathrm {rad}] + \partial _u \kappa ^{ru}_{\delta \epsilon }[\phi ]\,. \end {split}\end {equation}


$\theta ^{r}[\phi ,\delta \phi ]+ \delta \mathcal {L}_\text {ct}$


$r = R$


\begin {equation}\text {d}s^2 = \text {d}r^2 + h_{ab}\, \big ( \text {d}x^a + N^a \text {d}r \big ) \big ( \text {d}x^b + N^b \text {d}r \big ) , \label {Xeqn76}\end {equation}


$x^a$


$h_{ab}$


\begin {equation}\label {Bondi-ADM} N^a = \delta ^a{}_u , \qquad h_{ab} \text {d}x^a \text {d}x^b = - \text {d}u^2 + r^2 \gamma _{ij} \text {d}x^i \text {d}x^j \, .\end {equation}


\begin {equation}\label {Bondi-cov} N^a N_a = - 1 , \quad \partial _r N^a = 0 , \quad D_a N^b = 0 , \quad N^a K_{ab} = 0 ,\end {equation}


$h_{ab}$


$h^{ab}$


$D_a$


$h_{ab}$


$K_{ab}$


\begin {equation}K_{ab} = \frac {1}{2}\, \partial _r h_{ab} , \label {Xeqn79}\end {equation}


$K_{ij} = r\, \gamma _{ij}$


\begin {equation}\label {FlatADM} \text {d}s^2 = 2 N_a(x^b) \text {d}x^a \text {d}r + h_{ab}(r,x^c) \text {d}x^a \text {d}x^b \, .\end {equation}


\begin {equation}\Gamma ^r{}_{ab} = - K_{ab} , \quad \Gamma ^a{}_{rb} = K^a{}_b , \quad \Gamma ^{a}{}_{bc} = \Gamma ^{(h)\,a}{}_{bc} + N^a K_{bc} , \label {Xeqn81}\end {equation}


$\Gamma ^{(h)\,a}{}_{bc}$


$h_{ab}$


$r \to \infty $


$N^a$


$\mathscr {I}^+$


$s=1$


\begin {align}\label {cov-theta} \hat {\theta }^r[B,A] =& - \sqrt {- h}\, \Big [ A^a \left (\partial _r - N^b D_b\right ) B_a - (1-\lambda )\, K^b{}_a A^a B_b \nn \\ & + \lambda \, N^b A^a D_a B_b - (1-\lambda )\, N^a A_a \left ( K N^b - D^b \right ) B_b \Big ] ,\end {align}


$K = h^{ab} K_{ab}$


$A_r = 0$


\begin {equation}\label {ADMCB} A_a \sim \mathcal {O}(1) , \qquad N^a A_a \sim \mathcal {O}(r^{-1}) ,\end {equation}


$A^\mu = \delta _\epsilon A^\mu + A^\mu _{\mathrm {rad}}$


\begin {equation}\partial _r \delta _\epsilon A_a = 0 , \quad N^a D_a \delta _\epsilon A_b = 0 , \quad N^a \delta _\epsilon A_a = 0 , \label {Xeqn83}\end {equation}


\begin {equation}\label {SctADM} S_{\mathrm {ct}} = \frac {\lambda -1}{2} \!\int \!\! \text {d}^{D-1}x \sqrt {-h}\, \Big [ K^b{}_a A^a A_b -N^a A_a D^b A_b + N^a A_b D^b A_a \Big ] .\end {equation}


$\cD _i$

https://orcid.org/0000-0001-6238-9849
https://orcid.org/0000-0001-7179-1477
https://orcid.org/0000-0001-5775-9526
mailto:andrea.campoleoni@umons.ac.be
mailto:delfante@illinois.edu
mailto:dario.francia@uniroma3.it
mailto:carlo.heissenberg@ipht.fr
https://doi.org/10.1016/j.physletb.2025.139908
https://doi.org/10.1016/j.physletb.2025.139908
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2025.139908&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A. Campoleoni, A. Delfante, D. Francia et al.

We also discuss how the latter approach relates to the renormalization 
of surface charges.

2.  Structure of the on-shell action

To describe the dynamics of a free massless field of  integer spin 𝑠, 
we consider a traceless tensor 𝜙 of rank 𝑠 and the Maxwell-like action 
of [57,58]. In Cartesian coordinates, it reads

𝑆 = − 1
2 ∫ d𝐷𝑥

[

𝜕𝛼𝜙𝜇𝑠 𝜕
𝛼𝜙𝜇𝑠 − 𝑠 𝜆 𝜕𝛼𝜙𝛽𝜇𝑠−1𝜕

𝛽𝜙𝛼𝜇𝑠−1

− 𝑠 (1 − 𝜆) 𝜕 ⋅ 𝜙𝜇𝑠−1 𝜕 ⋅ 𝜙
𝜇𝑠−1

]

, (1)

where 𝐷 is the dimension of spacetime, an index with a subscript de-
notes a set of symmetrized indices, e.g., 𝜙𝜇𝑠 ≡ 𝜙𝜇1⋯𝜇𝑠 , and we introduced 
the factor 𝜆 ∈ ℝ to capture the possible rewritings of the action propor-
tional to the boundary term

𝐵𝜆 ∶=
𝜆𝑠
2 ∫ d𝐷𝑥 𝜕𝛼

(

𝜙𝛽𝜇𝑠−1𝜕
𝛽𝜙𝛼𝜇𝑠−1 − 𝜕𝛽𝜙𝛽𝜇𝑠−1𝜙

𝛼𝜇𝑠−1
)

. (2)

For 𝑠 = 1 and 𝜆 = 1, Eq. (1) gives the Maxwell action in its manifestly 
gauge-invariant form, while for 𝑠 = 2 one obtains the action of linearized 
unimodular gravity. The resulting on-shell action will anyway coincide 
with the one derived from the more customary Einstein or Fronsdal 
actions [59] in the Bondi-like gauge [46,48,60] considered below, in 
which the fields are traceless.

The action (1) is invariant up to boundary terms under the gauge 
transformations1

𝛿𝜖𝜙𝜇𝑠 = 𝜕𝜇𝜖𝜇𝑠−1 with 𝜕 ⋅ 𝜖𝜇𝑠−2 = 0, 𝜖𝜇𝑠−3𝛼
𝛼 = 0, (3)

where repeated covariant or contravariant indices denote a symmetriza-
tion involving the minimum number of terms needed and without nor-
malization factors. The equations of motion read

𝑀𝜇𝑠 ∶= □𝜙𝜇𝑠 − 𝜕𝜇𝜕 ⋅ 𝜙𝜇𝑠−1 +
2

𝐷 + 2𝑠 − 4
𝜂𝜇𝜇𝜕 ⋅ 𝜕 ⋅ 𝜙𝜇𝑠−2 ≈ 0, (4)

where ≈ denotes equalities that hold on shell. Upon analyzing Eq. (4), 
one finds that the gauge-invariant double divergence of 𝜙 does not con-
tain propagating degrees of freedom and on-shell satisfies
𝜕 ⋅ 𝜕 ⋅ 𝜙𝜇𝑠−2 ≈ 0, (5)

possibly up to terms that do not vanish at the spacetime boundary and 
that we do not include in our solution space [57,58].

