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Abstract: We review the structure of local Lagrangians and field equations for free bosonic and
fermionic gauge fields of mixed symmetry in flat space. These are first presented in a constrained
setting and then the (y-)trace constraints on fields and gauge parameters are eliminated via the

introduction of a number of auxiliary fields.

1 Introduction

The current understanding of higher-spin gauge theories is incomplete mainly because the
systematics of their interactions is still rather obscure’. However, even a number of issues
concerning the free theory were clarified only recently, and this work reviews those discussed
in [2, 3] and regarding fields of mixed symmetry. These types of fields are necessary to
describe all the irreps of the Poincaré group whenever the space-time dimension is greater
than five, and are key components of the massive spectra of String Theory. On the other
hand, the o’ dependence of couplings and masses has long suggested the widely held idea
that String Theory could well be a broken phase of a higher-spin gauge theory?, although
the breaking mechanism at work still lacks a precise formulation. The quest for proper
tools to analyze these problems is indeed one of the main motivations behind much of the
current literature on higher spins, and in particular of [2, 3], where different Lagrangian
formulations for massless mixed-symmetry fields in flat space are built along the lines of the
metric formalism for gravity. At any rate, massless and massive models are strictly related,
since the latter can be obtained from the former via a Kaluza-Klein circle reduction.
Actions for free gauge fields with spin s > 2 were first constructed by Fronsdal and Fang in
the late seventies [5] considering the massless limit of the massive Singh-Hagen construction
[6], that also displayed the expected emergence of a gauge symmetry. The fields considered in
these works are fully symmetric tensors ¢, ... ,, and spinor-tensors ¥, . .., that generalize
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2See for instance [4], that also contains some references to the original literature.



2 Lagrangians for higher spins of mixed symmetry

the vector potential A, and the linearized metric fluctuation h ,,. In partial analogy with
these “low-spin” examples, they are supplemented by the gauge transformations

0Ppripe = O Npspe)
6¢a#1-~~ﬂs = 8(H1€au2~-us)’ (1'1)

where here and in the following a couple of parentheses denotes a complete symmetrization
of the indices it encloses, with the minimum possible number of terms and with unit overall
normalization. However, in the Fang-Fronsdal formulation fields and gauge parameters are
to satisfy some algebraic (y-)trace constraints. The constraints on the gauge parameters can
be conveniently identified looking at the non-Lagrangian field equations, that for generic spin
sors-+ % fields read

Furowe = BPmone = 0 0 Ppsipg) + 01 Ops qus..»us)A)\ =0,
Sp,l.../tg =1 {@ ﬂ},ln...p,s - a(ul wug...us)} = 07 (12)

where we hid the spinor index carried by 1, as we shall do in the following for all spinor
indices. Indeed, while in the spin 2 case the equation of motion

Ry, = Ohy — 0,0-hy — 0,0 -hy, + 0,0,k =0 (1.3)

sets to zero the linearized Ricci tensor that provides a gauge invariant completion of Ok ,,,
for s > 2 egs. (1.2) are invariant under the gauge transformations (1.1) if and only if one

imposes the algebraic constraints

Aul...#s_g)\A - 07 %#1--#5_2 =0. (14)

The constraints on the gauge fields can be conveniently identified looking at the generaliza-
tions of the Bianchi identity of linearized gravity,

1
8~Ru—§6#Rﬁ:O, (1.5)
that read
o-F Lo F o Llga,0 P (1.6)
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In fact, the Fang-Fronsdal constraints on the fields are

<Pu1~~usf4>\p>\p =0, @ﬁmn-usfskk =0, (1.7)

and eliminate the right-hand sides of the Bianchi identities. Their role can be understood
recalling that the Bianchi identity (1.5) determines the structure of the divergenceless lin-
earized Einstein tensor. In strict analogy, gauge invariant Lagrangians for higher-spin fields
can be recovered enforcing the constraints (1.7).

