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a b s t r a c t

Nonnegative Matrix Factorization (NMF) is a widely used technique for parts-based data repre-

sentation, but its sensitivity to non-Gaussian noise and outliers limits robustness. Existing robust 

models typically address this issue by modifying the loss function to mitigate such outliers; how-

ever, they often lack generalization across diverse noise distributions. This paper proposes a novel 

framework, Distributionally Robust NMF with Self-Paced Adaptive Multi-Loss Fusion (DRNMF-

SP), to enhance robustness against both moderate and extreme outliers across various noise types. 

DRNMF-SP adopts a multi-objective optimization strategy that integrates multiple loss functions 

through a weighted sum, reflecting the uncertainty in selecting a single objective. It employs a 

distributionally robust optimization, minimizing the worst-case expected loss over a probabilistic 

ambiguity set. The integration of self-paced learning enables the model to progressively learn from 

clean instances while deferring to noisy samples, thereby enhancing its robustness to heavy-tailed 

distributions. Additionally, the instance-wise loss function shifts focus from individual features 

to the holistic structure of samples, improving performance in real-world datasets. An efficient 

iterative reweighted algorithm ensures computational feasibility, with costs comparable to basic 

NMF. Experimental evaluations on benchmark datasets confirm that DRNMF-SP consistently out-

performs existing robust methods across noisy, complex scenarios. The implementation can be 

found at https://github.com/barkhoda/DRNMF-SP.
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1. Introduction

Nonnegative matrix factorization (NMF) has emerged as a prominent technique due to its interpretability and effectiveness in 

uncovering latent structures within nonnegative data [1]. In contrast to methods such as principal component analysis (PCA) and 

singular value decomposition (SVD), which rely on orthogonal projections, NMF approximates a given nonnegative matrix as the 

product of two smaller nonnegative matrices. This nonnegativity constraint promotes an additive composition of features, naturally 

leading to a parts-based data representation rather than a holistic one [2]. Due to these properties, NMF has been widely applied 

in dimensionality reduction tasks across domains such as clustering [3], network analysis [4], tensor embeddings [5], feature selec-

tion [6], matrix recovery [7], and hyperspectral unmixing [8]. The motivation for employing NMF arises from its unique capability 

to produce nonnegative, parts-based representations that are both interpretable and effective in uncovering latent structures. Unlike 

alternative factorizations such as PCA or SVD, which may yield negative or mixed-sign components, NMF ensures physically mean-

ingful decompositions, particularly suitable for applications involving image, biological, and signal data. Therefore, improving the 

robustness of NMF under uncertain and noisy environments is essential for maintaining its interpretability and reliability in real-

world scenarios. Despite its success, standard NMF models can perform suboptimally when faced with datasets containing outliers 

or non-Gaussian noise. Although least squares-based NMF is effective under Gaussian assumptions, its performance can deteriorate 

with heavy-tailed noise distributions such as Laplacian or Cauchy. This is largely due to the 𝐿 2 

loss function’s sensitivity to outlier 

values, which can distort the learned representation.

To overcome the sensitivity of traditional NMF to outliers and non-Gaussian noise, numerous studies have incorporated robust 

loss functions inspired by M-estimation theory. These approaches replace the standard squared Euclidean distance with alternatives 

that offer improved resistance to noise contamination. Common replacements for conventional 𝐿 2 

loss include the 𝐿 1 

-norm [9], 

𝐿 2,1 

-norm [10], Huber loss [11], and Correntropy [12]. For instance, Lam [9] proposed an NMF formulation based on 𝐿 1 

-norm 

minimization, which is more suitable for data affected by Laplacian noise or heavy-tailed distributions where the assumptions of 

the Central Limit Theorem may not hold. Kong et al. [10] extended this robustness by introducing 𝐿 2,1 

-NMF, which substitutes the 

Frobenius norm with the 𝐿 2,1 

norm. This modification avoids squaring reconstruction errors, thereby reducing the undue influence 

of large deviations from individual data samples.

Liutkus et al. [13] proposed a Cauchy-based NMF, using the Cauchy distribution to model reconstruction errors within a maximum 

likelihood estimation framework. This approach naturally suppresses the influence of extreme values due to the heavy-tailed nature of 

the Cauchy distribution. In addition to this, several other robust NMF variants have been developed, including CIM-NMF (Correntropy-

Induced Metric NMF) and its row-wise extension, rCIM-NMF [11]. Correntropy, based on the Welsch M-estimator, serves as a local 

and nonlinear similarity measure in information-theoretic learning (ITL) [14]. It reflects the statistical similarity between random 

variables near their joint support. Another family of robust methods focuses on explicitly controlling large reconstruction errors by 

either limiting their contribution or discarding them entirely. For example, Gao et al. [15] introduced a capped norm strategy, where 

reconstruction errors exceeding a fixed threshold are cut or ignored. However, a practical challenge is the difficulty in selecting a 

suitable threshold. To address this, Guan et al. [16] adopted the three-sigma principle for outlier detection and proposed a truncated 

Cauchy-based loss, which effectively handles both moderate and severe outliers but requires tuning of two distribution-specific 

parameters.

In summary, the robust methods discussed above improve the resistance to noise by replacing the standard squared loss with 

alternative formulations that reduce the influence of outliers on the reconstruction error. These techniques fall under the umbrella 

of robust optimization (RO). On the other hand, Distributionally Robust Optimization (DRO), originally introduced by Scarf [17], 

provides a broader probabilistic framework to manage data uncertainty. Rather than optimizing performance under a single known 

distribution, DRO seeks to ensure reliable outcomes across a family of distributions contained within an uncertainty set Ω. In essence, 

DRO aims to produce solutions that are stable in multiple likely noise scenarios. This is achieved by minimizing the worst-case 

expected loss over a probabilistic ambiguity set that is inferred from observed data and reflects partial knowledge of the true data-

generating process. The appeal of DRO has grown rapidly in recent years, thanks to its solid theoretical foundation, adaptability to 

different ways of measuring distributional uncertainty, and strong performance in various applications [14].

DRO has gained popularity due to its ability to strike a balance between the overcautious nature of robust optimization and 

the data-specific demands of stochastic programming. In [18], the authors propose an approximation technique for DRO problems 

involving moment-based ambiguity sets by incorporating PCA to extract informative low-dimensional structures from data variability. 

The value of distributional robustness becomes even more pronounced in scenarios with limited training data, as it enhances the 

generalization capacity of predictive models. For example, Zhu et al. [19] investigate a minimax DRO formulation for weighted k-

nearest neighbors, where optimal weighting schemes are derived to account for feature-level uncertainty. Classical classifiers often 

assume perfectly known training inputs, yet practical datasets frequently suffer from noise or perturbations. To address this, Faccini 

et al. [20] model data uncertainty using geometric sets, such as hyperrectangles or ellipsoids, and introduce a moment-based DRO 

framework that constrains deviations along principal axes. In the context of matrix factorization, Gillis et al. [21] developed a DRO-

based NMF model utilizing the 𝛽-divergence family to increase robustness against types of noise represented in the ambiguity set. 

Extending this line of work, [22] proposed the instance-wise distributionally robust NMF (iDRNMF), a multi-objective formulation 

designed to accommodate a wide variety of noise distributions through adaptive loss function integration.

Conventional NMF methods typically incorporate noise modeling at the element level [23], assuming that each feature or entry 

in the data matrix can be treated independently. In contrast, instance-wise robust NMF approaches [11,24] focus on capturing 

noise patterns at the sample level, where each column (or instance) is considered as an integrated unit. This paradigm is especially 

effective for datasets with numerous samples or where the data exhibit continuity across features. By considering the full structure
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of each instance, such models are better equipped to detect and preserve global trends, making them highly applicable in complex 

or noisy environments. Instance-level robustness improves the model’s resilience and ensures consistent performance, even when 

entire samples are affected by noise or outliers. Moreover, it promotes a better understanding of the underlying relationships among 

samples, which is critical for interpretability in real-world applications. These advantages have led to the successful application of 

instance-wise robust NMF in diverse areas, including image restoration [25], data quality monitoring [26], randomized smoothing 

for robustness [27], biological data analysis [28], and hyperspectral signal separation [29].

One of the intrinsic challenges in NMF lies in the non-convexity of its objective function, rendering the task of finding a global 

optimum NP-hard. As a consequence, NMF algorithms often converge to suboptimal local solutions, especially in the presence of 

high noise levels or severe outliers. A widely adopted workaround is to execute the algorithm multiple times with different random 

initializations and select the best-performing outcome. However, this strategy is inefficient and impractical in unsupervised con-

texts, where there is no straightforward metric to identify the most suitable solution. To address this limitation, self-paced learning 

(SPL) [30] has emerged as a compelling strategy. SPL has been shown to reduce the risk of getting stuck in poor local minima and 

to enhance generalization performance [31]. The core idea of SPL is to prioritize training on simpler, cleaner data points before 

gradually including more complex or noisier ones—mirroring the incremental nature of human learning. This mechanism helps the 

model become more resilient to anomalies and improves overall training stability. SPL has demonstrated success across a range of 

computer vision and pattern recognition tasks [32,33]. For example, Zhao et al. [34] applied this principle to matrix factorization, 

proposing the SPMF method, which showed improved performance over classical techniques. Similarly, SPL has been incorporated 

into NMF-based models. Zhu and Zhang [35] proposed MSPNMF, which integrates SPL with Frobenius norm-based NMF. However, 

the reliance on the Frobenius norm still leaves the model susceptible to noisy inputs. To overcome this, Huang et al. [36] embedded 

SPL into the 𝐿 2,1 

-NMF framework, achieving enhanced robustness by reducing the influence of outliers during training.

In addition to the above-mentioned robust NMF approaches, robustness has also been studied in related representation learning 

frameworks such as robust principal component analysis (RPCA) [37] and robust matrix factorization [38], which explicitly model 

outliers or corrupted components. Within NMF, the current state-of-the-art can be divided into three main lines: (i) loss-based variants 

using 𝐿 1 

, 𝐿 2,1 

, Huber, or correntropy-based measures; (ii) distributionally robust formulations that optimize performance across 

ambiguity sets of noise distributions; and (iii) adaptive extensions such as self-paced NMF. Our work combines (ii) and (iii), providing 

a principled framework that enhances both robustness and optimization stability.

This paper introduces a novel model termed Distributionally Robust Nonnegative Matrix Factorization with Self-Paced Adaptive Multi-

Loss Fusion (DRNMF-SP), aimed at delivering resilience to a diverse range of noise characteristics, including severe and heavy-tailed

outliers. Formulated within a multi-objective optimization framework, DRNMF-SP is particularly suited for robust data representa-

tion under complex and uncertain conditions. The model jointly leverages two key principles: distributional robustness to account 

for varying noise distributions, and self-paced learning to suppress the impact of highly contaminated or anomalous data samples. 

A major difficulty in robust learning arises from outliers caused by heavy-tailed noise distributions, which can severely distort fac-

torization quality. Existing robust NMF variants often fail to effectively mitigate such extreme deviations. By incorporating SPL, 

our approach gradually integrates samples into the learning process based on their reconstruction difficulty, thus naturally down-

weighting samples with large residuals. This learning scheme not only improves robustness to outliers but also avoids dominance of 

any single objective function during the optimization process, which is particularly important when fusing multiple loss functions. 

Moreover, DRNMF-SP operates at the sample level, distinguishing it from conventional robust NMF methods that assume noise affects 

individual matrix entries. Our formulation evaluates the reconstruction fidelity using an instance-wise loss structure, allowing it to 

capture global sample-level corruption rather than isolated entry-wise distortions. In addition, the proposed model introduces a gen-

eral and extensible strategy for constructing distributionally robust NMF formulations by integrating a user-defined collection of loss 

functions. Optimization is carried out using an efficient iterative reweighted scheme, which maintains computational complexity on 

par with classical NMF algorithms. This flexibility enables DRNMF-SP to seamlessly encompass a broad spectrum of robust objectives 

commonly encountered in literature, while offering scalability and simplicity in implementation. The main contributions of this work 

are summarized as follows:

• We propose a distributionally robust NMF model (DRNMF-SP) using a multi-objective framework that minimizes a worst-

case expected loss under probabilistic ambiguity. This formulation accommodates the uncertainty in noise characteristics by 

combining multiple objective functions.

• Self-paced learning (SPL) is integrated to enhance robustness against both moderate and extreme outliers. SPL allows the model

to learn from easier, cleaner samples first, gradually incorporating harder ones, improving resilience to heavy-tailed noise.

• In multi-objective settings, SPL ensures balanced optimization by preventing any single objective from dominating, maintaining

diversity in learned solutions, and robustness in performance.

• Extensive experiments on benchmark datasets validate that DRNMF-SP consistently outperforms existing robust NMF models

under various noise conditions, including mixed and single-distribution noise scenarios.

The proposed factorization model is general and can handle any noise type, but we focus on common real-world distributions, 

Gaussian, Laplacian, and Cauchy. Due to their heavy tails, Laplace and Cauchy distributions often contain more outliers. Our DRNMF-

SP model is designed to robustly manage both moderate and extreme outliers across these noise types. To better position our work 

against recent advances, we emphasize the distinction of DRNMF-SP from the most relevant robust NMF models. The element-wise 

distributionally robust NMF (DRNMF) [21] achieves robustness by optimizing over an ambiguity set of noise distributions, yet it 

remains limited to entry-level corruption and does not address sample-wise noise patterns or extreme outliers. The instance-wise
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DRNMF (iDRNMF) [22] extends this idea by introducing adaptive multi-loss fusion, enabling resilience across heterogeneous noise 

types, but it still lacks a mechanism to mitigate convergence to poor local minima in highly noisy settings. On the other hand, 

self-paced learning–based NMF variants such as SPLNMF [36] improve convergence stability and suppress outlier effects by gradu-

ally introducing difficult samples, but they are restricted to a single loss function and therefore cannot guarantee robustness under 

distributional uncertainty. In contrast, our proposed DRNMF-SP unifies these complementary directions: it combines distribution-

ally robust optimization with self-paced adaptive multi-loss fusion at the instance level, thereby capturing sample-wise corruption, 

balancing multiple objectives during training, and progressively filtering heavy-tailed outliers. This integration yields a principled 

and generalizable framework that advances beyond existing robust NMF approaches in both theoretical formulation and empirical 

performance.

