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Abstract

Biological wastewater treatment has gained increasing prominence in
global environmental concerns. Its operation presents more complex chal-
lenges than classical industrial processes, highlighting the need for effi-
cient control strategies. Despite the ever-increasing advanced automation
of wastewater treatment processes, open issues still require more analysis
and the deployment of new control strategies. Interest in phages’ ability
to control bacterial populations has extended from medical applications
into agriculture, aquaculture, and the food industry. Specifically, several
studies have proposed bacteriophages as a promising alternative to con-
trol foaming and bulking in wastewater treatment systems. This strategy
has shown successful results at the laboratory scale. However, this tech-
nology is still in development, and several challenges must be overcome
before bacteriophages can be widely used to control foaming and bulking
in pilot or larger-scale treatment plants. Bacteriophage treatment for
foaming control might be the basis for a more efficient, economical, and
sustainable control than the current practice based on chemical treat-
ments.

Assays at the pilot scale involve specifically targeted bacteria. The
real-life scenario includes a complex community of microorganisms and
certain environmental stress factors that might affect the performance of
bacteriophages employed for phage therapy. To include these factors, a
thorough study of the treatment plant parameters and microbial com-
munity involvement must be performed to implement a large-scale study
of phage therapy. Computational modeling is necessary to start phage-
based implementation of treatment against bulking and foaming caused
by an overgrowth of filamentous bacteria. Several models of the infection
mechanisms in individual bacteria-phage pairs have been reported, i.e.,
for controlled systems with only one bacterial species in the presence of
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one phage species. However, activated sludge treatment systems broadly
differ from this situation.

This research begins with a literature review on the modeling, anal-
ysis, and application of phage-bacteria systems, emphasizing the impor-
tance of rigorous model formulation. Mathematical models play a key
role in the development process, and the next chapter offers an overview
of the proposed models, their structure, advantages, and disadvantages.
Then, a candidate model of bacteria and phage populations is proposed
that is simple enough to describe experimental results in the context of
wastewater treatment and serve as a basis for process control.

The model is evaluated for essential system properties such as stabil-
ity, identifiability, and observability—key prerequisites for process pre-
diction, monitoring, and dynamic optimization. The development of
software sensors based on the model would allow significant advances
in monitoring important biological variables, such as the time evolution
of filamentous bacteria concentration. It would alleviate the lack of on-
line hardware sensors to achieve such tasks. The well-known Extended
Kalman Filter (EKF) is implemented, achieving satisfactory reconstruc-
tion of nonmeasured variables.

Moving forward in exploiting the model, optimal control is developed
to evaluate the critical parameters of phage therapy, such as phage doses
and concentrations. This study demonstrates the feasibility of controlling
bacteria that cause operational problems, such as bulking and foaming,
in wastewater treatment with an activated sludge system.

The final component of this work integrates the proposed model into a
broader framework based on the Activated Sludge Model No. 1 (ASM1),
providing a more realistic context for evaluating bacteriophage-based bio-
control strategies within full-scale wastewater treatment operations.

In conclusion, this doctoral research substantially advances the sci-
entific basis for phage therapy as a solution to bulking and foaming in
activated sludge systems. The outcomes offer practical tools and insights
for implementing phage-based treatments, positioning them as a viable,
cost-effective, and environmentally sustainable alternative to traditional
chemical controls. By incorporating ecological and physiological system
dynamics, this study lays a solid foundation for the future deployment
of bacteriophage-based control strategies.

Keywords: Bacteria-Phage model, Extended Kalman Filter, Opti-
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mal control, ASM1, activated sludge water treatment.
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Resumen

Modelaciéon y analisis de un ecosistema de bacterias y fagos
para minimizar la expansién de lodos y la formaciéon de
espuma en el tratamiento de aguas con lodos activos

El tratamiento biologico de aguas residuales ha adquirido una im-
portancia cada vez mayor en el &mbito mundial. Su operacién no esta
exenta de problemas més complejos que los procesos industriales clasicos,
destacando la necesidad de estrategias de control eficientes. A pesar de
que en los procesos de tratamiento de aguas residuales la automatizacion
es cada vez mayor, ain existen problemas que requieren mas anélisis y
la implementacion de nuevas estrategias de control. El interés por la
habilidad de los fagos para controlar las poblaciones bacterianas se ha
extendido desde las aplicaciones médicas a la agricultura, la acuicultura
y la industria alimentaria. En particular, varios autores han propuesto el
uso de bacteriéfagos como método alternativo para controlar la formacion
de espuma y el abultamiento en el tratamiento de aguas residuales. Esta
estrategia ha mostrado resultados satisfactorios a escala de laboratorio.
Sin embargo, esta tecnologia atin se encuentra en desarrollo y deben su-
perarse varios desafios antes de que los bacteriofagos puedan utilizarse
ampliamente para controlar la formaciéon de espuma y el abultamiento
en plantas de tratamiento piloto o de mayor escala. El tratamiento con
bacteriofagos para el control del bulking y foaming podria ser la base
para un control més eficiente, econémico y sostenible en comparacion a
los tratamientos actuales basados en tratamientos quimicos.

Los ensayos a escala piloto se han realizado para bacterias especificas,
sin embargo, el escenario de la vida real incluye una comunidad compleja
de microorganismos y ciertos factores de estrés ambiental que podrian
afectar el rendimiento de los bacteridfagos empleados para la terapia con
fagos. Para incluir estos factores, se debe realizar un estudio exhaustivo
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de los pardmetros de la planta de tratamiento y la participacion de la
comunidad microbiana para implementar un estudio a gran escala de la
terapia con fagos. El modelado computacional es necesario para comen-
zar la implementacion del tratamiento basado en fagos contra el bulking y
foaming causados por un crecimiento excesivo de bacterias filamentosas.
Se han descrito varios modelos de los mecanismos de infecciéon para el
par bacteria-fago, es decir, para sistemas controlados con una sola es-
pecie de bacteria en presencia de una especie de fago. Sin embargo, los
sistemas de tratamiento con lodos activados difieren ampliamente de esta
situacion.

Este trabajo comienza con una revision de la literatura sobre mode-
lado, analisis y aplicaciones de sistemas con fagos y bacterias. Los mod-
elos matemaéticos desempenan un papel fundamental en este proceso de
desarrollo, y el siguiente capitulo ofrece una descripciéon general de los
modelos propuestos, su estructura, ventajas y desventajas. Luego, se
propone un modelo candidato de poblaciones de bacterias y fagos que es
lo suficientemente simple para describir resultados experimentales en el
contexto del tratamiento de aguas residuales y servir como una base para
el control de procesos.

El modelo se evaltia en cuanto a sus propiedades, como estabilidad,
identifiabilidad y observabilidad, que son esenciales para la prediccion,
control y optimizacion de procesos. El desarrollo de sensores de software
basados en el modelo permitiria avances significativos en el monitoreo
de variables biologicas importantes, como la evolucion temporal de la
concentracion de bacterias filamentosas. Aliviaria la falta de sensores de
hardware en linea para lograr tales tareas. Se implement6 el conocido
filtro de Kalman extendido (EFK, por sus siglas en inglés), logrando una
reconstrucciéon satisfactoria de variables no medidas.

Avanzando en el aprovechamiento del modelo, se desarrolla un control
6ptimo para evaluar los parametros criticos de la terapia con fagos, como
las dosis de fagos y concentraciones. Este estudio demuestra la factibili-
dad de controlar las bacterias que causan problemas operacionales, como
el bulking y foaming, en el tratamiento de aguas residuales con un sistema
de lodos activados.

El paso final de la tesis es la inclusién del modelo en un modelo
completo de lodos activados, segin ASM1, con el fin de proporcionar una
vision maés realista del uso de bacteridéfagos como estrategia de biocontrol.
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dido, Control 6ptimo, ASM1, Tratamiento de aguas con lodos activos.

Xvii



Xviil



Motivation and Contribution

This work is part of a context of technological and scientific inno-
vation in industrial biotechnologies, the environment, biological water
purification, and sustainable development through the development of
processes with optimized operation (in particular, eliminating the phe-
nomena of sludge expansion and foam formation in biological water pu-
rification processes). This research axis is in line with environmental and
energy policies worldwide. Activated Sludge (AS) is a technique widely
used in the public and industrial sectors. In addition, this process plays
an important role in biorefineries.

Despite the high efficiency of aerobic treatment systems, one of the
most critical operational challenges is the proliferation of filamentous bac-
teria, which can occur for various reasons, including low dissolved oxygen
concentration, low nutrient-to-biomass ratio, or nitrogen and phosphorus
deficiencies. The growth of filamentous bacteria can prevent the sludge
from settling properly (sludge bloom) or can generate persistent foams,
up to 1 m thick in extreme cases, covering the aeration basins. As a result,
some of the sludge may leave the sedimentation system, contaminating
the treated water. Various methods can control filamentous organisms,
such as adding chlorine or hydrogen peroxide, changing the dissolved oxy-
gen concentration in the aeration basin, adding growth factors, inorganic
talc, or coagulating polymers. However, these strategies have not proven
effective in all cases, have high associated costs, and can affect effluent
quality.

A biological method is an attractive control technique compared to
chemical treatments. The AS processes involve the interaction of count-
less microorganisms that work together to purify water. Among the mi-
croorganisms present, the presence of bacteriophages (viruses that infect
and lyse bacteria) can be highlighted, which, although their concentration
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is low compared to bacteria, are present in the system. Bacteriophage
treatment for foaming control in wastewater systems has been effective
in some experimental studies. However, given the complexity of the AS
system, the full understanding of the system and the phenomena involved
remains unknown.

Applying phage therapy to wastewater treatment requires a better
understanding of the dynamics and interactions of the microbial commu-
nity in wastewater. A mathematical model could describe the temporal
evolution of bacterial and bacteriophage populations and the infection
phenomenon, making it an attractive tool for study. A dynamic model
is helpful in an industrial context because it helps operate the plant and
allows for optimizing the production of phages on an industrial scale,
ensuring the treatment’s economic viability.

This study aims to include an infection mechanism in the existing AS
models for a system with foaming and bulking problems. The model will
be developed as an extension of existing activated sludge models com-
monly used in industry. The general goal is to develop a mathematical
model that describes the interaction between bacteria and their predators
(phages). It could be used for process control, providing non-measured
variables and critical system parameters in foaming and bulking treat-
ment in domestic wastewater.

As a contribution of this work, the mathematical model for the pair
bacteria-phage allows the recreation of non-measured variables from im-
plementing the state observer EFK. Besides, phage doses and concen-
tration, critical parameters for phage therapy implementation, could be
evaluated from a simple optimal control.

