
Model-Based	Tes,ng	
of	Executable	Statecharts	

Tom	Mens,	Alexandre	Decan	
So-ware	Engineering	Lab	

University	of	Mons,	Belgium	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Many	“agile”	development	techniques	provide	
lightweight	approaches	to	facilitate	change	and	
increase	reliability	of	so-ware	

•  Quality	assessment	(e.g.	bad	smells	and	refactoring)	
•  Defensive	programming	(e.g.	design	by	contract)	
•  Test-driven	development	(e.g.	unit	tesSng	and	
behavior-driven	development)	

•  Dynamic	verificaSon	of	behavioural	properSes	

We	propose	to	raise	these	techniques	to	the	
level	of	executable	(statechart)	models	

Agile	and	defensive	
development	

2	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Future	work	
(spoiler)	

Facilitate	evoluSon	of	behavioural	design	models	
– DetecSng	model	smells	
– Model	refactoring	

•  E.g.	spliXng	up	a	complex	statechart	into	mulSple	statecharts	
–  SemanSc	variaSon	

•  DetecSng	if	statechart	is	compaSble	with	alternaSve	semanScs	
–  Variability	analysis	

•  Consider	product	families	(e.g.	different	microwave	variants)	and	
analyse	commonaliSes	and	variabiliSes	in	their	statechart	models	

– Design	space	exploraSon	
•  Analyse	pros	and	cons	of	syntacScally	different,	but	semanScally	
similar	statecharts	

3	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

• Advanced	model	tesSng	(focus	of	this	talk)	
•  Contract-driven	modeling	
•  Test-driven	modeling	(unit	tesSng	and	BDD	for	
statecharts)	

•  Dynamic	verificaSon	(property	statecharts)	

• Future	work	
•  Model	quality	assessment	(model	smells)	
•  Model	quality	improvement	(model	refactoring)	
•  Model	checking	
•  Model	variability	analysis	
•  Design	space	exploraSon	
•  Model	composiSon	and	scalability	
•  SemanSc	variaSon	

Agile	and	defensive	
modelling	

4	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Running	example	

Microwave	oven	
<<component>>

Input

<<component>>
Door

 opened()
 closed()

<<component>>
Control ler

-power : integer
-timer : integer

<<component>>
Lamp

 switch_on()
 switch_off()

<<component>>
Power

 reset()
 inc()
 dec()

<<component>>
Heating

 set(power : integer)
 on()
 off()

<<component>>
Turntable

 start()
 stop()

<<component>>
Timer

 inc()
 dec()
 reset()
 tick()

<<component>>
Display

 clear()
 set(i : integer)
 set(s : string)

<<component>>
Cooking

 start()
 stop()

<<component>>
WeightSensor

 item_placed()
 item_removed()

 beep(d : integer)

<<component>>
Beeper

Visual Paradigm Standard Edition(University of Mons)

5	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Running	example	

Use	case	name	:	Cook	Food	
Summary	:	User	puts	food	in	oven,	and	oven	cooks	food.	
Assump,ons	:	Oven	has	been	configured	with	weight	sensor	and	turntable.	
Precondi,ons	:	Oven	is	closed	and	empty.	
Postcondi,ons	:	Oven	has	cooked	the	food.	Oven	is	closed	and	empty.		
Basic	course	of	ac,on	:		
1.	User	opens	door.	
2.	User	puts	food	in	oven	and	closes	door.	
3.	User	sets	cooking	Sme	via	control	panel.	
4.	User	presses	start	bubon.	
5.	Magnetron	indicator	light	switches	on.	Magnetron	starts	cooking	food.		
6.	Remaining	cooking	Sme	is	displayed	conSnuously.	
7.	System	noSfies	user	when	cooking	Sme	has	elapsed.	Magnetron	indicator	
light	switches	off.	
8.	User	opens	door,	removes	food	from	oven,	and	closes	door.	
9.	System	clears	display	and	resets	default	values	for	cooking.		