The on-shell action takes the form

𝑆 = ∫ d𝐷𝑥[𝜙] ≈ 1
2 ∫ d𝐷𝑥 𝜕𝛼 𝜃̂𝛼[𝜙, 𝜙], (6)

where2

𝜃̂𝛼[𝜓, 𝜙] ∶= −𝜙𝜇𝑠 𝜕
𝛼𝜓𝜇𝑠 + 𝑠 𝜆𝜙𝛽𝜇𝑠−1𝜕

𝛽𝜓𝛼𝜇𝑠−1

+ 𝑠 (1 − 𝜆)𝜙𝛼𝜇𝑠−1 𝜕 ⋅ 𝜓𝜇𝑠−1 ,
(7)

which can also be cast in the form
𝜃̂𝛼[𝜓, 𝜙] = −𝜙𝜇𝑠Γ𝛼𝜇𝑠 + 𝑠 (1 − 𝜆)

[

𝜙𝛼𝜇𝑠−1𝜕 ⋅ 𝜓
𝜇𝑠−1 − 𝜙𝛽𝜇𝑠−1𝜕𝛽𝜓𝛼𝜇𝑠−1

]

, (8)

with Γ𝛼𝜇𝑠 = 𝜕𝛼𝜓𝜇𝑠 − 𝜕𝜇𝜓
𝛼
𝜇𝑠−1 . This is the first de Wit–Freedman con-

nection [62], which for 𝑠 = 1 gives the field strength and for 𝑠 = 2 is 
proportional to the linearized Christoffel symbols.

Since we are considering a quadratic action, both the (Lee–Wald) 
presymplectic potential [63], defined by
𝛿[𝜙] ≈ 𝜕𝛼𝜃

𝛼[𝜙, 𝛿𝜙], (9)

1 Invariance of (1) actually holds even for fields and parameters subject to 
weaker trace conditions, including fully traceful ones. In those cases the spec-
trum becomes reducible and the equations of motion propagate additional par-
ticles of lower spins [58,61].
2 For simplicity, in this section we work in Cartesian coordinates. In generic 

coordinates, both [𝜙] and 𝜃̂𝛼 in (6) are densities, thus including a factor √−𝑔.

and the boundary term that one obtains when considering a gauge vari-
ation of the Lagrangian,
𝛿𝜖[𝜙] = 𝜕𝛼𝐵

𝛼
𝜖 [𝜙], (10)

can be expressed in terms of (7):3

𝜃𝛼[𝜙, 𝛿𝜙] = 𝜃̂𝛼[𝜙, 𝛿𝜙], 𝐵𝛼𝜖 [𝜙] = 𝜃̂𝛼[𝛿𝜖𝜙, 𝜙] . (11)

These two objects enter the Noether current
𝑗𝛼𝜖 [𝜙] = 𝜃𝛼[𝜙, 𝛿𝜖𝜙] − 𝐵𝛼𝜖 [𝜙], (12)

which obeys Noether’s second theorem
𝑗𝛼𝜖 [𝜙] ≈ 𝜕𝛽𝜅

𝛼𝛽
𝜖 [𝜙], (13)

where (see Appendix A)
𝜅𝛼𝛽𝜖 = 𝑠(𝑠 − 1) 𝜖𝜇𝑠−2

[𝛼𝜕 ⋅ 𝜙𝛽]𝜇𝑠−2 − 𝑠 𝜖𝜇𝑠−1𝜕
[𝛼𝜙𝛽]𝜇𝑠−1

+ 𝑠 𝜆𝜙𝜇𝑠−1[𝛼𝜕𝜇𝜖𝛽]𝜇𝑠−2 + 𝑠(1 − 𝜆) 𝜕
[𝛼𝜖𝜇𝑠−1𝜙

𝛽]𝜇𝑠−1
(14)

is the Noether two-form, and where square brackets denote antisym-
metrization over the enclosed indices, with no overall normalization 
factor. This can also be cast in the equivalent form

𝜅𝛼𝛽𝜖 = 𝜅𝛼𝛽𝜖
|

|

|

|𝜆=0
+ 𝜆𝑠𝜙𝜇𝑠−1

[𝛼𝛿𝜖𝜙
𝛽]𝜇𝑠−1 . (15)

Therefore, Eq. (13) implies that, on shell, the quantity (7) is sym-
metric in its arguments up to the divergence of an antisymmetric tensor 
(which we shall refer to as a corner term) when 𝜓 = 𝛿𝜖𝜙:

𝜃̂𝛼[𝜙, 𝛿𝜖𝜙] ≈ 𝜃̂𝛼[𝛿𝜖𝜙, 𝜙] + 𝜕𝛽𝜅𝛼𝛽𝜖 [𝜙] . (16)

This property will be important in the renormalization of the on-shell 
action discussed in Section 4.

3.  The Bondi-like gauge

To analyze the structure of the divergent terms in the on-shell ac-
tion, we parameterize the Minkowski background using retarded Bondi 
coordinates as
d𝑠2 = −d𝑢2 − 2d𝑢d𝑟 + 𝑟2𝛾𝑖𝑗d𝑥𝑖d𝑥𝑗 , (17)

where 𝑢 ∶= 𝑡 − 𝑟 and 𝛾𝑖𝑗 denotes the round metric on the codimension-
2 unit celestial sphere, and where we impose the Bondi-like conditions 
[46,48,60]

𝜙𝑟𝜇𝑠−1 = 0, 𝛾 𝑖𝑗𝜙𝑖𝑗𝜇𝑠−2 = 0 ⇒ 𝑔𝛼𝛽𝜙𝛼𝛽𝜇𝑠−2 = 0 . (18)

For simplicity, we thus fix both the coordinates of the background and 
the gauge, while commenting on this choice in the Conclusions. Notice 
that the conditions (18) imply that the Fronsdal action reduces to the 
Maxwell-like action (1).

Following [48], for any value of 𝐷 we further impose the boundary 
conditions

𝜙𝑢𝑠−𝑘𝑖𝑘 ∶= 𝜙 𝑢⋯ 𝑢
⏟⏟⏟

𝑠−𝑘

𝑖1⋯𝑖𝑘 = (𝑟𝑘−1) (19)

on the remaining non-vanishing components. We also assume that the 
fields can be expanded in integer powers of the radial coordinate, with-
out any log 𝑟 contributions. When 𝐷 > 4, the falloffs (19) are overleading 
with respect to those typical of radiation, for which 𝜙𝑢𝑠−𝑘𝑖𝑘 = (𝑟−

𝐷−2
2 +𝑘). 

They however allow for residual gauge transformations generated by 
an arbitrary function on the celestial sphere, 𝑇 (𝑥̂), which, following 
[46,48], we refer to as higher-spin supertranslations.4 Actually, above 

3 We use (7) as a bookkeeping device for the tensorial structures entering (9) 
and (10) and to specify how derivatives act on the two arguments. The corre-
sponding algebraic manipulations are detailed in Appendix A.
4 Weaker boundary conditions leading to higher-spin generalizations of 

𝐷𝑖𝑓𝑓 (𝑆𝐷−2) superrotations have also been considered in [48].
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the radiation order the equations of motion (4) only allow for pure-
gauge configurations, so that the field components are bound to take 
the form [48]

𝜙𝑢𝑠−𝑘𝑖𝑘 = 𝑟𝑘−1
𝑘(𝐷 + 𝑘 − 5)!
𝑠(𝐷 + 𝑠 − 5)!

(⋅)𝑠−𝑘𝐶̂𝑖𝑘 (𝑥̂) + 
(

𝑟−
𝐷−2
2 +𝑘

)

, (20)

where the omitted terms do not depend on 𝑇 (𝑥̂), and where

𝐶̂𝑖𝑠 (𝑥̂) ∶=
1

[(𝑠 − 1)!]2


⟨𝑖1 ⋯𝑖𝑠⟩𝑇 (𝑥̂) . (21)

In the latter expression, angular brackets denote the symmetric and 
traceless projection, while 𝑖 is the Levi–Civita covariant derivative on 
the celestial sphere.

When 𝐷 > 4, in this gauge the space of solutions thus decomposes
as

𝜙 = 𝛿𝜖𝜙 + 𝜙rad, (22)

where 𝛿𝜖𝜙 is a pure-gauge piece and 𝜙rad is a gauge-invariant one, 
encoding information, e.g., about outgoing radiation and (subleading) 
Coulombic contributions. As highlighted by Eq. (20), the two terms in
(22) are neatly separated for 𝐷 > 4 because they appear at different or-
ders in the large-𝑟 expansion, with 𝛿𝜖𝜙 being leading as 𝑟 → ∞, while 
for 𝐷 = 4 they mix.

