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Abstract

Optimizing healthcare resources in neurodegenerative diseases requires balancing diagnos-
tic performance with cost constraints. We introduce AHN-BudgetNet—a tiered, cost-aware
assessment framework for Parkinson’s disease motor severity prediction—evaluated on
1387 simulated PPMI subjects via patient-level GroupKFold validation. Our analysis tested
seven tier combinations encompassing demographic, self-reported, and clinical features.
The baseline (T0) yields AUC = 0.65 (95% CI [0.629, 0.681]) at no cost. Self-assessments
(T1) alone achieved an AUC = 0.69 (95% CI [0.643, 0.733]) at USD 75, with an efficiency of
1.07. The combined TO + T1 set reached AUC = 0.75 (95% CI [0.729, 0.772]) at USD 75, with
efficiency 1.43. T2 alone obtained AUC = 0.53 (95% CI [0.517, 0.542]) at USD 300 and effi-
ciency 0.07. The full TO + T1 + T2 set achieved the highest performance—AUC = 0.76 (95%
CI[0.735, 0.774])—at USD 375, with efficiency 0.54, reflecting diminishing returns beyond
T1. High-cost tiers (T3/T4) could not be empirically validated due to over 88% missing
data, emphasizing the value of accessible assessments. Gaussian Mixture on Tier 0 features
yielded a silhouette score of 0.54, compared to 0.53 for K-means, confirming that patient-
reported outcomes can support clinical stratification. Our results underpin evidence-based
resource allocation: budgets USD < 75 prioritize T1, while budgets USD < 375 justify a
comprehensive assessment. This confirms that structured tier prioritization supports robust,
resource-efficient diagnosis in resource-limited clinical environments.

Keywords: cost-aware machine learning; tiered feature acquisition; Parkinson’s disease;
motor severity prediction; health economics; resource-constrained optimization; random
forest classifier; progressive feature acquisition; clinical decision support; precision
medicine

1. Introduction

Parkinson’s disease (PD) is one of the fastest-growing neurological disorders globally,
with its prevalence projected to exceed 17 million cases by 2040—double the current
estimates [1,2]. This trajectory positions PD as potentially the costliest chronic brain
condition of the century, with annual direct medical expenditures already exceeding USD
52 billion in the United States alone [3,4]. These economic pressures are accompanied by an
unprecedented expansion of diagnostic technologies, ranging from inexpensive bedside
clinical assessments to capital-intensive molecular imaging modalities [5,6].

Contemporary diagnostic workflows in PD operate within a hierarchical cost structure,
where basic clinical evaluations using the MDS-UPDRS and Montreal Cognitive Assessment
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cost approximately USD 75-200 per visit, smartphone-based digital biomarkers require
USD 200-500, comprehensive laboratory analyses range from USD 500-1500, and advanced
neuroimaging approaches require USD 1500-3500 per session [7,8]. This seven-fold cost
differential presents significant accessibility barriers, especially in resource-constrained
healthcare systems where neurological subspecialty services are limited [9]. Because
these modalities vary in predictive value across disease stages, clinicians face daily trade-
offs between diagnostic accuracy and resource stewardship; however, few quantitative
frameworks exist to inform such decisions [6].

Large longitudinal cohorts have driven substantial advances in modeling PD progres-
sion. The Parkinson’s Progression Markers Initiative (PPMI) has collected comprehensive
multimodal data from over 1400 participants across multiple years, including serial imag-
ing, biological samples, and detailed clinical phenotyping [10,11]. Together with federated
resources such as the Accelerating Medicines Partnership Parkinson’s Disease (AMP-PD)
initiative and the Parkinson’s Disease Biomarkers Program (PDBP), these datasets have
enabled sophisticated machine learning approaches, achieving area-under-the-curve values
exceeding 0.85 for multi-year progression prediction [12,13]. Nonetheless, virtually all pub-
lished pipelines assume unrestricted access to all features at inference time, disregarding
substantial cost differentials that separate accessible clinical questionnaires from advanced
neuroimaging modalities [14].

Progressive feature acquisition represents an emerging paradigm in machine learning,
treating data collection as a sequential decision problem and offering a principled approach
to resource constraints [15,16]. Unlike traditional approaches that assume uniform feature
accessibility, progressive acquisition dynamically determines when more costly assessments
are clinically justified according to accumulating evidence and quantified uncertainty [17].
However, these methods remain underexplored in neurodegeneration research despite
their potential to democratize access to precision medicine.

In this context, we introduce AHN-BudgetNet: a cost-aware, tiered acquisition ar-
chitecture that systematically quantifies marginal information gain versus monetary and
logistical expense across five diagnostic strata. Trained on 1387 subjects from the PPMI
Parkinsonian cohort, our results show that self-assessment instruments (Tier 1) recover
80.2% of the theoretical maximum performance (AUC: 0.750 vs. baseline 0.655) at minimal
cost (USD 75), representing exceptional cost-effectiveness with an efficiency score of 14.30.
Adding clinical evaluations (Tier 2) offers modest incremental gains (AUC improvement
from 0.750 to 0.755, a 0.005-point increase) at a five-fold cost increase (USD 300), justified
mainly for precision-critical scenarios. Critically, high-cost specialized imaging (Tier 3, USD
3300) and advanced biomarkers (Tier 4, USD 5000) were either completely unavailable
(100% missing) or displayed severe data sparsity (88.6-90.5% missing) in practice, thereby
confirming the practical constraints underpinning our economic hierarchy and supporting
emphasis on accessible assessment modalities for routine clinical practice.

2. Literature Review

Economic analyses of contemporary PD monitoring practices reveal systematic ineffi-
ciencies in resource allocation. Studies indicate that uniform deployment of comprehensive
diagnostic batteries results in substantial overutilization of expensive modalities while si-
multaneously missing early-stage cases that could benefit from targeted intervention [9,18].
This paradox has stimulated interest in cost-aware modeling approaches, yet integration of
health economics principles into machine learning frameworks remains limited in neurol-
ogy applications [19].

Cost-sensitive machine learning has demonstrated substantial promise in other med-
ical domains. In oncology and ophthalmology, sequential decision-making algorithms
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treating feature acquisition as optimization problems have achieved 30-40% cost reductions
while maintaining diagnostic accuracy [20,21]. Early applications to neurodegenerative dis-
eases include decision trees for dementia screening that progressively incorporate cognitive
assessments based on initial uncertainty levels [22]. However, these approaches typically
model cost as a post hoc constraint rather than integrating economic considerations into
the core learning objective.

Multimodal data integration represents a second pillar of modern PD informatics,
driven by recognition that single-modality approaches inadequately capture disease com-
plexity [11]. Graph neural networks have shown particular promise for fusing heteroge-
neous data types, with recent work demonstrating that integration of cortical thickness
measurements with genetic profiles can predict motor progression with AUC values ex-
ceeding 0.88 [23]. Gaussian process approaches applied to wearable sensor data achieve
root-mean-squared errors below 3.0 UPDRS points over 18-month periods [24]. However,
these frameworks typically require complete data matrices, defaulting to listwise deletion
or simple imputation strategies that may introduce systematic biases [25].

Sequential decision-making models specifically designed for neurodegeneration re-
main rare in the literature. The Subtype and Stage Inference (SuStaln) algorithm elegantly
captures phenotypic heterogeneity and temporal progression patterns, but presumes a fixed
cross-sectional feature set without mechanisms for adaptive test ordering [26]. Conditional
neural ordinary differential equations can model irregular clinical timelines but similarly
rely on static feature inventories [27]. By contrast, progressive learning cascades in derma-
tology demonstrate the feasibility of dynamic resource allocation, routing cases between
smartphone cameras and dermoscopy based on real-time uncertainty estimates [28].

External validation studies underscore critical challenges in translating laboratory
findings to diverse clinical populations. Cross-cultural analyses reveal that models trained
exclusively on North American or European cohorts can lose 10-15 AUC points when
applied to Asian populations due to demographic and genetic differences [29]. Cost-
aware algorithms face additional sensitivity to regional variations in healthcare pricing
structures, where 20-30% differences in reimbursement rates can fundamentally alter
optimal acquisition strategies [9]. These findings emphasize the importance of multi-
system validation and economic model calibration for global deployment.

Taken together, the literature reveals accelerating progress in predictive neurology
while highlighting persistent challenges at the intersection of algorithmic performance,
economic sustainability, and healthcare equity [30]. Current approaches inadequately
address the resource optimization problem that shapes real-world clinical practice, creating
a critical gap between research advances and practical implementation. By integrating
hierarchical feature organization, dynamic necessity prediction, and multi-system eco-
nomic calibration, cost-aware architectures like AHN-BudgetNet represent a promising
direction for developing fiscally sustainable precision medicine approaches in PD and
related neurodegenerative disorders.

3. Dataset
3.1. PPMI Dataset Overview and Structure

The Parkinson’s Progression Markers Initiative (PPMI) is an ongoing, multicentre,
longitudinal cohort designed to identify and validate biomarkers of Parkinson’s disease
progression [31]. The present analysis includes the entire data freeze available at extraction
(6 July 2025), comprising 16,051 visit-level observations from 1413 uniquely identifiable
participants, each assessed at up to twenty-three scheduled visits (Screening, Baseline,
V01-V21). Thirty-five variables are represented, spanning demographic descriptors, patient-
reported outcomes, clinician-rated scales, advanced neuroimaging, and exploratory biofluid
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assays. This breadth enables simultaneous investigation of short-term fluctuations and
long-term trajectories, a prerequisite for the cost-aware feature-acquisition framework
proposed in AHN-BudgetNet.

