inforTech

UMONS RESEARCH INSTITUTE
FOR INFORMATION TECHNOLOGY
AND COMPUTER SCIENCE

odel-Based Testin

Agile and defensive MONS
__ development

Many “agile” development techniques provide
lightweight approaches to facilitate change and
increase reliability of software

e Quality assessment (e.g. bad smells and refactoring)
e Defensive programming (e.g. design by contract)

e Test-driven development (e.g. unit testing and
behavior-driven development)

e Dynamic verification of behavioural properties

We propose to raise these techniques to the
level of executable (statechart) models

Tom Mens — SATTOSE 2016 — Bergen, Norway = July 2016

Future work MONS

Facilitate evolution of behavioural design models
— Detecting model smells

— Model refactoring
* E.g. splitting up a complex statechart into multiple statecharts

— Semantic variation
e Detecting if statechart is compatible with alternative semantics
— Variability analysis

e Consider product families (e.g. different microwave variants) and
analyse commonalities and variabilities in their statechart models

— Design space exploration

* Analyse pros and cons of syntactically different, but semantically
similar statecharts

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Agile and defensive MONS
— modelling

e Advanced model testing (focus of this talk)
e Contract-driven modeling

e Test-driven modeling (unit testing and BDD for
statecharts)

e Dynamic verification (property statecharts)

e Future work

e Model quality assessment (model smells)

* Model quality improvement (model refactoring)
e Model checking

e Model variability analysis

e Design space exploration

e Model composition and scalability

e Semantic variation
Tom Mens — SATTOSE 2016 — Bergen, Norway = July 2016

Running example ~ UMONS

Microwave oven

<<component>> gl
Input
<<component>> gl <<component>> gl <<component>> gl
<<component>> El Power Timer Cooking
e ey s Giimeorert>
opened() inc() dec() stop() . 9
closed() dec() reset() item_placed()
tick() item_removed()
<<component>> gl
Controller
-power : integer
-timer : integer
<<component>> gl <<component>> gl <<component>> gl <<component>> El <<component>> gl
Lamp Heating Display Turntable Beeper
switch_on() set(power : integer) clear() start() beep(d : integer)
switch_off() on() set(i : integer) stop()
off() set(s : string)

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Running example UMONS

Use case name : Cook Food
Summary : User puts food in oven, and oven cooks food.
Assumptions : Oven has been configured with weight sensor and turntable.

Preconditions : Oven is closed and empty.
Postconditions : Oven has cooked the food. Oven is closed and empty.
Basic course of action :

1. User opens door.

2. User puts food in oven and closes door.

3. User sets cooking time via control panel.

4. User presses start button.

5. Magnetron indicator light switches on. Magnetron starts cooking food.

6. Remaining cooking time is displayed continuously.

7. System notifies user when cooking time has elapsed. Magnetron indicator
light switches off.

8. User opens door, removes food from oven, and closes door.
9. System clears display and resets default values for cooking.

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Running example UMONS

Use case name : Cook Food

Alternate courses:

1a : User presses start button while door is open. System does not start
cooking.

3a : User presses start button while no food is in the oven. System does not
start cooking.

3b : User presses start button while cooking time is zero. System does not
start cooking.

5a : User opens door during cooking. Magnetron stops and indicator light
turns off. User removes food, closes door and presses Stop. Go to step 9.

5b : User opens door during cooking. Magnetron stops and indicator light
turns off. User closes door and presses Start to resume cooking. Go to step
5.

5c : User presses Stop during cooking. Magnetron stops and indicator light
turns off. User presses Start to resume cooking. Go to step 5.

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Running example ~ UMONS

Université de Mons

. Microwave
Microwave oven INPUT BUTTONS | - SENSORS COMPONENTS
. power + | tick | Display
TIMER: 5
| ol | . place item | Lamp
| power 0 | . remove item | on
. Heating
| el | . open door | 700
| e | . close door | o
| timer 0 | Beeper
3
| start | Turntable
| stop | on
Controller
M.power: 700
M.timer: 5
controller
door closed

closed with item
cooking mode

Tom Mens — SATTOSE

controller
entry / power = DEFAULT; timer = 0
cooking_stop / power = DEFAULT; timer = 0
door closed | door opened
entry / raise lamp_or
exit / raise lamp_off
@ > closed without item | door_opened ol opened without item
-@
<
door_closed
closed with item item| placed