All this work is possible thanks to a collaboration between PUCV
(Chile) and UMONS (Belgium). This scientific cooperation was an op-
portunity to link a biological solution to a current industrial problem
with modeling tools to contribute to its application at the industrial
level, where the Belgian and Chilean teams worked together effectively.
In addition to the contribution of this work, the following conferences
were presented.

e November, 2024. Vesga, M; Chamy, R; Vande Wouwer. Uso de bac-
teriofagos en PTAS: desarrollo de observador EFK y control 6ptimo

mediante modelos matemaéaticos. XXXIX Congreso Interamericano
AIDIS 2024. Lima, Peru.
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e November, 2023. Vesga, M; Chamy, R; Vande Wouwer. Uso de
bacteriofagos en PTAS: Analisis de observabilidad y desarrollo de
observador de estado clasico (EFK). XXV Congreso Chileno de In-
genieria Sanitaria y Ambiental (AIDIS). Coyhaique, Chile. (Oral)

e November, 2022. Vesga, M; Chamy, R; Vande Wouwer. Uso de bac-
teriofagos en PTAS: Determinacion de los parametros de operacion
en la produccion de bacteriofagos. XXXVIII Congreso Interameri-
cano AIDIS 2022. Republica dominicana. (Oral)

e November, 2021. Vesga, M; Chamy, R; Vande Wouwer, A. Uso de
bacteridfagos en PTAS: Evaluacion mediante modelos matemati-

cos. XXIV Congreso chileno de ingenieria sanitaria y ambiental.
Santiago, Chile (Virtual). (Oral)

Additionally, this work led to the publishing of
e Vesga-Baron, Alejandra; Chamy, Rolando; Vande Wouwer, Alain.
et al. (2022). Minimizing foaming and bulking in activated sludge

with bacteriophage treatment: a review of mathematical modeling.
Processes, 10(8), 1600.
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Food to Microorganism ratio
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Acronyms Acronyms
FISPO Full Input-State-Parameter Observability
FOG Fats, Oil, and Grease
GAO  Glycogen Accumulating Organisms
ISE Ion Selective Electrode
MOI Multiplicity of Infection
MHE  Moving Horizon Estimation
MPC  Model Predictive Control
ODE Ordinary Differential Equation
PAO Polyphosphate Accumulating Organisms
PFR Plug Flow Reactor
PFU Plaque Forming Unit
PI Proportional-Integral
PID Proportional-Integral-Derivative
SBR Sequencing Batch Reactor
SEM Scanning Electron Microscope
SRT Solid Retention Time
TOC Total Organic Carbon
TSS Total Suspended Solids
uv Ultraviolet
VSI Sludge Volume Index
VSS Volatile Suspended Solids
WWT Wastewater Treatment

WWTP Wastewater Treatment Plant
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List of parameters and symbols

Greek symbols
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Burst size (phage or particulate, ASM1)

Death rate of bacteria

Adsorption rate (infection rate constant)

Lysis rate of infected bacteria

Anoxic growth correction factor (heterotrophs, ASM1)
Anoxic hydrolysis correction factor (ASM1)

Weighting factor in cost function

Eigenvalue (Jacobian, local stability)

Specific growth rate

Maximum specific growth rate (general; or for ASM1 as py, ja)
Maximum specific growth rate of heterotrophs (ASM1)
Maximum specific growth rate of autotrophs (ASM1)
Decay /inactivation rate of free phages

Yield coefficient (substrate to biomass)

Recovery rate of infected bacteria (literature review)
Sensitivity coefficient

Latency period (delay parameter in DDE)

Natural phage decay rate (alternative notation)
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Symbols Symbols

Latin symbols

A Jacobian matrix (local stability analysis)

ba Decay rate of autotrophic biomass (ASM1)

by Decay rate of heterotrophic biomass (ASM1)

D Dilution rate

Dp  Phage dilution rate (input flow)

fp Fraction of biomass yielding particulate products (ASM1)
F Total flow (substrate + phage)

Fp Phage flow (input)

Fg Substrate flow (input)

ka Ammonification rate (ASM1)
k. Decay rate constant (biomass)
ka Decay rate constant (general)

kn Hydrolysis rate constant (ASM1)

Kra Volumetric oxygen transfer coefficient (ASM1)
K)  Half-saturation coefficient (Monnod)

Kyy  Half-saturation for NHf N (ASM1)

Ko Half-saturation constant for oxygen

Koa Oxygen half-saturation for autotrophs (ASM1)
Kong  Oxygen half-saturation for heterotrophs (ASM1)
Kno Nitrate half-saturation (ASM1)

Kg Substrate half-saturation

Kx Hydrolysis half-saturation (ASM1)

m Maintenance rate of infected bacteria
P Free phage concentration
P, Phage concentration in input (optimal control)

Qin Influent flow rate (ASM1)

Q- Recirculation flow rate (ASM1)

Qu Waste flow rate (ASM1)

S Substrate concentration

Sack  Alkalinity (ASM1)

St Soluble inert organic matter (ASM1)

S; Influent substrate concentration

Snyp  Soluble biodegradable organic nitrogen (ASM1)
Syg  Ammonium plus ammonia nitrogen (ASM1)
Sno  Nitrate and nitrite nitrogen (ASM1)
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Symbols

Symbols

SOsat

Dissolved oxygen (ASM1)

Oxygen saturation concentration (ASM1)

Readily biodegradable substrate (ASM1)

Time

Reactor volume (ASM1)

Settler volume (ASM1)

State vector (e.g., x = [Xg, X7, P, S])

Equilibrium state vector

General bacteria concentration

Active autotrophic biomass (ASM1)

Active heterotrophic biomass (ASM1)

Non-susceptible heterotrophic biomass (phage-modified ASM1)
Susceptible heterotrophic biomass (phage-modified ASM1)
Infected heterotrophic biomass (phage-modified ASM1)
Infected bacteria concentration

Inert particulate organic matter (ASM1)

Carrying capacity (logistic model)

Particulate biodegradable organic nitrogen (ASM]1)
Particulate products from biomass decay (ASM1)
Susceptible bacteria concentration

Slowly biodegradable substrate (ASM1)

Total bacteria concentration

Yield coefficient for heterotrophs

Yield coefficient for autotrophs
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Chapter 1

Introduction

Clean, accesible water for all is an essential part of the world we want
to live in, and there is enough freshwater on the planet to achieve this.
However, more than 2 billion people are living with the risk of reduced
access to freshwater resources, and by 2050, at least one in four people
is likely to live in a country affected by chronic or recurring shortages of
freshwater. Although water use efficiency has risen by 9%, water stress
and water scarcity remain a concern in many parts of the world. In
2020, 2.4 billion people lived in water-stressed countries. Also, the chal-
lenges are compounded by conflicts and climate change. Drought afflicts
some of the world’s poorest countries, worsening hunger and malnutrition
(United Nations, 2019, 2023).

Substantial progress has been achieved over the past decade in im-
proving access to safe drinking water and sanitation. Currently, more
than 90% of the global population benefits from improved drinking water
sources (United Nations, 2019). Between 2015 and 2022, the proportion
of the world’s population with access to safely managed drinking water
services increased from 69 to 73 %; safely managed sanitation services
increased from 49 to 57 %; and basic hygiene services increased from 67
to 75 % (United Nations, 2023).

Despite significant progress, billions of people still lack universal cov-
erage with access to safe drinking water, sanitation, and hygiene. Achiev-
ing by 2030 will require a substantial increase in current global rates of
progress: sixfold for drinking water, fivefold for sanitation, and threefold
for hygiene (United Nations, 2023).

Data from 2017-2020 indicate that 60 % of assessed water bodies
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in 97 countries with robust monitoring systems had good ambient water
quality. However, a lack of data poses a risk to more than 3 billion people
living in areas where freshwater quality is unknown. Agriculture and un-
treated wastewater are significant threats to water quality, with nitrogen
and phosphorus measurements frequently failing to meet targets. Efforts
are needed to improve farming practices and wastewater treatment, es-
pecially in regions with high population growth (United Nations, 2023).

Progress towards the target of halving the proportion of untreated
wastewater by 2030 is limited. Based on data from 140 countries and ter-
ritories, about 58 % of household wastewater was safely treated in 2022.
However, wastewater statistics are lacking in many countries, and report-
ing is low, especially from industrial sources (United Nations, 2023). It
is estimated that more than 80% of wastewater resulting from human
activities is discharged into rivers or sea without any pollution removal,
which generates concern (United Nations, 2019).

Therefore, wastewater treatment, which removes contaminants from
wastewater or sewage and converts it into an effluent that can be re-
turned to the water cycle with minimum environmental impact or directly
reused, is receiving increasing interest.

1.1 Activated sludge system

The Activated Sludge (AS) process has been used to treat industrial
and municipal wastewater for nearly a century and is currently the most
widely implemented wastewater treatment method. The AS is a natural
biological treatment process that imports many microorganisms. It is a
complex mix of microbiology and biochemistry.

The infrastructure of a basic Activated Sludge Process (ASP) (Figure
1.1) consists of (Hreiz et al., 2015):

e A single bioreactor operated continuously, where suspended mi-
croorganisms consume the colloidal and dissolved organic matter.
The reactor is aerated to provide dissolved oxygen (DO) for aero-
bic biodegradation. Bacteria consume one part of the colloidal and
dissolved carbonaceous compounds to satisfy their energetic needs
(catabolism), and synthesize another part — along with a small pro-
portion of ammonium and phosphorus — into new cellular tissues
(anabolism).
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Figure 1.1: The basic ASP.

o A settling tank (referred to as secondary settler or clarifier) where
activated sludge (flocculated biomass) is gravitationally separated
from the treated wastewater. The efHluent overflows into the re-
ceiving water body, but in some Wastewater Treatment Plants
(WWTPs), it may undergo additional treatments (e.g., filtration
and disinfection) before being discharged. A minimum solid reten-
tion time (SRT, also referred to as ‘sludge age’) of about 3 days is
required for bacteria to aggregate into flocs (bio-flocculation) so as
to enable their gravitational separation.

e A sludge recycle line returns most of the settled sludge to the biore-
actor, maintaining a high bacterial concentration in the reactor and
intensifying the biological nutrient removal.

e A sludge wastage line at the bottom of the clarifier, from where
a small fraction of sludge is withdrawn in order to stabilize the
biomass concentration in the bioreactor and to fix an adequate
SRT. The excess sludge withdrawn is then treated separately.

The basic principle in the process consists of contacting the wastewa-
ter with a mixed population of microorganisms in the form of a floc sus-
pension in an aerated, agitated system. Suspended and colloidal material
is quickly eliminated from the wastewater by adsorption and agglomer-
ation in the microbial flocs. The oxidative process provides the energy
required for the adsorption and assimilation processes. Once the desired
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treatment level is reached, the microbial floc mass, i.e., the “sludge,” is
subsequently separated from the water by sedimentation. The break-
down of organic material via the aerobic pathway is divided into three
major phases: the hydrolysis of complex organic molecules into their re-
spective monomers; the decomposition of these monomers into common
intermediates, and, finally, the introduction of these intermediates into
the Krebs cycle and the respiratory chain, where the final electron accep-
tor is molecular oxygen, forming water as the final product along with
carbon dioxide and ammonia. AS systems can reach organic material
removal rates between 85% and 98% at the end of secondary treatment
(Wang et al., 2010).

