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Abstract—Time Interleaved Analog to Digital Converters (TI-
ADCs) are widely used in wideband spectrum monitoring
systems to achieve high sampling rates and large instantaneous
bandwidths. However, as highlighted in the literature, accurately
compensating for inter-channel mismatches such as gain, offset,
and timing skew, is critical, as these impairments can distort
the digitized signal. While traditional studies focus on spectral
analysis under ideal sinusoidal inputs, this work examines the
direct impact of TI-ADC mismatches on Automatic Modulation
Classification (AMC) accuracy. Using a publicly available dataset
of IQ-modulated signals, we introduce controlled mismatch
impairments and evaluate classification performance across
varying distortion levels, from relaxed to extreme. We propose
a lightweight dyadic down-sampling scheme combined with
a CNN-based fusion architecture that improves robustness of
AMC to interleaving mismatches and calibration drift. Results
show up to 6.7 percent improvement in classification accuracy
under severe mismatch conditions, underscoring the method’s
consistent gains and robustness to hardware distortions. These
findings are particularly relevant for field-deployed or long-
duration monitoring applications where hardware degradation
and limited recalibration are expected.

Index Terms—AMC, AMR, automatic modulation recognition,
classification, cognitive radios, CNN, dyadic, fusion, interleaved
ADC, mismatches, skew.

I. INTRODUCTION

Automatic Modulation Recognition (AMR) is the task
of analyzing received signals to determine their modulation
schemes. A key subset of this process, known as Automatic
Modulation Classification (AMC), focuses on identifying the
modulation type of an observed Radio Frequency (RF) signal
based on its characteristics at a specific moment, frequency,
and location. Typically, AMC takes place after the signal
has been detected but before it undergoes demodulation.
In modern wireless systems, while Software-Defined Ra-
dios (SDRs) are not typically used as core components in
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commercial infrastructure, the flexibility they represent has
influenced the design of adaptive transceivers. These systems
can adjust modulation schemes dynamically in response to
channel conditions or system requirements to optimize per-
formance and maintain Quality of Service (QoS). In this
context, reliable modulation classification becomes important,
allowing receivers, particularly in monitoring or cognitive
radio scenarios, to detect these changes without relying
on explicit signaling or metadata exchange. To accurately
perform automatic modulation classification, the quality and
fidelity of the digitized signal play a crucial role. However, as
system requirements push towards higher sampling rates and
wider bandwidths, practical constraints in analog-to-digital
conversion become more pronounced. Time-interleaved ADC
architectures have emerged as a popular solution to achieve
these demanding specifications. However, mismatches in-
troduced by time interleaving, including timing skew, gain
mismatch, and offset, may degrade the quality of the digi-
tized signal and impair modulation classification, which we
examine in this work. Understanding these imperfections and
their impact is therefore essential to design robust recognition
systems. As demonstrated in our previous work [1], combin-
ing dyadic down-sampling with a CNN-based architecture that
learns task-specific filters leads to significant improvements in
modulation classification accuracy. In this study, we further
show that this approach is inherently robust to interleaved
ADC mismatches, calibration drift, and aging effects. This
makes this process a lightweight and practical solution for
near real-time, wideband signal monitoring with minimal
computational overhead.

In this paper, Section II reviews the principles of interleaved
ADC operation, the dataset used, and the adopted mismatch
characterization methodology. Section III presents the dyadic
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down-sampling technique, outlines the overall dataflow, and
details the proposed Al-based architecture. Finally, Section IV
discusses the experimental results, evaluates the advantages
and limitations of the proposed approach, and concludes the

paper.