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Running	example	

Use	case	name	:	Cook	Food	
	
Alternate	courses:		
1a	:	User	presses	start	bubon	while	door	is	open.	System	does	not	start	
cooking.	
3a	:	User	presses	start	bubon	while	no	food	is	in	the	oven.	System	does	not	
start	cooking.		
3b	:	User	presses	start	bubon	while	cooking	Sme	is	zero.	System	does	not	
start	cooking.	
5a	:	User	opens	door	during	cooking.	Magnetron	stops	and	indicator	light	
turns	off.	User	removes	food,	closes	door	and	presses	Stop.	Go	to	step	9.		
5b	:	User	opens	door	during	cooking.	Magnetron	stops	and	indicator	light	
turns	off.	User	closes	door	and	presses	Start	to	resume	cooking.	Go	to	step	
5.		
5c	:	User	presses	Stop	during	cooking.	Magnetron	stops	and	indicator	light	
turns	off.	User	presses	Start	to	resume	cooking.	Go	to	step	5.		

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Running	example	

Microwave	oven	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Running	example	

Oven	
controller	
statechart	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

So-ware-controlled	systems	
are	difficult	to	develop	

Control	so-ware	can	be	very	complex	
– ConSnuous	interacSon	between	so-ware	and	
hardware	

– ConSnuous	interacSon	with	external	world	and	
users	

– Must	respect	func8onal	requirements	
•  Oven	should	cook	food	placed	in	oven	
with	specified	power	and	duraSon	

– Must	respect	non-func8onal	requirements		
•  Oven	should	stop	sending	microwaves	
if	doors	are	opened	

10	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

•  Add	precise	and	dynamically	verifiable	specificaSons	
to	executable	so-ware	components	(e.g.,	methods,	
funcSons,	classes)	

•  Based	on	Bertrand	Meyer’s	“Design	by	Contract”	
•  The	so-ware	compoment	should	respect	a	contract,	
composed	of	
–  precondi8ons	
–  postcondi8ons	
–  invariants	

Contract-driven	
development	

11	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Example	
(taken	from	www.eiffel.com/values/design-by-contract/	introducSon)	

Contract-driven	
development	

class	DICTIONARY	[ELEMENT]	
		feature		
			put	(x	:	ELEMENT;	key	:	STRING)	is	
			require		
					count	<=	capacity		
					not	key.empty	
			ensure	
					has	(x)	
					item	(key)	=	x	
					count	=	old	count	+	1		
		end		
		invariant		
				0	<=	count		
				count	<=	capacity	
		end	

12	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Contract-driven	
modelling	

Contracts	for	
microwave	
controller	

context	controller	
		inv:	not	sent(heaSng_on)	or	acSve(cooking	mode)	
		inv:	Smer>=0	
		inv:	0	<	power	<=	MAXPOWER	

context	cooking	mode	
		pre:	Smer>0	
		inv:	Smer	>=	0	
		inv:	power	==	power@pre	
		post:	received(door_opened)	or	Smer==0	

context	ready	
		inv:	Smer	>	0	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Telling	stories	

Story(
		event	door_opened,	
		event	item_placed,	
		event	door_closed,	
		event	Smer_dec	
).tell(interpreter)	

14	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Example	of	failing	
contract	

InvariantError	
		State:	controller	
		AsserSon:	Smer	>=	0	
		ConfiguraSon:	
				[controller,	door	closed,	closed	with	item,	
					program	mode,	not	ready]	
		Step:	
				event	Smer_dec	
				internal	transiSon	on	closed	with	item	

15	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

SoluSon	to	failing	
contract	

Add	guards	to	the	acSons	associated	to	the	events	
that	increment	and	decrement	power	and	Smer	

	
Smer_dec	[Smer>0]	/	Smer	-=	1	
	
power_inc	[power<MAXPOWER]	/	power	+=	1		
power_dec	[power>1]	/	power	-=	1	

16	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Test-driven	
development	

					test	negaSve_Smer:	
								Story(door_opened,	item_placed,	door_closed,	Smer_dec).tell(statechart)	
								statechart.execute()	
								assertEqual(State(controller).Smer,	0)	
				test	no_hea8ng_when_door_is_not_closed:	
								Story(door_opened,	item_placed,	Smer_inc,	cooking_start).tell(statechart)	
								statechart.execute()	
								assertFalse	acSve(cooking	mode)	
								assertFalse	sent(heaSng_on)	
	
