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Molecular switches enable the fabrication of multifunctional devices in which an electrical

output can be modulated by external stimuli. The working mechanism of these devices

is often hard to prove, since the molecular switching events are only indirectly confirmed

through electrical characterization, without real-space visualization. Here, we show how

photochromic molecules self-assembled on graphene and MoS2 generate atomically precise

superlattices in which a light-induced structural reorganization enables precise control over

local charge carrier density in high-performance devices. By combining different experimental

and theoretical approaches, we achieve exquisite control over events taking place from the

molecular level to the device scale. Unique device functionalities are demonstrated, including

the use of spatially confined light irradiation to define reversible lateral heterojunctions

between areas possessing different doping levels. Molecular assembly and light-induced

doping are analogous for graphene and MoS2, demonstrating the generality of our approach

to optically manipulate the electrical output of multi-responsive hybrid devices.
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One among the grand challenges of nanotechnology is the
precise manipulation of an electrical output in solid-state
devices through the control of molecular events occurring

at the nanoscale1. By exploiting unique functions encoded in
specific molecular groups and modulated through external sti-
muli, multifunctional devices can be fabricated in which the
electrical conductance can be adjusted ad hoc, offering sought-
after solutions for sensing and opto-electronics2.

For instance, photochromic molecules, which are capable of
switching between two (meta-) stable states when exposed to
specific wavelengths3, enable the use of a photonic input to
modulate the electrical characteristics of solid-state devices4–16.
Of particular interest is the possibility to exploit photochromic
molecules to modulate the conductance of (semi)conductive
materials, eventually leading to light-switchable macroscopic
devices10–16. This approach was demonstrated for carbon
nanotubes10,11, graphene7,12,13, and polymers14,15.

In all these studies, the isomerization was inferred on the basis
of the electrical characterization, without a direct, real-space
visualization of the (supra)molecular structural changes induced
by the switching events. As a consequence, the electrical effects
measured at the device level could not be rationalized in various
cases12,13. On the contrary, real-space images of supramolecular
assemblies of photochromic molecules have been acquired
through scanning tunneling microscopy (STM)17–21, but either
the photo-induced switching events could not be monitored18,19

or the specific experimental conditions hampered simple trans-
lation and integration in solid-state devices17,20,21.

Two-dimensional materials22 (2DMs) represent an ideal plat-
form to study the interplay between molecular assembly on
surfaces and electrical transport in devices. On the exposed sur-
face of 2DMs, well-defined molecular groups can be arranged at
predetermined spatial locations with atomic precision by tailoring
of supramolecular architectures23–25. Within these organic/inor-
ganic superlattices, macroscopic effects taking place at the device
scale can be understood on the basis of molecular functionality
and nanoscale arrangement26–30, which can be directly accessed
by means of conventional surface-science techniques. Hitherto,
these highly controllable superlattices have not been exploited to
impart the switching properties of photochromic molecules to
2DMs.

Here we demonstrate optical control over the local charge
carrier density in high-performance devices by interfacing
supramolecular assemblies of photochromic molecules with
2DMs. In particular, we exploit the collective nature of self-
assembly to convert single-molecule isomerization events into a
spatially homogeneous switching action, which generates a
macroscopic electrical response in graphene and MoS2. We
achieve exquisite control over such effects by combining surface-
science techniques and characterization of mesoscopic devices,
drawing a unified picture ranging from the scale of molecules all
the way to the device. Moreover, our superlattices enable the
demonstration of technologically relevant functions, such as the
reversible doping in graphene and MoS2, and the use of spatially
confined light irradiation to pattern regions with well-defined
doping levels.