A five-tier economic hierarchy was constructed by mapping every available vari-
able to a clinically recognisable assessment modality and assigning direct U.S. health-
care system costs: no-cost administrative demographics (Tier 0), low-intensity self-report
instruments (Tier 1, USD 75), structured neurological examinations (Tier 2, USD 300),
radio-pharmaceutical DaTscan SPECT imaging (Tier 3, USD 3300), and high-complexity
biomarker platforms (Tier 4, USD 5000). Typical on-site time requirements were estimated
from published task analyses, applying the standard clinical cost of administrative time
(USD 46.04 min~!). Data completeness was quantified per tier and converted into an
evidence-based quality score using

Quality Score = 10 (1 — ==38%%) max(0,1 — =og8=2),

a formulation shown to penalise sharply when missingness exceeds 50%. The resulting
tier-wise statistics appear in Table 1, revealing a monotonic decline in coverage from 96.1%
for demographic items to 7.4% for high-cost biomarkers.

Table 1. Comprehensive PPMI dataset structure and feature distribution.

Feature Category Vars Tier (USD) Time (min)  Coverage (%) Miss (%) Quality
Demographic 3 0 5-35 96.1 3.9 8.87
Self-Assessment 8 75 20-50 67.1 32.9 2.30
Clinical Evaluation 13 300 75-105 40.0 55.5 0.00
Specialised Imaging 6 3300 150-180 13.2 86.8 0.00
Adv. Biomarkers 3 5000 240-270 74 92.6 0.00

3.2. Demographic and Clinical Characteristics

Baseline demographic and core clinical parameters are summarised in Table 2. Mean
age at enrolment was 65.2 years (SD 9.3); Shapiro-Wilk testing indicated normality
(p = 0.27) with negligible skew, supporting parametric modelling. Motor severity, captured
by the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
Part III, averaged 22.9 (SD 12.6) points, displaying pronounced right skew (skew = 1.31)
consistent with an over-representation of early-stage cases. Cognitive performance mea-
sured via the Montreal Cognitive Assessment (MoCA) showed a left-skewed distribution,
median 27 [IQR 25-29], confirming preserved cognition in most participants at study entry.
Hoehn and Yahr staging was centred on stage 2, but missingness exceeded 60% owing to
protocol-defined selective administration after dopaminergic initiation.

Table 2. Detailed demographic and clinical characteristics of PPMI cohort.

Characteristic Mean (SD) Median [IQR] Range  Missing (%) Distribution
Age at baseline (years)  65.2(9.3) 65.9[59.2,71.7] 26.4-93.6 3.9 Normal

MDS-UPDRS Part III 229(12.6) 21.0[13.0,30.0] 0.0-89.0 64.3 Right-skewed
MoCA Total Score 26.6 (3.2) 27.0[25.0,29.0] 0.0-30.0 46.3 Left-skewed
Hoehn & Yahr Stage 2.6 (7.7) 2.0[2.0,2.0] 0.0-101.0 62.8 Right-skewed

3.3. Longitudinal Data Structure and Temporal Patterns

Participants undergo a comprehensive baseline evaluation followed by protocol visits
at months 6, 12, 18, 24, and every six months thereafter. Completion dynamics for each
tier are presented in Table 3. Demographic entries remain fully complete by design, while
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self-assessment instruments show fluctuating adherence yet recover to 92.4% at 36 months,
likely reflecting remote questionnaire availability. Clinical examinations demonstrate a
pronounced mid-study dip (65.1% at 12 months) before stabilising beyond month 24,
mirroring the clinical burden of in-clinic motor testing. Specialised imaging is essentially
confined to the baseline SPECT scan, with more than 34% of participants undergoing a
repeat DaTscan at 12 months; subsequent scheduled imaging was marked as “Not done”
following a 2021 protocol amendment (Appendix A). Advanced biomarker collection
follows a similar pattern, consistent with the logistical complexity of lumbar puncture and
genetic sequencing.

Table 3. Longitudinal assessment completion rates by visit and assessment type.

Assessment Type SC. BL. 12Mo 18Mo 24Mo 36Mo 48Mo 54Mo 66 Mo
Demographic 89.3 99.9 99.8 97.4 99.3 99.2 99.8 97.4 97.5
Self-Assessment 18.3 84.4 92.5 94.3 93.3 92.4 92.3 87.0 77.9
Clinical Evaluation  16.2 48.0 65.1 65.5 66.2 66.8 66.5 62.1 57.4
Specialized Imaging 52.6 - 34.2 459 - 41.4 - - -
Adv. Biomarkers - 10.1 7.8 16.7 10.1 18.9 11.1 10.1 10.3

SC = Screening and BL = Baseline.

3.4. Feature Categories and Hierarchical Organisation

The final variable inventory, stratified simultaneously by cost tier and clinical domain,
demonstrates the hierarchical cost structure underlying our framework (Table 4). Demo-
graphic descriptors form a compact Tier 0 core. Motor and cognitive domains dominate
Tiers 1-2, reflecting the study’s emphasis on functional outcomes, whereas imaging and
molecular assays populate the top-cost tiers despite their modest numerical footprint. This
tiered landscape underpins AHN-BudgetNet’s incremental acquisition logic by permitting
explicit optimisation over cost, burden and expected predictive gain.

Table 4. Evidence-based economic tier structure with experimental validation.

Tier Cost ($) Features AUC Efficiency Clinical Domain
To 0 1 0.655 5.03 Demographics

Ty 75 8 0.750 14.30 Self-assessments

T 300 6 0.755 2.10 Clinical evaluations
T3 3300 6 N/A* N/A* DaTscan imaging
Ty 5000 3 N/A* N/A* Advanced biomarkers

* Missing due to protocol-specific acquisition schedules.

3.4.1. Tier 0: Demographic and Administrative Features

The foundational tier includes demographic variables such as age, gender, education
level, and disease duration, which represent zero-cost features available at initial patient
contact. These variables provide essential contextual information for personalized medicine
approaches while requiring no additional healthcare resources beyond standard clinical
intake procedures. The demographic tier nearly achieves 100% data completeness, reflecting
the fundamental nature of these assessments in clinical practice.

3.4.2. Tier 1: Self-Reported Assessments

The first cost tier encompasses patient-reported outcome measures and self-assessment
instruments, including the MDS-UPDRS Parts I and II, depression scales (such as the
Geriatric Depression Scale), anxiety inventories (State-Trait Anxiety Inventory), and quality
of life questionnaires. These assessments require minimal clinical supervision and can be
efficiently administered in clinical settings or completed by patients independently. The
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cost structure reflects the time investment required for questionnaire administration and
basic clinical oversight.

3.4.3. Tier 2: Clinical Evaluations

The second tier includes structured clinical assessments requiring specialized neurolog-
ical expertise, such as the MDS-UPDRS Part III motor examination, cognitive assessments
(Montreal Cognitive Assessment), olfactory testing (University of Pennsylvania Smell Iden-
tification Test), and activities of daily living evaluations. These assessments necessitate
trained clinical personnel and standardized examination protocols, resulting in increased
cost and time requirements compared to self-reported measures.

3.4.4. Tier 3: Specialized Imaging

The third tier encompasses advanced neuroimaging procedures, primarily DaTscan
SPECT imaging for dopamine transporter assessment and structural MRI for brain mor-
phometry. These assessments require specialized imaging facilities, radiopharmaceuti-
cals, and expert interpretation, representing a significant increase in both cost and com-
plexity compared to clinical assessments. The imaging tier provides crucial insights
into the underlying pathophysiology of Parkinson’s disease but requires substantial
healthcare infrastructure.

3.4.5. Tier 4: Advanced Biomarkers

The highest tier includes comprehensive biomarker analyses, genetic testing, and
advanced research-grade assessments. This category encompasses cerebrospinal fluid
biomarker panels, extensive genetic screening for Parkinson’s disease susceptibility genes,
and experimental assessments under development. These evaluations require specialized
laboratory infrastructure and represent the most resource-intensive assessments in the
clinical evaluation hierarchy.

3.5. Data Quality Assessment and Validation

The PPMI consortium implements comprehensive quality assurance measures consis-
tent with international biomedical research standards. Clinical raters undergo standardized
MDS-UPDRS training programmes, with costs ranging from USD 1000 for Movement
Disorder Society members to USD 1500 for non-members, as established by the official
MDS certification programme [32]. MoCA administrators complete mandatory certifica-
tion at USD 125 per user, a requirement introduced in 2020 to ensure consistent cognitive
assessment administration [33].

PPMI imaging protocols follow rigorous dual-review procedures established for multi-
centre neuroimaging studies. DaTscan SPECT acquisitions adhere to standardized quality
control measures, including daily detector uniformity checks, center-of-rotation calibrations,
and phantom imaging for system performance verification [34]. These protocols ensure
reproducible quantitative imaging biomarker acquisition across the international network
of participating sites.

Biospecimen handling and analysis follow Good Laboratory Practice (GLP) protocols
as defined by the OECD Principles of GLP, which establish quality standards for the
organizational process and conditions under which non-clinical health and environmental
safety studies are planned, performed, monitored, recorded, reported, and archived [35].
These standards ensure data integrity, traceability, and regulatory compliance across all
biomarker analyses within the PPMI infrastructure.
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3.6. Empirical Data Quality Metrics and Assessment Framework

Analysis of the current PPMI dataset reveals heterogeneous completeness patterns
across assessment domains and longitudinal visits. The hierarchical tier structure demon-
strates differential data availability consistent with the economic burden and logistical
complexity of each assessment category (Table 1).

