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We identify boundary terms renormalizing the free on-shell actions for massless fields of arbitrary spin, including
electromagnetism and linearized gravity, with boundary conditions allowing for supertranslation-like asymptotic

symmetries. Our focus is on null infinity, in any spacetime dimensions. We also comment on the renormalization
of the corresponding asymptotic charges.

1. Introduction

The relations between asymptotic symmetries, soft theorems and
memory effects established in gravity and gauge theories (see [1] for
a review) have stimulated the investigation of new boundary conditions
allowing for larger asymptotic symmetries. Extensions of this kind are
often motivated by the will to interpret a known infrared effect as the
manifestation of an asymptotic symmetry, but one typically has to han-
dle divergences induced by the weaker boundary conditions that one has
to impose. A prototypical example is given by Di f f(S?) superrotations,
that have been proposed in [2] to account for subleading soft theorems
in four-dimensional gravity. The associated surface charges — computed
using, e.g., the Wald-Zoupas prescription [3] — diverge at null infinity,
but they have been renormalized profiting from the intrinsic ambigui-
ties present in their definition [4]. This procedure to renormalize surface
charges has been extensively studied in this and related contexts, see
e.g [5-28] and [29-31] for reviews. While it is by now clear that a pre-
scription giving finite surface charges always exists (see, e.g., [17,21]),
its compatibility with further requirements, like covariance or locality,
is still under debate [8,16,32,33]. Moreover, other quantities, like the
on-shell action, might diverge as well.

Other notable asymptotic symmetries that require renormalization
are supertranslations in asymptotically flat spacetimes of dimension
D > 4. These symmetries have been long neglected since, differently
from D =4, one can define a radiative solution space with boundary
conditions not allowing for them [34-36]. On the other hand, even when
D > 4, supertranslations and their spin-one analogs have been related
to soft theorems and memory effects in gravity [37-40] and Yang-Mills
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theories [41-45]. This link also holds for fields of arbitrary spin [46-48].
Their surface charges, computed according to standard prescriptions,
however diverge when D > 4 [48]. On top of that, the boundary con-
ditions allowing for these symmetries also lead to a divergent on-shell
action. As we shall discuss, the only exception is given by the on-shell
Maxwell action, which, in our setup, is manifestly finite at null infinity
in any D.

In this Letter, we focus on the renormalization of the on-shell actions
for free massless fields of arbitrary spin at null infinity, for the bound-
ary conditions allowing for supertranslation-like asymptotic symmetries
identified in [46,48]. To this end, we follow the approach of holographic
renormalization [49-52]. This has been mainly developed on asymptot-
ically Anti de Sitter (AdS) spacetimes, although some studies on how
to regulate on-shell actions in asymptotically flat spacetimes appeared
in [53-55]. The links between the renormalization of the on-shell ac-
tion and of the surface charges have also been explored in AdS, see, e.g.,
[5,6,11,12,18], and we shall comment on them in our setup. Aside from
this application, our findings are a first step towards a systematic treat-
ment of holographic renormalization in flat space, which might open a
new avenue towards flat space holography (see, e.g., [56] for a review).

Concretely, we propose a boundary counterterm canceling the diver-
gences at null infinity of the on-shell action for free massless fields of
any spin in D > 4. Our boundary terms contain a local combination of
the bulk fields not involving any derivative along the direction normal
to the regulating surface, thus guaranteeing that they do not spoil the
variational principle. They however leave divergences localized at the
boundary of null infinity that one can handle either by further tuning the
boundary conditions or by adding appropriate “corner” counterterms.
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\begin {align}\label {Maxwell-like} S =& -\frac {1}{2} \int \text {d}^Dx \, \Big [ \pr _\alpha \phi _{\mu _s}\, \pr ^{\alpha } \phi ^{\mu _s} - s\, \lambda \, \pr _\alpha \phi _{\beta \mu _{s-1}} \pr ^\beta \phi ^{\alpha \mu _{s-1}} \nonumber \\ &- s\,(1-\lambda )\, \pr \cdot \phi _{\mu _{s-1}}\, \pr \cdot \phi ^{\mu _{s-1}} \Big ] ,\end {align}


$D$


$\phi _{\mu _s} \equiv \phi _{\mu _1 \cdots \mu _s}$


$\lambda \in \mathbb {R}$


\begin {equation}\label {cov_bnd_term} B_{\lambda } := \frac {\lambda s}{2}\int \text {d}^Dx\, \partial _\alpha \left (\phi _{\beta \mu _{s-1}} \partial ^\beta \phi ^{\alpha \mu _{s-1}}-\partial ^\beta \phi _{\beta \mu _{s-1}} \phi ^{\alpha \mu _{s-1}}\right ) .\end {equation}


$s=1$


$\lambda =1$


$s=2$


\begin {equation}\label {gauge-symm} \delta _\epsilon \phi _{\mu _s} = \pr _\mu \epsilon _{\mu _{s-1}} \quad \textrm {with} \quad \pr \cdot \epsilon _{\mu _{s-2}} =0,\quad \epsilon _{\mu _{s-3}\alpha }{}^\alpha = 0 ,\end {equation}


\begin {equation}\label {eom_irr} M_{\mu _s} := \Box \phi _{\mu _s} - \pr _{\mu } \pr \cdot \phi _{\mu _{s-1}} + \frac {2}{D+2s-4}\, \eta _{\mu \mu } \pr \cdot \pr \cdot \phi _{\mu _{s-2}} \approx 0 ,\end {equation}


$\approx $


$\phi $


\begin {equation}\label {doublediv} \pr \cdot \pr \cdot \phi _{\mu _{s-2}} \approx 0 ,\end {equation}


\begin {equation}\label {on-shell-action} S = \int \text {d}^Dx\, \mathcal {L}[\phi ] \approx \frac {1}{2} \int \text {d}^Dx\,\partial _\alpha \hat {\theta }^\alpha [\phi ,\phi ],\end {equation}


$\cL [\phi ]$


$\hat {\theta }^\alpha $


$\sqrt {-g}$


\begin {equation}\label {bilinear0} \begin {split} \hat \theta ^\alpha [\psi ,\phi ] &:= -\, \phi _{\mu _s}\, \partial ^{\alpha } \psi ^{\mu _s} + s\, \lambda \, \phi _{\beta \mu _{s-1}} \partial ^\beta \psi ^{\alpha \mu _{s-1}}\\ &\quad + s\,(1-\lambda )\, \phi ^{\alpha \mu _{s-1}}\, \pr \cdot \psi _{\mu _{s-1}} , \end {split}\end {equation}


\begin {equation}\label {bilinear} \hat {\theta }^\alpha [\psi ,\phi ] = -\, \phi ^{\mu _s} \Gamma ^\alpha {}_{\mu _s} + s\, (1-\lambda ) \Big [ \phi ^\alpha {}_{\mu _{s-1}} \partial \cdot \psi ^{\mu _{s-1}} - \phi ^{\beta \mu _{s-1}} \partial _\beta \psi ^\alpha {}_{\mu _{s-1}} \Big ] ,\end {equation}


$\Gamma ^\alpha {}_{\mu _s} = \pr ^\alpha \psi _{\mu _s} - \pr _\mu \psi ^\alpha {}_{\mu _{s-1}}$


$s=1$


$s=2$


\begin {equation}\label {eq:deltaL} \delta \mathcal {L}[\phi ] \approx \partial _\alpha \theta ^\alpha [\phi ,\delta \phi ] ,\end {equation}


\begin {equation}\label {eq:gaugevar} \delta _\epsilon \cL [\phi ] = \partial _\alpha B_\epsilon ^\alpha [\phi ] ,\end {equation}


\begin {equation}\label {eq:defsthetaB} \theta ^\alpha [\phi , \delta \phi ] = \hat {\theta }^\alpha [\phi , \delta \phi ] , \quad B_\epsilon ^\alpha [\phi ] = \hat {\theta }^\alpha [\delta _\epsilon \phi , \phi ] \, .\end {equation}


\begin {equation}\label {eq:Noether1} j_\epsilon ^\alpha [\phi ] = \theta ^\alpha [\phi ,\delta _\epsilon \phi ] - B_\epsilon ^\alpha [\phi ],\end {equation}


\begin {equation}\label {eq:Noether2} j_\epsilon ^\alpha [\phi ] \approx \partial _\beta \kappa _\epsilon ^{\alpha \beta }[\phi ],\end {equation}


\begin {equation}\label {eq:kappaalphabeta} \begin {split} \kappa _\epsilon ^{\alpha \beta } &= s(s-1)\, {\epsilon _{\mu _{s-2}}}^{[\alpha } \partial \cdot \phi ^{\beta ]\mu _{s-2}} - s \, \epsilon _{\mu _{s-1}} \partial ^{[\alpha } \phi ^{\beta ]\mu _{s-1}}\\ &\quad + s \, \lambda \, \phi ^{\mu _{s-1}[\alpha } \partial _\mu {\epsilon ^{\beta ]}}_{\mu _{s-2}} + s (1-\lambda )\,\partial ^{[\alpha } \epsilon _{\mu _{s-1}} \phi ^{\beta ]\mu _{s-1}} \end {split}\end {equation}


\begin {equation}\label {eq:isolatinglambda} \kappa _\epsilon ^{\alpha \beta } = \kappa _\epsilon ^{\alpha \beta }\bigg |_{\lambda =0} + \lambda s\, \phi _{\mu _{s-1}}{}^{[\alpha } \delta _\epsilon \phi ^{\beta ]\mu _{s-1}}\,.\end {equation}


$\psi = \delta _\epsilon \phi $


\begin {equation}\label {symmetry} \hat {\theta }^\alpha [\phi , \delta _\epsilon \phi ] \approx \hat {\theta }^\alpha [ \delta _\epsilon \phi , \phi ] + \partial _\beta \kappa _\epsilon ^{\alpha \beta }[\phi ] \, .\end {equation}


