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Abstract—This paper investigates the impact of input repre-
sentation and architecture on the performance of Long Short-
Term Memory (LSTM) networks for Automatic Modulation
Classification (AMC). Building on previous work, we reproduce
and extend LSTM-based AMC models using the CSPB.ML.2018
dataset, introducing an alternative input shape that inverts
the roles of time steps and features. This approach reduces
training time by over 90% compared to conventional LSTMs
and improves classification accuracy by up to 13.4% when using
IQ inputs, particularly at low Signal-to-Noise Ratios (SNR).
However, it requires longer input signal samples to match
the performance of conventional models at high SNRs. We
evaluate both cartesian (IQ) and polar input representations,
demonstrating that IQ inputs consistently outperform polar
inputs across all models. Our results highlight the trade-offs
between computational efficiency, input length, and classification
accuracy, offering insights for optimizing AMC systems in
resource-constrained and real-time applications, such as cog-
nitive radio and spectrum monitoring.

Index Terms—Automatic modulation classification, Cog-
nitive Radio, Deep Learning, Input Shape, Long Short-Term
Memory, LSTM, Polar Transformation

I. INTRODUCTION

Automatic Modulation Classification (AMC), also known
as Automatic Modulation Recognition (AMR), is the process
of detecting and identifying the modulation scheme of a
received radio signal, typically after signal detection and
before demodulation. AMC plays a critical role in modern
wireless communication systems, enabling both civilian and
military applications. In the civilian domain, AMC supports
spectrum monitoring for regulatory agencies, the generation
of coverage maps for wireless operators, and the detection
of unused frequency bands to mitigate interference. In cog-
nitive radio systems, it allows receivers to dynamically adapt
their modulation parameters without the need for additional
signaling. In the military domain, AMC supports applications
such as electronic warfare, surveillance, and drone detection.
Traditional AMC techniques rely on expert designed feature
extraction methods combined with classical machine learning
algorithms. While effective in controlled conditions, these
methods often degrade in performance under challenging en-
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vironments such as high noise, multi-path fading, or frequency
offsets. These limitations have motivated the adoption of deep
learning approaches, which can automatically learn discrim-
inative features directly from the signal data. Depending on
the chosen input representation, such as raw temporal in-phase
and quadrature (IQ) data, constellation diagrams, amplitude-
phase data, fast Fourier transform (FFT) spectrograms, or
advanced decompositions, deep models like convolutional
neural networks (CNNs), long short-term memory networks
(LSTMs), or hybrid architectures have shown significant
improvements in classification accuracy [1], [2]. However,
deep learning approaches introduce their own challenges,
including the need for large labeled datasets and, in many
cases, fixed length input sequences. In this work, we adopt
the model architecture proposed by Raj et al. [3] but, to
our knowledge, are the first to evaluate its performance on
Spooner’s CSPB.ML.2018 dataset [4], providing new insights
into its generalization capabilities. We further analyze how
input representations impact performance and discuss how
deep learning, when combined with alternative input shapes,
can improve computational efficiency of AMC systems.
This paper is organized as follows. Section II introduces
the fundamental principles of LSTM networks. Section III
presents the dataset used for training and validation. Section
IV details the experimental setup and the three neural network
architectures evaluated. Finally, section V discusses and com-
pares the performance of these models.

II. LSTM: MODELING LONG-TERM DEPENDENCIES

Recurrent Neural Networks (RNNs) are designed for se-
quential data such as time series, text, or speech. At each
step in a sequence, an RNN updates its hidden state based
on the current input and the previous hidden state. Because
the same function is applied at every step, an RNN can
process sequences of varying length without retraining. De-
spite this flexibility, classical RNNs struggle to capture long-
term dependencies, as gradients tend to vanish or explode
during backpropagation through many steps. Long Short Term
Memory networks (LSTMs), introduced by Hochreiter and
Schmidhuber [5], address this limitation by adding an explicit
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Fig. 1: Internal structure of a single LSTM cell. The four gates
(forget, input, cell update, and output) regulate information
flow through the hidden state and long-term cell state.