exit / raise display_clear

timer_inc / timer += 1; raise display_set:timer
timer_dec / timer -= 1; raise display_set:timer
timer_reset / timer = 0; raise display_set:time

item_rémoved

door_opened ' gphened with item |
———

door_closed

Oven
power_reset / power = DEFAULT; raise display_set:powe

power_inc / power +=1; raise display_set:power
power_dec / power -=1; raise display_set:power

controller s —

not ready ready |

statechart) | °

[timer==0] / cooking_start
raise beep:3
raise display |set:DONE
cooking mode

entry / raise heating_set:power; raise heating_on,
raise lamp_on; raise turntable_start
exit / raise heating_off;
raise lamp_off; raise turntable_stop —‘

? tick / timer -= 1; raise display_set:timer

Software-controlled systems MONS

are difficult to develop

Control software can be very complex

— Continuous interaction between software and
hardware

— Continuous interaction with external world and
users

— Must respect functional requirements

* Oven should cook food placed in oven
with specified power and duration

— Must respect non-functional requirements >
* Oven should stop sending microwaves : /(

/(

if doors are opened 1
Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016 ’

S, Contract-driven UMONS

S
e st = S

=P deveIoEment

* Add precise and dynamically verifiable specifications
to executable software components (e.g., methods,
functions, classes)

 Based on Bertrand Meyer’s “Design by Contract”

* The software compoment should respect a contract,
composed of

— preconditions
— postconditions

— [nvariants

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

¢ Contract driven UMONS

== development

Example
(taken from www.eiffel.com/values/design-by-contract/ introduction)

class DICTIONARY [ELEMENT]
feature
put (x : ELEMENT; key : STRING) is
require
count <= capacity
not key.empty
ensure
has (x)
item (key) = x
count = old count + 1
end
invariant
0 <= count
count <= capacity

end _ Duly 2016

CONTRAgy

TERMS OF AGREEMENT

&

T DY So

=

&>

&y
SIGN HERE " y

s st o S e

Contracts for
microwave
controller

Contract-driven

modelling .

controller

entry / power = DEFAULT; timer = 0
cooking_stop / power = DEFAULT; timer = (

context controller
inv: not sent(heating_on) or active(cooking mode)
inv: timer>=0
inv: 0 < power <= MAXPOWER

do

v

™

door_opened opened without item

' ot

.—P closed without item |

-
L o

door_closed

closed with item item| placed

exit / raise display_clear

timer_inc / timer += 1; raise display_set:timer
timer_dec / timer -= 1; raise display_set:timer
timer_reset / timer = 0; raise display_set:time

item_rémoved

door_opened
—_—

opened with item |

door_closed
program mode
power_reset / power = DEFAULT; raise display_set:powe
power_inc / power +=1; raise display_set:power
power_dec / power -=1; raise display_set:power

o |
[[timer>0] 4
. not ready | mendy)
VU
T [timer == 0] context ready —

context cooking mode
pre: timer>0
inv: timer >=0
inv: power == power@pre

o . ise heating_off;
post: received(door_opened) or timer==0 kai“ lamp_off; raise turntable_stop

inv: timer >0

4

cooking_start T

JONE
cooking mode

aise heating_set:power; raise heating_on,
raise lamp_on; raise turntable_start

h

tick / timer -= 1; raise display_set:timer

*

Telling stories

Story(
event door opened,
event item placed,
event door closed,
event timer_dec
).tell(interpreter)

Tom Mens — SATTOSE 2016 — b VOrway — July 2016

14

nnnnnnnnnnnnn

EEEEEEEE

v Example of failing

contract

InvariantError
State: controller
Assertion: timer >=0
Configuration:

[controller, door closed, closed with item,
program mode, not ready]

Step:

event timer_dec
internal transition on closed with item

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

15

=& Solution to failing
contract

Add guards to the actions associated to the events
that increment and decrement power and timer

timer_dec [timer>0] / timer -=1

power_inc [power<MAXPOWER] / power +=1
power dec [power>1] / power -=1

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016 16

& Test-driven
development

test negative_timer:

Story(door opened, item_ placed, door_closed, timer_dec).tell(statechart)
statechart.execute()
assertEqual(State(controller).timer, 0)

test no_heating when _door _is_not closed:
Story(door opened, item_placed, timer_inc, cooking start).tell(statechart)
statechart.execute()

assertFalse active(cooking mode)

assertFalse sent(heating_on)

Without guards on
timer_dec event

Tom Mens — SATT

17

& Test-driven
development

test negative_timer:

Story(door opened, item_ placed, door_closed, timer_dec).tell(statechart)
statechart.execute()
assertEqual(State(controller).timer, 0)

test no_heating when _door _is_not closed:
Story(door opened, item_placed, timer_inc, cooking start).tell(statechart)
statechart.execute()
assertFalse active(cooking mode)

assertFalse sent(heating_on)

test negative_timer ... ok
test no heating when door is not closed ... ok

With guards on
timer_dec event

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

18

Behaviour-Driven MONS
Development -

* Include customer test practices into TDD

* Encourage collaboration between developers, QA,
and non- technical stakeholders (domain experts,
project managers, users)

* Use a domain-specific (non-technical) language to
specify how the code should behave
— By defining feature specifications and scenarios

 Reduces the technical gap between developers and
other project stakeholders

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Behaviour-driven UMONS
d eve | O m e nt ~ Université de Mons

Software behaviour can be described in a domain-specific
(non-technical) language suited to non-developers

— using the Gherkin language
— Supported by Cucumber framework in many languages

Given- Set of
preconditions

BDD

/

N

When-When a Then-Some
event occurs testable outcome
20

Given- Set of
preconditions

Behaviour-driven UMONS
d eve | O m e nt ~ Université de Mons

Example
(taken from docs.behat.org/en/v2.5/guides/1.gherkin.html)

Feature: Serve coffee
In order to earn money customers should be able to buy coffee

Scenario: Buy last coffee
Given there is 1 coffee left in the machine
And | have deposited 1 dollar
When | press the coffee button
Then | should be served a coffee

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016 51

Given- Set of
preconditions

| Behaviour-driven

BDD

When-When a Then-Some d eve I O I I l e I It
event occurs testable outcome

Feature: No heating if door is opened First variant.
Scenario: No heating when nothing is done
Given | do nothing Still refers to specific
And | execute the statechart details of the statechart
Then state cooking_ mode should not be active (state and event names)
And event heating _on should not be fired

Scenario: No heating when item is placed
Given | send event door_opened
When | send event item ='~2~-
Then event heating_on 1 feature passed, O failed, O skipped
Scenario: No heating wh 3 scenarios passed, O failed, O skipped
Given | send event doo
And | send event item __
When | send event doo
Then event heating_on

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016 22

Given- Set of
preconditions

Behaviour-driven
development

Feature: No heating if door is opened
Scenario: No heating when nothing is done
When | power up the microwave

Then heating should not be on Second variant.
Scenario: No heating when item is placed
. Much closer to natural language.
Given | open the door All statecharts-specific concepts
When | place an item are abstracted away.

Then heating should not turn on
Scenario: No heating when door is not closed
Given | open the door
And | place an item
When | close the door
Then heating should not turn on

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Coverage analysis

State coverage: 81.82%

Entered states:

controller (3) | door closed (4) |door opened (2) |
closed without item (3) | opened without item (2) |
opened with item (2) | closed with item (1) |

not ready (1) | program mode (1)

Remaining states:

cooking mode | ready

Transition coverage: 16.67%

Processed transitions:

opened without item [item_placed] -> opened with item (2)
closed without item [door_opened] -> opened without item (2)
opened with item [door_closed] -> closed with item (1)

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Property statecharts UMONS

Define and verify behavioural properties by
1. instrumenting the statechart interpreter

2. intercepting specific actions of statechart being
executed
e entered(<NAME OF STATE>)

exited(<NAME OF STATE>)

consumed(<NAME OF EVENT>)

sent(<NAME OF EVENT>)

3. executing a property statechart that verifies a
desirable or undesirable property

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Property statecharts

<<property statechart>>
Heating must stop when door is opened

‘_> heating sent(heating_off) heating

is off J | is on
sent(heating_on)

consumed(door_opgned)

sent(heating_off)

