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ARTICLE INFO ABSTRACT
Keywords: We report on the synthesis and crystallization behavior of poly(propylene oxide) (PPO) with tunable molar
Poly(propylene oxide) masses and defined stereoconfiguration (PPO-R and PPO-S), obtained through controlled oxyanionic ring-

Crystallization
Molecular weight
Stereoconfiguration
Racemic blends

opening polymerization using hexaethylene glycol (EG6) as the initiator, with an equimolar mixture of potas-
sium acetate (KOAc) and 18-crown-6 ether (18C6). This method provides access to well-defined enantiopure PPO
samples across a broad range of number-average molecular weights (M), allowing for the independent evalu-
ation of how molecular weight and stereoconfiguration influence crystallization. Morphology, thermal transi-
tions, structural features, and crystallization kinetics were analyzed using Polarized Light Optical Microscopy
(PLOM), Differential Scanning Calorimetry (DSC), in situ Wide- and Small-angle X-ray Scattering (WAXS/SAXS),
and, for the first time in PPO, thermal fractionation via Successive Self-nucleation and Annealing (SSA). Both
PPO-R and PPO-S display increasing thermal transitions with My, eventually reaching a plateau. Although they
crystallize into identical orthorhombic unit cells, the two enantiomers show small yet consistent and repro-
ducible kinetic differences across all techniques used: PPO-R crystallizes faster at low My, while PPO-S does so at
high M,. This crossover, related to a specific M, value, though unexpected for two enantiomeric polymers
forming identical lattices, was consistently observed by different experimental techniques across nucleation,
spherulitic growth, overall crystallization rate, and SSA fractionation. This confirms the effect is real and
experimentally reliable. We provide a mechanistic interpretation suggesting that stereoconfiguration could be
influencing melt dynamics, likely through subtle differences in chain diffusion and entanglement onset. Racemic
PPO-R:S blends were prepared at both low and high M,. No stereocomplexation was observed; however, these
blends exhibited lower melting transitions and slower crystallization kinetics than the enantiopure samples,
possibly due to packing frustration between chains of opposite helicities. Overall, molecular weight and ster-
eoconfiguration are effective parameters for tuning PPO crystallization kinetics, thereby enabling PPO-based
blends and copolymers with controlled crystallization rates and expanded processability in biodegradable
polymer systems.
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1. Introduction

Extensive research is underway to develop biobased and biode-
gradable polymers with an intrinsically low environmental impact.[1,2]
Blending and copolymerization are common methods for enhancing the
properties of biobased and biodegradable polymers. Polyethers can
introduce additional degradation sites through their ether linkages
when blended or copolymerized with poly(lactic acid) (PLA), which
primarily degrades in its amorphous regions through ester scission.
[3-8] These hybrid systems offer opportunities to accelerate degrada-
tion while improving processability and the tunability of mechanical
and thermal properties. [9] Among polyethers, poly(ethylene oxide)
(PEO) has been the most widely explored. It is widely used in block
copolymers and PLA blends, [9-14] yet PEO/PLA blends often undergo
phase separation during crystallization, a limitation that compromises
transparency and affects water uptake and solubility. [15-17] These
drawbacks motivate the search for alternative polyethers that can
enhance miscibility and performance in biodegradable polyester
formulations.

Poly(propylene oxide) (PPO) has emerged as a promising yet
underexplored candidate. PPO is a chiral polyether (Scheme 1) derived
from the ring-opening polymerization of propylene oxide, in which each
repeating unit contains a stereogenic center at the tertiary carbon.
Depending on the polymerization catalyst, isotactic PPO-R and PPO-S,
syndiotactic, or atactic variants can be obtained, each displaying distinct
physical properties.[18] Commercial PPO is typically atactic and
amorphous, whereas isotactic PPOs (iPPO) are semicrystalline, exhib-
iting a melting temperature (Tp,) around 67 °C and a low glass transition
temperature (T, ~ —76 °C). [19-21] Its refractive index (1.45-1.46)
[22], closely matches that of PLA (1.45-1.50) [23], ensuring trans-
parency in blends. PPO is also biocompatible and non-toxic,[19,20] and
its hydroxy-telechelic derivatives are widely used as polyether polyols in
polyurethane foams, elastomers, and adhesives, [24,25] highlighting its
industrial maturity and availability.

Despite these advantages, the crystallization behavior of iPPO re-
mains poorly understood. Early work by Magill et al., [22] Booth et al.,
[26] and Cooper et al., [27] described crystalline forms and optical
textures of iPPO but did not clearly differentiate between the R and S
enantiomers, nor did they explore the influence of molecular weight.
Later studies [28,29] focused mainly on melt-crystallized morphology
(e.g., banded spherulites and lamellar organization) and on radial
growth rates under specific nucleating conditions, but a systematic
decoupling of the influence of stereoconfiguration and number-average
molecular weight (M;;) on overall crystallization has never been re-
ported. Likewise, no study to date has examined the crystallization
behavior of racemic PPO-R:S mixtures, and the possibility of stereo-
complex or racemate formation remains unexplored.

A broader look at chiral polymer crystallization highlights why such
a study is needed. The benchmark system PLLA/PDLA illustrates how
molecular handedness can dramatically affect crystallization: Both poly
(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) can be synthesized
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with high optical purity and, under comparable M, and thermal his-
tories, each enantiomer homocrystallizes into the same a-form with
essentially identical melting/crystallization behavior, consistent with
their thermodynamic equivalence as enantiomeric polymers.[30-32]
However, PDLA is often described as amorphous in the literature
because commercial samples typically have a lower molecular weight or
slightly lower optical purity, which strongly retards homocrystalliza-
tion. While the effect of molecular weight on the crystallization of PLLA
has been systematically investigated, [33,34] no analogous series exists
for PDLA. Most studies employ a single PDLA grade, typically of lower
M,, as a reference or for stereocomplex formation, precluding any
rigorous comparison of molecular-weight dependence between the two
enantiomers. The influence of M, has therefore been examined almost
exclusively at values well above the entanglement molecular weight (M,
~ 8-10 kg/mol), [35] where chain reptation dominates melt dynamics
and effectively masks any subtle influence of stereoconfiguration on
nucleation or growth kinetics. Consequently, potential kinetic asym-
metries between PLLA and PDLA remain experimentally unexplored in
the case of homocrystallization. The effects of molecular weight have
been studied in the case of stereocomplexation. [36]

In contrast, for poly(3-hydroxybutyrate) (PHB), comparisons be-
tween enantiomers are experimentally limited: only PHB-R is naturally
produced by bacterial synthesis, [37] whereas PHB-S can be obtained
only through challenging stereoselective polymerization of (S)-
p-butyrolactone, yielding low-molar-mass oligomers. [38] Conse-
quently, no direct comparison between high-M, PHB-R and PHB-S has
been reported, leaving the potential influence of molecular chirality
largely unexplored in this system.