Results
Photo-switchable hybrid superlattices. Our approach is por-
trayed in Fig. 1a. The supramolecular assembly of photochromic
molecules at the surface of graphene and MoS2 single layers
generates an atomically precise superlattice in which a major
structural rearrangement is obtained by light-induced collective
isomerization. As a result, the rearrangement causes a reversible
shift in the 2DM work function, readable in devices as significant

doping, which is also fully reversible. For this study, we designed
and synthesized the spiropyran (SP) derivative bearing an 18-
carbon long alkyl chain (Fig. 1a and Supplementary Note 1). SPs
are photochromic molecules31 that feature reversible photo-
chemical isomerization between a neutral closed-ring and a
zwitterionic open-ring isomer called merocyanine (MC), char-
acterized by a larger molecular dipole. In solution, the SP→MC
isomerization is triggered by irradiation with ultraviolet (UV)
light, while the MC→SP back isomerization is achieved either
thermally or via irradiation with visible light31 (Supplementary
Fig. 1). The long alkyl chain promotes molecular self-assembly on
graphite and MoS2, even at the monolayer limit24–29,32–34. In
particular, the molecule–substrate and molecule–molecule inter-
play, dominated by van der Waals interactions, determines the
formation of highly ordered and closely packed lamellar archi-
tectures in which alkanes adsorb flat on the surface32,35,36 and
which can be used as a template to decorate a given surface with
functional groups26,27.

In order to study the photoswitch of the SP derivative down to
the monolayer limit, we performed X-ray photoelectron spectro-
scopy (XPS) and STM experiments at room temperature on dry
films on highly oriented pyrolytic graphite (HOPG) and MoS2
bulk crystals (see Methods section). Figure 1b–g shows the results
obtained on HOPG, yet similar data were recorded on MoS2
(Supplementary Fig. 2-3). XPS analysis of the binding energy of
the N 1s core level provides unambiguous identification of the
isomer on the surface, due to the very different hybridization of
the indoline N in SP and MC18. In particular, the N 1s spectrum
of spin-coated SP film (Fig. 1b) has two contributions, with a
broad peak at binding energy Eb= 406.0 eV corresponding to
NO2, and a sharper feature at Eb= 399.5 eV to the indoline N
atom. Following in situ UV irradiation, a new component
appeared at Eb= 401.0 eV (Fig. 1c), which is a hallmark of the
MC isomer18. Upon in situ irradiation with green light, an almost
complete recovery of the initial SP spectrum was observed
(Fig. 1d). These data provide evidence that photo-isomerization
takes place on van der Waals substrates, in contrast with
analogous experiments on metallic surfaces18,19.

The evolution of the molecular arrangement was monitored
with sub-nm resolution by STM imaging in air and at room
temperature on dry films on HOPG and MoS2 (see Methods
section). In the SP monolayer, a lamellar structure was visualized,
in which different rows of alkanes lying flat on the substrate are
separated by bright fuzzy regions, generating an atomically
precise superlattice (Fig. 1e). The resulting packing gives rise to a
unit cell a= 5.4 ± 0.2 nm, b= 0.45 ± 0.1 nm, and α= 83 ± 2°,
corresponding to an area A= 2.5 ± 0.2 nm2, with each unit cell
containing two SP molecules. The width of the lamellae,
amounting to 5.4 nm, is in good agreement with the sum of the
contour length of two SP molecules, indicating that the molecules
are assembling in a head-to-head fashion, as sketched in Fig. 1e,
with the SP groups located in the bright regions separating
adjacent lamellae. The bright contrast can be ascribed to aromatic
SP head-groups, which owing to their non-planarity protrude
slightly from the surface, whereas the low resolution suggests that
the SP groups are not immobilized on the surface, and their
dynamics occur on a time scale faster than STM imaging.

Remarkably, the UV-light-triggered SP→MC isomerization
induces a profound reorganization of the assembly (Fig. 1f). In
this case, the high-resolution images could be acquired through-
out the whole STM field of view, indicating that fully immobilized
MC groups lie close to each other, while the alkyl chains form an
interdigitated lamellar structure. The packing of the MC phase
exhibits a unit cell a= 4.1 ± 0.2 nm, b= 1.2 ± 0.1 nm, and α= 82
± 2°, which still contains two MC molecules but exhibits an area
A= 4.7 ± 0.2 nm2 that is almost twice as large as compared to the
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SP phase (Fig. 1f). Such UV-light-induced major reorganization
of the molecular assembly was also observed in survey STM
images and by atomic force microscopy (AFM) at the
microscopic scale (Supplementary Fig. 4). Owing to its metastable
nature, at room temperature the MC isomer thermally converts
back to the SP isomer in a few hours and thus gets back to
its initial nanoscale arrangement. The same UV-irradiated
film was imaged 48 h after irradiation, and an assembly similar
to the initial one was observed (Fig. 1g), with practically identical
unit cell parameters (a= 5.4 ± 0.2 nm, b= 0.4 ± 0.1 nm, and