4.  Renormalization of the action in Bondi-like gauge

The on-shell action obtained by evaluating (1) on the solution space
(20) diverges at null infinity. Our goal will be to show that the diver-
gences can be canceled by adding a boundary term not affecting the 
variational principle. To identify it, we first define the regularized ac-
tion by integrating the Lagrangian on a portion of spacetime up to a 
time-like surface at 𝑟 = 𝑅:

𝑆reg ∶= ∫𝑟≤𝑅
d𝐷𝑥[𝜙] . (23)

Using the property (16) and the decomposition (22), the latter can be 
rewritten as
𝑆reg ≈

1
2 ∫𝑟=𝑅

d𝐷−1𝑥
(

𝜃̂𝑟[𝛿𝜖𝜙, 𝛿𝜖𝜙] + 2 𝜃̂𝑟[𝛿𝜖𝜙, 𝜙rad]

+ 𝜃̂𝑟[𝜙rad, 𝜙rad] + 𝜕𝜇𝜅𝑟𝜇𝜖 [𝜙]
)

,
(24)

with

𝜃̂𝑟[𝜓, 𝜙] =𝑟𝐷−2𝑠−3√𝛾
{

− 𝜙𝑖𝑠
[

𝑟𝜕𝑟 − (1 − 𝜆)𝑠 − 𝑟𝜕𝑢
]

𝜓𝑖𝑠

− 𝑠 𝑟
[

𝜆𝜙𝑖𝑠−1𝑗𝑗𝜓𝑢𝑖𝑠−1 + (1 − 𝜆)𝜙𝑢𝑖𝑠−1 ⋅ 𝜓𝑖𝑠−1
]

+ 𝑠 𝑟2𝜙𝑢𝑖𝑠−1
[

𝑟𝜕𝑟 − 2𝜆(𝑠 − 1) + (1 − 𝜆)(𝐷 − 2)
]

𝜓𝑢𝑖𝑠−1
}

,

(25)

and where angular indices are raised and lowered using the metric 𝛾𝑖𝑗
on the celestial sphere.

We now focus on the limit of Eq. (25) as 𝑟 = 𝑅 → ∞ at fixed 𝑢, and 
on the corresponding patch in (24). In this limit, one approaches the 
region of the boundary corresponding to future null infinity ℐ +, and 
our goal will be to identify a boundary term defined on the regulating 
surface canceling the divergences in 𝑅 of Eq. (24). Notice that in this 
limit the last term in Eq. (24) gives a corner contribution localized at 
the future/past boundaries ℐ +

±  of ℐ +. A similar treatment apply to ℐ −, 
while to discuss the renormalization of the action in the remaining re-
gions of the boundary of Minkowski space it would be more efficient 
to consider other coordinate systems and we do not address this issue 
here. Eq. (20) then shows that 𝜃̂𝑟[𝜙rad, 𝜙rad] gives a contribution which 
remains finite in the limit 𝑅 → ∞ (at fixed 𝑢) for any value of 𝐷. The 
terms in the first line of (24) and the corner term, depending on 𝜅𝑟𝜇𝜖 [𝜙], 
diverge instead in this limit when 𝐷 > 4.

Before discussing how to cancel these divergences, let us stress that 
for 𝑠 = 1 and 𝜆 = 1 one obtains
𝜃̂𝑟[𝐵,𝐴] = −𝐴𝜇(𝜕𝑟𝐵𝜇 − 𝜕𝜇𝐵𝑟), (26)

involving in particular the field strength of 𝐵𝜇 . This term vanishes when 
𝐵𝜇 is pure gauge, thus (24) implies that the on-shell Maxwell action in 
flat space is manifestly finite up to corner terms. For 𝜆 ≠ 1, one can 
regularize the action (again up to corner terms) by adding the covariant 
boundary term (2) that gives back the manifestly gauge-invariant, 𝜆 =
1 form of the action. For 𝑠 > 1, the first de Wit–Freedman connection 
entering (8) transforms instead as 𝛿Γ𝛼𝜇𝑠 = −2 𝜕2𝜇𝜖𝛼𝜇𝑠−2 , and one has to 
add a boundary counterterm for any value of 𝜆.

In view of (24), we now specialize Eq. (25) to field configurations in 
which 𝜓 = 𝛿𝜖𝜙 is a pure-gauge contribution involving only higher-spin 
supertranslations, as in Eqs. (20) and (21). Since the variation of each 
field component under supertranslations is homogeneous in 𝑟,  in (25) 
the operator 𝑟𝜕𝑟 just produce a factor, i.e., 𝑟𝜕𝑟𝛿𝜖𝜙𝑢𝑠−𝑘𝑖𝑘 = (𝑘 − 1) 𝛿𝜖𝜙𝑢𝑠−𝑘𝑖𝑘 . 
Moreover, the gauge invariance of the component 𝑀𝑟𝑖𝑠−1  of the equa-
tions of motion (see Eq. (140) of [60] for an explicit expression)
implies

(𝑠 − 1) ⋅ 𝛿𝜖𝜙𝑖𝑠−1 = 𝑟𝑠(𝐷 + 𝑠 − 5) 𝛿𝜖𝜙𝑢𝑖𝑠−1 . (27)

For 𝑠 = 1, Eq. (27) gives 𝛿𝜖𝐴𝑢 = 0. One then has (for 𝑠 ≥ 2)

𝑟2𝑠+3−𝐷 𝜃̂𝑟[𝛿𝜖𝜙, 𝜙] =
√

𝛾
{

(1 − 𝜆𝑠)𝜙𝑖𝑠𝛿𝜖𝜙𝑖𝑠 +
𝜆(𝑠 − 1)
𝐷 + 𝑠 − 5

 ⋅ 𝜙𝑖𝑠−1 ⋅ 𝛿𝜖𝜙𝑖𝑠−1

− 𝑠 𝑟2

𝑠 − 1
[𝜆𝑠(𝑠 − 1) + (1 − 𝜆)(𝐷 − 4)]𝜙𝑢𝑖𝑠−1𝛿𝜖𝜙𝑢𝑖𝑠−1

}

,

(28)

where we also integrated by parts a 𝑖, an operation which does not 
spoil the structure (24) of the on-shell action (we neglect total diver-
gences on the sphere, whose integral vanishes).

Both contributions in the first line of Eq. (24) have this form and di-
verge as (𝑅𝐷−5). These divergences can however be canceled by defin-
ing the subtracted action

𝑆sub ∶= 𝑆reg + ∫𝑟=𝑅
d𝐷−1𝑥ct, (29)

with a counterterm given by, for 𝑠 ≥ 2,

ct =
√

−𝑔
2𝑅

{

(𝜆𝑠 − 1)𝜙𝑖𝑠𝜙𝑖𝑠 −
𝑅2𝜆(𝑠 − 1)
𝐷 + 𝑠 − 5

 ⋅ 𝜙𝑖𝑠−1 ⋅ 𝜙𝑖𝑠−1

+ 𝑠
𝑠 − 1

[𝜆𝑠(𝑠 − 1) + (1 − 𝜆)(𝐷 − 4)]𝜙𝑢𝑖𝑠−1𝜙𝑢𝑖𝑠−1
}

, (30)

where here we raised angular indices with the full metric 𝑔𝑖𝑗 to absorb 
the corresponding powers of 𝑟. Instead, for 𝑠 = 1, 

ct =
√

−𝑔
2𝑅

(𝜆 − 1)
(

𝐴𝑖𝐴𝑖 − 2𝑅𝐴𝑢 ⋅ 𝐴
)

. (31)

One can compare with the boundary term (2), which also renormalizes 
the action by making it manifestly gauge invariant,

𝐵𝜆 = − 𝜆
2𝑅 ∫𝑟=𝑅

√

−𝑔
(

𝐴𝑖𝐴𝑖 − 2𝑅𝐴𝑢 ⋅ 𝐴 + (𝐷 − 2)𝐴2
𝑢
)

. (32)

Eqs. (31) and (32) are compatible since the last term in (32), being gauge 
invariant, goes to zero as 𝑅 → ∞.

