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Kinetics in the gas phase – thermal activation
➔ The intersystem crossing process is confirmed by differences 
observed in the relaxation kinetics in solution with and without NH4I [8]

Context

Photoswitching molecules allow reversible control of 
their structure and properties using light. Their 
effective design, however, requires precise tuning of 
key parameters, particularly the half-life time of the 
metastable photoisomer.[4] Conventional solution-
based methods to measure back-isomerization 
kinetics are limited by time and temperature 
constraints. To address this, we explore gas-phase 
strategies using tandem ion mobility spectrometry and 
collisional activation, offering a faster and more 
efficient way to study thermal back-isomerization 
kinetics of photoswitching systems. 

Figure 1. Ideal half-life times of different applications of azobenzene-based photoswitches.[1-4]

Figure 2. Schematic representation of azobenzene photoswitching 
and thermal back-isomerization processes.[5]

 
 

  

      
 

 
 

 

  

                        
   

                

                      
                                         

 
 
  

 
 

  

      
 

 

 
 

   

 

 

Photoswitches studied

Figure 3. General structure of the systems studied, which consist of selected side chains grafted onto a backbone 
(top right) in a sequence-defined peptoid. Sequences are given from the N- to C-terminus.[6]

Conclusions and perspectives Acknowledgments References
Thomas Robert thanks the « Fonds
National de la Recherche Scientifique
(FRS-FNRS) » for his FRIA Ph.D grant.
The UMONS lab thanks the FRS-FNRS
for financial support for the
acquisition of the Waters Synapt G2-
Si. The IMS-IMS setup was developed 
with funding from the Agence 
Nationale pour la Recherche (grant nr. 
17-CE29-001301).

➢ Gas-phase measurements reveal clear structure-dependent differences in 
activation entropies, reflecting distinct back-isomerization pathways.

➢ Tandem IMS enables extraction of activation parameters by monitoring gas-
phase thermal back-isomerization.

➢ Collision-induced isomerization provides a fast, calibration-based method 
to obtain kinetic constants and compare photoswitching systems.

➢ Expanding the photoswitch library and refining calibration will establish a 
robust framework for rapid gas-phase kinetic measurements.
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Monte Carlo (python)

P (Ar) = 2.6 10-2 mBar

Trap CV = 20 V

Wave velocity = 200 m/s

Based on dice rolls and models 
taking into account both heating 
and cooling by collisions[9]

Figure 8. Monte Carlo simulations showing the evolution of the velocity and internal energy of an ion within the trap.
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Table 2. Temperature calibration parameters measured for reference systems.

Kinetics in the gas phase – collisional activation

Figure 6. Principle of the collision-induced back-isomerization experiments.

    

 
  
 
 
 
 
 
  
 
  
  
 
 
 
 
 
 
 
 

                          

Figure 7. A) Relative abundance of Z photoisomers measured as a function of Trap CE and fitted using a sigmoidal 
function (solid line). B) Effective temperature calculated from relative abundances for each Trap CE value and fitted 
using a linear function (dashed line).

1) Z-photoisomers selection

in IMS1
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= kinetic monitoring

(different T)

3) Photoisomers population

sampling by IMS2 Figure 5. Principle of the tandem-IMS experiments.[8]

Table 1. Activation parameters for thermal gas-phase back-isomerization measured by tandem 
IMS experiments and the corresponding relaxation mechanism.[8]

The entropy puzzle
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Transmission coefficient, traditionally ≃ 1 but…
Figure 4. Schematic representation of the intersystem crossing process involved in the AZO bond rotation.[7]

What does happen when the N=N bond rotates?

A. B.

Arrival time distribution (ms)Retention time (min)


	Slide 1