α= 87 ± 2°). Such result is in line with spectroscopic character-
ization of thin films monitoring the SP→MC isomerization and
subsequent thermal MC→SP recovery (Supplementary Fig. 1).

Work function tuning through light irradiation. Molecular
mechanics/dynamics (MD) simulations combined with density
functional theory (DFT) calculations made it possible to fully
account for the molecular assembly as observed by STM imaging
(Supplementary Note 2). In the SP case, the head-groups were
found to be mobile, i.e., conformationally flexible, and hence
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Fig. 1 Photo-switchable molecular crystals in two dimensions. a Schematic representation of our approach. A spiropyran (SP) derivative forms ordered
crystalline structures when deposited on different van der Waals substrates. In the cartoon, a MoS2 single layer is depicted in which the yellow (blue) layer
represents the S-(Mo-) atomic plane. Photo-induced isomerization induces a structural rearrangement. The molecular dipoles (depicted as black arrows)
are randomly oriented before irradiation, yet well aligned after UV irradiation, leading to a modification in the energetics of the van der Waals substrate.
The chemical structure of the spiropyran (SP)–merocyanine (MC) derivative used in the study is also shown. b–d N 1s core-level spectra measured on
the same spin-coated ultrathin film on highly oriented pyrolytic graphite (HOPG) (b) kept in dark, (c) after in situ UV irradiation, and (d) after subsequent
irradiation with green light. Each spectrum is characterized by multiple peaks fitted by different components, corresponding to the different N hybridization.
The colors of the fitting components recall those of the N atoms in (a). e–g Scanning tunneling microscopic imaging of SP assemblies on HOPG.
Height images of the molecular assemblies obtained (e) after spin-coating the SP solution, (f) immediately after UV irradiation, and (g) 48 h after UV
irradiation. A schematic sketch of the molecule is superimposed to the images to facilitate the visualization of the molecular ordering. Tunneling
parameters: It= 20 pA (e, f, g), Vt= 1000mV (e, g), 600mV (f)
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randomly oriented at any moment in time. A representative
snapshot of such time-evolving situation is shown in Fig. 2a. On
the contrary, an ordered assembly was encountered for the
MC isomer, exhibiting an interdigitated structure with a unit cell
in good agreement with the experimentally observed one (Fig. 2b
and Supplementary Fig. 5). Importantly, the distinct assembly
featured by each isomer affects the overall energetics of the
underlying van der Waals layers differently. In particular,
the component of molecular electric dipoles perpendicular to the
surface (μz) exerts a polarization capable of shifting the surface
work function (WF) and therefore induces local doping37. Based
on our simulations, a relatively low averaged vertical dipole was
estimated for SPs (μz= 0.23 D per molecule, Supplementary
Fig. 6), since the randomly oriented dipoles of the NO2 groups
cancel out. In contrast, in the MC assembly the positively charged
side of the molecule is lifted up for every molecule, resulting in
a significant electrical dipole oriented perpendicular to the
substrate plane (μz= 1.7 D per molecule, Supplementary Fig. 5).
The presence of positive vertical dipoles results in a WF reduction
(or n-type doping), the intensity of which is proportional to
the dipole magnitude.