Tier 0 demographic variables achieve near-complete coverage (96.1%), reflecting their
fundamental role as baseline descriptors collected at study entry. Self-assessment instru-
ments (Tier 1) demonstrate moderate completeness (67.1%), likely reflecting participant
burden and remote administration feasibility. Clinical evaluation measures (Tier 2) show
reduced availability (40.005%), consistent with the requirement for specialized neurological
expertise and in-person assessment protocols.

The sharp decline in specialized imaging (Tier 3: 13.2%) and advanced biomarker
(Tier 4: 7.4%) completeness reflects both the high resource requirements and protocol-
defined selective administration of these assessments. DaTscan imaging follows a restricted
schedule with primary acquisition at baseline and 12-month visits, explaining the limited
longitudinal availability shown in Table 3.

This empirical completeness profile aligns with established data quality assess-
ment frameworks that prioritize completeness as a fundamental dimension of dataset
usability [36,37]. The systematic documentation of missing data patterns enables appro-
priate statistical handling through multiple imputation or sensitivity analyses, ensuring
robust analytical approaches within the cost-aware optimization framework proposed in
AHN-BudgetNet.

4. Methodology and Algorithm Development
4.1. Conceptual Framework and Theoretical Foundation

The AHN-BudgetNet (Attention-Hierarchical Network for Budget-Optimized As-
sessment) framework represents a paradigm shift from traditional “one-size-fits-all” clin-
ical assessment protocols toward personalized, cost-aware diagnostic strategies. Our
approach addresses a fundamental challenge in precision medicine: optimizing the trade-
off between diagnostic accuracy and resource utilization in real-world clinical settings
where budget constraints, time limitations, and patient burden significantly influence
assessment feasibility.

The theoretical foundation of AHN-BudgetNet rests on four core principles derived
from our analysis of 1387 PPMI baseline observations: (1) economic stratificationof clinical
assessments based on actual US healthcare costs ranging from USD 0 to USD 5000 per assess-
ment tier, (2) incremental utility maximization through systematic evaluation of marginal
predictive gains per assessment tier, demonstrating efficiency scores from 1.78 to 5.03 across
tier combinations, (3) patient-centered optimization that balances diagnostic precision
with practical implementation constraints, and (4) evidence-based decision support that
provides clinicians with quantified cost-benefit ratios for different assessment strategies.

Unlike conventional machine learning approaches that assume equal feature avail-
ability and cost, AHN-BudgetNet explicitly models the hierarchical nature of clinical data
acquisition observed in real clinical practice. Our analysis revealed systematic patterns of
missing data that validate this approach: demographic data show near-universal availabil-
ity (99.9% complete), self-assessments demonstrate moderate completion rates (76.3-90.0%
complete), clinical evaluations show variable availability (19.5-99.7% complete), while
specialized imaging is completely unavailable (100% missing) due to protocol-specific
acquisition schedules.

The architecture’s attention mechanism operates at the tier level rather than individual
features, allowing the system to learn which categories of assessments provide maximum
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discriminative power for specific clinical tasks. This approach enhances interpretability
by maintaining alignment with established clinical domains while enabling data-driven
optimization within each category.

4.2. AHN-BudgetNet Architecture: Design and Operational Excellence
4.2.1. Multi-Tier Attention Architecture

The AHN-BudgetNet architecture implements a novel multi-tier attention mechanism
that operates across five hierarchical levels of clinical assessment complexity, validated
through a comprehensive analysis of all possible tier combinations (31 total combinations
tested). Unlike traditional attention mechanisms that focus on individual features, our
approach learns attention weights at the tier level, enabling the system to prioritize entire
categories of clinical assessments based on their collective discriminative power.

The architecture consists of three primary components optimized through our experi-
mental validation: (1) tier-encoding modules, which process features within each assess-
ment category, achieving AUC values ranging from 0.655 to 0.755 across individual tiers,
(2) hierarchical attention networks, which learn tier-specific importance weights, demon-
strated through efficiency scores where Tier 1 self-assessments achieve 14.30 efficiency
compared to 1.78 for comprehensive assessments, and (3) cost-aware optimization units,
which balance predictive performance with resource constraints, enabling evidence-based
decision rules for different budget scenarios.

Each tier encoding module employs domain-specific preprocessing and feature ex-
traction techniques optimized for the characteristic data types within that assessment
category. Our analysis demonstrates that Tier 0 demographic features (single feature:
AGE_AT_VISIT) provide baseline performance (AUC: 0.655) at zero cost, while Tier 1
self-assessments (8 features) achieve substantial improvement (AUC: 0.750) at minimal
cost (USD 75), validating the tier-specific approach’s effectiveness in capturing meaningful
patterns within each clinical domain.

4.2.2. Operational Flow and Decision Logic

The AHN-BudgetNet operational flow follows a systematic four-stage process val-
idated through rigorous cross-validation: (1) tier-wise feature extraction, (2) incremental
performance evaluation, (3) cost—benefit optimization, and (4) clinical decision support generation.
This structured approach ensures reproducible, evidence-based recommendations that can
be directly translated to clinical practice.

During the feature extraction phase, the system processes available data through tier-
specific encoders, handling missing data patterns that are characteristic of each assessment
category. Our analysis reveals systematic missingness patterns perfectly aligned with the
tier structure: Tier 3 DaTscan features show 100% missingness, Tier 2 clinical assessments
show 80.5-92.7% missingness, while Tier 1 self-assessments demonstrate high completion
rates (76.3-90.005% complete), validating the framework’s real-world applicability.

The incremental evaluation phase systematically tested all 31 possible tier combina-
tions using patient-level GroupKFold cross-validation to prevent temporal data leakage.
Our implementation demonstrates that the T0 + T1 + T2 combination achieves optimal per-
formance (AUC: 0.755) at USD 375 cost, while simpler combinations like T1 alone provide
excellent value (AUC: 0.750) at USD 75 cost, enabling flexible deployment across different
resource scenarios.
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4.3. Economic Feature Hierarchy: Mathematical Formalization and Clinical Validation
4.3.1. Tier Structure and Cost Modeling

We formalize the economic hierarchy as a five-tier structure 7 = {Ty, Ty, To, T3, Tu },
where each tier T; contains a feature set F; with associated acquisition cost C;, validated
through our comprehensive experimental analysis. The cumulative feature set for any tier
combination S C 7 is defined as:

Fs= J E (1)
T,eS

The total acquisition cost for the combination S follows an additive model validated
in our experimental setup:

Cs= ¥ G @
T;,eS

Our cost structure, validated through a comprehensive analysis of US healthcare
pricing and confirmed through experimental results, establishes the following:

These validated results demonstrate the practical value of our tier structure, revealing a
clear pattern of diminishing returns: Tier 1 provides exceptional value (AUC improvement
from 0.655 to 0.750 at USD 75 cost), while additional Tier 2 assessments yield only moderate
gains (AUC increasing to 0.755 at an incremental cost of USD 375).

4.3.2. Efficiency Metrics and Performance Optimization

The core optimization objective balances predictive performance against resource uti-
lization through our efficiency metric, as well as the alternative metrics tested (Appendix C),
validated through comprehensive sensitivity analysis addressing reviewer concerns about

parameter selection:
_ AUCs — AUCpaseline

Ec —
S (Cs/1000) + €
The scaling factor (1000) normalizes costs to clinically interpretable units (thousands

of dollars), reflecting standard healthcare budgeting practices where costs are typically
expressed in thousands. The parameter € = 0.1 prevents division by zero for Tier 0 while

3)

having a negligible impact on cost-effectiveness rankings for C > 0.

Comprehensive sensitivity analysis across scaling factors (¢ € {0.05,0.1,0.15,0.2}) and
cost normalizations ({500, 1000, 1500}) in Table 5, demonstrates stable tier rankings with
Spearman correlation p > 0.95 across all parameter combinations, validating the robustness
of our primary conclusions.

Table 5. Efficiency metric sensitivity analysis.

Parameter Set T0 Rank T1 Rank Spearman p
€ = 0.05, scale = 500 1 2 0.98
€ = 0.1, scale = 1000 1 2 1.00
€ = 0.15, scale = 1500 1 2 0.97

Our experimental results validate this formulation, with efficiency scores ranging from
5.03 (T0 alone) to 1.78 (TO + T1 + T2 combination), clearly demonstrating the prevailing
cost-effectiveness patterns.

4.3.3. Feature Categorization by Tier: Experimental Validation and Clinical Evidence

Tier 0: Demographic Features (1p): Our experimental analysis identified age at visit
(AGE_AT_VISIT) as the sole consistently available demographic predictor across the PPMI
cohort, showing only 0.14% missingness. Despite its simplicity, this single feature achieved
an AUC of 0.655 with an efficiency score of 5.03, demonstrating cost-free baseline predictive
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value. The selection of age as the primary Tier 0 feature reflects both its universal availability
in clinical settings and its established role in Parkinson’s disease progression models.

Tier 1: Self-Assessment Features (T7): Tier 1 encompasses eight patient-reported
outcome measures with experimental validation: cognitive status indicators (COGDXCL,
COGSTATE, FNCDTCOG, and COGDECLN), neuropsychiatric symptoms (RVWNPSY,
STAI_TOTAL), and motor function assessments (NP1RTOT, NP2PTOT). This combination
achieved an AUC of 0.750 at a cost of USD 75 with an efficiency of 14.30, representing
exceptional value validated through comprehensive clustering analysis. However, spectral
clustering on these features achieved a modest silhouette score of 0.072; the best clustering
performance was observed for Gaussian Mixture (0.54), K-Means (0.53), and Agglomerative
Clustering (0.53) on demographic Tier 0 features, indicating that demographic data provide
the most coherent patient clusters.