As we anticipated, fully symmetric fields do not suffice to describe all irreps of the
Poincaré group in generic space-time dimensions. One is thus led to consider their “mixed-
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groups of symmetrized space-time indices®. The development of String Field Theory stim-
ulated the study of these fields in the eighties 7], and finally Labastida proposed the gauge
transformations, the equations of motion and the set of constraints forcing arbitrary Bose
and Fermi fields of mixed symmetry to propagate free massless modes [8]. Furthermore,
in [9] he also identified the Lagrangians leading to the equations of motion for constrained
Bose fields, while their fermionic counterparts were obtained only recently in [3]*.

In order to deal with mixed-symmetry fields it is convenient to resort to the compact
notation of [2, 3], where all space-time indices are hidden. On the other hand, “family”
indices (in the following denoted by small-case latin letters) select the groups of space-time
indices that gradients 8%, divergences d; and traces T}; are acting upon®. In a similar fashion,
family indices are associated to y-traces ;, and it also proves convenient to introduce their
antisymmetric combinations like 7v;; = % (Y7 —7;7:)- In this notation whole classes of
mixed-symmetry fields can be treated at the same time, since all the resulting expressions
only depend on the number of index “families” involved, and not on the number of space-
time indices they contain. Thus, the Labastida gauge transformations, with one independent

parameter for each index family, read
So =0'Ay, S¢ = 0%y, (1.8)

where the parameter labeled by the index i carries only (s; — 1) indices in the i-th group, to
be symmetrized with the one carried by the gradient. Furthermore, the Labastida equations
of motion take the compact form

F = DQD — 8i81<p+%8i8jTij<p = O7
Szi{@w—awiw}:o, (1.9)

where, for instance, the first line of (1.9) is a shorthand for

_ A
fpl.A.usl;ul...VSQ;... = D<Pu1...p,sl;u1...u52;... - a(p,1|6 @lug...psl))\;Vl.‘.lls2;..‘
A A
=097 Pyt ) A ™ T OO Py YA vavy)
A A
+ a(mauz O oy )N 301 vags e T 6(1/181’2'@H1-~~Msl;‘y3~-~ysz)>\ it =0, (1.10)

3Without imposing any symmetry relating the various sets of indices, these fields can only describe
reducible representations of the Poincaré group. However, gl(D) reducible (spinor-)tensors naturally emerge
in String Theory, where they are associated with products of bosonic oscillators. It is thus natural and
convenient to work with them. Furthermore, the Young projectors extracting irreducible gl(D) components
from a given (spinor-)tensor commute with field equations and Lagrangians, so that the relevant information
for irreducible fields can be easily extracted from those presented in the following. For further details on
this issue we refer the reader to [2, 3], where we also discussed how to adapt the formalism to multi-forms
possessing several groups of antisymmetrized space-time indices.

4 Actually, a covariant Lagrangian formulation for arbitrary irreps of the Poincaré group was first obtained
in [10], but within a BRST-like setup that is rather remote from these developments. Another alternative
formulation of higher-spin dynamics was recently presented in [11].

5A further useful convention of [2, 3] states that lower family indices are associated to operators remov-
ing Lorentz indices, while upper family indices are associated to operators adding Lorentz indices, to be
symmetrized with all the other indices of the group identified by the given family label. As in the rest of the
paper, the symmetrizations involve the minimum possible number of terms and unit overall normalization,
while the Einstein convention for summing over pairs of indices is used throughout. At any rate, all the
needed information is contained in the algebra satisfied by the basic operators, and in the present section
the relevant rules are

[0:,07] =067,  [v:,07] =987,  [Ty;,0%] = 0(;6;)F.