	

test	negaSve_Smer	...	FAIL	
test	no_heaSng_when_door_is_not_closed	…	ok	
===	
AsserSonError:	-1	!=	0	
--	
Ran	2	tests	in	0.005s	
FAILED	(failures=1)	

Without	guards	on	
	Smer_dec	event	

17	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Test-driven	
development	

					test	negaSve_Smer:	
								Story(door_opened,	item_placed,	door_closed,	Smer_dec).tell(statechart)	
								statechart.execute()	
								assertEqual(State(controller).Smer,	0)	
				test	no_hea8ng_when_door_is_not_closed:	
								Story(door_opened,	item_placed,	Smer_inc,	cooking_start).tell(statechart)	
								statechart.execute()	
								assertFalse	acSve(cooking	mode)	
								assertFalse	sent(heaSng_on)	
	
	

18	

test	negaSve_Smer	...	ok	
test	no_heaSng_when_door_is_not_closed	…	ok	
--	
Ran	2	tests	in	0.005s	
OK	

With	guards	on	
	Smer_dec	event	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

•  Include	customer	test	pracSces	into	TDD	
•  Encourage	collaboraSon	between	developers,	QA,	
and	non-	technical	stakeholders	(domain	experts,	
project	managers,	users)	

•  Use	a	domain-specific	(non-technical)	language	to	
specify	how	the	code	should	behave	
–  By	defining	feature	specificaSons	and	scenarios	

•  Reduces	the	technical	gap	between	developers	and	
other	project	stakeholders	

Behaviour-Driven	
Development	

19	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

So-ware	behaviour	can	be	described	in	a	domain-specific	
(non-technical)	language	suited	to	non-developers	
–  using	the	Gherkin	language	
–  Supported	by	Cucumber	framework	in	many	languages	

Behaviour-driven	
development	

20	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Example	
(taken	from	docs.behat.org/en/v2.5/guides/1.gherkin.html)	

Behaviour-driven	
development	

Feature:	Serve	coffee	
		In	order	to	earn	money	customers	should	be	able	to	buy	coffee	
	
		Scenario:	Buy	last	coffee	
				Given	there	is	1	coffee	le-	in	the	machine	
				And	I	have	deposited	1	dollar	
				When	I	press	the	coffee	bubon	
				Then	I	should	be	served	a	coffee	

21	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Behaviour-driven	
development	

Feature:	No	hea8ng	if	door	is	opened	
		Scenario:	No	hea8ng	when	nothing	is	done	
				Given	I	do	nothing	
				And	I	execute	the	statechart	
				Then	state	cooking_mode	should	not	be	acSve	
				And	event	heaSng_on	should	not	be	fired	
		Scenario:	No	hea8ng	when	item	is	placed	
				Given	I	send	event	door_opened	
				When	I	send	event	item_placed	
				Then	event	heaSng_on	should	not	be	fired	
		Scenario:	No	hea8ng	when	door	is	not	closed	
				Given	I	send	event	door_opened	
				And	I	send	event	item_placed	
				When	I	send	event	door_closed	
				Then	event	heaSng_on	should	not	be	fired		

First	variant.	
	

SSll	refers	to	specific	
details	of	the	statechart	
(state	and	event	names)	

	

22	

1	feature	passed,	0	failed,	0	skipped	
3	scenarios	passed,	0	failed,	0	skipped	
11	steps	passed,	0	failed,	0	skipped,	0	undefined	
	
Took	0m0.005s	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Behaviour-driven	
development	

Feature:	No	hea8ng	if	door	is	opened	
		Scenario:	No	hea8ng	when	nothing	is	done	
				When	I	power	up	the	microwave	
				Then	heaSng	should	not	be	on	
		Scenario:	No	hea8ng	when	item	is	placed	
				Given	I	open	the	door	
				When	I	place	an	item	
				Then	heaSng	should	not	turn	on	
		Scenario:	No	hea8ng	when	door	is	not	closed	
				Given	I	open	the	door	
				And	I	place	an	item	
				When	I	close	the	door	
				Then	heaSng	should	not	turn	on	

Second	variant.	
	