memory mechanism. The central idea is the cell state, a
vector that acts as long-term memory and is updated through
carefully controlled interactions. Information flow is regulated
by gating functions that decide what to forget, what to store,
and what to output. Several variants have been proposed, such
as the Gated Recurrent Unit (GRU) [6] and Depth Gated
LSTM [7]. In this work we describe the original LSTM cell
[3]. Figure 3 shows the unrolled architecture, where the cell
state runs alongside the hidden state. A single LSTM cell (Fig.
1) consists of four gates: the forget gate, the input gate, the
cell update, and the output gate. Sometimes, the input gate
and the cell update are grouped together as a single input
operation. The behavior of the LSTM cell at time step ¢ can
be summarized as follows:

fi =0(Wylhy_1,x¢] + by)

iv = o(Wilhy_1,%x¢] + b;)

¢; = tanh(W[h;_y, %] + b.)
ct=fitOci_1+1 O

o = 0(Wolhi_1, %] + bo)

h; = o, ® tanh(c;)

(forget gate)
(input gate)

(cell update)

(new cell state)
(output gate)
(new hidden state)

In the above equations, x; denotes the input vector, h,
the hidden state, c; the cell state, W the weight matrices,
b the bias terms, o the sigmoid activation function, tanh
the hyperbolic tangent function, and © the element-wise
(Hadamard) product.

This architecture allows LSTMs to preserve relevant infor-
mation over long sequences, enabling them to model depen-
dencies that classical RNNs cannot. As a result, LSTMs have
become widely used in applications such as natural language
processing, speech recognition, and time series forecasting.

III. DATASET

This work relies on the CSPB.ML.2018 dataset introduced
by Spooner [4]. The dataset was synthetically generated in
MATLAB by creating random message sequences whose
symbols are independent and identically distributed. Each
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TABLE I. CSPB.ML.2018 Dataset Parameters [4]

Parameter
Modulations

Range / Values

BPSK, QPSK, %-DQPSK, 8PSK,
MSK, 16QAM, 64QAM, 256QAM
1-15 samples

[-1073,1073] cycles sample ™

Base symbol period

Carrier freq. offset (norm.) 1

Roll-off factor 0.1-1

SNR -2 to 12.8 dB

Up/down sampling (1,1), (3,2),(4,3)—(10,9)
Noise spec. density 0 dB

Signal length 32,678 samples

Number of waveforms 112,000

waveform is then modulated and altered under a variety of
conditions. The parameters varied include the symbol period,
up and down sampling factors, carrier frequency offset (CFO),
the raised cosine roll off factor, and the signal to noise
ratio (SNR). The ranges of these parameters are summarized
in Table I. Importantly, no channel effects such as fading
(small or large scale) or multipath were applied, apart from
the addition of Additive White Gaussian Noise (AWGN).
The dataset contains only digital modulation formats: BPSK,
QPSK, 8PSK, 7-DQPSK, 16QAM, 64QAM, 256QAM, and
MSK. Each signal sequence is 32,678 samples long, and
the full dataset comprises 112,000 waveforms. The SNR
values range from —2dB to 12.8dB, with a concentration
around 10dB. The deliberately long signal length serves two
purposes. First, it ensures that models trained on this dataset
have access to a wide variety of symbols within a single
waveform, even when the number of samples per symbol is
high. Second, but out of scope of this paper, it makes the
dataset suitable for evaluation with expert cyclostationarity
based classifiers, which require long observation windows to
extract reliable cyclic features. In addition, the broad variation
in signal parameters was designed to better reflect blind signal
recognition scenarios, where communication settings such as
CFO or Nyquist filters roll off factors are not known in
advance. Overall, Spooner’s dataset provides a challenging
and diverse testbed for evaluating both neural and classical
modulation recognition approaches, making it a robust bench-
mark for our study.