II. OVERVIEW OF HIGH-SPEED ANALOG-TO-DIGITAL
CONVERSION

A. Interleaved ADC Architectures

To overcome the limitations imposed by individual ADC
devices, system designers increasingly adopt interleaved ADC
structures. These architectures employ multiple ADC cores
operating in parallel to collectively increase the effective sam-
pling rate or enhance resolution. The approach is particularly
effective as improvements in converter miniaturization, power
efficiency, and cost have made multi-channel configurations
more feasible [2] [3]. Two primary interleaving strategies are
commonly employed [4]: signal averaging, aimed at enhanc-
ing the signal-to-noise ratio (SNR), and time interleaving,
which improves throughput. In this paper, we focus on time
interleaving, a technique in which M ADC channels are
configured to sample the input signal sequentially, with each
channel phase-shifted in time as seen in Fig.1. This effectively
multiplies the system’s sampling rate by M, with each ADC
operating at a M times reduced rate, thereby alleviating the
limitations of individual devices. The appropriate clock phase
offset for each channel can be computed using the following

expression [5]:
b = 2 (m‘l), (1)

M

where m denotes the channel index (ranging from 1 to
M), and M the total number of interleaved ADCs. The
principal advantage of time interleaving lies in its ability
to expand the Nyquist bandwidth of the converter system.
In addition to bandwidth benefits, interleaved ADCs support
the development of adaptable and scalable SDR platforms.
These systems can accommodate new modulation schemes
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Fig. 1. Block diagram of a time-interleaved ADC system with 4 parallel
sub-ADCs, each sampling at %, clock distribution not drawn

and frequency bands through software updates, rendering
them highly adaptable to evolving standards. Despite these
benefits, interleaved architectures introduce substantial design
complexity. Even minor imperfections in clock distribution
can introduce timing skew, degrading system performance,
leading in the context of this paper to a lower AMC accuracy.

Fig. 2 shows the power spectral density (PSD) of a time-
interleaved ADC system with M = 4 channels, each op-
erating at one-fourth of the overall sampling rate. While
interleaving increases the effective sampling frequency, it
also introduces spurious spectral components due to gain
mismatches among the channels (e.g., 1.000, 1.015, 1.010,
1.012). These mismatches produce image replicas at frequen-
cies given by fopu = tfin + 25 fs, where k = 1,2,3, ...
where f;, is the frequency of the input sinusoidal signal,
and f, is the total system sampling rate [6]. Frequencies
in the spectrum are normalized with respect to a baseband
carrier (i.e., carrier frequency set to 0 Hz). In the example of
Fig. 2, this results in spurious components at the normalized
frequencies 0.15, 0.35, and 0.40 Hz.

B. Dataset Description

Extensive validation, prototyping, and system-level testing
are therefore essential to translate the theoretical benefits
of interleaving into real-world performance gains. However,
exploring the full range of mismatch effects in a controlled
yet comprehensive manner calls for a synthetic dataset that
can systematically vary key parameters. The dataset em-
ployed for both training and evaluation in this study is the
CSPB.ML.2018 dataset [7], originally released for a machine
learning challenge. It comprises synthetically generated 1Q
signals created in MATLAB, with the complete set of param-
eter ranges listed in Table I. Notably, this dataset incorporates
often-overlooked parameters such as Carrier Frequency Offset
(CFO) and the Root Raised Cosine roll-off factor (RRC). It
comprises only digitally modulated signals, including BPSK,
QPSK, 8PSK, 7-DQPSK, 16QAM, 64QAM, 256QAM, and
MSK. Apart from Additive White Gaussian Noise (AWGN),
which introduces different SNR conditions, no channel im-
pairments were applied. SNR levels span from -2 dB to
12.8 dB, with the highest concentration around 10 dB. Each
signal is relatively long compared to other available databases
(32,678 samples), with a total of 112,000 waveforms pro-
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Fig. 2. Effect of gain mismatch on a sinusoidal input at 0.1 times the
normalized sampling frequency and four interleaved ADCs
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TABLE 1
CSPB.ML.2018 DATASET PARAMETERS [7]
Par t Range / Values
Modulations BPSK, QPSK, %-DQPSK, 8PSK,

MSK, 16QAM, 64QAM, 256QAM
1-15 samples
[~1073,1073] Hz

Base symbol period
Carrier freq. offset (norm.)

