

Dear Author

Please use this PDF proof to check the layout of your article. If you would like any changes to be made to the layout, you can leave instructions in the online proofing interface. First, return to the online proofing interface by clicking "Edit" at the top page, then insert a Comment in the relevant location. Making your changes directly in the online proofing interface is the quickest, easiest way to correct and submit your proof.

Please note that changes made to the article in the online proofing interface will be added to the article before publication, but are not reflected in this PDF proof.

If you would prefer to submit your corrections by annotating the PDF proof, please download and submit an annotatable PDF proof by clicking the link below.

 [Annotate PDF](#)

2 A second cuckoo wasp species from the mid-Miocene Zhangpu 3 biota (Hymenoptera: Chrysidae)

4 Manuel Brazidec ^{a,b,c,*}, Paolo Rosa ^d

5 ^a Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France

6 ^b Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université
7 des Antilles, CP50, 57 rue Cuvier, F-75005 Paris, France

8 ^c State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing 210008, China

9 ^d University of Mons, Research Institute for Biosciences, Laboratory of Zoology, Place du parc 20, 7000 Mons, Belgium

10 Received 28 January 2025; received in revised form 22 July 2025; accepted 20 August 2025

11

12 Abstract

13 The Miocene history of the aculeate family Chrysidae is poorly known, with only two species described for that time interval. Here,
14 a third species is introduced, the second from the rich middle Miocene Zhangpu amber, southeastern China. \dagger Trichrysis perrichoti n. sp.
15 is described and illustrated based on a nearly complete female specimen. The new species displays characters of the *cyanea* species group,
16 which is today the most common for *Trichrysis* Lichtenstein, 1876 in China. This discovery further strengthens the affinities between the
17 Zhangpu entomofauna and the modern Southeast Asia entomofauna.

18 © 2025 Elsevier B.V. and Nanjing Institute of Geology and Palaeontology, CAS. All rights reserved, including those for text and data mining, AI
19 training, and similar technologies. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

20 **Keywords:** Systematics; palaeoentomology; Chrysidoidea; Chrysidae; parasitoid wasp

22 1. Introduction

23 The Chrysidae are the second most speciose chrysidoidean family after the Bethylidae, with approximately 3000
24 described species (Kimsey and Bohart, 1991). Despite having been well surveyed in the European and North American
25 regions (Kimsey and Bohart, 1991), the fauna is still understudied in other regions of the world, such as Southeast Asia, sub-Saharan Africa or South America, where
26 new taxa keep being described (e.g., Lucena et al., 2016; Kimsey and Copeland, 2017; Kimsey, 2019; Rosa et al.,
27 2021a; Rosa, 2024). Chrysidid females exhibit a parasitoid behaviour on different insect groups. The Cleptinae use
28 sawfly larvae as hosts, the Amiseginae and Loboscelidiinae

29 parasitize phasmid eggs, and the Chrysinae are parasitoids or cleptoparasites of solitary bees and aculeate
30 wasps, hence the nickname “cuckoo wasps”, which was later used for the entire family (Kimsey and Bohart, 1991).

31 To this date, about 30 fossil species of Chrysidae have been described (e.g., Lucena and Melo, 2018; Brazidec
32 et al., 2024), mostly in the late Eocene and Late Cretaceous deposits. Moreover, only two species are known from the
33 Miocene, although this is the most recent period with abundant fossil material. The Chrysidiini \dagger Ceratochrysis
34 dominicana Engel, 2006 was described from Dominican amber, and the Amiseginae \dagger Atoposega rosai (Brazidec
35 and Perrichot, 2023) was described from Zhangpu amber (Engel, 2006; Brazidec and Perrichot, 2023). The recent
36 discovery of the latter deposit, in the southeast of China, in Langhian (middle Miocene) sediments (Wang et al., 2021)

* Corresponding author.

E-mail address: manuel.brazidec@gmail.com (M. Brazidec).

51 has offered new opportunities to investigate the recent evolution
 52 of the family.

53 In this contribution, we describe a new species of Chrysidae from Zhangpu amber which represents the second
 54 record of the family in this deposit, and the first fossil
 55 record of *Trichrysis* Lichtenstein, 1876.

