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 a b s t r a c t

Agriculture faces escalating demands to increase food production amid shrinking arable land, resource deple-
tion, and climate variability. Existing smart farming solutions often lack scalability, interoperability, real-time 
analytics, and region-specific adaptability. This paper presents WALLeSmart, a cloud-based smart farming plat-
form designed to address these challenges through a scalable Lambda architecture and a modular plugin sys-
tem. Hosted on a GDPR-compliant private cloud, WALLeSmart integrates diverse data sources (e.g., IoT sensors, 
satellite imagery, weather data) to deliver real-time insights and predictive analytics, achieving low-latency 
processing (e.g., 80 seconds for weather data streams). Key features include a one-stop shop for accessing agri-
cultural platforms (e.g., Myawenet, MyCDL, Cerise), a consent management system for data control, a Walloon 
Agricultural DataHub for secure data exchange, and a personalized dashboard for farmers. The platform’s unique 
governance model, led by farmers, ensures autonomy and transparency. Real-world case studies in Wallonia, Bel-
gium, demonstrate its ability to process over 3 million weather measurements and 61,130 dairy farm datasets, 
supporting applications like SALVE, W@llHerbe, and MyFieldBook. WALLeSmart’s generalizable design enables 
adaptation to diverse regions, addressing ethical concerns like algorithmic bias and data ownership through 
transparent AI and user-centric consent mechanisms, fostering efficiency, sustainability, and profitability.

1.  Introduction

The global population is projected to grow significantly over the next 
several decades, reaching a peak of approximately 10.3 billion people 
by the mid-2080s, up from 8.2 billion in 2024 [2]. This unprecedented 
growth poses immense challenges for agriculture, including the need to 
substantially increase food production, ensure sustainable livelihoods 
for farmers, and protect environmental health. These challenges are 
further exacerbated by the shrinking availability of arable land due to 
urbanization and environmental degradation, the depletion of critical 
natural resources such as freshwater [3], and the increasingly unpre-
dictable impacts of climate change, including extreme weather events 
and shifting growing seasons [4]. In this context, the agricultural sector 
must adopt innovative solutions to enhance productivity, sustainability, 
and resilience.

Precision agriculture and smart farming have emerged as trans-
formative approaches to address these challenges. Precision agricul-
ture leverages technologies such as global navigation satellite system 

⋆ This work substantially extends our previous conference paper [1]. Key enhancements include a Lambda architecture for real-time analytics, integration of a 
modular plugin system and a one-stop shop, implementation of the Walloon Agricultural DataHub and a-Box, broader data integration (including satellite imagery), 
and a farmer-centric governance model. See Subsection 1.2 for details.
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(GNSS), sensors, and data analytics to optimize field-level management 
with remarkable accuracy [5]. Building on these principles, smart farm-
ing integrates advanced technologies like the Internet of Things (IoT), 
drones, and artificial intelligence (AI) to create a more comprehen-
sive and adaptive agricultural management system [6]. By incorporat-
ing real-time data, situational awareness, and location-specific insights, 
smart farming enables farmers to optimize resource use, predict po-
tential issues, and improve overall productivity [7]. Moreover, these 
technologies promote sustainable practices, such as precise water and 
nutrient management, which reduce waste and minimize environmen-
tal impact [8]. Early detection of pests and diseases through real-time 
monitoring and predictive analytics further reduces reliance on chemi-
cal treatments, enhancing both crop health and environmental sustain-
ability [9].

The rapid advancement of IoT and cloud computing technologies is 
driving a paradigm shift in agriculture. IoT-based solutions, such as live-
stock and soil sensors, are becoming increasingly prevalent, providing 
farmers with critical data to optimize their operations [10]. For instance, 
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livestock sensors enable ranchers to monitor the health, location, and be-
havior of animals in real-time, improving animal welfare and optimizing 
feed and breeding programs [11]. Soil sensors offer detailed insights into 
topography, moisture levels, and nutrient content, enabling precise irri-
gation and fertilization while reducing water and fertilizer waste [12]. 
These sensors also provide localized weather forecasts, helping farm-
ers make informed decisions about planting, harvesting, and risk man-
agement. Additionally, self-driving tractors and agricultural drones are 
revolutionizing labor-intensive tasks. Remote-controlled tractors signif-
icantly reduce labor costs [13], while drones can reduce operation costs 
and an increase productivity by 83.3% in manpower for herbicide ap-
plication and 41.6% when used for fertilizing [14].

Digital technologies, including smartphone applications and cloud-
based platforms, are further empowering farmers to monitor and man-
age their operations remotely. These tools enable real-time tracking of 
equipment, crops, and livestock, as well as access to actionable insights 
through data analytics [15]. Cloud platforms facilitate the integration 
of historical data with predictive analytics, allowing farmers to antici-
pate market trends, weather fluctuations, and potential challenges [16]. 
However, the widespread adoption of these technologies generates vast 
amounts of data. IBM estimates that the average farm can produce up to 
half a million data points per day [17]. While big data holds immense po-
tential for transforming agriculture-enabling predictive analytics, proac-
tive decision-making, and full automation of the agri-food chain-it also 
introduces significant challenges. Managing this data, from acquisition 
and processing to storage, analysis, and visualization, requires sophisti-
cated architectural frameworks and tools [18]. Key challenges include 
handling large, heterogeneous datasets from diverse sources, processing 
data in real-time and batch modes, applying advanced analytical tech-
niques, and presenting insights through user-friendly interfaces.

Looking ahead, the integration of IoT with Artificial Intelligence (AI) 
and Machine Learning (ML) holds even greater potential for transform-
ing the agricultural landscape. AI-driven predictive models can analyze 
vast amounts of data collected from sensors and drones, offering ad-
vanced insights into crop growth patterns, disease risks, and optimal 
harvesting times [19]. Machine learning algorithms can also continu-
ously improve these models based on new data, allowing for increas-
ingly precise recommendations that help maximize yield and minimize 
resource use. Cloud computing further enhances this by offering scal-
able, on-demand data storage and processing power, enabling farmers 
of all sizes to adopt these cutting-edge technologies without needing 
significant in-house infrastructure [20].

The integration of AI and cloud computing into agriculture faces sev-
eral challenges, including data privacy and security concerns due to the 
sensitive nature of agricultural data, interoperability issues arising from 
diverse hardware and software systems, and data quality and manage-
ment hurdles that impact the reliability of AI-driven insights [21]. Addi-
tionally, connectivity and infrastructure limitations in rural areas, high 
costs of implementation, and a lack of technical expertise among farm-
ers hinder widespread adoption. Ethical concerns, such as algorithmic 
bias and data ownership, as well as the need for scalability and adapt-
ability across diverse farming contexts, further complicate integration 
[22].

To address these challenges, this paper introduces WALLeSmart1, a 
scalable, cloud-based smart farming platform designed to help farmers, 
researchers, and administrators optimize agricultural operations and 
decision-making. The platform integrates IoT sensors, satellite imagery, 
weather and milk data to provide real-time insights and predictive an-
alytics. A key feature of WALLeSmart is its extensible plugin system, 
which allows developers and agricultural professionals to create custom 
applications for specific farming needs, such as optimized irrigation, fer-
tilization, and pest control. By addressing critical challenges such as data 

1 WALLeSmart can be found at: https://wallesmart.be

privacy, security, and interoperability, WALLeSmart offers a robust and 
user-friendly solution for modern agriculture.

1.1.  Our contributions

This paper extends our previous work [1], which introduced a pre-
liminary framework for dairy data analytics in Wallonia. The current 
work presents WALLeSmart, a comprehensive platform with advanced 
interoperability and governance features. The key contributions are:

• A comprehensive survey of smart farming platforms, identifying gaps 
in interoperability, scalability, and region-specific adaptability.

• A scalable Lambda-based architecture integrating IoT, geospatial 
data, and predictive analytics, with a Walloon Agricultural DataHub 
for secure data exchange across platforms like Myawenet and Cerise.

• A modular plugin system and one-stop shop enabling tailored deci-
sion support systems (DSSs) and seamless access to external services.