4 Lagrangians for higher spins of mixed symmetry

in which the omitted terms involve the remaining index families in a similar fashion. Eqs. (1.9)
are gauge invariant if and only if

so that, differently from the Fang-Fronsdal symmetric setting, now not all (y-)traces of
the gauge parameters have to vanish. The same difference emerges looking at the Bianchi
identities: for mixed-symmetry gauge fields they read

1, 1 .
0iF =5 0T F = - 15 9700 T 15 Ty o,

1 1., 1. i ik
8i8—5ﬁ%8—§8 T”S—Ea ’yijS: 68 8 T(ij’yk)ll), (112)

and their right-hand sides only contain special linear combinations of (y-)traces acting on
the fields. These identify the Labastida constraints

Ttij Ty p = 0, Tijvyv =0, (1.13)

that one has to force upon the fields in order to build gauge invariant Lagrangians. Indeed,
as we shall review in Section 2, the Bianchi identities provide a neat rationale leading to the
Lagrangians of [9, 2, 3].

Having presented the basic elements of the constrained formulation for arbitrary higher-
spin fields, we should stress that in String Field Theory no constraints are present. Indeed,
starting from the late nineties, a number of papers have proposed alternative formulations of
the free dynamics of single higher-spin modes without any need for constraints. These works
comprise two main groups, since the constraints can be eliminated both via the introduction
of non-local terms and via the introduction of auxiliary fields. The first approach was devel-
oped in [12, 13, 14] for fully symmetric Bose and Fermi gauge fields and was then extended to
mixed-symmetry fields in [15]. It has the virtue of leading to a geometric description, where
Lagrangians and equations of motion are built from the linearized curvatures introduced by
de Wit and Freedman [16], or from their mixed-symmetry generalizations [15]. On the other
hand, the second approach [17, 18, 13, 19, 14] leads to more standard local Lagrangians, and
in Section 3 the “minimal” formulation for fully symmetric fields [18, 13] will be extended to
arbitrary mixed-symmetry fields following [2, 3]. In this setup the number of auxiliary fields
only depends on the number of index families, and not on the total number of space-time
indices as in previous works [17]. Other descriptions of the free dynamics of mixed-symmetry
fields in flat space or in A(dS) were also built along the lines of the frame-like formalism
for gravity [20], in a light-cone formalism [21], or resorting to BRST techniques [22]. Fur-
thermore, some steps toward a metric-like description of mixed-symmetry fields in constant
curvature spaces were performed in [23].

2 Constrained Lagrangians for Bose and Fermi fields

As it is well known, the field equation (1.3) is non-Lagrangian, but is in general equivalent
to that following from the linearized Einstein-Hilbert Lagrangian

1

1
L= 2h‘“’(RW—2nWRA’\> : (2.1)
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The Lagrangian (2.1) contains the linearized Ricci tensor appearing in (1.3) and its only
available trace. Furthermore, the relative coefficient entering (2.1) is fixed uniquely by the
request of gauge invariance. In fact, up to total derivatives, the gauge variation of (2.1)
under the linearized diffeomorphisms d h,, = 9, &, is

55:—;§“<8~Ru—;auﬁfﬁ>:0, (2.2)

that vanishes on account of the Bianchi identity (1.5). The equations of motion (1.2) for
symmetric bosons are non-Lagrangian as well, but the Fronsdal constraint (1.7) on ¢ also
implies the vanishing of the double trace of the tensor F appearing in (1.2). Thus, La-
grangians leading to equations equivalent to (1.2) can only contain F and its first trace,
again with a relative coefficient that is fixed by the Bianchi identities via the requirement of
gauge invariance, so that the result takes a form similar to (2.1). Actually, even symmetric
fermions can be treated in this fashion, since the triple y-trace of S is forced to vanish by
the constraint (1.7) on .
In the mixed-symmetry case the tensors F and S of (1.9) satisfy