\begin {equation}\label {Bondi-coords} \text {d}s^2 = - \text {d}u^2 - 2\, \text {d}u \, \text {d}r + r^2 \gamma _{ij} \text {d}x^i \text {d}x^j ,\end {equation}


$u := t -r$


$\gamma _{ij}$


\begin {equation}\label {Bondi-like} \phi _{r\mu _{s-1}} = 0 , \quad \gamma ^{ij} \phi _{ij\mu _{s-2}} = 0 \quad \Rightarrow \quad g^{\alpha \beta } \phi _{\alpha \beta \mu _{s-2}} = 0 \, .\end {equation}


$D$


\begin {equation}\label {falloffs} \phi _{u_{s-k}i_k} := \phi _{\underbrace {\scriptstyle {u\,\cdots \,u}}_{s-k} i_1 \cdots i_k} = \cO (r^{k-1})\end {equation}
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\begin {equation}\label {on-shell} \phi _{u_{s-k}i_k} = r^{k-1} \frac {k(D+k-5)!}{s(D+s-5)!}\, (\cD \cdot )^{s-k} \hat {C}_{i_k}(\hat {x}) + \cO \left (r^{-\frac {D-2}{2}+k}\right ) ,\end {equation}


$T(\hat {x})$


\begin {equation}\label {eq:hatCi1is} \hat {C}_{i_s}(\hat {x}) := \frac {1}{[(s-1)!]^2}\, \mathcal {D}_{\langle i_1}\cdots \mathcal {D}_{i_s\rangle } T(\hat {x})\,.\end {equation}


$\cD _i$


$D>4$


\begin {equation}\label {decomposition} \phi = \delta _\epsilon \phi + \phi _\text {rad} ,\end {equation}
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$r\to \infty $
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$r = R$


\begin {equation}S_{\text {reg}} := \int _{r \leq R} \text {d}^Dx \, \cL [\phi ] \, . \label {Xeqn23}\end {equation}


\begin {equation}\label {eq:Sreg} \begin {split} S_\text {reg} &\approx \frac {1}{2} \int _{r = R} \text {d}^{D-1}x\, \Big (\, \hat {\theta }^r[\delta _\epsilon \phi ,\delta _\epsilon \phi ] + 2\,\hat {\theta }^r[\delta _\epsilon \phi ,\phi _\text {rad}]\\ &\quad + \hat {\theta }^r[\phi _\text {rad},\phi _\text {rad}] + \partial _\mu \kappa _\epsilon ^{r\mu }[\phi ]\, \Big ) , \end {split}\end {equation}


\begin {equation}\label {theta^r} \begin {split} \hat {\theta }^r[\psi ,\phi ] =& r^{D-2s-3} \sqrt {\gamma }\, \Big \{ - \phi ^{i_s} \Big [ r\pr _r - (1-\lambda ) s - r \pr _u \Big ] \, \psi _{i_s} \\ & - s\,r\, \Big [ \lambda \, \phi ^{i_{s-1}j} \cD _j \psi _{u i_{s-1}} + (1-\lambda )\, \phi _u{}^{i_{s-1}} \cD \cdot \psi _{i_{s-1}} \Big ] \\ & + s\,r^2 \phi _u{}^{i_{s-1}} \Big [ r\pr _r - 2\lambda (s-1) + (1-\lambda ) (D-2) \Big ] \, \psi _{u i_{s-1}} \Big \} , \end {split}\end {equation}


$\gamma _{ij}$


$r = R \to \infty $


$u$


$\mathscr {I}^+$


$R$


$\mathscr {I}^+_\pm $


$\mathscr {I}^+$


$\mathscr {I}^-$


$\hat {\theta }^r[\phi _\text {rad},\phi _\text {rad}]$


$R \to \infty $


$u$


$D$


$\kappa _\epsilon ^{r\mu }[\phi ]$


$D > 4$


$s=1$


$\lambda = 1$


\begin {equation}\label {thetars1} \hat {\theta }^r[B, A] = - A_\mu (\partial ^r B^\mu - \partial ^\mu B^r) ,\end {equation}
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$\delta \Gamma ^\alpha {}_{\mu _{s}} = - 2\, \pr ^2{}_{\!\!\!\mu } \epsilon ^\alpha {}_{\mu _{s-2}}$
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\begin {equation}\label {T_rel} (s-1) \, \mathcal {D} \cdot \delta _\epsilon \phi _{i_{s-1}} =rs(D+s-5)\,\delta _{\epsilon } \phi _{ui_{s-1}} \,.\end {equation}


$s=1$


$\delta _\epsilon A_u =0$


$s\ge 2$


\begin {equation}\label {eq:thetarewritingepsilon} \begin {split} & r^{2s+3-D}\,\hat {\theta }^r[\delta _\epsilon \phi , \phi ] = \\ & \ \sqrt {\gamma }\, \Big \{ (1-\lambda s)\, \phi ^{i_s} \delta _\epsilon \phi _{i_s} + \frac {\lambda (s-1)}{D+s-5}\, \cD \cdot \phi ^{i_{s-1}} \cD \cdot \delta _\epsilon \phi _{i_{s-1}} \\ & \ \phantom {\sqrt {\gamma }} - \frac {s\, r^2}{s-1} \left [ \lambda s (s-1) + (1-\lambda ) (D-4) \right ] \phi _u{}^{i_{s-1}} \delta _\epsilon \phi _{ui_{s-1}} \Big \} , \end {split}\end {equation}


$\cD _i$


$\cO (R^{D-5})$


\begin {equation}\label {eq:Ssub} S_\text {sub} := S_\text {reg} + \int _{r=R} \text {d}^{D-1}x\,\mathcal {L}_\text {ct},\end {equation}


$s\ge 2$


\begin {align}\label {eq:Lct} \cL _\text {ct} & = \frac {\sqrt {-g}}{2R}\, \Big \{ (\lambda s - 1)\, \phi ^{i_s} \phi _{i_s} - \frac {R^2\lambda (s-1)}{D+s-5}\, \cD \cdot \phi ^{i_{s-1}} \cD \cdot \phi _{i_{s-1}} \nn \\ &\quad + \frac {s}{s-1} \left [ \lambda s (s-1) + (1-\lambda ) (D-4) \right ] \phi _u{}^{i_{s-1}} \phi _{ui_{s-1}} \Big \} ,\end {align}


$g^{ij}$


$r$


$s=1$


\begin {align}\label {eq:Lcts=1} \cL _\text {ct} & = \frac {\sqrt {-g}}{2R}\,(\lambda - 1) \left ( A^{i} A_{i} - 2R\,A_u\,\mathcal {D}\cdot A \right ) .\end {align}


\begin {equation}\label {eq:Lcts=1cov} B_\lambda = -\frac {\lambda }{2R} \int _{r=R} \sqrt {-g} \left ( A^{i} A_{i} - 2R\,A_u\,\mathcal {D}\cdot A + (D-2)\, A_u^2\right ) .\end {equation}


$R\to \infty $


$r$


$r = R$


$\delta _\epsilon \phi $


$r$


$D=4$


$R \to \infty $


\begin {equation}\label {eq:sub} \begin {split} S_\text {sub} &\approx \frac {1}{2} \int _{r=R} \text {d}^{D-1}x \sqrt {\gamma }\, C^{i_s} \partial _u C_{i_s} \\ &\quad - \frac {1}{2} \oint \text {d}^{D-2}x \, \kappa _\epsilon ^{ur}[\phi ] \bigg {|}_{u=-\infty }^{u=+\infty }+ \cO (R^{-1}) , \end {split}\end {equation}


$C_{i_s}$


$s=2$


\begin {equation}\phi _{i_s} = r^{s-1}\, \hat {C}_{i_s}(\hat {x}) + r^{-\frac {D+2s-2}{2}} C_{i_s}(u,\hat {x}) + \cO (r^{-\frac {D+2s-4}{2}}) \,. \label {Xeqn32}\end {equation}


$C_{i_s}(u,\hat {x})$


$\cO (R^{-1})$


$\lambda =0$


$\kappa _\epsilon ^{\alpha \beta } = s\, (\kappa _\epsilon ^{\alpha \beta })_{[48]} = -s!\, (\kappa _\epsilon ^{\alpha \beta })_{[60]}$


\begin {equation}\label {eq:CHARGE} \mathcal {Q}_T = \oint \text {d}^{D-2}x\,s(-1)^{s-1}(D+s-4)\, \sqrt {\gamma }\, T \, \mathcal {U}^{(0)} ,\end {equation}


$s$


$\lambda $


$\phi ^{\mu _{s-1}[\alpha } \delta _\epsilon \phi ^{\beta ]}_{\mu _{s-1}}$


$\alpha =u$


$\beta =r$


$\phi ^{u\mu _{s-1}}=-\phi _{r}{}^{\mu _{s-1}}=0$


$\delta _\epsilon \phi ^{u\mu _{s-1}}$


$\kappa _\epsilon ^{ur}$


$s$


\begin {equation}\label {eq:magic} \oint \text {d}^{D-2}x \, \kappa ^{ru}_{\epsilon _1}[\delta _{\epsilon _2} \phi ] = 0 ,\end {equation}


$u$


$\mathscr {I}^+_\pm $


$u < u_1$


$u > u_2$


$u_1 < u_2$


$\mathscr {I}^+_\pm $


\begin {equation}\phi _{u_{s-k}i_k} = r^{3-D+k} \cU _{i_k}{}^{\!(k)}(u,\hat {x}) + \cO (r^{2-D+k}) \label {Xeqn34}\end {equation}