57 2. Material and methods

58 Zhangpu amber occurs within two sandy mudstone layers
 59 interbedded with coal seams, which are part of the
 60 Fotan Group in Zhangpu County, Fujian Province, south-
 61 eastern China (Wang et al., 2021: fig. 1). The amber-
 62 yielding layer is dated of the Langhian stage, middle Miocene,
 63 between 14.8 ± 0.6 Ma and 14.7 ± 0.4 Ma (Zheng
 64 et al., 2019).

65 This study is based on an almost complete female speci-
 66 men kindly lent by Prof. Bo Wang (Nanjing, China) to the
 67 authors for study, and housed in the Nanjing Institute of
 68 Geology and Palaeontology (NIGP), Chinese Academy of
 69 Sciences, Nanjing, China. The sticky amber piece was
 70 embedded in a block of epoxy resin (Araldite® 2020) for
 71 consolidation and posteriorly polished to facilitate the
 72 observation of the specimen, using thin silicon carbide
 73 sanding papers on a grinder polisher (Buehler MetaServ
 74 3000). The examination and photographs were made using
 75 a Zeiss Axiocam 705 color camera attached to a Zeiss Axio
 76 Zoom V16 stereomicroscope. All images are digitally
 77 stacked photomicrographic composites of several focal
 78 planes, which were obtained using Helicon® Focus 6.7
 79 software. Adobe® Illustrator CC2019 and Adobe® Photo-
 80 shop CC2019 were used to compose the figures, while Image
 81 J 1.53 was used for measurements. The description of the

82 characters follows the terminology of Kimsey and Bohart
 83 (1991); the wing venation follows Azevedo et al. (2018).
 84 Abbreviations are used as follows: F1, F2, F3, etc. = flag-
 85 ellomeres 1, 2, 3, etc.; MOD = median ocellus diameter;
 86 P = pedicel; PD = puncture diameter; S = scape; T1, T2,
 87 T3 = metasomal tergite 1, 2, 3; TFC = transverse frontal
 88 carina.

89 This published work and its new nomenclatural act are
 90 registered in ZooBank with the following LSID: urn:lsid:
 91 zoobank.org:pub:23C1E88F-0437-4FAC-8186-
 92 F2C1AE25CCEE.

93 3. Systematic palaeontology

94 Order Hymenoptera Linnaeus, 1758

95 Superfamily Chrysidoidea Latreille, 1802

96 Family Chrysidae Latreille, 1802

97 Subfamily Chrysinae Latreille, 1802

98 Tribe Chrysidiini Latreille, 1802

99 Genus *Trichrysis* Lichtenstein, 1876

100 *Trichrysis perrichoti* n. sp.

101 (Figs. 1, 2)

102 LSID: urn:lsid:zoobank.org:act:98F5DA1C-A43C-4C73-8
 103 754-E8FDB836C100.

104 **Etymology:** We dedicate this species to Dr. Vincent Perri-
 105 chot (Université de Rennes), specialist on fossil insects, in
 106 gratitude for the supervision of the first author's PhD.
 107 The specific epithet is to be treated as a noun in a genitive
 108 case.

109 **Type material:** Holotype female, NIGP208750, an almost
 110 complete specimen, lacking the left posterolateral part of
 111 the metasoma.

Fig. 1. *Trichrysis perrichoti* n. sp., holotype female, NIGP208750, habitus in dorsolateral view. Scale bar = 1 mm.