• Implementation and evaluation of WALLeSmart using data from 30 
dairy farms and 32 weather stations in Wallonia, with a farmer-led 
governance model ensuring autonomy.

• Development of a user-friendly web application with a personalized 
dashboard, GraphQL APIs, and an a-Box for centralized document 
management.

1.2.  Extension of prior work

Our previous work [1] proposed a basic framework for dairy data 
analytics in Wallonia. This paper extends it by:

• Adopting a Lambda architecture for real-time and batch processing, 
reducing latency to 80 seconds for weather data.

• Introducing a modular plugin system and one-stop shop for integrat-
ing platforms like Myawenet, MyCDL, and Cerise, not present in [1].

• Implementing a Walloon Agricultural DataHub and a-Box for secure 
data exchange and document management.

• Expanding the data ecosystem to include weather, dairy, and poten-
tial satellite data, validated with a larger dataset (30 farms, 3 million 
weather measurements).

• Establishing a farmer-led governance model to ensure autonomy and 
transparency, enhancing trust and adoption.

1.3.  Paper organization

The remainder of this paper is organized as follows. Section 2 re-
views existing smart farming platforms and tools. Section 3 provides a 
background on smart farming technologies. Section 4 presents the de-
sign and components of the WALLeSmart platform. Section 5 details the 
implementation and evaluation of the platform using real-world data. 
Finally, Section 6 summarizes the key findings and outlines future re-
search directions.

2.  Related work

The rapid evolution of smart farming technologies has led to the 
development of numerous platforms, tools, and methodologies aimed at 
optimizing agricultural practices. This section provides a comprehensive 
review of the most relevant works in the field, focusing on their contri-
butions, limitations, and how they relate to the proposed WALLeSmart
platform.

Cloud computing has become a cornerstone of modern smart farm-
ing, enabling scalable data storage, processing, and analysis. Farm-
Beats, developed by Microsoft, integrates IoT sensors, drones, and cloud 
computing to provide farmers with real-time data on soil conditions, 
weather, and crop health [23]. While FarmBeats showcases the potential 
of IoT in agriculture, challenges such as technology adoption barriers 
and the need for farmer training remain critical for widespread imple-
mentation. Similarly, [24] paper proposes an agri-cloud framework to 
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Table 1 
Comparison of Smart Farming Platforms.
 Platform  Scalable  Interoperable  Extensible  Batch  Real-time  Cost-effective  Region-Specific  Governance Model
 FarmBeats [23] ✓  ×  × ✓ ✓ G#  ×  ×
 Climate FieldView [26] ✓ G#  × ✓ ✓  × G#  ×
 farmmaps [27] ✓  × ✓ ✓  × ✓ ✓ G#
 Barto [28] G# ✓ ✓ ✓  × ✓ ✓ ✓

 CropSense [29] G#  ×  × ✓  × ✓  ×  ×
 PLATEM [30]  ×  ×  × ✓ ✓ ✓ G#  ×
 DEMETER [31] ✓ ✓ ✓ G# G#  × ✓ G#
 DSSAT [32]  × G# ✓ ✓  × ✓ G#  ×
 CropWise [33] ✓  × ✓ ✓  ×  ×  ×  ×
 WALLeSmart (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 (✓): Supported; (×): Not supported; (G#): Partially supported.

improve the cloud computing framework of agriculture data as a service 
(ADaaS) over the public cloud. The model provides accurate and secure 
data sharing to the various stakeholders, using a security attribute-based 
group signature (ABGS) system. The paper of [25] introduces a Farm 
Management System (FMS) framework for service interoperation. The 
FMS allows for a marketplace of services that can share data securely. 
A proof of concept was developed under the SmartAgrifood Project and 
tested in a greenhouse in Crete, Greece, over nine months to identify 
technical issues. The FMS handles various types of data, and the com-
plexities surrounding copyright and ownership need to be addressed. 
Moreover, while the paper discusses the creation of a marketplace for 
services, the integration of various services from different providers can 
be complex. Ensuring seamless interoperability among diverse applica-
tions may present technical challenges that could hinder the system’s 
usability and effectiveness.

The applications of big data in the agriculture field are numerous, 
we can cite for instance: precision farming, yield prediction, risk mitiga-
tion, loss reduction, supply chain management, farm-to-fork traceabil-
ity, and sustainable farming [6,34–36]. Besides, agricultural big data 
systems can be broadly divided into three categories: (i) advanced sen-
sor technology systems, (ii) risk management systems, and (iii) agri-
cultural management systems [37]. Recently, initiatives are ongoing to 
create agricultural platforms that collect the data needed by smart farm-
ing decision support tools. They are often created by private companies 
or public-private partnerships [38]. Among the former, Monsanto’s In-
tegrated Farming Systems platform collects data on information such as 
soil health and pest pressures and provide them for farmers. The Cli-
mate Corporation proposes the Climate FieldView platform to aggregate 
data of different sources in one place and provides diagnostic and ap-
plicative tools to farmers [26]. However, since 2018 only four compa-
nies dominate the market: Corteva Agriscience, Syngenta Group, BASF 
SE, and Bayer AG due to a series of mergers and acquisitions [39]. Re-
gards public-privates partnerships, many countries are building systems 
to advance the use of modern agricultural technologies. For example, 
farmmaps (previously Akkerweb) is a Dutch web-based platform that 
provides access to external data sources such as weather, parcel bound-
aries, satellite, and data from commercials farm management system. It 
stores geo-referenced data, including soil maps and drone imagery. It 
allows combining data sources and processing of data, through a set of 
application modules to provide farmers decision support and recommen-
dations [27]. Another example is the platform Barto in Switzerland [28]. 
As a stock company, Barto brings together public and private actors to 
build up a smart-farming platform that also aims to digitize operational 
and production farms data while avoiding duplication, which speeds 
up on-farm processes, reduces administrative tasks. Barto itself is based 
on 365FarmNet, a German-based farm management software provider. 
Nearly 45.000 farmers are already active on this platform in Germany, 
Poland, Bulgaria, Austria, and France.2 The platform operates as SaaS 

2 https://www.365farmnet.com

(Software as a service) and provides solutions for managing and record-
ing all activities on a farm. However, those platforms are proprietary, 
and therefore the internal system architecture is not available. In the 
academic sector, many kinds of researches have been conducted in the 
smart farming field. The authors of [30] from Spain, demonstrate the ad-
vantage of a tool, called PLATEM, that applies real-time decisions from 
data such as variable rate irrigation, and selected parameters from field 
and weather conditions. Data is processed in a decision-making system 
based on learning prediction rules. PLATEM is a collaborative tool where 
farmers can post their experiences. It can monitor the different param-
eters of soil and environment to better the growth of crops. Those tasks 
can be accomplished through a chain of web-based graphical tools. Nev-
ertheless, data collection is not detailed and MySQL database manage-
ment is used to store it. Similarly, CropSense uses machine learning al-
gorithms to analyze historical and real-time data, providing recommen-
dations for planting and harvesting [29]. Another initiative, DEMETER, 
focuses on addressing interoperability challenges in smart agriculture 
[31]. By integrating diverse hardware and software resources, DEME-
TER facilitates seamless data exchange and knowledge sharing across 
the agri-food chain. The platform has been tested in two trials in the 
Murcia region of Spain, demonstrating its benefits for arable crop man-
agement. Despite these advancements, many existing solutions continue 
to face challenges related to data heterogeneity, real-time processing, 
and user-friendly visualization-factors that are crucial for widespread 
adoption by farmers [18].

The work of [40] utilize IoT sensors to monitor electrical conduc-
tivity, pH, temperature, and humidity, enabling precise irrigation and 
fertilization. Similarly, studies of [41,42] employ IoT devices to track 
animal health and behavior, improving livestock management. How-
ever, these systems often lack integration with broader data ecosystems, 
such as weather forecasts and satellite imagery, limiting their predic-
tive capabilities. Recent advancements in edge computing have sought 
to address these limitations by enabling real-time data processing at the 
source, reducing latency and improving efficiency [43].