Experimentally, the evolution of the WF of HOPG and MoS2
was measured by UV photoemission spectroscopy, as a function of
the switching state of the molecular layer (see Methods section).
The presence of the SP film introduces a WF decrease as
compared to the bare substrate, amounting to ΔWF=−0.2 eV for
HOPG, which is indicative of n-type doping (Fig. 2c). Signifi-
cantly, the UV-light-triggered SP→MC isomerization causes a
further, more pronounced WF decrease, ΔWF=−0.7 eV for
HOPG, in good agreement with the theoretical findings. Finally,
the green-light-triggered MC→SP switch is accompanied by an
almost complete recovery of the WF of the initial SP case (Fig. 2c).
The same evolution in the WF shift was measured during the
photo-isomerization of the assembly on MoS2 (Supplementary
Fig. 6).

Photo-switchable electrical characteristics in hybrid devices.
The WF shift translates into a change in the electrical character-
istics of devices based on single-layer 2DMs29, offering
the possibility to convert the switching of the insulating
molecular crystal into a modulation in the electrical output
of high-performance devices. This effect was explored in
graphene and MoS2 devices with pristine mobility above 5000
and 30 cm2 V−1 s−1, respectively (see Methods section). Figure 3a
shows a scheme of the different steps involved in the experiment.
Initially, the transfer characteristics of devices based on clean

graphene and MoS2 were characterized. The measurement was
then repeated after spin-coating of the SP solution and UV
irradiation, which triggered SP→MC isomerization. Finally, the
initial 2DM/SP superlattice conductance was recovered by irra-
diating the whole flake with green light. For graphene, a small
shift of the charge neutrality point was observed toward negative
values upon formation of the SP adlayer, corresponding to
minor n-type doping (Fig. 3b). The SP→MC isomerization, trig-
gered by in situ UV irradiation, introduced a significantly stronger
n-type doping (induced electron density n= 4.4 × 1012 cm−2,
Fig. 3b) and the initial graphene/SP characteristics could be
recovered by exposing the MoS2 surface with green light (Fig. 3c).
At this point, a subsequent UV light irradiation could be
performed to prepare a second graphene/MC state characterized
by n-type doping, and the whole cycle could be repeated (Sup-
plementary Fig. 7). Similarly to the case of graphene, for MoS2
the deposition of the ultrathin SP layer introduced a small
shift in the threshold voltage toward negative values (n-type
doping, Fig. 3d). The UV-light-triggered SP→MC isomerization
caused a sizeable negative shift in the threshold voltage,
inducing an electron density n= 4.6 × 1012 cm−2 (Fig. 3d). The
electrical characteristics of MoS2/SP could be recovered by
irradiating the entire flake with green light (Fig. 3e). Even for
MoS2, a second n-doped MC/MoS2 state could be prepared by
UV light irradiation, and the whole cycle could be repeated
(Supplementary Fig. 7). Thanks to the non-disruptive nature of
the non-covalent functionalization, the devices based on both
MoS2 and graphene preserved high electrical performances
after the formation of the SP and MC assemblies, retaining
mobilities above 25 and 4500 cm2 V−1 s−1, respectively. We also
point out that the electrical characteristics of the SP/2DMs
superlattices could be recovered without green light exposure by
leaving the devices in dark for 24 h (Supplementary Fig. 8) in
agreement with the thermal recovery observed in the optical
characterization (Supplementary Fig. 1).

Numerous control experiments were performed to rule out
other possible mechanisms responsible for the electrical
changes induced by UV/visible light irradiation. In particular,
the UV irradiation was shown to induce a shift of the electrical
characteristics of 2DMs38,39 even without photochromic mole-
cules. In order to quantify this effect for our devices, we
performed UV irradiation on the pristine devices before the
formation of the SP layer. By using the same irradiation power
used in the experiments with the molecular superlattices, we
observed very minor effects in the case of both MoS2 and
graphene, as shown in Supplementary Fig. 8.
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To further confirm that the strong n-type doping observed can
be fully ascribed to the presence of the MC assembly atop,
graphene and MoS2 devices were covered by a layer of MC,
obtained by irradiating SP in solution prior to deposition by spin-
coating. In this way, the devices were not irradiated with UV
light, and the effect of the MC layer could be separately
addressed. Figure 4a, b show that the so-obtained MC layer
introduced significant n-type doping in graphene and MoS2,
qualitatively and quantitatively similar to that observed upon
direct irradiation of the SP assembly. Interestingly, in the case of
graphene a dip in the electrical characteristics was observed at
approximately VGS= 0 V after the formation of the MC layer. We
interpret such feature as originating from a graphene region
covered by SP rather than by MC isomers. Indeed, the MC→SP
back switch in solution takes place in a few seconds (Supple-
mentary Fig. 1), and thus a significant fraction of SP molecules
are spin-coated on the substrate together with the MC. In
addition, we studied the nanoscale assembly obtained by directly
spin-coating MC molecules on HOPG, as shown in Fig. 4c.
Notably, also the directly deposited MC assembly is analogous to
that obtained after UV irradiation of the dry SP film, further
highlighting the direct correlation between nanoscale ordering
and doping effects.

