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Figure 1a shows a basic force curve
on a sample of a polystyrene (PS)/poly-
caprolactone (PCL) blend chosen as a
model sample. This force curve was
conducted on the PCL component. Note
the two curves where the blue segment
shows the tip approaching the sur-
face, snapping into contact, and being
in repulsive contact with the sample,
followed by the red segment showing the
tip pulling away from the surface. In the
retraction portion, there is a labelled dip
resulting from adhesion between the tip
and the sample as the tip is withdrawn.

The two most sought-after parameters
from SPM curves are adhesion and elastic
modulus, a measure of stiffness. While the
former is fairly straightforward to measure
directly off the force curve, the stiffness or
modulus measurements are more com-
plicated. The rest of this article focuses
on the analysis and calculation of SPM
force curves that are used for modulus.

The calculation of modulus from SPM
force curves requires the modeling of
the force curve with a contact mechanics
model. The various contact mechanics
models that are available simulate the
tip-sample contact and account for the
tip-sample adhesion in various ways.
One of the challenging parts of the
analysis of force curves is understand-
ing which model to use. Calculation of a
dimensionless parameter known as the
Tabor coefficient, u;, can help guide con-
tact mechanics model selection, but few
commercial analysis software packages
offer this calculation.

Figure 1b and Figure 1c show the
retraction curve measured by the DMT
model and JKR model, respectively, two
of the most common contact mechan-
ics models used in the analysis of force
curves; the other popular model is the
Hertz model. While the Hertz model
does not incorporate any adhesion into
the tip-sample contact, the DMT model
typically accounts for weaker adhesion
outside the tip-sample contact, with the
yellow line in Figure 1b showing the fit
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and an R2? value of 0.981. The JKR model
incorporates stronger adhesion inside the
tip-sample contact area, resulting in a
much better fit with an R? value of 0.998
in Figure 1c. With easy implementation
and side-by-side comparison, it is quickly
established that the JKR model is the
appropriate one for this dataset on PCL.

Workflow for Large Throughput
Analysis of Force Curves

Force spectroscopy is typically a high-
volume measurement in order to get good
statistics on the sample. Multiple force
curves can either be collected at individ-
ually selected points or over the entire
image, in what is popularly known as
force volume. Thus, a streamlined work-
flow for the analysis of a large number of
force curve measurements is critical.
Furthermore, force curve analysis can
be complicated on heterogeneous sam-
ples. In many cases, different models are
needed to analyze the different compo-
nents present within a single image. The
ability to differentiate force curves based
on the appropriate model and analyze
accordingly is a process currently han-
dled manually, and which can be very
tedious. To address these challenges,
MountainSPIP software has developed a
5-step workflow as shown in Figure 2.

Machine Learning Validation
of Force Curves

The powerful functionality of the soft-
ware’s workflow begins in the second
step of validating curves. The quality of
force curves remains a serious challenge
for force spectroscopy. Similar to instru-
mented nanoindentation, both these
techniques require large datasets to get
accurate measurements. Identification of
force curves as artifacts or outliers, which
should ideally be removed, can be tedious
and time-consuming. Sometimes, force
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Figure 2: Five-step workflow for analysis of force curves in MountainSPIP.
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curves may fall on a feature edge or on
anomalous region of the sample. Identi-
fying “good” vs “bad” force curves is an
appropriate task for machine learning,
which is starting to be integrated into
MountainSPIP for force curve selection.

As with all machine learning, the key
is having an effectively trained model. A
supervised machine learning model using
a random forest algorithm was trained
on 100,000 curves, primarily on various
polymeric materials (homopolymers and
polymer blends) to rate them as a 0, 1, or
2, a classification of “poor”, “medium”,
or “good”, respectively. Factors such
as baseline flatness, approach/retract
hysteresis, and ratio of maximum force/
adhesion were all incorporated.

Figure 3a shows a 4pm x 4pm force
volume image of a blend of PS/PCL where
each point is the adhesive force at a
3 nm z distance as measured from the
retract segment; a zoomed-in portion
for further analysis focusing on one
spherical domain of PS with surrounding
PCL matrix is shown in Figure 3b. The
machine learning model was applied to
uncorrected force curves from Figure 3b,
resulting in the plot in Figure 3c, which
rated all the force curves with a “0” or the
poorest quality force curve. This result is
unsurprising as force curves generally do
need some correction, as noted above, for
artifacts like baseline flattening or sepa-
ration. A simple second-order polynomial
baseline correction applied to these force
curves greatly improved their quality,
as shown in Figure 3d where the model
was rerun on the corrected force curves,
showing that the vast majority of force
curves were now in the “1” or medium
range. Thus, the curves that were deemed
poor quality or “0” can be filtered out in
step 3 of the workflow, thereby improving
the analysis and workflow.