The rest of the paper is organized as follows: Section 2 covers background and preliminaries. Section 3 introduces the instance-wise 

distributionally robust NMF (iDRNMF), its extension with self-paced learning (DRNMF-SP), and a reweighted optimization strategy. 

Section 4 presents experimental results, and Section 5 concludes with a summary and future directions.

2. Preliminaries

In this section, we provide a review of key preliminaries, including the iterative reweighted algorithm, commonly employed for 

solving the general reconstruction problem. We also introduce the standard NMF and describe self-paced learning. Before introducing 

them, we provide the basic notation useful for understanding the paper.

2.1. Notation

In this paper, we follow a standard notation for mathematical symbols. Scalars are represented using lowercase letters, while 

vectors are denoted by lowercase letters in boldface. Matrices are indicated by uppercase letters. For a matrix 𝑀 , we denote its 𝑖-th 

column as 𝑀 𝑖 

, its 𝑗-th row as 𝑀 (𝑗), and the entry in the 𝑖-th row and 𝑗-th column as 𝑀 𝑖𝑗 

. The transpose of 𝑀 is written as 𝑀 

⊤ , and

its trace is given by Tr(𝑀). The Frobenius norm of a matrix 𝑀 ∈ R 

𝑚×𝑛 is defined as

‖𝑀‖ 𝐹 =

√

√

√

√

𝑚
∑ 

𝑗=1 

𝑛
∑ 

𝑖=1
𝑀 

2
𝑗𝑖 = 

√ 

Tr(𝑀 

⊤ 𝑀) = 

√ 

Tr(𝑀𝑀 

⊤ ).

2.2. Iterative reweighted algorithm

The iterative reweighted least squares (IRLS) method is widely used for optimizing robust models. It avoids direct minimization 

of non-quadratic objectives by reformulating them as a series of weighted least squares problems. Let 𝑒 𝑖 

(𝑣) denote the reconstruction 

error of the 𝑖-th instance, where 𝑣 represents the model parameters. A general reconstruction problem can thus be written as:

min
𝑣

𝑛
∑

𝑖=1
Ξ(𝑒 𝑖 

(𝑣)), (1)

where Ξ(⋅) denotes a monotonically increasing function applied to the nonnegative reconstruction error 𝑒 𝑖 

(𝑣) ≥ 0, and the parameter 

vector 𝑣 = [𝑣 1 

, 𝑣 2 

,… , 𝑣 𝑝] 

⊤ includes the 𝑝 variables to be estimated in solving problem (1). An optimal solution is obtained by setting 

the derivative of the objective in (1) to zero,

𝑛
∑ 

𝑖=1
𝜔
(

𝑒𝑖(𝑣) 

) 𝜕𝑒 𝑖 

(𝑣)
𝜕𝑣 𝑗

= 0, 𝑗 = 1, 2, … , 𝑝, (2)

′ 𝑣𝜔(𝑒 𝑖
 

𝑑Ξ(𝑒
 

( ))
    

𝑖 
 

 

(𝑣)) = Ξ (𝑒𝑖 

(𝑣)) = 𝑑𝑒 𝑖 

(𝑣)where       is called the influence function. Furthermore, Eq. (2) can be rewritten as:

𝑛
∑ 

𝑖=1
𝜓(𝑒 𝑖 

(𝑣))𝑒 𝑖(𝑣) 

𝜕𝑒 𝑖 

(𝑣)
𝜕𝑣 𝑗

= 0, 𝑗 = 1, 2, … , 𝑝, (3)

where 𝜓(𝑒 𝑖 

(𝑣)) is called the weight function. For effective optimization, the influence and weight functions in Eq. (3) are designed to 

ensure stability and convergence. When appropriately chosen, they allow Eq. (3) to be solved via the following iterative reweighted 

formulation [39]:

min
𝑣

𝑛
∑

𝑖=1
𝜓(𝑒 𝑖 

(𝑣) 

[𝑡−1])𝑒 𝑖(𝑣) 

2 , (4) 

[Here, 𝑒 reconstruction𝑖(𝑣) 

𝑡−1] denotes the   

 

error at the (𝑡−1)-th iteration. Solving problem (4) proceeds iteratively in two steps. First,
[treat the weight 𝜓(𝑒  

 

weight using the current reconstruction error 𝑒 𝑖 

(𝑣)[ 𝑡].
(𝑣) 

𝑡−1] ) as fixed and𝑖   solve for the optimal parameters based on the specific structure of   (4). Then, update the
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2.3. Iterative reweighted NMF

Given a nonnegative data matrix 𝑋 = [𝑥 1 

, 𝑥 2 

,… , 𝑥 

×
 

] ∈ R 

𝑚×𝑛 ,  

×NMF seeks nonnegative matrices  

 

𝑟
𝑛 𝑊 ∈ R 

𝑚  and 𝐻 ∈ R 

𝑟 𝑛 such that 

𝑋 ≈ 𝑊 𝐻 . The general objective is formulated as

min
𝑊 ,𝐻

𝑛
∑ 

𝑖=1
Ξ(𝑒(𝑥 𝑖,𝑊 ℎ 𝑖 

)) s.t. 𝑊 , 𝐻 ≥ 0, (5) 

where Ξ is a loss function applied to the reconstruction error 𝑒(𝑥𝑖  

,𝑊 ℎ 𝑖 

). The basic NMF model uses the squared error, leading to:

min
𝑊 ,𝐻

‖𝑋 − 𝑊 𝐻‖

2
𝐹 =

𝑛
∑ 

𝑖=1
‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ 

2 s.t. 𝑊 , 𝐻 ≥ 0. (6)

Since the objective is bi-convex, alternating minimization methods are typically employed. Specifically, throughout each iteration, 

one of the two factors is held constant while the other is updated in such a way that decreases the objective function. A connection 

was established between the iterative reweighted algorithm and NMF, regardless of the used loss function [40]. More precisely, the 

NMF loss function and ‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ can be considered as Ξ(⋅) function and 𝑒 𝑖 

in Eq. (1), respectively. Thus, in an NMF framework, 

Eq. (1) can be rewritten as:

min
𝑊 ,𝐻

𝑛
∑ 

𝑖=1
𝑑 𝑖‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ 

2 = Tr 

[ 

(𝑋 − 𝑊 𝐻)𝐷(𝑋 − 𝑊 𝐻) 

⊤ 

] 

, s.t. 𝑊 , 𝐻 ≥ 0, (7)

[where 𝑑𝑖  

= 𝜓(‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ 

𝑡−1]) is a coefficient computed in each iteration according to the loss used by Eq. (3) and using the residue

value in the previous iteration and 𝐷 is a diagonal matrix with 𝐷𝑖𝑖 = 𝑑𝑖  

.

2.4. Self-paced learning

Self-Paced Learning is inspired by the way humans acquire knowledge—starting from simpler concepts and progressively moving 

toward more difficult ones. Unlike standard training approaches that treat all data equally, SPL prioritizes samples based on their 

reliability and difficulty. In classical learning frameworks, model parameters Θ are obtained by minimizing the empirical risk over 

all samples:

min
Θ

𝑛
∑

𝑖=1
𝓁 𝑖(𝑥 𝑖, Θ), (8)

where 𝓁 

 

(𝑥 loss 

 

, Θ) denotes the associated with sample 𝑥  parameters. 

 

, and Θ represents the model’s However, not𝑖 𝑖 𝑖   all data points are 

equally informative—especially in the presence of noise or outliers—so treating every instance uniformly can be suboptimal.

To address this, SPL introduces a mechanism that favors easier samples in the early stages of training. It jointly optimizes the 

model  

 parameters Θ and a sample weighting vector 𝑝 = [𝑝 

⊤
1 

,… , 𝑝 𝑛 

] using the following objective:

min
(Θ,𝑝)

𝑛
∑ 

𝑖=1
𝑝 𝑖 

𝓁 𝑖 

(𝑥 𝑖 

, Θ) + 𝑓 (𝛼, 𝑝), (9)

where each 𝑝 𝑖 quantifies the importance (or simplicity) of sample 𝑥 𝑖 

, and 𝑓 (𝛼, 𝑝) is a self-paced regularizer controlled by the age 

parameter 𝛼. At early stages (small 𝛼), the algorithm focuses on samples with lower loss values. As training progresses and 𝛼 increases, 

more complex instances are gradually included, allowing the model to mature over time [31].

The optimization of (9) typically proceeds by alternating updates of Θ and 𝑝. A common form of SPL, often referred to as hard 

self-paced learning, restricts the weights to binary values 𝑝 ∈ {0, 1} 

𝑛 and defines the regularization term as:

𝑓 (𝛼, 𝑝) = −𝛼
𝑛
∑ 

𝑖=1
𝑝 𝑖 

, (10)

with the optimal value of 𝑝 𝑖 

given by:

𝑝∗𝑖 = 

{

1, if 𝓁 𝑖 

< 𝛼,
0, otherwise.

(11)

In this scheme, a sample is selected for training only if its loss is below the current threshold 𝛼, which is increased gradually to 

incorporate more difficult examples in successive iterations.

3. Proposed model: DRNMF-SP

In this section, we introduce instance-wise Distributionally Robust Nonnegative Matrix Factorization (iDRNMF) with the incor-

poration of the Self-Paced Learning (SPL) framework, which fundamentally improves the learning process by adapting the model’s 

sample selection strategy. The proposed method robustly represents data at the instance level, effectively managing noise from various 

distributions by dynamically balancing multiple objectives. The section begins with the formulation of the iDRNMF model, followed 

by the integration of SPL for iterative sample selection, and concludes with the optimization techniques employed, ensuring stable 

and generalizable data representations.
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3.1. Instance-wise distributionally robust NMF

The iDRNMF model, introduced in [22], was developed to address the challenge of modeling diverse noise distributions in non-

negative matrix factorization. Its unified framework allows for the integration of multiple objective functions, each associated with 

a distinct noise distribution, as commonly studied in the distributionally robust optimization literature. Unlike element-wise mod-

els, iDRNMF adopts an instance-wise perspective, treating each column of the data matrix 𝑋 as an individual data sample. Based 

on this view, a generalized loss function ‖ ⋅ ‖ (2,𝜏) 

was proposed, which applies the 𝐿 2 

norm to each column of the residual matrix 

𝐸 = 𝑋 − 𝑊 𝐻 , followed by a loss function 𝜏 on the resulting values. Here, each 𝜏 is assumed to be related to a specific probability 

distribution, allowing ‖ ⋅ ‖ (2,𝜏) 

to reflect different types of noise.

Since the true underlying noise distribution is unknown but assumed to belong to a predefined ambiguity set Ω, a dynamic 

weighted sum of objective functions is employed, where the weights are optimized jointly. This formulation enhances robustness 

against a variety of noise types by solving the following min-max problem:

min
(𝑊 ,𝐻)

max
𝜆

∑

𝜏∈Ω
𝜆 𝜏 

‖𝑋 − 𝑊 𝐻‖ (2,𝜏) 

, s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 = 1, (12)

where 𝜆 ∈ R 

|Ω| is a nonnegative weight vector summing to one, and each 𝜆 𝜏 

reflects the contribution of the corresponding loss. 

In [22], the ambiguity set was chosen as Ω = {1, 2, cau} to ensure robustness under Laplacian, Gaussian, and Cauchy noise, including 

their mixtures. In this case, the formulation in Eq. (12) becomes:

min
(𝑊 ,𝐻)

max 

𝜆
𝜆 1 

‖𝑋 − 𝑊 𝐻‖ 2,1 

+ 𝜆 2 

‖𝑋 − 𝑊 𝐻‖

2
2,2 + 𝜆 cau 

‖𝑋 − 𝑊 𝐻‖ (2,cau), s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 

= 1. (13)

This objective can also be represented in an instance-wise form, where 𝑥𝑖           

 

and ℎ
 

denote the column𝑖 𝑖-th of 𝑋 and 𝐻 , respectively:

min
(𝑊 ,𝐻)

max
𝜆

( 

𝜆1
𝑛
∑ 

𝑖=1
‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ + 𝜆 2

𝑛
∑ 

𝑖=1
‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ 

2 + 𝜆 cau

𝑛
∑ 

𝑖=1
ln 

( 

‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ 

2 + 𝛾 

2 

) 

) 

, s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 

= 1. (14)

To solve this multi-objective formulation, the optimization process was designed to gradually reduce the total loss while prioritiz-

ing the term with the largest contribution in each iteration. Specifically, the coefficient of the most dominant error term is increased 

to focus more on reducing that loss, while others are adjusted downward accordingly. Over iterations, this strategy ensures balanced 

optimization across all loss components and convergence toward a stable solution. However, it was observed in [22] that due to 

the squared term in the Frobenius norm, the ‖ ⋅ ‖ 2,2 

loss tends to produce significantly higher values, while the Cauchy-based term

‖ ⋅ ‖ (2,cau) remains consistently smaller. This discrepancy causes an imbalance, making it difficult to transition smoothly between loss 

terms during optimization. To resolve this, the objective functions were normalized so that each term contributes comparably. This 

normalization is crucial for the iDRNMF model to avoid biased optimization and leverage the strengths of all constituent objectives. 