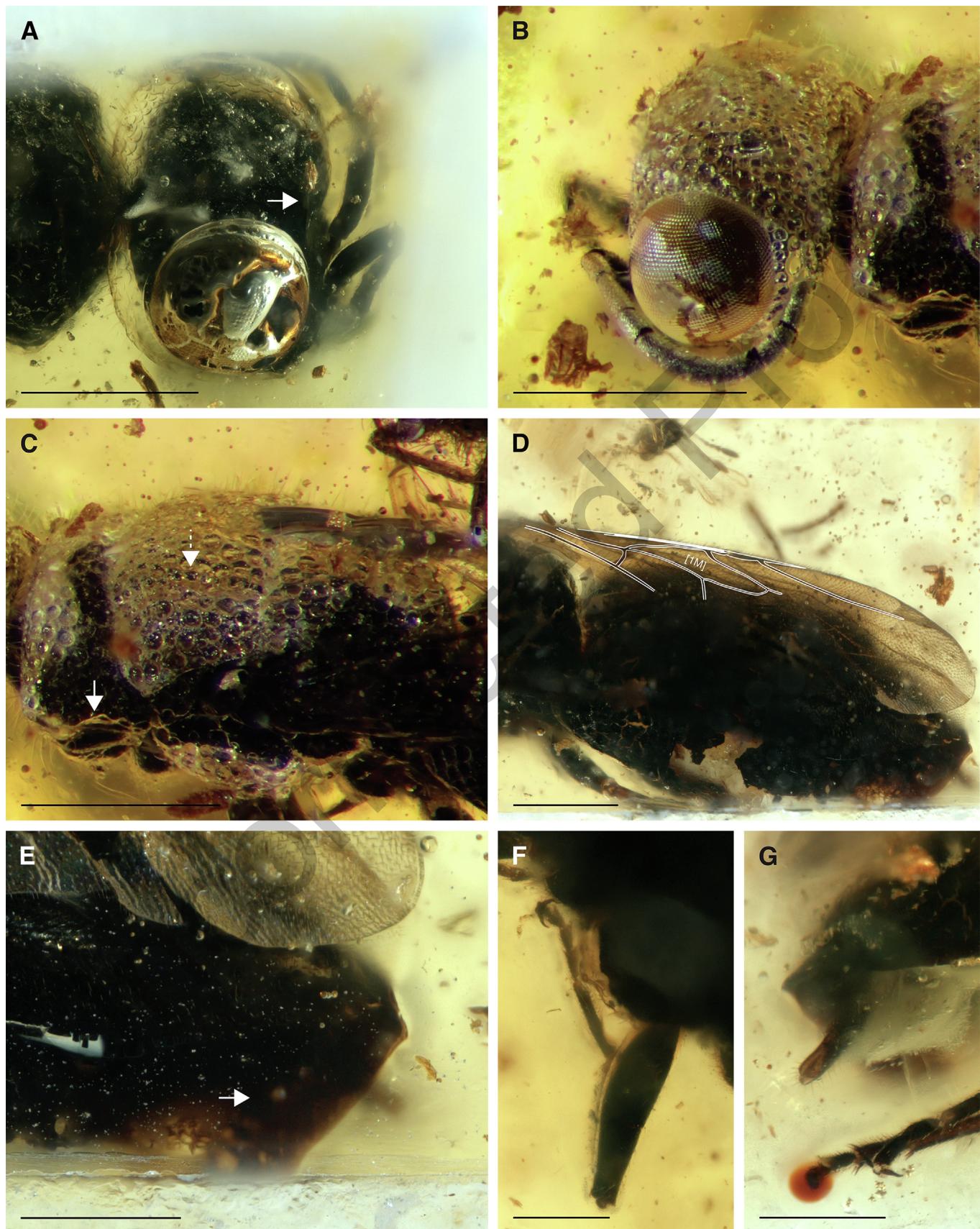


Fig. 2. *Trichrysis perrichoti* n. sp., holotype female, NIGP208750. (A) Head in right dorsolateral view (white arrow = TFC); (B) head in left dorsolateral view; (C) mesosoma in dorsal view (solid line arrow = sublateral pronotal carina; dotted line arrow = notaulus); (D) detail of fore wing with underlined pigmented veins; (E) detail of T3 (white arrow = pit row); (F) fore tarsal claws; (G) detail of apex of ovipositor. Scale bars = 0.5 mm (A–D) or 0.25 mm (E–G).

Type locality: Zhangpu County, Zhangzhou City, Fujian Province, China.

Horizon: Sedimentary layer II, Fotan Group; Middle Miocene: Langhian, 14.7 Ma.

Diagnosis (female): Body punctures with narrow interspaces, at most 0.2 PD (Fig. 1); TFC forming upcurved crescent (Fig. 2A); F1 length 2.0 × median width (Fig. 2B); sublateral pronotal carina distinct (Fig. 2C); [1M] cell fully enclosed by pigmented veins (Fig. 2D); T3 posteriorly with longitudinal median elevation directed to median tooth and forming blunt crest, three angular teeth, with intervals slightly outcurved (Fig. 2E).

Description: Body length 3.2 mm. Head globose, higher than long (length 0.6 mm); integument mostly with metallic reflections (see “Remarks” section), pubescence sparse and short. Frons and vertex roughly punctate, punctures about 0.5 × MOD, subcontiguous, separated by less than 0.2 PD, postero-lateral area of posterior ocellus impunctate; vertex convex. TFC present, forming simple upcurved crescent reaching about two-thirds of eye height, medially smoothly curved, distant from middle ocellus by about 1.0 × MOD. Compound eye glabrous, oval, covering 0.8 × head length. Scapal basin present, sculpture not visible. Scape 4.1 × longer than median width; relative length of S:P:F1: F2:F3 = 4.3:1:1.8:1.3:1.3; F1 2.0 × longer than median width.