Much	closer	to	natural	language.	
All	statecharts-specific	concepts	

are	abstracted	away.	

23	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Coverage	analysis	

State	coverage:	81.82%	
	Entered	states:	
		controller	(3)	|	door	closed	(4)	|door	opened	(2)	|	
		closed	without	item	(3)	|	opened	without	item	(2)	|	
		opened	with	item	(2)	|	closed	with	item	(1)	|	
		not	ready	(1)	|	program	mode	(1)	
	Remaining	states:	
		cooking	mode	|	ready	
	
Transi,on	coverage:	16.67%	
	Processed	transi,ons:	
		opened	without	item	[item_placed]	->	opened	with	item	(2)	
		closed	without	item	[door_opened]	->	opened	without	item	(2)	
		opened	with	item	[door_closed]	->	closed	with	item	(1)	

24	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Property	statecharts	

Define	and	verify	behavioural	properSes	by	
1.  instrumenSng	the	statechart	interpreter	
2.  intercepSng	specific	acSons	of	statechart	being	

executed	
•  entered(<NAME	OF	STATE>)	
•  exited(<NAME	OF	STATE>)	
•  consumed(<NAME	OF	EVENT>)	
•  sent(<NAME	OF	EVENT>)	
•  …	

3.  execuSng	a	property	statechart	that	verifies	a	
desirable	or	undesirable	property	

25	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Property	statecharts	

<<property statechart>>
Heating does not start if door is opened

door is
closed

door is
opened

consumed(door_closed)

consumed(door_opened)

failure

sent(heating_on)

<<property statechart>>
Heating must stop when door is opened

heating
is off

heating
is on

sent(heating_off)

sent(heating_on)

heating is on while
door is opened

failure

consumed(door_opened)

consumed(tick)

sent(heating_off)

26	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Tool	support	

Sismic	=	Sismic	InteracSve	Statechart	Model	
Interpreter	and	Checker	
– Python	library	available	on	Python	Package	Index	
(PyPI)	

–  released	under	open	source	licence	LGPL	v3	
– Source	code	
•  github.com/AlexandreDecan/sismic	

– DocumentaSon	
•  sismic.readthedocs.io	

27	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Tool	support	

Sismic	supports	all	aforemenSoned	concepts	
– Statechart	execuSon	
– Design	by	contract	
– Unit	tesSng	
– BDD	
– Coverage	analysis	
– Property	statecharts	
– And	more…	

28	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
file	format	

RepresenSng	
a	statechart	
as	a	YAML	file	

		root	state:	
				name:	controller	
				contract:	
						-	always:	not	sent('heaSng_on')	or	acSve('cooking	mode')	
						-	always:	Smer	>=	0	
						-	always:	0	<	power	<=	MAXPOWER	
				ini,al:	door	closed	
				on	entry:	|	
						power	=	DEFAULT	
						Smer	=	0	
				transi,ons:	
						-	event:	input_cooking_stop	
								acSon:	|	
										Smer	=	0	

29	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
file	format	

RepresenSng	
a	statechart	
as	a	YAML	file	

				states:	
						-	name:	door	closed	
								ini,al:	closed	without	item	
								states:	
										-	name:	closed	without	item	
												transi,ons:	
														-	event:	door_opened	
																target:	opened	without	item	
										-	name:	closed	with	item	
												ini,al:	program	mode	
												on	exit:	send('display_clear')	
												transi,ons:	
														-	event:	door_opened	
																target:	opened	with	item	
														-	event:	input_Smer_inc	
																ac,on:	|	
																		Smer	=	Smer	+	1	
																		send('display_set',	text='TIMER:	%d'	%	Smer)	
…	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
ExecuSng	statecharts	