Following the procedure in [21], each single-objective problem 𝜁 𝜏 

= min (𝑊 ,𝐻≥0) 

‖𝑋 − 𝑊 𝐻‖2 ,𝜏 

for 𝜏 ∈ {1, 2, cau} was solved individ-

ually. These values were then used to rescale the corresponding loss terms in the combined objective. Accordingly, the normalized 

instance-wise formulation 

min
(𝑊 ,𝐻)

max
𝜆

(

𝜆 1
𝜁 1

𝑛
∑ 

𝑖=1
‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ + 

𝜆 2
𝜁 2

𝑛
∑ 

𝑖=1
‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ 

2 + 

𝜆 cau
𝜁 cau

𝑛
∑ 

𝑖=1
ln 

( 

‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ 

2 + 𝛾 

2 

) 

) 

, s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 

= 1. (15)

becomes:

This normalization ensures that the optimization does not become biased toward the objective with the largest absolute value. As 

a result, the model in Eq. (15) achieves a balanced trade-off among different loss functions. By accurately modeling the ambiguity 

set and maintaining robustness across heterogeneous noise conditions, the iDRNMF formulation provides more generalizable and 

reliable representations, as demonstrated in [22]. In this work, we select the ambiguity set Ω = {1, 2, cau}, corresponding to Gaussian, 

Laplacian, and Cauchy noise. This choice is motivated by their complementary tail behaviors: the Gaussian distribution is light-tailed 

(mesokurtic) and represents the classical baseline; the Laplacian distribution is moderately heavy-tailed (leptokurtic), producing 

moderate outliers; and the Cauchy distribution is extremely heavy-tailed, generating extreme outliers. Together, they provide a 

representative spectrum of light, moderate, and severe contamination scenarios, enabling a meaningful case study for evaluating the 

robustness of the proposed DRNMF-SP framework. While we focus on this triplet for interpretability, the formulation is general and 

can be extended to other distributions in future work.

3.2. Distributionally robust NMF with self-paced adaptive multi-loss fusion

The iDRNMF framework offers a principled approach to NMF, aiming to decompose a given matrix 𝑋 into nonnegative factors 𝑊 

and 𝐻 , while exhibiting robustness against a wide range of noise distributions and moderate outliers. By minimizing the reconstruction 

error ‖𝑋−𝑊 𝐻‖ under multiple loss functions, iDRNMF provides a powerful tool for data analysis across diverse scenarios. Its inherent 

robustness against noise and moderate outliers makes it particularly valuable in real-world applications, but it can still be trapped in 

local minima. Integrating SPL with iDRNMF enhances the model’s generalization by helping it avoid suboptimal solutions, such as 

poor local minima.

Moreover, SPL significantly boosts the model’s robustness against irregular data, including noise and outliers. While the basic 

iDRNMF framework is already robust against diverse noise and moderate outliers, SPL’s structured approach further enhances per-

formance. By gradually exposing the model to increasingly complex samples, starting with simpler, more regular data points, SPL
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helps the model build a strong representation before tackling more challenging examples. This approach is particularly effective 

with data polluted by heavy-tailed noise distributions, as it improves the model’s ability to distinguish between regular and irregular 

data, including extreme outliers and anomalies. Additionally, SPL allows for the optional exclusion of the most challenging samples, 

providing a comprehensive solution for managing noise and outliers in data analysis tasks. The combination of SPL and iDRNMF, 

therefore, results in the DRNMF-SP framework, offering advanced robustness and performance. We rewrite Eq. (12), combining SPL 

using Eqs. (9) and (10) as follows:

min
(𝑊 ,𝐻,𝑝)

max
𝜆

∑

𝜏∈Ω
𝜆 𝜏

𝑛
∑ 

𝑖=1
𝑝(𝜏)𝑖 L 2,𝜏 

( 

‖𝑥 𝑖 

− 𝑊 ℎ 𝑖‖ 

)

− 𝛼 

(𝜏)
𝑛
∑

𝑖=1
𝑝(𝜏)𝑖 , s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 = 1. (16)

Since the number of instances included in each objective L 2,𝜏 

can differ in each iteration, directly summing them with a constant 

normalization coefficient 𝜁 𝜏 would unfairly weight objectives that take into account more instances. Normalization by the total 

number of instances ensures that all objectives contribute equally to the final objective function, regardless of the specific instance 

allocation in a particular iteration. This facilitates a fairer comparison between the different objectives and avoids biases introduced 

by imbalanced instance usage.

Fig. 1 illustrates the overall structure of the proposed model, highlighting its main components, data flow, and functional blocks. 

In addition, Fig. 2 illustrates the behavior of the proposed DRNMF-SP model with self-paced filtering under three different loss

functions (𝐿 1, 𝐿 2, and Cauchy) across three stages (𝑡1 ,  

   

𝑡2 

, 𝑡 3 

). At each stage, the filtering mechanism gradually selects “easy” (clean)

samples, shown as solid points, while discarding “hard” (noisy or outlier) samples, shown as transparent points. As training progresses 

from 𝑡 1 to 𝑡 3 

, more samples are incorporated, reflecting the curriculum learning effect of self-paced filtering. The comparison across 

loss functions highlights their different robustness properties, allowing the model to effectively adapt to various noise distributions. 

Overall, these plots demonstrate that the integration of distributionally robust losses with self-paced filtering not only enables the 

model to handle different types of noise but also significantly reduces the influence of outliers on the reconstruction quality.

For Ω = {1, 2, cau}, the objective function is as follows:

min
(𝑊 ,𝐻,𝑝)

max
𝜆

( 

𝜆1
𝑛
∑

𝑖=1

𝑝(1)𝑖
𝜖 1

‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ + 𝜆 2

𝑛
∑

𝑖=1

𝑝(2)𝑖
𝜖 2

‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ 

2 + 𝜆 cau

𝑛
∑

𝑖=1

𝑝(cau)
𝑖
𝜖 cau

ln 

( 

‖𝑥𝑖 − 𝑊 ℎ 𝑖 

‖ 

2 + 𝛾 

2 

)

− 𝛼 

(1)
𝑛 

∑ 

𝑖=1
𝑝(1)𝑖 − 𝛼 

(2)
𝑛 

∑ 

𝑖=1
𝑝 

(2)
𝑖 − 𝛼 

(cau)
𝑛 

∑ 

𝑖=1
𝑝(cau)
𝑖

) 

, s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 = 1, (17)

∑

where 𝜖 = 𝜁 ⋅ 𝑛 ( 𝜏)𝑝 𝜏) (
is an instance-wise𝜏 𝜏  normalization coefficient. At each iteration, we𝑖   calculate𝑖=1  𝑝 as𝑖  follows:

𝑝(𝜏)𝑖 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑒 

(𝜏) 

𝑖 ≤ 𝛼 

(𝜏) × 

𝜖 

(𝜏)

𝜆 𝜏
,

0 otherwise.
(18)

Fig. 1. Overview of the Distributionally Robust NMF with Self-Paced learning (DRNMF-SP), showing the main components and data flow.
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Fig. 2. Self-paced filtering with DRNMF under 𝐿        

 

, 𝐿
 

, and Cauchy losses, showing progressive inclusion1 2   of clean samples (solid) and suppression of noisy ones

(transparent) from 𝑡1  

to 𝑡 3 

.

Notice that in each iteration of the learning process, an increase in the value of 𝜆 𝜏 

indicates a larger residual error for the 

corresponding loss function. Consequently, the threshold level becomes stricter, resulting in fewer samples being incorporated into 

the training process for that particular function. In contrast, a decrease in the value of 𝜆 𝜏 

leads to a less stringent threshold, allowing 

more samples to contribute to the training process. Due to the inherent difficulty of optimizing the nonconvex and nonlinear objective 

function (17), we reformulate the model as an iteratively reweighted NMF problem.

It is important to note that DRNMF-SP directly extends the iDRNMF framework [22]. While iDRNMF already achieves robustness 

through adaptive multi-loss fusion under distributional uncertainty, it remains vulnerable to convergence toward poor local optima 

and struggles with extreme outliers. By embedding self-paced learning, DRNMF-SP introduces a principled mechanism to gradually 

incorporate more complex and noisy samples into training, which mitigates these weaknesses. A detailed empirical comparison 

between DRNMF-SP and iDRNMF, including their relative performance under extreme outlier conditions, is presented in Section 4.6.

3.3. Iterative reweighted DRNMF-SP

In subsections 2.2 and 2.3, we presented an iterative reweighted algorithm and showed that, based on it, certain objective functions 

satisfying specific conditions can be converted into a weighted basic NMF. Therefore, by utilizing the reweighted framework (7), our 

multi-objective formulation can also be converted as follows:

min
(𝑊 ,𝐻,𝑝)

max
𝜆

( 𝑛
∑

𝑖=1
𝑑 

(Ω)
𝑖 ‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ 

2 − 𝛼 

𝜏
𝑛
∑

𝑖=1
𝑝(𝜏)𝑖

) 

, s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 

= 1, (19)
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(Ω)
where 𝑑𝑖 is an instance weight calculated according to 

 

Eq. (4) as follows: 

𝑑 

(Ω)
𝑖 = 

∑

𝜏∈Ω

𝜆 𝜏𝑝
(𝜏)
𝑖

𝜖 𝜏 

𝜓 𝜏
( 

‖𝑥 𝑖 

− 𝑊 ℎ 𝑖‖ 

[𝑡−1]) 

. (20)

Indeed, in Eq. (19) each part of the objective function is assigned a weight 𝑑 

(𝜏) . Consequently, we can rewrite it as:

min
(𝑊 ,𝐻,𝑝)

max 

𝜆

∑

𝜏∈Ω

𝜆 𝜏𝑝
(𝜏)
𝑖

𝜖 𝜏 

𝑛
∑ 

𝑖=1
𝑑 

(𝜏)
𝑖 ‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ 

2 − 𝛼 

𝜏
𝑛
∑

𝑖=1
𝑝 

(𝜏)
𝑖 , s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 = 1, (21)

( (

where the sample  is 𝑑 𝜏)
weight 𝑖 = 𝜓

 )

𝜏 ‖𝑥 𝑖 − 𝑊 ℎ
 

 𝑖 ‖
[
 

𝑡−1] . If Ω = {1, 2, cau}, we have:
 

 

min
(𝑊 ,𝐻,𝑝)

max
𝜆

(

𝜆 1𝑝
(1)
𝑖

𝜖 1

𝑛
∑ 

𝑖=1
𝑑 

(1)
𝑖 ‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ 

2 + 

𝜆 2𝑝
(2)
𝑖

𝜖 2

𝑛
∑ 

𝑖=1
‖𝑥 𝑖 

− 𝑊 ℎ 𝑖 

‖ 

2 + 

𝜆 cau𝑝
(cau)
𝑖

𝜖 cau

𝑛
∑ 

𝑖=1
𝑑 

(cau)
𝑖 ‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ 

2

− 𝛼 

(1)
𝑛
∑

𝑖=1
𝑝(1)𝑖 − 𝛼 

(2)
𝑛
∑

𝑖=1
𝑝(2)𝑖 − 𝛼 

(cau)
𝑛 

∑ 

𝑖=1
𝑝(cau)
𝑖

) 

s.t. 𝑊 , 𝐻, 𝜆 ≥ 0, ‖𝜆‖ 1 = 1,

(22)

(1)𝑑𝑖 = 1
‖𝑥 −𝑊 ℎ 

 

‖𝑖 𝑖
where 

(cau) 1 .=𝑑𝑖  

‖𝑥 

 

−𝑊 ℎ 

 

‖

2+𝛾  

𝑖 𝑖   

2 

and Finally, we can rearrange the formula as follows:        

(

∑

𝑛  (1) (1) ) (cau )(2) ( )  

𝜆 ∑

𝑛 𝑛
1𝑝min max 𝑖 𝑑𝑖 𝜆2𝑝

cau
∑

 

+ 𝑖 𝜆
+ cau𝑝𝑖 𝑑𝑖

‖ − ‖

2 − (1) (1) − (2)
  ∑

𝑛
     

 

  
(2) (cau) (cau)

( ) 𝜖
 

𝜖
 𝑥

𝜖
 𝑖  𝑊 ℎ 𝑖   𝛼 𝑝𝑖  𝛼 

 

𝑝  𝑝
𝑊 𝜆 1 2

 

− 𝛼
 ,𝐻,𝑝 𝑖=1   cau 

𝑖 𝑖
 𝑖=1 𝑖=1 𝑖=1

(23)
∑

𝑛
∑

𝑛

= min max (Ω) ( )
(

 𝑑  
𝜏

) 𝑖 ‖

2 (𝑥 𝑖       

𝜏)
 

−𝑊 ℎ ‖𝑖 − 𝛼 𝑝 s.t. ≥ 0 ‖ ‖ = 1
 

𝑖  𝑊 , 𝐻, 𝜆  , 𝜆  1  .
𝑊 ,𝐻,𝑝 𝜆

𝑖=1 𝑖=1

It is important to mention that we can expand 𝜔 to encompass any preferred distribution and utilize this unified weighted 

formulation to manage it.

3.4. Optimization

The cost function of our DRNMF-SP model is not jointly convex in 𝑊 and 𝐻 , which makes optimization challenging. To facilitate 

successful factorizations, we can break this problem into two smaller convex subproblems. We can tackle problem (23) using alter-

nating minimization (Algorithm 1), which allows us to iteratively refine the variables until we reach a satisfactory solution. In each 

iteration, we use the Multiplicative Update Rule (MUR) to update one factor while keeping the other fixed.

3.4.1. Updating factors

To derive the update rules for the 𝑊 and 𝐻 factors, we rewrite the objective function in trace form. This allows us to solve it 

using the MUR method within a weighted NMF framework:

min 

𝑊 ,𝐻,𝑝

𝑛
∑ 

𝑖=1
𝑑 

(Ω)
𝑖 ‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ 

2 − 𝛼 

𝜏 

𝑛
∑ 

𝑖=1
𝑝(𝜏)𝑖 = Tr 

[ 

(𝑋 − 𝑊 𝐻)𝐷(𝑋 − 𝑊 𝐻) 

⊤ 

] 

− 𝛼 

𝜏
𝑛 

∑ 

𝑖=1
𝑝(𝜏)𝑖 , s.t. 𝑊 , 𝐻 ≥ 0. (24)

= (Ω)
where 𝐷 𝑖𝑖  𝑑 can be computed as:𝑖

𝐷 𝑖𝑖 =
𝜆 1𝑝

(1)
𝑖

𝜖 1 

‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖

+ 

𝜆 2 

𝑝(2)𝑖
𝜖 2

+ 

𝜆 cau𝑝
(cau)
𝑖

𝜖 cau‖𝑥 𝑖 − 𝑊 ℎ 𝑖 

‖ 

2 + 𝛾 

2 

. (25)

Algorithm 1 Distributionally Robust NMF with Self-Paced adaptive multi-loss fusion (DRNMF-SP).