1.2 Activated sludge microbiology

The AS process purifies water through the oxidation of organic mate-
rial present in the wastewater by diverse aerobic microorganisms, trans-
forming this material into a more stable form, thereby lowering the
organic load. Microscopic examination of this sludge reveals that it
is formed from a heterogeneous population of microorganisms, which
change continuously due to variations in wastewater composition and
environmental conditions. The microorganisms that constitute the AS
are protozoans, fungi, algae, filamentous organisms, viruses, and bacte-
ria, the latter ones being the dominant group responsible for the more
significant part of the process (90% to 95%) (Fan et al., 2017). More than
300 species of bacteria have been isolated from AS systems. The main
bacterial populations operating in AS systems are heterotrophs, nitrifiers,
denitrifiers, polyphosphate, and glycogen-accumulating organisms (PAO
and GAO, respectively). These microorganisms are important in terms
of both their function and competition with filamentous bacteria, which
often cause serious problems in the AS process (Tandoi et al., 2017).

The bacteria responsible for the oxidation of organic material and nu-
trient transformation produce polysaccharides and other polymeric ma-
terials that aid biomass flocculation. The principal genera are: Zooglea,
Pseudomonas, Flavobacterium, Alcaligenes, Bacillus, Corynebacterium,
Achromobacter, Comomonas, Brevibacterium, Acineto bacter, filamen-
tous organisms (Sphaerotilus, Beggiatoa), autotrophic nitrifying bacte-
ria (Nitrosomonas and Nitrobacter), and phototrophic sulphur bacteria
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(Rhodospirillaceae). Some bacteria are capable of connecting with each
other to form flocs, an important characteristic of ASs that allows for a
highly efficient secondary sedimentation process and, therefore, greater
transparency and higher quality in the final efHuent. Filamentous bacte-
ria are also common in ASs, and a moderate presence of these organisms
contributes to proper consistency in the flocs; the main foaming genera
are: Corynebacterium, Dietzia, Gordonia, Skermania, Mycobacterium,
Nocardia, Rhodococcus, Microthriz v Tsukamurella and the principal
bulking genera are Microthriz parvicella and Sphaerotilus natans (Jiang
et al., 2008; Yang et al., 2017). Viral communities in the AS systems are
incredibly diverse. Compared to bacterial community analysis, research
on viral communities in wastewater or wastewater treatment systems is
limited. There is an estimated amount of 108-109 phages genotypes in 1
mL of actived sludge, which is a number comparable to or greater than
the number of phages found in most of the aquatic systems (Suttle, 2007).
In general, the prevailing conditions in an AS system do not favour the
growth of fungi. However, under some circumstances, filamentous fungi
are observed. Fungal growth can be favoured under low pH, toxicity,
and in nitrogen-deficient efluents. Protozoans are organisms belonging
to the Protista¢ kingdom and are bacteria predators. The main groups
are: Clliates, flagellates, rhizopods, and amoeboids. Rotifers are multi-
cellular organisms that have sizes between 100 and 500 microns. Those
present in ASs belong to two principal orders: Bdeloidea (Philodina and
Habrotocha), and Monogononta (Lecane and Notomata). The role of ro-
tifers in ASs is to remove the suspended bacteria outside the flocs and
contribute, though their wastes, to floc formation (Moeller et al., 2018).

1.3 Activated Sludge problems

Despite the significant efficiency of AS treatment, the process is not
without problems. The most critical operational difficulties are bulking
and foaming, caused by the increase in the growth of filamentous bacteria.
An increase in filamentous bacteria can prevent the sludge from settling
appropriately (sludge bulking) or can generate persistent foams, up to
1 m thick in extreme cases. This growth can occur for various reasons,
including low dissolved oxygen concentration, the low ratio of food to
a unit of biomass (F/M ratio), and nutritional deficiency (nitrogen or
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phosphorus) (Richard et al., 2003; Wu et al., 2015).

In the bulking process, the sludge in the aeration basin does not settle
and develops a biological foam on the surface. Bulking can be caused by
the growth of filamentous organisms that do not settle and filamentous
organisms that form foams due to the large volumes of water assimilated
in their cellular structure (figure 1.2)(Jenkins et al., 2004). In the foam-
ing process, the foam is characterized as persistent, viscous, and brown in
color. Due to these problems, the efluent is contaminated, the aeration
basin population drops because the sludge cannot be recirculated, and
noxious odors are formed when the foam (which contains organic ma-
terial) is degraded outside of the AS system (Madoni et al., 2000; Ding
et al., 2015).

(a) Filamentous organisms that do (b) Filamentous organisms that
not settle form foams

Figure 1.2: Characteristic examples of filamentous organisms that can
develop in the AS process and affect the sedimentation of the suspended
solids in the mixed liquor.

Filamentous organisms may be controlled through various methods,
including the addition of chlorine or hydrogen peroxide to the recycled
AS, regulating dissolved oxygen concentration in the aeration basin; al-
teration of the waste influent points in the aeration basin, to modify the
F /M ratio; addition of principal nutrients (such as nitrogen and phospho-
rus); addition of trace metals, nutrients, and growth factors; and, more
recently, addition of inorganic talc or coagulating polymers. Non-specific
methods have a temporary effect. They are useful when the cause of
the filamentous bacteria cannot be determined immediately and when

6
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a rapid resolution of the problem is needed. Nevertheless, specific con-
trol methods are usually more desirable because only when the cause is
addressed can the plant be operated with limited filament proliferation
(Tandoi et al., 2017).

Examining the problem’s causes is necessary to approach the problem
correctly. In activated sludge processes characterized by a low F /M ratio
(0.05—0.10kgcop kg~ V. SSd=1), the concentration of Chemical Oxygen
Demand (COD) in the aerobic tank is very low, especially in the case of
a completely mixed tank reactor. At these low substrate concentrations,
the growth of filaments is favored with respect to floc-forming bacteria.
In this sense, because lower F/M values are associated with higher COD
removals, the bulking associated with low substrate concentration is also
linked to a good activated sludge performance. In order to solve (or
avoid) the problem without affecting substrate removal in the plant, the
most useful strategy is to create a substrate concentration gradient inside
the aeration tank reactor (or at least the presence of zones with different
substrate concentrations). To achieve this goal, it would be necessary to
modify the activated sludge process configuration, which would increase
the cost and the complexity of the operation (Tandoi et al., 2017).

One of the most frequent causes of filamentous bulking is low dissolved
oxygen (DO) concentration in the aeration tank. Similar to the low
F/M (Food to Microorganism ratio) case. A correlation between organic
loading and minimum DO concentration is needed to avoid filamentous
accumulation. Values of DO concentrations required to avoid filament

proliferation should be calculated, which involves a proper aerator design
(Tandoi et al., 2017).

The term ‘nutrient’ in activated sludge systems usually refers to chem-
ical elements other than carbon, oxygen, sulfur, and nitrogen that are
essential for biomass synthesis. Nutrients needed in major amounts are
nitrogen (N) and (P) phosphorus. Domestic wastewater is normally rich
in nutrients (hence, N and P often have to be removed by additional pro-
cesses). Previous reports (Wagner (1982); Richard et al. (1985); Simpson
et al. (1991); Switzenbaum et al. (1992)) showed that filament growth is
enhanced with respect to floc-former growth when N and P levels are
low. When the problem can be definitely related to nutrient deficiency,
the control method is to add the deficient nutrient, and it is easily im-
plemented (Tandoi et al., 2017).
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Microthriz parvicella is a filamentous bacterium that causes either
bulking or severe foaming problems in domestic WWTPs worldwide. Its
growth is particularly difficult to prevent. Most of the work performed
on this bacterium shows that it is enhanced by low temperatures and the
presence of long-chain fatty acids in the influent. Studies have also shown
that it can only grow under aerobic or microaerophilic conditions. The
most frequently used technique for controlling M. parvicella has been
the use of anoxic selectors. Moreover, the addition of polyaluminium
chloride was proposed, which interferes strongly with the growth of the
filament M. parvicella by causing either a flocculating or a specific toxic
effect. This strategy is now largely adopted worldwide (Eikelboom, 1991;
Tandoi et al., 2017).

The factors leading to sludge bulking are often unidentified, so non-
specific control methods are widely used. These methods can be the first
method of controlling bulking before a cause-and-effect relationship is
found and a specific control method is implemented. Nonspecific control
methods usually consist of adding chemicals, such as oxidizing agents
(chlorine, ozone, hydrogen peroxide), weighting and flocculating agents
(salts of iron and aluminum, lime, polymers, and talc), and specific bio-
cide (Tandoi et al., 2017).

The most widely used biocide agent is C'ly. It is also the oldest con-
trol measure against bulking. The amount of chlorine fed to activated
sludge systems varies in the range of 1-15 g Cly kg~ V.SS d~!. The aim
of oxidizing agents (biocides) is to kill filamentous organisms without
affecting floc-formers. Because of its potentially deteriorative effects on
floc-formers, the correct choice of addition point and of the amount of
toxicant added should be carefully chosen. The best performance is usu-
ally obtained by adding the toxicant to the return sludge stream because
of the higher amount of solids that are exposed to it. In addition to the
daily dosage of the biocide, other important parameters in the dosage
strategy are the concentration of the biocide at the dose point and the
frequency of exposure of activated sludge to the chlorine dose. The addi-
tion of chlorine to AS systems has caused some concerns about possible
effluent quality deterioration due to the formation of halogenated organic
compounds (Tandoi et al., 2017).

Although several technical strategies exist for controlling bulking and
foaming problems, e.g., the addition of chlorine or hydrogen peroxide to
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the recycled AS, regulating dissolved oxygen concentration or the waste
inflow in the aeration basin to modify the F/M ratio, the addition of
principal nutrients (such as nitrogen and phosphorus) or trace metals
and growth factors, and, more recently, the addition of inorganic talc or
coagulating polymers, they have not been proven effective in all cases.
Their associated costs are relatively high, and their use affects the efflu-
ent quality, even when they are effective (Shao et al., 1997; Roels et al.,
2002; Nielsen et al., 2005; Paris et al., 2005; Noutsopoulos et al., 2006;
Mamais et al., 2011). At the industrial level, large amounts of chlorine
are used. Adding chlorine is effective in 63% of cases. Still, it can poten-
tially create toxic chlorinated organic compounds in low concentrations
and, therefore, can be counterproductive to the water treatment process.
Manipulation of the sludge recycling flow and increasing the aeration to
control filamentous bacteria have associated operational costs and have
not been shown to be effective considering the complexity of the treated
influent (Madoni et al., 2000; Séka et al., 2001; Wu et al., 2015).