Notice that the counterterm (30) is written in terms of bulk fields 
and it does not contain any derivative in 𝑟 of the fields, i.e., it does not 
involve derivatives in the direction normal to the regulating surface at 
𝑟 = 𝑅. As such, it is a boundary term that does not affect the variational 
principle. We were able to achieve this goal thanks to the option of 
letting all derivatives act on 𝛿𝜖𝜙, which is guaranteed by the property
(16) of the on-shell action, and by the homogeneity in 𝑟 of the variations 
of each field component under higher-spin supertranslations. Another 
crucial property of the counterterm (30) is that it only involves squares 
of each tensorial structure, which allows one to cancel both divergences 
in the first line of Eq. (24). For 𝐷 = 4, consistently with the finiteness of 
the on-shell action (6), the counterterm vanishes in the limit 𝑅→ ∞.

The subtracted action takes the form
𝑆sub ≈ 1

2 ∫𝑟=𝑅
d𝐷−1𝑥

√

𝛾 𝐶 𝑖𝑠𝜕𝑢𝐶𝑖𝑠

− 1
2 ∮ d𝐷−2𝑥 𝜅𝑢𝑟𝜖 [𝜙]

|

|

|

|

𝑢=+∞

𝑢=−∞
+ (𝑅−1),

(33)

Physics Letters B 870 (2025) 139908 

3 



A. Campoleoni, A. Delfante, D. Francia et al.

where 𝐶𝑖𝑠  is the generalization of the 𝑠 = 2 shear tensor parameterizing 
the asymptotic solution space:

𝜙𝑖𝑠 = 𝑟𝑠−1 𝐶̂𝑖𝑠 (𝑥̂) + 𝑟
− 𝐷+2𝑠−2

2 𝐶𝑖𝑠 (𝑢, 𝑥̂) + (𝑟−
𝐷+2𝑠−4

2 ) . (34)

The tensor 𝐶𝑖𝑠 (𝑢, 𝑥̂) is traceless but otherwise unconstrained, so that the 
first line of Eq. (33) is the generalization of the Ashtekar-Streubel struc-
ture [64] to any massless bosonic field. It comes from the original on-
shell action, since the counterterm vanishes as (𝑅−1) when evaluated 
on radiation falloffs.

The second line of (33), instead, still contains a potentially diverg-
ing corner contribution. The corner term coincides however with that 
entering Noether’s second theorem, see Eq. (14). The corresponding sur-
face charge had already been discussed in ref. [48], focusing on 𝜆 = 0.5 
However, as displayed by Eq. (15), the 𝜆-dependent terms are propor-
tional to 𝜙𝜇𝑠−1[𝛼𝛿𝜖𝜙𝛽]𝜇𝑠−1  and this vanishes in Bondi-like gauge for 𝛼 = 𝑢
and 𝛽 = 𝑟, because 𝜙𝑢𝜇𝑠−1 = −𝜙𝑟𝜇𝑠−1 = 0 and similarly for 𝛿𝜖𝜙𝑢𝜇𝑠−1 . So, 
there is no new contribution to 𝜅𝑢𝑟𝜖  compared to [48]. As such, the cor-
ner contributions in the second line of (33) have the same structure as 
the supertranslation charge discussed in [48]. In that reference, it was 
shown that, for spin-𝑠 supertranslations,

∮ d𝐷−2𝑥 𝜅𝑟𝑢𝜖1 [𝛿𝜖2𝜙] = 0, (35)

so that the (divergent) contributions that are “quadratic” in the pure-
supertranslation part vanish identically. In fact, these contributions 
would also cancel in (33) because they are 𝑢-independent. Moreover, 
the surface charge had been shown to be finite when evaluated in a 
neighborhood of ℐ +

± , say for 𝑢 < 𝑢1 and 𝑢 > 𝑢2 (with 𝑢1 < 𝑢2), under the 
assumption that in those regions there is no radiation and the fields 
attain a stationary configuration. A characterization of stationary solu-
tions for fields of any spin is discussed in Appendix D of [48], and it 
amounts to consider configurations that near ℐ +

±  behave like
𝜙𝑢𝑠−𝑘𝑖𝑘 = 𝑟3−𝐷+𝑘𝑖𝑘

(𝑘)(𝑢, 𝑥̂) + (𝑟2−𝐷+𝑘) (36)

possibly up to a pure-gauge contribution of the same form as that dis-
played in Eq. (20).

Imposing these boundary conditions at 𝑢→ ±∞, the resulting finite 
renormalized action is
𝑆ren ∶= lim

𝑅→∞
𝑆sub = 1

2 ∫ℐ +
d𝐷−1𝑥

√

𝛾 𝐶 𝑖𝑠𝜕𝑢𝐶𝑖𝑠

+ 1
2
𝑠(−1)𝑠(𝐷 + 𝑠 − 4)∮ d𝐷−2𝑥

√

𝛾 𝑇  (0)|
|

|

|

𝑢=+∞

𝑢=−∞
.

(37)

Alternatively, one can avoid imposing stationarity of the fields at 𝑢 →
±∞ and add corner counterterms canceling the divergent contributions 
in the presymplectic potential. We shall discuss this approach in the next 
section.

Let us now consider the variation of the subtracted action (33) to 
compute the subtracted presymplectic potential,

𝛿𝑆sub ≈ ∫𝑟=𝑅
d𝐷−1𝑥 𝜃𝑟sub[𝜙, 𝛿𝜙] (38)

where

𝜃𝑟sub[𝜙, 𝛿𝜙] ∶= 𝜃𝑟[𝜙, 𝛿𝜙] + 𝛿ct . (39)

Evaluating this explicitly (see Appendix B), we obtain
𝜃𝑟sub[𝜙, 𝛿𝜙] = 𝜃𝑟[𝜙rad, 𝛿𝜙rad] + 𝜕𝑢𝜅𝑟𝑢𝛿𝜖[𝜙] . (40)

We can then define the renormalized presymplectic potential by taking 
the 𝑅 → ∞ limit in a non-radiative region, e.g. for 𝑢 < 𝑢1,
𝜃𝑟ren[𝜙, 𝛿𝜙] ∶= lim

𝑅→∞
𝑢=const

𝜃𝑟sub[𝜙, 𝛿𝜙], (41)

5 See Eq. (A1) of [60] and Footnote 5 of [48]. For comparison, let us recall that 
refs. [48,60] used different normalization conventions for the two form: 𝜅𝛼𝛽𝜖 =
𝑠 (𝜅𝛼𝛽𝜖 )[48] = −𝑠! (𝜅𝛼𝛽𝜖 )[60]. Consistently, compared to (2.14) of [48], the charge 
computed in (44) below has an extra factor of 𝑠. 

for which we find
𝜃𝑟ren[𝜙, 𝛿𝜙] ≈

√

𝛾
(

𝛿𝐶 𝑖𝑠 𝜕𝑢𝐶𝑖𝑠 + 𝑠(−1)
𝑠(𝐷 + 𝑠 − 4) 𝜕𝑢

(

𝛿𝑇  (0))
)

. (42)

The latter can be used to obtain the renormalized supertranslation 
charge. Taking into account that 𝛿𝜖𝐶𝑖𝑠 = 0, 𝛿𝜖 (0) = 0 and 𝛿𝜖𝑇 = 𝑇  un-
der spin-𝑠 supertranslations,
𝜃𝑟ren[𝜙, 𝛿𝜖𝜙] = 𝑠(−1)𝑠(𝐷 + 𝑠 − 4)

√

𝛾 𝑇 𝜕𝑢 (0) . (43)

Since the charge is 𝛿-integrable in our linearized setup, integrating (43) 
over a hypersurface with boundary at ℐ +

− , yields

𝑇 = ∮ d𝐷−2𝑥 𝑠(−1)𝑠−1(𝐷 + 𝑠 − 4)
√

𝛾 𝑇  (0), (44)

in agreement with [48] (see footnote 5).