1: Input: data matrix 𝑋, rank 𝑟, self-paced parameters 𝛼  

 

𝜏 , a finite ambiguity set Ω; 

2: Output: basis matrix 𝑊 and representation matrix 𝐻 ;

3: 

[0]𝜆𝜏 = 1
| |

∀
 

𝜏 ∈ Ω;ΩInitialize 𝑊 and 𝐻 randomly, 

4: Calculate 𝜖 𝜏 

for all objectives;

5: while convergence not reached do

6:
(

Calculate 𝑝 𝜏) according𝑖  to (18); 

7: Update instance weight matrix 𝐷 according to (25); 

8: Update basis matrix 𝑊 according to (26); 

9: Update representation matrix 𝐻 according to (26); 

10: Update weights 𝜆 

[𝑡+1] according to (27); 

11: end while
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To solve (24) with the non-negativity constraint, we use the following updating rules for 𝑊 and 𝐻 :

𝑊 ← 𝑊 ⊙ 𝑋𝐷𝐻 

⊤

𝑊 𝐻𝐷𝐻 

⊤ 

, 𝐻 ← 𝐻 ⊙ 

𝑊 

⊤ 𝑋𝐷
𝑊 

⊤ 𝑊 𝐻𝐷 

, (26)

where the division is element-wise, and each entry of the numerator is divided by the corresponding entry of the denominator.

3.4.2. Updating weights

To solve the optimization problem in (16), we adopt an iterative strategy that prioritizes the worst-case objective at each step. 

Specifically, we identify the maximum loss value and focus on minimizing it in the next iteration. This encourages all objectives to 

be reduced, while giving extra emphasis to the largest one. Based on [21], we initialize the weights as 𝜆 

[0] 

𝜏 = 

1
|Ω| for all 𝜏 ∈ Ω. At

each iteration 𝑡, we find:

𝑝 

∗ = arg max 

𝜏∈Ω
‖𝑋 − 𝑊 𝐻‖ (2,𝜏), 

[and define 𝜆 

𝑡]
∗

 as a one-hot vector with value  

 1 at position 𝑝∗ . The weights are then updated via:

𝜆 

[𝑡+1] = (1 − 𝜂)𝜆 

[𝑡] + 𝜂𝜆 

[𝑡]
∗ . (27)

Since ‖𝜆‖ = 1, this update increases the weight corresponding to the highest loss while slightly decreasing the others. The 

parameter 𝜂 ∈ (0, 1) controls the adjustment rate in the adaptive weight update scheme: larger values give more priority to the 

maximum loss, whereas smaller values result in slower updates. In our implementation, 𝜂 is not treated as a fixed hyperparameter 

but is instead updated dynamically according to the iteration number 𝑡. Specifically, we set

𝜂[𝑡] = 1
𝑡 + 1 

, 

which means that 𝜂 starts from 1
2 in the first iteration and gradually decreases toward zero as 𝑡 increases. This schedule allows the

algorithm to initially focus more on the dominant loss while ensuring that no single objective completely dominates the optimization 

process in later iterations.

3.5. Computational complexity

Assume 𝑋 ∈ R 

𝑚×𝑛 

+ with 𝑚 features, 𝑛 samples, and target rank 𝑟. Each iteration of DRNMF-SP involves the following major steps: 

(i) computing residuals and sample-wise norms, (ii) constructing the diagonal weight matrix 𝐷, (iii) updating self-paced weights 𝑝 

(𝜏) 

for each loss component, and (iv) updating the factors 𝑊 and 𝐻 via weighted multiplicative rules. As in standard NMF, the dominant 

operations are matrix–matrix multiplications of size 𝑚 × 𝑛 with rank 𝑟. The additional instance-weighting and self-paced modules 

introduce only linear-time overhead in 𝑛, which does not affect the asymptotic order. Table 1 summarizes the arithmetic costs for 

standard NMF and DRNMF-SP. For DRNMF-SP, the extra computations of 𝐷 and 𝑝 contribute 𝑂(𝑚𝑛𝑟) and 𝑂(𝑛|Ω|) respectively, where 

|Ω| is the number of candidate loss functions in the ambiguity set (usually small). Overall, these terms are dominated by the 𝑂(𝑚𝑛𝑟) 

cost of the update rules. Table 1 shows that both methods share the same asymptotic order 𝑂(𝑚𝑛𝑟). The running-time results in 

Section 4.9 confirm the theoretical complexity, showing that DRNMF-SP remains as efficient as standard NMF.

4. Experimental results

In this section, we comprehensively evaluate the robustness and effectiveness of the proposed method by conducting extensive 

experiments on 12 benchmark datasets and comparing it with 10 baseline and state-of-the-art NMF-based methods. To ensure a fair 

and reliable comparison, each method is executed 10 times with different random initializations to mitigate the impact of initialization 

sensitivity, and we report the average results. The MUR for factor matrices is performed for 300 iterations. For each compared method, 

we carefully set the hyperparameters according to the original papers in which they were first introduced, ensuring consistency with 

prior studies. The number of latent components is fixed to match the number of clusters in each dataset. To evaluate clustering 

performance, we apply the standard k-means algorithm to the learned representation matrix 𝐻 . Performance is assessed using three 

widely adopted clustering evaluation metrics [41]: Normalized Mutual Information (NMI), Accuracy (ACC), and Adjusted Rand Index 

(ARI). These metrics provide a comprehensive assessment of clustering quality by measuring the consistency between predicted labels

Table 1 

Per-iteration cost (arithmetic order) for standard NMF and DRNMF-SP.

Operation Standard NMF DRNMF-SP

Update 𝑊 (MUR) 𝑂(𝑚𝑛𝑟) 𝑂(𝑚𝑛𝑟)
Update 𝐻 (MUR) 𝑂(𝑚𝑛𝑟) 𝑂(𝑚𝑛𝑟)
Form residuals / norms 𝑂(𝑚𝑛) 𝑂(𝑚𝑛)
Compute diagonal weights 𝐷 – 𝑂(𝑚𝑛𝑟)
Compute SPL sample weights 𝑝 

(𝜏) – 𝑂(𝑛|Ω|)
Update 𝜆 – 𝑂(|Ω|)

Per-iteration total 𝑂(𝑚𝑛𝑟) 𝑂(𝑚𝑛𝑟)
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and ground truth annotations. By adhering to these rigorous experimental protocols, we ensure a robust and meaningful comparison 

of the proposed method against existing approaches. All datasets were preprocessed following standard practices: the image datasets 

were converted to grayscale (if applicable) and resized to the dimensions specified in Section 4.1. The non-image datasets (Seeds, 

Ecoli) were normalized feature-wise to the [0,1] range for consistent scaling across attributes. For all datasets, the number of latent 

components 𝑟 was set equal to the number of ground-truth classes. The factor matrices were initialized randomly and updated using 

the multiplicative update rules for 300 iterations. For the Cauchy loss, we set 𝛾 = 1, following prior works. Unless otherwise stated, 

all other hyperparameters were fixed across datasets. For baseline methods, we used the recommended hyperparameters reported in 

their original papers.

4.1. Datasets

We evaluated our methods on 12 benchmark datasets from various domains, including face recognition (Yale, ORL, UMIST), 

object recognition (COIL20), handwriting digit and fashion classification (MNIST, USPS, Fashion-MNIST), biological analysis (Seeds, 

Ecoli), and medical imaging (OrganA, Blood, Pneumonia). Face datasets comprise grayscale images with varying illumination and 

perspectives, resized for computational efficiency (Yale, ORL: 32 × 32; UMIST: 28 × 23). COIL20 features object images resized to 

32 × 32 pixels. MNIST, USPS, and Fashion-MNIST were subsetted to 1000–1100 samples each for streamlined testing. Biological 

datasets (Seeds: 210 samples, 7 attributes; Ecoli: 336 samples, 7 features) cover distinct classification tasks. The medical datasets 

from MedMNIST [42] (OrganA: 58,830 CT images; Blood: 17,092 RGB microscope images; Pneumonia: 5856 chest X-rays) highlight 

scalability and adaptability to high-dimensional, complex data. Fig. 3 presents representative dataset samples.

By leveraging this diverse set of datasets, including those with high-dimensional feature spaces and large sample sizes, we ensure a 

rigorous and comprehensive evaluation of the robustness and effectiveness of the proposed method in various real-world applications. 

The details of the datasets are described and summarized in Table 2.

4.2. Comparison of methods

To verify the superior performance of the proposed DRNMF-SP method for data representation, we compare it against 10 NMF 

models, including conventional, element-wise, sample-wise, and deep learning-based approaches. These methods represent a diverse 

set of techniques designed to enhance the robustness of NMF in different ways:

• Frobenius-NMF [43]: The standard NMF formulation that minimizes the squared error loss. It serves as a benchmark for

evaluating improvements brought by robust techniques.

• 𝐿 2,1 

-NMF [10]: A robust formulation of NMF that replaces the conventional least squares loss with an 𝐿 2,1 

norm-based loss.

Fig. 3. Example images from ten benchmark datasets: Yale, ORL, COIL20, MNIST, Fashion-MNIST, UMIST, USPS, OrganA, Blood, and Pneumonia, shown in order 

from top to bottom and left to right.

Table 2

Descriptions of 12 datasets under test.

Dataset #Sample #Feature #Class Application

Yale 165 1024 15 Face

ORL 400 1024 40 Face

COIL20 1440 1024 20 Object

MNIST 1000 784 10 Handwriting digit

Fashion 1000 784 10 Cloth

Seeds 210 7 3 Biology

Ecoli 336 7 8 Biology

USPS 1100 256 10 Handwriting digit

UMIST 575 644 20 Face

OrganA 58,830 784 11 Abdominal CT

Blood 17,092 2352 8 Blood Cell Microscope

Pneumonia 5,856 784 2 Chest X-Ray
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• Cauchy-NMF [13]: An element-wise approach that assumes an isotropic Cauchy distribution to model the reconstruction error,

making it highly effective against heavy-tailed noise.

• EWNMF [44]: Entropy-Weighted NMF introduces attribute-wise robustness by assigning optimizable weights to each feature

of each instance.

• rCIM-NMF [11]: A sample-wise robust NMF method that leverages the Correntropy Induced Metric (CIM) function to minimize

the impact of outlier samples on the factorization process.

• Huber-NMF [11]: Another element-wise method that incorporates the Huber function to balance squared and absolute errors,

offering robustness against moderate outliers.

• Elastic-NMF [45]: Proposes an elastic loss function that smoothly transitions between the Frobenius and 𝐿 2,1 

norms, offering

a flexible trade-off between standard and robust factorization.

• DANMF [46]: A deep-learning-based extension of NMF that utilizes multiple layers to extract hierarchical representations

while preserving the interpretability of nonnegative factorization.

• DRNMF [21]: An element-wise distributionally robust NMF model that covers the set of Gaussian, Poisson, and Gamma noise

distributions.

• SPLNMF [36]: A robust NMF method that integrates self-paced learning into 𝐿 2,1 

-NMF to avoid bad local minima and improve

convergence stability.

To enhance clarity, we summarize all baseline methods in Table 3, highlighting their publication year, central idea, and pri-

mary differences from our proposed DRNMF-SP. This overview helps position our contribution within the evolution of robust and 

distributionally robust NMF models.

4.3. Noisy datasets

We verify the robustness of DRNMF-SP by running it on datasets contaminated with noise having uncertain probability distribu-

tions, as well as with noise composed of a combination of different distributions within Ω.

Scenario a: occluded image datasets. One way to add noise is by occluding 40 % of images using an occlusion square, where the

value of each occluded pixel is set to zero. Note that the indices of the masked images are randomly selected following a uniform 

distribution, and the positions of the occluded pixels within each image are also uniformly selected at random. It is evident that the 

noise 𝜖  

 

= 𝑥⋆ 

 −𝑥 the 

 

introduced by masked image𝑖 𝑖 𝑖   𝑥 

⋆ is𝑖  heterogeneous and follows an uncertain probability distribution. Fig. 4 shows

sample occluded images from the ORL, OrganA, and Pneumonia datasets.

Table 3 

Summary of baseline methods compared with DRNMF-SP.

Method Year Core idea Key Difference from DRNMF-SP

Frobenius-NMF [43] 2000 Using squared reconstruction error Sensitive to noise and outliers

L 2,1 

-NMF [10] 2011 Employs 𝐿 2,1 

-norm loss Robust to moderate outliers only

Cauchy-NMF [13] 2015 Using a Cauchy distribution fixed to a single distribution

EWNMF [44] 2023 Assign adaptive weights to samples not distributional uncertainty

rCIM-NMF [11] 2012 Using Correntropy criterion lacks multi-loss formulation

Huber-NMF [11] 2012 Utilizes Huber norms Not adaptive to multiple noise sources

Elastic-NMF [45] 2019 Introduces adversarial regularization Ignores distributional robustness

DANMF [46] 2023 Using deep architecture Lacks robust optimization

DRNMF [21] 2022 Distributionally robust NMF Operates at element-wise level; no self-paced learning.

SPLNMF [36] 2019 Using self-paced learning Fixed to a single noise model

Fig. 4. Noise introduced by occlusion.
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Scenario b: the combination of noise with different distributions. To evaluate the robustness and efficacy of a distributionally robust

model that accounts for noise distributions in Ω, it is common to contaminate clean data with noise from a single distribution 

𝜏 ∈ Ω and assess performance. However, in real-world scenarios, noise rarely adheres to a single distribution; instead, it often results 

from a combination of multiple noise sources. Therefore, it is more realistic to examine the robustness of a method under such 

mixed-distribution noise conditions. We define the combined noise 𝑁̂ 

 as:

𝑁̂ = 

∑

𝜏∈Ω

𝑁 𝜏
‖𝑁 𝜏 

‖ 𝐹 

(28)

where 𝑁 is the noise generated from the distribution associated with𝜏   𝜏 ∈ Ω. The final noise matrix 𝑁  

 

is defined as:

𝑁 = 𝜚 ⋅ 

‖𝑋‖ 𝐹

‖𝑁̂‖ 𝐹
⋅ 𝑁̂, 0 < 𝜚 < 1 (29)

where 𝜚 denotes the desired noise intensity. The noisy data 𝑋 

 matrix 𝑋̂ is then constructed as 

̂
 = max(0, 𝑋 + 𝑁) where 𝑋 is a clean

low-rank instance and 𝑋̂ 

 is the corresponding noisy version.