When mixtures of opposite enantiomers are possible, markedly
different behaviors arise. In PLLA/PDLA blends, chains of opposite
chirality co-crystallize into highly stable stereocomplex crystals (T, ~
230 °C) that show slower nucleation but enhanced thermal and me-
chanical stability. [39-41] This occurs particularly with PLLA and PDLA
of low M, and equal molar ratio.[39] By contrast, PHB-R:S mixtures do
not form stereocomplexes; the presence of the opposite enantiomer
disrupts regular chain packing, markedly depressing T, and crystalli-
zation temperature (T,) and yielding materials with very low crystal-
linity or even a partially amorphous morphology. [42] These two cases
illustrate the extremes of chiral crystallization behavior, cooperative
stabilization versus packing frustration, and demonstrate how chirality
can profoundly influence crystallization when accessible.

Advances in isospecific oxyanionic ring-opening polymerization over
the last decade have finally enabled the synthesis of PPO-R and PPO-S
with controllable molecular weight and narrow dispersity [24] opening
the possibility of rigorously evaluating how M, and stereoconfiguration
jointly affect crystallization in a chiral polyether. This is particularly
compelling because, in principle, enantiomeric polymers such as PPO-R
and PPO-S should be thermodynamically equivalent in an achiral
environment. Nevertheless, subtle kinetic or morphological differences
could arise from their opposite helical sense, especially in systems with
low entanglement molecular weight, high chain flexibility, and fast
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Scheme 1. General structure of a) PPO-R and b) PPO-S.
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segmental dynamics.

In this study, we present the first detailed and controlled investiga-
tion of PPO-R, PPO-S, and PPO-R:S blends across a wide M, range, using
Differential Scanning Calorimetry (DSC), Wide- and Small-angle X-ray
scattering (WAXS/SAXS), Polarized-light Optical Microscopy (PLOM),
and Successive Self-nucleation and Annealing (SSA). We clarify the
separate effects of molecular weight and stereoconfiguration on thermal
transitions, crystallization kinetics, lamellar structure, and spherulitic
morphology. This comprehensive analysis offers new insights into how
molecular chirality influences crystallization and melt behavior in PPO,
and it provides rational design principles for adjusting crystallization
properties and compatibility in PPO-based biodegradable blends, espe-
cially in PLA/PPO formulations, where controlling crystallization is
crucial for transparency, processability, and performance.

2. Experimental
2.1. Materials

(+)-Propylene oxide ((R, S)-PO, > 99 %, Aldrich), (R)-(+)-propylene
oxide, and (S)-(—)-propylene oxide ((R) and (S)-PO, > 99 %, Aldrich)
were dried over CaHj, distilled and stored over molecular sieves.
Hexaethylene glycol (EG6, Merck, My, ~ 300 g mol ') was dried by three
azeotropic distillations using tetrahydrofuran (THF), while potassium
acetate (KOAc, > 99 %, VWR) was dried by heating at 100 °C under
vacuum for 48 h, and 18-Crown ether-6 (18C6, 99 %, ACROS Organics)
was dried by three azeotropic distillations of THF. All monomers,
catalyst components, and solvents were stored in a glovebox under
controlled Oy and H»0 levels (O2 < 6 ppm, HyO < 1 ppm). THF was
purified using an MBraun SPS system. All reagents were used as received
unless otherwise specified.

2.2. Synthesis procedure

2.2.1. General procedure for (+)-PO homopolymerization

In a glove box, a vial, equipped with a stir bar, was charged with EG6
(20.6 mg, 0.068 mmol), KOAc (6.7 mg, 0.068 mmol), 18C6 (18.2 mg,
0.068 mmol), and (+)-PO (0.717 g, 12.3 mmol). The reaction was car-
ried out at 21 °C, yielding rac-PPO as a clear viscous oil. The product was
analyzed by 'H and '3C NMR spectroscopy. The number-average molar
mass (Mp) and the dispersity (Py; = My,/M,) were determined by SEC
analysis.

'H NMR (CDCl3, 500 MHz): 5 1.08 — 1.12 (m, —CH3), 3.36 — 3.58
(broad m, —O — CHy — CH(CH3) — O — ), 3.64 (broad m, —O — CHy —
CH; — O — ), 3.91 — 3.95 (m, — CH(CH3) — OH). '3C NMR (CDCl3, 101
MHz): 6 17.45 (—CH3), 73.09 (—O — CH3 — CH(CH3) — O—, rrm or mrr),
73.42 (—0 — CH; — CH(CH3) — O—, m), 75.23 (—O — CH, — CH(CH3) —
O—, 11), 75.47 (-0 — CHy — CH(CH3) — O—, mr + rm), 75.66 (—O —
CHy — CH(CH3) — O—, mm).

2.2.2. General procedure for (R)-PO homopolymerization

In a glove box, a vial equipped with a stir bar was charged with EG6
(15.5 mg, 0.051 mmol), KOAc (5.1 mg, 0.051 mmol), 18C6 (13.6 mg,
0.051 mmol), and (R)-PO (2.19 g, 37.7 mmol). The reaction was carried
out at 21 °C. Kinetic monitoring was performed by SEC and 'H NMR
spectroscopy. Upon completion, the polymer was isolated by precipi-
tation from a THF/n-heptane (2:7), yielding a white powder (1.90 g).

H NMR (CDCl3, 500 MHz): § 1.11 — 1.16 (m, —CHz), 3.40 — 3.56
(broad m, —O — CHy — CH(CH3) — O — ), 3.64 (broad m, —O — CHy —
CHy — O —), 3.92 — 3.95 (m, — CH(CH3) — OH). 13C NMR (CDCl3, 101
MHz): § 17.49 (—CH3), 73.56 (—O — CH; — CH(CH3) — O—, m), 75.70
(—O — CHy — CH(CH3) — O—, mm).

2.2.3. General procedure for (S)-PO homopolymerization
In a glove box, a vial equipped with a stir bar was charged with EG6
(7.3 mg, 0.024 mmol), KOAc (2.38 mg, 0.024 mmol), 18C6 (6.6 mg,
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0.024 mmol), and (S)-PO (1.03 g, 17.7 mmol). The reaction was carried
out at 21 °C. Kinetic monitoring was performed by SEC and 'H NMR
spectroscopy. Upon completion, the polymer was isolated by precipi-
tation from a THF/n-heptane (2:7) mixture, yielding a white powder
(95 mg).