$u \to \pm \infty $


\begin {equation}\label {eq:ren} \begin {split} S_\text {ren} :=& \lim _{\substack {R \to \infty }} S_\text {sub} = \frac {1}{2} \int _{\mathscr {I}^+} \text {d}^{D-1}x\,\sqrt {\gamma }\,C^{i_s} \partial _u C_{i_s} \\ &+\frac {1}{2}\, s (-1)^{s}(D+s-4) \oint \text {d}^{D-2}x\,\sqrt {\gamma }\,T\,\mathcal {U}^{(0)}\bigg {|}_{u=-\infty }^{u=+\infty }\,. \end {split}\end {equation}


$u \to \pm \infty $


\begin {equation}\delta S_\mathrm {sub} \approx \int _{r = R} \text {d}^{D-1}x \, \theta ^r_\mathrm {sub}[\phi ,\delta \phi ] \label {Xeqn36}\end {equation}


\begin {equation}\label {eq:thetasubthetarLct} \theta ^r_\mathrm {sub}[\phi ,\delta \phi ] := \theta ^r[\phi ,\delta \phi ] + \delta \mathcal {L}_\mathrm {ct} \,.\end {equation}


\begin {equation}\label {eq:thetasubev} \theta ^r_\mathrm {sub}[\phi ,\delta \phi ] = \theta ^r[\phi _\mathrm {rad},\delta \phi _\mathrm {rad}] + \partial _u \kappa ^{ru}_{\delta \epsilon }[\phi ] \,.\end {equation}


$R\to \infty $


$u<u_1$


\begin {equation}\theta ^r_\mathrm {ren}[\phi ,\delta \phi ] := \lim _{\substack {R \to \infty \\ u = \text {const}}} \theta ^r_\mathrm {sub}[\phi ,\delta \phi ], \label {Xeqn39}\end {equation}


\begin {equation}\theta ^r_\mathrm {ren}[\phi ,\delta \phi ] \approx \sqrt {\gamma }\left ( \delta C^{i_s}\,\partial _u C_{i_s} + s(-1)^{s}(D+s-4)\, \partial _u \left ( \delta T \, \mathcal {U}^{(0)} \right ) \right ) . \label {Xeqn40}\end {equation}


$\delta _\epsilon C_{i_s}=0$


$\delta _\epsilon \mathcal {U}^{(0)}=0$


$\delta _\epsilon T = T$


$s$


\begin {equation}\label {eq:THETARENr} \theta ^r_\text {ren}[\phi ,\delta _\epsilon \phi ] = s(-1)^{s}(D+s-4)\, \sqrt {\gamma }\, T \, \partial _u\mathcal {U}^{(0)} \, .\end {equation}
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$\theta ^{\alpha }[\phi , \delta \phi ]$


\begin {equation}\label {eq:IWambi} \theta ^\alpha [\phi ,\delta \phi ] \to \theta ^\alpha [\phi ,\delta \phi ] + \delta Z^\alpha [\phi ] + \partial _\beta Y^{\alpha \beta }[\phi ,\delta \phi ] ,\end {equation}


$Y^{\alpha \beta }$


$\mathcal {L} \to \mathcal {L} + \partial _\alpha Z^\alpha $


\begin {equation}\omega ^\alpha _\epsilon := \delta \theta ^\alpha [\phi ,\delta _\epsilon \phi ] - \delta _\epsilon \theta ^\alpha [\phi ,\delta \phi ] , \label {Xeqn44}\end {equation}


\begin {equation}\label {eq:identitytheta} \omega ^\alpha _\epsilon \approx \partial _\beta \kappa ^{\alpha \beta }_\epsilon [\delta \phi ]\,.\end {equation}


$\delta $
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$\theta ^\alpha $


$\delta \mathcal {L}$


$\omega ^\alpha _\epsilon $


\begin {equation}\omega ^\alpha _\epsilon \to \omega ^\alpha _\epsilon + \partial _\beta \Big ( \delta Y^{\alpha \beta }[\phi ,\delta _\epsilon \phi ] - \delta _\epsilon Y^{\alpha \beta }[\phi ,\delta \phi ] \Big ) , \label {Xeqn46}\end {equation}


$Y^{\alpha \beta }$


$u$


\begin {equation}\label {eq:s1Cur2} Y^{ru} = \int \mathrm {d}r \, \theta ^u ,\end {equation}


\begin {equation}\label {eq:theta_sub} \theta ^r_\text {sub} = \theta ^r + \delta Z^r + \partial _u \int \mathrm {d}r \, \theta ^u \, .\end {equation}


$r \to \infty $


\begin {equation}\partial _r \theta ^r_\text {sub} = \partial _r \theta ^r + \delta \left ( \partial _r Z^r \right ) + \partial _u \theta ^u \approx \delta \left ( \mathcal {L} + \partial _r Z^r \right ) - \partial _i \theta ^i. \label {Xeqn49}\end {equation}


$r$


$r$


$\theta _\text {sub}^r$


$\delta $


$r\to \infty $


$Z^\alpha $


$s = 1$


$\lambda =1$


\begin {equation}\theta ^{\alpha }[A,\delta A] = -\sqrt {-g} F^{\alpha \nu }\delta A_\nu ,\qquad \kappa _\epsilon ^{\alpha \beta } = -\sqrt {-g} F^{\alpha \beta }\,\epsilon , \label {Xeqn50}\end {equation}


\begin {equation}\theta ^u[A,\delta A] = r^{D-4} \sqrt {\gamma } \, \partial _r A_i\, \gamma ^{ij} \delta A_j \, . \label {Xeqn51}\end {equation}


\begin {equation}\label {eq:s1Cur3} Y^{ur} = \sum _{k = \frac {D-2}{2}}^{D-4} r^{D-3-k} \frac {k-1}{D-3-k} \sqrt {\gamma } \, A_i^{(k-1)} \gamma ^{ij} \delta A^{(0)}_j + \mathcal {O}(1) ,\end {equation}


$A^{(k)}_i$


$A_i = \sum _k r^{-k} A^{(k)}_i$


\begin {equation}\begin {split} &\oint \kappa _\epsilon ^{ur} \text {d}^{D-2}x =r^{D-2} \oint \text {d}^{D-2}x\,\sqrt {\gamma }\,F_{ur} T \\ &\qquad =-\sum _{k=\frac {D-2}{2}}^{D-4} r^{D-3-k} \frac {k-1}{D-3-k} \oint \text {d}^{D-2}x\,\sqrt {\gamma }\, A_i^{(k-1)} \gamma ^{ij} \partial _j T \\ &\qquad +(D-3)\oint \text {d}^{D-2}x \sqrt {\gamma }\,T\,A_u^{(D-3)} +\mathcal {O}(r^{-1})\,. \end {split} \label {Xeqn53}\end {equation}


$Z^r = \mathcal {L}_\mathrm {ct}$


$Z^r = \mathcal {L}_\text {ct}$


$\partial _u$
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\begin {equation}\label {eq:leading-singularity} Y^{ur} = r^{\frac {D-4}{2}} \sqrt {\gamma } \, A_{i}^{(\frac {D-4}{2})}\,\gamma ^{ij}\,\delta A_j^{(0)} + \mathcal {O}(r^{\frac {D-6}{2}}) \, .\end {equation}
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${A}_u \delta {A}_u$


$1/r$


$u$


$1/r$


$u \to -\infty $


$u_1$


$\mathscr {I}^+_-$


$r$


$D > 4$


$s$


$\log r$


\begin {equation}\label {Lagrlambda} {\cal L} = \lambda \, {\cal L}_1 + (1 - \lambda )\, {\cal L}_2 ,\end {equation}


\begin {align}& {\cal L}_1 := -\frac {1}{2}\, \pr _\rho \phi _{\mu _s}\, \pr ^{\rho } \phi ^{\mu _s} + \frac {s}{2}\, \pr _\rho \phi _{\sigma \mu _{s-1}} \pr ^\sigma \phi ^{\rho \mu _{s-1}} , \\ & {\cal L}_2 := -\frac {1}{2}\, \pr _\rho \phi _{\mu _s}\, \pr ^{\rho } \phi ^{\mu _s} + \frac {s}{2}\, \pr \cdot \phi _{\mu _{s-1}}\, \pr \cdot \phi ^{\mu _{s-1}}\, .\end {align}


$\hat {\theta }^{\alpha }[\psi ,\phi ]$


${\cal L}_1$


${\cal L}_2$


$\lambda $


${\cal L}_1$


\begin {equation}\hat {\theta }^{\alpha }_1 [\psi , \phi ] = \phi _{\mu _s} \, \partial ^{\mu } \psi ^{\alpha \mu _{s-1}} \, - \, \phi _{\mu _s} \, \partial ^{\alpha } \psi ^{\mu _s} , \label {Xeqn56}\end {equation}


\begin {equation}\begin {split} j^{\alpha }_1 & = \hat {\theta }^{\alpha }_1 [\phi , \delta _{\epsilon } \phi ] - \hat {\theta }^{\alpha }_1 [\delta _{\epsilon } \phi , \phi ] \\ & = \pr _{\mu } \epsilon _{\mu _{s-1}} \pr ^{\mu } \phi ^{\alpha \mu _{s-1}} - \pr _{\mu } \epsilon _{\mu _{s-1}} \pr ^{\alpha } \phi ^{\mu _s} - 2 \, \pr ^2{}_{\!\!\!\mu }\, \epsilon ^{\alpha }{}_{\mu _{s-2}} \phi ^{\mu _s} , \end {split} \label {Xeqn57}\end {equation}


$\pr ^2_{\mu }$


$\pr ^2{}_{\!\!\!\mu } A_{\mu }$


$\pr _{\alpha } \pr _{\beta } A_{\gamma } + \pr _{\gamma } \pr _{\alpha } A_{\beta } + \pr _{\beta } \pr _{\gamma } A_{\alpha }$