1.4 Biological treatment

The addition of microbial and enzymatic preparations to control fila-
mentous bacteria has been significantly more limited compared to the use
of biocides and flocculating agents. Some authors have demonstrated the
elimination of selectively filamentous bacteria through this form of ‘Bi-
ological Control.” A new and promising field involves the use of phages
(viruses) that specifically target filamentous bacteria. This approach
seems quite promising as a form of ‘Biological Control’ without any chem-
ical additives, but currently, there are no full-scale applications (Tandoi
et al., 2017).

Bacteriophages are viruses that infect and lyse bacteria. Interest in
the ability of phages to control bacterial populations has extended from
medical applications into the fields of agriculture, aquaculture and the
food industry. Figure 1.3 shows the exponential growth in the studies
related to phages over the years and how their interest in wastewater
treatment has been increasing in recent years. Phage treatments have
the potential to control environmental wastewater process problems such
as foaming and bulking in activated sludge plants(Abedon et al., 2011a;
Kotay et al., 2011; Endersen et al., 2014; Madhusudana Rao and Lalitha,
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2015; Yang et al., 2017; Buttimer et al., 2017; Doss et al., 2017; Sharma
et al., 2017; Plaza et al., 2018; Svircev et al., 2018; Garcia et al., 2019;
Sieiro et al., 2020; Nachimuthu et al., 2021).

m Medical Food & Agriculture  m Water treatment
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Figure 1.3: Exponential increase in phage application-related publica-
tions over the past decades. NCBI PubMed results for the number of
yearly publications from 1970 to 2025.

Bacteriophages are usually prepared at a laboratory scale in shake
flasks. These protocols are adjusted to batch cultures with low cell den-
sities and regulatory conditions, producing low phage concentrations.
Despite the low phage density generated in batch mode, when a higher
bacteriophage concentration is required, the shake flasks are replaced by
bioreactors operating in batch mode (Abedon et al., 2011a; Buttimer
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et al., 2017; Plaza et al., 2018; Endersen et al., 2014). Although batch
mode is operationally simpler than continuous mode, sterile conditions
at higher cell densities entail increased cost (Podgornik et al., 2015). The
potential application of phage techniques in wastewater treatment sys-
tems to improve effluent and sludge emissions into the environment has
not been well studied. Phage treatments have the potential to control
environmental wastewater process problems such as foaming and bulking
in activated sludge plants (Kotay et al., 2011; Yang et al., 2017).

Viral communities in the AS systems are incredibly diverse. Com-
pared to bacterial community analysis, research on viral communities in
wastewater or wastewater treatment systems is limited. There is an es-
timated amount of 108-109 phage genotypes in 1mL of activated sludge,
which is a number comparable to or greater than the number of phages
found in most aquatic systems (Suttle, 2007). Therefore, using phage to
control environmental wastewater processes such as foaming and bulking
in activated sludge plants could improve effluent and sludge emissions
into the environment (Choi et al., 2011; Yang et al., 2017).

There are several academic studies where the use of bacteriophages
is proposed to treat bulking or foaming in activated sludge plants as a
biological control, unlike the traditional chemical treatment. In these
studies, the use of bacteriophages has been validated to eliminate the
foaming-producing filamentous bacteria, such as Haliscomenobacter hy-
drossis, Sphaerotilus natans, Tetrasphaera jenkinsii, Gordonia, Beggia-
toa, Nocardia, and Nostocoida limicola. The lytic phages for these bacte-
ria can be isolated from active sludge systems such as the GTE7 phage
(Siphoviridae family) that has lytic activity on the Gordonia species and
some Nocardia species, which reduces the number of bacterial cells caus-
ing foaming below the threshold required for a stable foam to occur. As
we can see in Table 1.1, bacteriophages can infect a single or multiple
hosts (Choi et al., 2011; Petrovski et al., 2011).

However, the successful application of phage therapy to wastewater
treatment does require further understanding of wastewater microbial
community dynamics and interactions. Success would also depend on
the accurate identification of problem bacteria, effective isolation and
unbiased enrichment of phages, and the ability of phages to penetrate
flocs and remain infective in situ. Strategies to counter host cell resistance
must also be developed. Furthermore, safety considerations, such as risk

11
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Table 1.1: Bacteriophages capable of lysing filamentous bacteria model.

Filamentous bacteria model Bacteriophage Authors
Haliscomenobacter hydrossis, SN-phage Choi et al. (2011)
Sphaerotilus natans

Gordonia terrae, Gordonia GTE7 Petrovski et al. (2011)
malaquae, Gordonia australis, Liu et al. (2015)

Gordonia amictia and Nocardia
nova, Nocaridia asteroides

Skermania piniformis SPI1 Dyson et al. (2015)
Sphaerotilus natans

Haliscomenobacter Phage from Kotay et al. (2011)
Myoviridae family

of pathogen emergence through transduction, must be assessed together
with the cost-benefit and reliability of treatments. Thus, substantial
research is required before the phage therapy can be applied successfully
to wastewater treatment plants. With a greater understanding of the
microbial ecology of wastewater treatment systems, phages may become
effective solutions to wastewater treatment problems and optimization
(Withey et al., 2005; Cairns et al., 2009; Liu et al., 2015).
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Chapter 2

Reported applications of
bacteriophages

2.1 Origins of bacteriophages - First Appli-
cations

In 1896, Ernest Hankin observed that the Ganges and Jumna rivers
in India exhibited antibacterial properties. He hypothesized that these
properties contributed to a reduced incidence of gastrointestinal infec-
tions, particularly cholera, in villages near the rivers. Building upon these
observations, Frederick Twort first identified bacteriophages in 1915. His
research aimed to cultivate filterable viruses in vitro using a variety of
bacterial cultures and media. Independently, in 1917, Félix d’Herelle
also discovered bacteriophages while investigating pest control in Mexico
through the bacterium Coccobacillus sauterelles. He observed clear zones
on bacterial cultures, which he attributed to an infection by an "ultrami-
crobe" (Hankin, 1896; Twort, 1961; d’'Herelle, 1961; Abedon et al., 2011b;
Maura and Debarbieux, 2011; Harper et al., 2021)

The historical development of bacteriophage research can be divided
into three phases. The first phase began with d’Herelle’s work, who be-
lieved that phages played a central role in the recovery from infectious
diseases. In his studies on patients recovering from dysentery and ty-
phoid, he noted an increase in phage titers and concluded that this was
due to the adaptation and multiplication of lytic phages, which lysed the
causative pathogens. Based on these findings, he proposed the use of

13
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phages as therapeutic and prophylactic agents in a wide range of bac-
terial infections, leading to the foundation of “phage therapy”, involved
the application of phage-based treatments to diseases affecting the skin,
intestines, respiratory, and genital systems, resulting in the commercial-
ization of several therapeutic formulations and attracting pharmaceutical
interest (d’Herelle, 1961; Kutter and Sulakvelidze, 2004; Dublanchet and
Fruciano, 2008; Maura and Debarbieux, 2011).

Initial veterinary applications demonstrated phage efficacy in man-
aging avian typhosis and Bacillus gallinarum infections in chickens, sig-
nificantly reducing mortality rates and epidemic duration. Field trials
against hemorrhagic septicemia in water buffaloes (barbone)—a highly
fatal disease—produced similarly encouraging results. These successful
applications in veterinary medicine prompted further trials in human
healthcare (Harper et al., 2021).

Phage therapy was also used in the management of cholera. In India,
cholera-specific phage preparations were added to drinking water supplies
as a preventative measure. Patients treated orally with these phages ex-
perienced reductions in disease severity, symptom duration, and mortal-
ity. In several WHO-sponsored studies during the 1970s, phage therapy
was found to be comparable to tetracycline in some clinical aspects of
cholera control (d’Herelle, 1925; Marcuk et al., 1971; Monsur et al., 1970;
Kutter and Sulakvelidze, 2004).

For nearly a century, clinical trials of phage therapy were conducted
in Eastern Europe, particularly at the Eliava Institute of Bacteriophage.
The institute extensively explored the preclinical and clinical application
of phages against common bacterial pathogens including Staphylococcus
aureus, Fscherichia coli, Streptococcus spp., Pseudomonas aeruginosa,
Proteus spp., Shigella dysenteriae, Salmonella spp., and Enterococcus
spp.(Lin et al., 2017).

However, early trials suffered from methodological flaws due to lim-
ited understanding of phage biology and inadequate protocols, leading
to inconsistent outcomes. With the advent of antibiotics in the 1940s,
phage therapy was largely abandoned in Western medicine, although it
remained in use in Eastern Europe and the former Soviet Union, partic-
ularly for antibiotic-resistant infections involving Staphylococcus, Pseu-
domonas, Klebsiella, and E. coli (Carlton, 1999; Weber-Dabrowska et al.,
2001; Lin et al., 2017).
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Beyond medical applications, bacteriophages have proven useful in
agriculture, aquaculture, and food safety, especially where bacterial con-
tamination presents a persistent risk. These broader applications began
to emerge in the 1940s, with both successful and unsuccessful results
reported. Phages are now studied for their ability to control foodborne
pathogens on processing surfaces, reducing contamination and enhanc-
ing food safety. Unlike chemical sanitizers, which may be corrosive or
toxic, phages offer a biologically selective and environmentally benign
alternative (d’Herelle, 1926; Kutter and Sulakvelidze, 2004; Maura and
Debarbieux, 2011).

Phages have been shown to reduce Salmonella enteritidis contamina-
tion on poultry skin through high-titer phage sprays, effectively eliminat-
ing detectable bacterial loads (Goode et al., 2003; Withey et al., 2005;
Harper et al., 2021). Various companies have developed phage-based
disinfectants targeting Salmonella, E. coli, and Listeria monocytogenes.
Future applications are expected to expand throughout the food pro-
duction chain, including agricultural and aquacultural settings, where
phages may mitigate losses from bacterial pathogens (Buttimer et al.,
2017; Garcia et al., 2019)

The second phase of phage research, initiated in the 1940s, was marked
by fundamental contributions to molecular biology. Phages became model
organisms in studies of viral replication, genetic recombination, and host
interactions (Summers, 1999; Maura and Debarbieux, 2011). Max Del-
briick’s pioneering work on phage adsorption, burst size, and host lysis
led to the establishment of the T-phage series as standard research mod-
els, facilitating reproducibility and comparability in phage studies (Ellis
and Delbruck, 1939; Delbriick, 1940a,b; Sharp, 2001).

The study of phage genetics began with the construction of recombi-
national maps and was followed by the discovery of phenotypic mixing.
Subsequently, studies about the structural analysis of the regions in phage
T4 enabled others to make a closer analysis of the phage replication cycle
(Hershey and Rotman, 1949; Benzer, 1955; Epstein et al., 1963; Sharp,
2001)

The different sequence specificities of the host endonucleases from dif-
ferent strains enabled the development of site-specific DNA cleavage and
laid the foundation for the development of gene cloning. Highlighting
the ability of temperate bacteriophages to insert their genome into that
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of the host formed the basis of the development of genetic tools in mi-
crobiology (Arber and Dussoix, 1962; Gefter et al., 1966; Shapiro et al.,
1969; Sharp, 2001; Maura and Debarbieux, 2011).