Mesosoma stout (length 1.0 mm); integument with metallic reflections; pubescence sparse. Pronotum shorter than mesoscutum (length of pronotum dorsally 0.2 mm), punctate, punctures about 0.5 × MOD, separated by about 0.2 PD; dorsal pronotal area convex; anterolateral pronotal corner angulate; sublateral pronotal carina distinct; lateral pronotal depression deep; mesoscutum about 2.0 × dorsal pronotal length (length 0.4 mm), punctured like pronotum; notauli fully developed, converging posteriorly. Mesoscutellum 0.5 × mesoscutum length (mesoscutellum length 0.2 mm), as long as and punctured like pronotum; metanotum as long as mesoscutellum (metanotum length 0.2 mm). Mesopleuron punctate, punctures separated by about 0.2 PD; episternal sulcus present; scrobal sulcus present. Tegula covering fore wing base. Propodeal angle triangular, broad, apex blunt.

Legs with uniform short semi-decumbent pubescence; tibial spur formula 1–2–2; pretarsal claws slightly curved, simple.

Fore wing hyaline (length 1.6 mm), uniformly micropubescent; C, Sc+R, M+Cu, A, 1Rs, 1M, cu-a, Rs+M, 1Cu, 2Cu, m-cu, R1, 2r-rs&Rs veins pigmented; 1Rs much shorter than 1M; 1M posteriorly curved, aligned with cu-a; [1M] cell fully closed by pigmented veins; pterostigma thin, longer than 1Rs; R1 length about 1/3 × 2r-rs&Rs length; 2r-rs&Rs evenly curved towards wing apex, vein apex at less than 2 × MOD from wing apex. Hind wing hyaline, uniformly micropubescent; venation reduced; three hamuli visible.

Metasoma longer than mesosoma (length 1.2 mm) with three tergites visible externally; T1 length 0.3 mm, T2 length 0.6 mm, T3 length 0.3 mm; tergites with uniform medium-sized punctures; T3 medially elevated longitudinally, with distinct pit row, posterior rim with three short angular blunt teeth, intervening margin slightly outcurved.

Remarks: Between the first and second series of photographs (e.g., Fig. 2B, versus Fig. 2A), the cuticle of the specimen suffered from exposure to fluids and darkened. In the cephalic region, the cuticle has shrunk, leaving only its imprint in the amber. Therefore, the coloration and measurements indicated here correspond to the original state of the specimen.

4. Discussion

Based on the propodeum not developed dorsally, the fore wing venation, the regularly sized tegula (i.e., not reduced or covering both fore and hind wing bases), the edentate tarsal claws, the three visible metasomal tergites, and the pit row on T3, the new fossil is firmly placed in the subfamily Chrysidiinae, and in the tribe Chrysidiini. The specimen displays all diagnostic characters of *Trichrysis* Lichtenstein, 1876: the scapal basin concave, the TFC present, the distinct sublateral pronotal carina, the episternal and scrobal sulci, the mesoscutum not expanded laterally, 2r-rs&Rs (= Rs in Kimsey and Bohart, 1991) less than 2 × MOD from fore wing margin, [1M] cell (= discoidal cell) veins tubular, propodeal angle triangular, T3 with three teeth (Rosa et al., 2016, 2022).

The presence of the sublateral pronotal carina and the fully pigmented veins excludes the specimen from *Chrysidea* Bischoff, 1913, a genus with which *Trichrysis* is often confused (Rosa et al., 2022). *Caenochrysis* Kimsey and Bohart, 1981 is very similar to *Trichrysis*, and differs primarily in the presence of a pair of facial foveae, the visibility of which is difficult to assess here. However, in many *Caenochrysis* species, the dorsoposterior margin of the head is marked by a deep medial depression (Lucena and Almeida, 2022) which is absent in our specimen (Fig. 2B). Several *Caenochrysis* species also display a mucronate-shaped and medially depressed metanotum (Lucena and Almeida, 2022: fig. S18D), unlike what is observed in our current new species (Fig. 2C). Additionally, extant *Caenochrysis* are only known from the Nearctic and Neotropical regions (Linsenmaier, 1984; Kimsey and Bohart, 1991) whereas *Trichrysis* is widely distributed throughout the Palearctic, Afrotropical, Australian, and Oriental regions (Rosa et al., 2022). Therefore, we attribute the specimen to *Trichrysis* and propose the new species †*Trichrysis perrichoti* n. sp.