The advent of autonomous farming technologies, such as self-driving 
tractors and drones, has further revolutionized agriculture. The authors 
of [44] proposed a drone-based agricultural monitoring system using 
Optical Camera Communication (OCC), enabling high-density sensing 
at low cost, with a trajectory control algorithm reducing flight time 
by 30% and achieving low bit error rates in real-world experiments. 
Similarly, autonomous robot developed by [45] employs a CNN-based 
system to detect and address tomato plant diseases, autonomously acti-
vating a pesticide sprayer for precision targeting, mitigating risks associ-
ated with human error in sustainable farming practices. However, these 
technologies often operate in isolation, lacking integration with com-
prehensive farm management systems. Recent efforts have focused on 
developing interoperable systems that combine autonomous machinery 
with IoT and cloud-based platforms, as demonstrated by [46].
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Cloud-based decision support systems (DSS) have emerged as pow-
erful tools for agricultural management. Platforms like CropWise by Syn-
genta provide farmers with actionable insights based on historical and 
real-time data, enabling optimized planting, fertilization, and harvesting 
[33]. Another example is DSSAT (Decision Support System for Agrotech-
nology Transfer), a tool used for simulating crop growth and yield under 
various environmental and management conditions. It integrates data 
on soil, weather, and crop management to provide insights into agri-
cultural practices, enhancing productivity and sustainability [32]. The 
DSSAT model has been utilized to compare conventional and alternate 
wetting and drying (AWD) techniques in rice farming, demonstrating a 
99.78% accuracy in predicting grain yield and improved water use effi-
ciency with AWD [47]. While these systems excel in data integration and 
visualization, they often lack extensibility, making it difficult for users 
to develop custom applications tailored to their specific needs. Recent 
advancements in predictive analytics, such as those proposed by [48], 
have sought to address these limitations by enabling more accurate and 
timely decision-making.

2.1.  Comparison of technical innovations

A comparative analysis of existing smart farming platforms is pre-
sented in Table 1, highlighting key capabilities such as scalability, 
interoperability, extensibility, batch and real-time processing, cost-
effectiveness, region-specific and governance model. WALLeSmart dis-
tinguishes itself through its Lambda-based architecture, modular plu-
gin system, Walloon Agricultural DataHub, and farmer-led governance 
model. Unlike FarmBeats [23], which lacks extensibility, WALLeSmart
supports custom DSSs and integrates platforms like Myawenet, MyCDL, 
and DjustConnect via a one-stop shop. Compared to Climate FieldView
[26], a proprietary platform, WALLeSmart uses open-source tools (e.g., 
Apache Kafka, Spark) and secure protocols (e.g., JWT, CSAM login) for 
interoperability. The Walloon Agricultural DataHub enables secure data 
exchange, a feature not emphasized in farmmaps [27] or DEMETER [31]. 
The farmer-led governance model ensures autonomy, unlike Barto [28], 
which relies on public-private partnerships. Compared to [1], WALLeS-
mart adds real-time processing, a DataHub, and a governance model, 
enhancing scalability and trust.

2.2.  Gaps and opportunities

While existing smart farming platforms and tools have made signif-
icant strides in optimizing agricultural practices, several gaps remain. 
First, many platforms are not designed to address region-specific chal-
lenges, such as the diverse climatic conditions and agricultural practices. 
Second, the integration of heterogeneous data sources, including IoT 
sensors, satellite imagery, and weather forecasts, remains a challenge 
due to issues of interoperability between systems and platforms. Third, 
while some platforms offer predictive analytics, few provide extensible 
frameworks for developing custom applications. Finally, user-friendly 
interfaces and real-time data processing capabilities are often lacking, 
hindering widespread adoption.

The proposed platform addresses these gaps by offering a scalable, 
cloud-based solution tailored to the needs of the Wallonia region of Bel-
gium. By integrating IoT sensors, satellite imagery, and weather data, 
WALLeSmart provides real-time insights and predictive analytics to sup-
port data-driven decision-making. Its extensible plugin system allows 
developers and agricultural professionals to create custom applications, 
addressing specific farming needs such as optimized irrigation, fertil-
ization, and pest control. Furthermore, WALLeSmart emphasizes user-
friendly data visualization and real-time processing, making it accessi-
ble to farmers of all scales. Before detailing our proposed system, in the 
next section, we provide an overview of smart farming technologies and 
their role in transforming traditional agricultural practices.

Fig. 1. Overview of smart farming technologies.

3.  Smart farming technologies overview

The integration of advanced technologies into agriculture has trans-
formed traditional farming practices, ushering in the era of smart farm-
ing. Fig. 1 presents a comprehensive overview of the core components 
driving this transformation. IoT sensor devices play a critical role in 
measuring parameters such as soil quality, temperature, and humidity, 
offering real-time data to monitor environmental conditions. Robotics 
and drones are utilized for tasks like aerial imaging, crop monitoring, 
and precision operations, significantly enhancing efficiency and accu-
racy. Real-time data collected from these diverse sources empowers 
farmers to make timely and informed decisions. At the heart of this 
ecosystem lies data processing and analytics, enabling the management 
and analysis of large agricultural datasets to extract actionable insights. 
Collectively, these technologies enable seamless data collection, pro-
cessing, and analysis to advance modern agriculture.

The exponential growth of data in agriculture, driven by IoT sen-
sors, drones, satellites, and farm machinery, necessitates robust big data 
processing architectures and scalable cloud computing solutions, which 
form the backbone of smart farming. In the next sections, we will discuss 
the key components of big data processing architectures and the role of 
cloud computing in agriculture.

3.1.  Big data processing for smart farming

Big data refers to both structured and unstructured data that is too 
large or complex to be processed using traditional data processing tools 
and techniques. The term “big” is characterized by the 5 Vs: Volume, 
Velocity, Variety, Veracity, and Value [49]. Some companies have also 
introduced additional dimensions to further describe big data. To fully 
harness the potential of this vast amount of data, it must be effectively 
managed and analyzed. This process begins with ingesting and integrat-
ing raw data from diverse sources into a centralized storage repository 
known as a Data Lake. Next, big data solutions are employed to process 
the data, utilizing both long-running batch jobs and real-time process-
ing to filter, aggregate, and prepare the data for analysis. The final step 
involves extracting actionable insights through data analysis and report-
ing.

In general, big data systems must meet two fundamental require-
ments: (1) the ability to handle massive real-time data streams from 
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Fig. 2. Lambda architecture.

multiple sources, and (2) the capability to perform immediate analysis 
to deliver timely results [50]. To address these requirements, three state-
of-the-art software architectures are commonly used: Lambda, Kappa, 
and a Hybrid that combines elements of both.

3.1.1.  Lambda architecture
The Lambda architecture describes a generic, scalable, and fault-

tolerant real-time data processing framework [51]. It consists of two 
parallel processing branches: one for batch processing and another for 
real-time processing. As illustrated in Fig. 2, incoming data is simulta-
neously fed into both branches. In the batch layer, data is appended 
to a centralized storage area known as the master dataset. This data 
is typically processed at a later stage using batch processing tools like 
Apache Hadoop, generating batch views. In contrast, the speed layer 
processes data in real time using stream processing tools such as Apache 
Storm, producing incremental views. Since processing large datasets in 
the batch layer can be time-consuming, the results are often not up-
to-date. The speed layer addresses this limitation by providing access 
to the most recent data. Finally, the serving layer merges the outputs 
from both the batch and speed layers, enabling end-users to query the 
combined data for comprehensive insights.

3.1.2.  Kappa architecture
The Kappa architecture aims to simplify the development and main-

tenance of data processing systems [52]. Unlike the Lambda architec-
ture, it utilizes only one processing branch-the speed layer-as illustrated 
in Fig. 3. In this architecture, incoming data is processed immediately 
in real time using a single stream processing tool, such as Apache Kafka 
or Apache Flink. The results are stored as incremental views, which are 
then made available in the serving layer for querying and analysis. A 
key feature of the Kappa architecture is its ability to reprocess the en-
tire master dataset as needed, while simultaneously handling incoming 
real-time data streams. This dual capability ensures flexibility and scal-
ability. The primary advantage of the Kappa architecture lies in its sin-
gle data processing engine, which simplifies system design and reduces 
complexity. However, this approach may require increased computa-
tional power and storage capacity to handle the parallel processing of 
large datasets and real-time data streams efficiently.