\begin {equation}\begin {split} & \pr _{\mu } \epsilon _{\mu _{s-1}} \pr ^{\mu } \phi ^{\alpha \mu _{s-1}} - \pr _{\mu } \epsilon _{\mu _{s-1}} \pr ^{\alpha } \phi ^{\mu _s} = s\pr _{\beta }\big [\epsilon _{\mu _{s-1}} \big ( \pr ^{\beta } \phi ^{\alpha \mu _{s-1}} + \pr ^{\mu } \phi ^{\alpha \beta \mu _{s-2}} \\ & - \pr ^{\alpha } \phi ^{\beta \mu _{s-1}}\big )\big ] - s \epsilon _{\mu _{s-1}} \big (\Box \phi ^{\alpha \mu _{s-1}} + \pr _{\mu } \pr \cdot \phi ^{\alpha \mu _{s-2}} - \pr ^{\alpha } \pr \cdot \phi ^{\mu _{s-1}}\big ) , \end {split} \label {Xeqn58}\end {equation}


\begin {equation}\begin {split} - 2 \, \pr ^2_{\mu }\, \epsilon ^{\alpha }{}_{\mu _{s-2}} \phi ^{\mu _s}\, =& -s (s-1) \big [\pr \cdot \pr \cdot \phi _{\mu _{s-2}} \epsilon ^{\alpha \mu _{s-2}} \\ & + \pr _{\beta } \big (\phi ^{\beta \gamma \mu _{s-2}}\pr _{\gamma } \epsilon ^{\alpha }{}_{\mu _{s-2}} - \pr \cdot \phi ^{\beta \mu _{s-2}}\epsilon ^{\alpha }{}_{\mu _{s-2}} \big ) \big ]\, . \end {split} \label {Xeqn59}\end {equation}


$j^{\alpha }_1 \approx \pr _{\beta } \kappa ^{\alpha \beta }_1$


\begin {equation}\kappa ^{\alpha \beta }_1 = s \phi ^{\mu _{s-1} [\alpha }\pr _{\mu } \epsilon ^{\beta ]}{}_{\mu _{s-2}} + s (s-1) \epsilon _{\mu _{s-2}}{}^{[\alpha } \pr \cdot \phi ^{\beta ] \mu _{s-2}} - s \epsilon _{\mu _{s-1}} \pr ^{[\alpha } \phi ^{\beta ] \mu _{s-1}} , \label {Xeqn60}\end {equation}


\begin {equation}\label {onshell} \begin {split} & \pr \cdot \pr \cdot \phi _{\mu _{s-2}} \approx 0 ,\\ & \epsilon ^{\mu _{s-1}} \big (\Box \phi _{\mu _s} - \pr _{\mu } \pr \cdot \phi _{\mu _{s-1}}\big ) \approx 0 \, . \end {split}\end {equation}


${\cal L}_2$


\begin {equation}\hat {\theta }^{\alpha }_2 [\psi , \phi ] = s\, \phi ^{\alpha \, \mu _{s-1}} \, \pr \cdot \psi _{\mu _{s-1}} \, - \, \phi ^{\mu _s} \, \pr ^{\alpha } \psi _{\mu _s} , \label {Xeqn62}\end {equation}


\begin {equation}\label {omega} \begin {split} j^{\alpha }_2 \, = & \, s\big (\partial ^{\alpha } \epsilon ^{\mu _{s-1}} + \partial ^{\mu } \epsilon ^{\alpha \mu _{s-2}}\big ) \pr \cdot \phi _{\mu _{s-1}}\, - \, \partial _{\mu } \epsilon _{\mu _{s-1}} \partial ^{\alpha } \phi ^{\mu _s} \\ & - s \phi ^{\alpha \mu _{s-1}} \Box \epsilon _{\mu _{s-1}} \, + \, \phi ^{\mu _s} \pr ^{\alpha } \pr _{\mu } \epsilon _{\mu _{s-1}}\, . \end {split}\end {equation}


\begin {equation}\phi ^{\alpha \mu _{s-1}} \Box \epsilon _{\mu _{s-1}} = \Box \phi ^{\alpha \mu _{s-1}} \epsilon _{\mu _{s-1}} \, + \, \partial _\beta \left (\phi ^{\alpha \mu _{s-1}} \partial ^\beta \epsilon _{\mu _{s-1}} - \pr ^\beta \phi ^{\alpha \mu _{s-1}} \epsilon _{\mu _{s-1}} \right ) \label {Xeqn64}\end {equation}


$\Box \phi ^{\alpha \mu _{s-1}}$


\begin {equation}\begin {split} j^{\alpha }_2 & = \partial _\beta \kappa ^{\alpha \beta }_2 +s \epsilon ^{\mu _{s-1}} \big (\Box \phi _{\alpha \mu _{s-1}} - \pr _{\alpha } \pr \cdot \phi _{\mu _{s-q}} - \pr _{\mu } \pr \cdot \phi _{\alpha \mu _{s-2}}\big ) \\ &\quad + s (s-1) \epsilon ^{\alpha \mu _{s-2}} \partial \cdot \partial \cdot \phi _{\mu _{s-2}} \approx \partial _\beta \kappa ^{[\alpha \beta ]}_2 , \label {eq:omegakappa} \end {split}\end {equation}


\begin {equation}\kappa ^{\alpha \beta }_2 = s(s-1) \epsilon _{\mu _{s-2}}{}^{[\alpha } \partial \cdot \phi ^{\beta ] \mu _{s-2} } \, + \, s \pr ^{[\alpha } \epsilon _{\mu _{s-1}} \phi ^{\beta ] \mu _{s-1}} \, - \, s \epsilon _{\mu _{s-1}} \partial ^{[\alpha } \phi ^{\beta ] \mu _{s-1}} \, . \label {Xeqn65}\end {equation}


$j^{\alpha }_\epsilon \approx \partial _\beta \kappa _\epsilon ^{\alpha \beta }$


\begin {equation}\begin {split} \kappa _\epsilon ^{\alpha \beta } &= \lambda \kappa ^{\alpha \beta }_1 + (1-\lambda ) \kappa ^{\alpha \beta }_2 \\&= s(s-1) {\epsilon _{\mu _{s-2}}}^{[\alpha } \partial \cdot \phi ^{\beta ]\mu _{s-2}} - s \, \epsilon _{\mu _{s-1}} \partial ^{[\alpha } \phi ^{\beta ]\mu _{s-1}}\\ &\quad + s \, \lambda \, \phi ^{\mu _{s-1}[\alpha } \partial _\mu {\epsilon ^{\beta ]}}_{\mu _{s-2}} + s (1-\lambda ) \partial ^{[\alpha } \epsilon _{\mu _{s-1}} \phi ^{\beta ]\mu _{s-1}}\,. \end {split} \label {Xeqn66}\end {equation}


$\lambda $


$\kappa ^{\alpha \beta }_\epsilon $


\begin {equation}\kappa _\epsilon ^{\alpha \beta } = \kappa _2^{\alpha \beta } + \lambda s\, \phi _{\mu _{s-1}}{}^{[\alpha } \delta _\epsilon \phi ^{\beta ]\mu _{s-1}}\,. \label {Xeqn67}\end {equation}


$\lambda $


\begin {equation}\mathcal {L}_1-\mathcal {L}_2 = \partial _\alpha \mathcal {E}^\alpha \label {Xeqn68}\end {equation}


\begin {equation}\mathcal {E}^\alpha [\phi ] = \frac {s}{2}\left (\phi _{\beta \mu _{s-1}} \partial ^\beta \phi ^{\alpha \mu _{s-1}}-\partial ^\beta \phi _{\beta \mu _{s-1}} \phi ^{\alpha \mu _{s-1}}\right ) \label {Xeqn69}\end {equation}


\begin {equation}\theta ^{\alpha }_1[\phi ,\delta \phi ] - \theta ^{\alpha }_2[\phi ,\delta \phi ] = \delta \mathcal {E}^\alpha [\phi ] + \frac {s}{2}\,\partial _\beta \left (\phi _{\mu _{s-1}}{}^{[\alpha }\delta \phi ^{\beta ]\mu _{s-1}}\right ). \label {Xeqn70}\end {equation}


$\theta _\text {sub}$


$R\to \infty $


\begin {equation}\label {eq:Lctback} \begin {split} \mathcal {L}_\mathrm {ct} &\approx -\hat {\theta }^r[\delta _\epsilon \phi ,\phi _\text {rad}] - \tfrac {1}{2} \hat {\theta }^r[\delta _\epsilon \phi ,\delta _\epsilon \phi ] \\ &\approx - \hat {\theta }^r[\delta _\epsilon \phi ,\phi ] + \tfrac {1}{2} \hat {\theta }^r[\delta _\epsilon \phi ,\delta _\epsilon \phi ], \end {split}\end {equation}


\begin {equation}\begin {split} \theta ^{\alpha }[\phi ,\delta \phi ] &\approx \hat \theta ^{\alpha }[\delta _\epsilon \phi ,\delta \phi ] + \hat \theta ^{\alpha }[\phi _\text {rad},\delta _{\delta \epsilon } \phi ] + \hat \theta ^{\alpha }[\phi _\text {rad},\delta \phi _\text {rad}] \\ &\approx \hat {\theta }^{\alpha }[\delta _\epsilon \phi ,\delta \phi ] + \hat {\theta }^{\alpha }[\phi ,\delta _{\delta \epsilon }\phi ] - \hat {\theta }^{\alpha }[\delta _{\epsilon }\phi ,\delta _{\delta \epsilon } \phi ] \\ & \quad + \hat \theta ^{\alpha }[\phi _\text {rad},\delta \phi _\text {rad}], \end {split} \label {Xeqn72}\end {equation}