Trichrysis is a rather speciose genus within the Chrysidiini tribe, comprising approximately 40 extant species distributed in the Old World (Bohart, 1988; Rosa et al., 2016, 2021b, 2022; Wiśniowski et al., 2020). The genus exhibits

particularly diverse faunas in China (Rosa et al., 2016; Nguyen et al., 2022), India (Rosa et al., 2022), Vietnam, Indonesia, and the Philippines (Wiśniowski et al., 2020), and South Africa (Kimsey and Bohart, 1991). Fourteen species have been recorded in China (Rosa et al., 2016; Nguyen et al., 2022), most belonging to the *cyanea* species group, to which *†Trichrysis perrichoti* n. sp. belongs. The *cyanea* species group is characterized by a combination of the following characters: T3 tridentate, the sublateral pronotal carina, and TFC present. *†Trichrysis perrichoti* n. sp. shows conservative features with minimal differences compared with modern species. Besides its sculpture with overall subcontiguous and large body punctuation, it can be separated from modern species with short, angular apical teeth (as opposed to species with larger teeth, e.g., *Trichrysis tridensnotata* Rosa, Wei and Xu in Rosa et al. 2016) by combination with other characters. It can be separated from *Trichrysis cyanea* (Linnaeus, 1758) by the sharp sublateral pronotal carina and strong longitudinal keel on third tergum (not so distinctly sharp and without keel in *T. cyanea*); from *Trichrysis secernenda* (Mocsáry, 1912) by the sharp sublateral pronotal carina and notauli formed by a series of deep punctures (sublateral pronotal carina less expanded and notauli as a fine line in *T. secernenda*); from *Trichrysis triacantha* (Mocsáry, 1889) by the shape of the head, with short distance between frontal carina and anterior ocellus (about $1.0 \times$ MOD) ($> 2.0 \times$ MOD in *T. triacantha*); from *Trichrysis sinica* Rosa, Nguyen and Wiśniowski, 2022 in Rosa et al. (2022) and *Trichrysis tonkinensis* (Mocsáry, 1914) by the simple third tergum (prepit bulge slightly convex). Other differences may lie in the shape of the black spots of the second sternum, an important diagnostic character (Rosa et al., 2016: figs. 96–107; Rosa et al., 2022), which are not visible in the holotype of our new species.

Trichrysis species have been identified as nest parasites of various apoid genera (e.g., Sphecidae, Pemphredonidae, Crabronidae; Tormos et al., 1996; Abitha et al., 2022). Recently it was also confirmed that *T. cyanea* parasitizes nests of the pompilid genera *Auplopus* Spinola 1841 (Theunert, 1997) and *Deuteragenia* Sustera 1912 (e.g., Pärn et al., 2015; Paukkunen et al., 2015) and not only Crabronidae. *Trichrysis cyanea* is therefore a kleptoparasite whose larvae gain nourishment from the hosts' provisions. A switch from apoid wasps (the presumed ancestral condition) to spider wasps has been an evolutionary step that is still to be studied and allocated in time. The specific diversity of the genus and data on its biology are expected to increase as new discoveries continue to be made, particularly in the Oriental region (Nguyen et al., 2022).

Zhangpu amber offers a unique window into the palaeoenvironment of Southeast Asia during the Miocene. Other important insect faunas for that period are found in Dominican Republic (Arillo and Ortúñoz, 2005), Mexico (Solórzano Kraemer, 2010), Ethiopia (Bouju et al., 2021), New Zealand (Kauffuss et al., 2015), Australia (McCurry