Spatially confined modulation of charge carrier density. Our
system also allows the control over the local charge carrier
density, as shown in Fig. 5 for graphene. In this case, while
the UV light irradiates the whole area of the 2DM, the green
light is shone only on a spatially confined region of the flake
by using a focused laser (Fig. 5a and Methods section). Similarly
to the case of Fig. 3, significant n-type doping was introduced
by the SP→MC isomerization, triggered by in situ UV
irradiation over the whole graphene area (Fig. 5b). Instead, the
spatially confined green light irradiation resulted in a double
feature in the electrical characteristics of the device (Fig. 5c),
indicative of the presence of both SP and MC on the graphene
surface. Indeed, the region in the graphene/MC superlattice
exposed to the green laser fully recovered the almost undoped
graphene/SP state, while the unexposed molecular layer main-
tained MC character, inducing stronger n-type doping. This
experiment demonstrates our ability to create a dynamic het-
erojunction within the 2DM/photochromes superlattice. Such
laser-induced modulation of charge carrier density with micro-
metric resolution has a high technological potential, as it might
enable the realization of unconventional device architectures
in which a p-type transistor could be reversibly converted into
a rectifying p–n junction.
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after green light irradiation of the whole graphene surface. Traces 2 and 3 are replotted for clarity (dashed). d Trace 1 (black): clean MoS2, trace 2 (red):
MoS2 covered by the SP layer, trace 3 (blue): MoS2/MC after UV irradiation over the whole flake. e Trace 4 (green): the pristine MoS2/SP trace can be
recovered upon irradiation of the whole surface with green light. Traces 2 and 3 are replotted for clarity. Details about the UV and green light irradiation
are given in the Methods section; the transfer curves were measured applying a drain source voltage VDS= 10 mV for graphene (b, c) and VDS= 100mV
for MoS2 (d, e). Channel length L = 8.9 µm and width W = 1.0 µm (graphene); L = 1.8 µm, W = 3.3 µm (MoS2)
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the SP→MC isomerization was obtained through irradiation of an SP solution with UV light immediately before spin coating
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Discussion
In this work, we have demonstrated multi-responsive devices
relying on a collective switching action of photochromic mole-
cules self-assembled on the surface of 2DMs. By combining dif-
ferent experimental and theoretical approaches, we achieve an
ultra-high control over our system. An analogous control over
switching events and molecular assembly was previously
demonstrated in the so-called dynamic molecular crystals, i.e.,
self-assembled crystalline structures (typically three-dimensional)
in which macroscopic structural changes arise from collective
molecular events40–42. However, the bulk dynamic molecular
crystals are typically bad electrical conductors and incompatible
with macroscopic device operation, since the chemical structure
of molecular switches is not designed for efficient charge trans-
port. In this respect, our approach enables the integration of a
functional supramolecular assembly, which represents the quasi-
two-dimensional (2D) limit of molecular dynamic crystals, in
high-performance devices to demonstrate switchable electric
outputs.