$\delta (\delta _\epsilon \phi _{\mu _s}) = \partial _\mu \delta \epsilon _{\mu _{s-1}}=\delta _{\delta \epsilon } \phi _{\mu _s}$


\begin {equation}\begin {split} \theta ^{\alpha }[\phi ,\delta \phi ] &\approx \hat {\theta }^{\alpha }[\delta _\epsilon \phi ,\delta \phi ] + \hat {\theta }^{\alpha }[\delta _{\delta \epsilon }\phi ,\phi ] - \hat {\theta }^{\alpha }[\delta _{\epsilon }\phi ,\delta _{\delta \epsilon } \phi ] \\ & \quad + \hat \theta ^{\alpha }[\phi _\text {rad},\delta \phi _\text {rad}] + \partial _\beta \kappa ^{\alpha \beta }_{\delta \epsilon }[\phi ]\,. \end {split} \label {Xeqn73}\end {equation}


$\alpha =r$


\begin {equation}\begin {split} & \hat {\theta }^r[\delta _\epsilon \phi , \delta _{\delta \epsilon }\phi ] - \hat {\theta }^r[\delta _{\delta \epsilon } \phi , \delta _{\epsilon }\phi ] \approx \partial _\beta \kappa ^{r\beta }_{\delta \epsilon }[\delta _\epsilon \phi ] \approx \partial _i \kappa ^{ri}_{\delta \epsilon }[\delta _\epsilon \phi ] , \end {split} \label {Xeqn74}\end {equation}


$\theta ^r[\phi ,\delta \phi ]$


\begin {equation}\label {eq:thetaback} \begin {split} \theta ^r[\phi ,\delta \phi ] &\approx \delta \left ( \hat {\theta }^r[\delta _\epsilon \phi ,\phi ] - \frac {1}{2} \hat {\theta }^r[\delta _\epsilon \phi ,\delta _\epsilon \phi ] \right ) \\ & \quad + \theta ^r[\phi _\mathrm {rad},\delta \phi _\mathrm {rad}] + \partial _u \kappa ^{ru}_{\delta \epsilon }[\phi ]\,. \end {split}\end {equation}


$\theta ^{r}[\phi ,\delta \phi ]+ \delta \mathcal {L}_\text {ct}$


$r = R$


\begin {equation}\text {d}s^2 = \text {d}r^2 + h_{ab}\, \big ( \text {d}x^a + N^a \text {d}r \big ) \big ( \text {d}x^b + N^b \text {d}r \big ) , \label {Xeqn76}\end {equation}


$x^a$


$h_{ab}$


\begin {equation}\label {Bondi-ADM} N^a = \delta ^a{}_u , \qquad h_{ab} \text {d}x^a \text {d}x^b = - \text {d}u^2 + r^2 \gamma _{ij} \text {d}x^i \text {d}x^j \, .\end {equation}


\begin {equation}\label {Bondi-cov} N^a N_a = - 1 , \quad \partial _r N^a = 0 , \quad D_a N^b = 0 , \quad N^a K_{ab} = 0 ,\end {equation}


$h_{ab}$


$h^{ab}$


$D_a$


$h_{ab}$


$K_{ab}$


\begin {equation}K_{ab} = \frac {1}{2}\, \partial _r h_{ab} , \label {Xeqn79}\end {equation}


$K_{ij} = r\, \gamma _{ij}$


\begin {equation}\label {FlatADM} \text {d}s^2 = 2 N_a(x^b) \text {d}x^a \text {d}r + h_{ab}(r,x^c) \text {d}x^a \text {d}x^b \, .\end {equation}


\begin {equation}\Gamma ^r{}_{ab} = - K_{ab} , \quad \Gamma ^a{}_{rb} = K^a{}_b , \quad \Gamma ^{a}{}_{bc} = \Gamma ^{(h)\,a}{}_{bc} + N^a K_{bc} , \label {Xeqn81}\end {equation}


$\Gamma ^{(h)\,a}{}_{bc}$


$h_{ab}$


$r \to \infty $


$N^a$


$\mathscr {I}^+$


$s=1$


\begin {align}\label {cov-theta} \hat {\theta }^r[B,A] =& - \sqrt {- h}\, \Big [ A^a \left (\partial _r - N^b D_b\right ) B_a - (1-\lambda )\, K^b{}_a A^a B_b \nn \\ & + \lambda \, N^b A^a D_a B_b - (1-\lambda )\, N^a A_a \left ( K N^b - D^b \right ) B_b \Big ] ,\end {align}


$K = h^{ab} K_{ab}$


$A_r = 0$


\begin {equation}\label {ADMCB} A_a \sim \mathcal {O}(1) , \qquad N^a A_a \sim \mathcal {O}(r^{-1}) ,\end {equation}


$A^\mu = \delta _\epsilon A^\mu + A^\mu _{\mathrm {rad}}$


\begin {equation}\partial _r \delta _\epsilon A_a = 0 , \quad N^a D_a \delta _\epsilon A_b = 0 , \quad N^a \delta _\epsilon A_a = 0 , \label {Xeqn83}\end {equation}


\begin {equation}\label {SctADM} S_{\mathrm {ct}} = \frac {\lambda -1}{2} \!\int \!\! \text {d}^{D-1}x \sqrt {-h}\, \Big [ K^b{}_a A^a A_b -N^a A_a D^b A_b + N^a A_b D^b A_a \Big ] .\end {equation}
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We also discuss how the latter approach relates to the renormalization
of surface charges.

2. Structure of the on-shell action

To describe the dynamics of a free massless field of integer spin s,
we consider a traceless tensor ¢ of rank s and the Maxwell-like action
of [57,58]. In Cartesian coordinates, it reads

1

—s(-Na-¢, - ¢”x—1], )

where D is the dimension of spacetime, an index with a subscript de-
notes a set of symmetrized indices, e.g., ¢ e = Puyonys and we introduced
the factor A € R to capture the possible rewritings of the action propor-
tional to the boundary term

A
B, := %/de%((bﬁyHaﬂ(ﬁW"] _aﬁ(ﬁﬁurld,ws-l ) )

For s=1 and A =1, Eq. (1) gives the Maxwell action in its manifestly
gauge-invariant form, while for s = 2 one obtains the action of linearized
unimodular gravity. The resulting on-shell action will anyway coincide
with the one derived from the more customary Einstein or Fronsdal
actions [59] in the Bondi-like gauge [46,48,60] considered below, in
which the fields are traceless.

The action (1) is invariant up to boundary terms under the gauge
transformations’

Scby, = 0u€y_,

where repeated covariant or contravariant indices denote a symmetriza-
tion involving the minimum number of terms needed and without nor-
malization factors. The equations of motion read

2
D+2s-4
where ~ denotes equalities that hold on shell. Upon analyzing Eq. (4),

one finds that the gauge-invariant double divergence of ¢ does not con-
tain propagating degrees of freedom and on-shell satisfies

with d-¢, =0, *=0, 3)

2 eﬂx-z «

M, =U¢, —0,0 -, M0+ 0= by, =0, “

0:0-¢, , ~0, 5)

possibly up to terms that do not vanish at the spacetime boundary and
that we do not include in our solution space [57,58].
The on-shell action takes the form

S=/de£[¢]z %/d"xaaéw,qu, 6)
where?
0Ty, ¢l :=—¢, 0"y +sAgy, Py

v.d ¢, 0"y sAdp, O w P

+s(L=D) ™10y, .
which can also be cast in the form
0Ly, ¢l = =T, +5 (1= Do, 0wt =@, | ®

with I'* u, = 0w, = 0w, . This is the first de Wit-Freedman con-
nection [62], which for s = 1 gives the field strength and for s =2 is
proportional to the linearized Christoffel symbols.

Since we are considering a quadratic action, both the (Lee-Wald)
presymplectic potential [63], defined by

SLIP] » 0,0 [, 6], 9

1 Invariance of (1) actually holds even for fields and parameters subject to
weaker trace conditions, including fully traceful ones. In those cases the spec-
trum becomes reducible and the equations of motion propagate additional par-
ticles of lower spins [58,61].

2 For simplicity, in this section we work in Cartesian coordinates. In generic
coordinates, both £[¢] and 6* in (6) are densities, thus including a factor \/—_g
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and the boundary term that one obtains when considering a gauge vari-
ation of the Lagrangian,

5.L(p] =0, B[], 10

can be expressed in terms of (7):°

0“1, 54) = 0°1.60). B[] = 0°(5.¢.9). an
These two objects enter the Noether current

Jilpl = 019, 6,91 — BI (], 12
which obeys Noether’s second theorem

1)~ 0kl ). 13)

where (see Appendix A)

,(gﬂ =s(s-De,_, leg . pPlus—2 — sem,ld["oﬁ”]“f-‘ as
-1 Al _ [ Blus—
+ 5 AgHs-1199 e ue, s —=2)0 “eMHqﬁ Hs—1
is the Noether two-form, and where square brackets denote antisym-
metrization over the enclosed indices, with no overall normalization
factor. This can also be cast in the equivalent form

Kaﬂ — Kaﬁ
€ €

+ As ¢'M lla(ged)ﬂ]ﬂx—] . (15)
=0 =
Therefore, Eq. (13) implies that, on shell, the quantity (7) is sym-
metric in its arguments up to the divergence of an antisymmetric tensor
(which we shall refer to as a corner term) when y = §.¢:

0%, 5. ~ 0°[5., b) + Oy’ []. 16)

This property will be important in the renormalization of the on-shell
action discussed in Section 4.