3.1.3.  Hybrid architecture
While both the Lambda and the Kappa architectures support the pro-

cessing of historical data and real-time data, they operate in separate 

Fig. 3. Kappa architecture.

modes. This separation requires users to manually integrate the results 
from both processing modes to enable a comprehensive analysis of the 
data [53]. To address this limitation, [53] introduced a hybrid pro-
cessing architecture called BRAID. BRAID intertwines the processing 
of historical and real-time data by establishing communication chan-
nels between the batch engine and the stream engine. This integration 
allows for automatic comprehensive analyses with minimal overhead. 
The authors also explored various implementation techniques for their 
proposed architecture. In a similar vein, the study by [54] proposed a 
conceptual architecture for big data streaming integrated with complex 
event processing (CEP), named BiDCEP. This system extends the Lambda
and Kappa architectures to accommodate the complex event processing 
and event management domains of enterprise IT. The authors initiated 
a technical discussion on the benefits of combining these architectures 
and provided a motivational example to illustrate their approach.

3.2.  Cloud computing for smart farming

Cloud computing is a technology that enables on-demand access to 
shared pools of configurable computing resources (e.g., servers, storage, 
networks, applications, and services) over the internet. These resources 
can be rapidly provisioned and released with minimal management ef-
fort or service provider interaction [55]. Cloud computing is defined 
by five essential characteristics, three service models, and four deploy-
ment models. The key service models include Infrastructure as a Service 
(IaaS), which provides virtualized computing resources; Platform as a 
Service (PaaS), which offers development and deployment platforms; 
and Software as a Service (SaaS), which delivers applications over the 
internet. The four deployment models are Private Cloud, Community 
Cloud, Public Cloud, and Hybrid Cloud, each catering to different orga-
nizational needs and use cases [55]. Many agricultural businesses adopt 
hybrid cloud models that combine on-premise infrastructure with cloud 
services. This approach offers flexibility and ensures sensitive data re-
mains securely stored locally, while benefiting from the scalability of 
the cloud. Cloud computing offers numerous benefits, such as scalabil-
ity, cost efficiency, and flexibility making it a valuable tool for modern 
agriculture. However, its adoption also introduces several challenges. 
Key issues include security and privacy, downtime and reliability, cost 
management, data transfer limitations and vendor lock-in, are the main 
challenges in the use of cloud, especially in the agricultural domain [56].

3.2.1.  Fog computing in smart farming
While cloud computing provides centralized processing, fog comput-

ing extends cloud computing by acting as an intermediate layer between 
edge devices and the cloud. Fog computing is defined as a decentral-
ized computing architecture that extends cloud computing capabilities 
to the edge of the network, closer to the data source. It enables data 
processing, storage, and analysis at the edge devices (e.g., IoT sensors, 
gateways) rather than sending all data to a centralized cloud. This ap-
proach reduces latency, bandwidth usage, and reliance on cloud infras-
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Fig. 4. Overview of cloud, fog, and edge computing layers in smart farming 
architecture.

tructure while supporting real-time decision-making and localized data 
processing [57]. Fog computing is particularly useful in applications re-
quiring low latency, such as smart farming systems [58]. The Fog layer 
consists of large-scale, geo-distributed Fog nodes deployed at the edge 
of networks. Each Fog node is equipped with onboard computational 
resources, data storage capabilities, and network communication facil-
ities, enabling it to act as a bridge between IoT devices and the cloud 
within the IoT ecosystem [59].

3.2.2.  Edge computing in smart farming
Edge computing is a distributed computing paradigm that brings 

data processing and storage closer to the source of data generation, 
such as IoT devices, sensors, or local servers, rather than relying on a 
centralized cloud infrastructure. By processing data at the "edge" of the 
network, edge computing reduces latency, minimizes bandwidth usage, 
and enables real-time decision-making [60]. While both Fog computing 
and Edge computing aim to reduce latency and improve efficiency by 
decentralizing data processing, they differ in their architecture, scope, 
and applications. Fog computing uses hierarchical layer of Fog nodes 
(e.g., routers, gateways) enabling distributed intelligence across a net-
work, while Edge computing emphasizes localized processing at the data 
source [59]. Edge computing has numerous applications in agriculture, 
including precise irrigation, fertilization, pest control, livestock Moni-
toring, and supply chain traceability [22].

3.2.3.  Serverless computing
Serverless computing, a relatively new and rapidly evolving field in 

cloud computing. Serverless is a model where the cloud provider dynam-
ically manages the allocation and provisioning of computing resources, 

allowing developers to focus solely on writing and deploying code with-
out worrying about underlying infrastructure. In serverless computing, 
applications are broken into small, event-driven functions (e.g., AWS 
Lambda, Google Cloud Functions) that are executed in response to spe-
cific triggers, such as HTTP requests or database updates. The cloud 
provider automatically scales resources based on demand, and users are 
billed only for the actual execution time of the functions, making it a 
cost-efficient and scalable solution for modern applications [61]. Server-
less architectures allow smart farming applications to run event-driven 
tasks without managing servers. For example, a serverless function can 
trigger real-time notifications when a sensor detects critical thresholds 
in soil moisture levels [62].

Fig. 4 depicts a multi-layered architecture for smart farming, con-
sisting of IoT devices for data collection, edge computing for local pro-
cessing, fog computing for intermediate analysis, and cloud computing 
for advanced analytics and storage.

3.3.  Ethical challenges in smart farming

Smart farming raises ethical concerns, including algorithmic bias 
and data ownership. AI models may produce biased recommendations 
if trained on non-representative datasets [21]. WALLeSmart mitigates 
this through diverse training data and explainable AI. Data ownership is 
critical, as farmers risk losing control over sensitive data [22]. WALLeS-
mart’s consent management system, integrated with CSAM3 login (in-
cluding itsme®4), allows farmers to control data access, ensuring GDPR 
compliance and autonomy, as detailed in Section 4.7.

4.  WALLeSmart system architecture

In this section, we present the architecture of the WALLeSmart frame-
work. Drawing from the previous discussions, we adopt a Lambda archi-
tecture to implement our system. This choice is motivated by the distinct 
nature of batch and real-time analysis in our context, necessitating sep-
arate tools for each task. Additionally, the Lambda architecture ensures 
linear scalability, fault tolerance against hardware failures, and signif-
icant performance enhancements [51]. Our implementation comprises 
the three key layers of the Lambda architecture: the batch layer, the 
speed layer, and the serving layer. The tools selected for our system are 
based on stringent criteria, including being open-source, scalable, dis-
tributed, extensible, and widely validated in production environments. 
To support this architecture, we adopt a private cloud computing ap-
proach. This decision ensures greater control over data security, compli-
ance, and resource allocation while maintaining scalability and flexibil-
ity [55]. The private cloud infrastructure is hosted on-premise, serving 
as the backbone for managing data storage, processing, and analytics. 
The following sections provide a detailed overview of the system’s un-
derlying layers and their roles in the framework.

4.1.  Master dataset

Data flowing in the platform goes through several steps. First, data 
is coming from two main sources (i) dairy farms and (ii) weather sta-
tion observations. Incoming data can be in various formats, such as XML, 
JSON, or XLS files received in different ways, such as Web service, Email 
attachment, or MQTT server, which all depend on the sensor manufac-
turer being used. Next, data is transmitted to our cloud platform via dif-
ferent network protocols, such as Wi-Fi, 3G/4G, or LoRa. We use EMQ 

3 CSAM (Central Authentication Service of the Belgian Government): A secure 
digital gateway that enables users to access various Belgian government services 
online. It ensures reliable identity verification and access control.
4 itsme®: A widely used Belgian mobile identity app that allows users to au-

thenticate themselves securely online, sign documents digitally, and give con-
sent for data sharing. It is integrated with CSAM and recognized for its high 
level of security and user trust.
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X as an MQTT message broker. Second, when the data arrives at our 
platform, it will be processed by a data ingestion tool that is responsi-
ble for capturing and storing real-time messages to be consumed by a 
stream/batch processing consumer. In our study, we use Apache Kafka 
as a data ingestion tool. It can scale to handle millions of messages per 
second. Third, and after capturing real-time messages, the platform pro-
cesses them to gain knowledge about the data. Finally, storage tools are 
used as an output destination to capture real-time and batch data for 
archiving, or for further processing. In our architecture, we use Apache 
Cassandra, PostgreSQL, and MinIO for NoSQL, relational data, and un-
structured data, respectively. Additionally, PostGIS is used for storing 
geospatial data.