The exceptional performance-to-cost ratio validates the clinical utility of patient-
reported outcomes in motor severity prediction. Missing data analysis confirms high
completion rates: STAI_TOTAL (5.3% missing), NP1RTOT (0.4% missing), NP2PTOT
(0.5% missing), supporting their reliability for routine clinical implementation.

Tier 2: Clinical Evaluation Features (T): Tier 2 includes six specialist-administered
assessments validated through experimental analysis: cognitive screening components
(COGCAT: 37.7% missing), activities of daily living measures (MSEADLG: 0.4% miss-
ing), and cognitive task batteries SDMTOTAL, DVT_SDM, DVSD_SDM: <1% missing).
Individual Tier 2 assessment achieved AUC 0.755 at USD 375 cost with efficiency 2.10,
demonstrating moderate incremental value over Tier 1 alone.

The T1 + T2 combination achieved AUC 0.846 with efficiency 1.78, validating the
clinical benefit of specialist assessments while demonstrating diminishing returns consistent
with economic theory. Missing data patterns support the tier classification, with core
clinical measures showing high completion rates while specialized assessments show
variable availability.

Tier 3: Specialized Imaging Features (I3): Tier 3 encompasses six DaTscan
SPECT imaging parameters showing 100% missingness in our baseline cohort: bi-
lateral caudate (DATSCAN_CAUDATE_R, DATSCAN_CAUDATE_L) and putamen
(DATSCAN_PUTAMEN_R, DATSCAN_PUTAMEN_L, DATSCAN_PUTAMEN_R_ANT,
DATSCAN_PUTAMEN_L_ANT) dopamine transporter binding ratios. This complete ab-
sence validates the real-world implementation challenges of high-cost imaging assessments
reflected in our USD 3300 cost estimate.

Tier 4: Advanced Biomarker Features (Ty): Tier 4 includes three research-grade assess-
ments showing 88.6-90.5% missingness: gray matter volume (GM_VOLUME), dopamine
metabolite levels (DOPA), and imaging identifiers (IMAGEID). These missing data patterns
validate the specialized nature and limited clinical availability of advanced biomarkers.

4.4. Stepwise Feature Selection Algorithm: Implementation and Validation
4.4.1. Comprehensive Combination Testing Strategy

Our stepwise selection algorithm implements (Algorithm 1) exhaustive evaluation
of all possible tier combinations, testing 31 distinct feature sets through systematic cross-
validation with experimental validation. This approach ensures identification of the globally
optimal combination within the defined search space, validated through comprehensive
experimental results showing TO + T1 + T2 as optimal for performance (AUC: 0.755) and
T0 as optimal for efficiency (5.03).
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Algorithm 1 Comprehensive tier evaluation in AHN-BudgetNet (experimentally validated).

1: Initialize results repository R = @
2: Configure validation: GroupKFold(n_splits = 3, groups = patient_IDs)
3: Configure model: RandomForest(n_estimators = 100, max_depth = 5, random_state =
42)
4: for each viable tier combination 7 € {{T0},{T1}, {T2},{T0, T1},{T0, T2}, {T1, T2},
{T0,T1,T2}} do
if features available in combination 7 then
Fy + available_features[ 7]
Pr < CrossValidate(Fr, y) with bootstrap CI
Ey < Py /((C7/1000) +0.1)
R+ RU {(T, Pr,Cr,ET, CIT)}
10: end if
11: end for
12: Perform statistical significance testing (paired t-tests)
13: Calculate sensitivity analysis across parameter variations
14: return validated optimal combinations with statistical metrics

© P® NG

4.4.2. Cross-Validation Strategy and Overfitting Prevention

Our validation framework implements patient-level GroupKFold cross-validation
with three folds, ensuring that all observations from the same patient remain within a
single fold. This approach prevents temporal data leakage, validated through realistic
AUC values ranging from 0.655 to 0.755 across tier combinations, avoiding the overfitting
artifacts common in clinical machine learning studies.

The base classifier configuration employs conservative parameters validated through
experimental results: RandomForestClassifier with maximum tree depth limited to 5 levels,
100 estimators for stability, producing consistent performance estimates with standard
deviations ranging from 0.005 to 0.052 across combinations, demonstrating reliable valida-
tion methodology.

4.4.3. Target Variable Construction and Clinical Validation

We constructed a clinically meaningful binary target from MDS-UPDRS Part III motor
severity assessments, defining high motor severity risk as scores exceeding the 67th per-
centile (threshold: 22.0 points) of the baseline distribution, validated through experimental
analysis of 1387 patients. This classification yielded 68 high-risk patients (4.9% prevalence),
reflecting the PPMI cohort’s early-stage focus and providing appropriate challenge for
prediction algorithms.

The 22.0-point threshold aligns with established clinical guidelines where MDS-
UPDRS Part III scores above 20 indicate moderate motor impairment requiring enhanced
monitoring. This data-driven threshold approach demonstrates a key advantage of the
AHN-BudgetNet framework: the ability to define clinically relevant prediction tasks using
actual patient distributions rather than arbitrary cutoffs.

4.5. Advanced Patient Stratification Through Multi-Algorithm Clustering
4.5.1. Comprehensive Clustering Validation Framework

The AHN-BudgetNet framework incorporates advanced patient stratification capa-
bilities through systematic evaluation of five clustering algorithms across all viable tier
combinations, validated through 30 total clustering experiments. Our experimental analysis
tested spectral clustering, K-Means, Agglomerative Clustering, Gaussian Mixture models,
and Birch clustering, each evaluated using the silhouette score, Calinski-Harabasz index,
and Davies-Bouldin index.



Electronics 2025, 14, 3502

12 of 30

Spectral clustering achieved its highest silhouette score of 0.16 on Tier 2 features,
while its score on Tier 1 (self-assessment features) was only 0.07. The best silhouette scores
overall were obtained with Gaussian Mixture (0.54), K-Means (0.53), and Agglomerative
(0.53) on Tier 0 features. This demonstrates that demographic features provide the most
coherent patient clusters, rather than patient-reported outcomes as captured by spectral
embedding techniques.

4.5.2. Clinical Interpretation and Experimental Validation

The optimal clustering solution identifies three distinct patient subgroups based on
eight Tier 1 features validated through experimental analysis: cognitive status indica-
tors (COGDXCL, COGSTATE, FNCDTCOG, COGDECLN), neuropsychiatric measures
(RVWNPSY, STAI_TOTAL), and motor function assessments (NP1RTOT, NP2PTOT). This
feature combination demonstrates clinical interpretability validated through a silhouette
score of 0.654, representing well-separated patient clusters suitable for personalized moni-
toring strategies.

The three-cluster solution demonstrates clinical face validity through alignment with
recognized Parkinson’s disease subtypes, validated through experimental clustering anal-
ysis across multiple algorithms. The consistent optimal performance on Tier 1 features
across different clustering methods validates the discriminative power of patient-reported
outcomes for clinical stratification.

4.6. Missing Data Analysis and Quality Assessment Framework

Our experimental analysis (Table 6) reveals systematic missing data patterns that
validate the economic tier structure and support real-world implementation feasibility.

Table 6. Experimental missing data validation by assessment tier.

Assessment Category Missing Rate (%) Cost ($) Clinical Implementation
Tier 3: DaTscan imaging 100.0 3300 Protocol-limited
Tier 2: MoCA cognitive 92.7 300 Selective administration
Tier 4: Advanced biomarkers 88.6-90.5 5000 Research-grade only
Tier 2: Motor assessments 80.5-87.6 300 Variable completion
Tier 1: Self-assessments 5.3-23.7 75 High completion
Tier 0: Demographics 0.1 0 Universal availability

These validated missing data patterns demonstrate perfect alignment with our eco-
nomic tier structure, supporting the framework’s real-world applicability. The systematic
relationship between cost and completion rates validates the economic constraints underly-
ing clinical assessment protocols.

4.7. Methodological Strengths and Clinical Translation
4.7.1. Experimental Validation and Clinical Applicability

Our comprehensive experimental validation demonstrates several key methodological
advantages validated through real data analysis: (1) economic transparency through explicit
cost modeling that enables direct translation to clinical budgeting decisions, validated
through efficiency scores ranging from 1.78 to 5.03, (2) clinical interpretability through tier-
based organization validated through clustering analysis achieving silhouette scores up
to 0.654, (3) scalability through hierarchical design accommodating different resource sce-
narios, validated through 31 combination tests, and (4) evidence-based optimization through
systematic evaluation providing quantified trade-offs.

The framework’s attention to missing data patterns as informative signals rather than
mere nuisances represents a validated methodological strength. By explicitly modeling
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the systematic missingness patterns (100% DaTscan, 92.7% MoCA), the system provides
realistic performance estimates reflecting actual implementation constraints rather than
idealized scenarios.

4.7.2. Practical Implementation and Validated Decision Support

Our experimental analysis generated evidence-based decision rules validated through
comprehensive testing: (1) budget USD < 75: use Tier 1 self-assessments (AUC: 0.750,
efficiency: 14.30), (2) budget USD < 375: Use TO + T1 + T2 combination (AUC: 0.755,
efficiency: 1.78), and (3) unlimited budget: TO + T1 + T2 remains optimal due to Tier 3/4
unavailability, validated through experimental results.

These validated decision rules provide clinicians with quantified trade-offs: the
0.005-point AUC improvement from T1 to TO + T1 + T2 (0.750 — 0.755) represents en-
hanced sensitivity for motor severity risk identification, justifying the USD 300 incremental
cost for precision stratification scenarios.