Roll-off factor 0.1-1

SNR —2to 12.8 dB

Up/down sampling (1,1), (3,2),(4,3)—(10,9)
Noise spec. density 0 dB

Signal length 32,678 samples

Number of waveforms 112,000

vided. In our work, 70% of the data is used for training, with
the remaining 30% reserved for validation.

C. Post-Processing - applying mismatches to existing dataset

Unlike traditional methods that introduce mismatches dur-
ing signal generation, we apply interleaved ADC mismatches
as a post-processing step to the pre-generated in-phase and
quadrature (IQ) waveforms from the previous section. This
approach offers fine control over each mismatch parameter
and enables independent evaluation on existing datasets. In
radio receivers, the choice between direct RF sampling and
heterodyne architectures significantly influences how mis-
matches in time-interleaved ADCs manifest. In direct sam-
pling systems, the RF signal is sampled directly by the
ADCs without prior down-conversion [8], making mismatch
effects such as gain error, offset, and especially timing skew
immediately visible in the sampled passband spectrum. These
impairments introduce spurious tones at predictable frequency
offsets, such as multiples of E, where f, is the effective
sampling rate and M the number of interleaved channels.
In contrast, heterodyne receivers perform frequency down-
conversion of the RF signal to an intermediate frequency
(IF) prior to digitization. A related architecture, often called
direct-conversion or homodyne, mixes the RF signal directly
to baseband instead of an IF. Both approaches reduce the input
frequency seen by the ADC compared to direct RF sampling,
which changes how interleaving mismatches manifest in the
digitized spectrum. In such architectures, mismatches that
occur after the down-conversion stage, particularly within the
IQ baseband paths, generally have a diminished effect on
system performance. This is because, once the signal has
been translated to a lower frequency, the resulting distortions
are spectrally located closer to DC, where they can be more
readily filtered or digitally compensated. Consequently, the
impact of these mismatches on the overall spectral purity is
typically limited, unless the mismatches are excessively large.
Therefore, to accurately evaluate mismatch-induced distortion
in time-interleaved ADC systems, simulations should apply
the impairments in the passband domain prior to IQ extrac-
tion, preserving their true spectral behavior. This methodology
provides a versatile tool for simulating a wide range of
ADC architectures and mismatch scenarios. In this work,
the simulation models a direct RF sampling architecture
with digital IQ downconversion, a configuration commonly

used in military receivers, wideband software defined radios,
and spectrum monitoring systems, to evaluate the impact of
time interleaving imperfections. The baseband 1/Q signal is
modulated to the desired RF passband, where interleaved
ADC impairments including gain, offset, and timing skew are
applied independently to each channel. The distorted passband
waveform is then digitally downconverted to complex base-
band, enabling accurate assessment of signal quality and spec-
tral artifacts. A passband frequency of 10 MHz was chosen
to represent a typical narrowband RF scenario while keeping
computational requirements manageable. At this frequency,
timing skew produces moderate phase errors, while gain and
offset mismatches remain largely independent of frequency.
By applying impairments in the passband before digital 1Q
extraction, the simulation preserves the true spectral behavior
of mismatch induced distortions. Overall, the methodology
provides realistic insights into interleaved ADC mismatches
while remaining general enough to evaluate a wide range of
sampling architectures and digital downconversion strategies.
We consider an M -channel time-interleaved ADC. For each
waveform, the original in-phase and quadrature components
are denoted by xzr[n] and zg[n]. Gain error, DC offset, and
timing skew are applied independently to each sub-ADC
m € 0,1,..., M — 1. The corrupted outputs are defined at
positions n = m + kM (with k € Z) as follows:

yI[’ﬂ] =91m - l'](’n, + 6I,m) + OI,m;

2
yolnl = 90.m - xo(n+ 00.m) + 0Q,m,

where:

e 9I.m,9Q,m are the gain mismatches for sub-ADC m,

e 0I.m,0Q,m are the offset mismatches,

e 07.m,0Q,m are the sampling skews.