IV. ARCHITECTURE AND DATA FLOW

The input to all models considered in this study consists
of complex IQ waveforms drawn from Spooner’s dataset
(see Section III). The task is to classify each signal into
one of the eight modulation types present in the dataset.
To evaluate the effectiveness of our proposed approach of
alternative input shapes, we compare it against two widely
used reference architectures from the literature: a convolu-
tional neural network (CNN) originally proposed by O’Shea
[8], and a two-layer Long Short Term Memory (LSTM)
model from Rajendran et al. [9]. These serve as baselines
and are further referred to as the “baseline CNN” and the
“conventional LSTM model”, respectively. With regard to our
work, we introduce a modified LSTM variant (see Section
IV-C) designed to improve performance under the challenging
conditions of Spooner’s dataset.

A. Baseline CNN Model

The baseline CNN model follows the architecture of
O’Shea [8], which has become a standard reference for
modulation recognition tasks. It consists of two convolutional



layers with 256 and 80 filters, respectively, using kernel sizes
of 1 x 3 and 2 x 3. These convolutional layers are followed
by a dense hidden layer with 256 units and an output layer
with 8 neurons, corresponding to the 8 modulation classes
in the dataset. The final layer applies a softmax activation
to generate class probabilities. Convolutional networks are
particularly effective at capturing local patterns and correla-
tions within the input waveform. In the context of modulation
recognition, this allows the CNN to exploit short-term spectral
or temporal features without explicit feature engineering. A
schematic representation of this architecture is provided in
Fig. 2.

B. Conventional LSTM Model

The conventional LSTM model is based on the work of
Rajendran et al. [9]. It consists of two stacked LSTM layers
with hidden dimensions U; and Us. Only the hidden state of
the final cell in the second LSTM layer is forwarded to a
dense classification layer with 8 output neurons with softmax
activation function, producing a probability distribution over
the classes. The architecture is illustrated in Fig.3. To improve
generalization and reduce overfitting, dropout regularization
with a rate of 0.5 is applied, following the recommendation
of Srivastava et al. [10]. LSTM models are particularly well-
suited for this task because they are able to capture temporal
dependencies across long signal sequences, unlike CNNs
which primarily exploit local features. This makes LSTMs a
natural candidate for modulation recognition when long-range
dependencies or temporal patterns play a role. The results of
varying the parameters N, U1, and Us are reported in Section
V.

C. Alternative LSTM Model

In addition to the conventional model, we create and
evaluate an alternative LSTM architecture, illustrated in Fig.
4. The key difference lies in how the input data is organized.
Instead of treating each signal as a long sequence of complex
IQ samples, the input is restructured as a sequence of two
vectors: one containing the in phase (I) values and the other
containing the quadrature (Q) values. Using the same notation
as before, the length of these vectors is denoted by N. In
this model, each LSTM layer in this model contains only
two cells, one for I and one for Q, and each produces a
hidden state of size U;. This rearrangement changes the
interpretation of the LSTM architecture. In the conventional

e
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Fig. 2: Baseline CNN model based on O’Shea [8].
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Fig. 3: Conventional two-layer LSTM model [9]. The input
signal has temporal length N, and the hidden unit dimensions
of the two LSTM layers are U; and Us.
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setup, the number of input features (I and Q) defines the
dimensionality of each time step, while the sequence length
corresponds to the number of samples processed in time. By
contrast, in the alternative formulation the roles are inverted:
the hidden state dimension is fixed to two, representing the
I and Q components, while the unfolding takes place along
the LSTM layers dimension. Conceptually, this transforms the
model from a time domain sequence processor into a depth
oriented structure. Instead of capturing long term temporal
dependencies, the network behaves more like a deep feed
forward architecture built from LSTM blocks, with I and Q
acting as the core internal states. This perspective highlights
the flexibility of recurrent structures and allows us to test
whether such a reparameterization can capture discriminative
features of modulation waveforms more effectively than the
conventional LSTM model.

