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I. Introduction and research context
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The transverse relaxation R2 = /T2 of water protons induced by exotic-shaped superparamagnetic
nanoparticles (NPs), used as negative contrast agents in MRI, was studied usingMonte Carlo simulations under a
high static magnetic field B0 . Comparison with the spherical case, at equal volume, reveals deviations from the
expected relaxation within the Motional Average Regime. Analytical Stray Field analysis supports these findings
and provides an alternative approach for computing relaxation times of exotic-shaped NPs.

II. Monte Carlo Methodologies

▪ CPMG Sequence
TE = .5− .5− s

▪ Constant volume fraction
f = .4 6 ⇔ ( = . M)

▪ Periodic Random Walk Diffusion
Dwater = . 9 2s1

▪ Relaxation stems from the Larmor
precession of proton spins around
the local stray field (NPs + ഥ).

II. b. Stray Field Analysis [2]II. a. Diffusion Setup [1]
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▪ Analytical Stray Field derived from scalar
potential ϕm [4, 5, 6]

  = −μ0ϕm 

▪ Using a Monte Carlo Integration,

<B²proj> =


V
න  ~U ⋅ ෡

2
dV

Shape ෡M axis 

Sphere / %

Cubic  5%

Cubic  −%

Cubic  −%

Tetrahedron  −4%

Cylinder  −5%

Can  7%

III. Results & Interpretations

▪ ′5Magnetite NPs, ഥ

▪ ′Water Protons, ഥ
▪ Static Magnetic Field ഥ
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IV. Summary And Future Directions
▪ Monte Carlo diffusion simulations demonstrate that the nanoparticle (NP) shape influences the transverse relaxation  for small

particles (MAR), while larger particles (SDR; and PRR) remain unaffected.

▪ By analysing the analytical stray field of various particle geometries, we show that changes in relaxation  correlate with
variations in the stray field variance <B²proj>.

▪ This suggests that analytical stray field analysis alone may be sufficient to estimate the gain or loss in transverse relaxation time 
for exotic-shaped nanoparticles within theMAR.

▪ Future work will explore new geometries (e.g., needles, plates, disks) to further validate the correlation between ΔR2 and <B²proj>.

▪ Variation of R2 induced by NPs at small
diameters [3]

ΔR2 ~ <B²proj>

▪ Extrapolation for other shapes
Δ ΔR2 ~Δ(<B²proj>)

▪ Monte Carlo simulations show that significant variations in relaxation times occur
at small NP diameters (< 40 nm) for all exotic-shaped NP, within the MAR and the
lower end of the SDR.

▪ In addition of particle geometry, we show using cubic-shaped NPs that the
magnetization orientation can further modulate , with up to a 25% variation
between 001 and 111 orientations.

III. b. Correlation ΔR2 ~ <B²proj>III. a. Bell Curves, CPMG at = .

▪ Using the following linear regression :
Δ ΔR2 ≈ α Δ(<B2proj>)+ β

▪ We propose an alternative approach to estimate
variations in relaxation times directly from the
stray field variance, thus bypassing diffusion
simulations.