4.4. Visualization

To provide qualitative evidence of the effectiveness of the proposed model, we present visual comparisons on the Yale and ORL 

datasets. For each dataset, mixed noise composed of Gaussian, Laplacian, and Cauchy was added to the images to simulate realistic 

degradation conditions. The qualitative results are shown in Figs. 5 and 6. Each figure displays ten representative samples arranged 

horizontally. From top to bottom, the rows illustrate the clean input images, the corresponding noisy versions, and the reconstructed 

outputs generated by the proposed DRNMF-SP model. It can be observed that the reconstructed faces effectively preserve global 

structure and key facial features while substantially suppressing the mixed noise components.

In addition, Fig. 7 shows the t-SNE visualization of the latent features 𝐻 learned by the proposed model for the Seeds, COIL20, 

and Pneumonia datasets. The clusters are reasonably well-formed, though not perfectly separated, which can be attributed to the 

linearity of the model and its limited capacity to capture nonlinear data structures. Since the primary focus of this work is on the 

distributionally robust loss function, we did not extend the representation model. Future work could consider incorporating manifold-

or graph-regularized NMF to potentially improve cluster separation.

4.5. Clustering results

In this section, we evaluate the clustering performance of our DRNMF-SP method compared to 10 other algorithms under different 

noise conditions. To assess robustness, we introduce noise into the datasets using two defined scenarios from the previous subsection.

Fig. 5. Visual comparison of reconstructed images on the Yale dataset under mixed noise.

Fig. 6. Visual comparison of reconstructed images on the ORL dataset under mixed noise.
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(a) Seeds (b) Pneumonia (c) COIL20

Fig. 7. t-SNE visualizations of the learned representations on three datasets using the proposed DRNMF-SPL method.

Table 4 

NMI under Scenario A. Best result in bold, second-best is underlined.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.4248 0.4340 0.4419 0.4455 0.4182 0.4196 0.3923 0.4115 0.3897 0.4573 0.4686

ORL 0.6173 0.6215 0.6159 0.6163 0.6233 0.6154 0.6150 0.6190 0.6114 0.6211 0.6320

COIL20 0.7642 0.7567 0.7115 0.7441 0.7561 0.7561 0.7566 0.7079 0.7101 0.7699 0.7873

MNIST 0.4309 0.4385 0.4549 0.4545 0.4404 0.4359 0.4373 0.4161 0.4012 0.4506 0.4623

Fashion 0.5155 0.5199 0.5535 0.5226 0.5238 0.5165 0.5209 0.4746 0.5087 0.5399 0.5695

USPS 0.4118 0.3902 0.3583 0.3768 0.3994 0.3857 0.3835 0.4105 0.3562 0.3853 0.4291

UMIST 0.5823 0.5908 0.5953 0.5910 0.5979 0.5605 0.6130 0.5922 0.5718 0.6313 0.6368

OrganA 0.6205 0.6589 0.6122 0.6481 0.6048 0.6261 0.6313 0.6247 0.6021 0.6026 0.6788

Blood 0.3439 0.3449 0.3449 0.3560 0.3451 0.3343 0.3461 0.3368 0.3357 0.3461 0.3608

Pneumonia 0.2835 0.2835 0.2365 0.2365 0.2465 0.2788 0.2565 0.2040 0.2115 0.2908 0.3130

Table 5 

ARI under Scenario A. Best result in bold, second-best is underlined.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.1493 0.1608 0.1754 0.1801 0.1535 0.1506 0.1276 0.1491 0.1465 0.1860 0.2013

ORL 0.2131 0.2091 0.2094 0.2005 0.2080 0.2000 0.2042 0.2055 0.2012 0.2119 0.2358

COIL20 0.5846 0.5590 0.4948 0.5446 0.5564 0.5705 0.5713 0.5014 0.5011 0.6039 0.6352

MNIST 0.2838 0.2788 0.3057 0.3058 0.2871 0.2847 0.2887 0.2671 0.2701 0.3036 0.3232

Fashion 0.3530 0.3519 0.3843 0.3845 0.3584 0.3679 0.3460 0.3305 0.3456 0.3737 0.3995

USPS 0.2576 0.2256 0.2026 0.2273 0.2427 0.2326 0.2217 0.2523 0.2135 0.2336 0.2841

UMIST 0.2775 0.2945 0.2959 0.2985 0.3060 0.2576 0.3040 0.2726 0.2045 0.3282 0.3468

OrganA 0.4632 0.4185 0.4471 0.5217 0.3871 0.4496 0.4918 0.4483 0.4078 0.4525 0.5621

Blood 0.2486 0.2468 0.2422 0.2523 0.2533 0.2459 0.2451 0.2275 0.1965 0.1876 0.2559

Pneumonia 0.3028 0.3028 0.2189 0.2189 0.2209 0.2947 0.2227 0.3352 0.2541 0.2952 0.3623

Each scenario simulates different types of noise contamination to analyze the effectiveness of the methods in handling real-world 

data imperfections. We use three widely adopted clustering metrics, NMI, ARI, and ACC, to quantitatively compare the clustering 

results. Higher values indicate better alignment between the predicted clusters and the ground-truth labels. The results are presented 

in two subsections, where Scenario A examines occluded images with an uncertain noise distribution, and Scenario B focuses on data 

contamination by a mixture of known noise distributions from the ambiguity set. The performance of all methods is reported across 

multiple datasets to provide a comprehensive evaluation.

4.5.1. Scenario a: occlusion-based noise contamination

In this scenario, we assess the robustness of clustering methods when the image data is partially occluded. To simulate real-world 

cases where missing or corrupted regions occur, we randomly select 40 % of the images in the examined dataset and occlude 10 % 

of their pixels by applying a square mask of size 𝑚 × 𝑚. The position of this mask is randomly chosen for each affected image, 

ensuring variability in the occlusion pattern. We evaluate the clustering performance using NMI (Table 4), ARI (Table 5), and ACC 

(Table 6). These results provide insights into how different methods handle partial occlusion and whether they can effectively recover 

meaningful cluster structures despite missing information.

The results in Tables 4–6 show that our DRNMF-SP consistently outperforms other methods, achieving the highest scores in all 

cases. This highlights its ability to handle structured occlusions and uncertain noise distributions more effectively than conventional 

robust NMF methods. Across various datasets, DRNMF-SP consistently outperforms other methods, particularly on the Yale, ORL, 

COIL20, and Pneumonia datasets, where other approaches struggle with missing pixel information. Even in datasets where the per-

formance gap is smaller, such as USPS and Blood, DRNMF-SP remains competitive, often leading in clustering accuracy. Overall, 

these findings confirm that DRNMF-SP is highly resilient to occlusion-based distortions, preserving the cluster structure even when a 

substantial portion of the data is missing.
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Table 6 

ACC under Scenario A. Best result in bold, second-best is underlined.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.3757 0.3575 0.3939 0.4091 0.3939 0.3818 0.3575 0.3696 0.3656 0.4121 0.4242

ORL 0.4400 0.4387 0.4350 0.4363 0.4350 0.4187 0.4325 0.4300 0.4215 0.4375 0.4600

COIL20 0.6774 0.6733 0.6111 0.6698 0.6861 0.6799 0.6799 0.6201 0.6357 0.7014 0.7257

MNIST 0.5265 0.5230 0.5385 0.5410 0.5345 0.5180 0.5345 0.5020 0.5125 0.5390 0.5670

Fashion 0.5580 0.5530 0.5765 0.5885 0.5610 0.5540 0.5425 0.5190 0.5314 0.5730 0.5900

USPS 0.4768 0.4450 0.4145 0.4600 0.4655 0.4514 0.4441 0.4759 0.4215 0.4645 0.5100

UMIST 0.4417 0.4522 0.4652 0.4748 0.4609 0.4252 0.4791 0.4504 0.4058 0.4939 0.5200

OrganA 0.6598 0.6069 0.6632 0.7176 0.6512 0.6800 0.6989 0.6790 0.6669 0.6368 0.7323

Blood 0.4632 0.4684 0.4789 0.4824 0.4731 0.4556 0.4889 0.4445 0.4625 0.4696 0.4982

Pneumonia 0.7767 0.7767 0.7423 0.7423 0.7424 0.7729 0.7423 0.8015 0.7598 0.7729 0.8034

Table 7 

The comparison results for the Gaussian noise, evaluated based on NMI.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.4427 0.4532 0.4738 0.4700 0.4597 0.4698 0.4556 0.4508 0.4465 0.4971 0.5134

ORL 0.7970 0.7947 0.7892 0.7764 0.7663 0.7815 0.7906 0.6926 0.7015 0.7813 0.7993

COIL20 0.7425 0.7255 0.7378 0.7388 0.7028 0.7270 0.7231 0.7324 0.7145 0.7261 0.7753

MNIST 0.4513 0.4231 0.4359 0.4480 0.3900 0.4070 0.4364 0.4208 0.3968 0.4480 0.4523

Fashion 0.5236 0.5533 0.5340 0.5207 0.5353 0.5297 0.5255 0.5334 0.5189 0.5434 0.5724

Seeds 0.6101 0.5535 0.5630 0.5123 0.5795 0.6220 0.4757 0.5801 0.4964 0.5377 0.6797

Ecoli 0.5388 0.5240 0.5258 0.5364 0.5222 0.5034 0.5238 0.4942 0.5146 0.5311 0.5800

USPS 0.3914 0.3662 0.3821 0.3657 0.3658 0.3696 0.3674 0.3788 0.3627 0.3963 0.4391

UMIST 0.6170 0.5975 0.5723 0.5987 0.5980 0.5847 0.6059 0.5932 0.5713 0.6032 0.6126

OrganA 0.6144 0.6220 0.6282 0.5868 0.6238 0.6131 0.5868 0.6085 0.5902 0.6187 0.6404

Blood 0.2673 0.2509 0.2622 0.2536 0.2640 0.2732 0.2789 0.2690 0.2510 0.3550 0.3656

Pneumonia 0.3098 0.3108 0.3013 0.2525 0.2141 0.3109 0.3099 0.3013 0.2616 0.2989 0.3305

Table 8 

The comparison results for the Gaussian noise, evaluated based on ARI.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.1599 0.1725 0.2047 0.1978 0.1871 0.1925 0.1845 0.1849 0.1932 0.2322 0.2556

ORL 0.4866 0.4868 0.4749 0.4445 0.4115 0.4528 0.4623 0.3996 0.4100 0.4447 0.4954

COIL20 0.5436 0.5398 0.5447 0.5518 0.4819 0.5306 0.5442 0.5217 0.5001 0.5112 0.6050

MNIST 0.2878 0.2697 0.2721 0.2911 0.2222 0.2437 0.2805 0.2676 0.2399 0.2957 0.3035

Fashion 0.3451 0.4138 0.3725 0.3742 0.4057 0.3429 0.3832 0.3854 0.3625 0.3824 0.4266

Seeds 0.6454 0.5873 0.5962 0.5540 0.6057 0.6606 0.5013 0.6053 0.6201 0.5809 0.7266

Ecoli 0.4392 0.3910 0.4112 0.4463 0.4300 0.3815 0.4050 0.3742 0.4077 0.4335 0.5765

USPS 0.2272 0.2081 0.2253 0.2050 0.2080 0.2085 0.2137 0.2176 0.2264 0.2432 0.2904

UMIST 0.2979 0.3032 0.2589 0.2968 0.2827 0.2731 0.3063 0.2791 0.2679 0.3023 0.3168

OrganA 0.4495 0.4818 0.4992 0.3964 0.4789 0.4891 0.3964 0.4900 0.4031 0.4715 0.5160

Blood 0.1923 0.1841 0.1429 0.1848 0.1934 0.2071 0.2003 0.1961 0.1749 0.2602 0.2654

Pneumonia 0.3285 0.3080 0.3239 0.2666 0.2149 0.3080 0.3285 0.3240 0.2480 0.3198 0.3578

4.5.2. Scenario b: known probable noise distributions and their

In Scenario B, we define the ambiguity set as Ω = {Laplacian, Gaussian, Cauchy} and conduct four experiments to simulate diverse 

noise environments. The first three experiments individually inject Laplacian, Gaussian, and Cauchy noise, respectively, into the 

datasets. The fourth experiment considers a mixed-noise setting by combining all three distributions, as detailed in Section 4.3. The 

noise parameters are adapted to each dataset to ensure a consistent and meaningful level of corruption across experiments.

The performance of our algorithm under these different noise conditions is evaluated using clustering metrics—NMI, ARI, and 

ACC—and the results are presented in Tables 7–18. These results show the robustness of DRNMF-SP, especially when data is 

contaminated by a mixture of distributions, showcasing its ability to handle realistic and complex noise scenarios.

The results for Gaussian noise (Tables 7–9), where Ω = {Gaussian}, reveal that DRNMF-SP stands out in handling diverse data 

distributions, securing the top rank in most datasets. Its exceptional performance is particularly evident in challenging datasets such 

as Fashion, Seeds, Ecoli, and OrganA. While some methods show competitive results in certain cases, DRNMF-SP consistently delivers 

superior clustering results, confirming its robustness in real-world scenarios where Gaussian noise is prevalent.