Until the 1990s, phage research primarily supported the development
of molecular biology techniques and the study of gene expression regula-
tion and protein structure (Maura and Debarbieux, 2011).

The third phase, beginning in the 1990s, shifted toward understand-
ing the ecological roles of phages and their environmental applications. In
aquatic and terrestrial ecosystems, phages are now recognized as key reg-
ulators of microbial populations. In aquaculture, they have been studied
for the control of bacterial infections in fish and plants, and for the mit-

igation of harmful algal blooms caused by cyanobacteria (Withey et al.,
2005; Maura and Debarbieux, 2011).

Cyanobacterial blooms (cyanoHABs) pose an increasing threat to
freshwater systems, impacting ecosystem health and drinking water safety.
These blooms cause hypoxia, disrupt food webs, and produce potent tox-
ins. Cyanophages—viruses that specifically infect cyanobacteria—are be-
ing investigated as tools to prevent or mitigate cyanoHAB events during
early bloom stages (Grasso et al., 2022; Krausfeldt et al., 2024).

Phages are also abundant in soils, and in the gastrointestinal tracts
of humans and animals, making them common in feces and sewage. The
microbial communities in sewage are predominantly of human origin,
and phages have been proposed as indicators or tracers for pathogenic
bacteria in wastewater systems (Withey et al., 2005).

Biological sludge from wastewater treatment processes contains a
complex array of pathogenic microorganisms. As the use of sludge in
agriculture grows, concerns about pathogen transmission have intensi-
fied. In this context, phages could be employed to reduce the presence of
E. coli and Enterobacteria, minimizing the health risks associated with
sludge application (Withey et al., 2005).

Although the role of phages in wastewater treatment microbial com-
munities remains poorly understood, they are believed to influence com-
munity composition and dynamics, particularly in anaerobic digesters.
Additionally, phages may enhance sludge dewaterability and digestibil-
ity (Withey et al., 2005).
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2.2 Applications in WWTP

Much of the study on phage-bacteria interactions has been based
on pure rather than applied concerns. However, the use of phage ther-
apy has expanded to the field of wastewater treatment. Shivaram et al.
(2023) presents an overview of the use of bacteriophages to control bulk-
ing, foaming, and biofilm formation in a wastewater treatment plant
(WWTP). They indicate that most of the bacterial species responsible
for this problem have been identified, and their respective phages are
isolated to control their growth. However, the most difficult step would
be to upscale and implement current laboratory and pilot-scale stud-
ies to a large scale and assess the economic feasibility of the process.
Currently, removing only unwanted (pathogen) bacteria in the biological
unit of the WWTP is not possible using chemical methods. Therefore,
strategies must be developed to implement phage therapy in combina-
tion to reduce the use of chemicals in the immediate future followed by
the implementation of phage therapy as a clear-cut solution for biolog-
ical treatments in WW'TPs. This is a possible cause for reinvestments
in system equipment and can result in the formation of harmful byprod-
ucts. Hence, strategies must be developed to implement phage therapy
in combination to reduce the use of chemicals in the immediate future,
followed by the implementation of phage therapy as a clear-cut solution
for biological treatments in WWTPs.

In another case, bacteriophages have been used as novel tools in wa-
ter pollution control, such as monitoring pathogens, tracking pollution
sources, treating pathogenic bacteria, infecting bloom-forming cyanobac-
teria, and controlling bulking sludge and biofilm pollution in wastewa-
ter treatment systems. However, a challenge in activated sludge is de-
creased phage concentration owing to off-target adsorption. This may be
a common problem faced by phage-based technology in practical applica-
tions. It is, therefore, that before phage-based technology can be applied
to wastewater treatment, further research is needed on the community
structure and interaction mechanisms of microorganisms in wastewater
(Ji et al., 2021).

Another function of the bacteriophages in wastewater treatment sys-
tems is addressed to the phages, which could also serve as monitoring
tools and performance indicators. Detecting and identifying specific
phages can reveal insights regarding the health and stability of the bac-
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terial community and aid in predicting disturbances based on the popu-
lation dynamics of phage-host systems (Aw et al., 2014; Stefanakis et al.,
2019). Therefore, phages are potential indicators of effluent quality (Sil-
verman et al., 2013; Yahya et al., 2015; Boehm, 2019). Additionally,
correlating a phage ecogenomic fingerprint with treatment configuration
and operation can develop into a tool for monitoring and controlling Bio-
logical Wastewater Treatment (BWT) more quickly and reliably, shifting
from a health-related assessment to a process and engineering perspective
(Runa et al., 2021).

Wastewater treatment plants (WWTPs) harbor a considerable diver-
sity of antibiotic remnants and a high bacterial load in the same space for
an extended period, facilitating the emergence of antimicrobial-resistant
bacteria (ARB) and antimicrobial resistance genes (ARGs). Existing
treatment methods are unable to completely eliminate ARB and ARGs,
which are ultimately released into the aquatic environment (Reisoglu
and Aydin, 2023). Pallavali et al. (2023) isolated the multidrug-resistant
bacterium Aeromonas spp. and its lytic phage from livestock WW'TP.
They found that the phage effectively reduced the bacterial population
from 65.7 to 20% after 24 hours of incubation. Then, the dose of phage
in mixed cultures could mitigate the population of a target bacterium,
which can spread antibiotic traits to wastewater treatment processes and
receiving water basins. Therefore, these results indicate that lytic phages
can be an alternative method to reduce antibiotic resistance in wastew-
ater without the presence of chemical byproducts. Nevertheless, further
studies on the use of phage cocktails and accurate ARB monitoring of
phage treatment will be required to enhance the efficacy and stability of
ARB control in wastewater treatment systems.

Last, bacteriophages can be beneficial in controlling biofouling in
wastewater systems that harbor unwelcome microorganisms, disrupting
the bioreactor treatment process. While membrane bioreactor systems
are advanced wastewater treatment strategies and known for their higher
elimination capacity than the traditional ones, biofouling as an environ-
mental and medical problem resulting from the augmented antibiotic
resistance in biofilms is an inescapable challenge in membrane bioreactor
systems, and it hampers the working of the system (Zhen et al., 2019).
An example of phage application in solving membrane biofouling prob-
lems is indicated by Ayyaru et al. (2018). They have monitored the
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effect of lytic phages on membrane biofouling by isolating a bacterium
and its respective phage from municipal wastewater. When they investi-
gated the impact of bacterium and phage suspension using permeability
flux and SEM, they reached out to the success of lytic phage on bacte-
rial inhibition and elimination of biofilm formation (Reisoglu and Aydin,
2023).

2.3 Experimental results

Most reports on the use of phages in wastewater treatment focus
on isolating phages from Wastewater Treatment (WWT) and proposing
their possible use; however, none of them have proven this potential. The
PUCV group studied the control of bulking and foaming through phage
therapy and conducted some previous experimental work on this subject.
A Chilean WWTP with foaming and bulking problems was studied. The
results of the sequencing analysis allowed the identification and quantifi-
cation of the abundance of filamentous bacteria present. The identified
filamentous bacteria belong to the genera Thiothriz, Sphaerotilus and
Gordonia. In this study, it was concluded that the bulking problem was
caused by an average increase of 48% in the proportion of Thiothriz.
Meanwhile, an increase in the proportion of Gordonia was observed in
all foam samples, confirming that this bacteria is responsible for the ap-
pearance of foam in the reactor (Lafitte, 2019).

Subsequently, assays were conducted to determine treatment effec-
tiveness and the optimal dosage. A complete factorial design with three
bacteriophage concentration levels (1.19-107, 1.19-10%, and 2.25-107PFUg;éS
), and three daily dosage levels (1, 2, and 3 per day) were used for the ex-
periments. The response variable evaluated was the Gordonia percentage
reduction in the sludge. It was found that the best treatment occurred
with the lowest number of doses and at the highest concentration. Thus,
it was concluded that the behavior of bacteriophages is not linear with
respect to their lytic power and concentration but rather obeys an opti-
mal relationship between the bacterial metabolism that they attack and
the number of bacteriophages capable of adhering to the bacteria without
destroying them before they replicate within them. 1.19 - 103 PFU g;és
was estimated as the minimum concentration required to eliminate foam-
ing by reducing at least 50% of Gordonia present in the reactors (Lafitte,
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2019).

In addition, the disappearance of the foam was qualitatively evalu-
ated, and the existence of any change at the microscopic level in the
configuration of the flocs in the sludge; these results can be observed in
figures 2.1 and 2.2. Figure 2.1 shows the 40x Gram-stained microscopic
photographs before and after the phage application treatment. The de-
crease in Gordonia after the phage was applied to the system is clearly
evident. Figure 2.2 shows the continuous activated sludge system be-
fore and after the phage application. It is clear that foam reduction was
complete within 24 hours of phage application.

TR “faer v
R s > S

(a) Before the phage dose (b) After the application of phage
doses

Figure 2.1: Gordonia. Microscope photographs at 40x. Images taken
from Lafitte (2019).

This study met its objectives and opened the door to new research
into the control of bulking and foaming with bacteriophages. However,
a major challenge, which has not been resolved to date, is the difficulty
of culturing a large proportion of the phages present in WWTP. Thus, a
study of the kinetic parameters made sense at this point.

The following study was focused on determining the kinetic and in-
fection parameters of the bacteria-phage pair. In this study, Gordonia
rubripertincta and its respective phage GRU1 were used. Depending
on the supplemented medium, a specific growth rate (MIU) was deter-
mined between 0.036 and 0.24 h-1. Despite multiple efforts to obtain
lysis plaques with G. rubripertincta phages, obtaining a homogeneous
culture and lawn of Gordonia was difficult. Once these difficulties were
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(a) Reactor with bulking/foaming (b) Settler with bulking/foaming
problems problems

(c) Settler before the application of (d) Settler after the application of
phage doses phage doses

Figure 2.2: Continuous activated sludge system. Images taken from
Lafitte (2019).

overcome, lysis plaques were obtained. However, once the phage was
characterized and despite repeated one-step assays for almost 7 hours
(sufficient time for eclosion to take place), it was not possible to observe
the release of viral particles, that is, the eclosion (Toledo, 2022).

Parameter estimation is probably the biggest challenge, given the
difficulty of collecting informative experimental data. Process modeling
plays a fundamental role in this regard, as it allows us to study a process
in silico with less laboratory experience.