D. Training and Evaluation

For our experiments, 70% of the dataset is used for training
and the remaining 30% for validation. Data is managed
through a generator that dynamically assembles mini batches
of 128 waveforms. Furthermore, waveforms are randomly
shuffled between epochs to improve generalization and reduce
the risk of overfitting. The code will be made publicly
available on GitHub [11]. Model selection is performed
by monitoring the validation loss: training continues until
convergence, and the model parameters corresponding to the
epoch with the lowest validation loss are saved. All models
are trained using categorical cross entropy as the loss function.
Optimization is carried out with the Adam algorithm [12], a
stochastic gradient based method with a default learning rate
of 0.001. LSTM cells are implemented using the standard
Keras library, with the forget gate bias initialized to one.
Weight initialization follows the Glorot uniform scheme [13].
Because the dataset is large (28.7 GB), direct loading into
memory is impractical. Instead, training is performed using
a data generator. This generator dynamically extracts mini
batches from disk, rearranges dimensions when required, and
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optionally converts the input signals to polar coordinates (see
section V-A). This streaming approach minimizes memory re-
quirements while preserving flexibility in data representation.

V. RESULTS AND ANALYSIS

In this section we present the experimental results obtained
with the models introduced in Section IV. We evaluate clas-
sification performance under different conditions and analyze
the impact of input representation, input length, and hidden
state size on validation accuracy. In addition, we compare
the conventional and alternative LSTM models, as well as
the reference CNN baseline. Our implementation of the
baseline architectures follows the original publications. The
CNN model is taken from O’Shea [8], while the conven-
tional LSTM model is based on Rajendran et al. [9]. The
publicly available code from [8] is already implemented in
Keras with TensorFlow as backend, whereas the code from
[9] was originally written with the older TFLearn wrapper.
For consistency, we reimplemented this model using Keras.
Figure 5 illustrates the validation accuracy of the alternative
LSTM model with IQ inputs for different input lengths (from
64 to 4096 first samples) across a range of SNR values.
Similarly, Fig. 6 compares validation accuracy for IQ and
amplitude—phase input representations, alongside the CNN
baseline, using input sequences of length 128. Unless other-
wise noted, the gap between training and validation accuracies
across all models remains small (Table II, III), indicating that
overfitting is not a significant concern in our experiments.
Performance values are summarized in the tables provided
in the following subsections. Figures 7a, 7b, and 7c present
the confusion matrices for the CNN, alternative LSTM, and
standard LSTM architectures, respectively. These matrices

2025 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 6-8 November 2025, Bali
Indonesia

1.0

" W
e
@
5 0.6 A MM
=
g
m
(=}
=]
3 0.4
£ —— 4096
1024
—— 512
0.2 1
— 256
—— 128
—— 64
0.0 T T T T T T T T
—2 o 2 4 6 8 10 12

SNR [dB]

Fig. 5: Validation accuracy in function of the SNR for multiple
instances of the “alternative” LSTM model with 1Q inputs
with different input lengths

1.0

—— Alt1Q
Alt Polar

—— Conv IQ

—»— Conv Polar
Baseline CNN 1Q

0.8

o
=
L

Validation accuracy
o
=y
L

0.2 1

0.0 T T T T T
-2 0 2 4 6 8 10 12

SNR [dB]
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LSTM models with 1Q and amplitude-phase inputs and the
baseline CNN model for input sample lengths of 128

illustrate the overall classification performance across all SNR
levels using 1Q inputs with a fixed length of 128 samples.
Notably, the limited input length appears to constrain the
performance of the alternative LSTM model, highlighting the
sensitivity of its architecture to shorter input sequences.

A. Discussion: IQ vs Polar Input

A central question in modulation classification is whether
signals should be represented in Cartesian (In-phase and
Quadrature) or polar (amplitude and phase) coordinates before
being fed into the network. Previous studies have reported
mixed results, often depending on the dataset and network
architecture [9], [14]. We first evaluate both input formats
for our three architectures using sequences of length 128.
The results are summarized in Table II, and the validation
accuracy as a function of SNR is shown in Fig. 6. For both
the conventional and alternative LSTM models, 1Q inputs
consistently outperform polar inputs. The average improve-
ment is approximately 3.1% for the conventional model and
13.4% for the alternative model, with the advantage being
most pronounced in the latter case. Interestingly, this finding
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Fig. 7: Confusion matrices for models trained on IQ inputs
with a length of 128 samples (validation set)