When confronted with Laplacian noise, DRNMF-SP demonstrates its resilience by outperforming the other methods across a wide 

range of datasets (Tables 10–12). It excels in datasets like Seeds, Ecoli, OrganA, and Pneumonia, illustrating its adaptability to 

Laplacian noise. Although some methods excel in specific datasets, DRNMF-SP consistently delivers the best overall performance, 

reinforcing its reliability in clustering tasks subject to Laplacian noise.
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Table 9 

The comparison results for the Gaussian noise, evaluated based on ACC.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.3988 0.4145 0.4267 0.4315 0.4194 0.4133 0.4073 0.4000 0.4235 0.4667 0.5030

ORL 0.6900 0.6758 0.6700 0.6450 0.6292 0.6600 0.6700 0.5325 0.5568 0.6550 0.6883

COIL20 0.6562 0.6576 0.6660 0.6639 0.6285 0.6382 0.6597 0.6569 0.5986 0.6340 0.7000

MNIST 0.5425 0.5040 0.5170 0.5345 0.4595 0.4850 0.5205 0.4950 0.4766 0.5460 0.5540

Fashion 0.5585 0.6340 0.5865 0.5845 0.5890 0.5570 0.5665 0.5850 0.5999 0.5880 0.6400

Seeds 0.8667 0.8429 0.8476 0.8238 0.8476 0.8662 0.8000 0.8524 0.8102 0.8381 0.9000

Ecoli 0.7506 0.7491 0.7315 0.7479 0.7384 0.7188 0.7467 0.7530 0.7259 0.7530 0.8036

USPS 0.4409 0.4168 0.4559 0.4268 0.4145 0.4214 0.4182 0.4409 0.4126 0.4536 0.5000

UMIST 0.4809 0.4783 0.4583 0.4696 0.4817 0.4678 0.4817 0.4713 0.4565 0.4878 0.4974

OrganA 0.6513 0.6778 0.6847 0.6700 0.6686 0.6887 0.6700 0.6977 0.6578 0.6938 0.7294

Blood 0.4102 0.3884 0.4036 0.3931 0.3936 0.4316 0.4129 0.4129 0.4200 0.4883 0.5040

Pneumonia 0.7881 0.7786 0.7862 0.7595 0.7424 0.7786 0.7882 0.7863 0.7391 0.7844 0.8034

Table 10 

The comparison results for the Laplacian noise, evaluated based on NMI.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.4462 0.4611 0.4508 0.4339 0.4651 0.4635 0.4298 0.4653 0.4369 0.4382 0.4914

ORL 0.7920 0.7960 0.7896 0.7955 0.7889 0.7942 0.7933 0.7640 0.7845 0.7735 0.8009

COIL20 0.7273 0.7592 0.7459 0.7327 0.7426 0.7593 0.7505 0.7446 0.7000 0.7028 0.7724

MNIST 0.4340 0.4316 0.4387 0.4382 0.3920 0.4350 0.4303 0.4452 0.4188 0.4091 0.4825

Fashion 0.5251 0.5399 0.5165 0.5421 0.5274 0.5258 0.5099 0.5173 0.5224 0.5318 0.5808

Seeds 0.4858 0.5485 0.5068 0.4825 0.5360 0.5595 0.4839 0.4982 0.5142 0.5605 0.5610

Ecoli 0.5514 0.5225 0.5581 0.5070 0.5394 0.5537 0.5418 0.5403 0.5050 0.5299 0.6104

USPS 0.3912 0.3956 0.3511 0.3446 0.3918 0.3864 0.3757 0.3656 0.3670 0.3788 0.4422

UMIST 0.5968 0.5813 0.6069 0.6068 0.6028 0.5955 0.6067 0.5962 0.5864 0.6067 0.6294

OrganA 0.6124 0.5926 0.6209 0.6134 0.6154 0.6157 0.6032 0.5936 0.6032 0.5953 0.6590

Blood 0.3297 0.3189 0.3272 0.3294 0.3256 0.3161 0.3269 0.3277 0.3159 0.3306 0.3629

Pneumonia 0.2026 0.2710 0.1502 0.2820 0.2107 0.1525 0.2710 0.2711 0.1953 0.2297 0.3050

Table 11 

The comparison results for the Laplacian noise, evaluated based on ARI.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.1682 0.1947 0.1736 0.1603 0.1819 0.1924 0.1381 0.2092 0.1746 0.1446 0.2347

ORL 0.4761 0.4888 0.4807 0.4957 0.4671 0.4790 0.4877 0.4345 0.4603 0.4407 0.4973

COIL20 0.5292 0.5864 0.5426 0.4985 0.5558 0.5958 0.5527 0.5436 0.5197 0.4819 0.5930

MNIST 0.2934 0.2970 0.2874 0.2944 0.2500 0.3051 0.2936 0.3003 0.2661 0.2653 0.3509

Fashion 0.3657 0.3775 0.3591 0.3850 0.3495 0.3650 0.3487 0.3722 0.3512 0.3656 0.4196

Seeds 0.4976 0.5653 0.5015 0.4825 0.5449 0.5896 0.5051 0.5121 0.4936 0.5783 0.5937

Ecoli 0.4429 0.3873 0.4292 0.3744 0.4168 0.4354 0.4330 0.4951 0.3921 0.3948 0.5068

USPS 0.2371 0.2344 0.1988 0.1929 0.2327 0.2296 0.2149 0.2109 0.2074 0.2132 0.2930

UMIST 0.2866 0.2774 0.3047 0.2992 0.3002 0.2876 0.2959 0.2931 0.2710 0.2954 0.3127

OrganA 0.4936 0.3717 0.4615 0.4968 0.5056 0.4267 0.4799 0.3823 0.3845 0.4502 0.5623

Blood 0.2052 0.1840 0.2295 0.1794 0.2233 0.2261 0.2295 0.2306 0.2078 0.1783 0.2601

Pneumonia 0.3286 0.2903 0.1218 0.3267 0.2061 0.1472 0.2903 0.2904 0.1954 0.2258 0.3574

Table 12

The comparison results for the Laplacian noise, evaluated based on ACC.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.4061 0.4212 0.4030 0.4000 0.4091 0.4212 0.3879 0.4363 0.4008 0.3939 0.4667

ORL 0.6833 0.6800 0.6650 0.6792 0.6600 0.6725 0.6767 0.6375 0.6547 0.6500 0.6875

COIL20 0.6375 0.7063 0.6701 0.6313 0.6854 0.7056 0.6667 0.6645 0.6519 0.6285 0.7194

MNIST 0.5275 0.5510 0.5275 0.5280 0.4720 0.5430 0.5330 0.5510 0.5173 0.4960 0.5700

Fashion 0.5600 0.5720 0.5640 0.5600 0.5625 0.5635 0.5425 0.5700 0.5607 0.5620 0.6260

Seeds 0.7905 0.8286 0.8048 0.7905 0.8238 0.8381 0.8000 0.8095 0.8162 0.8333 0.8429

Ecoli 0.7690 0.7423 0.7542 0.7384 0.7583 0.7634 0.7524 0.7714 0.7106 0.7262 0.8214

USPS 0.4442 0.4736 0.4327 0.4176 0.4412 0.4418 0.4352 0.4445 0.4316 0.4212 0.4900

UMIST 0.4470 0.4470 0.4754 0.4881 0.4736 0.4580 0.4719 0.4556 0.4418 0.4539 0.4939

OrganA 0.6718 0.6484 0.6934 0.6794 0.6815 0.6800 0.6558 0.6501 0.6523 0.6590 0.7213

Blood 0.4608 0.4468 0.4585 0.4632 0.4521 0.4491 0.4661 0.4655 0.4502 0.4480 0.4830

Pneumonia 0.7987 0.7709 0.7423 0.7881 0.7567 0.7424 0.7709 0.7710 0.7505 0.7423 0.8015
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Table 13 

The comparison results for the Cauchy noise, evaluated based on NMI.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.4337 0.4501 0.4799 0.4546 0.4453 0.4580 0.4498 0.4699 0.4495 0.4798 0.5125

ORL 0.7754 0.7687 0.7725 0.7801 0.7770 0.7851 0.7776 0.7366 0.7514 0.7866 0.7997

COIL20 0.7522 0.7780 0.7633 0.7369 0.7333 0.7307 0.7255 0.7575 0.7381 0.7524 0.7871

MNIST 0.4236 0.4204 0.4177 0.4133 0.4210 0.3999 0.4118 0.4167 0.4000 0.4203 0.4654

Fashion 0.5275 0.5394 0.5434 0.5276 0.5114 0.5130 0.5258 0.5393 0.5166 0.5482 0.5946

Seeds 0.4753 0.4354 0.6020 0.5801 0.4240 0.5312 0.4316 0.5100 0.4925 0.6074 0.6243

Ecoli 0.5070 0.5193 0.5342 0.5148 0.5209 0.5207 0.5270 0.5116 0.5142 0.5188 0.5877

USPS 0.3715 0.3915 0.3919 0.3614 0.3704 0.3709 0.3647 0.3744 0.3888 0.3740 0.4721

UMIST 0.5961 0.5917 0.6054 0.5987 0.5969 0.5923 0.5928 0.5886 0.5936 0.5944 0.6236

OrganA 0.5507 0.5630 0.5850 0.5630 0.5609 0.5541 0.5951 0.5690 0.5524 0.5581 0.6290

Blood 0.2960 0.2963 0.2898 0.2863 0.2821 0.3026 0.3051 0.3043 0.2763 0.3226 0.3443

Pneumonia 0.2465 0.1681 0.1732 0.2772 0.2719 0.1984 0.2691 0.2374 0.2156 0.2367 0.2853

Table 14 

The comparison results for the Cauchy noise, evaluated based on ARI.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.1654 0.1869 0.2111 0.1862 0.1796 0.1901 0.1848 0.1869 0.1969 0.2083 0.2452

ORL 0.4499 0.4449 0.4371 0.4519 0.4264 0.4526 0.4498 0.3259 0.4625 0.4656 0.5058

COIL20 0.5600 0.5838 0.5827 0.5459 0.5215 0.5375 0.5398 0.5551 0.5748 0.5445 0.6208

MNIST 0.2640 0.2744 0.2654 0.2567 0.2628 0.2523 0.2664 0.2860 0.2598 0.2771 0.3324

Fashion 0.3531 0.3956 0.3824 0.3950 0.3456 0.3474 0.3650 0.3626 0.3704 0.4106 0.4654

Seeds 0.4908 0.4709 0.6583 0.6238 0.4571 0.5088 0.4690 0.4887 0.5230 0.6500 0.6715

Ecoli 0.3782 0.3803 0.4318 0.3843 0.3999 0.3951 0.3991 0.3542 0.3915 0.4480 0.5741

USPS 0.2141 0.2271 0.2351 0.2039 0.2133 0.2098 0.2003 0.2285 0.2301 0.2075 0.3308

UMIST 0.2937 0.3019 0.3116 0.3047 0.2950 0.2827 0.2879 0.2908 0.2988 0.3015 0.3364

OrganA 0.3671 0.3469 0.4431 0.3899 0.4144 0.3682 0.4403 0.3528 0.3745 0.4121 0.5270

Blood 0.1812 0.1974 0.2123 0.2087 0.2056 0.1718 0.1935 0.1742 0.1922 0.2297 0.2522

Pneumonia 0.2811 0.2995 0.1714 0.3545 0.3458 0.1592 0.2691 0.1880 0.1603 0.1982 0.3678

Table 15 

The comparison results for the Cauchy noise, evaluated based on ACC.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.3980 0.4141 0.4424 0.4202 0.4182 0.4182 0.4242 0.4242 0.4485 0.4384 0.4848

ORL 0.6350 0.6463 0.6488 0.6575 0.6463 0.6687 0.6600 0.5375 0.6302 0.6463 0.6800

COIL20 0.6611 0.6687 0.6812 0.6438 0.6306 0.6556 0.6576 0.6756 0.6477 0.6556 0.7174

MNIST 0.5080 0.5207 0.5120 0.5060 0.5053 0.4897 0.5037 0.5550 0.4920 0.5193 0.5920

Fashion 0.5560 0.5990 0.5880 0.5850 0.5600 0.5500 0.5635 0.5720 0.5700 0.6000 0.6800

Seeds 0.8000 0.7762 0.8714 0.8571 0.7714 0.8095 0.7762 0.8000 0.7936 0.8667 0.8762

Ecoli 0.7369 0.7455 0.7550 0.7542 0.7446 0.7455 0.7494 0.7470 0.7198 0.7520 0.7857

USPS 0.4236 0.4330 0.4627 0.4076 0.4279 0.4297 0.4052 0.4590 0.4355 0.4218 0.5409

UMIST 0.4557 0.4704 0.4896 0.4765 0.4626 0.4557 0.4835 0.4608 0.4471 0.4991 0.5096

OrganA 0.5897 0.5710 0.6260 0.6190 0.6066 0.5891 0.6268 0.5755 0.5926 0.5938 0.6775

Blood 0.4351 0.4252 0.4363 0.4293 0.4211 0.4357 0.4433 0.4398 0.4241 0.4579 0.4941

Pneumonia 0.7671 0.7901 0.7423 0.8015 0.7977 0.7423 0.8015 0.7423 0.7756 0.7423 0.8072

Table 16

The comparison results for the mixture of Gaussian, Laplacian, and Cauchy noise, evaluated based on NMI.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.4619 0.4655 0.4488 0.4576 0.4511 0.4543 0.4505 0.4577 0.4426 0.4805 0.5363

ORL 0.7828 0.8008 0.7932 0.7932 0.7780 0.7956 0.7828 0.7374 0.7845 0.7887 0.8284

COIL20 0.7529 0.7273 0.7481 0.7028 0.7524 0.7261 0.7578 0.7389 0.7163 0.7327 0.7624

MNIST 0.4087 0.4286 0.4047 0.4154 0.4287 0.3949 0.4047 0.4315 0.3985 0.4154 0.4525

Fashion 0.5331 0.5169 0.5099 0.5152 0.5115 0.5087 0.5100 0.5178 0.5041 0.5165 0.5411

Seeds 0.5123 0.5650 0.5795 0.5187 0.5377 0.4021 0.5377 0.5377 0.4782 0.5187 0.6105

Ecoli 0.5096 0.5095 0.5231 0.5032 0.4811 0.5062 0.5182 0.5283 0.5171 0.5006 0.6063

USPS 0.3728 0.3765 0.3914 0.3823 0.3777 0.3729 0.3793 0.3805 0.3862 0.3977 0.4371

UMIST 0.5911 0.6096 0.6194 0.6058 0.5834 0.5941 0.5783 0.6119 0.5843 0.5824 0.6255

OrganA 0.5907 0.5818 0.5540 0.5806 0.5564 0.5826 0.5791 0.5931 0.5691 0.5951 0.6201

Blood 0.2327 0.2425 0.2240 0.2438 0.2558 0.2507 0.3195 0.2447 0.2129 0.2383 0.3234

Pneumonia 0.2506 0.2605 0.2665 0.2958 0.2785 0.2774 0.2666 0.2881 0.2748 0.2197 0.3139
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In the presence of Cauchy noise, which is characterized by its heavy-tailed distribution, DRNMF-SP consistently outperforms other 

methods across all datasets (Tables 13–15). Heavy-tailed distributions, such as Cauchy, are known for their propensity to generate 

extreme outliers, particularly in the tail part of the distribution, where very large errors can occur in the data. These extreme outliers 

pose significant challenges for many robust methods, which struggle to handle such outliers effectively. However, by integrating self-

paced learning into our distributionally robust NMF method, DRNMF-SP demonstrates a remarkable ability to manage these extreme 

outliers. This enhancement allows the method to handle noisy and challenging data more effectively, as shown in the results, where 

DRNMF-SP consistently delivers superior performance across NMI, ARI, and ACC metrics. The results highlight the effectiveness of 

this approach in clustering tasks where extreme outliers are prevalent due to Cauchy-distributed noise.