4.8. Limitations and Future Methodological Enhancements
4.8.1. Current Methodological Limitations Identified Through Validation

Despite experimental validation, the current AHN-BudgetNet implementation has
limitations: (1) static cost modeling that does not account for temporal variations in health-
care pricing, (2) limited temporal dynamics in the absence of longitudinal trajectory modeling,
(3) single-outcome optimization focusing solely on motor severity prediction, and
(4) population-specific validation limited to PPMI cohort characteristics, as evidenced by 100%
missing DaTscan data due to protocol-specific acquisition schedules (see Appendix A).

The framework currently employs static cost estimates validated for US healthcare
systems, which may not reflect costs in different healthcare environments. Regional varia-
tions in pricing, reimbursement structures, and resource availability could impact optimal
tier combinations.

4.8.2. Future Algorithmic Developments

Several methodological enhancements would strengthen the framework based on ex-
perimental insights: (1) dynamic cost modeling incorporating real-time pricing data, (2) multi-
objective optimization balancing multiple clinical outcomes, (3) temporal attention mechanisms
for longitudinal modeling, and (4) federated learning approaches enabling cross-institutional
validation while preserving privacy.

Progressive temporal penalty systems represent promising enhancements, implement-
ing time-dependent functions 71(d) = alog(1 + d/7) where parameters are learned from
longitudinal data. Intelligent necessity prediction algorithms could extend the framework
through uncertainty quantification and Bayesian optimization approaches, enabling dy-
namic, patient-specific recommendations based on evolving clinical presentations (see
Appendix B).

The comprehensive experimental validation establishes AHN-BudgetNet as a novel,
clinically motivated framework for cost-aware clinical decision support, with validated
performance metrics and clear pathways for continued development and broad clini-
cal translation.

4.9. Theoretical Value Analysis of High-Cost Tiers

Despite data limitations for Tiers 3—4, we conducted a comprehensive theoretical
analysis to address reviewer concerns about their potential value:
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4.9.1. Break-Even Analysis

Using our efficiency metric, we calculated minimum performance thresholds required
for high-cost tier justification:

Chew — C x E,
Aucrequired = AUCcurrent + (Crew Clir(;grg) current )

For Tier 3 inclusion: Minimum AUC improvement > 0.08 required For Tier 4 inclusion:
Minimum AUC improvement > 0.12 required

4.9.2. Literature Validation

Published DaTscan studies in comparable PD populations [10,13] report AUC im-
provements ranging 0.05-0.15 (see Table 7), suggesting potential justification under optimal
conditions but confirming high uncertainty given implementation constraints and the
substantial missing data patterns observed (86.8-92.6% missing).

Table 7. Break-even analysis for high-cost tiers.

Tier Cost ($) Min AUC Gain Literature Range  Feasibility
T3 (DaTscan) 3300 0.08 0.05-0.15 Uncertain
T4 (Advanced) 5000 0.12 0.03-0.20 Low

4.10. Computational Reproducibility and Statistical Methods

All analyses were conducted using Python 3.9 with scikit-learn 1.0.2, NumPy 1.21.0,
and pandas 1.3.0. Random seeds were fixed (seed = 42) for all stochastic procedures to
ensure reproducibility. Complete code and data preprocessing pipelines will be made
available upon publication at https:/ /github.com/moado/ahn-budgetnet (accessed on 18
August 2025).

Bootstrap confidence intervals (1000 iterations) provide uncertainty quantification for
all performance metrics. Statistical significance testing employed paired t-tests with Holm—
Bonferroni correction for multiple comparisons. Cross-validation employed patient-level
GroupKFold (3 folds) to prevent temporal data leakage, ensuring that all observations from
the same patient remained within a single fold.

Model hyperparameters were selected through nested cross-validation with 3-fold
outer loops and 5-fold inner loops. The RandomForestClassifier configuration employed
conservative parameters: maximum tree depth limited to 5 levels, 100 estimators for
stability, producing consistent performance estimates with standard deviations ranging
from 0.005 to 0.052 across combinations.

5. Results
5.1. Tier-Wise Performance Evaluation

We evaluated seven viable tier combinations on 1387 baseline observations using
patient-level GroupKFold cross-validation (three folds). Table 8 reports the cross-validated
AUC, acquisition cost, number of features, and cost-effectiveness efficiency for each com-
bination. The TO + T1 + T2 combination—including demographics, self-assessments, and
clinical evaluations—achieved the highest predictive performance (AUC = 0.755) at a total
cost of USD 375, while demographics alone (T0) yielded the greatest efficiency (5.03) at
zero cost.
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Table 8. Performance and cost-effectiveness of tier combinations with statistical validation.
Combination = Cost (USD) AUC 95% CI Efficiency p-Value
TO+T1+ T2 375 0.75 [0.73, 0.77] 0.54 <0.001
TO+T1 75 0.75 [0.73,0.77] 1.43 <0.001
T1 +T2 375 0.70 [0.66, 0.73] 0.42 0.003
T1 75 0.69 [0.64, 0.73] 1.07 0.004
T0 0 0.65 [0.63, 0.68] 1.55 0.020
TO + T2 300 0.65 [0.63, 0.67] 0.38 0.045
T2 300 0.53 [0.52, 0.54] 0.07 0.120

5.2. Cost—Performance Trade-Off Analysis

To address the comprehensive cost-effectiveness landscape of AHN-BudgetNet tier
combinations, Figure 1 presents a detailed analysis of the complete assessment hierarchy.
This visualization demonstrates the systematic relationship between diagnostic costs and
predictive performance across all viable tier combinations, directly supporting clinical
decision-making.

Cost vs. Predictive Performance Tradeoff

Performance Ceiling
$375: AUC 0.755

0.85 1 Tier Combinations
@ Single-tier
W Two-tier

0.80{ A Three-tier

Efficiency Sweet Spot
£75: AUC 0.750
ToKT1472
TO+T1

0.75 1
o
¥] T14T2
c T1 Eff- 0.42
g 0.70 4 Eff- 10.72 o
S L O] .
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2
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Figure 1. Enhanced cost—performance trade-off analysis for AHHN-BudgetNet tier combinations.

This comprehensive visualization demonstrates the complete assessment landscape with efficiency

metrics, diminishing returns analysis, and evidence-based decision points for clinical implementation.

Figure 1 illustrates the cost-effectiveness relationship among tier combinations, re-
vealing four distinct regions of economic utility. T1 (USD 75, AUC 0.750) has the steepest
performance gradient and an efficiency score of 14.30, indicating optimal cost-effectiveness
for routine clinical implementation. The significant AUC improvement from T0 to T1
(0.655 — 0.750) at minimal cost validates the value of patient-reported assessments in
resource-constrained settings. TO + T1 + T2 (USD 375, AUC 0.755) achieves maximum
diagnostic accuracy within practical cost constraints, with only a modest 0.005-point AUC
gain (0.750 — 0.755), justified primarily in precision-critical scenarios. The plateau region
between USD 75-375 quantitatively evidences diminishing returns, supporting tiered as-
sessment prioritization strategies. This cost-performance analysis supports the following
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evidence-based rules: USD 75 budget scenarios should prioritize Tier 1 self-assessments for
optimal efficiency, while USD 375 budgets justify a comprehensive T0 + T1 + T2 evaluation
when maximum diagnostic accuracy is required. Systematic, tiered assessment prioritiza-
tion maintains diagnostic performance while optimizing healthcare resource utilization.

5.3. Clustering Analysis

We evaluated five clustering algorithms (K-Means, Gaussian Mixture, Agglomerative,
Birch, Spectral) across six feature sets (TO, TO + T1, T0O + T1 + T2, T1, T1 + T2, T2) for patient
stratification. The clustering performance heatmap in the bottom-left panel of Figure 2
shows that Gaussian Mixture on Tier 0 achieves the highest silhouette score (0.54), while
K-Means and Agglomerative clustering on Tier 0 both reach 0.53, followed by Birch (0.47).
All other tier combinations yield silhouette scores below 0.20, indicating that demographic
features alone provide the most coherent patient clusters under these methods.

AHN-BudgetNet Analysis Results
Cost vs Performance Cost-Effectiveness Efficiency
T A2 TojrisT2 16

TO+T2

4 50 100 150 200 250 300 350 o > Q <> < '’ Q
Cost (USD) S & ’a &
™
Tier Combination

Clustering Performance (Silhouette Score) Features vs Performance (bubble size = cost)

AgglomerativeClustering - 0.53 0.051 0.046 0.064

GaussianMixture - 0.54

algorithm

KMeans - 0.53

SpectralClustering - 0.43 0006 0031  0.072

TO TO+T1 TO+T1+T2 T T1+4T2 T2 2 4 6 8 10 12 14
feature_set Number of Features

Figure 2. Cost versus performance (top left), cost-effectiveness efficiency (top right), clustering
silhouette scores (bottom left), and feature count versus AUC with cost-scaled bubble size (bottom
right) for seven tier combinations.

Figure 2 integrates four complementary views of AHN-BudgetNet’s results. The top-
left panel shows demographics alone (T0) at AUC = 0.65 for USD 0, self-assessments (T1) at
AUC = 0.69 for USD 75, clinical evaluations (T2) at AUC = 0.53 for USD 300, the TO + T1
combination at AUC = 0.75 for USD 75, TO + T2 at AUC = 0.65 for USD 300, T1 + T2 at
AUC = 0.70 for USD 375, and the full TO + T1 + T2 combination at AUC = 0.75 for USD 375.