Ty Ty F = 0, T(ijvryS = 0, (2.3)

so that the Labastida constraints (1.13) on the fields induce similar constraints on the kinetic
(spinor-)tensors. However, differently from the symmetric setup, in this case not all double
traces of F and not all triple y-traces of S vanish. The Lagrangians thus can, and indeed
do, contain combinations of multiple (v-)traces of the kinetic (spinor-)tensors. These can be
identified decomposing the available expressions according to the irreps of the permutation
group acting on the family indices carried by the operators T;; or ;. Actually, eqgs. (2.3)
imply that only two-column Young projected combinations can enter the Lagrangians®, for
both Bose and Fermi fields. Clearly, they have to be contracted with suitable products of
invariant tensors, so that the natural ansatz for the bosonic Lagrangians [9, 2] reads

E:

N |

N
< 2 Z kp 7711]1 A nlpjp Y{2p} Tiljl ce. npjp F >, (24)
p=0

since a product of identical T;; tensors only admits projections associated to Young diagrams
with an even number of boxes in each row. As a result, the only available two-column
projection for a product of p traces is the {2P} one, corresponding to a rectangular diagram
with two columns and p rows. Furthermore, in (2.4) N denotes the number of index families
and we have introduced a convenient scalar product” following [2, 3]. The definition of the
n% operators entering (2.4) is quite natural,

o= 1N | o (25)
n-e = 2 77%(#{\<‘0»~~;~-M.¢nm;m;Iué“-uijﬂ);m’ :

n=1

SProjections associated with Young diagrams with at least three columns are realized via a sum of terms
with at least three symmetrized indices. These can be always manipulated to rebuild the constraints (2.3).
Further details on this statement and on the needed tools related to the symmetric group can be found in
the appendices of (2, 3].

"The scalar product is defined as

1 1...Mé1;...;,u,1"...pg 1

r1 -
1 R "=
‘pul...uél,..A,p,i"mu?"X s1! ... 8p! X

(e, x) = 1 <
s1l...sp!
and allows to integrate by parts without introducing s;-dependent combinatoric factors. Notice that, in
order to recover the usual normalizations, an overall factor Hf\;1 s;! should accompany the Lagrangians.
However, for brevity this factor is ignored in all the expressions appearing in this paper.
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aside from the unconventional factor 1/2, that proves convenient in the presentation of a
number of results. In a similar fashion, for Fermi fields the ansatz for the structure of the
Lagrangians [3] is

= - Z kp “h o ij”’)/kl'”kq Y{2P71Q}Ti1j1 Tipjp'Ykl...kq S )+hec.. (2.6)

p,a=
The multiple v-traces of S are here written in an antisymmetric basis with

1
Vhroky = p Yk Yk -+ Vhkqls (2.7)

where the square brackets denote the antisymmetrization of the indices they enclose, again
with overall factor one. The coefficients k, and k, , appearing in (2.4) and (2.6) can be
fixed requiring the gauge invariance of the Lagrangians, in strict analogy with the Einstein-
Hilbert case (2.1).

The gauge variation of the bosonic Lagrangian (2.4) reads

N
1
0L = Z 92 p+1 YV{Q’) 1} Tiyj, - - ’pJPAk ’ k YY{QP 1} Ok Tiyju - T"pjp}_
p=
+ (p+ 1)k p+1 a! Y{2p+1} T;j, -- szJkal}—> (2.8)

Indeed, the other available Young projections of the divergence terms, the {3,2P~1} ones,
would reconstruct the constraints (1.11) on the gauge parameters on the left entry of the
scalar products. On the other hand, computing the {27,1} Young projection in the family
indices carried by a product of p traces of the Bianchi identities (1.12), gives

(p+2) Yoo 1305 gy .- Tiyj, F — 0" Yigorry Tijy - Tipj, T F = 0, (2.9)

ipJp

up to the constraints (1.13) that we enforced on the right-hand side of (1.12). One can then
rebuild the combinations (2.9) in (2.8) selecting the values
__(=D?
~opl(p+ 1)1

that lead to a gauge invariant result. These are the coefficients first obtained by Labastida

(2.10)

n [9], barring a slight change of notation due to the definition (2.5) and a typo in the
oscillating sign that was corrected in [2].