et al., 2022), or France (Engel and Nel, 2024). A similar deposit in terms of age and latitude is known in the south-eastern Yunnan Province (e.g., Engel et al., 2018), although the latter was dominated by Fagaceae and Fabaceae, whereas Zhangpu amber was formed in a Diptero-carpaceae megathermal rainforest (Wang et al., 2021). The Zhangpu palaeoentomofauna shows close affinities with the modern Chinese or more generally continental Southeast Asian faunas in generic composition (e.g., Brazidec and Perrichot, 2023; Perrichot, 2023; Xu et al., 2023). The exceptions to this pattern are the presence of the bee genus *Austroplebeia* Moure, 1961 (Engel et al., 2021) and the barklouse genus *Belaphotroctes* Roesler, 1943 (Engel and Wang, 2022), the latter case being explained by the poor phylogenetic resolution of the genus and its probable paraphyly or polyphyly. The discovery of *†Trichrysis perrichoti* n. sp. is another indication that the modern Southeast Asian dipterocarp forest insect community was already in place during the Miocene.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The first author extends his warmest thanks to Dr. Vincent Perrichot (Université de Rennes), for his kindness, guidance, and support throughout M.B.'s PhD. We thank Prof. Bo Wang (NIGP) for facilitating access to a vast amount of Zhangpu amber, amongst which was found the specimen described. We are grateful to Dr. Daercio A.A. Lucena and an anonymous reviewer for their helpful comments on the manuscript. This research was supported by the National Natural Science Foundation of China (42293280).

References

- Abitha, J., Rajmohana, K., Bijoy, C., Aswathi, P.G., Kumar, P.G., 2022. First record of cuckoo wasp *Trichrysis imperiosa* (Smith) (Hymenoptera, Chrysidae) from the nest of *Sceliphron coromandelicum* (Lepeletier) (Hymenoptera, Sphecidae) in India. Entomon 47, 437–442.
- Arillo, A., Ortúñoz, V.M., 2005. Catalogue of fossil insect species described from Dominican amber (Miocene). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 352, 1–68.
- Azevedo, C.O., Alencar, I.D.C.C., Ramos, M.S., Barbosa, D.N., Colombo, W.D., Vargas, J.M.R., Lim, J., 2018. Global guide of the flat wasps (Hymenoptera, Bethylidae). Zootaxa 4489, 1–294.
- Bischoff, H., 1913. Hymenoptera. Fam. Chrysidae. In: Wytsman, P. (Ed.), Genera Insectorum. Fascicule 151. Desmet-Verteneuil, Bruxelles, pp. 1–8.
- Bohart, R.M., 1988. A key to *Trichrysis* and new species from Sri Lanka and Africa (Hymenoptera: Chrysidae). The Pan Pacific Entomologist 63, 347–351.
- Bouju, V., Rosse-Guillevic, S., Griffon, M., Bojarski, B., Szwedo, J., Perrichot, V., 2021. The genus *Allodia* (Diptera: Mycetophilidae) in Miocene Ethiopian amber. Fossil Record 34, 339–346.

Brazidec, M., Perrichot, V., 2023. Two new chrysidoid wasps (Hymenoptera: Bethylidae, Chrysidae) from mid-Miocene Zhangpu amber. *Palaeoworld* 32, 699–708.

Brazidec, M., Rosa, P., Perrichot, V., 2024. The first fossil record of the cuckoo wasp genus *Primeuchroeus* in Eocene Baltic amber, with revision of two fossil Chrysidae (Hymenoptera: Chrysidoidea). *Annales de Paléontologie* 110, 102682.

Engel, M.S., 2006. A new cuckoo wasp of the genus *Ceratochrysis* in amber from the Dominican Republic (Hymenoptera: Chrysidae). *Polskie Pismo Entomologiczne* 75, 499–504.

Engel, M.S., Nel, A., 2024. Fossil halictine bees from the Upper Miocene of Murat, France (Hymenoptera: Halictidae). *Entomologist's Monthly Magazine* 160, 243–250.

Engel, M.S., Wang, B., 2022. A new species of embidopsocine barklouse in Langhian amber from Zhangpu, China (Pscoptera: Liposcelididae). *Palaeoentomology* 5, 487–492.

Engel, M.S., Wang, B., Alqarni, A.S., Jia, L., Su, T., Zhou, Z., Wappler, T., 2018. A primitive honey bee from the Middle Miocene deposits of southeastern Yunnan, China (Hymenoptera, Apidae). *Zookeys* 775, 117–129.

Engel, M.S., Herhold, H., Davis, S., Wang, B., Thomas, J., 2021. Stingless bees in Miocene amber of southeastern China (Hymenoptera: Apidae). *Journal of Melittology* 105, 1–83.