contradicts the results of Rajendran et al. [9], who reported
that, comparatively to polar inputs, LSTM models performed
poorly with IQ inputs, in some cases failing to exceed random
chance. The discrepancy can be attributed to differences in
the datasets: our experiments use Spooner’s dataset, which
includes additional modulations, wider parameter variation,
and carrier frequency offset (CFO). The presence of CFO
makes the amplitude—phase relationship less stable, which
may explain why polar representations are less effective in
this context. Since the superiority of IQ inputs persists across
longer input lengths, the following sections focus exclusively
on results obtained with IQ representations. These results sug-
gest that 1Q signals preserve more discriminative information
under blind estimation conditions and are therefore better
suited for neural network based modulation classification.
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B. Conventional vs Alternative Model

As shown in Fig. 6 and Table II, the conventional LSTM
model consistently achieves higher validation accuracy than
the alternative model when both are configured with the
same input length and hidden state dimension. The alternative
model, however, exhibits a more stable performance across
SNR values, which makes it comparatively stronger under
low-SNR conditions. A further advantage of the alternative
design is its computational efficiency: for 128-sample inputs,
the conventional model requires on average 380—401 seconds
per epoch (= 6 minutes), whereas the alternative model
trains in only 18-19 seconds per epoch. This represents a
speedup of more than one order of magnitude, making large-
scale experiments feasible with the alternative architecture.
Nevertheless, this gain in efficiency comes at the cost of lower
classification accuracy, as the conventional model remains
superior across most SNR levels.

C. Effect of Input Length using a Hypermodel

To enable comparison with prior work by Rajendran and
O’Shea, we first evaluate models using input sequences of 128
samples. This choice, however, is not ideal, since such short
sequences often fail to cover even a single full modulation
symbol. Increasing the number of samples provides more
information for feature extraction, but also enlarges the model
and raises computational cost. Thanks to the alternative model
short training time in respect to the conventional model, we
could try larger input lengths, up to 4096 samples, both for
IQ and polar inputs. The results of a first analysis with 1Q
inputs, represented on Fig. 5, showed that, for the alternative
model, longer inputs lead to better validation accuracy. But
this figure also shows that this improvement saturates and
tapers off for long inputs. Longer inputs also lead to longer
training time as shown in Table III for IQ inputs. However,
when polar inputs with 4096 samples are fed to the model,
the performance is extremely poor, with a validation accuracy
of only 12.5%, which is equivalent to random chance. The
optimizer doesn’t seem to be able to reduce the validation
cost nor the training cost. Furthermore, nearly all the signals
are classified as DQPSK. Keras provides HyperModels to
streamline hyperparameter optimization. A HyperModel de-
fines both the model architecture and the search space for
parameters such as layer size, activation function, or learning
rate. Combined with a tuner, it enables automated exploration
of different configurations to identify the best-performing
model without manual trial and error. To further analyze
this phenomenon, we used a hypermodel called “Hyperband”
that trained several instances of the alternative model with
inputs randomly chosen between 64 and 4096 samples for 20
epochs each. Fig. 8 summarizes the results of the hypermodel.
The validation accuracy peaks at 56.78% for an input length
around 2250. The performances drop sharply for input lengths
above 3200 samples.