In real-world scenarios, the data is often contaminated by a combination of different types of noise, rather than by a single noise 

distribution. This combinational noise is common in many practical applications, making it crucial for robust clustering methods 

to handle such complex noise mixtures. The results of our experiment clearly show that DRNMF-SP excels under these conditions, 

outperforming all other methods on all three metrics (NMI, ARI, and ACC) in nearly every dataset (Tables 16–18). Specifically, 

DRNMF-SP consistently demonstrates superior clustering quality performance, achieving the highest NMI, ARI, and ACC in most 

cases. These results emphasize the effectiveness of DRNMF-SP in real-world applications, where data are often subject to multifaceted 

noise environments.

The experimental results confirm the robustness and adaptability of our DRNMF-SP algorithm under various noise conditions. As 

expected, methods that are explicitly designed for a particular noise distribution, such as the Frobenius norm for Gaussian noise, the 

𝐿 2,1 

norm for Laplacian noise, and the Cauchy loss for Cauchy noise, tend to perform best when the noise follows their respective 

assumptions. However, our proposed method, which employs a weighted sum of these three loss functions, consistently outperforms 

all other methods across all noise scenarios. This superior performance can be attributed to the fact that in each scenario, the most 

appropriate loss function dominates, while the remaining two act as regularization terms that enhance stability and improve overall 

robustness. For instance, in the presence of Laplacian noise, the 𝐿 2,1 

norm serves as the primary loss, while the Frobenius and Cauchy 

losses provide complementary regularization, refining the learned representations and mitigating potential overfitting to extreme 

values.

Moreover, when the data are contaminated by a mixture of noise distributions, our method exhibits even greater advantages. 

Unlike traditional approaches that rely on a single predefined loss function, our weighted sum formulation acts as an ensemble model 

of loss functions, dynamically adjusting its weights to best match the underlying noise characteristics. The key strength of DRNMF-

SP lies in its ability to learn these weights adaptively during the optimization process, ensuring optimal alignment with the given 

noise structure. This self-adjusting mechanism enables our method to effectively handle complex and uncertain noise conditions, 

demonstrating its suitability for real-world applications where noise distributions are often unknown and heterogeneous.

4.6. Improving robustness to extreme outliers: iDRNMF vs. DRNMF-SP

In this paper, we present an enhanced version of the instance-wise distributionally robust nonnegative matrix factorization 

(iDRNMF) method by integrating self-paced learning (SPL) to create the DRNMF-SP method. Although iDRNMF is robust against 

a variety of noise types and their combinations, it struggles when extreme outliers are present. These outliers, often appearing as 

extreme deviations in the tail of heavy-tailed noise distributions, can significantly disrupt the performance of many robust methods, 

including iDRNMF. This issue becomes especially critical when the data contains severe anomalies, where most traditional approaches 

fail to handle such extremes effectively. To address this limitation, we introduce SPL, a technique designed to progressively focus on 

easier samples and avoid the influence of extreme outliers early in the learning process. By leveraging SPL, our DRNMF-SP method 

gains the ability to better manage these outliers, while retaining the robustness against various noise distributions that iDRNMF of-

fers. Additionally, SPL enhances the optimization process by preventing the model from getting stuck in bad local minima, leading to 

better overall generalization performance. In this subsection, we compare the original iDRNMF method with the DRNMF-SP. Given 

the large number of figures and the need for effective summarization without loss of generalization, we focus on presenting results 

for Cauchy noise (due to its heavy-tailed nature and propensity to produce extreme outliers) and the combined noise distributions 

in Fig. 8. Through this analysis, we highlight the improvements offered by DRNMF-SP, particularly in its ability to handle extreme 

outliers, achieve better clustering performance, and maintain robustness against diverse noise distributions.

These results clearly demonstrate that self-paced learning provides a decisive advantage when extending iDRNMF to DRNMF-SP. 

The progressive sample selection mechanism enables the model to first build a reliable structure from clean data and then incorporate 

noisier or more contaminated samples, rather than fitting all data at once. This strategy not only enhances resistance to heavy-tailed 

and extreme outliers but also stabilizes the optimization process by reducing the risk of poor local minima. Consequently, DRNMF-SP 

consistently outperforms iDRNMF in the most challenging scenarios, highlighting the specific benefits introduced by integrating 

self-paced learning into the distributionally robust framework.

4.7. Contribution of DRNMF-SP components

In order to further analyze the individual contributions of the proposed model’s terms, we conducted an ablation study focusing 

on the adaptive multi-loss fusion and distributionally robust optimization. The previous subsection already investigated the role of 

self-paced learning by comparing DRNMF-SP with its non-self-paced variant (iDRNMF). Here, we isolate and quantify the effect of the 

multi-objective formulation and distributional robustness by examining the performance of DRNMF-SP under different configurations 

of the ambiguity set Ω on the Yale dataset with four types of noise contamination: Gaussian, Laplacian, Cauchy, and their mixture. 

The results are reported in Table 19.
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Fig. 8. Comparison of DRNMF-SP and iDRNMF for different noise types and metrics.

Table 17 

The comparison results for the mixture of Gaussian, Laplacian, and Cauchy noise, evaluated based on ARI.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.1880 0.1901 0.1765 0.1867 0.1760 0.1827 0.1799 0.1787 0.1846 0.2105 0.2670

ORL 0.4430 0.4889 0.4830 0.4844 0.4404 0.4776 0.4655 0.3877 0.4431 0.4898 0.5516

COIL20 0.5740 0.5292 0.5460 0.4819 0.5445 0.5112 0.5586 0.5416 0.5087 0.4985 0.5901

MNIST 0.2542 0.2579 0.2408 0.2535 0.2607 0.2422 0.2408 0.2688 0.2321 0.2535 0.2927

Fashion 0.3638 0.3790 0.3487 0.3558 0.3369 0.3326 0.3470 0.3529 0.3454 0.3591 0.3903

Seeds 0.5540 0.6041 0.6057 0.5487 0.5809 0.3955 0.5809 0.5717 0.4219 0.5487 0.6491

Ecoli 0.4141 0.4023 0.4360 0.3776 0.3575 0.3923 0.4262 0.3330 0.3837 0.4292 0.5985

USPS 0.2115 0.2183 0.2316 0.2374 0.2131 0.2085 0.2208 0.2356 0.2161 0.2406 0.2726

UMIST 0.2838 0.3171 0.3109 0.3063 0.2829 0.2892 0.2736 0.3031 0.2837 0.2815 0.3267

OrganA 0.4575 0.4239 0.4043 0.4276 0.3836 0.3898 0.3925 0.4185 0.3915 0.4002 0.4900

Blood 0.1495 0.1586 0.1363 0.1365 0.1730 0.1415 0.1678 0.1592 0.1364 0.1275 0.2256

Pneumonia 0.2121 0.2300 0.2824 0.3435 0.3628 0.3104 0.2824 0.3724 0.2658 0.2819 0.3650

The comparison highlights several important observations. First, models based on a single loss function (𝓁 2,1 

, Frobenius, or Cauchy)

yield the weakest performance across all noise settings, indicating that no single loss is sufficiently robust to handle the diverse 

noise distributions. Second, combining two losses consistently improves the results, demonstrating that multi-objective optimization 

captures complementary strengths of different noise models. Third, the use of all three losses with adaptive weighting achieves the 

best performance in every case, confirming the advantage of distributionally robust optimization where the model automatically 

adjusts the importance of each objective to match the underlying data distribution. Interestingly, when the three losses are combined
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Table 18 

The comparison results for the mixture of Gaussian, Laplacian, and Cauchy noise, evaluated based on ACC.

Dataset Frobenius 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.4133 0.4267 0.4024 0.4194 0.3988 0.4085 0.3927 0.4121 0.4028 0.4182 0.4970

ORL 0.6508 0.6767 0.6733 0.6592 0.6500 0.6733 0.6625 0.5900 0.6639 0.6750 0.7175

COIL20 0.6861 0.6375 0.6625 0.6285 0.6556 0.6340 0.6764 0.6541 0.6247 0.6313 0.7063

MNIST 0.4890 0.5020 0.4600 0.4860 0.5050 0.4740 0.4600 0.5060 0.4708 0.4860 0.5220

Fashion 0.5790 0.5940 0.5425 0.5690 0.5420 0.5370 0.5340 0.5680 0.5348 0.5660 0.6140

Seeds 0.8238 0.8471 0.8476 0.8190 0.8381 0.7476 0.8381 0.8333 0.8255 0.8190 0.8667

Ecoli 0.7299 0.7449 0.7369 0.7396 0.7095 0.7330 0.7318 0.7649 0.7100 0.7262 0.7708

USPS 0.4361 0.4479 0.4570 0.4561 0.4339 0.4255 0.4321 0.4700 0.4416 0.4594 0.4891

UMIST 0.4707 0.4922 0.5032 0.4893 0.4684 0.4632 0.4638 0.4713 0.4635 0.4817 0.5154

OrganA 0.6250 0.6442 0.6028 0.6068 0.6080 0.6509 0.6347 0.6456 0.6005 0.6532 0.6955

Blood 0.3785 0.3925 0.3738 0.3802 0.4047 0.3802 0.4398 0.3966 0.3920 0.3732 0.4450

Pneumonia 0.7424 0.7424 0.7671 0.7958 0.8051 0.7805 0.7672 0.8092 0.7711 0.7690 0.8053

Table 19 

Ablation study results of the proposed DRNMF-SLP (in terms of NMI) on the Yale dataset under 

various noise types.

Model 𝜆 Noise

G L C G+L+C

𝐿 2,1 – 0.4392 0.4205 0.4163 0.4302

Frobenius – 0.4123 0.4048 0.3971 0.3952

Cauchy – 0.4294 0.4312 0.4362 0.4213

Ω = {1, 2} adaptive 0.4527 0.4492 0.4306 0.4591

Ω = {1, Cauchy} adaptive 0.4476 0.4581 0.4557 0.4489

Ω = {2, Cauchy} adaptive 0.4579 0.4446 0.4540 0.4403

Ω = {1, 2, Cauchy} adaptive 0.4722 0.4654 0.4628 0.4653

Ω = {1, 2, Cauchy} fixed 0.4441 0.4395 0.4432 0.4360

but their weights are fixed (𝜆 = 1∕3), the performance improves over single-loss settings but falls short of the adaptive scheme, 

showing that adaptivity is a crucial factor in achieving robustness.

Another noteworthy trend is that the relative effectiveness of each loss aligns with its expected robustness property. Under Gaussian 

noise, configurations including the Frobenius term perform slightly better, while under Laplacian noise the 𝓁 2,1 

-based terms are 

stronger, and under Cauchy noise the Cauchy loss dominates. This observation validates the design principle of DRNMF-SP: by 

dynamically balancing multiple objectives, the model adapts to different noise scenarios without requiring prior knowledge of the 

noise distribution. Taken together, this subsection and the preceding analysis of self-paced learning form a comprehensive ablation 

study that examines the contribution of all major components of DRNMF-SP. The results clearly demonstrate that self-paced learning, 

adaptive multi-loss fusion, and distributional robustness each provide significant and complementary benefits, ultimately leading to 

the superior robustness and clustering accuracy of the full model.

4.8. Generalization to unseen noise distributions

Although our model is developed within a distributionally robust framework—where noise is assumed to come from a predefined 

ambiguity set (in this case, Ω = {Laplacian, Gaussian, Cauchy})—real-world data contamination does not always conform to these 

specific distributions. In traditional distributionally robust optimization, the goal is to ensure performance across all distributions 

𝜏 ∈ Ω, yet robustness is not guaranteed when the actual noise follows a different distribution 𝜏 

′ ∉ Ω. To address this limitation, our 

DRNMF-SP method adopts a multi-objective formulation that combines multiple loss functions through a weighted sum. Crucially, 

these weights are adaptively adjusted during training based on the observed data. This self-adjusting mechanism enables the model to 

align itself with the underlying characteristics of the noise, suggesting that DRNMF-SP can potentially maintain strong performance 

even when facing noise types outside the predefined ambiguity set.

To explore this hypothesis, we extend our evaluation to include four additional noise types not covered by the original ambiguity 

set: Poisson noise, Rayleigh noise, Gamma noise, and impulse noise. Each of these introduces distinct statistical properties and 

challenges, providing a rigorous test of the model’s generalization capabilities beyond its intended robustness domain. As part of 

this extended evaluation, we first apply DRNMF-SP to the USPS dataset corrupted with Poisson noise. Unlike the distributions in 

our ambiguity set, Poisson noise introduces signal-dependent fluctuations that are common in low-light or photon-limited imaging. 