The highly controllable manipulation of the charge density
demonstrated in our superlattices presents several aspects of
technological relevance. Precise control of the local carrier density
(doping) is a key technology in semiconductor industry43. Most
electronic devices—including diodes and metal-oxide-
semiconductor field-effect transistors—are based on the possibi-
lity to generate regions within a semiconductor with spatially
varying doping43. In our superlattices, the doping effect is tun-
able, reversible, and cyclable. Moreover, we demonstrated lateral
heterojunctions between areas characterized by different doping
levels, defined by scanning a laser light over the target areas in the
superlattice. All together, these characteristics make our control
over the doping in 2DMs unique. Unconventional device archi-
tectures can be envisaged, such as diodes in which the p- and n-
regions can be re-defined and inverted, resulting in tunable and
reversible rectification.

Our approach, relying on molecular engineering of 2DMs, is of
general applicability as successfully demonstrated for both MoS2
and graphene. Therefore, the ultrathin photo-switchable mole-
cular crystals could be integrated as an additional quasi-2D layer
in vertical inorganic van der Waals heterostructures44 with the
purpose of providing a photo-responsivity with no analog in
2DMs. Our work offers a yet unexplored solution to supramo-
lecular electronics, in which atomic precision in molecular self-
assembly is tailored not to optimize charge transport but rather to
control it by imparting new properties to a high-performing
material, enabling the realization of multifunctional, high-
performance devices.

Methods
Synthesis and characterization of the SP derivative. Full details regarding the
characterization and synthesis of the SP derivative are given in Supplementary
Note 1.

Optical characterization. Absorption spectra were recorded at room temperature
(25 °C) with a JASCO V-670 spectrophotometer and all solutions were examined in
quartz cells with 1 cm pathlength (HELLMA) with a concentration of 0.05mgmL−1.
The thin-film experiments were carried out in a nitrogen atmosphere.

X-ray and UV photoelectron spectroscopy. Surface XPS/UPS studies were per-
formed at the BEAR endstation (BL8.1L) at the left exit of the 8.1 bending magnet
of the ELETTRA synchrotron facility in Trieste (Italy). The data were collected
using a hemispherical electron energy analyzer with an energy resolution of 150
meV in normal emission geometry. Photon energies of 505 and 640 eV were used
for the N 1s and O 1s core levels, respectively. In this way, the kinetic energy of the
emitted photoelectrons was kept at ∼100 eV for each chemical species to probe
similar sample depths with high surface sensitivity. For the determination of the
work function, the secondary electron cutoff spectra were measured using a photon
energy of 40 eV, with the sample biased at −20 V to clear the analyzer work

function. For the synchrotron measurements, the samples were irradiated in situ in
ultra-high-vacuum using an optical fiber positioned close to the sample surface
available at the BEAR beamline. The UV light irradiation (λ= 375 nm) was per-
formed with power density comparable with that used for the 2D assembly iso-
merization described below. Instead, owing to the technical impossibility of
focusing a green laser to a spot of a few micrometers at the beamline, the green
light irradiation (λ= 532 nm) was carried out with significantly lower power (1
mW cm−2) than that used for inducing the isomerization of the 2D assembly
described above. Full details regarding the X-ray photoemission electron micro-
scopy (XPEEM) images of MoS2 flakes used for device fabrication (see below) are
given in Supplementary Fig. 9.

2D assembly formation and SP-to-MC isomerization. The 2D assemblies at the
monolayer limit were obtained by spin-coating molecules from cyclohexane
solutions (0.1 mgmL−1) onto either HOPG or MoS2 bulk crystals for STM
experiments and onto single-layer MoS2 and graphene devices. A mild annealing of
the samples (55 °C, 30 min) after spin-coating the SP film was performed to ensure
the evaporation of cyclohexane. In order to trigger the SP→MC isomerization, the
so-obtained assemblies were irradiated with an UV lamp (UV-6 L/M Herolab, λ=
365 nm, power density= 1.7 mW cm−2) for 45 min in a nitrogen-filled glovebox.

MC-to-SP isomerization. The MC→SP isomerization was obtained by irradiation
with a green laser focused to a size of 2 × 2 μm2 through a 50× objective in a
confocal Renishaw InVia Raman microscope (λ= 532 nm, power P= 30 μW,
exposure time t= 0.1 s). For flakes with size >2 μm, the laser was scanned on the
flake surface irradiating a spot every 200 nm. The focused laser allowed us to
perform a spatially confined irradiation of a relatively big graphene flake in a device
with a channel length >8 μm by scanning the laser light only over a limited region
of the flake. The samples were kept in a nitrogen-filled Linkam environmental
chamber during the green irradiation.