4.2.  Batch layer

The batch layer is responsible for managing large-scale historical 
data processing. We utilize Apache Spark, an open-source, distributed 
processing system, to perform complex computations efficiently. Spark’s 
fault-tolerance and scalability make it ideal for generating accurate, pre-
computed views of historical data that are periodically updated. This 
layer processes raw data ingested from diverse sources, such as IoT de-
vices and external systems, and stores the results in a format optimized 
for querying.

4.3.  Speed layer

The speed layer is designed to process real-time data streams with 
minimal latency. For this, we use Apache Kafka Streams, a lightweight 
yet powerful stream-processing library. Kafka Streams processes incom-
ing data in real-time, providing quick and approximate results that are 
critical for immediate decision-making. This layer ensures a seamless 
flow of time-sensitive data into the system, complementing the batch 
layer by focusing on responsiveness and agility.

4.4.  Serving layer

The serving layer is a critical component of the WALLeSmart archi-
tecture, designed to deliver insights, reporting, and data visualization in 
real-time. The web application of WALLeSmart is structured into back-
end and frontend parts for modularity and scalability. The backend is 
implemented as a Node.js API server, leveraging Google’s V8 JavaScript 
engine for building fast and scalable network applications. It provides 
the core functionalities of the platform, including data processing, user 
authentication, role-based access control, and API endpoints. The fron-
tend is a Vue.js application, ensuring a reactive and user-friendly inter-
face for interacting with the platform. Farm data is visualized through 
interactive maps powered by OpenStreetMap, while interactive charts 
are rendered using the Apache ECharts library, offering intuitive and dy-
namic visualizations. To support researchers and developers, WALLeS-
mart provides a GraphQL Web API for accessing farm and weather data, 
enabling advanced analysis and modeling. GraphQL’s flexible query ca-
pabilities allow users to request precise information and deliver a com-
plete description of the data schema. Additionally, GeoServer is inte-
grated into the platform to enable geospatial queries, providing a robust 
service for accessing spatial data and performing spatial analysis. The 
architecture of WALLeSmart platform is illustrated in Fig. 5.

4.5.  Development of decision support application in WALLeSmart

WALLeSmart supports Decision Support Systems (DSSs) through a 
modular, scalable template. DSSs, labeled “WALLeSmart Ready”, are 
hosted in an application marketplace (Fig. 9), including apps for weather 
forecasting, grass growth estimation (W@llHerbe), and electronic field 
logbooks. Each DSS uses a Vue.js 3 frontend (with TypeScript, Pinia, 
Naive UI) and a Node.js backend, ensuring modularity. Scalability is 
achieved via Docker containers and GitLab CI/CD pipelines, with Kafka 

Fig. 5. WALLeSmart platform architecture.

Fig. 6. Architecture of a DSS in WALLeSmart.

handling data streams for high workloads. The development process in-
cludes:

1. Configuring GraphQL APIs for data access (e.g., milk production, 
weather).

2. Integrating with MinIO, PostgreSQL, Cassandra, and PostGIS for stor-
age.

3. Verifying user consent via CSAM login for secure data access.
4. Building and testing using modern tools (e.g., jest, vitest, 
pnpm/npm).

5. Deploying via Docker and automated pipelines.

Fig. 6 illustrates this pipeline, ensuring seamless integration and scala-
bility.

4.6.  Connection to external platforms

The architecture of WALLeSmart facilitates secure integration with 
public and private agricultural platforms that manage user accounts 
and data. At its core, the system employs secure protocols, including 
JSON Web Token (JWT) authentication and RSA-based cryptographic 
key pairs, ensuring secure and efficient communication. The connection 
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process involves user authentication, selecting a platform, and initiat-
ing a request by providing an associated Email. WALLeSmart generates 
a JWT, sends it to the external platform, and sets the connection status to 
“pending". The external platform validates the JWT, verifies the Email, 
and updates its status. A confirmation Email is sent to the user, and upon 
approval, the platform notifies WALLeSmart, which performs final vali-
dations. After verification, the connection status updates to “connected" 
as shown in the workflow outlined in Fig. 7. Once connected, the plat-
forms can securely share user data and enable advanced features such as 
Single Sign-On (SSO), streamlining access and enhancing functionality 
for users.

4.7.  Security and privacy

WALLeSmart implements robust security measures:
• Authentication: Multi-factor authentication via CSAM login (in-
cluding itsme) and JWT tokens with RSA key pairs.

• Authorization: Role-based access control with granular permis-
sions.

• Data Privacy: End-to-end encryption (TLS 1.3) and AES-256 for data 
at rest.

• Audit Logging: Comprehensive tracking of access and changes.
• Compliance: GDPR adherence via consent management and the a-
Box for secure document access.
All data exchanges between components are encrypted using TLS 

1.3, and sensitive data is stored using AES-256 encryption at rest.

4.7.1.  Ethical considerations
WALLeSmart addresses algorithmic bias through diverse training 

datasets (e.g., data from 30 farms of varying sizes) and explainable AI, 
audited regularly [22]. Data ownership is ensured via a consent man-
agement system integrated with CSAM login, allowing farmers to con-
trol data sharing with partners like ARSIA and Milk Committee (Fig. 8f). 
The farmer-led governance model, supported by Elevéo, UMons, CRA-
W, ULiège, WalDigiFarm, ARSIA, and Milk Committee, ensures trans-
parency and autonomy, building trust.

4.8.  Generalizability across geographic regions

WALLeSmart, while tailored to the Wallonia region, is designed with 
broader applicability in mind. Its modular plugin architecture and the 
Walloon Agricultural DataHub support the integration of region-specific 
data sources-such as local weather APIs, crop-specific sensors, and reg-
ulatory systems-and allow customization of decision support systems 
(DSSs) to accommodate diverse agricultural practices, including those in 
Mediterranean or arid environments. The use of open-source technolo-
gies ensures portability across different cloud infrastructures. Further-
more, the platform enables cross-regional data exchange by connecting 
with other ecosystems, such as DjustConnect in Flanders, promoting in-
teroperability beyond Wallonia.

5.  Implementation and results

The WALLeSmart platform is designed to address the needs of the 
agricultural sector, with a specific focus on the dairy farming sector in 
the Belgium Wallonia region as a case study. The primary objectives of 
this case study are to help farmers (i) better manage their dairy cows, 
including health care, reproduction, milk production, and movement 
tracking, and (ii) monitor weather conditions, both historical and fore-
casted, in an intuitive and efficient manner. The data used in this case 
study is sourced from two main providers: Elevéo5 for cow behavior 
data and Agromet6 for weather data [63].

5 https://www.awenet.be/awe/commun/asbl/asbl.php
6 https://agromet.be/

Table 2 
Agromet weather data parameters.
 Parameter  Description  Unit
 tsa  Air Temperature  °C
 hra  Relative Humidity  %
 tha  Wet Bulb Air Temperature  °C
 tsf  Leaf Temperature  °C
 tss  Soil Temperature at 20 cm  °C
 vvt  Wind Speed at 2m  m/s
 ens  Global Solar Radiation  W/m²
 dvt  Wind Direction  °
 plu  Precipitation  mm
 etp  Reference Evapotranspiration  mm/day
 hct  Leaf Wetting Duration  min wet

5.1.  Data sources

Our system integrates data from two primary sources:

1. Elevéo: Collected via SenseHub7 and SmartVel8 sensors. The dataset 
spans from January 2007, to February 2025, and includes:

• 30 dairy farms,
• 8637 unique cows,
• 61,130 measurement-sets, each consisting of 23 parameters (see 
Table 3 for details),

• data comprises 1.5 GB.
2. Agromet: Collected from a network of 32 agrometeorological sta-
tions covering the entire Wallonia region. The dataset includes:

• Historical measurements from January 1, 2008, to January 8, 
2025.