Kaulfuss, U., Lee, D.E., Barratt, B.I.P., Leschen, R.A.B., Larivière, M., Dlussky, G.M., Henderson, I.M., Harris, A.C., 2015. A diverse fossil terrestrial arthropod fauna from New Zealand: evidence from the early Miocene Foulden Maar fossil lagerstätte. *Lethaia* 48, 299–308.

Kimsey, L.S., 2019. Revision of the south Asian amisegine genus *Cladobethylus* Kieffer, 1922 (Hymenoptera, Chrysidae, Amiseginae). *Journal of Hymenoptera Research* 70, 41–64.

Kimsey, L.S., Bohart, R.M., 1981. A synopsis of the chrysid genera of Neotropical America. *Psyche* 87, 75–91.

Kimsey, L.S., Bohart, R.M., 1991. The Chrysidid Wasps of the World. Oxford University Press, New York, 652 pp.

Kimsey, L.S., Copeland, R.S., 2017. An unusual new species of *Hedychridium* Abeille from Africa. *Journal of Hymenoptera Research* 55, 103–108.

Latreille, P.A., 1802. Ordre cinquième. Hyménoptères; Hymenoptera. In: Latreille, P.A. (Ed.), *Histoire Naturelle Générale et Particulière des Crustacés et des Insectes. Familles Naturelles des Genres. Tome Troisième*. F. Dufart, Paris, pp. 298–386.

Lichtenstein, J., 1876. Note sur le genre *Chrysis*. Petites Nouvelles Entomologiques 2, 27.

Linnaeus, C., 1758. *Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata*, vol. 1. Laurentius Salvius, Stockholm, 824 pp.

Linsenmaier, W., 1984. Das Subgenus *Trichrysis* Lichtenstein in Nord und Südamerika (Hym., Chrysidae, Genus *Chrysis* L.). *Mitteilungen der Schweizerischen Entomologischen Gesellschaft* 57, 195–224.

Lucena, D.A.A., Almeida, E.A.B., 2022. Morphology and Bayesian tip-dating recover deep Cretaceous-age divergences among major chrysidid lineages (Hymenoptera: Chrysidae). *Zoological Journal of the Linnean Society* 194, 36–79.

Lucena, D.A.A., Melo, G.A.R., 2018. Chrysidid wasps from Cretaceous Burmese amber: phylogenetic affinities and classification. *Cretaceous Research* 89, 279–291.

Lucena, D.A.A., Kimsey, L.S., Almeida, E.A.B., 2016. The Neotropical cuckoo wasp genus *Ipsiura* Linsenmaier, 1959 (Hymenoptera: Chrysidae): revision of the species occurring in Brazil. *Zootaxa* 4165, 1–71.

McCurry, M.R., Cantrill, D.J., Smith, P.M., Beattie, R., Dettmann, M., Baranov, V., Magee, C., Nguyen, J.M.T., Forster, M.A., Hinde, J., Pogson, R., Wang, H., Marjo, C.E., Vasconcelos, P., Frese, M., 2022. A lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems. *Science Advances* 8, eabm1406.

Mocsáry, A., 1889. *Monographia Chrysididarum Orbis Terrarum Universi*. Hungarian Academy of Science, Budapest, 643 pp.

Mocsáry, A., 1912. Species Chrysididarum novae. III. *Annales Musei Nationalis Hungarici* 10, 375–414.

Mocsáry, A., 1914. Chrysididae plerumque exoticae novae. *Annales Musei Nationalis Hungarici* 12, 1–74.

Moure, J.S., 1961. A preliminary supra-specific classification of the Old-World Meliponinae bees (Hymenoptera, Apoidea). *Studia Entomologica* 4, 181–242.

Nguyen, L.T.P., Wiśniowski, B., Tran, N.T., Tran, D.D., Rosa, P., 2022. Two new species of *Trichrysis* Lichtenstein (Hymenoptera: Chrysidae) from Vietnam and China, with taxonomic notes on other species from the Oriental region. *Zootaxa* 5194, 133–143.

Pärn, M., Soon, V., Vallisoo, T., Hovi, K., Luig, J., 2015. Host specificity of the tribe Chrysidiini (Hymenoptera: Chrysidae) in Estonia ascertained with trap-nesting. *European Journal of Entomology* 112, 91–99.

Paukkunen, J., Berg, A., Soon, V., Ødegaard, F., Rosa, P., 2015. An illustrated key to the cuckoo wasps (Hymenoptera, Chrysidae) of the Nordic and Baltic countries, with description of a new species. *Zookeys* 548, 1–116.