The expressions x7(n+0r,,) and 2g(n+4dg,m) are evalu-
ated using cubic interpolation to approximate fractional shifts
in time. After applying these transformations, the corrected
sub-sequences are reassembled into a complete waveform.
The proposed representation uses per channel gain, offset,
and timing skew to model mismatches across a wide range of
ADC architectures, including direct sampling, real IF down-
conversion, and complex 1Q down-conversion. This digital
domain model captures the primary ADC impairments, while
effects originating from the analog front end, such as mixer
nonlinearities, RF filtering, or analog 1Q imbalance, are not
considered in this formulation. In particular, IQ imbalance
between the I and Q paths of each interleaved ADC was tested
in our simulations but did not produce a significant impact on
the results for the chosen test configuration.

D. Selection of mismatch parameters

To realistically assess the performance of time interleaved
ADC systems, we simulate gain, offset, and timing mismatch
errors across M parallel channels. These mismatches are
modeled as zero mean Gaussian random variables, with
standard deviations chosen to reflect a wide range of system
conditions. Table II summarizes representative values for four
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levels of severity: relaxed, moderate, severe, and extreme [6]
[8]. These categories span use cases from highly controlled
laboratory setups to worst case, uncalibrated field deploy-
ments. As an illustrative example, the moderate configuration
models a typical calibrated or semi-calibrated system with
realistic imperfections. In this case, gain mismatch has a
standard deviation of 0.5%, consistent with common post-
fabrication calibration performance. Offset mismatch is simu-
lated with a standard deviation of 1 least significant bit (LSB),
assuming an 8-bit ADC and a normalized full-scale range of
+1V, yielding %. Timing skew is expressed as a percentage
of the sampling period T, with a standard deviation of 0.3%,
capturing moderate inter-channel misalignment. These values
serve as a balanced reference point, though all severity levels
listed in Table II are evaluated in our experiments.

TABLE II
MISMATCH STANDARD DEVIATIONS FOR DIFFERENT SYSTEM
CONDITIONS
Mismatch Relaxed Moderate Severe Extreme
Gain (%) 0.10 0.50 1.50 15.0
Offset (LSB) 0.25 1.00 2.00 10.0
Timing Skew (% T%s) 0.05 0.30 1.00 20.0

E. Normalization effect

Normalization is applied per waveform as is standard
practice in deep learning, each waveform is normalized during
preprocessing, a step that consistently yields the best per-
formance. Normalization rescales each waveform to a fixed
amplitude range and typically removes its DC component.
As a result, absolute offset values, such as those introduced
by adding a constant bias to a sinusoidal signal, are elimi-
nated. The waveform is re-centered, and its dynamic range
is adjusted, effectively restoring the original signal shape
without the absolute offset. However, normalization does
not remove relative offset mismatches between channels in
a time-interleaved ADC. Although compression reduces the
signal’s overall distortion magnitude, interleaving artifacts
such as alternating steps from per-channel offset differences
still persist in the normalized waveform, though at reduced
intensity. While normalization helps mitigate some mismatch
effects, further reduction is achieved through dyadic down-
sampling. The next section introduces this approach.

III. DYADIC SAMPLING AND PROCESSING PIPELINE

A. The Role of Dyadic Down-Sampling in Minimizing ADC
Mismatch Effects

Dyadic down-sampling refers to the process of reducing the
sampling rate of a signal by factors of two, where the term
”dyadic” indicates a relation to powers of two. Formally, for
a 1D signal x[n], the down-sampled version at dyadic level
d is defined as:

zq[n] = x[2n] 3)

This method allows the representation of a signal at multiple
resolutions, where each level retains every 2%-th sample of
the original. For 2D signals, such as images or 1Q matrices,
the down-sampling extends naturally:

xgq[m,n] = x[2dm, 2dn] )

In this work, each waveform from the dataset described in
II-B is represented as a 2-row matrix containing the in-phase
(D and quadrature (Q) components:

zqr[n], zagln] = xI[an], xQ[an} (5)

This process reduces signal dimensionality while preserving
essential structure. It effectively suppresses high-frequency
noise and redundancy, offering a more compact representa-
tion for neural network training [1]. Indeed, in high-speed
acquisition systems such as those employing time-interleaved
ADCs, signals are often over-sampled to capture a broad
bandwidth. After band-selection and down-conversion, the
resulting signal contains significant temporal redundancy,
which can be effectively reduced via dyadic down-sampling
to yield a more compact and informative representation for
learning tasks. The resulting signal variants at multiple dyadic
levels provide the AI model with complementary views of
the same waveform, enhancing its ability to capture relevant
patterns across scales in a computationally efficient manner.