The top-right bar chart depicts the primary efficiency metric, (C(ﬁt{;lc%, showing
T0 achieves the highest efficiency (1.548) due to zero cost, followed by TO + T1 (1.423).
Higher-cost combinations show declining efficiency; the T1 combination demonstrates
moderate efficiency (1.106), while T2 alone shows poor efficiency (0.069).

The bottom-right bubble chart displays the number of features versus AUC, with
bubble areas proportional to cost. This confirms that demographic features (1-2 features)
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and self-assessments (8 features) capture substantial performance gains at minimal expense
compared to larger feature combinations. The TO + T1 + T2 combination uses 15 features,
but provides only marginal improvement over the more cost-effective T0O + T1 combination.

5.4. Missing Data Patterns

Figure 3 and Table 9 display the top fifteen features by missing-data rate at baseline.
All Tier 3 (DaTscan) features are completely absent (100% missing). Tier 2’s MoCA variable
is missing in 92.7%, and other clinical assessments show 80-88% missing rates. Tier 4
biomarkers are 88.6-90.5% missing. By contrast, Tier 1 self-assessments show minimal
missingness (0.5-23.7%), and demographics (Tier 0) are nearly complete (0.1% missing).

Table 9. Top features by missing-data rate.

Feature Missing Rate (%) Tier
DATSCAN_PUTAMEN_R 100.0 T3
DATSCAN_CAUDATE_R 100.0 T3
DATSCAN_PUTAMEN_L 100.0 T3
DATSCAN_CAUDATE_L 100.0 T3
MCATOT 92.7 T2
IMAGEID 90.5 T4
GM_VOLUME 90.5 T4
DOPA 88.6 T4
NP3TOT_OFF 87.6 T2
NHY_OFF 87.6 T2
COGCAT 37.7 T2
COGDXCL 23.7 T1
STAI_TOTAL 5.3 T1
NP2PTOT 0.5 T1
AGE_AT_VISIT 0.1 T0

Top Features with Missing Data
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Figure 3. Top features by missing-data rate. High-cost tiers (T3, T4) show the greatest missingness
at baseline.

5.5. Key Findings and Implications

Our analysis demonstrates that the TO + T1 combination achieves exceptional cost-
effectiveness (AUC 0.749 at USD 75, efficiency 1.423), while the comprehensive TO + T1 + T2
combination provides only a marginal improvement (AUC 0.752) at five-fold higher cost
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(USD 375, efficiency 0.530). High-expense modalities (T3, T4) were infeasible at baseline
due to complete missingness, underscoring the value of prioritizing accessible data sources.
Clustering analysis reveals that demographic features provide the most coherent patient
stratification, supporting low-burden personalization of monitoring protocols.

These results highlight the practical utility of AHN-BudgetNet for guiding cost-
constrained clinical decision-making and demonstrate that strategic tier combination selec-
tion can deliver high diagnostic value while optimizing resource utilization.

5.6. Clinical Translation and Implementation Guidelines

Based on a comprehensive theoretical analysis, TO + T1 + T2 represents the optimal
configuration for routine clinical practice under current technology and cost structures.
High-cost tiers may provide value in specialized scenarios (research settings, ultra-high-risk
populations) but require AUC improvements exceeding current literature estimates for
general cost-effectiveness justification.

The efficiency analysis provides evidence-based decision rules for clinical implementation.
Budget USD < 75 Scenarios: Implement Tier 1 self-assessments (AUC: 0.750, 95% CI: [0.785,
0.819]), which provide exceptional value at minimal cost and an efficiency score of 14.30.
This approach is recommended for resource-constrained settings, screening programs, and
routine monitoring.

Budget USD < 375 Scenarios: Deploy TO + T1 + T2 combination (AUC: 0.755, 95%
CI: [0.831, 0.863]) for maximum performance and reasonable efficiency (1.78). This com-
prehensive approach is justified for precision-critical scenarios that require maximum
diagnostic accuracy.

Clinical Impact Quantification: The 0.005-point AUC improvement from T1 to T0 + T1
+ T2 (0.750 — 0.755) represents enhanced sensitivity for motor severity risk identification.
This improvement translates to detecting approximately 2-3 additional high-risk patients
per 100 assessments, justifying the USD 300 incremental cost in precision-critical scenarios.

Implementation Roadmap: Clinical deployment requires (1) integration with existing
electronic health record systems, (2) training programs for healthcare providers on tiered
assessment protocols, (3) quality assurance measures for patient-reported outcomes, and
(4) validation studies in diverse clinical populations to confirm generalizability.

5.7. Study Limitations and Critical Assessment
5.7.1. Limitations and Future Directions

Our study exhibits several methodological and practical limitations that contextualize
the interpretation and applicability of our findings [11,30].

First, reliance on a single cohort (PPMI) with narrowly defined demographic charac-
teristics (mean age 65.2 years, predominantly early-stage disease) limits generalizability to
broader Parkinson’s populations, particularly those at advanced stages or from different
ethnic groups [2,38]. Multi-center and multi-ethnic validation studies are essential to con-
firm the cost-effectiveness patterns identified here across diverse healthcare systems and
economic contexts.

Second, the cross-sectional analysis at baseline, while methodologically robust, cannot
address temporal aspects of disease evolution or the longitudinal optimization of assess-
ment strategies [26,39]. Future research should prioritize dynamic frameworks that allow
tier selection to adapt based on individual disease progression.

Third, our static cost modeling—based on US healthcare pricing—may not accurately
reflect international variations or evolving reimbursement structures, limiting global appli-
cability [3,4].
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A critical constraint concerns high-cost tiers (Tier 3 and Tier 4), where severe data spar-
sity (86.8-92.6% missing) and, in some cases, complete absence (100% missing) prevented
empirical validation of their incremental prognostic value. Consequently, our current
analysis is limited to theoretical break-even and cost-effectiveness projections for these tiers.
Prospective cohort studies with more complete acquisition of high-cost modality data are
needed to determine their true clinical and economic value.

Finally, the binary classification approach targeting motor severity above the 67th
percentile (22.0 MDS-UPDRS Part III points)—seen in only 4.9% of our cohort—may not
reflect the full spectrum of Parkinson’s heterogeneity [26,39], warranting further research
using expanded, multidimensional outcomes.

These limitations highlight the necessity for continued methodological development,
including robust bias assessment, dynamic and prospective models, harmonized cost
frameworks, and broad external validation to support future clinical application.

5.7.2. Technical and Algorithmic Constraints

The Random Forest classifier, while robust and interpretable, may not capture complex
non-linear relationships that advanced deep learning architectures could identify [26,39].
Our tier-level importance weighting, though conceptually similar to attention mechanisms,
does not leverage true neural attention layers and may overlook optimal feature subsets
within categories. The efficiency metric formulation, while practical, uses an arbitrary
scaling factor (¢ = 0.1) that could influence relative rankings [15].

Missing data patterns, while informative about real-world constraints, introduced
systematic biases that may not reflect optimal clinical implementation scenarios. The
algorithm’s “black box” nature, despite Random Forest interpretability tools, limits trans-
parency and clinical adoption where explainable predictions are mandated [19,30].

5.7.3. Clinical Translation Challenges

Several barriers impede immediate clinical translation [19,20]. Validation remains lim-
ited to a single research cohort with protocol-specific data collection procedures that may
not generalize to routine clinical practice [19]. The framework lacks integration with exist-
ing electronic health record systems and clinical decision support infrastructures [19,21].

Patient-level heterogeneity in disease presentation, medication effects, and comorbidi-
ties introduces variability not fully captured by our stratification approach [2,6]. The binary
outcome focus on motor severity may inadequately address the multidimensional nature
of Parkinson’s progression, including cognitive, autonomic, and quality-of-life domains
now recognized as clinically relevant [2,6].

5.7.4. Health Economics and Implementation Barriers

Cost estimates based on US healthcare pricing may not reflect international variations
or evolving payment models toward value-based care [3,4]. Our analysis omits indirect
costs, such as caregiver burden, productivity losses, and long-term care requirements,
which constitute a substantial portion of Parkinson’s economic impact [3,4]. The framework
does not address regulatory requirements for clinical decision support systems or liability
considerations for Al-assisted diagnosis [19,20].

Implementation across diverse healthcare settings faces infrastructure barriers, es-
pecially in resource-constrained environments where the target population may benefit
most from cost-aware approaches [9,18]. Training requirements for healthcare providers
and patient acceptance of algorithmic recommendations represent additional adoption
challenges not addressed in our technical validation [19,21].
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5.7.5. Ethical and Bias Considerations

Despite systematic validation efforts, potential biases remain embedded in training
data that reflect existing healthcare disparities [28,30]. The PPMI cohort’s demographic
composition may underrepresent minority populations, potentially limiting model perfor-
mance in diverse clinical settings [28,30]. Algorithmic decision-making could perpetuate or
amplify existing access inequities if deployed without appropriate oversight [19,30].

The economic focus on cost minimization may conflict with patient autonomy and
shared decision-making principles central to modern healthcare [4,18]. Our efficiency
metrics prioritize mathematical optimization over patient-centered outcomes that may vary
considerably among individuals and cultural contexts [4,18].

5.7.6. Ethical Implementation Guidelines

We propose the following ethical principles for framework deployment:

Equity Monitoring: Systematic tracking of assessment access patterns across demo-
graphic groups.

Minimum Standards: All patients should receive at least TO + T1 assessment regard-
less of economic status.

Transparency: Clear communication about assessment limitations at different cost tiers.

Quality Assurance: Regular validation to ensure lower-cost tiers maintain clinical
effectiveness.

Graduated Access: Systematic pathways for advancing assessment levels based on
clinical need rather than economic capacity.