5.  Corner terms

In the previous section we discussed how, starting from the formal 
action (1), one can obtain a finite action at null infinity by adding the 
boundary counterterm (30) and imposing stationary field configurations 
at corners of ℐ +, that is, for 𝑢 → ±∞. In this section, we follow an alter-
native route by identifying corner counterterms. To this end, it is natural 
to investigate the symplectic structure associated with Eq. (9), because 
the technical steps are the same as those required to renormalize surface 
charges at finite 𝑢.

We start by recalling that the (Lee–Wald) presymplectic potential 
𝜃𝛼[𝜙, 𝛿𝜙] admits two types of ambiguities [65],
𝜃𝛼[𝜙, 𝛿𝜙] → 𝜃𝛼[𝜙, 𝛿𝜙] + 𝛿𝑍𝛼[𝜙] + 𝜕𝛽𝑌 𝛼𝛽 [𝜙, 𝛿𝜙], (45)

where 𝑌 𝛼𝛽 is an antisymmetric term linear in the field variations. The 
first ambiguity in (45) corresponds to adding a boundary term to the 
Lagrangian,  →  + 𝜕𝛼𝑍𝛼 , and does not contribute to the associated 
presymplectic form,
𝜔𝛼𝜖 ∶= 𝛿𝜃𝛼[𝜙, 𝛿𝜖𝜙] − 𝛿𝜖𝜃𝛼[𝜙, 𝛿𝜙], (46)

which in turn determines the Iyer–Wald surface charge density:
𝜔𝛼𝜖 ≈ 𝜕𝛽𝜅

𝛼𝛽
𝜖 [𝛿𝜙] . (47)

Notice that for the quadratic theory (1), in which the gauge parame-
ters are field independent, the last relation (47) can be 𝛿-integrated to 
eqs. (13) and (14). We also note that the boundary modification 𝑍𝑟 may 
correspond to the counterterm (30). The second ambiguity in (45) arises 
from the fact that 𝜃𝛼 appears as a boundary term in 𝛿. This term, called 
corner term, affects 𝜔𝛼𝜖 ,

𝜔𝛼𝜖 → 𝜔𝛼𝜖 + 𝜕𝛽
(

𝛿𝑌 𝛼𝛽 [𝜙, 𝛿𝜖𝜙] − 𝛿𝜖𝑌 𝛼𝛽 [𝜙, 𝛿𝜙]
)

, (48)

and thus also modifies the charge two-form. As far as the renormaliza-
tion of the charge is concerned, only the corner term plays a role. For 
this reason, we now focus on the latter and will relate it to the corner 
integral appearing in eq. (24).

Actually, there is a simple prescription in the choice of 𝑌 𝛼𝛽 that 
cancels all charge divergences for generic values of 𝑢. Focusing on the 
component that eventually enters the expression for the charge, we can 
choose [17,23]

𝑌 𝑟𝑢 = ∫ d𝑟 𝜃𝑢, (49)

and thus define the subtraction for the radial component of the symplec-
tic structure according to

𝜃𝑟sub = 𝜃𝑟 + 𝛿𝑍𝑟 + 𝜕𝑢 ∫ d𝑟 𝜃𝑢 . (50)

To see why this leads to finite charges in the asymptotic limit 𝑟 → ∞, let 
us note that, owing to (9),
𝜕𝑟𝜃

𝑟
sub = 𝜕𝑟𝜃

𝑟 + 𝛿
(

𝜕𝑟𝑍
𝑟) + 𝜕𝑢𝜃𝑢 ≈ 𝛿

(

 + 𝜕𝑟𝑍𝑟) − 𝜕𝑖𝜃𝑖. (51)
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Thus we see that the 𝑟-dependent, and in particular 𝑟-divergent, terms of 
𝜃𝑟sub reduce to 𝛿-exact contributions or total divergences on the sphere, 
which vanish when calculating the presymplectic form and hence the 
charge. In this way, the subtraction defined in (50) ensures a finite 𝑟 →
∞ limit and thus provides a renormalized charge for generic spins and 
dimensions, regardless of 𝑍𝛼 .

For instance, for 𝑠 = 1 and 𝜆 = 1, we have
𝜃𝛼[𝐴, 𝛿𝐴] = −

√

−𝑔𝐹 𝛼𝜈𝛿𝐴𝜈 , 𝜅𝛼𝛽𝜖 = −
√

−𝑔𝐹 𝛼𝛽 𝜖, (52)

and thus
𝜃𝑢[𝐴, 𝛿𝐴] = 𝑟𝐷−4√𝛾 𝜕𝑟𝐴𝑖 𝛾

𝑖𝑗𝛿𝐴𝑗 . (53)

This leads to the following expression for the divergent terms,

𝑌 𝑢𝑟 =
𝐷−4
∑

𝑘= 𝐷−2
2

𝑟𝐷−3−𝑘 𝑘 − 1
𝐷 − 3 − 𝑘

√

𝛾 𝐴(𝑘−1)
𝑖 𝛾 𝑖𝑗𝛿𝐴(0)

𝑗 + (1), (54)

where we denoted by 𝐴(𝑘)
𝑖  the coefficients in the radial expansion of the 

on-shell fields, i.e., 𝐴𝑖 =
∑

𝑘 𝑟
−𝑘𝐴(𝑘)

𝑖 . This choice ensures the cancellation 
of the divergent terms in the surface charge, which we can write as 
follows after integrating by parts and using the equations of motion,

∮ 𝜅𝑢𝑟𝜖 d
𝐷−2𝑥 = 𝑟𝐷−2

∮ d𝐷−2𝑥
√

𝛾 𝐹𝑢𝑟𝑇

= −
𝐷−4
∑

𝑘= 𝐷−2
2

𝑟𝐷−3−𝑘 𝑘 − 1
𝐷 − 3 − 𝑘 ∮ d𝐷−2𝑥

√

𝛾 𝐴(𝑘−1)
𝑖 𝛾 𝑖𝑗𝜕𝑗𝑇

+ (𝐷 − 3)∮ d𝐷−2𝑥
√

𝛾 𝑇 𝐴(𝐷−3)
𝑢 + (𝑟−1) .

(55)

We note that, in this case, choosing the finite part of the counterterm
(54) to vanish, the resulting charge coincides with the result (44) ob-
tained in the previous section. Therefore, with this prescription, an ap-
propriate choice of ambiguities that renormalizes the symplectic struc-
ture is given by the boundary modification (39), 𝑍𝑟 = ct , together with 
the corner term (49).6

We note that, while it is quite general, the subtraction defined by (50) 
is not manifestly local in terms of bulk fields. Indeed, the general form
(49) involves an integral with respect to the radial coordinate, while the 
explicit form (54) involves direct dependence on the coefficients of the 
1∕𝑟 expansion, as opposed to the bulk fields.

Just as we have done for the boundary counterterm in the last sec-
tion, one might thus ask whether it is still possible to express the corner 
counterterm (54) in terms of the bulk fields in a local way. An obstruc-
tion is represented by the fact that the most divergent term in (54) bears 
the form

𝑌 𝑢𝑟 = 𝑟
𝐷−4
2
√

𝛾 𝐴
( 𝐷−4

2 )
𝑖 𝛾 𝑖𝑗 𝛿𝐴(0)

𝑗 + (𝑟
𝐷−6
2 ) . (56)

The only two structures that can be built with the bulk field 𝐴𝜇 and do 
not involve angular or time derivatives, like the leading singularity dis-
played in (56), are 𝐴𝑖𝛾 𝑖𝑗𝛿𝐴𝑗 , 𝐴𝑢𝛿𝐴𝑢. However, these are total variations 
and hence do not contribute to the presymplectic form. On the other 
hand, one could construct one such counterterm by allowing for radial 
derivatives, but this is perturbatively equivalent to an expression such 
as (54) itself which involves explicit coefficients of the 1∕𝑟 expansion.