'H NMR (CDCl3, 500 MHz): 6 1.11 — 1.16 (m, —CHz), 3.40 — 3.56
(broad m, —O — CH, — CH(CH3) — O — ), 3.64 (broad m, —O — CH, —
CH; — O —), 3.92 — 3.95 (m, — CH(CH3) — OH). '3C NMR (CDCl3, 101
MHz): 6 17.58 (—CH3), 73.58 (—O — CH, — CH(CH3) — O—, m), 75.71
(-0 — CH; — CH(CH3) — O—, mm).

2.2.4. General procedure for preparing PPO-R/PPO-S (PPO-R:S) racemic
blend

Two sets of enantiomeric PPO samples (R and S) with comparable
M, nmr (~ 2,700 and ~ 11,400 g/mol) were combined in a 1:1 wt ratio
and dissolved in chloroform. The resulting solution was added dropwise
to cold methanol (ten times volume excess), inducing precipitation. The
solid was collected by filtration and dried under vacuum at room tem-
perature prior to the analysis.

2.3. Characterization methods

2.3.1. Nuclear magnetic resonance (NMR) spectroscopy

'H and 13C NMR spectra were recorded at room temperature using a
Bruker AVANCEII 500 MHz spectrometer. Chemical shifts were used to
confirm polymer structure, tacticity, and end groups. Detailed acquisi-
tion parameters are provided in the Supporting Information (Section
S1).

2.3.2. Size exclusion chromatography (SEC)

SEC analyses were performed in THF at 35 °C using a Triple Detec-
tion Polymer Laboratories liquid chromatograph equipped with a
refractive index, UV, light, and capillary-viscometer detectors. Number-
average molar mass (M,) and dispersity (Py) were determined using
universal calibration and monitored throughout polymerization.
Instrumental configuration and column specifications are given in the SI
(Section S1).

2.3.3. Circular dichroism (CD) spectroscopy

CD spectra were recorded on a JASCO J1500 spectropolarimeter
with a 1 mm optical path length quartz cuvette at 25.0 & 0.1 °C. Samples
(R1 and S1) were dissolved in acetonitrile at 0.857 mg mL ! (0.013M as
the concentration of the optically active repeating units) from 600 nm to
185 nm at a scan rate of 50 nm min~'. Molar ellipticity was calculated
using standard normalization procedures (SI, Section S1).

2.3.4. Differential scanning calorimetry (DSC) analysis

DSC experiments were conducted in a PerkinElmer 8500 calorimeter
equipped with a refrigerated cooling system, Intracooler 3, under an
ultrapure nitrogen atmosphere at a 20 mL/min flow rate. Samples (3-5
mg) were sealed in aluminum pans. The general procedure consisted of
erasing thermal history by heating to Tp, + 30 °C for 3 min, followed by
controlled cooling/heating steps. Only the key conditions are listed
below; full details appear in SI (Section S2).

2.3.4.1. Non-isothermal DSC scans. Samples were cooled from the melt
to —40 °C at 20 °C/min, held isothermally for 1 min, and reheated at
20 °C/min. Melting/crystallization temperatures and enthalpies were
extracted from the second heating and cooling scans.

2.3.4.2. Isothermal experiments. The minimum crystallization tempera-
ture (T, min) preventing crystallization during quenching (60 °C/min)
was first determined following the Miiller et al. protocol. [43]
Isothermal experiments [43,44] were then conducted for T, > T, min, and
the resulting melting scans (after the isothermal step) were used for
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Hoffman-Weeks extrapolation of the equilibrium melting temperature,
Tw° (SI, Section S3).

2.3.4.3. Successive Self-nucleation and Annealing (SSA) thermal
fractionation. SSA fractionation followed the standard Miiller et al.
[45-48] protocol. A qualitative scheme was used with T jgeq = 65 °C,
identified via self-nucleation [49-52] experiments (SI, Section S4).
Samples were fractionated across 5 °C windows covering the full melting
range. The final heating scan displayed the resulting lamellar pop-
ulations. The complete SSA step sequence is provided in the SI (Section
S4).

2.3.5. Wide-Angle X-ray scattering (WAXS) and Small-Angle X-ray
scattering (SAXS)

Simultaneous WAXS/SAXS measurements were carried out at the
BL11-NCD beamline (ALBA Synchrotron, Barcelona) using the same
thermal protocol as non-isothermal DSC. Scattering profiles were
collected continuously during cooling and heating. WAXS was employed
to identify crystalline reflections and interplanar distances (d-spacings),
while SAXS provided information on long periods and lamellar thick-
nesses. Detector configurations, acquisition rates, sample-detector dis-
tances, and calibration procedures are detailed in the SI (Section S2).

2.3.6. Polarized light optical microscope (PLOM) analysis

Spherulite development was observed using an Olympus BX51 mi-
croscope equipped with a Linkam TP-91 hot stage. Thin films (~10 pm)
were prepared by melting between glass slides. Two sets of experiments
were conducted: (i) Non-isothermal PLOM, where samples were crys-
tallized from the melt at 20 °C/min; and (ii) Isothermal PLOM, where
samples were quenched at 50 °C/min to the target T, with radius
changes recorded over time to determine growth rates. Banding peri-
odicity was measured from micrographs. Growth-rate data were fitted
using the Lauritzen-Hoffman equation. Full imaging conditions are
detailed in the SI (Section S5).

3. Results and discussion

3.1. Stereodefined PPO samples synthesized by oxyanionic
polymerization from EG6 initiator

Isotactic polypropylene oxide (iPPO) samples were synthesized via
oxyanionic polymerization of enantiopure (R)- or (S)-propylene oxide
(PO), using hexaethylene glycol (EG6) as a difunctional initiator acti-
vated by a 1:1 mixture of potassium acetate and 18-crown-6 ether
(KOAc/18C6).[53] Polymerizations were conducted under solvent-free
conditions at room temperature, with an initial [OH]o/[KOAc/18C6]¢
ratio of 2, and M, was tuned in a controlled manner by adjusting the
initial [PO]o/[EG6], ratio (37.5, 90, 190, and 365) (Table 1). At a low
targeted degree of polymerization (DP), conversions reached 99 %
within 2 days, whereas higher targeted M, required up to 7 days. For
comparison, a racemic PPO sample (rac-PPO) was synthesized under
identical conditions, targeting a DP of 90([POlo/[EG6]y = 90). This
racemic reference allows distinguishing purely stereoconfiguration ef-
fects from those derived from M, variations.