• Forecast data for the next 7 days.
• 11 key parameters (see Table 2 for details),
• Over 3 million historical measurements recorded hourly.
• 6879 hourly forecast measurements,
• totaling 3.5 GB of data.

5.2.  Deployment

To ensure data sovereignty, regulatory compliance, and trust among 
end users, WALLeSmart is hosted on a private cloud infrastructure man-
aged by the Elevéo. This setup avoids reliance on commercial public 
cloud providers such as AWS or Azure, offering a regionally governed 
and transparent alternative for data hosting. The infrastructure con-
sists of Linux-based multi-core servers deployed in a secure data cen-
ter in Wallonia, Belgium. The platform uses container-based virtualiza-
tion (Docker) and follows a microservices architecture, allowing mod-
ular deployment and easy maintenance. Services are orchestrated via 
Docker Compose, with an ongoing transition to Kubernetes for improved 
elasticity and automated scaling. Importantly, farmers and agricultural 
stakeholders are not expected to install or maintain any physical in-
frastructure themselves. The platform is accessed through a responsive 
web interface or mobile application, requiring only a standard inter-
net connection. IoT devices deployed on farms—such as SenseHub for 
livestock monitoring or SmartVel for reproductive event prediction—
communicate with the platform through secure protocols (e.g., MQTT 
over TLS, HTTPS), enabling real-time data transmission without local 
storage overhead. This private infrastructure is designed with GDPR 
compliance at its core. A key feature is the integrated consent man-
agement system based on the Belgian CSAM authentication service and 
itsme identity verification. This allows farmers to retain full control over 
their data by explicitly granting or revoking access to authorized third 

7 http://www.scrdairy.com/cow-intelligence/sensehub.html
8 https://www.evolution-xy.fr/fr/monitoring/smartvel

Future Generation Computer Systems 179 (2026) 108324 

8 

https://www.awenet.be/awe/commun/asbl/asbl.php
https://agromet.be/
http://www.scrdairy.com/cow-intelligence/sensehub.html
https://www.evolution-xy.fr/fr/monitoring/smartvel


A. Roukh and S. Mahmoudi

Fig. 7. Detailed workflow for secure integration of WALLeSmart’s user account with external platforms.

parties such as ARSIA, the Milk Committee, or research institutions. Ac-
cess control policies are enforced via centralized authorization services 
and audited periodically to ensure transparency and accountability. De-
spite being hosted in a private environment, WALLeSmart is scalable. 
The system can handle increased workloads by horizontally scaling com-
pute and storage nodes. This demonstrates the ability of the architecture 
to support both regional deployments and potential national or cross-
border extensions.

Cost-effectiveness of the private cloud.. The “cost-effective” label in
Table 1 reflects total cost-of-ownership (TCO) savings achieved by (i) 
reusing existing regional data center facilities and commodity hardware, 
(ii) avoiding public-cloud egress charges for continuous data sharing 
with partners (e.g., ARSIA, MilkBE), (iii) leveraging open-source com-
ponents (Kafka, Spark, Cassandra, PostgreSQL, PostGIS, MinIO) with no 
per-seat licensing, and (iv) right-sizing capacity to predictable regional 
workloads. For our workload profile (continuous ingestion from 32 
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Table 3 
Elevéo milk control data parameters.
 Parameter variable  Description
 BSAUMON  Official animal number
 HEURE_TRAIT1_DEB  Controlling date
 LAIT_24_VAL, POURC_PROT_24_VAL, POURC_MG_24_VAL  Controlled daily production of milk, protein and fat concentration
 CELL_24_VAL, UREE_24_VAL  Controlled cell and urea content
 JEL, JET  Lactation days, drying up days
 NOLACT  Lactation number
 DATE_VEL, DATE_TAR  Date of calving and date of drying up
 LAIT, MG, PROT  Cumulative production of milk, protein and fat concentration
 LAIT365, MG365, PROT365  Cumulative production over 365 days of milk, protein and fat
 PIC  Peak production value

stations and periodic dairy batches), the private setup reduces recur-
ring costs compared to equivalent managed services while preserving 
performance and data sovereignty.

5.3.  The data value chain in WALLeSmart

The WALLeSmart platform follows a well-defined data value chain 
to ensure efficient data flow and processing. This section describes the 
key steps in the data value chain, including data acquisition, ingestion, 
processing, and visualization.

5.3.1.  Data collection
The data acquisition step represents the foundational layer of the 

platform, responsible for collecting data from various sources. Data is 
collected from Elevéo and Agromet using SOAP and RESTful APIs on 
an hourly and daily basis. The platform supports multiple data source 
formats, including EMQ as the MQTT server for real-time data streams, 
FTP server for file-based data transfer, and Email attachments for man-
ual data uploads. The received data is in XML and JSON formats. Data 
collection algorithms are implemented in Python scripts, which are 
scheduled for execution using Apache Airflow for task orchestration and 
scheduling.

5.3.2.  Data ingestion
In the data ingestion step, the collected data is ingested into the plat-

form for further processing. Python scripts from the data acquisition step 
act as producers, publishing data to Apache Kafka topics. Kafka topics 
are partitions and replicated across multiple servers (broker) to ensure 
scalability and fault tolerance. For MQTT sources, data is published di-
rectly from the EMQ server to Kafka topics.

5.3.3.  Data processing
The data processing step involves real-time and batch processing of 

the ingested data. Data published to Kafka topics is processed using 
Kafka Streams for real-time stream processing. Kafka Streams applica-
tions perform transformations (e.g., date formatting) and collect statis-
tics in real time. For batch processing, Apache Spark is used to handle 
tasks such as calculating daily cow movement or average temperature. 
Processed data is republished to Kafka topics and stored in PostgreSQL 
(for relational data), PostGIS (for geospatial) or Apache Cassandra (for 
NoSQL data) using Kafka connectors. Task scheduling and workflow 
management for batch processing are handled by Apache Airflow.

5.3.4.  Data visualization
The final step in the data value chain is data visualization, which 

provides actionable insights to users through a web application. The 
application supports multiple user roles:

• Farmers can access Agromet weather forecasts and view a map of 
the Wallonia region with weather stations and current conditions 
(see Fig. 8b).

• Farmers can efficiently manage their data and application permis-
sions through an intuitive, user-friendly interface. These permis-
sions are associated with various data sources, including Elevéo and 
ARSIA. The interface features a comprehensive table that clearly 
displays the status of permissions-such as validated, expired, or 
pending-across different data categories. Permissions can be man-
aged manually, by the platform, or through a connected web service, 
offering flexibility and control over data access.

• Administrators can manage stream and batch job scheduling using 
Apache Airflow (see 8c), edit user profiles, and configure system set-
tings.

• Researchers can query the database using GraphQL API to ask com-
plex questions, such as “How much milk is produced by lactating cows 
daily?” (see Fig. 8d).

The web application uses Apache ECharts for interactive charts and inte-
grates with GeoServer for geospatial data visualization. Geospatial data 
is stored and managed using PostGIS, enabling advanced mapping and 
spatial analysis.

5.4.  The WALLeSmart features

The WALLeSmart platform offers a wide range of features designed 
to meet the needs of its diverse user base. These features include:

5.4.1.  Profiles and mandates managements
WALLeSmart provides robust user profile and mandate management 

capabilities. Users can create and manage profiles with specific roles and 
permissions, ensuring that access to data and features is tailored to in-
dividual responsibilities. This feature supports multiple user roles, such 
as farmers, administrators, and researchers, each with customized ac-
cess levels and functionalities. Central to the system’s functionality is a 
mandate mechanism that enables delegated access through carefully de-
fined parameters, including principal and representative designations, 
feature-specific permissions, and temporal constraints. The profile and 
mandats management interface is intuitive and user-friendly, as shown 
in Fig. 8f. Additionally, the platform can automatically import user pro-
files using their VAT numbers, streamlining the onboarding process and 
reducing manual effort.