Thus, our analysis indicates that the corner renormalization per-
formed at the level of the symplectic potential for generic 𝑢 involves 
terms that are either nonlocal or involve explicit dependence on the 1∕𝑟
expansion coefficients. Naturally, if we now once again assume that ra-
diation vanishes as 𝑢 → −∞, in particular before some reference 𝑢1, all 
seemingly divergent terms in the presymplectic potential become harm-
less as they vanish when calculating the charge at ℐ +

−  [16,48].

6 Let us observe that applying the Compère–Marolf prescription [6] starting 
from 𝑍𝑟 = ct would not yield any nontrivial corner counterterm for the presym-
plectic potential, because there are no 𝜕𝑢 in it.

Notably, the corner counterterm (49) also leaves the finite term for-
mally unspecified, and as such would require additional criteria to iden-
tify the finite remainder after the subtraction in a unique way. For in-
stance, one can employ a “minimal subtraction” scheme, in which only 
divergent terms in 𝑟 are included in the counterterm as above, or impose 
additional properties on the allowed counterterms, see [16,21,32,33]. 
We leave the investigation of this point to future work.

6.  Conclusions

We studied the renormalization of the divergent on-shell action 
and surface charges that one encounters when considering free mass-
less fields of arbitrary spin with falloffs at null infinity allowing for 
supertranslation-like asymptotic symmetries. Our treatment applies to 
any spacetime dimension 𝐷 > 4. For each value of the spin 𝑠, we identi-
fied the boundary counterterm (30), which contains a local combination 
of the bulk fields not involving any derivative along the normal to the 
regulating surface. Imposing suitable boundary conditions in far past 
and future, this counterterm gives a finite action at null infinity with-
out affecting the variational principle. We also discussed in Section 5 
how one could weaken these corner conditions, noticing however that 
this requires to introduce corner counterterms that are either non-local 
in the bulk fields or include derivatives in the direction normal to the 
regulating surface.

The construction of our local boundary counterterm relies on the 
property (16) of the linearized action, as well as on the homogeneity 
in the radial coordinate of (higher-spin) supertranslations, see Eq. (20). 
The latter property is not shared by superrotations and their higher-spin 
counterparts [2,48,66–68]  and conceivably would not hold for higher-
spin supertranslations too, whenever non-linearities are included. Build-
ing a local counterterm also for asymptotic solution spaces allowing 
for these symmetries or including log 𝑟 contributions (see, e.g., [69–71]) 
would thus require further work. Similarly, a proper generalization of 
the above properties could be instrumental to investigate the nonlinear 
Einstein theory.

The existence of a boundary counterterm containing a local combi-
nation of the fields was not obvious a priori, especially in view of the 
difficulties to achieve the same for the corner terms that one needs to 
renormalize the charges. On the other hand, in our approach we fixed 
both the coordinates of the Minkowski background and the gauge. It 
would be interesting to reconsider our results so as to establish a renor-
malization procedure encompassing covariance with respect to both dif-
feomorphisms and linearized gauge transformations,  possibly resorting 
to conformal compactification methods [72,73] or to the cohomologi-
cal setup of the variational bicomplex [74]. We defer such investigations 
to future work, but we expect the asymptotic solution space to exhibit 
properties analogous to (22) when one imposes gauge-fixing conditions 
like those in Eq. (18) also in other coordinates systems. Combining a 
diffeomorphism with a compensating gauge transformation, one should 
thus be able to follow similar steps as those discussed above to renor-
malize the action.

Another useful intermediate step would be to restore covariance at 
least on each regulating surface, in the spirit of what has been done 
in gravity in [15,55,75,76]. As discussed in Appendix C, this could be 
achieved, e.g., by parameterizing the background in an ADM form, thus 
possibly disclosing the underlying Carrollian geometry of the boundary, 
as in the mentioned references. More in general, it will be interesting to 
identify a procedure to derive boundary correlators from our on-shell ac-
tions and non-linear generalizations thereof, in the spirit of holographic 
renormalization in AdS.
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Appendix A.  The Noether two-form

We would like to compute the Noether current corresponding to the 
invariance of the action (1) under the gauge transformation (3). Let us 
write the Lagrangian as
 = 𝜆1 + (1 − 𝜆)2, (A.1)

where

1 ∶= −1
2
𝜕𝜌𝜙𝜇𝑠 𝜕

𝜌𝜙𝜇𝑠 + 𝑠
2
𝜕𝜌𝜙𝜎𝜇𝑠−1𝜕

𝜎𝜙𝜌𝜇𝑠−1 , (A.2)

2 ∶= −1
2
𝜕𝜌𝜙𝜇𝑠 𝜕

𝜌𝜙𝜇𝑠 + 𝑠
2
𝜕 ⋅ 𝜙𝜇𝑠−1 𝜕 ⋅ 𝜙

𝜇𝑠−1 . (A.3)

We can compute  the quantity 𝜃̂𝛼[𝜓, 𝜙]  defined in (7) and the corre-
sponding current separately for each term 1 and 2 and then take their 
linear combination to get a result valid for any value of 𝜆.

For 1 one finds
𝜃̂𝛼1 [𝜓, 𝜙] = 𝜙𝜇𝑠 𝜕

𝜇𝜓𝛼𝜇𝑠−1 − 𝜙𝜇𝑠 𝜕
𝛼𝜓𝜇𝑠 , (A.4)

which, following [77], gives the Noether current
𝑗𝛼1 = 𝜃̂𝛼1 [𝜙, 𝛿𝜖𝜙] − 𝜃̂

𝛼
1 [𝛿𝜖𝜙, 𝜙]

= 𝜕𝜇𝜖𝜇𝑠−1𝜕
𝜇𝜙𝛼𝜇𝑠−1 − 𝜕𝜇𝜖𝜇𝑠−1𝜕

𝛼𝜙𝜇𝑠 − 2 𝜕2𝜇 𝜖𝛼𝜇𝑠−2𝜙
𝜇𝑠 ,

(A.5)

where 𝜕2𝜇 denotes a double gradient involving the minimal number of 
terms required for full symmetrization, e.g., the square gradient of a vec-
tor, 𝜕2𝜇𝐴𝜇 , stands for the combination 𝜕𝛼𝜕𝛽𝐴𝛾 + 𝜕𝛾𝜕𝛼𝐴𝛽 + 𝜕𝛽𝜕𝛾𝐴𝛼 . Manip-
ulating the sum of the first two terms one obtains
𝜕𝜇𝜖𝜇𝑠−1𝜕

𝜇𝜙𝛼𝜇𝑠−1 − 𝜕𝜇𝜖𝜇𝑠−1𝜕
𝛼𝜙𝜇𝑠 = 𝑠𝜕𝛽

[

𝜖𝜇𝑠−1
(

𝜕𝛽𝜙𝛼𝜇𝑠−1 + 𝜕𝜇𝜙𝛼𝛽𝜇𝑠−2

− 𝜕𝛼𝜙𝛽𝜇𝑠−1
)]

− 𝑠𝜖𝜇𝑠−1
(

□𝜙𝛼𝜇𝑠−1 + 𝜕𝜇𝜕 ⋅ 𝜙𝛼𝜇𝑠−2 − 𝜕𝛼𝜕 ⋅ 𝜙𝜇𝑠−1
)