Mathematical modeling of microbial populations has a long history
of application in ecology and biology. Although the field has considered
modeling bacterial populations affected by phage activity, this has not
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been a major focus, particularly in wastewater treatment. Models have
tended to focus more on ecological and evolutionary issues than on the
effectiveness of a particular phage treatment in controlling a bacterial
population (Cairns et al., 2009). A mathematical model can help control
the process on a large scale, and the inclusion of a predation mechanism
is a new addition to the existing activated sludge models (Moussa et al.,
2005).

2.4 Modelling challenges

Monitoring bacterial growth kinetics could be based on the relations
presented in the previous sections, obtaining the parameters associated
with logistic and Monod laws (specific growth rate, carrying capacity,
etc.). This approach is mostly useful in pure cultures where it is easy to
collect data, but it is much more delicate, or even impossible, in full-scale
operation, with consortia of micro-organisms.

On the other hand, infection parameters can be determined with ad-
ditional tests. For instance, latent period and burst size can be de-
termined by one-step growth assays, and the adsorption constant can
be determined according to a standard published protocol Hyman and
Abedon (2009). However, it is also observed that these parameters could
be time-varying and that additional modeling effort is required (Hadas
et al., 1997; Abedon et al., 2001; Golec et al., 2014; Santos et al., 2014,
Garcia et al., 2019).

de Leeuw et al. (2017) used microtiter plates (which served as multi-
ple micro-scale eco-systems) and studied the predator-prey relationship
between bacteria and phage isolated from wastewater treatment biore-
actors. The shifts in the bacterial population were monitored through
the optical readings from the plate reader, and a mathematical model
incorporating phage-bacteria interactions was developed and calibrated
using Matlab. However, only the total bacterial population was observed,
whereas monitoring the phage population and substrate concentrations
would be valuable, and represents an actual challenge in monitoring and
controlling wastewater treatment.

Nabergoj et al. (2018) investigated how dilution rate, defining bacte-
rial growth rate in continuous culture, affects adsorption constant, latent
period, and burst size and consequently also bacteriophage population
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growth rate. They used a well-studied phage T4 and E. coli K-12 as a
host in a chemostat. The authors demonstrated that bacterial growth
rate had an important influence on three phage growth parameters, e.g.,
adsorption constant, latent period, and burst size, determining the bacte-
riophage population growth rate. Also, bacteriophage population growth
rate as a function of dilution rate was found to be accurately described
by a simple Monod equation. From these results, the question emerges if
these changes in infection parameters are general or depend on the choice
of a phage-host system, which adds to the difficulties of parameter esti-
mation.

Another challenge for the application of bacteriophage treatment at
the industrial level is the large number of phages that should be pro-
duced, so that cost-effective and scalable methods for phage production
are required to meet the demand. In this connection, computational
models could also assist the optimization of such production processes,
and are an open research avenue. In this connection, Krysiak-Baltyn
et al. (2018) proposed a model for a two-stage, self-cycling process, which
was successfully operated without showing evidence of resistant bacteria.
The model developed for a setup with multiple reactors provided simple
cost estimates as a function of operational parameters such as substrate
concentration, feed volume, and cycling times. They concluded that the
approach is flexible and could be used to optimize phage production at
a laboratory or industrial scale by minimizing costs or maximizing pro-
ductivity.

2.5 Practical applications of computational
models in activated sludge processes

Single reactor models have been essential to increasing our under-
standing of some aspects of the system dynamics, but these models may
not be adequate to simulate the spread and propagation of phages in the
complex and varied configurations of real-world systems, including the
sewage pipes and wastewater treatment plants. In that sense, few au-
thors have studied phage treatment. One of the first foaming studies was
accomplished by Blackall et al. (1985), who analyzed the onset of foam
formation and subsequent persistence of foaming in terms of a mathe-
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matical model for Nocardia amarae (filamentous bacteria) described by
two balance equations.

Using experimental data, the authors determined that the foam acted
as a significant source for continued bacteria growth in the mixed liquor,
which would make it difficult for the microorganisms to wash out. Also,
activated sludge systems are sensitive to changes in key variables that
could lead to the onset or disappearance of foam. They concluded that
such a model is helpful, but that there are difficulties in obtaining mean-
ingful values for some parameters, especially if more than one filamentous
organism is dominant (Soddell and Seviour, 1990).

Hao et al. (2011) presented a model to simulate a sequencing batch
reactor (SBR) system enriching polyphosphate-accumulating organisms
(PAQOs). For this purpose, they proposed extending the Activated Sludge
Model No. 2d (ASM2d) to incorporate predation and viral infection pro-
cesses. In order to include predation and viral infection, the decay pro-
cess in ASM2d was split into three individual processes, e.g., predation-
induced decay, viral infection-induced decay, and other factors-induced
decay (e.g., toxic substances, natural cell death, etc.). Correspondingly,
the stoichiometric matrix and kinetic rate expressions related to preda-
tion and viral infection were added to the extended ASM2d.

For foaming treatment, Liu et al. (2015) isolated Gordonia species
from activated sludge of a commercial wastewater treatment plant, and
four isolated phages were applied to sludge, resulting in a reduction of
Gordonia host levels in a wastewater sludge model by approximately 10-
fold as compared to non-phage-treated reactors. In addition to control-
ling Gordonia levels in activated sludge, phage-treated sludge at the end
of the experiment showed better settling properties and lower foaming
potential in the supernatant after settlement compared to the control.
They concluded that phages applied for bio-control could survive during
sludge aeration, providing significant potential for phage application in
controlling Gordonia-associated foaming and bulking during wastewater
treatment (Liu et al., 2015).

Recently, Krysiak-Baltyn et al. (2017) proposed a model incorporat-
ing phage dynamics in wastewater treatment for two reactor configura-
tions, SBR (Sequencing Batch Reactor) and PFR (Plug Flow Reactor),
to investigate the potential use of phages as a tool to reduce foaming or
bulking. The model couples wastewater treatment dynamics within the
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commercial software GPS-X (Hydromantis Inc.) with phage dynamics
through a newly developed add-on called PhageDyn. Simulations pre-
dict that immediately after phage dosing, there is a lag period during
which no apparent changes are observed, followed by a sudden and quick
increase in the phage concentration and reduction in foaming biomass.
"Normalization” without foaming is achieved within 1-2 weeks after dos-
ing. The system may subsequently relapse to foaming, requiring addi-
tional phage dosing, or be “cured” such that the added phages keep the
problematic foaming biomass indefinitely at bay. The behavior described
by Krysiak-Baltyn et al. (2017) has been the closest to reality, although
the Delay Differential Equations (DDE) system had to be reformulated
into a set of Ordinary Differential Equations (ODEs) due to computa-
tional challenges. They concluded that the kinetic parameters describing
the behavior of the phages and reactor configuration are vital determi-
nants of the outcome.
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Chapter 3

Bacteria—Phage Population
Model

3.1 An overview of bacteria-phage popula-
tion models

To introduce dynamic models of bacteria-phages systems, a good ap-
proach is to introduce the concept of compartments, representing the
different components of the system, and to go from simple to more de-
tailed models.

As a start, the growth of bacteria, which can be represented by dif-
ferent kinetic laws, has to be described. The kinetic expressions that
have been most commonly used in modeling bacterial growth include the
Malthusian (Malthus, 1798)

dx
e e X, 3.1
il (3.1)

and Logistic (Verhulst, 1838)

dX
dt

= /vLmaLB(l - )X7 (32)

Xmax
expressions, where X is the concentration of bacteria, fi,,q, the maxi-
mum specific growth rate and X, is the carrying capacity of the en-
vironment. The Malthusian model is appropriate to describe the early
exponential growth, but has limited applicability. The logistic model has
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the interesting added feature that it provides an equilibrium state at the
carrying capacity, which represents the maximum population that can
be sustained by the resources of the environment.

The next logical level is to explain the growth by the consumption of
a limiting substrate (S) as represented by the Monod law (Monod, 1950)

dX S

Y = Mmax(m

- )X, (3.3)

where Kg is the half-saturation coeflicient.

However, attempts to fit the growth of filamentous organisms in acti-
vated sludge with simple models such as those mentioned above have not
been successful, due to interactions between microorganisms. Microbial
growth in an activated sludge plant occurs in the presence of a diversity
of organisms, among which antagonistic and symbiotic relationships ex-
ist. To take account of the interaction with a predator, it is necessary to
turn to predator-prey models as proposed in the seminal work of (Lotka,
1925; Volterra, 1926). This corresponds to a 2-compartment model

O = m(P)X = (@ 3P)X, (3.40)
% = 12(X)P = (—p +nX)P, (3.4b)

where X and P are the prey and predator populations, respectively,
p1(P) and pe(X) are specific growth rates with parameters «a, 0, ¢ and n
describing the natural growth or decay and the interaction between the
two species. This model can be modified in various ways, for instance
by introducing logistic growth, limited predation, the consumption of a
limiting substrate following a Monod law, etc.

Campbell (1961) proposed such a model, under the assumption that
a bacterium can only be infected by one phage and the burst size, i.e.,
the average number of newly synthesized phages released from a single
infected bacterium, is constant. In a batch (no in- and outflow) reactor,
the model of the system could be first written as follows

dX X

— =pu(X)X —0XP = 1— X —0XP. .
o WOX = 0XP = a1 = )X —0XP, (350)
dP
= = —0XP + B0X(t—71)P(t —7) — 1, P, (3.5b)
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where the susceptible bacteria population X grows at a specific rate p(X)
in the form of a logistic equation and decays according to the phage
infection rate 0. X P, where ¢ is the adsorption rate which describes the
number of phages that bind to the bacterium (Shao and Wang, 2008).
The number of free phage particles decays accordingly at the rate —d X P,
in addition to the natural phage inactivation —1,P, and increases in
proportion to the production of infected cells with the burst size 8. The
production of new phages is not an instantaneous phenomenon, but takes
place after a latency phase 7.

Remark 1. The consideration of a latency phase T results in a Delay
Differential Equation (DDE) system, which is significantly more difficult
to solve and to analyze.

To better understand the concept of the latency phase, it is necessary
to delve into its principles. The latent period 7 represents the time
elapsing from the instant of infection, i.e., when the content of the virus
head is injected inside the bacterium, to the instant of the bacterium cell
wall lysis, at which a number of copies of assembled phages are released
in solution (Beretta and Kuang, 1998). The processes that occur during
the latent period include (Weitz, 2016):

e translocation of viral genetic material from the periplasm into the
cytoplasm,

e replication of genetic material and production of virus particle com-
ponents,

e packaging of viral genomes into viral heads,

e disruption of the cell surface and release of viral progeny.

In this time span, the eclipse period F is the time it takes for intact
virus particles to appear (Wang et al., 1996), and the moment at which
cellular lysis would lead to the potential continuation of a viral infection.
The maturation rate R represents the increase in phage progeny per
unit of time, occurring in the lapse of time 7 — E, and the burst size
determines the number of phages released in the event of bacterial lysis

29



3.1.