5.4.2.  WALLeSmart application marketplace
The WALLeSmart platform features a well-organized application 

marketplace that showcases various DSSs (see Fig. 9). The interface dis-
plays a clean layout with several key components, such as a navigation 
menu with filtering options including categories, providers, rating, and 
price range. Before accessing an application, users must submit a request 
for access. This request is reviewed by the application’s developer, who 
can either approve or reject it based on specific criteria, such as compli-
ance with licensing agreements. Once permission is granted, users can 
access the application through the “Use" menu in the WALLeSmart plat-
form. This workflow ensures secure, responsible usage of applications 
while maintaining a user-friendly experience.
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Fig. 8. WALLeSmart platform and some of its features. (a) Data permissions management interface in WALLeSmart. (b) Current weather conditions in Agromet 
application. (c) Stream and batch jobs scheduling management in AirFlow. (d) GraphQL API querying. (e) Profiles and mandates managements. (f) Data exchange 
(API) consent management.

5.4.3.  Data exchange consent
Fig. 8f illustrates the WALLeSmart data exchange management inter-

face, designed to facilitate secure and controlled data sharing between 
the platform and third-party systems. The interface enables administra-
tors to manage data exchange configurations. For instance, APIs such 

as “getMilkControl", belonging to third-party partners like RumeXperts, 
can be integrated to enable seamless data transfer. Users have the ability 
to approve or deny third-party access to their data via the WALLeSmart
platform, ensuring transparency and user consent in all data-sharing ac-
tivities.
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Fig. 9. WALLeSmart application (DSS) marketplace.

Fig. 10. External platforms management in WALLeSmart.

Fig. 11. a-Box interface in WALLeSmart, allowing centralized document access 
with tagging, partner filters, and notifications.

5.4.4.  External platforms connection
Fig. 10 illustrates the interface for managing external platform con-

nections within the WALLeSmart account settings. This feature allows 
users to link their account to a range of public and private platforms 
that manage farmer data. Platforms such as Agromet, Belcam, Djust-
Connect, and SALVE can be connected to enable secure data sharing 
and advanced integration.

Those results are shown in the speed layer through a user-friendly 
Web interface. This can help farmers having a closer look at weather 
data and timely decision making, for example, to take an estimation of 
irrigation needs and adjust irrigation schedules accordingly.

5.4.5.  a-Box
The “a-Box” is a secure and centralized electronic mailbox integrated 

into WALLeSmart. It allows farmers to access all their official documents 
in one place, regardless of the sending organization (e.g., Elevéo, Comité 
du Lait, ARSIA). Documents are delivered via a secure GraphQL API, 
ensuring confidentiality and traceability. Farmers are notified of new 
documents through Email alerts and can manage them through an in-
tuitive interface that supports tagging, favorites, and search function-
alities. The system also provides filtering by sender or category (e.g., 
Météo, Facturation, Alertes), greatly simplifying information manage-
ment (see Fig. 11).

5.5.  Adoption and user feedback

Since its launch in 2019, WALLeSmart has been in a pilot phase, 
with 30 dairy farms (323 users, including farmers and administrators) 
actively using the platform as of December 2025. The platform has pro-
cessed over 327k GraphQL API queries and supports 12 “WALLeSmart 
Ready” applications, including SALVE, Agromet, and MyFieldBook. User 
interface feedback reported here is testimonial (pilot feedback, work-
shops, informal interviews). Adoption barriers include:

• Connectivity: Slow rural internet, mitigated by offline caching and 
planned edge nodes.

• Privacy: Concerns addressed for data consent management.
• Training: Limited expertise, countered by workshops and intuitive 
interfaces.

Partnerships with WalDigiFarm, ARSIA, and Milk Committee, supported 
by the Walloon Region and Digital Agency, drive adoption through out-
reach and training.

5.6.  Performance evaluation

This section presents the experiments and results conducted to eval-
uate the effectiveness of our platform. We focus on both real-time and 
batch processing tasks, highlighting their performance and outcomes.

5.6.1.  Real-time job execution
Fig. 12a illustrates the results of a real-time job executed by the speed 

layer. The task involves calculating the average, maximum, and mini-
mum daily temperatures for the next seven days. Since the platform 
receives estimated temperature data on an hourly basis, the real-time 
layer aggregates this data to produce daily forecasts. The data stream 
is ingested into Kafka topics and processed using Kafka Streams, which 
performs transformations and computations in real time. The results are 
then republished to Kafka and stored in Cassandra. This pipeline ensures 
efficient and timely processing of real-time data.

5.6.2.  Batch job execution
Fig. 12b showcases the results of a batch job executed by the batch 

layer. The task involves calculating the average, maximum, and mini-
mum daily temperatures for the entire year of 2019 across all weather 
stations. This batch process is scheduled to run at regular intervals and 
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Fig. 12. Examples of batch and real-time jobs for scheduled one weather station. (a) Real-time job for calculating temperature forecasting for the next 7 days. (b) 
Batch job for calculating temperature history for 2019.

Fig. 13. Performance of batch and real-time job execution. (a) The execution time of a real-time job for weather data over one month. (b) The execution time of a 
batch job for dairy data over one month.

operates on the entire master dataset. Leveraging Apache Spark, the 
batch layer accelerates computation, and the results are saved to the 
database upon completion.

5.6.3.  Execution time analysis
To further evaluate the performance of our architecture, we mea-

sured the execution times for both real-time and batch jobs over an ex-
tended period.

• Real-Time Job Execution Time: Fig. 13a shows the execution time 
of the real-time job over a one-month period. The average execution 
time is consistently low, averaging 1 minute and 18 seconds per job. 
This efficiency is attributed to the lightweight and scalable nature of 
Apache Kafka Streams, which processes data streams with minimal 
latency. The reported time includes data ingestion, processing, and 
storage.

• Batch Job Execution Time: Fig. 13b depicts the execution time of 
a batch job analyzing dairy farm data. The average execution time 
is significantly longer, averaging 2 hours and 31 minutes. The curve 
exhibits an upward trend over time, reflecting the increasing volume 
of dairy data processed daily. To address this, the system can be 
scaled horizontally by adding more server nodes to distribute the 
computational load and improve performance.

5.6.4.  Resource consumption and performance trade-offs
Resource usage was measured on a 16-core Linux server (64 GB 

RAM). Table 4 shows usage for real-time (weather) and batch (dairy) 
jobs. Real-time jobs average 2 CPU cores and 4 GB RAM, prioritizing 
low latency (1 minute 18 seconds). Batch jobs use up to 8 CPU cores 
and 16 GB RAM, optimizing throughput but increasing time (2 hours 

Table 4 
Resource Consumption for WALLeSmart Jobs Abbreviations: RT 
= Real-time, CPU = CPU Cores, Mem = Memory, Disk = Stor-
age Disk, pts = data points, s = second.

 Job  Workload  CPU  Mem (GB)  Disk (GB)
 RT (Weather)  1000 pts/s  2  4  0.5
 RT (Weather)  10,000 pts/s  4  8  1.0
 Batch (Dairy)  1000 pts  4  8  2.0
 Batch (Dairy)  10,000 pts  8  16  5.0

31 minutes). Horizontal scaling mitigates bottlenecks, though it raises 
costs. Fig. 13 visualizes execution times and resource usage, highlight-
ing trade-offs.

These experiments demonstrate the platform’s ability to handle both 
real-time and batch processing tasks effectively. While real-time jobs 
exhibit low and consistent execution times, batch jobs require optimiza-
tion for scalability as data volumes grow. Future improvements include 
parallelizing computations and enhancing resource allocation to further 
reduce batch job execution times.