A clear macroscopic difference was observed: iPPO samples precip-
itated as white powders, whereas rac-PPO remained a viscous oil, indi-
cating the expected strong influence of tacticity on crystallinity (Fig. S1).
Nuclear magnetic resonance (NMR) spectroscopy and size-exclusion
chromatography (SEC) analyses confirmed successful polymerization
and controlled chain growth (Table 1, Figs. S1 to S3). As expected, the
M, increased proportionally with the targeted DP ([(X)-POlo/[EG6]¢
ratio, with X =R or S), as shown in Table 1 and Fig. 1a. It is worth noting
that the sample codes used in Table 1 (e.g., PPO-R-2.6 or PPO-S-11.6)
indicate the enantiomeric form (R or S) followed by the M, determined
by 'H NMR divided by 1000. The polymerizations remained well-
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Table 1

Enantiomerically pure isotactic PPO samples initiated from EG6 and prepared
using a 1:1:1 ratio of [EG6]0/[18C6]o/[KOAc],. [a] Determined by 'H NMR
spectroscopy using the —-CH,CH(CH3)OH proton on the terminal unit of the
copolymers. [b] Determined by SEC calibrated with polystyrene (PS) standards
at 35 °C.

R-Sample  [(R)-POlo/ M Manur M sec Dy™!
[EG6]o (g (g
mol™1) mol 1! mol )P
PPO-R-2.6 37.5 2100 2630 3800 1.10
PPO-R-5.5 90 5200 5450 7320 1.09
PPO-R-9.5 190 11,000 9530 12,130 1.10
PPO-R- 365 21,200 11,080 15,400 1.13
11.1
S-Sample [(S)-POlo/ My, Mo e My sec Dy ™
[EG6]o (€4 (g g
mol™1) mol 1! mol~ )P
PPO-S-2.8 37.5 2100 2780 3800 1.07
PPO-S-7.5 90 5200 7540 7500 1.09
PPO-S-8.9 190 11,000 8886 10,200 1.09
PPO-S- 365 21,200 11,600 12,500 1.09
11.6

controlled, yielding monomodal SEC traces with narrow dispersity
values (Py < 1.1) and a regular shift toward lower retention volumes
over time (Fig. S3). To evaluate the dependence of crystallization pa-
rameters on molecular weight, the M), values obtained from SEC were
used, as these best reflect the effective molar mass distribution relevant
to crystallization processes. Comparisons of relevant parameters as a
function of M, based on NMR data, are provided in the SI. The resulting
rac-PPO similarly exhibited a narrow molecular weight distribution (D,
< 1.15) and an My, sgc of 6,500 g mol ™! (Fig. S1), closely matching those
of isotactic PPO samples: PPO-R-5.5 and PPO-S-7.5, validating the
reproducibility of the polymerization system. Wide-angle X-ray scat-
tering (WAXS) patterns confirmed that the crystalline structure of the
samples corresponds to that of the PPO unit cell (Table S1). Additionally,
small-angle X-ray scattering (SAXS) patterns in the melt showed no signs
of phase separation (Fig. S4), indicating that the materials are homo-
geneous and do not undergo microphase separation.

13C NMR spectroscopy provides clear evidence of the microstructural
order in isotactic PPO samples. For example, the spectra of PPO-R-5.5
and PPO-S-7.5 show distinct and well-defined peaks at chemical shift (5)
of 73.58 ppm and 6§ = 75.71 ppm, which correspond to the methylene
and methine carbon environments in the ~-O—-CH,-CH(CHj3)-O- repeat
units arranged in meso (m) and meso-meso (mm) diads, respectively.
This specific distribution confirms the ordered spatial arrangement of
monomers along the isotactic structure. In contrast, the 13C NMR spec-
trum of rac-PPO of similar chain length exhibits broadened peaks in the
same spectral regions, with a mixture of meso (m) and racemic (r) diad
sequences: rrm or murr at § of 73.09 ppm, m at 73.42 ppm, rr at 75.23
ppm, mr + rm at 75.47 ppm, and mm at 75.66 ppm. This complex pattern
reflects a random distribution of stereocenters along the polymer chain,
confirming the atactic nature of rac-PPO (Fig. S5).

Circular dichroism (CD) spectra were recorded in acetonitrile (ACN).
This solvent ensures complete solubility of all polymer samples and
provides a suitable UV cutoff for the high-energy absorption bands. The
isotactic PPO samples: PPO-R-2.6 and PPO-S-2.8 exhibited strong,
mirror-image CD signals with absorption maxima at ca. 190 nm
(Fig. 1b), consistent with values reported for structurally related chiral
ethers such as (S)-isobutyl ethyl ether in heptane solution.[54,55] These
bands are attributed to n — ¢* transitions, characteristic of saturated
molecules bearing lone pair-containing atoms. The racemic PPO, ob-
tained by copolymerizing equimolar amounts of (R)- and (S)-PO, was
CD-inactive as expected. The calculated molar extinction coefficients (e,
ca. 800 M~ ! em ™) and the molar circular dichroism coefficient (Aeg, ca.
1M ! em™1), based on the concentration of chiral PPO repeating units,
are in good agreement with reported values for these monomeric
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Fig. 1. a) SEC traces of EG6 initiator (dashed line) and corresponding isotactic PPO samples. b) UV and CD spectra of isotactic PPO samples (PPO-R-2.6 and PPO-S-

2.8) and racemic PPO (rac-PPO) recorded in ACN.

analogues. Higher molar mass samples (PPO-R-11.1 and PPO-S-11.6)
showed nearly identical spectral profiles, indicating that the CD
response originates from the stereoregular configuration of the PPO
chains rather than from long-range secondary structure formation.

3.2. Morphology and Spherulite growth (PLOM)

The effects of M, and stereoconfiguration on PPO crystallization
behavior were analyzed using PLOM, with a focus on morphological
changes and spherulitic growth. As detailed in the SI (Section S5), all
PPO samples, regardless of stereoconfiguration or M,, formed well-
developed negative spherulites during cooling from the melt at 20 °C/
min (Fig. S17). This confirms that stereoconfiguration does not alter the
qualitative spherulitic morphology under non-isothermal conditions.

The PPO spherulitic morphology was also examined under
isothermal conditions (Fig. 2). All samples developed well-defined
negative spherulites with Maltese-cross and banding extinction pat-
terns. While the overall morphology is unaffected by stereo-
configuration, a systematic and reproducible difference was detected:
PPO-R consistently showed a larger banding periodicity than PPO-S at
all crystallization temperatures (Fig. S18). Since banding originates
from lamellar twisting [56] and is highly sensitive to the asymmetry
between the two crystal faces, this observation suggests that the heli-
coidal conformations adopted by PPO-R and PPO-S chains in the melt
may not be perfectly equivalent, despite leading to enantiomorphic

crystal lattices. In chiral polymers, slight differences in the stability or
cooperativity of P (right-handed)- and M (left-handed)-type local helices
[57,58] can influence the surface-stress imbalance that drives lamellar
twisting. [59-62] Thus, the distinct banding periodicities likely reflect
subtle melt-state conformational biases between the two enantiomers.