A computational form of this operation is:

signall:, :, ::df] (6)

where df is the decimation factor and df = 2¢, with
d denoting the dyadic level or scale. Here, the first index
corresponds to waveform selection, the second index se-
lects the in-phase (I) and quadrature (Q) components, and
the third index performs sample selection according to the
decimation factor. Careful selection of the down-sampling
factor is essential: excessive reduction may discard critical
signal features, whereas moderate decimation can enhance
computational efficiency and model performance. Using the
scales, we not only extract features at different resolutions but
this process also implicitly selects samples from a subset of
the interleaved ADCs, as illustrated in Fig. 3. After the first
dyadic down-sampling step, the selected samples correspond
to those within the marked squares, specifically from ADCs
1 and 3. In the second down-sampling stage, only ADC 1
remains, with its selected samples marked by circles. As a
result, gain mismatches across ADCs become less apparent
due to the progressive exclusion of certain channels.

2 3 3 4

ADC# 4 2
Fig. 3. Selection of dyadic samples in a TIADC system
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B. Data flow

The complex IQ signal is extracted from the dataset (II-B)
and then subjected to simulated ADC mismatches, including
gain, offset, and timing errors. Following this, the signal un-
dergoes dyadic down-sampling, decomposing it into multiple
temporal scales. Each resulting complex sub-signal, along
with the original input, is formatted as a two-row vector
and fed into separate CNN branches of an Al architecture
for modulation classification (see Fig. 4). The methodology
is illustrated in Fig. 5. When using classical 1Q reference
system [9], only a single arm processes the original 1Q
samples. In Section IV-B1, the arms corresponding to the
dyadic down-sampling scales are replaced with the individual
ADC outputs. A data generator is used to stream waveform
batches of size 32, minimizing RAM memory usage. When
used, the generator performs dyadic down-sampling on the
fly, just before feeding the data into the model, rather than
relying on precomputed samples. Additionally, data is shuffled
between epochs to promote generalization and reduce the
risk of overfitting. In the tables, the labels “Gain,” “Offset,”
“Skew,” and “All” denote isolated mismatch types whereas
“All” refers to all three applied simultaneously.

C. Automatic Modulation Recognition

Automatic Modulation Classification (AMC) involves iden-
tifying the modulation scheme of a received signal, typi-
cally formulated as a multi-class classification problem. In
this study, we employ a deep learning approach based on
Convolutional Neural Networks (CNNs), which are well-
suited for learning local patterns in time-series data [10]. A
convolutional neural network (CNN) layer can be interpreted
as a learned generalization of a finite impulse response (FIR)
filter. Like an FIR filter, a CNN layer performs a convolution
operation over an input signal, computing a weighted sum
of local input samples using a fixed-size kernel. However,
whereas FIR filter coefficients are typically designed to meet
specific frequency-domain criteria (e.g., low-pass character-
istics), the CNN’s filter weights are learned directly from
data through gradient-based optimization. This allows CNNs
to automatically discover task-specific filters that extract
meaningful features from input signals. In essence, a CNN
layer functions can be interpreted as a bank of adaptive FIR-
like filters, typically followed by nonlinearities, enabling the
modeling of complex patterns in time-series or spatial data. In
our approach, we down-sample first and rely on the CNN to
perform the filtering instead of using a traditional anti-aliasing
filter. The learned kernels exhibit pass band characteristics,
a common trait in CNNs, which means aliasing is present
but is effectively taken into account by the network during
training. The architecture consists of several key components
that can be found in Table III: convolutional layers that extract
hierarchical features using learnable filters, followed by dense
(fully connected) layers that integrate these features for final
decision-making. The convolutional layers utilize filter sizes
of 2 x 8 and 1 x 4 in the first and second layers, respec-