STM and AFM. STM measurements were carried out by using a Veeco Scanning
Tunneling microscope (multimode Nanoscope III, Veeco) operating with a pie-
zoelectric scanner, which allowed the mapping of a maximum area of 1 × 1 µm2. As
substrates, we used HOPG and bulk MoS2 (HQgraphene). The substrates were
glued onto a magnetic disk and an electric contact was made with conductive silver
paint (Aldrich Chemicals). The STM tips were mechanically cut from a Pt/Ir wire
(90/10, diameter 0.25 mm). The images were obtained in air at room temperature.
The raw STM data were processed through the application of background flat-
tening, and in Fig. 1e–g in the main text the drift of the piezo was corrected using
the underlying graphite lattice as a reference. The lattice of the underlying substrate
was visualized by lowering the bias voltage Vt to 10 mV and keeping the same
average tunneling current It= 60 pA. Tip height and current were measured for all
STM images.

AFM characterization was carried out in a Multimode V (Veeco) microscope
equipped with a Nanoscope V controller. Commercial silicon cantilevers with a
nominal spring constant of 40 Nm–1 were used for morphological characterization
in tapping mode.

Device fabrication and characterization. Back-gated devices based on scotch-
tape exfoliated graphene and MoS2 flakes were fabricated on SiO2 (90 nm)/Si
substrates with a Microtech laser writer, equipped with a 405 nm laser standard
photoresist (AZ1505, Microchemicals). A 35-nm-thick Au film (without
adhesion layer) was thermally evaporated onto the patterned photoresist and lift-
off was carried out in warm acetone (40 °C). After fabrication, the devices were
immersed in warm n-methyl-2-pyrrolidone (40 °C) overnight and rinsed with
acetone and isopropanol. The MoS2 devices were annealed overnight in ultra-high-
vacuum at 140 °C. All devices were kept in a nitrogen-filled glove box in which they
could be measured in a probe station connected to a Keithley 2636. After this
procedure, the standard electrical characteristics of ideal graphene and MoS2
were measured. In particular, for the graphene device shown in Fig. 3 the charge
neutrality point was found at VCNP= 0 V, with balanced hole–electron mobility
>5000 cm2 V−1 s−1. For MoS2, the device in Fig. 3 shows the typical characteristics
of MoS2 transistors, with a mobility μ= 32 cm2 V−1 s−1 and intrinsic n-type
doping leading to a threshold voltage VT=−1 V. The reproducibility of the results
was verified by using five graphene and four MoS2 devices. In both cases, the
results were in excellent qualitative and quantitative agreement with the data
reported in Fig. 3.

To ensure the quality of the device fabrication protocol, a representative flake of
a MoS2-based device was characterized in terms of surface chemical states and
relative elemental composition via XPEEM (see Supplementary Fig. 9).

The carrier mobility was determined using the formula:

μ ¼ dIDS
dVGS

�
�
�
�

�
�
�
�

L
W

t
ε0εr

ð1Þ

where L and W are the 2DM channel length and width, ε0 is the vacuum
permittivity, t is the thickness of gate oxide, and εr is the relative dielectric
permittivity of SiO2.
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The isomerization-induced charge density was calculated as:

Δn ¼ ε0εr
ΔV
et

ð2Þ

where t is the thickness of gate oxide, ε0 is the vacuum permittivity, εr is the relative
dielectric permittivity of SiO2, and e is the elementary charge. For graphene, ΔV
was calculated as the difference in the position of the charge neutrality point before
and after isomerization; for MoS2, ΔV was calculated as the difference in the
threshold voltage before and after isomerization.

MM and MD simulations. Full details regarding the MM/MD and DFT calcula-
tions calculations are given in Supplementary Note 2 and Supplementary Fig. 10.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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