Perrichot, V., 2023. The first fossil occurrence of *Odontoponera* (Formicidae: Ponerinae), from Middle Miocene Zhangpu amber. *Palaeoworld* 32, 693–698.

Roesler, R., 1943. Über einige Copeognathengenera. *Stettiner Entomologische Zeitung* 104, 1–14.

Rosa, P., 2024. Three chrysidid genera newly recorded for India, with description of new species (Hymenoptera, Chrysidae). *Linzer biologische Beiträge* 56, 253–276.

Rosa, P., Wei, N., Feng, J., Xu, Z., 2016. Revision of the genus *Trichrysis* Lichtenstein, 1876 from China, with description of three new species (Hymenoptera, Chrysidae). *Deutsche Entomologische Zeitschrift* 63, 109–136.

Rosa, P., Proshchalykin, M., Halada, M., 2021a. Additions to the cuckoo wasps (Hymenoptera, Chrysidae) of Mongolia, with description of eleven new species. *Zookeys* 1068, 149–187.

Rosa, P., Aswathi, P.G., Bijoy, C., 2021b. An annotated and illustrated checklist of the Indian cuckoo wasps (Hymenoptera: Chrysidae). *Zootaxa* 4929, 1–100.

Rosa, P., Aswathi, P.G., Wiśniowski, B., Bijoy, C., 2022. Preliminary revision of the Indian cuckoo wasp genera *Trichrysis* Lichtenstein, 1876 and *Chrysidea* Bischoff, 1910, with description of a new species (Hymenoptera, Chrysidae). *European Journal of Taxonomy* 852, 117–143.

Solórzano Kraemer, M.M., 2010. Mexican amber. In: Penney, D. (Ed.), *Biodiversity of Fossils in Amber from the Major World Deposits*. Siri Scientific Press, Manchester, pp. 42–56.

Spinola, M., 1841. Hyménoptères recueillis à Cayenne en 1839 par M. Leprieur, pharmacien de la Marine Royale. Seconde Partie. Porte-aiguillons (1). *Annales de la Société Entomologique de France* 10, 85–149.

Šusterá, O., 1912. Die paläarktischen Gattungen der Familie Psamnocharidae (olim Pompilidae, Hym.). *Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien* 62, 171–213.

Theunert, R., 1997. Eine Goldwespe als Brutschmarotzer einer Wegwespe. *Mitteilungen des Internationalen Entomologischen Vereins* E V Frankfurt A M 22, 9–10.

Thormos, J., Asis, J.D., Gayubo, S.F., Mingo, E., 1996. Description of the mature larvae of *Chrysis gracillima* and *Omalus biaccinctus* and new data on the biology of *Trichrysis cyanea* (Hymenoptera: Chrysidae). *Florida Entomologist* 79, 56–63.

Wang, B., Shi, G., Xu, C., Spicer, R.A., Perrichot, V., Schmidt, A.R., Feldberg, K., Heinrichs, J., Chény, C., Pang, H., Liu, X., Gao, T., Wang, Z., Śliwiński, A., Solórzano-Kraemer, M.M., Heads, S.W., Thomas, M.J., Sadowski, E., Szwedo, J., Azar, D., Nel, A., Liu, Y., Chen, J., Zhang, Q., Zhang, Q., Luo, C., Yu, T., Zheng, D., Zhang, H., Engel, M.S., 2021. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. *Science Advances* 7, eabg0625.

470 Wiśniowski, B., Nguyen, L.T.P., Nguyen, Q.C., 2020. Discovery of four
471 new species of *Trichrysis* Lichtenstein, *cyanea* species group (Hyme-
472 noptera, Chrysidae) from Vietnam. *Zootaxa* 4881, 165–178.

473 Xu, C.P., Nel, A., Millet, J., 2023. A new species of stonefly from the
474 Miocene amber of China (Plecoptera: Arctoperlaria: Nemouridae).
475 *Palaeoworld* 32, 637–641.

476 Zheng, D., Shi, G., Hemming, S.R., Zhang, H., Wang, W., Wang, B.,
477 Chang, S.C., 2019. Age constraint on a Neogene tropical rainforest in
478 China and its relation to the Middle Miocene Climatic Optimum.
479 *Palaeogeography, Palaeoclimatology, Palaeoecology* 518, 82–88.

480

Uncorrected Proof