,
(A.6)

while the third term can be written as
−2 𝜕2𝜇 𝜖

𝛼
𝜇𝑠−2𝜙

𝜇𝑠 = − 𝑠(𝑠 − 1)
[

𝜕 ⋅ 𝜕 ⋅ 𝜙𝜇𝑠−2𝜖
𝛼𝜇𝑠−2

+ 𝜕𝛽
(

𝜙𝛽𝛾𝜇𝑠−2𝜕𝛾𝜖
𝛼
𝜇𝑠−2 − 𝜕 ⋅ 𝜙

𝛽𝜇𝑠−2𝜖𝛼𝜇𝑠−2
)]

.
(A.7)

Putting these together one finds 𝑗𝛼1 ≈ 𝜕𝛽𝜅
𝛼𝛽
1  with

𝜅𝛼𝛽1 = 𝑠𝜙𝜇𝑠−1[𝛼𝜕𝜇𝜖
𝛽]
𝜇𝑠−2 + 𝑠(𝑠 − 1)𝜖𝜇𝑠−2

[𝛼𝜕 ⋅ 𝜙𝛽]𝜇𝑠−2 − 𝑠𝜖𝜇𝑠−1𝜕
[𝛼𝜙𝛽]𝜇𝑠−1 ,

(A.8)

where we took into account that eqs. (4) and (5), in combination with 
the tracelessness of the gauge parameter, imply
𝜕 ⋅ 𝜕 ⋅ 𝜙𝜇𝑠−2 ≈ 0,

𝜖𝜇𝑠−1
(

□𝜙𝜇𝑠 − 𝜕𝜇𝜕 ⋅ 𝜙𝜇𝑠−1
)

≈ 0 .
(A.9)

We can now perform the same computation for 2. One finds
𝜃̂𝛼2 [𝜓, 𝜙] = 𝑠 𝜙𝛼 𝜇𝑠−1 𝜕 ⋅ 𝜓𝜇𝑠−1 − 𝜙𝜇𝑠 𝜕𝛼𝜓𝜇𝑠 , (A.10)

which gives the Noether current
𝑗𝛼2 = 𝑠

(

𝜕𝛼𝜖𝜇𝑠−1 + 𝜕𝜇𝜖𝛼𝜇𝑠−2
)

𝜕 ⋅ 𝜙𝜇𝑠−1 − 𝜕𝜇𝜖𝜇𝑠−1𝜕
𝛼𝜙𝜇𝑠

− 𝑠𝜙𝛼𝜇𝑠−1□𝜖𝜇𝑠−1 + 𝜙𝜇𝑠𝜕𝛼𝜕𝜇𝜖𝜇𝑠−1 .
(A.11)

Again, the idea is to express the current as a total derivative up to terms 
that vanish on shell as in (A.9). In particular, integrating by parts twice 
the term involving the d’Alembertian one obtains

𝜙𝛼𝜇𝑠−1□𝜖𝜇𝑠−1 = □𝜙𝛼𝜇𝑠−1𝜖𝜇𝑠−1 + 𝜕𝛽
(

𝜙𝛼𝜇𝑠−1𝜕𝛽𝜖𝜇𝑠−1 − 𝜕
𝛽𝜙𝛼𝜇𝑠−1𝜖𝜇𝑠−1

)

(A.12)

where □𝜙𝛼𝜇𝑠−1  can be completed to reproduce the equations of motion. 
After some additional manipulations on the other terms, one eventually 
gets

𝑗𝛼2 = 𝜕𝛽𝜅
𝛼𝛽
2 + 𝑠𝜖𝜇𝑠−1

(

□𝜙𝛼𝜇𝑠−1 − 𝜕𝛼𝜕 ⋅ 𝜙𝜇𝑠−𝑞 − 𝜕𝜇𝜕 ⋅ 𝜙𝛼𝜇𝑠−2
)

+ 𝑠(𝑠 − 1)𝜖𝛼𝜇𝑠−2𝜕 ⋅ 𝜕 ⋅ 𝜙𝜇𝑠−2 ≈ 𝜕𝛽𝜅
[𝛼𝛽]
2 ,

(A.13)

where

𝜅𝛼𝛽2 = 𝑠(𝑠 − 1)𝜖𝜇𝑠−2
[𝛼𝜕 ⋅ 𝜙𝛽]𝜇𝑠−2 + 𝑠𝜕[𝛼𝜖𝜇𝑠−1𝜙

𝛽]𝜇𝑠−1 − 𝑠𝜖𝜇𝑠−1𝜕
[𝛼𝜙𝛽]𝜇𝑠−1 .

(A.14)

Altogether, the Noether current for the Lagrangian (A.1) is 𝑗𝛼𝜖 ≈ 𝜕𝛽𝜅
𝛼𝛽
𝜖 , 

with

𝜅𝛼𝛽𝜖 = 𝜆𝜅𝛼𝛽1 + (1 − 𝜆)𝜅𝛼𝛽2
= 𝑠(𝑠 − 1)𝜖𝜇𝑠−2

[𝛼𝜕 ⋅ 𝜙𝛽]𝜇𝑠−2 − 𝑠 𝜖𝜇𝑠−1𝜕
[𝛼𝜙𝛽]𝜇𝑠−1

+ 𝑠 𝜆𝜙𝜇𝑠−1[𝛼𝜕𝜇𝜖𝛽]𝜇𝑠−2 + 𝑠(1 − 𝜆)𝜕
[𝛼𝜖𝜇𝑠−1𝜙

𝛽]𝜇𝑠−1 .

(A.15)

Let us note that the 𝜆-dependent part of 𝜅𝛼𝛽𝜖  can be rewritten in a simple 
way,

𝜅𝛼𝛽𝜖 = 𝜅𝛼𝛽2 + 𝜆𝑠𝜙𝜇𝑠−1
[𝛼𝛿𝜖𝜙

𝛽]𝜇𝑠−1 . (A.16)

This is consistent with the fact that the term proportional to 𝜆 in the 
Lagrangian (A.1) is a total derivative
1 − 2 = 𝜕𝛼𝛼 (A.17)

with

𝛼[𝜙] = 𝑠
2

(

𝜙𝛽𝜇𝑠−1𝜕
𝛽𝜙𝛼𝜇𝑠−1 − 𝜕𝛽𝜙𝛽𝜇𝑠−1𝜙

𝛼𝜇𝑠−1
)

(A.18)

and

𝜃𝛼1 [𝜙, 𝛿𝜙] − 𝜃
𝛼
2 [𝜙, 𝛿𝜙] = 𝛿𝛼[𝜙] + 𝑠

2
𝜕𝛽
(

𝜙𝜇𝑠−1
[𝛼𝛿𝜙𝛽]𝜇𝑠−1

)

. (A.19)

Appendix B. Evaluating 𝜽sub

To evaluate (39) explicitly, let us manipulate the two ingredients on 
the right-hand side with the goal to highlight the cancellation of the 
divergent terms. We begin by noting that the counterterm Lagrangian
(30) was constructed in such a way as to cancel the first two terms on the 
right-hand side of (24), and as such it satisfies (up to total divergences 
on the sphere and up to terms that eventually vanish as 𝑅 → ∞)

ct ≈ −𝜃̂𝑟[𝛿𝜖𝜙, 𝜙rad] −
1
2 𝜃̂

𝑟[𝛿𝜖𝜙, 𝛿𝜖𝜙]

≈ −𝜃̂𝑟[𝛿𝜖𝜙, 𝜙] +
1
2 𝜃̂

𝑟[𝛿𝜖𝜙, 𝛿𝜖𝜙],
(B.1)

where we used the decomposition (22) of the solution space. Similarly, 
the “bare” presymplectic potential defined by (11) can be manipulated 
as follows,
𝜃𝛼[𝜙, 𝛿𝜙] ≈ 𝜃̂𝛼[𝛿𝜖𝜙, 𝛿𝜙] + 𝜃̂𝛼[𝜙rad, 𝛿𝛿𝜖𝜙] + 𝜃̂𝛼[𝜙rad, 𝛿𝜙rad]

≈ 𝜃̂𝛼[𝛿𝜖𝜙, 𝛿𝜙] + 𝜃̂𝛼[𝜙, 𝛿𝛿𝜖𝜙] − 𝜃̂𝛼[𝛿𝜖𝜙, 𝛿𝛿𝜖𝜙]

+ 𝜃̂𝛼[𝜙rad, 𝛿𝜙rad],

(B.2)

where we used again (22) as well as the fact that 𝛿(𝛿𝜖𝜙𝜇𝑠 ) = 𝜕𝜇𝛿𝜖𝜇𝑠−1 =
𝛿𝛿𝜖𝜙𝜇𝑠 . Applying the second Noether theorem in the form (16), we then 
have

𝜃𝛼[𝜙, 𝛿𝜙] ≈ 𝜃̂𝛼[𝛿𝜖𝜙, 𝛿𝜙] + 𝜃̂𝛼[𝛿𝛿𝜖𝜙, 𝜙] − 𝜃̂𝛼[𝛿𝜖𝜙, 𝛿𝛿𝜖𝜙]

+ 𝜃̂𝛼[𝜙rad, 𝛿𝜙rad] + 𝜕𝛽𝜅
𝛼𝛽
𝛿𝜖 [𝜙] .