©4 heating is on while
consumed(tick) door is opened

failure

<<property statechart>>
Heating does not start if door is opened

consumed(door_opened)

door is | consumed(door_closed) door is
closed

failure

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Tool support UMONS

Sismic = Sismic Interactive Statechart Model
Interpreter and Checker
— Python library available on Python Package Index
(PyPI)
— released under open source licence LGPL v3

— Source code
 github.com/AlexandreDecan/sismic

— Documentation
e sismic.readthedocs.io

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Tool support UMONS

Sismic supports all aforementioned concepts
— Statechart execution
— Design by contract
— Unit testing
— BDD
— Coverage analysis
— Property statecharts
— And more...

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

file format N

Representing

a statechart root state:

name: controller

as a YAML file contract:

- always: not sent('heating_on') or active('cooking mode')

- always: timer >=0

- always: 0 < power <= MAXPOWER
initial: door closed
on entry: |

power = DEFAULT

timer=0
transitions:

- event: input_cooking_stop

action: |
timer=0

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Sismic MONS
file format N

states:

Representing - name: door closed
initial: closed without item
a statechart states:
- - name: closed without item
ds d YAML ﬁle transitions:

- event: door_opened
target: opened without item
- name: closed with item
initial: program mode
on exit: send('display_clear')
transitions:
- event: door_opened
target: opened with item
- event: input_timer_inc
action: |
timer=timer + 1
send('display_set', text="TIMER: %d' % timer)

Tom Mens —1{...

Sismic UMONS
Executing statecharts -

Stepwise execution of statechart behaviour

from sismic.io import import_from_yaml|

from sismic.interpreter import Interpreter

from sismic.model import Event

with open('microwave.yaml') as f:
statechart = import_from_yamil(f)

interpreter = Interpreter(statechart)

interpreter.execute_once()

MacroStep(None, [], >['controller’, 'door closed', 'closed without item'], <[])
interpreter.queue(Event(’'door_opened’))
interpreter.execute_once()

MacroStep(Event(door_opened), [Transition(closed without item, opened without

item, door_opened)], >['door opened’, 'opened without item'], <['closed without

item’, 'door closed'])
Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

> Sismic
> ¢ UMONS

ii Running StOrieS Université de Mons

from sismic.stories import Story

story = Story([Event('door_opened'), Event('item placed'), Event('door_closed'),
Event(timer_inc'), Event(’cooking_start'), Event(’tick')])

trace = story.tell(interpreter)

MacroStep(None, [], >['controller’, 'door closed’, 'closed without item'], <[]),

MacroStep(Event(door_opened), [Transition(closed without item, opened without item,

door_opened)], >['door opened’, 'opened without item'], <['closed without item’, 'door
closed’]),

MacroStep(InternalEvent(lamp _on), [], >[], <[]),

MacroStep(Event(item_placed), [Transition(opened without item, opened with item,
item_placed)], >['opened with item'], <['opened without item’]),

MacroStep(Event(door closed), [Transition(opened with item, closed with item,
door _closed)], >['door closed’, 'closed with item’, 'orogram mode’, 'not ready’],
<['opened with item', 'door opened’]),

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016 3

g/ . .
& Sismic UMONS
- i Running StOrieS Université de Mons

MacroStep(InternalEvent(lamp_off), [], >[], <[]),

MacroStep(Event(timer _inc), [Transition(closed with item, None, timer_inc)], >[], <[]),
MacroStep(None, [Transition(not ready, ready, None)], >['ready’], <['not ready’]),
MacroStep(InternalEvent(display_set, text=TIMER: 1), [], >[], <[]),
MacroStep(Event(cooking_start), [Transition(ready, cooking mode, cooking_start)], >['cooking mode’],
<['ready’, 'orogram mode’]),

MacroStep(InternalEvent(heating _set_power, power=900), [], >[], <[]),
MacroStep(InternalEvent(heating on), [], >[], <[]),
MacroStep(InternalEvent(lamp_on), [], >[], <[]),
MacroStep(InternalEvent(turntable _start), [], >[], <[]),