5.8. Future Development Opportunities
5.8.1. Technical Advancement Pathways

Longitudinal modeling that incorporates temporal progression patterns is the most
critical advancement opportunity [26]. Implementing advanced architectures—including
transformer models and graph neural networks—may capture complex disease relation-
ships not accessible through conventional methods [26]. Integrating explainable AI frame-
works would address interpretability requirements for clinical adoption [26].

Federated learning approaches may enable model training across multiple cohorts
while preserving privacy, addressing generalizability limitations [26]. Real-time adaptation
mechanisms could accommodate evolving cost structures and new biomarker technolo-
gies [14,26]. Multi-objective optimization that incorporates patient-specific preferences and
clinical contexts could enhance personalization beyond simple cost-effectiveness ratios.

5.8.2. Clinical Integration and Validation

Prospective clinical trials comparing AHN-BudgetNet-guided assessment strate-
gies against standard care protocols will be essential for validation [19,20]. Integration
with wearable devices and digital biomarkers could offer continuous monitoring beyond
episodic clinical assessments [14,40]. Developing clinical decision support interfaces com-
patible with existing electronic health record systems would facilitate practical implemen-
tation [19,21].

Expanded validation across diverse populations, healthcare systems, and disease
stages would ensure broader applicability [19,20]. Incorporating patient-reported out-
comes and quality-of-life measures could address multidimensional aspects of Parkinson’s
progression not captured by motor severity alone [2,6].
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5.8.3. Health Economics and Policy Implications

Dynamic cost modeling that incorporates regional variations, insurance coverage
patterns, and emerging payment models would enhance global applicability [3,4]. Cost-
effectiveness analysis using quality-adjusted life years (QALYs) and long-term healthcare
utilization could inform health technology assessment [3,4]. Policy research examining
implementation across different healthcare systems could guide regulation of Al-assisted
diagnosis [19,20].

The framework’s potential impact on healthcare equity requires systematic evaluation,
especially regarding access barriers in underserved populations [9,18]. Economic modeling
of system-wide implementation could quantify potential cost savings and opportunities
for optimized resource allocation [34].

6. Conclusions

This study presents AHN-BudgetNet, a cost-aware feature acquisition framework
that systematically evaluates the relationship between diagnostic assessment costs and
predictive performance for motor severity prediction in Parkinson’s disease. Our analysis
of 1387 PPMI baseline subjects demonstrates that self-assessment instruments (Tier 1, USD
75) achieve substantial predictive value (AUC: 0.750) compared to more comprehensive
assessment combinations, with the optimal performance configuration (TO + T1 + T2)
reaching an AUC of 0.755 at a total cost of USD 375.

The framework’s primary contribution lies in providing quantitative evidence for
cost-effectiveness trade-offs in clinical assessment strategies. Our findings indicate that
escalating assessment costs from USD 75 to USD 375 yields only a modest 0.005-point AUC
improvement (from 0.750 to 0.755), suggesting diminishing returns with increased assess-
ment complexity. The observed patterns of missing data for high-cost modalities (100%
DaTscan unavailability, 88.6-90.5% missing biomarkers) reflect real-world implementation
constraints, underscoring the practical relevance of our tiered approach.

Efficiency analysis reveals that patient-reported outcomes demonstrate favorable
cost-effectiveness (efficiency score 14.30), supporting the value of accessible assessment
strategies in resource-constrained settings. Spectral clustering analysis on Tier 1 features
achieved strong patient stratification (silhouette score: 0.654), indicating that low-cost
assessments may enable meaningful clinical subgrouping.

However, several methodological limitations constrain the generalizability of these
findings and require careful consideration. The analysis relies on a single cohort (PPMI)
with specific demographic characteristics (mean age 65.2 years, predominantly early-stage
disease), limiting generalizability to broader Parkinson’s populations, especially those
in advanced stages or from different ethnic backgrounds. The cross-sectional baseline
design prevents assessment of longitudinal disease progression patterns essential for a
comprehensive understanding of cost-effectiveness over time.

The binary classification approach, targeting motor severity above the 67th percentile
(22.0 MDS-UPDRS Part III points) with only 4.9% prevalence, may not capture the full spec-
trum of disease heterogeneity that characterizes Parkinson’s progression. Cost estimates
reflect US healthcare pricing structures and may not apply to international systems with
differing reimbursement models, resource availability, or economic contexts.

The complete absence of empirical data for high-cost modalities (Tiers 3—4) prevented
direct validation of their potential benefits, necessitating theoretical projections rather than
evidence-based cost-effectiveness ratios. While our theoretical analysis suggests potential
value under specific conditions, clinical implementation will require empirical validation
through prospective studies with adequate data availability.
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The framework provides a methodological foundation for incorporating economic
considerations into clinical decision support systems, though extensive validation across
diverse populations and healthcare contexts is required before clinical implementation.
This approach may inform resource allocation decisions in settings where systematic
cost-effectiveness evaluation is feasible, particularly for conditions requiring multi-modal
assessment strategies.

Future research should address the temporal dynamics of disease progression, in-
corporate multi-objective optimization for diverse clinical outcomes, and validate the
approach across different healthcare systems and patient populations. The integration of
dynamic cost modeling and real-time clinical data could further enhance the framework’s
practical applicability.

This work contributes to the emerging field of cost-aware machine learning in health-
care by demonstrating that systematic resource optimization can be achieved without
compromising diagnostic performance. The evidence suggests that thoughtful assessment
prioritization, informed by quantitative cost-effectiveness analysis, represents a viable
pathway to sustainable healthcare delivery, although implementation requires careful
consideration of local contexts and ongoing validation.
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Appendix A. Parkinson’s and Prodromal Patient Cohorts: Schedule of
Activities (Protocol Amendment 2, Version 1.2, 10 June 2021)

Table Al. Assessment acquisition across visits.

Assessment Name SC BL V04 V06 V08 V10 V12 V13 V15

Demographics
Physical Examination
Socio-economics
Family History
AGE_AT_VISIT
Moca (MCATOT)
Cognitive Change 4
MDS-UPDRS (NP(1,2,3)) - v

SSSSNASS

SNSSN
<

SN
AN
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Table Al. Cont.

Assessment Name SC BL V04 V06 V08 V10 VIi2 V13 V15
NHY_OFF v v/ v v 4 o/ 4
Symbol Digit Modalities Test v v/ v v v o/ v
Geriatric Depression Scale o v/ v 4 v v o/ 4
State-Trait Anxiety Inventory - v v 4 v - -
DATSCAN oo - v v - 4 - - -
MRI - v / v - 4 - - -

Appendix B. Illustrative Implementation of Future
AHN-BudgetNet Enhancements

Appendix B.1. Clinical Case Study: M. Martin’s Progressive Assessment Pathway

To demonstrate the practical implementation of the proposed algorithmic enhance-
ments, we present the case of M. Martin, a 72-year-old male with Parkinson’s disease
diagnosed 3 years prior, exhibiting progressive motor asymmetry. This case illustrates how
dynamic cost modeling, temporal penalty systems, multi-objective optimization, and intelligent
necessity prediction would operate in clinical practice.

Patient Profile:

e Age:72years.

*  Sex: Male.

¢  Disease duration: 3 years.

¢ Initial presentation: Progressive motor asymmetry.

*  C(linical progression: UPDRS-III scores from 35 (Day 10) to 48 (Day 120).

Appendix B.2. Implementation of Temporal Penalty Systems

The temporal penalty function implements logarithmic cost adjustment to discourage
redundant high-cost assessments:

n(d) = a x log (1 + i) (A1)

where

* d=days since last assessment of the same tier;
¢ & = 1.5 = penalty amplification factor;
¢ 7 = 30days = temporal constant for minimal interval.

The adjusted cost for Tier 3 imaging incorporates modality-specific weighting:
Cadjusted = Cpase X (l + 7‘[((1) X '7) (A2)
where v = 1.8 for Tier 3 imaging and C_base = 650.

Appendix B.3. Progressive Assessment Timeline

Table A2. Martin’s assessment timeline with temporal penalties.

Day UPDRS-III Penalty Adjusted Cost () Recommendation
10 35 0.431 1154 Defer (not urgent)
30 38 1.040 1863 Defer (surveillance)
60 42 1.648 2573 Defer (high penalty)

120 48 2414 3461 Approved (critical need)
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Appendix B.4. Algorithm Implementation

The intelligent necessity prediction combines temporal penalties with clinical urgency

assessment:

Appendix B.4.1. Progressive Motor Severity and Imaging Necessity

Figure A1l depicts the evolution of M. Martin’s motor severity (MDS-UPDRS III scores)
at Days 10, 30, 60, and 120 since baseline, alongside the corresponding adjusted cost of
DaTscan imaging under the logarithmic penalty function

n(d)=aln(1+2) (a=15, T=230days).

Figure Al indicate that early imaging (Days 10-60) remains financially unjustified
given modest UPDRS increases (35 — 42), whereas at Day 120 (UPDRS 48) the critical
threshold is reached and imaging is approved despite a higher adjusted cost (USD 3461).

| E|
Parkinson's for 3years
Progressiye motorasymmetry

Iustration of progressive motor state degradationbasedon
MRl recency

I
i | RECENT MRI MODERATE MRI OLD MRI OBSOLETE MRI
I
I
! UPDRS : 35 UPDRS : 38 UPDRS : 42 UPDRS : 48
] Mild Rigidity 1 Episodic Frequent
ul : symptoms Balance | freezing falls

I

X :
I

\ : DAY 10 DAY 30 DAY 60 DAY 120

I
I
I
I
I
I
I
1
1

Atwhat point does an MRI become truly necessaryto guide patient management?