Stepwise	execu8on	of	statechart	behaviour	
from	sismic.io	import	import_from_yaml	

from	sismic.interpreter	import	Interpreter	
from	sismic.model	import	Event	

with	open('microwave.yaml')	as	f:	
				statechart	=	import_from_yaml(f)	

interpreter	=	Interpreter(statechart)	

interpreter.execute_once()	
	MacroStep(None,	[],	>['controller',	'door	closed',	'closed	without	item'],	<[])	

interpreter.queue(Event(’door_opened’))	
interpreter.execute_once()	

MacroStep(Event(door_opened),	[TransiSon(closed	without	item,	opened	without	
item,	door_opened)],	>['door	opened',	'opened	without	item'],	<['closed	without	
item',	'door	closed'])	

31	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
Running	stories	

from	sismic.stories	import	Story	
story	=	Story([Event('door_opened'),	Event('item_placed'),	Event('door_closed'),	
																								Event(’Smer_inc'),	Event(’cooking_start'),	Event(’Sck')])	
trace	=	story.tell(interpreter)	
	

32	

MacroStep(None,	[],	>['controller',	'door	closed',	'closed	without	item'],	<[]),	
MacroStep(Event(door_opened),	[Transi8on(closed	without	item,	opened	without	item,	
door_opened)],	>['door	opened',	'opened	without	item'],	<['closed	without	item',	'door	
closed']),	
MacroStep(InternalEvent(lamp_on),	[],	>[],	<[]),	
MacroStep(Event(item_placed),	[Transi8on(opened	without	item,	opened	with	item,	
item_placed)],	>['opened	with	item'],	<['opened	without	item']),	
MacroStep(Event(door_closed),	[Transi8on(opened	with	item,	closed	with	item,	
door_closed)],	>['door	closed',	'closed	with	item',	'program	mode',	'not	ready'],	
<['opened	with	item',	'door	opened']),	
…	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
Running	stories	

MacroStep(InternalEvent(lamp_off),	[],	>[],	<[]),	
MacroStep(Event(8mer_inc),	[Transi8on(closed	with	item,	None,	8mer_inc)],	>[],	<[]),	
MacroStep(None,	[Transi8on(not	ready,	ready,	None)],	>['ready'],	<['not	ready']),	
MacroStep(InternalEvent(display_set,	text=TIMER:	1),	[],	>[],	<[]),	
MacroStep(Event(cooking_start),	[Transi8on(ready,	cooking	mode,	cooking_start)],	>['cooking	mode'],	
<['ready',	'program	mode']),	
MacroStep(InternalEvent(hea8ng_set_power,	power=900),	[],	>[],	<[]),	
MacroStep(InternalEvent(hea8ng_on),	[],	>[],	<[]),	
MacroStep(InternalEvent(lamp_on),	[],	>[],	<[]),	
MacroStep(InternalEvent(turntable_start),	[],	>[],	<[]),	
MacroStep(Event(8ck),	[Transi8on(cooking	mode,	None,	8ck)],	>[],	<[]),	
MacroStep(None,	[Transi8on(cooking	mode,	program	mode,	None)],	>['program	mode',	'not	ready'],	
<['cooking	mode']),	
MacroStep(InternalEvent(display_set,	text=REMAINING:	0),	[],	>[],	<[]),	
MacroStep(InternalEvent(hea8ng_off),	[],	>[],	<[]),	
MacroStep(InternalEvent(lamp_off),	[],	>[],	<[]),	MacroStep(InternalEvent(turntable_stop),	[],	>[],	<[]),	
MacroStep(InternalEvent(beep,	number=3),	[],	>[],	<[]),	
MacroStep(InternalEvent(display_set,	text=DONE),	[],	>[],	<[])]	

33	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
unit	tesSng	

•  Using	python’s	built-in	unibest	module	
$	python	-m	unibest	heaSng_unibest.py	–v	

	
				def	test_no_heaSng_when_nothing_is_done(self):	
								self.interpreter.execute()	
								self.assertFalse(self.is_heaSng())	
	
				def	test_no_heaSng_when_item_is_placed(self):	
								events	=	map(Event,	['door_opened',	'item_placed'])	
								story	=	Story(events)	
								story.tell(self.interpreter)	
								self.interpreter.execute()	
								self.assertFalse(self.is_heaSng())	