3. The Bondi-like gauge

To analyze the structure of the divergent terms in the on-shell ac-
tion, we parameterize the Minkowski background using retarded Bondi
coordinates as

ds? = —du? - 2dudr + rzyijdxidxj, a7

where u 1=t —r and y;; denotes the round metric on the codimension-
2 unit celestial sphere, and where we impose the Bondi-like conditions
[46,48,60]

Gy, =00 i, =0 > %y, , =0. (18)

For simplicity, we thus fix both the coordinates of the background and
the gauge, while commenting on this choice in the Conclusions. Notice
that the conditions (18) imply that the Fronsdal action reduces to the
Maxwell-like action (1).

Following [48], for any value of D we further impose the boundary
conditions

¢"x—k"k = ¢ [ZES 7 SR = O(rk_l) (19)
——

s—k

on the remaining non-vanishing components. We also assume that the
fields can be expanded in integer powers of the radial coordinate, with-

out any log r contributions. When D > 4, the falloffs (19) are overleading
D-2
with respect to those typical of radiation, for which Pug iy = or 7

They however allow for residual gauge transformations generated by
an arbitrary function on the celestial sphere, T(%), which, following
[46,48], we refer to as higher-spin supertranslations.? Actually, above

k).

3 We use (7) as a bookkeeping device for the tensorial structures entering (9)
and (10) and to specify how derivatives act on the two arguments. The corre-
sponding algebraic manipulations are detailed in Appendix A.

4 Weaker boundary conditions leading to higher-spin generalizations of
Dif f(SP~?) superrotations have also been considered in [48].



A. Campoleoni, A. Delfante, D. Francia et al.

the radiation order the equations of motion (4) only allow for pure-
gauge configurations, so that the field components are bound to take
the form [48]
_ k(D +k=75)!
|
Puic =T D E s o5

where the omitted terms do not depend on T'(%), and where

A 1

Is [(S _ 1)!]2 (i1
In the latter expression, angular brackets denote the symmetric and
traceless projection, while D; is the Levi-Civita covariant derivative on
the celestial sphere.

When D > 4, in this gauge the space of solutions thus decomposes

(D)*C, () + o(fDT'z‘f"), (20)

=Dy T(R). @n

as

¢ =06.¢+ ¢raqg> (22)

where §,.¢ is a pure-gauge piece and ¢4 is a gauge-invariant one,
encoding information, e.g., about outgoing radiation and (subleading)
Coulombic contributions. As highlighted by Eq. (20), the two terms in
(22) are neatly separated for D > 4 because they appear at different or-
ders in the large-r expansion, with é,¢ being leading as r — oo, while
for D = 4 they mix.

4. Renormalization of the action in Bondi-like gauge

The on-shell action obtained by evaluating (1) on the solution space
(20) diverges at null infinity. Our goal will be to show that the diver-
gences can be canceled by adding a boundary term not affecting the
variational principle. To identify it, we first define the regularized ac-
tion by integrating the Lagrangian on a portion of spacetime up to a
time-like surface at r = R:

Sreg 1= / . dPx ). (23)

Using the property (16) and the decomposition (22), the latter can be
rewritten as

1 — S A
SrEg ~ z /—R dD lx ( 9"[55(’5’ 5€¢] + 29r[5€¢, ¢rad]

(24)
0o Praal + 0,191 ),
with
01y 1 =Py { = ¢ [ro, = (L= s =0, w,
—sr[Ad Dy + (=D 1D v (25)

+5P2¢, i1 [N?r —2A(s -1+ (1 - (D - 2)] Vi, }

and where angular indices are raised and lowered using the metric y;;
on the celestial sphere.

We now focus on the limit of Eq. (25) as r = R — oo at fixed u, and
on the corresponding patch in (24). In this limit, one approaches the
region of the boundary corresponding to future null infinity .7+, and
our goal will be to identify a boundary term defined on the regulating
surface canceling the divergences in R of Eq. (24). Notice that in this
limit the last term in Eq. (24) gives a corner contribution localized at
the future/past boundaries .7;* of .#*. A similar treatment apply to .7,
while to discuss the renormalization of the action in the remaining re-
gions of the boundary of Minkowski space it would be more efficient
to consider other coordinate systems and we do not address this issue
here. Eq. (20) then shows that 8" [¢,q, draq] gives a contribution which
remains finite in the limit R — oo (at fixed u) for any value of D. The
terms in the first line of (24) and the corner term, depending on x.*[¢],
diverge instead in this limit when D > 4.

Before discussing how to cancel these divergences, let us stress that
for s =1 and 4 = 1 one obtains

07[B. Al = —A,(0"B" — 0" B"), (26)
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involving in particular the field strength of B¥. This term vanishes when
B* is pure gauge, thus (24) implies that the on-shell Maxwell action in
flat space is manifestly finite up to corner terms. For 1 # 1, one can
regularize the action (again up to corner terms) by adding the covariant
boundary term (2) that gives back the manifestly gauge-invariant, 1 =
1 form of the action. For s > 1, the first de Wit-Freedman connection
entering (8) transforms instead as 6I'* uy = -2 aiea Haz? and one has to
add a boundary counterterm for any value of 4.

In view of (24), we now specialize Eq. (25) to field configurations in
which y = §,.¢ is a pure-gauge contribution involving only higher-spin
supertranslations, as in Egs. (20) and (21). Since the variation of each
field component under supertranslations is homogeneous in r, in (25)
the operator rd, just produce a factor, ie., r9,8.¢,_;, =k —Dé.d, ;-
Moreover, the gauge invariance of the component M,; , of the equa-
tions of motion (see Eq. (140) of [60] for an explicit expression)
implies
(s=DD-6.¢_ =rs(D+5=50b,¢,_, - 27)
For s = 1, Eq. (27) gives 6,4, = 0. One then has (for s > 2)
r2x+3—D ér[éelﬁ, ¢] —

i Als—1)
Vr{a =i ds.g, + T

5 D-¢1D- b, (28)

2
SS_’ Tlas(s = 1)+ (1= DD = )b, 6., }

where we also integrated by parts a D;, an operation which does not
spoil the structure (24) of the on-shell action (we neglect total diver-
gences on the sphere, whose integral vanishes).

Both contributions in the first line of Eq. (24) have this form and di-
verge as O(RP5). These divergences can however be canceled by defin-
ing the subtracted action

Ssup 1= Sreg +/ dP 'y Le (29)
r=R

with a counterterm given by, for s > 2,

V¢ ; R2A(s— 1) i
Lo =~ {Us =D, - 22D 41D ¢
+ . i 1 [As(s = 1) + (1 = (D — 4)]¢, ' bui_, }’ (30)

where here we raised angular indices with the full metric g" to absorb
the corresponding powers of r. Instead, for s = 1,

/—2 )
Lo= W(,1—1)(A’A,.—2RAuz>~A). (31)
One can compare with the boundary term (2), which also renormalizes
the action by making it manifestly gauge invariant,

A
3% /.
Egs. (31) and (32) are compatible since the last term in (32), being gauge
invariant, goes to zero as R — oo.

Notice that the counterterm (30) is written in terms of bulk fields
and it does not contain any derivative in r of the fields, i.e., it does not
involve derivatives in the direction normal to the regulating surface at
r = R. As such, it is a boundary term that does not affect the variational
principle. We were able to achieve this goal thanks to the option of
letting all derivatives act on 6.¢, which is guaranteed by the property
(16) of the on-shell action, and by the homogeneity in r of the variations
of each field component under higher-spin supertranslations. Another
crucial property of the counterterm (30) is that it only involves squares
of each tensorial structure, which allows one to cancel both divergences
in the first line of Eq. (24). For D = 4, consistently with the finiteness of
the on-shell action (6), the counterterm vanishes in the limit R — oo.

The subtracted action takes the form

1 _ .
Ssub ¥ 5 / RdD "xy/fy C'59,C;.
—

-1 }z{ dP2x k] e +OR™"
2 € ’

u=—0o0

B, = \/—g(A'A; —2RA,D- A+ (D -2) A2). (32)
R

(33)
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where C;_is the generalization of the s = 2 shear tensor parameterizing
the asymptotic solution space:

D+25s—4

bo=r G R G ) O ) (34
i, = i = i\t - .

The tensor G, @, %) is traceless but otherwise unconstrained, so that the
first line of Eq. (33) is the generalization of the Ashtekar-Streubel struc-
ture [64] to any massless bosonic field. It comes from the original on-
shell action, since the counterterm vanishes as O(R™!) when evaluated
on radiation falloffs.

The second line of (33), instead, still contains a potentially diverg-
ing corner contribution. The corner term coincides however with that
entering Noether’s second theorem, see Eq. (14). The corresponding sur-
face charge had already been discussed in ref. [48], focusing on 1 = 0.5
However, as displayed by Eq. (15), the A-dependent terms are propor-
tional to q.’;*‘s—l["éeqbﬁi , and this vanishes in Bondi-like gauge for a =u
and g =r, because ¢"#s-1 = —¢,#s-1 =0 and similarly for 5.¢"*s-1. So,
there is no new contribution to K compared to [48]. As such, the cor-
ner contributions in the second line of (33) have the same structure as
the supertranslation charge discussed in [48]. In that reference, it was
shown that, for spin-s supertranslations,

}z{ dPx k[5., 4] = 0, (35)

so that the (divergent) contributions that are “quadratic” in the pure-
supertranslation part vanish identically. In fact, these contributions
would also cancel in (33) because they are u-independent. Moreover,
the surface charge had been shown to be finite when evaluated in a
neighborhood of .7/, say for u < u; and u > u, (with u; < u,), under the
assumption that in those regions there is no radiation and the fields
attain a stationary configuration. A characterization of stationary solu-
tions for fields of any spin is discussed in Appendix D of [48], and it
amounts to consider configurations that near .7 behave like

bu_yip =7 PV, P, 2) + 0P (36)

possibly up to a pure-gauge contribution of the same form as that dis-
played in Eq. (20).