For brevity, we refrain from repeating this procedure also for Fermi fields since a detailed
discussion can be found in [3]. Due to the presence of v-traces this involves some technical
complications, but the logical steps are essentially those followed for Bose fields and already
emerging in the simpler case of linearized gravity. One can fix the coefficients k, 4 in the
Lagrangian (2.6) computing its gauge variation and comparing the result with the two-
column Young projected ~-traces of the Bianchi identities (1.12). In order to do that, one
must first eliminate from the gauge variation the terms proportional to the constraints
(1.11) on the gauge parameters. The remainder is then two-column projected, and with a
proper choice of the k,, , reproduces the two-column projected consequences of the Bianchi
identities. This procedure fixes uniquely the coefficients and the result, first presented in
[3], reads

(Pt

P9 plgl(prgt 1)l

(2.11)
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One can also obtain the coefficients (2.10) and (2.11) looking for self-adjoint Einstein-like
tensors [3], following the approach of [9]. In fact, since F and S are gauge invariant in the
constrained theory, building their self-adjoint extensions in (2.4) and (2.6) leads to a gauge
invariant result. As the reader can expect, the constraints (1.13) on the fields that affect
the Bianchi identities (1.12) are crucial also in this approach.

The Lagrangians (2.4) take a particularly simple form for gi(D)-irreducible two-column
Bose fields. They are characterized by an arbitrary number of index families containing at
most two space-time indices and by the conditions that all the symmetrizations over any
group of three indices vanish. This form obtains expressing (2.4) directly in terms of the
fields, and generalizing a similar rewriting of the linearized Einstein-Hilbert Lagrangian.
Indeed, up to total derivatives, the Lagrangian (2.1) can be cast in the form

1
L= =3 0" 1,0, h," (2.12)

In a similar fashion [24, 2], for gl(D)-irreducible two-column Bose fields of the form {27, 19}
the Lagrangian (2.4) has the structure

L~ 8#190'“2[;“\;

Hp+1
[ Bps Mpt1; o5 Bpiq |
H2p+135 H2p+25 -+ 5 H2p+q+1 . (2’13)

X O pparr Prpraral "5 H2pras ]
While the direct comparison of the two results (2.4) and (2.13) is not straightforward,
the latter Lagrangian has to coincide with (2.4) up to an overall coefficient, since it is
manifestly gauge invariant. In fact, the gradients coming from the gauge transformations
are always antisymmetrized with one of the derivatives already present in the Lagrangian.
Notice furthermore that the fields in this class are fully unconstrained, since the Labastida
constraints (1.11) and (1.13) are not available due to the irreducibility condition. However,
eq. (2.13) fixes the coefficients (2.10), that already show up in the Lagrangians of two-
column fields. Thus, labeling arbitrary irreps of the Poincaré group with Young diagrams,
it is clear that the need for constraints is dictated by the number of columns, while the
appearance of higher-trace terms in the Lagrangians is dictated by the number of rows.
Similar considerations apply to Fermi fields, where the usual presentation of the Rarita-
Schwinger Lagrangian,

L= % b,y 9,1, + he. (2.14)

extends to arbitrary one-column fully-antisymmetric fields via [3]

a(g—1)

/&ML..H(I fylll-.-/Lunl.--Vq 8)\1/}1/1“_”(1 + h.c. . (2.15)

The Lagrangian (2.15) is manifestly gauge invariant due to the contraction of all the space-
time indices with the fully antisymmetric y-matrix it contains, while one-column Fermi fields
are fully unconstrained.

3 Minimal Unconstrained Lagrangians

In the Lagrangian theory, the Labastida constraints (1.11) and (1.13) can be eliminated in
a “minimal” way in two steps:
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e the constraints (1.11) on the gauge parameters can be eliminated via the introduction of
at most one compensator field for each constraint;

o the constraints (1.13) on the fields can be eliminated via the introduction of at most one
Lagrange multiplier for each constraint.