Nevertheless, as illustrated in Fig. 9a, DRNMF-SP demonstrates strong performance, underscoring its adaptability and potential for 

handling a broad range of real-world noise conditions.

To further evaluate the robustness of DRNMF-SP, we first apply it to the Yale dataset contaminated with speckle noise, simulated us-

ing a multiplicative Gamma distribution. This type of noise, often encountered in imaging applications, introduces intensity-dependent 

distortions that are not explicitly covered by our ambiguity set. As shown in Fig. 9b, DRNMF-SP continues to perform well despite 

this mismatch. We attribute this resilience to the interplay between the 𝐿 2,1 

and Cauchy loss components, which help manage the
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Fig. 9. Clustering result for different noise types on the USPS dataset.

heavy-tailed characteristics of Gamma noise, while the Frobenius norm contributes additional stability. These findings suggest that 

our method generalizes effectively even under unseen noise conditions.

We also test DRNMF-SP on the ORL dataset, this time contaminated with speckle noise modeled by a Rayleigh distribution. Rayleigh 

noise, commonly found in radar and medical imaging, introduces multiplicative distortions and exhibits an asymmetric distribution. 

Although this noise type also lies outside our predefined ambiguity set, DRNMF-SP again delivers strong results, as illustrated in 

Fig. 9c. The 𝐿 2,1 

norm likely plays a key role in suppressing the asymmetric effects of Rayleigh noise, while the remaining loss terms 

contribute to the model’s overall robustness. These outcomes further emphasize the adaptive nature of our approach in handling 

diverse and unanticipated noise scenarios. Finally, we examine the performance of DRNMF-SP on the Pneumonia dataset corrupted 

with impulse noise at a contamination rate of 0.15. Impulse noise, which introduces sharp, random spikes in pixel values, is common 

in image transmission errors and faulty sensor readings. Despite being absent from our ambiguity set, DRNMF-SP remains robust, as 

depicted in Fig. 9d. The self-paced learning mechanism is especially effective here, enabling the model to downweight the influence 

of extreme outliers during training. Overall, these results highlight the flexibility and generalization capacity of DRNMF-SP in the 

presence of challenging, real-world noise types not seen during training.

4.9. Running time

To assess computational efficiency, we compare the average runtimes (in seconds) of all methods across twelve datasets in Table 20. 

All experiments were performed on an Intel Core i7-3520 M CPU (2.9 GHz, 8 GB RAM). As expected, the standard Frobenius and 

𝐿 2,1 

-NMF methods are the fastest, while deep (DANMF) and highly robust methods (Huber, DRNMF) incur higher costs. Our pro-

posed DRNMF-SP achieves a favorable trade-off: it is consistently faster than Huber, DANMF, and DRNMF, while remaining close in 

efficiency to simpler robust baselines. This balance is especially evident on large-scale datasets (OrganA, Blood, Pneumonia), where 

DRNMF-SP substantially reduces runtime compared to DRNMF. Given the additional complexity introduced by its distributionally 

robust formulation, these results highlight DRNMF-SP’s ability to achieve enhanced robustness while maintaining feasible computa-

tion times. It is also important to note that DRNMF and DRNMF-SP involve an initialization phase for single-objective optimization, 

which is not separately reported in the table. Nevertheless, the overall runtime results confirm that DRNMF-SP strikes a practical 

balance between computational efficiency and robustness, making it a viable choice for high-dimensional and noisy data scenarios.

4.10. Robustness on various noise rates

To further evaluate the robustness of DRNMF-SP under different levels of noise contamination, we conducted experiments across 

varying noise intensities. This analysis directly addresses the important question of how performance trends evolve as noise levels 

increase. For this, we evaluate the robustness of the proposed DRNMF-SP method by introducing impulse noise at varying levels on 

the Yale dataset. This experiment presents a significant challenge, as impulse noise can severely corrupt data by randomly replacing 

pixel values, making it difficult to extract a clean subspace. The noise contamination levels range from 0 % to 50 %, representing the 

proportion of affected pixels in the dataset. Fig. 10 illustrates the NMI, ARI, and ACC scores of DRNMF-SP compared to alternative
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Table 20 

Average running time (seconds) of different methods on twelve datasets.

Dataset Fro 𝐿 2,1 Cauchy EWNMF rCIM Huber Elastic DANMF DRNMF SPLNMF DRNMF-SP

Yale 0.129 0.162 0.161 0.168 0.178 0.589 0.163 1.81 0.601 0.338 0.195

ORL 0.745 0.931 0.824 0.779 0.934 1.82 1.01 4.46 3.20 1.09 1.13

COIL20 1.80 1.93 1.92 1.95 2.14 2.89 2.26 5.73 7.29 2.41 2.52

MNIST 0.507 0.597 0.563 0.648 0.743 1.08 0.702 3.78 2.31 0.98 0.79

Fashion 0.420 0.611 0.529 0.669 0.741 1.05 0.728 2.86 2.29 0.94 0.82

Seeds 0.052 0.070 0.068 0.074 0.081 0.245 0.076 0.65 0.49 0.19 0.12

Ecoli 0.085 0.112 0.111 0.118 0.127 0.356 0.124 0.92 0.68 0.29 0.21

USPS 0.332 0.421 0.405 0.438 0.481 0.985 0.512 2.46 1.86 0.74 0.58

UMIST 0.266 0.347 0.341 0.354 0.389 0.841 0.405 2.01 1.44 0.62 0.47

OrganA 15.50 20.55 21.54 20.65 25.19 35.21 25.15 44.9 82.2 32.5 31.2

Blood 12.42 17.25 18.56 17.53 21.61 31.08 20.21 38.7 69.7 27.1 24.9

Pneumonia 2.38 3.10 3.05 3.18 3.45 6.89 3.55 11.8 9.62 4.72 4.05

Fig. 10. NMI, ARI, and ACC Results on the Yale dataset with different impulse noise intensities.

Fig. 11. Convergence analysis of DRNMF-SP over 300 iterations.

methods. As the noise level increases, the performance of most methods deteriorates significantly. However, DRNMF-SP consistently 

outperforms competing approaches, demonstrating greater resilience in maintaining clustering accuracy under high noise conditions. 

This highlights the method’s ability to mitigate the adverse effects of impulse noise and preserve meaningful data structures. The 

results confirm the effectiveness and robustness of DRNMF-SP, which consistently outperforms other methods even as noise intensity 

increases. While all approaches experience some degradation under higher corruption levels, DRNMF-SP exhibits a slower perfor-

mance decline, achieving state-of-the-art results under moderate noise and remaining stable and effective even in severely corrupted 

scenarios. These findings underscore its superiority and suitability for robust subspace learning in noisy environments.

4.11. Convergence analysis

To further assess the behavior of the proposed DRNMF-SP model, we conduct a convergence analysis by reporting the evolution of 

the objective function over 300 iterations on three representative datasets: Yale, ORL, and COIL20. The corresponding convergence 

curves are shown in Fig. 11. As illustrated, DRNMF-SP starts with a relatively low error value, followed by a slight increase during the 

first 30–40 iterations, after which the error decreases steadily until convergence. This temporary rise can be attributed to two intrinsic 

properties of the method. First, DRNMF-SP solves a multi-objective optimization problem whose relative weights are adaptively 

adjusted according to the data distribution and noise characteristics, which may cause short-term fluctuations before stabilization. 

Second, the model adopts a self-paced learning strategy, progressively incorporating samples from clean to noisy. Consequently, 

early iterations reflect low error values for cleaner data, while subsequent inclusion of noisier samples temporarily raises the error
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Fig. 12. Sensitivity of DRNMF-SP to the self-paced learning parameters 𝛼 𝜏 on the Yale dataset.

before convergence. Overall, despite these initial fluctuations, DRNMF-SP consistently converges to a stable solution, demonstrating 

an effective balance between reconstruction accuracy and robustness to noise.

4.12. Hyperparameter sensitivity

An important practical consideration is the sensitivity of DRNMF-SP to its hyperparameters. The adaptive weight update 𝜂 is 

dynamically set as 𝜂 

[𝑡] = 1∕(𝑡 + 1), starting from 

1 

2 , which automatically decreases the learning rate as training progresses and thus

requires no manual adjustment. This leaves the self-paced learning parameters 𝛼 𝜏 as the main hyperparameters to be tuned. These 

parameters control the pace at which harder samples are incorporated into training, directly influencing both convergence stability 

and robustness to noise. We systematically evaluated the effect of each 𝛼 𝜏 on the Yale dataset under three loss formulations: 𝓁 2,1, 

Frobenius, and Cauchy. In each case, one 𝛼 𝜏 

was varied while keeping the others fixed to assess its isolated impact. Fig. 12 summarizes 

these results. We observed that performance drops markedly when 𝛼 𝜏 

is too small—leading to overly conservative sample inclusion— 

or too large, which can prematurely include noisy or outlier data. However, the overall performance remains stable within a broad 

intermediate range, indicating that DRNMF-SP is not overly sensitive to precise hyperparameter tuning. This robustness simplifies 

practical deployment, as approximate values determined by cross-validation or empirical heuristics are generally sufficient to achieve 

strong results across different datasets and loss settings.

4.13. Discussion

The proposed DRNMF-SP model provides not only improved robustness in factorization tasks but also broader implications for 

the scientific community. Its relevance lies in reinforcing the usability of NMF in domains where data is inherently imperfect, such as 

medical imaging, bioinformatics, and computer vision. In such applications, the interpretability of nonnegative factors is a decisive 

advantage, but conventional NMF often fails under heterogeneous or heavy-tailed noise. By integrating distributionally robust opti-

mization with self-paced learning, our framework addresses this gap, enabling interpretable decompositions to remain stable even in 

the presence of severe data contamination. A key distinction of DRNMF-SP compared with earlier robust NMF variants is its ability 

to adaptively balance multiple loss functions rather than committing to a single noise model. This flexibility allows the method to 

operate effectively across diverse data conditions, which is highly relevant for real-world practice where noise distributions are rarely 

known in advance. Furthermore, the self-paced scheme enhances optimization stability, providing a mechanism to gradually incorpo-

rate complex samples while avoiding convergence to poor local minima. Beyond its immediate results, the framework is extensible: 

the ambiguity set can be augmented with additional loss functions tailored to specific domains, and the self-paced mechanism can be 

embedded in other matrix factorization or representation learning models. These features make DRNMF-SP a promising foundation 

for further research in interpretable and robust learning, supporting the community’s growing interest in models that are both reliable 

and adaptable.

A comparative view of the results across all datasets confirms that DRNMF-SP consistently achieves higher clustering performance 

than classical and recent robust NMF models. In particular, the method demonstrates superior resilience under both extreme outliers 

and various distribution noise, where competing approaches often suffer from degraded accuracy. These findings highlight the ad-

vantage of simultaneously leveraging multiple loss functions and self-paced learning, in contrast to prior methods that rely on a single 

loss or lack adaptive instance weighting. Beyond benchmark comparisons, the improvements have clear implications for applications 

where robust and interpretable representations are crucial. Examples include image recognition under partial occlusion, medical 

imaging where scans are frequently corrupted by noise or missing regions, and biological data analysis where measurements often 

contain heterogeneous errors. In such contexts, the ability of DRNMF-SP to maintain stable and meaningful decompositions makes it 

a promising tool for reliable downstream tasks such as clustering, classification, and anomaly detection.

5. Conclusion and future works

This paper introduces Distributionally Robust Nonnegative Matrix Factorization with Self-Paced Adaptive Multi-Loss Fusion 

(DRNMF-SP), a robust matrix factorization framework that combines distributionally robust optimization with self-paced learning. 

The proposed method integrates multiple loss functions through adaptive weighting to model uncertainty in noise types, while self-

paced learning allows the algorithm to focus on clean and informative samples before gradually incorporating more challenging
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ones. This dual strategy enables DRNMF-SP to effectively handle heterogeneous noise and extreme outliers. An efficient iterative 

reweighted algorithm ensures low computational cost, comparable to standard NMF. Extensive experiments across benchmark datasets 

demonstrate that DRNMF-SP consistently outperforms existing robust and distributionally robust NMF methods, highlighting the ef-

fectiveness of unifying robustness, adaptive loss design, and curriculum-style learning. A key strength of DRNMF-SP lies in its double 

adaptive mechanism: the distributionally robust component adjusts the importance of different loss functions based on the under-

lying noise characteristics, while the self-paced component dynamically controls the order in which data samples are learned. This 

coordinated adjustment at both the loss and the data levels improves the flexibility and robustness of the model, leading to more 

reliable low-dimensional representations under diverse noise conditions.

This work opens several avenues for future exploration. A key direction is to conduct a formal convergence analysis of DRNMF-

SP. Although the current focus has been on algorithm design and empirical validation, studying the theoretical behavior of the 

optimization process can further strengthen the method’s foundations.

Also, exploring such an Online NMF-inspired online extension, such as the ONMFO approach [47], along with its computational 

trade-offs and convergence properties, remains a promising avenue for future research. In an ONMF-based extension, the coefficient 

matrix would be updated locally for each new data sample, while the basis would be refined globally through incremental updates 

using accumulated statistics. This approach enables the model to adapt continuously to incoming data with minimal memory and 

computational cost, making it suitable for large-scale or real-time applications. In addition, although class-imbalanced data were not 

explicitly examined in this study, such scenarios are highly relevant in many real-world applications. The proposed framework is 

general and can be naturally extended to handle imbalanced data distributions, making the investigation of its performance under 

severe class imbalance an important direction for future work.

Finally, since DRNMF-SP is currently a shallow model, another future direction is to extend it into a deep version. For example, 

one could design a multi-layer architecture that stacks several DRNMF-SP layers or integrates it into deep learning frameworks such 

as autoencoders. This could improve its ability to capture more complex structures in data while preserving robustness. Exploring 

such deep extensions may improve performance in challenging tasks such as image analysis, speech recognition, or recommendation 

systems with noisy or weak supervision.
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