D. Physical Interpretation of the Alternative Input Shape

The proposed alternative input shape fundamentally rein-
terprets the temporal processing paradigm used in conven-
tional LSTM based modulation classification. In traditional
approaches, the input signal is treated as a long sequence
of time steps, where each step corresponds to a pair of
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TABLE II: Results of the Models with 128 Samples Long Inputs
CNN | Conv LSTM (IQ) | Conv LSTM (Polar) | ALT LSTM (IQ) | ALT LSTM (Polar)
Number of Epochs 7 33 24 20 16
Epoch Avg. Duration [s] 182 380 401 18 19
Training Accuracy [%] 58.88 66.05 60.61 50.25 35.56
Validation Accuracy [%] | 52.50 60.31 57.20 46.68 33.24
Alternative model with polar inputs stellation geometry. While this design accelerates training, it
0,7 may initially yield lower classification accuracy for a fixed
06 model size, as the reduced temporal depth limits long range
§ dependency modeling. However, by increasing the number of
3 0.5 hidden layers, the model can achieve comparable performance
g 0.4 to conventional LSTMs, as the additional layers compensate
é 0,3 for the reduced sequential processing.
©
20,2
s VI. CONCLUSION
0,1
0 This study aimed to investigate how input representation

64 564 1064 1564 2064 2564 3064 3564 4064

Input length

Fig. 8: Alternative LSTM model architecture for polar inputs,
evaluated as a function of input sample length

TABLE III: Performance for varying input lengths (Alterna-
tive model)

Input Length | Validation Acc. | Training Acc. | Time (min)
4096 90.42% 91.09% 184
1024 85.76% 95.49% 31
512 73.34% 88.62% 6
256 60.87% 77.84% 6
128 46.68% 50.25% 6

in phase (I) and quadrature (Q) samples. This requires the
LSTM to perform recurrent operations across all time steps,
which becomes computationally expensive as the sampling
frequency increases due to the large number of sequential
dependencies to model. In contrast, our method inverts the
roles of time steps and features. The input is restructured such
that only two time steps are used, one for the I component and
one for the Q component, while the features correspond to the
entire sequence of sampled amplitudes. This transformation
effectively converts the LSTM into a deep feature extractor,
where each hidden layer processes the relationship between
I and Q across all time steps simultaneously. This approach
offers two key advantages:

o Computational efficiency: By reducing the number of
recurrent steps from N (the sequence length) to just 2,
the training time is significantly decreased (see Section
V for quantitative comparisons).

Enhanced feature representation: The increased number
of features, that is, time steps as features, allows the
model to capture finer grained dependencies between I
and Q components. This can mitigate early overfitting,
though standard regularization techniques (e.g., dropout)
are still applied to ensure robustness.

From a physical perspective, this architecture directly exam-
ines the constellation dynamics of the modulation scheme.
Instead of sequentially analyzing I/Q pairs, the model eval-
uvates how I and Q amplitudes covary across the entire
signal, providing implicit insights into the modulation con-

10

and neural network architecture influence the performance of
LSTM-based Automatic Modulation Classification systems,
with a particular emphasis on balancing computational ef-
ficiency and classification accuracy in challenging environ-
ments. Using the CSPB.ML.2018 dataset, we introduced and
evaluated an alternative input shape that inverts the conven-
tional roles of time steps and features in LSTM networks.
Our results demonstrate that Cartesian IQ inputs consistently
outperform polar representations, especially under low SNR
and in the presence of carrier frequency offset. This finding
underscores the suitability of IQ inputs for AMC tasks in blind
estimation scenarios. The proposed alternative input shape
significantly reduced training time by over ninety percent
while improving classification accuracy by up to thirteen
point four percent at low SNRs. This approach effectively
transforms the LSTM into a deep feature extractor, enabling
it to capture more nuanced relationships between in-phase
and quadrature components. Although this method offers sub-
stantial computational advantages and enhanced robustness
in low-SNR conditions, it requires longer input sequences
to achieve comparable accuracy to conventional models at
high SNRs. While these findings provide valuable insights
for optimizing AMC systems in applications such as cog-
nitive radio and spectrum monitoring, practical deployment
will require further validation beyond simulation. Real-world
impairments, including multipath fading, dynamic interfer-
ence, and hardware constraints, are not fully represented in
synthetic datasets and must be addressed to ensure operational
reliability. Future research should focus on hybrid architec-
tures, adaptive input lengths, and real-world testing to better
align simulated performance with practical effectiveness. This
work contributes to the advancement of efficient and adaptable
AMC systems, offering a foundation for their integration into
dynamic and resource-constrained wireless environments.
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