Imposing these boundary conditions at u — +oo, the resulting finite
renormalized action is

. 1 — i
Sten = Him Squp = 5 /j d*lxyfrcho,C,
37)

u=+00

+ % s(=1)°(D+ s — 4)7{dD_2x \VrTU®©

u=—00
Alternatively, one can avoid imposing stationarity of the fields at u —
+oo0 and add corner counterterms canceling the divergent contributions
in the presymplectic potential. We shall discuss this approach in the next
section.

Let us now consider the variation of the subtracted action (33) to
compute the subtracted presymplectic potential,

8 X / Rd”‘lxegub[zp, 8¢1 (38)
where "

0" (D, 5¢] := 6"[¢p, 5] + 5L, . (39)
Evaluating this explicitly (see Appendix B), we obtain

04 [0, 661 = 0"[Prq, 6ragl + 0,k 5[] (40)

We can then define the renormalized presymplectic potential by taking
the R — oo limit in a non-radiative region, e.g. for u < u,,

Ol 691 := lim 0], (4. 591, (41)

u=const

5 See Eq. (A1) of [60] and Footnote 5 of [48]. For comparison, let us recall that
refs. [48,60] used different normalization conventions for the two form: K:ﬁ =
sk ug) = —s! (2 )iso)- Consistently, compared to (2.14) of [48], the charge

computed in (44) below has an extra factor of s.
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for which we find
0. [, 601 ~ \fy <5c"s 0,Ci, +5(=1)’(D +5s - 4)9,(sT V') ) (42)

The latter can be used to obtain the renormalized supertranslation
charge. Taking into account that §,C; =0, 5.0” =0 and §.T = T un-
der spin-s supertranslations,

Orenl. 501 = s(=1'(D +5 = H/y T U 43)

Since the charge is §-integrable in our linearized setup, integrating (43)
over a hypersurface with boundary at .77, yields

Or =jl{dD_2x s D+ s =\ rTUO, 44

in agreement with [48] (see footnote 5).
5. Corner terms

In the previous section we discussed how, starting from the formal
action (1), one can obtain a finite action at null infinity by adding the
boundary counterterm (30) and imposing stationary field configurations
at corners of 7, that is, for u — +oo0. In this section, we follow an alter-
native route by identifying corner counterterms. To this end, it is natural
to investigate the symplectic structure associated with Eq. (9), because
the technical steps are the same as those required to renormalize surface
charges at finite u.

We start by recalling that the (Lee-Wald) presymplectic potential
0%[¢, 5¢] admits two types of ambiguities [65],

0%, 5] > 0%, 5] + 6Z°[$] + ;Y P [gp, 5¢b], (45)

where Y%/ is an antisymmetric term linear in the field variations. The
first ambiguity in (45) corresponds to adding a boundary term to the
Lagrangian, £ - £+ 9,Z% , and does not contribute to the associated
presymplectic form,

@f 1= 60, 5. P — 5.0°[, 5], (46)
which in turn determines the Iyer-Wald surface charge density:
o % 0P [5¢]. 47)

Notice that for the quadratic theory (1), in which the gauge parame-
ters are field independent, the last relation (47) can be §-integrated to
egs. (13) and (14). We also note that the boundary modification Z" may
correspond to the counterterm (30). The second ambiguity in (45) arises
from the fact that 6% appears as a boundary term in 6£. This term, called
corner term, affects w?,

o = o +0,(5Y V(. 6.91 - 5,Y V(9,541 ). (48)

and thus also modifies the charge two-form. As far as the renormaliza-
tion of the charge is concerned, only the corner term plays a role. For
this reason, we now focus on the latter and will relate it to the corner
integral appearing in eq. (24).

Actually, there is a simple prescription in the choice of Y*# that
cancels all charge divergences for generic values of u. Focusing on the
component that eventually enters the expression for the charge, we can
choose [17,23]

Y™ =/dr9“, (49)

and thus define the subtraction for the radial component of the symplec-
tic structure according to

0"

sub

:0’+5Z’+au/dr€”. (50)
To see why this leads to finite charges in the asymptotic limit r — oo, let
us note that, owing to (9),

0,00 =007 +68(0,Z") +0,0" ~6(L+0,Z") —09,0". (51)

sub
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Thus we see that the r-dependent, and in particular r-divergent, terms of
07, reduce to 5-exact contributions or total divergences on the sphere,
which vanish when calculating the presymplectic form and hence the
charge. In this way, the subtraction defined in (50) ensures a finite r —
oo limit and thus provides a renormalized charge for generic spins and
dimensions, regardless of Z°.

For instance, for s = 1 and A = 1, we have

0°[A,6A] = —\/—gF™6A,, k¥ =—/—gFe, (52)
and thus
0“[A,8A1=rP=*\/y 9,4, 7V 64, . (53)

This leads to the following expression for the divergent terms,

D-4

3k k-1
Y = D-3-k
Zo-zr D-3-k
k===

Vr AE Y540 + o), (54

where we denoted by Al(.k) the coefficients in the radial expansion of the

on-shell fields, i.e., 4; = Y, r‘kAl(.k). This choice ensures the cancellation
of the divergent terms in the surface charge, which we can write as
follows after integrating by parts and using the equations of motion,

}{Kg’dezx = P2 ;Ié. dP2x \r F,T
& k—1
— D-3-k - D-2 (k=1)_jj
=— Z r —D—3—k}{d x\/;A,. ro,T (55)
k=

-2
2

+(D-3) 7{ dP72x\fy T AL 1+ 067,

We note that, in this case, choosing the finite part of the counterterm
(54) to vanish, the resulting charge coincides with the result (44) ob-
tained in the previous section. Therefore, with this prescription, an ap-
propriate choice of ambiguities that renormalizes the symplectic struc-
ture is given by the boundary modification (39), Z" = L, together with
the corner term (49).0

We note that, while it is quite general, the subtraction defined by (50)
is not manifestly local in terms of bulk fields. Indeed, the general form
(49) involves an integral with respect to the radial coordinate, while the
explicit form (54) involves direct dependence on the coefficients of the
1/r expansion, as opposed to the bulk fields.

Just as we have done for the boundary counterterm in the last sec-
tion, one might thus ask whether it is still possible to express the corner
counterterm (54) in terms of the bulk fields in a local way. An obstruc-
tion is represented by the fact that the most divergent term in (54) bears
the form

D-4 D4y D-6
YU =T ATy 6AY + 00T ). (56)

The only two structures that can be built with the bulk field A, and do
not involve angular or time derivatives, like the leading singularity dis-
played in (56), are A;y"/64;, A,6A,. However, these are total variations
and hence do not contribute to the presymplectic form. On the other
hand, one could construct one such counterterm by allowing for radial
derivatives, but this is perturbatively equivalent to an expression such
as (54) itself which involves explicit coefficients of the 1/r expansion.

Thus, our analysis indicates that the corner renormalization per-
formed at the level of the symplectic potential for generic u involves
terms that are either nonlocal or involve explicit dependence on the 1/r
expansion coefficients. Naturally, if we now once again assume that ra-
diation vanishes as u — —oo, in particular before some reference u,, all
seemingly divergent terms in the presymplectic potential become harm-
less as they vanish when calculating the charge at .7+ [16,48].

6 Let us observe that applying the Compére-Marolf prescription [6] starting
from Z" = L, would not yield any nontrivial corner counterterm for the presym-
plectic potential, because there are no d, in it.
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Notably, the corner counterterm (49) also leaves the finite term for-
mally unspecified, and as such would require additional criteria to iden-
tify the finite remainder after the subtraction in a unique way. For in-
stance, one can employ a “minimal subtraction” scheme, in which only
divergent terms in r are included in the counterterm as above, or impose
additional properties on the allowed counterterms, see [16,21,32,33].
We leave the investigation of this point to future work.

6. Conclusions

We studied the renormalization of the divergent on-shell action
and surface charges that one encounters when considering free mass-
less fields of arbitrary spin with falloffs at null infinity allowing for
supertranslation-like asymptotic symmetries. Our treatment applies to
any spacetime dimension D > 4. For each value of the spin s, we identi-
fied the boundary counterterm (30), which contains a local combination
of the bulk fields not involving any derivative along the normal to the
regulating surface. Imposing suitable boundary conditions in far past
and future, this counterterm gives a finite action at null infinity with-
out affecting the variational principle. We also discussed in Section 5
how one could weaken these corner conditions, noticing however that
this requires to introduce corner counterterms that are either non-local
in the bulk fields or include derivatives in the direction normal to the
regulating surface.

The construction of our local boundary counterterm relies on the
property (16) of the linearized action, as well as on the homogeneity
in the radial coordinate of (higher-spin) supertranslations, see Eq. (20).
The latter property is not shared by superrotations and their higher-spin
counterparts [2,48,66-68] and conceivably would not hold for higher-
spin supertranslations too, whenever non-linearities are included. Build-
ing a local counterterm also for asymptotic solution spaces allowing
for these symmetries or including log r contributions (see, e.g., [69-71])
would thus require further work. Similarly, a proper generalization of
the above properties could be instrumental to investigate the nonlinear
Einstein theory.