One of the key benefits of using
machine learning models is the custom-
izability of the datasets used to train the
models, in addition to the ability to share
and pool datasets. While this trained
model described above is available on
MountainSPIP, users will be able to train
their own models with their own data-
sets in a capability that is in the process
of being implemented. Ultimately, they
will be able to provide their own training
datasets and assign a “grade” to repre-
sentative force curves defined using prin-
cipal component analysis (PCA). Then
the model could be trained for analysis
of subsequent curves. Thus, researchers
whose work focuses on a particular kind
of sample (e.g. living cells, hydrogels,
elastomers, nanocomposites) will be able
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to create a customized machine learning
model to classify force curves on their
specific samples to optimize analy-

sis. This is useful as different samples
provide different challenges for force
curve analysis, and a “one size fits all”
approach may not necessarily be appro-
priate. Finally, users will not be limited to
just their datasets. If a group of users is
all producing measurements on a similar
type of sample (e.g. a living cell), they will
be able to combine all their force curves
into 1 training dataset to improve the
quality of the model ultimately used to
analyze the remaining untrained dataset.

Removing User Bias from
Contact Mechanics Model
Selection

Once the curves have been validated, step
£ involves the selection of the model to

be used for analysis. There are multiple
approaches to model selection. Currently,
users intuitively base their decision on the
sample-tip interactions (e.g. How much
adhesion is there? Is it a biological sample
imaged in physiological conditions, which
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tends to use Hertzian model analysis?)
and fit individual curves to assess which
model is best. MountainSPIP provides
robust approaches that remove the user
bias through either a comparison of the
degree of model fit (R? values) or a calcu-
lation based on the Tabor coefficient.
Both DMT and JKR analyses were
applied separately to all the force curves
in the small area of the PS/PCL blend in
Figure 3b. In order to ascertain the accu-
racy of these two models, the subtraction
of R?> values for the DMT fit minus the R>
values for the JKR fit is shown in figure
4a so that values above zero (pink) show
points which have a higher R? value for
the DMT model, while points below zero
(black) have an R? value that is higher
for the JKR model. Figure 4a shows that
the PS should be modeled with the DMT,
while the PCL leans towards JKR. The
resultant Young’s modulus mapping
for the entire image (Fig. 3a) is shown
in Figure 4b with the PS modeled with
DMT and the PCL with JKR, yielding
an overall R? value for the model fit of
0.980. Implementing the reverse analysis
— of modeling the PS with the JKR model
and PCL with the DMT model — results
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in an overall R? value of 0.923, which is
considerably worse. Thus, calculations of
the R? value for different models for the
various components enable a straight-
forward optimization of contact models
for components within one image.

A second approach to contact
mechanics model selection relies on the
calculation of the Tabor parameter, w;.
Tabor determined that DMT and JKR
models are simply different ends of the
same spectrum as defined by a ratio of
the range of adhesion relative to the
elastic deformation caused by the forces
and the parameter given by:

B2\
= (E'3203>
Where R = tip curvature radius, W,q,
= work of adhesion, E*=reduced modu-
lus, and z,= equilibrium spacing of the
surface. A value of less than 0.1 means
the DMT model should be used, and a
value above 5 suggests the JKR model.
The MountainSPIP results for the tran-
sition parameter calculation, derived
from the Tabor parameter, are shown
in figure 4c and then the correspond-
ing model from the parameter in Figure
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4,d where “3” indicates DMT and “2”
indicates JKR (note the points in yellow
are “non-measurable” points due to a
poor-fitting force curve). This shows that
the R analysis (Fig. 4a) and the transition
parameter calculation (Fig. 4d) are con-
sistent with suggesting DMT for the PS
domain and JKR for the PCL component.

Conclusion

Analysis of SPM force curves can be tedi-
ous, challenging, and subject to user bias.
The described software offers unique
workflows for this task, incorporating

a 5-step workflow that includes data
validation, sorting, correction, and model
selection. Recently, machine learn-

ing models have also been included to
facilitate the data validation step; these
models provide powerful customizability
for one’s own samples as well as the abil-
ity to pool datasets to improve the model
training. For model selection, software
users can either analyze their data with
different models and optimize via best-
fit R? value or use the Tabor parameter

to guide the model selection, enabling
the most appropriate contact mechanics
model to be used for the modulus calcu-
lation at each pixel (i.e. each force curve).
These new capabilities will help make
force curve analysis more accessible,
faster, and user-friendly for scanning
probe microscopists of all backgrounds.
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