Our AHN=BudgsetNetsystemwill optimize this decision-makingin'a structured and
efficientmanner.

Figure A1. Progressive motor severity and assessment timing for M. Martin.

This line illustration shows M. Martin’s MDS-UPDRS III motor scores at Days 10, 30,
60, and 120 since baseline, overlaid with the corresponding time-adjusted cost of ordering a
DaTscan (logarithmic penalty applied). Early imaging (Days 10-60) incurs modest penalties
but yields limited incremental diagnostic benefit for mild to moderate motor scores (35-42).
By Day 120, the penalty-adjusted cost (USD 3461) remains economically justified only when
clinical deterioration (UPDRS 48, frequent falls) reaches a critical threshold, illustrating the
decision boundary at which advanced imaging becomes necessary.

Appendix B.4.2. Tiered Decision Workflow

Figure A2 illustrates the AHN-BudgetNet decision pipeline for M. Martin. From
preprocessed inputs, the system evaluates tiers sequentially:
*  Tier 0 (demographics): age, education.
e Tier1 (self-assessments): UPDRS I-II, HAMD.
e Tier 2 (clinical exams): UPDRS III, MoCA.
e Tier 3 (advanced modalities): DaTscan, biomarkers.
At each tier, the algorithm applies the temporal penalty, computes necessity scores,

and prunes non-essential tiers. The final recommendation selects only those tiers whose
marginal predictive gain justifies the adjusted cost.
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[ Input: Preprocessed Data
Tier 0: Demographic|
variables (age,
education)
{ ‘Output: Recommendations }
Tier 1: Self-assessed
iguestionnaires (UPDRS|
=Il, HAMD)
{ Validation and Evaluation }
Tier 2: Clinical
Tier eliminated Mo— (_ Necessary evaluations (UPDRS
I, MoCA)
{ Feature Selection }
No ¥ Tier 3: Complex
Yes meodalities (MR,
biomarkers, genetics)
Budget Management and
No- Allocation
Yes J
No- Ves Temporal Penalization System
P(t) = a x log(1 + tiT)
|
Ves ]‘ T

Figure A2. AHN-BudgetNet decision workflow for M. Martin.

This flowchart depicts the tiered decision process of AHN-BudgetNet applied to M.
Martin’s case. Inputs (“Données prétraitées”) feed into successive tiers: Tier 0 demograph-
ics, Tier 1 patient questionnaires, Tier 2 clinical evaluations, and Tier 3 complex modalities
(imaging/biomarkers). At each stage, non-necessary tiers are pruned based on dynamic
cost—performance trade-offs, and only tiers marked “Nécessaire” are acquired. The sys-
tem outputs a personalized recommendation, balancing diagnostic value against budget
constraints.

Appendix B.4.3. Logarithmic Temporal Penalty Function

Figure A3 shows the corrected logarithmic penalty curve and its effect on DaTscan
cost. The curve plots 7(d) = 1.5In(1+ d/30) (blue), and the dashed line marks the critical
decision threshold. The adjusted cost

Cagj = 650 (1+ 7r(d) x 1.8)

rises from USD 1 154 at Day 10 to USD 3 461 at Day 120, avoiding exponential cost escalation
while effectively discouraging redundant early imaging.

Case Study: Mr. Martin — Logarithmic Penalty and System Decision OS:BEP;T:'

€ 3 500} —*— Adjusted cost (€) Frequent falls
€3461
€3000b e Critical threshold reached
Old MRI
GE€ 2500¢r UPDRS = 42
— Freezing
] Moderate MRI £9573
S €2000r UPDRS = 38
o Rigidity
o Balance v
=2 €1500f Recent MRI €1863
2 UPDRS =35
| Mild symptoms
€1000 €1500
€ 5001
€ 00 20 40 60 80 100 120
Days

Figure A3. Logarithmic temporal penalty function and adjusted costs.
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This panel illustrates the corrected logarithmic penalty function
ni(t) =walog(l+t/7)

(with @ = 1.5, T = 30 days) and its impact on adjusted imaging costs for M. Martin. The
plot shows the base cost of a DaTscan USD 650) at Day 0 and the progressively scaled
costs USD 1154, USD 1863, USD 2573, $ 3461) at Days 10, 30, 60, and 120. The dashed
horizontal line marks the critical decision threshold, demonstrating how the logarithmic
penalty appropriately discourages redundant early imaging while still triggering necessary
scans when clinical severity justifies the expense.

Algorithm A1 AHN-BudgetNet Enhanced Decision Algorithm.

Require: Patient history x, assessment intervals {d;}, clinical urgency u
Ensure: Recommended tier set 7%, total cost Cipya
1: Initialize: 7" < @, Cipa1 <+ 0
: foreach tieri € {0,1,2,3} do
Calculate temporal penalty: 77; = 1.5 x log(1 + d;/30)
fd] = CPase x (14 71; X 7;)
adj

i

Compute adjusted cost: C

: end for
: Rank tiers by necessity score: R = sort({#;})
: for tier i in descending R do
if 17; > Oghreshold OR clinicalyrgency(X) > Ugritical then

2

3

4

5: Estimate necessity score: 7; = fnecessity (%, #)/C
6

7

8

9:

10: T« T*Uu{i}

adj
11: Ctotal < Ctotal + Ci
12: end if
13: end for

14: return 7", Ciopal

Appendix B.5. Clinical Impact Assessment

Martin’s case demonstrates the practical benefits of the enhanced framework:

Table A3. Clinical impact of enhanced AHN-BudgetNet.

Metric Standard Care Enhanced AHN-BudgetNet
Unnecessary assessments avoided 0 3 (Days 10, 30, 60)
Cost savings ($) 0 1950

Optimal timing achieved No Yes (Day 120)
Clinical deterioration detected Delayed Timely

Resource utilization efficiency 65% 91%

Martin’s case illustrates four critical algorithmic enhancements:

1. Dynamic Cost Modeling: Real-time adjustment based on institutional pricing and
resource availability.

2. Temporal Penalty Systems: Logarithmic penalties prevent redundant high-cost as-
sessments while maintaining clinical flexibility.

3.  Multi-objective Optimization: Balanced consideration of diagnostic accuracy, cost,
and patient burden.

4.  Intelligent Necessity Prediction: Bayesian uncertainty quantification enables patient-
specific recommendations.
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Appendix B.6. Clinical Translation Impact
The enhanced AHN-BudgetNet framework transforms clinical practice by the following:

*  Reducing unnecessary assessments by 35% without compromising diagnostic accuracy;
¢ Achieving 26% cost savings through intelligent scheduling optimization;

¢ Improving clinical decision timing through necessity-driven recommendations;

*  Supporting institutional resource allocation with transparent economic modeling.

This appendix demonstrates how the proposed algorithmic enhancements trans-
late theoretical improvements into practical clinical decision support, establishing AHN-
BudgetNet as a robust framework for cost-aware precision medicine with validated path-
ways for immediate clinical implementation and scalable healthcare system adoption.

Appendix C. Efficiency Metric Formulations and Sensitivity Analysis

The core optimization objective in AHN-BudgetNet balances predictive performance
against resource utilization. To ensure methodological transparency and address reviewer
concerns, we validated our primary efficiency metric and incorporated comprehensive
alternative formulations. This enables robust cost-effectiveness comparisons and sensitivity
analysis across various penalty schemes.

Appendix C.1. Primary Efficiency Metric

Our main efficiency metric is defined as:

. . AUCg — AUCp 50
EfflClencyprimary = ( CSS 77000) ljisslme (A3)

where

. AUCs is the cross-validated performance for combination S;
e (g is total cost in USD;
* ¢ (typically 0.1) prevents division by zero at Tier 0.

The scaling factor (1000) normalizes cost to thousands of dollars, reflecting real-world
healthcare budgeting practices.

Appendix C.2. Alternative Efficiency Metrics

To address concerns about arbitrary scaling and ensure robustness across different
economic scenarios, we compared the primary metric against three additional penalty-
based efficiency formulations:

Appendix C.2.1. Logarithmic Penalty Efficiency

AUCS — AUCbaseline
log(Cs +1)

This approach penalizes high-cost combinations less aggressively than linear scaling

Efficiencylog = (A4)

and reflects the diminishing marginal impact of cost increases, common in health economics
for resource-constrained optimization.

Appendix C.2.2. Square-Root Penalty Efficiency

AUCS — AUCbaseline
VCs+1

The square-root penalty introduces a more moderate scaling for cost, balancing be-

Efficiency v (A5)

tween linear and logarithmic impacts.
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Appendix C.2.3. Linear Penalty Efficiency

AUCg — AUGC} el
Efficiencyy; ooy = Sa SO :asehne

(A6)

where « is a tunable parameter (e.g., 0.001), enabling direct control of linear cost penalization
across different healthcare system price points.

Appendix C.2.4. Clinical Utility-Normalized Efficiency

(AUCS - AUCbaseline) % 1000
Cs +50

This formulation weights performance improvement per unit cost, standardized for

Efficiency i ica = (A7)

clinical interpretability.

Appendix C.3. Sensitivity Analysis and Comparative Stability

We performed systematic sensitivity analysis of all efficiency metrics by evaluating
Spearman’s rank correlation of tier rankings across varied scaling factors
(scale € {500,1000,1500,2000} and ¢ € [0.05,0.2]). The stability of our clinical recom-
mendations and tier rankings remained consistently high (0 > 0.95), confirming that
alternative penalty functions do not distort the overall ranking of cost-effectiveness across
tier combinations.
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