34	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
BDD	

•  Using	Python’s	behave	module	
$	sismic-behave	microwave.yaml	--features	heaSng.feature		

	
from	behave	import	given,	when,	then		
from	sismic.io	import	import_from_yaml	
from	sismic.interpreter	import	Interpreter	
from	sismic.interpreter.helpers	import	log_trace	
from	sismic.model	import	Event	
@given('I	execute	the	statechart')	
def	execute_statechart(context):	
				_execute_statechart(context,	force_execuSon=True)	
@then('state	{state_name}	should	be	acSve')	
def	state_is_acSve(context,	state_name):	
			assert	state_name	in	context._statechart.states,	'Unknown	state	{}'.format(state_name)	
			assert	state_name	in	context._interpreter.configuraSon,	'State	{}	is	not	
acSve'.format(state_name)	
	 35	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
Regression	tesSng	

When	an	error	is	encountered	(e.g.	due	to	failing	
contract	or	bug),	story_from_trace	can	
reproduce	the	scenario	of	the	observed	
behavior,	which	can	be	used	as	the	basis	of	a	
regression	test.	

36	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
CommunicaSng	statecharts	
•  Statecharts	can	communicate	with	other	
statecharts	or	external	components	(e.g.	a	user	
interface)	by	sending/receiving	events	

•  Realised	by	dynamically	binding	their	
statechart	interpreters	

37	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
CommunicaSng	statecharts	
Example	for	some	elevator	statechart:	Events	sent	by	bubons	are	
propagated	to	elevator	
	
elevator	=	Interpreter(import_from_yaml(open(‘elevator.yaml')))	
bubons	=	Interpreter(import_from_yaml(open(‘bubons.yaml')))	
bubons.bind(elevator)	
bubons.queue(Event(’floor_2_pushed'))	
bubons.execute()		
		AwaiSng	events	in	bubons:	[Event(bubon_2_pushed)]	
		AwaiSng	events	in	bubons:	[InternalEvent(floorSelected,	floor=2)]	
		AwaiSng	events	in	elevator:	[Event(floorSelected,	floor=2)]	
elevator.execute()	
print('Current	floor:',	elevator.context.get('current'))	
		Current	floor:	2	

38	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Sismic	
Other	features	

Other	semanSc	variants	of	statecharts	
– outer-first	instead	of	inner-first	semanScs;	
– changing	priority	of	events	
– …	

Different	ways	of	dealing	with	Sme	
– Real	Sme	versus	simulated	Sme	

39	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Conclusion	

We	support	various	ways	to	test	statechart	
models	
– Using	contracts	
– Using	unit	tests	
– Using	domain-specific	features	and	scenarios	
(BDD)	

– Using	property	statecharts	

Implemented	in	Sismic,	an	open	source	Python	
library	for	interpreSng	statecharts	

40	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Future	work	

•  More	advanced	tesSng	techniques	
– AutomaSc	generaSon	of	contracts	based	on	scenario	
specificaSons	

– AutomaSc	generaSon	of	tests	based	on	contract	
specificaSons	

– MutaSon	tesSng	
–  Support	for	conSnuous	integraSon	

•  Explore/compare	with	(dynamic?)	model	checking	
techniques	
–  Based	on	temporal	logics,	labeled	transiSon	systems,	…	
– Using	Dwyer’s	specificaSon	paberns	

•  And	many	more	…	
41	

Tom	Mens	–	SATTOSE	2016	–	Bergen,	Norway	–	July	2016			

Future	work	

Facilitate	statechart	evoluSon	
– DetecSng	model	smells	
– Model	refactoring	

E.g.	spliXng	up	a	complex	statechart	into	mulSple	statecharts	
–  SemanSc	variaSon	

DetecSng	if	statechart	is	compaSble	with	alternaSve	semanScs	
–  Variability	analysis	

Consider	product	families	(e.g.	different	microwave	variants)	and	
analyse	commonaliSes	and	variabiliSes	in	their	statechart	models	

– Design	space	exploraSon	
Analyse	pros	and	cons	of	syntacScally	different,	but	semanScally	
similar	statecharts	

42	

