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Context

Photoswitching molecules allow reversible control of
their structure and properties using light. Their
effective design, however, requires precise tuning of
key parameters, particularly the half-life time of the
metastable photoisomer.[4] Conventional solution-
based methods to measure back-isomerization
kinetics are limited by time and temperature
constraints. To address this, we explore gas-phase
strategies using tandem ion mobility spectrometry and
collisional activation, offering a faster and more
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Figure 1. Ideal half-life times of different applications of azobenzene-based photoswitches.[1-4]

The entropy puzzle
Photoswitches studied What does happen when the N=N bond rotates?
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Figure 3. General structure of the systems studied, which consist of selected side chains grafted onto a backbone Transmission coefficient, traditionally = 1 but... Reaction coordinate

(top right) in a sequence-defined peptoid. Sequences are given from the N- to C-terminus.[6] Figure 4. Schematic representation of the intersystem crossing process involved in the AZO bond rotation.[7]

. . . . . =» The intersystem crossing process is confirmed by differences
Kinetics in the gas phase - thermal activation observed in the relaxation kinetics in solution with and without NH,I [8]
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Figure 8. Monte Carlo simulations showing the evolution of the velocity and internal energy of an ion within the trap. Table 2. Temperature calibration parameters measured for reference systems.
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