The correspondence between auxiliary fields and constraints is mot one-to-one since the
Labastida constraints take a very compact form in this notation but are not independent:
their higher (v-)traces can indeed become proportional. Anyway, following this path one
obtains a fully unconstrained Lagrangian formulation, adding a number of auxiliary fields
that depend only on the number of index families. The introduction of compensator fields
leads directly to equations of motion with unconstrained gauge invariance and was first
presented for symmetric fields in the first of [18]. This setup was then complemented by
Lagrange multipliers and extended off-shell in the third of [18], but in the present discussion
we shall reverse the order of these two steps. Indeed, the intermediate case of a Lagrangian
theory for unconstrained fields still only allowing constrained gauge transformations is also
of some interest.

Relaxing the constraints (1.13) on the fields, the Lagrangians (2.4) and (2.6) are no longer
gauge invariant, due to the “classical anomalies” appearing on the right-hand sides of the
Bianchi identities (1.12), whose effect can be compensated adding to the Lagrangians the
terms

1 ~ 7
ﬂ<ﬂi]’kl s Ttij Ty ) L Fermi = ﬁ<)\ijk , Tijvey¥ ) + hee.. (3.1)

The gauge transformations of the Lagrange multipliers appearing in (3.1) can be fixed inte-

L Bose —

grating by parts the terms generated by these “classical anomalies” and their (y-)traces, and
the reader can find their detailed form in [2, 3]. Furthermore, the terms (3.1) enforce on-shell
the Labastida constraints (1.13). Hence, the equations of motion following from the result-
ing unconstrained Lagrangians are simply related to those following from the constrained
ones, as we shall see more in detail in the next section.

One can also obtain Lagrangians for unconstrained fields modifying the structures that
appear in (2.4) and (2.6), and to this end it is convenient to consider explicitly their ¢ and ¢
dependence. In this way, one can redefine the (y-)traces of F and S eliminating altogether
the terms proportional to the Labastida constraints (1.13), which leads by construction to
a gauge invariant result. In fact, the resulting expressions

N
N 1 o L
EBose = 5 < ®, kp 77“'71 e nzp]pf[p]i1j1=-~wipjp >7
p=0
1 N
'CFermi = 5 <¢ P Z kp7q 77“]1 cee nlpjp’yklmkqS[pﬁq]i1j17~~7ip.7'p;k1mkq > + h.C.7 (32)
p,q=0
with
T 1 kol
f[p]i1j17n-,ipjp = Yt{QP}Tiljl...npjpf — 3 0"0 Y{472p71} Ti1j1"' ipjkalSO;
S[p7q]i1j1,‘..,ipjp;kl‘..kq = Y10y Tivjy- - TipipyVkyo by S

+ 10" Yz o100y Ty Tipjy Vr kgt ¥ (3.3)

are identical to those effectively entering (2.4) and (2.6) when one enforces the constraints
(1.13). Furthermore, these Lagrangians can be supplemented by the terms (3.1) that impose
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on-shell the constraints, but now with gauge invariant Lagrange multipliers. The field equa-
tions of these different unconstrained formulations can be combined to provide equivalent
conditions and, in fact, one can actually relate them via a field redefinition of the Lagrange
multipliers.

Notice that in both formulations the Lagrangians possess an extra symmetry under shifts
of particular (v-)traces of the Lagrange multipliers. This is a consequence of the lack of
independence of the Labastida constraints that we mentioned above. This fact indeed implies
that some combinations of (y-)traces of (1.13) vanish identically, so that for instance

Yis,1y Ton T i Trayp = 0, (3.4)

and consequently the o(D)-components of the Lagrange multipliers coupling to them in (3.1)
can be shifted arbitrarily. A more detailed discussion and similar examples for Fermi fields
can be found in Section 2 of [3].