These melt-state differences provide a first indication that PPO-R and
PPO-S are not dynamically equivalent, even though their crystalline unit
cells are identical. Because lamellar banding is a melt-sensitive phe-
nomenon, the observed disparity in pitch is consistent with the two
enantiomers experiencing slightly different segmental mobilities or
frictional environments before crystallization. As shown in the following
sections, these differences are evident in both non-isothermal and
isothermal crystallization kinetics, including a reproducible molecular-
weight-dependent crossover in growth, nucleation, and overall crystal-
lization rates.

The spherulitic growth rate (G) was determined under isothermal
conditions by cooling the samples to selected T, values between 7 and
45 °C (Fig. S19, SI Section S5).

Fig. 3 shows the G vs. T, plots for all samples. In this figure, the solid
lines represent the fit based on Lauritzen-Hoffman (LH) crystallization
theory. [63] The parameters obtained are listed in Table S5. The
experimental data only captured the secondary nucleation-dominated
region of the typical bell-shaped crystallization window, [64-67] since
at lower T crystallization during cooling was too fast to measure, and at
higher T, secondary nucleation was greatly reduced. [64-67] The
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Fig. 2. PLOM representative micrographs for PPO samples. Micrographs were taken under isothermal conditions at the indicated T. and after 120 s for all

the samples.

extracted values from Figs. 3a and b are summarized in Table S6.

Figs. 3a and b show that increasing M, systematically shifts the G-T.
curves to higher temperatures, particularly between the low-M,, (PPO-R-
2.6, PPO-S-2.8) and intermediate-M,, samples (PPO-R-5.5, PPO-S-7.5).
At high M, the shift becomes less pronounced, suggesting that the
samples approach a near-plateau regime in which G is no longer strongly
dependent on Mj,. To better visualize these trends, G at constant T, and
T, at constant G were plotted as a function of M, (Figs. 3c and d).

Plotting G (at a constant T;) (Fig. 3c and S20) or T, (at a constant G)
(Fig. 3d and S21) versus M, clearly shows that higher M, enhances
secondary nucleation, leading to faster spherulitic growth (only the
secondary nucleation part of the growth kinetics was experimentally
accessible, i.e., the right-hand side of the growth rate versus T, curve).
As demonstrated by Okui et al. [68] and Mandelkern et al., [69] and
more recently Ferndndez-Tena et al., [70] when the growth rate is
plotted against molecular weight, it also forms a bell-shaped curve.
However, in this case, the left-hand side of the curve is dominated by
secondary nucleation, while the right-hand side is dominated by diffu-
sion, since increasing M, also increases the number of entanglements per
chain, hindering the diffusion of chains to the growth front. Therefore,
based on Fig. 3c, it is obvious that the range of molecular weights used in
this work falls within the left side of the G versus M, bell-shaped curve
(determined at a constant T).

When the effect of stereochemistry is examined at constant T, a clear
trend emerges. PPO-R shows faster growth than PPO-S at low M, with

differences of approximately 0.15 pm/min (Fig. 3c). At higher M,
however, this tendency becomes progressively less pronounced and
eventually reverses, with PPO-S growing slightly faster by about 0.05
pm/min. A similar Mp-dependent behavior is observed when comparing
T, at constant G (Fig. 3d), where low-M,, PPO-R requires roughly 15 °C
higher T, than PPO-S to reach a given G. Conversely, at high M, PPO-S
becomes the faster crystallizing.

Although modest in magnitude, this reproducible M,-dependent
inversion appears consistently across all measurements and therefore
represents a robust experimental feature of the system. The experi-
mental evidence suggests that stereoconfiguration may influence melt
dynamics rather than crystalline structure, resulting in different crys-
tallization behaviors at low and high M,. As discussed later, we hy-
pothesize that these effects may stem from differences in the onset of
chain entanglements and subtle stereoconfiguration-dependent varia-
tions in segmental mobility in the melt.

3.3. Non-isothermal DSC

After evaluating the morphological changes and spherulitic growth
under non-isothermal conditions, the thermal transitions were analyzed
using DSC with the same cooling and heating protocol. Fig. 4 displays
the cooling (Figs. 4a and c) and second heating (Figs. 4b and d) DSC
scans for PPO-R (Figs. 4a and b) and PPO-S (Figs. 4c and d) with
different M,. All samples show a single crystallization peak during
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Fig. 2. (continued).

cooling, which shifts systematically with M, and stereoconfiguration.
During heating, a small exothermic event occurs just before melting,
attributed to recrystallization, confirmed by WAXS/SAXS evidence of
structural reorganization at low temperatures (Figs. S6 and S7). All
thermal transition data, including melting and crystallization tempera-
tures and enthalpy (used to calculate the degree of crystallinity, X., as
shown in Equation S1), are summarized in Table S2.

Fig. 5 compares T, and T, as a function of M. Comparisons of the X,
as a function of M, are made in Fig. S8 (see details in the SI, Section S2)
and Fig. S15 (under isothermal conditions). The T, variation with My,
(Fig. 5a) shows a clear trend: T, increases with M, until approaching a
plateau, reflecting the secondary nucleation control at low M, values. As
M, decreases, nucleation becomes more difficult because shorter chains
have greater mobility and detach more easily when forming a stable
nucleus. As chain length increases, the chains are stabilized faster as
they form a secondary nucleus. Although catalytic residues or minor
heterogeneities may influence absolute T, values, the consistent Mp-
dependent trend across samples allows reliable comparison. Interest-
ingly, PPO-R reaches its T, plateau at lower M, than PPO-S, a trend that
is consistent with the inversion identified in PLOM (banding periodicity)
and growth-rate measurements and is therefore compatible with the
idea that stereoconfiguration may influence crystallization primarily
through melt-related factors rather than crystalline structure.

A more robust parameter, less sensitive to heterogeneities, is Tp,.
Fig. 5b shows that T;, increases significantly at low M, for both PPO-R
and PPO-S, then gradually levels off at higher M, mirroring the trend
seen in PLOM. At the highest M,, T, values for PPO-R and PPO-S

converge, consistent with previous research on PPO [71] and other
semicrystalline polymers: PCL [70], PE [72], and PHB [73]. For PPO-R,
the Ty, increases by about 10 °C across the M, series, while for PPO-S it
rises by roughly 20 °C. This difference indicates that stereoconfiguration
may affect how crystalline stability depends on M, in line with previous
trends seen in T. and G versus M,. Overall, both PPO-R and PPO-S
crystallize more easily as M, increases, but the extent and starting point
of this improvement vary slightly between enantiomers, again suggest-
ing a melt-state rather than a lattice-level effect.