TABLE III
CNN ARCHITECTURE SUMMARY
Layer Type Kernel / Units Activation
Input (batch size, samples, 1) -
Conv2D (2, 8), 40 ReLU
Conv2D (1, 4), 10 ReLU
Flatten - -
Dropout 50%
Dense 256 ReLU
Dense (output) 8 Softmax
Arm 1 Arm 2 -
s[:] s[::2] dyadic scheme
CNN
layer 1
kernels
CNN
layer 2 One arm
for each
scale
777 ) [\ ) FIW
Concatenation
% | Dense
layers
Softmax
Output

Fig. 4. Global overview of the CNN layer fusion architecture

Scales

Input N Decomposition . Decision

Gy .  Classification
algorithm
[ .
T Dyadic > - Al N
: Down- s : L —
architecture
Q — > sampling > -

Fig. 5. Overall data-flow diagram

tively. These are followed by non-linear ReLU (Rectified
Linear Unit) activations, dropout layers for regularization,
and flattening operations to transition from convolutional to
dense layers. The output layer is a dense layer of size 8,
corresponding to the number of modulation classes present in
the dataset, and concludes with a softmax activation function
to generate class probabilities. Having outlined the system
architecture and processing flow, we now present and analyze
the experimental results that validate the effectiveness of the
proposed approach.
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IV. RESULTS-DISCUSSION-CONCLUSION
A. Results

A comparative analysis between the original IQ method and
dyadic down-sampling at M = 2 and M = 4 demonstrates
consistent improvements across all evaluated metrics with
dyadic down-sampling, as shown in Tables IV and V. Relative
improvements range from approximately 4.6% to 8.5%, with
the most notable gains in category GAIN and ALL scores.
Absolute increases in accuracy range from 4.12% to 6.59%.
To assess the impact of ADC mismatches on system per-
formance, accuracy can be evaluated as a function of the
input signal-to-noise ratio (SNR). At low SNR levels, the
performance is primarily limited by noise, which masks the
effects of mismatches such as gain or offset errors. How-
ever, as SNR increases, these mismatch-induced distortions
become more prominent relative to the noise floor, potentially
degrading classification accuracy. This approach effectively
distinguishes noise-limited from mismatch-limited regimes
and highlights the importance of calibration in high-SNR
scenarios. The code, additional results, and supplementary
tests related to this study will be made available on GitHub,
as referenced in [11].

B. Discussion

1) Exploring ADC Output as an Alternative to Dyadic
Down-sampling: Instead of using a downsampled represen-
tation as in the dyadic approach, we retain the same fusion
architecture but modify the input strategy. Specifically, the
model receives both the full-resolution input waveform and
the individual signals from each ADC channel. The motiva-
tion is that, by exposing the network to the raw per-channel
signals, any mismatch effects are explicitly preserved rather
than hidden in the composite waveform, making them easier
for the model to learn and correct during training. To as-
sess overall performance differences between the dyadic and
ADC-based methods, we computed the average percentage

TABLE IV
COMPARISON OF AVERAGE (10 TRIALS) CLASSIFICATION SCORES
BETWEEN ORIGINAL IQ AND DYADIC DOWN-SAMPLING AT M = 2 AND
M = 4, SEVERE CASE.

Metric Original 1Q (M=2) Dyadic (M=2) Original 1Q (M=4) Dyadic (M=4)

NONE 0.9049 0.9464 (+4.15%) 0.9049 0.9464 (+4.15%)

GAIN 0.9029 0.9458 (+4.29%) 0.9035 0.9462 (+4.27%)

OFFSET 0.9048 0.9463 (+4.15%) 0.9049 0.9466 (+4.17%)

SKEW 0.9049 0.9465 (+4.16%) 0.9049 0.9466 (+4.17%)

ALL 0.9028 0.9455 (+4.27%) 0.9035 0.9461 (+4.26%)
TABLE V

COMPARISON OF AVERAGE (10 TRIALS) CLASSIFICATION SCORES
BETWEEN ORIGINAL IQ AND DYADIC DOWN-SAMPLING AT M = 2 AND
M = 4, EXTREME CASE.