MacroStep(Event(tick), [Transition(cooking mode, None, tick)], >[], <[]),

MacroStep(None, [Transition(cooking mode, program mode, None)], >['program mode’, 'not ready’],
<['cooking mode']),

MacroStep(InternalEvent(display_set, text=REMAINING: 0), [], >[], <[]),
MacroStep(InternalEvent(heating_off), [], >[], <[]),

MacroStep(InternalEvent(lamp_off), [], >[], <[]), MacroStep(InternalEvent(turntable_stop), [], >[], <[]),
MacroStep(InternalEvent(beep, number=3), [], >[], <[]),

MacroStep(InternalEvent(display _set, text=DONE), [], >[], <[])]

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016 33

% Sismic MONS
o unit testing B

e Using python’s built-in unittest module
$ python -m unittest heating_unittest.py —v

def test_ no_heating_ when_nothing is_done(self):
self.interpreter.execute()
self.assertFalse(self.is_heating())

def test_no_heating_ when_item_is_placed(self):
events = map(Event, ['door_opened’, 'item_placed'])
story = Story(events)
story.tell(self.interpreter)
self.interpreter.execute()
self.assertFalse(self.is_heating())

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Given- Set of
preconditions

[] []
' S1Smic UMONS
BDD
/ AN B D D ~ Université de Mons

e Using Python’s behave module
S sismic-behave microwave.yaml --features heating.feature

from behave import given, when, then

from sismic.io import import_from_yaml|

from sismic.interpreter import Interpreter

from sismic.interpreter.helpers import log_trace

from sismic.model import Event

@given('l execute the statechart’)

def execute_statechart(context):
_execute_statechart(context, force_execution=True)

@then('state {state_name} should be active')

def state_is_active(context, state_name):
assert state_name in context._statechart.states, 'Unknown state {}'.format(state_name)

assert state_name in context._interpreter.configuration, 'State {} is not
active'.format(state_name)

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

35

Sismic MONS
Regression testing -

When an error is encountered (e.g. due to failing
contract or bug), story from_trace can
reproduce the scenario of the observed

behavior, which can be used as the basis of a
regression test.

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Sismic MONS
Communicating statecharts

e Statecharts can communicate with other
statecharts or external components (e.g. a user
interface) by sending/receiving events

* Realised by dynamically binding their
statechart interpreters

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Sismic MONS
Communicating statecharts

Example for some elevator statechart: Events sent by buttons are
propagated to elevator

elevator = Interpreter(import_from_yaml(open(‘elevator.yaml')))
buttons = Interpreter(import_from_yaml(open(‘buttons.yaml')))
buttons.bind(elevator)
buttons.queue(Event(’floor 2 pushed'))
buttons.execute()
Awaiting events in buttons: [Event(button_2 pushed)]
Awaiting events in buttons: [InternalEvent(floorSelected, floor=2)]
Awaiting events in elevator: [Event(floorSelected, floor=2)]
elevator.execute()
print('Current floor:', elevator.context.get('current'))

Current floor: 2
Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Sismic MONS
Other features -

Other semantic variants of statecharts
— outer-first instead of inner-first semantics;
— changing priority of events

Different ways of dealing with time
— Real time versus simulated time

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Conclusion UMONS

We support various ways to test statechart
models

— Using contracts
— Using unit tests

— Using domain-specific features and scenarios
(BDD)

— Using property statecharts

Implemented in Sismic, an open source Python
library for interpreting statecharts

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Future work UMONS

* More advanced testing techniques

— Automatic generation of contracts based on scenario
specifications

— Automatic generation of tests based on contract
specifications

— Mutation testing

— Support for continuous integration

* Explore/compare with (dynamic?) model checking
techniques
— Based on temporal logics, labeled transition systems, ...
— Using Dwyer’s specification patterns

 And many more ...

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

Future work UMONS

Facilitate statechart evolution
— Detecting model smells

— Model refactoring
E.g. splitting up a complex statechart into multiple statecharts

— Semantic variation
Detecting if statechart is compatible with alternative semantics
— Variability analysis

Consider product families (e.g. different microwave variants) and
analyse commonalities and variabilities in their statechart models

— Design space exploration

Analyse pros and cons of syntactically different, but semantically
similar statecharts

Tom Mens — SATTOSE 2016 — Bergen, Norway — July 2016