The existence of a boundary counterterm containing a local combi-
nation of the fields was not obvious a priori, especially in view of the
difficulties to achieve the same for the corner terms that one needs to
renormalize the charges. On the other hand, in our approach we fixed
both the coordinates of the Minkowski background and the gauge. It
would be interesting to reconsider our results so as to establish a renor-
malization procedure encompassing covariance with respect to both dif-
feomorphisms and linearized gauge transformations, possibly resorting
to conformal compactification methods [72,73] or to the cohomologi-
cal setup of the variational bicomplex [74]. We defer such investigations
to future work, but we expect the asymptotic solution space to exhibit
properties analogous to (22) when one imposes gauge-fixing conditions
like those in Eq. (18) also in other coordinates systems. Combining a
diffeomorphism with a compensating gauge transformation, one should
thus be able to follow similar steps as those discussed above to renor-
malize the action.

Another useful intermediate step would be to restore covariance at
least on each regulating surface, in the spirit of what has been done
in gravity in [15,55,75,76]. As discussed in Appendix C, this could be
achieved, e.g., by parameterizing the background in an ADM form, thus
possibly disclosing the underlying Carrollian geometry of the boundary,
as in the mentioned references. More in general, it will be interesting to
identify a procedure to derive boundary correlators from our on-shell ac-
tions and non-linear generalizations thereof, in the spirit of holographic
renormalization in AdS.
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Appendix A. The Noether two-form

We would like to compute the Noether current corresponding to the
invariance of the action (1) under the gauge transformation (3). Let us
write the Lagrangian as

L=2L+(1 =1Ly, (A1)
where

L, = -% 0,0, P + % 0p Py, 07 P71, (a.2)
L, = _% aﬂlﬁﬂs I’ + % 2 ¢M;_1 9Pt (A-3)

We can compute the quantity 9y, ¢] defined in (7) and the corre-
sponding current separately for each term £, and £, and then take their
linear combination to get a result valid for any value of A.

For £, one finds

9‘11[W7¢] =¢,, Ml — ¢, 0"y, (A.4)
which, following [77], gives the Noether current
J* =019, 8.4] — 6%[6.4, B]
1 I 6;4 omll ) @ U 2 a u" (A5
= 0,6y, 0" —0yey 0"PH =20, ¢, PN,

where 92 denotes a double gradient involving the minimal number of
terms required for full symmetrization, e.g., the square gradient of a vec-

tor, af,A u» Stands for the combination 9,934, + 9,9,44 + 949, A,. Manip-

ulating the sum of the first two terms one obtains

0,6, '™l =0, "M = sdpe,

(Ep (aﬁqﬁfwm + aﬂqguﬂﬂrz
s—1 1

(A.6)

—0%@PHs1)] = se,  (CDp™s~1 +09,0 - p™5-2 — 0% - 1),

while the third term can be written as

2 s = — .0 - 5=
=20, €%, ¢f ==s(s= D[99, e ~
+ aﬂ(qbﬂwkz ayeays_z —0 - pPHs—2 eam_z )] .

Putting these together one finds j{ ~ a,ﬂc;"’ with

K;Xﬂ = sqﬁ"f*l[“’a/‘eﬁ]m_z +s(s=De, , leg . pflus—2 S€u ol Pl
(A.8)

where we took into account that egs. (4) and (5), in combination with
the tracelessness of the gauge parameter, imply

0:0-¢, , ~0,
. (A.9)
eHs-1 (I:]dzuj =009, ) ~0.
We can now perform the same computation for £,. One finds

9‘2’[11/, bl = s H-19. W, — P ‘)a‘l’yss (A.10)
which gives the Noether current
Jj¥ =s(0%Hs-1 + 9He®™s-2)0 - — 0,€, 0%pHs

2 ( ) Hs-1 1EHs-1 (A11)

— AHs—| Hs 9@
s¢™otley,  + ¢H0%0,e, -
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Again, the idea is to express the current as a total derivative up to terms
that vanish on shell as in (A.9). In particular, integrating by parts twice
the term involving the d’Alembertian one obtains

¢*10e,, , =™ 1e, | + 0p (¢WHaﬂ€m_1 - aﬂ¢aﬂkl€m_]>
(A.12)

where [J¢*#s-1 can be completed to reproduce the equations of motion.
After some additional manipulations on the other terms, one eventually

gets
= aﬂK;’ﬂ + sets-1 (|:|¢a,4x_, =040 by, 0,0 ¢”"“2) (A.13)
+5(s = De™29-0-¢, = 0ﬁ’<£am’

where
K37 = s(s = De,, 190 P2 4 sol%e, ¢t — s, ol
(A.14)

Altogether, the Noether current for the Lagrangian (A.1) is j& = a,jxfﬂ ,
with

k= A+ (1 - xd?
— [t lus—p _ [ Tps—
=s(s— e, 10§22 —s¢, ol¢fls
s—11 1 _ [ T
+s it e, sl - Do,  PMs-r

(A.15)

Let us note that the A-dependent part of K?ﬁ can be rewritten in a simple

way,
Kgﬂ = K;ﬂ +Asd, lag, gPlis-1 (A.16)

This is consistent with the fact that the term proportional to A in the
Lagrangian (A.1) is a total derivative

Ly~ Ly = 0,6 (A.17)
with
&1 = 5 (dpu, 81 = 0y, 1) (A.18)
and
031,591 - 031,601 = 5191 + 3 0y (., 1“507 51 ). (A.19)

Appendix B. Evaluating 6,

To evaluate (39) explicitly, let us manipulate the two ingredients on
the right-hand side with the goal to highlight the cancellation of the
divergent terms. We begin by noting that the counterterm Lagrangian
(30) was constructed in such a way as to cancel the first two terms on the
right-hand side of (24), and as such it satisfies (up to total divergences
on the sphere and up to terms that eventually vanish as R — o)

Lo~ =016, brag] = 50716.6,6.0]
~ 0[50, 1 + 0°(6,¢.6.),

where we used the decomposition (22) of the solution space. Similarly,
the “bare” presymplectic potential defined by (11) can be manipulated
as follows,
0°[¢, 6] % 0°[8., 5] + 0" [rag S5ch] + 0% [rads S¢braa)

~ 0°[6.¢, 5] + 0%, 55 — 0°[5., 65.9] (B.2)

+ éa [¢rad’ 5¢rad]’

where we used again (22) as well as the fact that 8(8c9,,) =9,¢, =
5¢®,, - Applying the second Noether theorem in the form (16), we then
have

0%[, 5] ~ 0°[5,, 5] + 8°[55., P — 8°[5., 5591
+ 6" [Prad> OPraal + a/)K;f [¢].

(B.1)

(B.3)
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Finally, we focus on the a = r component and note that, again by (16),

(6.0, 65.) — 07(65.00. 6.1 ~ OpK’L (5.1 ~ 0,5 (5., (B.4)

where in the last equality we have employed (35). This allows us to
recast 0"[¢,5¢] in the following way, up to total divergences on the
sphere,

016,591~ 5(¥ (6.0 81 - 10715..5.0)

+ 9r[¢rad? 5¢rad] + 014’(,;2 [d’] .

By (B.1), we see that the terms in the first line of (B.5) cancel out in
0"[@, 5] + 6L, leading from (39) to (40) in the main body of the text.

(B.5)

Appendix C. Covariance under boundary diffeomorphisms

Holographic renormalization would require, in particular, that a
boundary counterterm be covariant with respect to reparametriza-
tions of the regulating surface at r = R. Drawing inspiration from the
boundary-covariant gauges [15,55,75,78] used in nonlinear gravity,
this property can be made manifest using an ADM-like foliation of
Minkowski spacetime in terms of time-like surfaces,

ds® = dr® + hy, (dx* + Ndr) (dx® + N*dr), ()

where x¢ are the coordinates and 4, is the induced metric on each
time-like sheet. Indeed, the retarded Bondi coordinates (17) fit within
this class of parameterizations with the identifications

N% =45, hgpdx®dx? = —du? + rzyijdxidxj . (C.2)

These imply the properties

N°N,=-1, 9,N°=0, D,N’=0, N°K, =0, (C.3)

where boundary indices are raised and lowered via h,, and its inverse
h, D, is the Levi-Civita connection of h,,, and K, is the extrinsic cur-
vature. In the current setup, the latter reads

1
Kab = E d,hab, (C.4)

and its only non-trivial components in retarded Bondi coordinates are
K =ry;- The relations (C.3) provide a characterization of our foliation
that is invariant under diffeomorphisms on each time-like surface and

that allows one to rewrite the metric in the equivalent form
ds* = 2Na(xb)dxadr + hg(r, x)dx?dx? . (C.5)

When the conditions (C.3) hold, the non-vanishing Christoffel symbols
are

[y ==Ky, Tp=K%, T% =T"% +NK,, (C.6)

where I'™¢, are the connection coefficients associated to the induced
metric h,,. Notice that in the limit r — oo this metric becomes degen-
erate and the shift vector N¢ spans its kernel, so that one recovers the
two geometric objects that characterize the Carroll geometry of .7+ (see,
e.g, [79D).

As an illustration of the procedure, let us consider for simplicity the
case s = 1. In the coordinates (C.5), Eq. (7) reads

0'[B, Al =—V—h [A“(a, ~ N®D,)B, - (1- A)K®,A“B,
+AN%A°D, B, — (1 -2) N“AG(KN”—D”)B,]], €7

where K = h*’K,, and we imposed the radial gauge condition A, = 0.

The falloffs (19) can instead be translated in

A, ~0O(), N4, ~ 0@, (C.8)

and the solution space takes again the form A¥ =§. A" + A:’a g asin
Eq. (22). Moreover, the following relations hold,

0,6.,A,=0, N9D,5.A, =0, N°,A,=0, (C.9)
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and they allow to cancel the divergences in (C.7) by adding the coun-
terterm action

S, = %/d”“x\/—h [K”HA“A,, ~ N9A,D"A, + N9A,DA,|. (C.10)

Using (C.2), the latter coincides with Eq. (31) (up to an integration by
parts of D;), but it is now manifestly invariant under boundary diffeo-
morphisms.
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