OVERVIEW CHAPTER 3. BACTERIA-PHAGE MODEL

or rupture (Abedon et al., 2001, 2003). The relationship between these
variables is described by the following equation.

B=(r—E)R (3.6)

Burst size and the phage generation time are controlled by the phage
latent period, with a directly proportional relation between burst size
and latent period, i.e., greater burst sizes associated with longer latent
periods (Abedon et al., 2001).

Levin et al. (1977) extended the previous model by considering two
distinct bacterial populations, i.e., the susceptible bacteria Xg and the
infected bacteria X, both feeding on a limiting resource S (see equation
3.7d). They also pointed out that Campbell’s model did not take the
removal of infected bacteria due to dilution in a continuous process into
account. The proposed model takes the following form

dXdSt(t) = 1u(8)Xs(t) — 6Xs(t)P(t) — DX(t), (3.7a)

dXC'ZIt(t) = 6Xs(t)P(t) — e’ Xs(t — 7)P(t — 7) — DX1(t),  (3.7b)
d};—it) = —0X5(t)P(t) + BeP6Xs(t — 7)P(t — ) — v, P(t) — DP(t),

(3.7¢)

%it) = D(Sin — S(t)) = vsp(S) X (1), (3.7d)

Xr(t) = (Xs(t) + X1(t)). (3.7¢)

where D is the dilution rate and the factor e(=?7) represents the dilution

effect on a time span 7 (the delayed populations should therefore be di-
vided by this factor) and S;, is substrate concentration in the feed. The
growth rate p(S) could follow various laws, e.g., Monod law.

Remark 2. The substrate consumed by a cell is used for: (i) growth,
including substrate incorporated into biomass and used to generate en-
ergy for biosynthesis; (ii) maintenance of cellular viability, where sub-
strate is utilized to produce energy for non-growth-related functions such
as nutrient transport, osmotic balance, and others; and (ii1) producing
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extracellular metabolites, which may or may not occur depending on the
microorganism (Pirt, 1965; Acevedo et al., 2004). Since, in an infected
bacterium, the phage seizes control of the cellular machinery to produce
new viral particles, cell growth is arrested. Consequently, substrate con-
sumption by X; is solely attributed to maintenance metabolism and/or
phage production. Levin’s model assumes that the total bacteria popula-
tion X1 consumes substrate at a rate proportional to p, implicitly assum-
ing that the maintenance rate of X; would be equal to .

Anderson and May (1981) developed a population model of micropar-
asites and invertebrate hosts. This model extends the previous by con-
sidering a death phenomenon affecting the susceptible and infected indi-
viduals, a recovery of infected individuals to susceptible ones, and a lysis
of infected cells.

dXdSt(t) = n(Xs(t) + Xi (1)) = 6Xs()P(t) — 7 Xs(t) + pX1(t), (3.8a)
dXC'lzt(t) = 0Xg(t)P(t) — nX (t) — v X (t) — pX (1) (3.8b)
%tt) = —0Xs()P(t) +nX:(2), (3.8¢)

where 7 is the death rate of the susceptible and infected bacteria. 7 is
the lysis rate giving rise to the release of phages, and p is the recovery rate

Remark 3. This model does not consider a limiting substrate nor dilu-
tion effects. It assumes that both susceptible and infected bacteria grow
and die at the same rates, p and vy, respectively. Interestingly, it relates
the lysis and phage production directly to the infected bacteria population,
avoiding the explicit consideration of a latency period applied to the sus-
ceptible and phage populations. Mathematically speaking, the delay T s
replaced by a time constant 1/n, which has two advantages: (a) the model
equations are simple ordinary differential equations and (b) the lysis rate
can be different from the infection rate. However, the model assumes that
the production of phages also occurs at the same rate .

Later on, Beretta and Kuang (1998) considered a similar model, with
a logistic factor for the growth phenomenon (where X, is the carrying
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capacity), no recovery rate, but a parameter [ for the production of
phages.

dXs(t) Xs(t) + Xi(t)

S - OO v ) xstirn, @
d)izlt O _ sx(t)P@#) — X0, (3.9b)
WO _5x50)P) + BXi(D) — v, PL1) (3.9¢)

On the other, Payne and Jansen (2001) considered a slightly different
structure, where both bacteria populations are growing at the same rate

L.

dXS(t) _ MXS(t) _ 5Xg(t)P(t), (3,10&)

dt
d)ilft(t) = puXp(t) + 0Xs(t)P(t) — nXy(1), (3-10)
dpP(t) = —6Xs(t)P(t) + BnX(t) — v, P(1). (3.10¢c)

dt
Remark 4. The latter models no longer consider a latency phase, and
have the advantage of being described by ordinary differential equations.
They differ mostly in the expression of the growth, infection, recovery,
lysis, and phase production rates.

Siekmann et al. (2008) extended the model of Beretta and Kuang
(1998) by adding an evolution equation for viruses Pr(t) that are confined
in their host.

ddet(t) = Hmaz (1 — W)Xs(t) —6Xs(t)P(t),  (3.11a)
d)izlt(t) = 0Xs(O)P(t) —nX:(t), (3.11b)

deIt(t) = pmaaPr(t) — c%(f) —anPy(t) +6Xs()P(t)  (3.11c)
%Et) = anPi(t) = 0Xs()P(t) — v, P(1), (3.11d)

where 0 < o < 1.
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Remark 5. This model assumes a logistic growth of the susceptible bac-
teria (carrying capacity Xma.) and of the host viruses (carrying capacity
X1). 1t is, however, questionable why the same unlimited growth rate
Imae applies to both Xg and Py, since Py is related to Xy, which has no
growth.

In systems where infection occurs, the possibility exists that the
pathogen becomes resistant to the treatment (e.g., bacteria may become
resistant to antibiotics, which must then be administered in certain doses
for a certain time to prevent the occurrence of this phenomenon). Simi-
larly, the susceptible bacteria could become resistant to the phage treat-
ment due to natural mutation. Cairns et al. (2009) included a mutation
rate € from susceptible Xg(t) to resistant bacteria Xg(t), leading to

d)izst(t) = 1nXs(t) = 0Xs(t) P(1) — eXs(1), (3.12a)

d)iijt(t) = 0Xs(t)P(t) = 6Xs(t — 7)P(t —7), (3.12b)
dXp(t)

o~ HXR(t) +eXs(h), (3.12¢)

%f) = —0Xs(t)P(t) + BoXs(t — T)P(t —7) — 1, P(t).  (3.12d)

Santos et al. (2014) slightly modified the previous model by including
a limiting substrate as in some of the earlier models (Levin et al., 1977),

d)ilst B _ (9)Xs(t) — 6X5(1) P(1), (3.13a)

dXd_ft(t) = 0Xs(t)P(t) — 6Xs(t — 7)P(t — 7). (3.13b)
P _ )Xt (3130)

O 5x50)P) + B3Xs(t ~ 7Pt 7). (3.134)
as(t) _ v uXp(t) = —vau(Xs(t) + X1(t) + Xg(2)). (3.13¢)

t
where u(S) is a Monod law.
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Having presented an overview of existing models, the objective of
the next section is to propose a simple model that contains most of the
distinctive features highlighted in previous studies and would be appro-
priate to describe bacteria-phages system in the context of wastewater
treatment.

3.2 A candidate model of bacteria and phage
populations

A simple model, which would be suitable to describe experimental
results in the context of wastewater treatment, could take the following
factors into account:

e the bacteria-phage populations develop in a bioreactor with a lim-
iting substrate and dilution rate (which can be set to zero for batch
operation);

o the growth kinetics u(.5) of the susceptible bacteria can take various
forms, notably the Monod law;

e the infected bacteria do not grow but instead maintain metabolism
and/or produce phage using the same substrate at a rate m (a
feature that has not been described in earlier models, which either
assume growth or maintenance at the same rate);

e the infection rate is proportional to Xg(¢)P(t) with a rate d;

e 7 is the lysis rate (the lysis and release phenomena are represented
by rate equations rather than by introducing a delay, which is a
mathematical idealization complexifying the model structure) ;

e [ is the release rate of new phages;
e vp is the natural decay of the free phages;

e natural decay rates of the susceptible and infected bacteria (which
should probably be set to different values in contrast with the earlier
models) could be easily introduced but are not taken into consider-
ation, as probably negligible with respect to the other phenomena.
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The resulting model equations are given by:

dXs(t)

— = MS)Xs(t) = 0Xs(1)P(t) = DXs(1), (3.14a)
d)iilt(t) = 0Xs(t)P(t) —nX1(t) — DXy(1), (3.14b)

%ﬁt) = —0Xs(t)P(t) + pnX;(t) — v,P(t) — DP(t), (3.14c)
%Et) = 1, (u(S) Xs(t) + mX (1)) + D(Sin — S(t)). (3.144)

This model has the advantage of being in the form of a first-order Or-
dinary Differential Equation (ODE) system, thus amenable to a classical
state-space representation.

= f(z,u) (3.15a)
y=Cx (3.15b)
with the following definitions corresponding to equations 3.14
Xs fxs(@)
_ X1 _ fXI (I)
S fs(SC)

The vector y(t) represents the set of measurements that can be collected
either for parameter identification purposes or for the design of software
sensors monitoring the bioreactor. The matrix C' describes the selection
or linear combination of specific state variables. Note that this matrix
C' can be different in the two above-mentioned tasks. Indeed, parameter
estimation can be based on off-line and on-line measurements, whereas
software sensors can only use on-line measurements.

3.3 Model simulations

As noted earlier, the proposed model offers the advantage of be-
ing a system of ordinary differential equations (ODEs), which simpli-
fies both numerical implementation and analytical manipulation. ODE-
based models are preferred in engineering applications due to their com-
patibility with standard numerical solvers and state-space representation.
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Some authors—such as Anderson and May (1981); Beretta and Kuang
(1998); Payne and Jansen (2001); Siekmann et al. (2008)—have em-
ployed delay differential equations (DDEs) to account for the latency
period between infection and lysis. The inclusion of a delay parameter 7,
reflects biological reality but increases the mathematical and computa-
tional complexity of the model. By contrast, other researchers—such as
Campbell (1961); Levin et al. (1977); Cairns et al. (2009); Santos et al.
(2014) |—have opted for ODE-based formulations, modeling lysis with
an exponential rate n instead of an explicit delay. Both approaches have
demonstrated validity across diverse domains, including phage therapy
and aquatic disease modeling.

All simulations presented here were performed using MATLAB (The
MathWorks, Natick, MA, USA), employing the ode!5s solver. This solver
is well-suited for stiff ODE systems and utilizes a variable-order backward
differentiation formula (BDF). Stiffness may arise in phage—bacteria mod-
els when the system exhibits both slow dynamics (e.g., substrate deple-
tion) and rapid transients (e.g., lysis bursts or infection spikes). Stiffness
arises explicitly when hydrodynamic and biological time constants coex-
ist within a model. Moreover, the bacteria—phage model becomes stiff
when it incorporates fast viral infections (e.g., minutes) relative to slow
bacterial growth (e.g., hours). This stiffness is further exacerbated by
the inclusion of very fast hydrodynamic processes (e.g., seconds). The
substantial disparity in time scales renders the system numerically stiff,
requiring specialized solution techniques. In such cases, odel5s is more
efficient than explicit solvers like ode45, which require prohibitively small
time steps to meet error tolerances.