The combined T, and Tj, results are consistent with a dynamic origin
for the stereoconfiguration effects. PPO-R and PPO-S form identical unit
cells, yet their melt-state mobilities, and thus their crystallization rates,
may well vary depending on M,,. As discussed in the next section, SSA
experiments further confirm that these differences remain under
controlled thermal fractionation conditions.

3.4. Successive self-nucleation and annealing (SSA)

To complement the non-isothermal DSC analysis and assess the
crystalline populations under conditions closer to thermodynamic
equilibrium, SSA experiments were conducted following the protocol
established by Miiller et al. [45-48]. SSA induces progressive lamellar
thickening through alternating heating and cooling cycles, enabling
comparison of the thermal fractionation capacity across samples. A
qualitative fractionation protocol was chosen, using a single T geat =
65 °C, the highest ideal self-nucleation temperature among all materials
identified via SN experiments (SI, Section S4), to ensure consistent
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comparison, along with a fractionation window of 5 °C covering the
entire melting range of all samples.

Fig. 6 shows the final DSC heating scans after the SSA treatment for
all samples. Vertical lines mark the T values, and the segmented line

indicates the initial T; of the procedure, i.e., the Tj;gq. The melting
peaks are labeled according to their origin. Melting peak 1 corresponds
to an annealed population mainly produced during the 5 min at Ty ;.
Melting peak 2 forms at T 2, and so on. These fractions come from the
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Fig. 4. DSC cooling (a,c) and heating (b,d) scans at 20 °C/min for PPO-R (a and b) and PPO-S (c and d) samples.

molecular weight distribution and, importantly, from intermolecular
interactions that result in different crystal stabilities, consistent with the
behavior recently reported by Sangroniz et al. [74].

All PPO samples, regardless of stereoconfiguration, exhibited quali-
tatively similar SSA profiles and the same number of fractions. However,
subtle and reproducible stereoconfiguration-dependent effects were
observed, fully consistent with the melt-state differences inferred from
PLOM and DSC. First, the fractionation quality, evaluated by the relative
sharpness and separation of the fractions, was higher for PPO-S at low

M, than for PPO-R of similar M,. The better-defined fractions in PPO-S
suggest enhanced lamellar thickening or chain mobility during anneal-
ing at low Mp,. At high M, the SSA profiles of PPO-R and PPO-S became
more similar. Furthermore, although PPO-R-2.6 and PPO-S-2.8 have
comparable Mj, fraction 2 appears at a higher temperature for PPO-R,
indicating that PPO-R chains produce slightly thicker or more stable
lamellae under identical annealing conditions. This observation is
consistent with possible melt-dynamics differences inferred from PLOM
and DSC: at low M,, PPO-R exhibits faster crystallization and an earlier
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onset of crystallinity enhancement. The agreement across techniques is Regarding the M, effect, both PPO-R-2.6 and PPO-S-2.8 lack fraction
therefore consistent with the view that stereoconfiguration may influ- 1 because Ty ; is above their effective melting range; the first fraction
ence crystallization through melt dynamics rather than differences in appears only at T 2. As M, increases, fraction 1 becomes clearly visible,
crystalline structure. indicating that longer chains form thicker lamellae capable of surviving
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conditioning at T,;. This trend is consistent with the expected
molecular-weight dependence of lamellar stability observed in other
semicrystalline polymers. [70,75].

Plotting the melting point of the fraction that melts at the highest
temperature, Ty, ssa, as a function of the M, (Fig. S16) yields a trend
remarkably similar to Ty, vs. M, (Fig. 5b). Likewise, comparison of T,
Tm,ssa, and Tp,° (estimated using the Hoffman-Weeks extrapolation, see
Fig. S9 and Section S3 in the SI) as a function of the M, (Fig. S10)
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during annealing.

3.5. Study of the overall crystallization kinetics by DSC

To complement the PLOM growth-rate analysis and the SSA frac-
tionation results, the overall crystallization kinetics were studied by
isothermal DSC. This technique provides access to kinetic parameters,
such as the induction time (tp) and the overall half-crystallization time

demonstrates that the M, effect prevails even under conditions closer to
thermodynamic equilibrium (i.e., after SSA). Importantly, both enan-
tiomers exhibit parallel M,-dependent trends, indicating that stereo-
configuration does not alter the crystalline unit cell but may subtly
modulate the melt-state mobility that determines lamellar stability

(750%), which reflect the combined contributions of nucleation and
growth. The experimental data obtained were analyzed using the
Avrami [76,77] and LH [63] theories (Egs. S2 (Section S3), S3 and S4
(Section S5) in the SI for more details).[44,63] To apply them, the
recently updated Crystallization Fit Origin® app, based on the plug-in
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developed by Lorenzo et al. [44] and reviewed by Pérez-Camargo et al.
[43] was used. The parameters obtained from this analysis allow
quantitative comparison of the crystallization behavior of PPO-R and
PPO-S across the M, series.

Representative isothermal crystallization exotherms and Avrami fits
(Section S3) are provided in the Supporting Information (Fig. S11). The
sigmoidal profiles were fitted using the integrated Avrami equation,
from which tp and 7599, were extracted. The Avrami exponent n ranged
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between 2.1 and 2.6 for all samples, indicating in most cases (n > 2.4)
three-dimensional spherulitic growth with sporadic or instantaneous
nucleation, consistent with PLOM observations. In addition, k™,
expressed in minfl, shows a very similar trend to the inverse of 759, i.e.,
the overall crystallization rate, 1/7594, as shown below, highlighting the
accuracy of the Avrami fitting (Table S3).

Analyzing the isothermal curves through the Avrami fit, the induc-
tion time, tp (primary nucleation period before DSC can detect any
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significant calorimetric event, corresponding to the elapsed time for
primary nucleation before crystal growth can be observed, as detailed by
Pérez-Camargo et al. [43] and other works [73]) is obtained. The inverse
of the induction time (1/tp) is proportional to the primary nucleation
rate before crystal growth begins. Figs. 7a and b show 1/t as a function
of T, for PPO-R (Fig. 7a) and PPO-S (Fig. 7b) of different M,. As ex-
pected, 1/ty decreases with increasing T, across all the PPO samples
since primary nucleation decreases as chain mobility increases at higher
crystallization temperatures (or lower AT). From Figs. 7a and b, a con-
stant 1/t value was selected to evaluate the M,, dependency, as shown in
Fig. 7c. These results show that 1/ty values increase with increasing M,
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and that a trend toward a plateau is observed, as seen with the PPO-R
sample, which, as expected, resembles the T, vs My, plot. Importantly, the
stereoconfiguration dependence is fully consistent with the trends
identified in PLOM, non-isothermal DSC, and SSA: at low M,, PPO-S
requires a larger supercooling (lower T,) to match the nucleation rate of
PPO-R, whereas at high M, this trend reverses. This confirms that the R
— S inversion is not technique-dependent but a robust feature of the
crystallization kinetics.