The constraints (1.11) on the gauge parameters can be relaxed considering the Stueckelberg-
like shifts

p— -0, Y= — 9"V, (3.5)
with compensator fields transforming as
(S(I)Z:AZ, 6\111 = €;. (36)

Under the action of (3.5) arbitrary functions of the fields become gauge invariant, and in
particular F and S give rise to the kinetic (spinor-)tensors

A=F = 200708 (i, 0y, W:3+%alaw(i\1’j)7 (3.7)

that are invariant under unconstrained gauge transformations. However, due to the con-
strained gauge invariance of F and S, the ®; and the ¥; enter (3.7) only via their sym-
metrized (7-)traces. One can thus eliminate these combinations performing a partial gauge
fixing that does not affect the Labastida constrained gauge transformations. This is a crucial
condition, since the “constrained” portion of the gauge transformations is needed to force
the fields to propagate the correct massless modes.

For a symmetric Bose field of spin s the only available combination of the form % Tiij P

actually coincides with the compensator field «,, introduced in [18]. Similarly, for a

coe Hs—3
spin s + % Fermi field the only available combination of the form %'y(i W 5y coincides with
the £, ... 4., field of [18]. In principle, even in the mixed-symmetry case one could try to
proceed introducing one compensator field for each constraint via

1

1
Qijr = gT(ij(I)k)a §ij = 57(1"1’1')- (3-8)

However, the lack of independence of the Labastida constraints (1.11) on the gauge param-
eters leads to the emergence of gauge invariant combinations of the (y-)traces of the a ;i
and £;;. Thus, one cannot regard them as independent fields, and resorting to the compen-
sators of (3.6) seems the most convenient alternative. Further details and some examples of
gauge-invariant combinations of the compensators are presented in Section 2 of [3].

Joining them with suitable shifts of the Lagrange multipliers, the transformations (3.5)
can be performed directly in the Lagrangians that we presented before. Again, the Labastida
constrained gauge invariance allows to cast the results in the form

1
ijr (@), Niji (o) ) + §<5z‘jkl,cijkl ),

<£ij(¢l)a5ij(§)>+i<)\ijk,zijk>+h.c.7 (3.9)

L Bose =

L Fermi —
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where only symmetric (y-)traces of the compensators appear. The (spinor-)tensors £ and
R of (3.9) can be obtained acting with (3.5) on the combinations appearing respectively in
(2.4) and (2.6). Thus, they contain combinations of all the (y-)traces of A and W that are
not directly related to the gauge invariant constraints

1 i

3 gT(ij’Yk)(ql’_am\I’m)v (3.10)

again with the coefficients displayed in (2.10) and (2.11). On the other hand, X and E
contain suitable combinations of the divergences of £ and R, whose explicit forms are rather

Cijit = 5 T(ijTry (0 — 0" @), Zijk =

involved and can be found in [2, 3].

The unconstrained A and W, and clearly also the Lagrangians (3.9), contain higher
derivative terms involving the compensators. However, we repeatedly pointed out that
these terms can be eliminated by a partial gauge fixing, so that they are really harmless. For
instance, for symmetric fields the current-current exchanges obtained coupling an external
current to (2.4) or (2.6) and to (3.9) coincide [13]. The same result is expected to hold
in the mixed-symmetry case as well, and this is indeed true in the examples analyzed in
[2, 3]. Nevertheless, more conventional unconstrained formulations with the usual number
of derivatives, but still with a spin-independent number of auxiliary fields, were obtained
for symmetric fields in [19, 14]. Furthermore, in [2, 3] a similar result was obtained for
mixed-symmetry fields in a setting similar to that of [14], adding few types of extra fields,
whose total number only depends on the number N of index families.