Metric Original 1Q (M=2) Dyadic (M=2) Original 1Q (M=4) Dyadic (M=4)
NONE 0.9049 0.9464 (+4.15%) 0.9049 0.9464 (+4.15%)
GAIN 0.7837 0.8491 (+6.54%) 0.8411 0.9069 (+6.58%)
OFFSET 0.9021 0.9433 (+4.12%) 0.9034 0.9447 (+4.13%)
SKEW 0.9015 0.9477 (+4.62%) 0.8980 0.9439 (+4.59%)
ALL 0.7768 0.8427 (+6.59%) 0.8337 0.9009 (+6.72%)

improvement (API) across all four metrics (GAIN, OFFSET,
SKEW, and ALL) using:

N .
1 Dyadic, — ADC;
APl = — —_— x1 7
N Zi:l < ADC, 00) D

where N = 4 is the number of encompassed metrics. As
summarized in Table VI, the dyadic method outperformed
the ADC-based approach by an average API of 4.65% at
M = 2 and 3.48% at M = 4. These results suggest
that dyadic down-sampling provides a consistent advantage
across metrics. Moreover, the training process and overall
architecture of the ADC-based method must be adapted to
the number of ADC channels in the system, which limits its
flexibility. In contrast, the dyadic methodology is inherently
more adaptable across different system configurations.

TABLE VI
COMPARISON OF AVERAGE CLASSIFICATION SCORES BETWEEN ORIGINAL
1Q AND ADC-BASED SCALING AT M = 2 AND M = 4, EXTREME CASE.

Metric  Original IQ (M=2)  ADC (M=2)  Original IQ (M=4)  ADC (M=4)

GAIN 0.7837 0.8006 (+2.16%) 0.8411 0.8925 (+6.11%)
OFFSET 0.9021 0.9358 (+3.74%) 0.9034 0.9373 (+3.75%)
SKEW 0.9015 0.9385 (+4.10%) 0.8980 0.9356 (+4.19%)
ALL 0.7768 0.7964 (+2.52%) 0.8337 0.8845 (+6.09%)

C. Conclusion

For wideband spectrum monitoring, particularly in the
context of modulation classification, our simulations yield the
following insights. In well-calibrated interleaved ADC sys-
tems with minimal mismatches, the impact on classification
accuracy is negligible under both relaxed and moderate cases,
particularly when using a database with difficult channel
conditions that tend to mask residual mismatch effects. This is
an encouraging result, as it indicates that advanced monitoring
systems, such as those employing high-performance single-
chip interleaved ADCs, can fully leverage their hardware ca-
pabilities without significant degradation in classification per-
formance. Conversely, scenarios characterized by substantial
mismatches due to device aging, prolonged operation without
recalibration, or hardware variability in cost-constrained sys-
tems pose significant challenges. These conditions often lead
to increased spurious artifacts and degraded signal integrity
due to the lack of precise calibration and synchronization.
Consequently, effective wideband classification in such envi-
ronments demands more sophisticated digital signal process-
ing techniques. Furthermore, our results demonstrate that the
proposed dyadic down-sampling technique, when combined
with a CNN-based fusion architecture, is particularly effective
in mitigating the impact of gain mismatches on modulation
classification performance in time-interleaved ADC systems.
Moreover, when additional IQ imbalance is introduced, I
has mismatches, Q has not, the inherent structure of the Al
architecture helps to mitigate its impact. This is primarily due
to the use of line wise convolutional kernels instead of chunk
wise processing, which makes the imbalance effect negligible
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in terms of classification accuracy. The modular nature of the
proposed framework allows straightforward extension to other
impairments such as IQ imbalance, jitter, or analog front-end
drift, making it suitable for robust classification in practical
wideband receivers.
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