This crossover in primary nucleation rate provides additional evi-
dence for our hypothesis that stereoconfiguration subtly affects melt
mobility. Because primary nucleation is highly sensitive to the efficiency
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Fig. 9. WAXS diffractograms at —40 °C after cooling from the melt at 20 °C/min of a) PPO-R and b) PPO-S samples. Interplanar distances (d-spacing) of the indicated
planes as a function of the molecular weight for ¢) PPO-R and d) PPO-S samples.
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with which chains diffuse toward the heterogeneous substrate respon-
sible for nucleation (e.g., catalytic residues), even small differences in
segmental friction or local conformational preferences between the en-
antiomers can produce measurable kinetic asymmetries. This interpre-
tation is also consistent with the melt-state differences inferred from
banding periodicity and SSA fractionation.

In addition to 1/ty, the inverse of the overall half-crystallization time
(1/7509) was obtained to evaluate the overall crystallization rate. The
experiemental 1/7509 values were fitted using the LH theory [63]
(Equation S3), and the relevant parameters are summarized in Table S4.
Figs. 8a and b demonstrate that increasing M, systematically shifts the
1/75095 vs. T, curves to higher temperatures, indicating faster crystalli-
zation, fully consistent with the results of G vs. T, and 1/tp vs. T..

Figs. 8c, d, S13, and S14 further confirm that PPO-R crystallizes
faster at low M, whereas PPO-S becomes faster at high M,, whether
analyzed at constant T. (Fig. 8c) or constant 1/7509, (Fig. 8d). The
excellent agreement between nucleation, growth, overall crystallization
rate, and non-isothermal transitions indicates that the stereo-
configuration effects are detectable throughout the entire crystallization
process. The coherence across techniques also supports a melt-dynamic
origin for the R < S inversion, rather than differences in crystalline
packing. However, alternative contributions cannot be fully ruled out.
Furthermore, the LH results listed in Table S4 illustrate how the ener-
getic barrier for overall crystallization, Kg, varies with M, and stereo-
configuration, aligning with the experimental findings.

3.6. In situ WAXS/SAXS real-time synchrotron results

WAXS and SAXS measurements were carried out to evaluate whether
the stereochemical differences between PPO-R and PPO-S produce any
structural changes at the crystal or lamellar level. All measurements
followed the same thermal protocol used in DSC, enabling direct com-
parison between techniques.

Figs. 9a and b show the WAXS patterns collected at —40 °C after
cooling from the melt at 20 °C/min for PPO-R and PPO-S systems,
respectively. All diffractograms exhibit the characteristic reflections of
the orthorhombic PPO crystal structure, i.e., two main reflections at ¢ =
12.0 and 14.8 nm™~! from the planes (2 0 0) and (1 1 0) of an ortho-
rhombic unit cell with the following dimensions: a = 10.40 A, b = 13.30
A, and c = 5.96 A [21], with no detectable differences in peak positions,
intensities, or interplanar distances (d-spacings, Figs. 9c and 9d), be-
tween the two enantiomers. This confirms that PPO-R and PPO-S crys-
tallize into the same unit cell, indicating that stereoconfiguration does
not alter the crystalline lattice, as occurs in other polymers, as PLLA and
PDLA. [31] The full set of peak positions, d-spacings (Figs. 9c and 9d),
and unit-cell parameters is reported in Table S1. The absence of peak
splitting or secondary reflections indicates that the stereoconfiguration
effects identified in PLOM, DSC, and SSA do not arise from structural
polymorphism or crystal packing differences.

SAXS patterns show negligible changes in stereoconfiguration and
M,, (see Figs. S22a and S22b). Moreover, the long period and lamellar
thickness present similar values across different M;s and stereo-
configurations (Fig. S23). Thus, neither lamellar spacing nor overall
superstructure dimensions are affected by chain handedness.

Overall, the WAXS/SAXS results confirm that the crystalline unit cell
and lamellar structure are unaffected by stereoconfiguration, consistent
with the enantiomorphic nature of PPO-R and PPO-S. When combined
with DSC, PLOM, and SSA, these findings indicate that the observed
differences in crystallization kinetics most likely originate from melt-
state phenomena rather than from solid-state structural variations.
Notably, the M,-dependent inversion in growth rates and the systematic
differences in banding periodicity suggest that PPO-R and PPO-S may
not be dynamically equivalent in the melt.

These trends suggest that chain handedness may subtly influence the
stability and cooperativity of P- and M — type helical conformations,
leading to minor differences in segmental friction or local packing before
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crystallization. Additionally, small stereoconfiguration-dependent vari-
ations in the effective molecular weight of entanglement may affect the
onset of entanglement-controlled dynamics, thereby influencing nucle-
ation and growth rates. Although further rheological and spectroscopic
studies are needed to clarify the mechanistic details, the current results
offer the first direct evidence that enantiomeric PPO chains can exhibit
distinct melt behaviors even when crystallizing into identical lattices.
These experimental findings open a promising path for future research
into chirality-dependent melt dynamics and crystallization in stereo-
regular polyethers and related materials.

3.7. PPO-R:S blends

To evaluate whether mixing enantiomeric pairs affects crystalliza-
tion, racemic PPO-R:S blends were prepared from PPO-R and PPO-S
samples of comparable M,. These blends enable the decoupling of the
stereoconfiguration effect from the M, effect, while allowing compari-
son with well-known racemic systems.

Fig. 10 shows the non-isothermal DSC cooling and heating scans for
PPO-R:S samples alongside those of their enantiopure counterparts. The
blends exhibit lower T, and T, than either PPO-R or PPO-S at the same
M,,. This depression reflects reduced chain regularity within crystalliz-
able segments, consistent with packing frustration most likely arising
from the mixing of opposite helical senses. No new melting endotherms
were observed, confirming that PPO-R:S blends do not form stereo-
complexes or alternative crystalline phases. Despite a weak exothermic
shoulder appearing near 40 °C during cooling, suggesting limited ster-
eoselective interactions between the two helicities, the absence of new
reflections in the WAXS patterns (Fig. S24) confirms that no stable
stereocomplex is formed. The T;, value of PPO-R:S agrees with that re-
ported in the literature for similar M,s[78] confirming the absence of
stereocomplex when PPO-R and PPO-S are blended.