4 Lagrangian field equations and Weyl like-symmetries

The combinations of (y-)traces of F and S entering (2.4) and (2.6) are self-adjoint in the
constrained theory. However, they do not satisfy Labastida-like constraints, even if F and
S actually do [2, 3]. As a consequence, a projection is needed in order to obtain from the
Lagrangians (2.4) and (2.6) field equations satisfying the same constraints as the gauge fields.
Its form is rather involved, and it is thus convenient to deal directly with the equivalent field
equations following from the Lagrangians for unconstrained fields, where also the Lagrange
multiplier terms (3.1) appear. For Bose fields they read

N
i i Lo

E kp 't g Yoy Tiyjy o Ty, F + 3 7" Biju =0,

p=0

TijTeye =0 = T TuyF =0, (4.1)

while for Fermi fields they read

N
. o 1 .
E kg T R R Y sy T T g Ve kg S — 5 NNV =0,
p,q=0

Tiijviy =0 = Tjve)S = 0. (4.2)

The B;jr and the V;j; are constructs combining the Lagrange multipliers 355 and Ay
with the fields. Barring some subtleties described in [2, 3] and related to the linear depen-
dence of the Labastida constraints, they can be regarded as gauge invariant completions of
the Lagrange multipliers. Eliminating them in terms of F or S leads to the projected field
equations of the constrained theory, so that one can directly refer to eqs. (4.1) and (4.2)
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in both settings. Furthermore, the field equations following from the Lagrangians (3.9) can
be also cast in this form, via a partial gauge fixing that eliminates the compensators. In
conclusion, one can focus on (4.1) and (4.2) in order to analyze the consequences of the
Lagrangian field equations that emerge in the various setups we described.

The main issue is then to understand whether (4.1) and (4.2) are equivalent to the
non-Lagrangian Labastida field equations (1.9). In the mixed-symmetry case the answer is
rather subtle, since the Lagrangian field equations in general do not reduce directly to the

F=0 S=0
’ ’ 4.3
{ Bijrki =0, {yijk:0~ (43)

Indeed, non-trivial solutions of the homogeneous equations (4.1) and (4.2) exist in some

conditions

particular low space-time dimensions. However, in all these cases new gauge transforma-
tions of the fields and of the multipliers emerge. They can be used to gauge away the
leftover quantities so that the reduction to the Labastida form (4.3) can be completed in
this roundabout way. The Lagrangian field equations thus describe the propagation of the
correct number of degrees of freedom, since the gauge fields satisfy (1.9) and the multipliers
are expressed in terms of them®. The example of linearized gravity, that we often recalled
here, can help to better qualify this phenomenon. In fact, in two dimensions the linearized
Einstein tensor of (2.1) coincides with the traceless part of the linearized Ricci tensor, so
that the Lagrangian field equation cannot provide any information on its trace. However,
two-dimensional gravity is invariant under Weyl transformations, and their linearized version

Shpy = 1w Q (4.4)

suffices to set to zero the leftover trace. For symmetric fields only a gravitino in two dimen-
sions presents a similar behavior, but in the mixed-symmetry case a rather rich set of models
that are invariant under linearized Weyl-like symmetries exists [2, 3]. Moreover, rewriting
eq. (2.1) in terms of the field h,, as in (2.12) makes it manifest that the Lagrangian of
two-dimensional gravity is a total derivative in D = 2, where the same is true also for the
Rarita-Schwinger Lagrangian (2.14). The rewriting (2.13) of the Lagrangians (2.4) for two-
column Bose fields and the rewriting (2.15) of the Lagrangians (2.6) for fully antisymmetric
Fermi fields make it clear that these cases are only the first elements of a wider class of fields
with a similar behavior. On the other hand, in the mixed-symmetry case the correspondence
between Weyl-like symmetries and Lagrangians that are total derivatives is not one-to-one.
The analysis performed in [2, 3] for two-family fields actually shows that in D < 4 the
models that do not propagate any degrees of freedom comprise three distinct classes: those
without extra symmetries, those invariant under Weyl-like gauge transformations but with
non-trivial Lagrangians and finally those with Lagrangians that are total derivatives. Al-
though no degrees of freedom are involved in these pathological models, the rich structure
of two-dimensional gravity suggests that they could well encode interesting properties.
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