5.7.  Decision sems

In this section, we present several Decision Support Systems (DSS) 
that leverage the diverse data ecosystem provided by the WALLeSmart
platform. These applications illustrate the platform’s ability to integrate 
heterogeneous data sources-ranging from weather stations and live-
stock records to satellite imagery and governmental databases-to sup-
port evidence-based agricultural decision-making.
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5.7.1.  SALVE
SALVE9 is a web-based Veterinary Alert System that automates the 

analysis of livestock-related data to improve decision-making and re-
duce reaction times. It currently processes data from approximately 100 
dairy and beef farms in Wallonia, including herd composition, milk qual-
ity, and climatic conditions. Through integration with WALLeSmart’s 
real-time data streams-especially milk quality and production metrics-
SALVE leverages time-series analyses, multivariate covariation (e.g., so-
matic cell count versus urea or fatty acids), and population-level metrics 
(infection and cure rates) to assess animal health, detect early warn-
ing signs, and quantify environmental stressors. Alerts are generated 30 
to 45 days in advance of critical issues, allowing farmers to act pre-
emptively. This results in enhanced animal welfare, increased livestock 
longevity, and reduced production costs.

5.7.2.  W@llHerbe
W@llHerbe is a pasture monitoring application that exemplifies the 

platform’s Earth observation capabilities. It combines field-level grass 
growth measurements, Sentinel-2 satellite imagery, and biophysical 
growth models to estimate biomass and forage quality in near real-time. 
These data streams are processed through WALLeSmart’s infrastructure 
to generate localized, actionable insights for farmers.

Predictive models used. The W@llHerbe system relies on a multi-source 
predictive framework that combines the ModVege process-based grass 
growth model [64] with observations from the Copernicus Sentinel-1 
and Sentinel-2 missions. ModVege simulates daily grass biomass dy-
namics based on meteorological inputs, soil characteristics, vegetation 
type, and management practices such as cutting, grazing, and fertil-
isation. To enhance prediction accuracy, satellite-derived biophysical 
variables-particularly the Leaf Area Index (LAI) obtained from Sentinel-
2-are assimilated into the model to correct simulated biomass trajec-
tories. Sentinel-1 data further support the detection of mowing events. 
Field measurements (biomass, canopy height, floristic composition) are 
used to calibrate and validate both the growth model and the remote-
sensing estimations. This coupled modelling-EO approach provides spa-
tially explicit, daily biomass estimates at the parcel scale, achieving sig-
nificantly improved performance (RMSE ≈ 500 kg DM/ha) compared to 
using ModVege alone.

The tool is paired with a digitized grazing calendar and supports 
plot-level decisions such as optimized mowing schedules and feed ra-
tioning. By exploiting spatial and temporal data fusion, W@llHerbe en-
hances the sustainable use of forage resources while addressing agro-
nomic challenges posed by increased climate variability. It will be dis-
tributed through the WALLeSmart app store to facilitate user adoption 
and ensure seamless integration with other services on the platform.

5.7.3.  Digimilk
DigiMilk10 is a digital service developed by MilkBE and hosted on the 

WALLeSmart platform as part of the updated Sustainability Monitor for 
Belgium’s dairy sector. It enables farmers to easily access, manage, and 
update sustainability-related information across more than 70 initiatives 
grouped under nine thematic areas (e.g., animal welfare, environmen-
tal footprint, energy use). By leveraging automatic data ingestion from 
authoritative sources such as the Walloon Government, Arsia, and CdL, 
DigiMilk significantly reduces administrative overhead. Farmers retain 
full control of their data and can grant access to stakeholders such as 
MilkBE or dairy processors via secure, consent-based sharing mecha-
nisms. The system illustrates how WALLeSmart facilitates interoperabil-
ity and data governance across a fragmented agri-food ecosystem.

These DSS implementations underscore the platform’s flexibility and 
scalability beyond the initial use of weather and milk data. In particu-
lar, W@llHerbe demonstrates ongoing efforts in satellite-based crop and 

9 https://www.salve.vet/
10 https://www.digimilk.be/

pasture monitoring, opening avenues for future extensions in pest detec-
tion and yield forecasting. Furthermore, we clarify that the 5 GB dataset 
cited earlier corresponds to a single case study. For comparison, a single 
Sentinel-2 acquisition can reach 5GB of optical data. With an average 
of 60 acquisitions per year per target region, this results in 300GB/year 
solely from satellite imagery-highlighting the system’s capacity to pro-
cess data at a scale consistent with modern big data paradigms in agri-
culture.

5.8.  Limitations

The WALLeSmart platform, while pivotal for advancing sustainability 
in Wallonia’s agricultural sector, faces several limitations that hinder 
its adoption and performance. These challenges can be grouped into 
operational constraints at the farm level and technical hurdles within 
the platform itself.

5.8.1.  Operational constraints
Slow connectivity at farm offices, a common issue in rural areas, de-

lays data uploads and interactions with the platform, frustrating users 
who rely on timely updates. Similarly, the absence of power in fields lim-
its the deployment of IoT devices essential for real-time data collection, 
leaving gaps in on-site monitoring. This problem is compounded by a 
lack of connectivity in fields, where poor or nonexistent network cover-
age prevents seamless data transmission from sensors. Additionally, pre-
cision mapping suffers due to limited sensor availability, restricting the 
platform’s ability to generate detailed, accurate sustainability metrics-
such as soil health or emissions-that farmers need to meet sector-wide 
goals.

5.8.2.  Technical limitations
Technical limitations further challenge WALLeSmart’s performance 

as it integrates new data sources and scales across the region. Combin-
ing diverse datasets, such as weather patterns and dairy farm records, 
requires manual calibration to align heterogeneous data formats, slow-
ing processing times and introducing potential inconsistencies. Scala-
bility poses another concern, as batch processing performance declines 
when the number of connected IoT nodes increases, reducing efficiency 
as adoption grows. Additionally, the platform’s plugin system, though 
versatile, presents user adoption barriers due to its complexity, demand-
ing a level of technical proficiency that many farmers lack and requiring 
substantial training to ensure effective utilization.

6.  Conclusions and future work

Agriculture remains a vital sector, directly impacting global food se-
curity and environmental sustainability. As agricultural challenges in-
tensify due to climate variability, resource constraints, and increasing 
demand, the ability to manage complex agricultural ecosystems effi-
ciently has never been more critical. The richness of big data gener-
ated by emerging agri-technologies offers unprecedented opportunities 
to address these challenges, ensuring a secure and healthy future for 
both people and the planet.

In this paper, we introduced WALLeSmart, a novel cloud-based smart 
farming management platform designed to harness the power of big data 
and cloud computing in agriculture. We began by investigating state-of-
the-art platforms, big data and cloud architecture initiatives, which in-
formed the design of our solution. Drawing inspiration from the Lambda
architecture, we proposed a robust framework for the acquisition, pro-
cessing, storage, and visualization of real-time agricultural data. Our 
platform integrates advanced technologies for real-time stream process-
ing, such as Apache Kafka Streams, and batch processing using Apache 
Spark, ensuring scalability and efficiency.

An initial prototype of the platform was developed and tested with 
30 dairy farms and 32 weather stations in the Wallonia region of Bel-
gium. The backend demonstrated robust data management capabilities, 
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while the frontend received positive testimonial feedback for its user-
friendly interface and intuitive design; a formal usability assessment re-
mains future work. We also presented examples of batch and real-time 
job execution, showcasing the platform’s ability to handle diverse data 
processing tasks effectively.

While this study presents a scalable smart farming solution, sev-
eral promising directions for future research remain. We plan to de-
velop and integrate more decision-making applications into the plat-
form, further enhancing its ability to provide actionable insights to 
farmers. The development of mobile applications for on-the-go access 
is also in the pipeline. Integrating advanced AI/ML techniques will fur-
ther enhance predictive analytics and optimize resource management. 
Similarly, combining edge computing with cloud systems could enable 
real-time decision-making, crucial for time-sensitive operations. Further 
exploration of geospatial analytics, incorporating satellite and drone im-
agery, may yield more precise agricultural insights. Additionally, es-
tablishing interoperability frameworks and standardizing data exchange 
protocols can foster greater collaboration across platforms. Finally, ad-
vancing climate-resilient farming systems is critical to tackling the chal-
lenges posed by climate change and ensuring agricultural sustainability. 
These avenues highlight the immense potential for further innovation in 
smart farming systems to support global food security and environmen-
tal stewardship.
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