Atlow Mj, (Fig. 10a), the T, of the blend falls between those of PPO-R
and PPO-S, while at high M, (Fig. 10b), it drops slightly below both,
indicating slower overall kinetics. During heating (Figs. 10c,d), a cold-
crystallization exotherm emerges only for the low-M, blend, again
indicating that opposite helicities partially disrupt chain organization,
making crystallization less efficient in the mixed-chirality system.

WAXS and SAXS analyses (Figs. S24 and S25) show diffraction pat-
terns identical to those of the enantiopure PPOs, with d-spacings of 0.52
nm (200) and 0.42 nm (110) remaining constant across compositions.
The long period is likewise unaffected, demonstrating that the blends
retain the same orthorhombic lattice as PPO-R and PPO-S. No micro-
phase separation was detected, confirming full miscibility at the nano-
scale. Thus, the crystallization retardation observed in PPO-R:S blends is
compatible with packing frustration in the melt rather than from
changes in crystalline symmetry or lamellar architecture.

PLOM observations (Fig. S26) reveal that the racemic blends form
negative, non-banded spherulites, consistent with previous reports,
[28,32]whereas the enantiopure PPOs occasionally exhibit banded
textures. The G increases with M, as expected (Figs. 11a and b), but the
blend consistently shows slower growth than either PPO-R or PPO-S at
the same T. Figs. 11c and d summarize this trend, illustrating the sys-
tematic reduction of G at constant T, and T, at constant G as a function of
M, upon mixing the two enantiomers. This behavior is fully consistent
with the decrease in Ty, and T, seen in DSC, supporting the view that
chirality mixing hinders lamellar assembly.

To quantify these effects, isothermal DSC experiments were per-
formed. Fig. 12 compiles the 1/ty and 1/75¢9, as functions of T. In all
cases, the PPO-R:S blends exhibit lower 1/ty and 1/7599; values than the
corresponding enantiomers, confirming slower nucleation and overall
crystallization. At a fixed rate, the blends require greater supercooling
(Figs. S27 and S28), consistent with reduced nucleation efficiency and
slower chain transport in the mixed-helicity melt.

This kinetic retardation may arise from packing frustration between
chains of opposite helical senses, which could disrupt the local
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conformational coherence required for efficient chain folding. The
behavior parallels that observed in PHB-R:S systems [73], where the
opposite enantiomer disrupts packing and lowers T, and T,, whereas in
PLLA/PDLA cooperative interactions promote the formation of highly
stable stereocomplex crystals. PPO-R:S therefore represents an inter-
mediate case where chirality neither produces cooperative stabilization
nor new crystalline forms but instead subtly impedes the organization of
like-handed chains.
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These results show that enantiomeric mixing in PPO provides a
simple means of tuning crystallization kinetics without altering crystal
structure. By adjusting the R:S ratio or M, crystallization can be
deliberately slowed, an advantageous property for processing or
blending with biodegradable polymers such as PLA, where reduced
crystallization rates can enhance optical clarity and broaden the pro-
cessing window.
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4. Conclusions

This study comprehensively analyzed PPO-R, PPO-S, and racemic
PPO-R:S blends comprising 50 % R and S chains with varying M, s
through morphological, thermal, and structural characterization.
Building on a previously reported catalytic system, we extended the
scope of the oxyanionic polymerization of PO to include enantiopure
monomers, enabling access to PPO-R and PPO-S with tunable molar

masses. To ensure controlled initiation, hexaethylene glycol (EG6) was
used as an initiator, without significantly impacting the properties of the
resulting PPO. This approach enabled the synthesis of telechelic PPO
samples across a broad M, range for both enantiomeric series, as well as
racemic blends by combining PPO-R and PPO-S of comparable M;,.

As M, increases, both PPO-R and PPO-S samples exhibit increased
crystallization and melting temperatures, higher nucleation and spher-
ulitic growth rates, and faster overall crystallization kinetics,
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approaching a plateau at high M, regardless of stereoconfiguration.
Morphologically, both enantiomers displayed negative, banded spher-
ulites whose periodicity depended on crystallization temperature.
Structurally, WAXS and SAXS confirmed that all samples crystallize into
identical orthorhombic unit cells and lamellar architectures, indepen-
dent of M, or stereoconfiguration.

A stereoconfiguration-dependent trend was identified across multi-
ple measurements. At low M,, PPO-R displayed higher thermal transi-
tions and faster crystallization kinetics than PPO-S, whereas at high M,
this trend reversed, with PPO-S becoming the faster crystallizing species.
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Although such an M;-dependent inversion is unexpected for two enan-
tiomeric polymers that crystallize into identical lattices, its consistent
appearance across nucleation, growth, overall crystallization rate, and
non-isothermal transitions confirms that the effect is real and repro-
ducible experimentally. We have explained these results with the
tentative hypothesis that stereoconfiguration may subtly influence melt-
state mobility rather than crystalline structure. This needs further
confirmation by rheology and spectroscopic techniques.

The distinct banding periodicities observed for PPO-R and PPO-S also
support the possibility that the preferred helicoidal conformations
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adopted in the melt are not perfectly equivalent, which may lead to
small differences in segmental mobility and in the onset of
entanglement-controlled dynamics. These dynamic considerations offer
a tentative but coherent explanation for the molecular-weight-
dependent inversion in crystallization kinetics. SSA experiments
further showed that these stereoconfiguration-dependent differences
persist even under near-equilibrium fractionation conditions, reinforc-
ing the view that their origin may reside in melt dynamics rather than in
solid-state structural variations.

In the second part of the study, racemic PPO-R:S blends were
investigated. These blends did not form stereocomplexes but exhibited
systematically reduced thermal transitions, nucleation rates, spherulitic
growth rates, and overall crystallization rates compared to the pure
enantiomeric PPOs. This kinetic retardation is consistent with a possible
packing frustration between chains of opposite helical senses, which
could disrupt the conformational coherence required for efficient
lamellar assembly. The effect is independent of M, and provides a
practical strategy for tuning crystallization kinetics in PPO-based ma-
terials. Blending the two enantiomers, or adjusting their M,, enables
deliberate slowing of crystallization, an advantageous feature for pro-
cessing and for tailoring blends or copolymers with biodegradable
polyesters such as PLA. These insights underscore the potential of PPO to
tune crystallization behavior, broaden processing windows, and enable
novel applications in packaging and biomedical materials.

5. Supporting Information

Methodological details, NMR, SEM, DSC cooling at various cooling
rates and subsequent heatings at constant heating rate and during
isothermal measurement, WAXS/SAXS patterns taken, in real-time,
during cooling and heating ramps and PLOM taken during cooling and
heating ramps and isothermal process. Comparisons of relevant pa-
rameters as a function of M, by SEC and NMR. Details regarding the
application of the Avrami and Lauritzen and Hoffman theories.
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