(B.3)
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Finally, we focus on the 𝛼 = 𝑟 component and note that, again by (16),
𝜃̂𝑟[𝛿𝜖𝜙, 𝛿𝛿𝜖𝜙] − 𝜃̂𝑟[𝛿𝛿𝜖𝜙, 𝛿𝜖𝜙] ≈ 𝜕𝛽𝜅

𝑟𝛽
𝛿𝜖 [𝛿𝜖𝜙] ≈ 𝜕𝑖𝜅

𝑟𝑖
𝛿𝜖[𝛿𝜖𝜙], (B.4)

where in the last equality we have employed (35). This allows us to 
recast 𝜃𝑟[𝜙, 𝛿𝜙] in the following way, up to total divergences on the 
sphere,

𝜃𝑟[𝜙, 𝛿𝜙] ≈ 𝛿
(

𝜃̂𝑟[𝛿𝜖𝜙, 𝜙] −
1
2
𝜃̂𝑟[𝛿𝜖𝜙, 𝛿𝜖𝜙]

)

+ 𝜃𝑟[𝜙rad, 𝛿𝜙rad] + 𝜕𝑢𝜅𝑟𝑢𝛿𝜖[𝜙] .
(B.5)

By (B.1), we see that the terms in the first line of (B.5) cancel out in 
𝜃𝑟[𝜙, 𝛿𝜙] + 𝛿ct, leading from (39) to (40) in the main body of the text.

Appendix C.  Covariance under boundary diffeomorphisms

Holographic renormalization would require, in particular, that a 
boundary counterterm be covariant with respect to reparametriza-
tions of the regulating surface at 𝑟 = 𝑅. Drawing inspiration from the 
boundary-covariant gauges [15,55,75,78] used in nonlinear gravity, 
this property can be made manifest using an ADM-like foliation of 
Minkowski spacetime in terms of time-like surfaces,
d𝑠2 = d𝑟2 + ℎ𝑎𝑏

(

d𝑥𝑎 +𝑁𝑎d𝑟
)(

d𝑥𝑏 +𝑁𝑏d𝑟
)

, (C.1)

where 𝑥𝑎 are the coordinates and ℎ𝑎𝑏 is the induced metric on each 
time-like sheet. Indeed, the retarded Bondi coordinates (17) fit within 
this class of parameterizations with the identifications
𝑁𝑎 = 𝛿𝑎𝑢, ℎ𝑎𝑏d𝑥𝑎d𝑥𝑏 = −d𝑢2 + 𝑟2𝛾𝑖𝑗d𝑥𝑖d𝑥𝑗 . (C.2)

These imply the properties
𝑁𝑎𝑁𝑎 = −1, 𝜕𝑟𝑁

𝑎 = 0, 𝐷𝑎𝑁
𝑏 = 0, 𝑁𝑎𝐾𝑎𝑏 = 0, (C.3)

where boundary indices are raised and lowered via ℎ𝑎𝑏 and its inverse 
ℎ𝑎𝑏, 𝐷𝑎 is the Levi-Civita connection of ℎ𝑎𝑏, and 𝐾𝑎𝑏 is the extrinsic cur-
vature. In the current setup, the latter reads

𝐾𝑎𝑏 =
1
2
𝜕𝑟ℎ𝑎𝑏, (C.4)

and its only non-trivial components in retarded Bondi coordinates are 
𝐾𝑖𝑗 = 𝑟 𝛾𝑖𝑗 . The relations (C.3) provide a characterization of our foliation 
that is invariant under diffeomorphisms on each time-like surface and 
that allows one to rewrite the metric in the equivalent form
d𝑠2 = 2𝑁𝑎(𝑥𝑏)d𝑥𝑎d𝑟 + ℎ𝑎𝑏(𝑟, 𝑥𝑐 )d𝑥𝑎d𝑥𝑏 . (C.5)

When the conditions (C.3) hold, the non-vanishing Christoffel symbols 
are

Γ𝑟𝑎𝑏 = −𝐾𝑎𝑏, Γ𝑎𝑟𝑏 = 𝐾𝑎
𝑏, Γ𝑎𝑏𝑐 = Γ(ℎ) 𝑎𝑏𝑐 +𝑁𝑎𝐾𝑏𝑐 , (C.6)

where Γ(ℎ) 𝑎𝑏𝑐 are the connection coefficients associated to the induced 
metric ℎ𝑎𝑏. Notice that in the limit 𝑟 → ∞ this metric becomes degen-
erate and the shift vector 𝑁𝑎 spans its kernel, so that one recovers the 
two geometric objects that characterize the Carroll geometry of ℐ + (see, 
e.g., [79]).

As an illustration of the procedure, let us consider for simplicity the 
case 𝑠 = 1. In the coordinates (C.5), Eq. (7) reads

𝜃̂𝑟[𝐵,𝐴] = −
√

−ℎ
[

𝐴𝑎
(

𝜕𝑟 −𝑁𝑏𝐷𝑏
)

𝐵𝑎 − (1 − 𝜆)𝐾𝑏
𝑎𝐴

𝑎𝐵𝑏

+ 𝜆𝑁𝑏𝐴𝑎𝐷𝑎𝐵𝑏 − (1 − 𝜆)𝑁𝑎𝐴𝑎
(

𝐾𝑁𝑏 −𝐷𝑏)𝐵𝑏
]

, (C.7)

where 𝐾 = ℎ𝑎𝑏𝐾𝑎𝑏 and we imposed the radial gauge condition 𝐴𝑟 = 0. 
The falloffs (19) can instead be translated in
𝐴𝑎 ∼ (1), 𝑁𝑎𝐴𝑎 ∼ (𝑟−1), (C.8)

and the solution space takes again the form 𝐴𝜇 = 𝛿𝜖𝐴𝜇 + 𝐴
𝜇
rad as in 

Eq. (22). Moreover, the following relations hold,
𝜕𝑟𝛿𝜖𝐴𝑎 = 0, 𝑁𝑎𝐷𝑎𝛿𝜖𝐴𝑏 = 0, 𝑁𝑎𝛿𝜖𝐴𝑎 = 0, (C.9)

and they allow to cancel the divergences in (C.7) by adding the coun-
terterm action

𝑆ct =
𝜆 − 1
2 ∫ d

𝐷−1𝑥
√

−ℎ
[

𝐾𝑏
𝑎𝐴

𝑎𝐴𝑏 −𝑁𝑎𝐴𝑎𝐷
𝑏𝐴𝑏 +𝑁𝑎𝐴𝑏𝐷

𝑏𝐴𝑎
]

. (C.10)

Using (C.2), the latter coincides with Eq. (31) (up to an integration by 
parts of 𝑖), but it is now manifestly invariant under boundary diffeo-
morphisms. 
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