The parameter values used in the simulations are listed in Table 3.1.
Key parameters such as the maximum bacterial growth rate fi;,q., ad-
sorption rate o, and burst size § beta were experimentally estimated
for the pair Gordonia westfalica and its lytic phage, previously isolated
and characterized in foaming samples from PUCV laboratories (Lafitte,
2019; Toledo, 2022). These values are within the range of values re-
ported in the literature (Abedon et al. (2001); Wang (2006); Shao and
Wang (2008)). The laboratory analyses carry out only allowed the esti-
mation of some parameters (fmqz, 9, and [ ); however, to perform full
parameter identification and estimate the remaining unknown parame-
ters using the model 3.14, monitoring of infection kinetics under varying
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conditions is required. Previous research did not include such data, as
it was not the objective of the study; hence, the remaining parameters
were sourced from established models Payne and Jansen (2001); Cairns
et al. (2009); Santos et al. (2014).

Table 3.1: Model parameter values.

Parameter Value
Bacteria Lomaz(B7) 0.4298
growth Ky (mgmL™1) 0.39
Bacteriophages d&(mL CFU'PFU-*h™1) 3.02-107°
proliferation B(PFU CFU™) 110
(Infection) n(h™1) 0.5
Other vs(mg CFU™Y) 1.23-107°
parameters vp(h™h) 0.01032
m(h™) 1.10°
Operational Sin(mg mL™) 4
parameters D(h™) 0.1

To assess the model’s behavior, we simulated the impact of three
critical infection-related parameters: the burst size [, the lysis rate 7,
and the adsorption rate 9.

Figure 3.1 illustrates the effect of increasing burst size 5 on popula-
tion dynamics. The burst size, which represents the number of phages
released per lysed bacterium, is an intrinsic property of the phage—host
interaction. Literature reports average values of 60 PFU per cell, with
ranges spanning from a few units to over 200.

In all cases, it is evident that phage release affects bacterial control,
as the bacteria do not continue their characteristic exponential growth.
Therefore, regardless of the number of phages released, the development
of Gordonia is slowed.

Our simulations demonstrate that higher burst sizes intensify bac-
terial suppression and introduce oscillatory behavior as the system ap-
proaches equilibrium (a phenomenon that will be explored in the next
chapter). Oscillations emerge for § > 100, which suggests a dynamic
balance between infection and recovery cycles.
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Figure 3.1: Time evolution for different burst sizes. Initial conditions
Xgo = 1- 106 C’FUmL_l, X0 = O, P, =1- 102 PFU mL~" and
So = 0.1 mg mL~*. Burst size in order black, blue, red, and green are
50,100, 150,200 PFU CFU .

Regardless, the burst size is an intrinsic property of a bacteriophage;
this parameter is determined by the phage’s genetic makeup and its in-
teraction with the host, making it a specific trait of that phage-host pair.
In this sense, a correct selection of the bacterial-phage pair is crucial for
the effective application of phage therapy as a control.

Figure 3.2 explores the effect of varying the adsorption rate §. This
parameter reflects the rate at which phages encounter and successfully
attach to host cells. Its value depends on phage and host concentra-
tions, environmental conditions (e.g., temperature, pH), and intrinsic vi-
ral properties. Typical values fall within the range of 1078 to 10~ 1%mlmin !
for different phages.

Simulations show that faster adsorption rates accelerate bacterial de-
cline and enhance phage proliferation. The adsorption rate is influenced
by phage concentration, bacterial concentration, and the phage’s intrinsic
adsorption rate constant. However, operational parameters such as tem-
perature or pH have a significant effect on the adsorption rate constant
(Jeon and Ahn, 2021; Pradeep et al., 2022; Abedon, 2023).

The phage lysis rate, 1 is directly associated with the lysis time, which
is typically measured in minutes. Some studies have found optimal lysis
times between 60 and 100 minutes. Other research has identified lysis
times that range from as short as 30 minutes to as long as 120 minutes
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Figure 3.2: Time evolution for different absorption rates. Initial condi-
tions Xgg = 1-10° CFU mL™', X790 =0, Py = 1-10?> PFU mL~! and
So = 0.1 mg mL~'. Absorption rate in order black, blue, and red are
1-1078,1-107%,1- 107 9YmL CFU'PFUt h~L.

(Shao and Wang, 2008; Payne and Jansen, 2001; Kannoly et al., 2022).
Figure 3.3 analyzes the influence of the lysis rate 7, which determines
the average time between infection and cell lysis.

6 8
35710 , , , , , 210

Concentration (CFU mL")

50 100 150 200 250 300
Time (h) Time (h)

(a) Susceptible bacteria (b) Infected bacteria

Figure 3.3: Time evolution for different lysis rates. Initial conditions
Xgg = 1-10° CFU mL™, X390 = 0, By = 1-10> PFU mL™! and
So = 0.1 mg mL~'. Lysis rates in order black, blue, red, and green
are 0.5,0.67,1,2 A 1.
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Shorter lysis times (higher 7) result in faster phage production and
more rapid bacterial control. Our results indicate that variations in n
primarily affect phage concentration and infection timing, rather than
altering the overall qualitative behavior of the system. The optimal lysis
time for maximum phage progeny production can vary depending on the
phage, host, and growth conditions.

These preliminary simulations confirm that the model captures essen-
tial features of bacteria—phage population dynamics and highlights the
sensitivity of the system to infection parameters. In the following chap-
ters, the relevance and influence of these factors on the model will be
explored in greater depth.

3.4 Discussion

The proposed model shares conceptual similarities with the classical
SIR model used in epidemiology, where individuals transition between
Susceptible (5), Infected (I), and Recovered (R) compartments. In our
case, susceptible bacteria (Xg) become infected (X;) upon contact with
phages, and ultimately lyse, contributing to the free phage population
(P). This structure, while simplified, is versatile and widely used in
disease modeling and ecological studies.

The historical models discussed in Section 3.1 were developed in di-
verse fields. The first models presented (Malthus (1798); Verhulst (1838);
Monod (1950); Lotka (1925); Volterra (1926)) , were developed to model
the population growth of the age and/or ecological purpose. Verhulst
(1838) used the model to study population growth in Belgium, London,
and Paris, among others. Meanwhile, Lotka (1925) had been studying
chemical reactions, and Volterra (1926) the fish population when they
arrived at the same mathematical expression. While not all were origi-
nally designed for wastewater treatment or phage therapy, they provide
foundational insights into population interactions and resource dynamics.

Many of these models have not been validated experimentally, often
due to limitations in available data or methodological complexity. For
example, Campbell (1961) formulated a nonspecific model focusing on
infection properties, this model was developed from a consideration of
the biology of the interacting species, but was not very specific about the
nature of the habitat and took no account of the relationship between
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prey growth and the availability of primary resources. Although this
model was not explicitly validated, many authors took Campbell’s model
as a basis for their models. Similarly, Beretta and Kuang (1998) and
Siekmann et al. (2008) developed models to describe viral dynamics in
marine plankton communities, without direct empirical validation.

In contrast, Payne and Jansen (2001) formulated a model for phage
therapy, examining the outcomes of phage therapy and antibiotics. They
found that there are situations in which earlier inoculation can be less
efficacious, and simultaneous inoculation with antibiotics can be detri-
mental to phage therapy. Their therapeutic responses were made using
formulae dependent on biologically meaningful parameters. Therefore,
they suggested that experimental measurement of the parameters should
be a prerequisite for applying the model to particular study systems.

Validated models are more common in phage therapy, where systems
can be controlled in laboratory or clinical settings. For instance, Levin
et al. (1977) conducted experiments with E. coli B and K12, and the
virulent bacteriophage T2, to examine the appropriateness of the the-
ory developed in their model of the phage-bacteria interaction. In the
study of a one-resource, two-prey, and one-predator system, although the
equilibrium predicted by the model was a reasonable analogue of the ex-
perimental system, the behavior of the laboratory populations deviated
from the theoretical predictions in one significant way. Nevertheless, the
Levin et al. (1977) model was the basis for the development of other
models, such as the Santos et al. (2014) model.

Despite their long history, phage therapies have been overshadowed
by chemical antibiotic therapies over time. However, in recent years,
renewed attention has been given to this phenomenon; accordingly, in-
terest has shifted to validating such models with data from a variety of
bacterial species and virulent phage strains. There is some interest in
Campylobacte Jejuni, as a human pathogen that ranks among the major
causes of infectious gastroenteritis (campylobacteriosis). However, phage
therapy against C. jejuni is not only crucial in human medicine, but
is also relevant to agricultural and veterinary applications. e.g., phage
therapy of poultry before slaughter or of meat before packaging could
potentially prevent campylobacters from entering the food chain. Cairns
et al. (2009) focused their work on the C. jejuni-phage system, fitting
the model to time series data to estimate thresholds and rate constants
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directly, finding that their simple model fits the data surprisingly well
(Cairns et al., 2009).

Additionally, Santos et al. (2014) developed a mathematical model
that can predict and explain the basic behavior of phage-bacteria pop-
ulation dynamics. The authors studied a Salmonella enterica serovar
strain S1400 and its Salmonella phage PVP-SE1 as therapeutic use. The
experimental validation of the model was performed using data from
phage-interaction studies conducted in a 5 L bioreactor, and the model’s
output was found to match the experimental data closely (Santos et al.,
2014).

These examples illustrate the progressive convergence of theoretical
and empirical modeling in recent years, particularly in medical, agricul-
tural, and food safety applications. The relevance of such models to
wastewater treatment—specifically, to activated sludge systems—is sup-
ported by analogous population dynamics and environmental conditions.
However, adaptation of these models to the complexities of AS systems
requires further development.

Our proposed model incorporates both theoretical structure and ex-
perimental observations. It is intended to support diverse applications:
predicting system evolution, estimating unmeasured variables, assisting
control strategies, and guiding future experiments. Before deployment,
the model must be analyzed, including equilibrium points, stability, iden-
tifiability, and observability, which are paramount in the future exploita-
tion of the model. The next chapter focuses on this mathematical char-
acterization.
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Chapter 4

Model analysis

The theoretical analysis focuses on three aspects: operational condi-
tions, parameters, and states. In the following, we focus attention on
the model analysis, including equilibrium points, stability, identifiability,
and observability, which are of paramount importance in the future ex-
ploitation of the model. This analysis was conducted for the parameter
values given in Table 3.1, which were shown in the previous chapter.

4.1 Equilibrium points

The equilibrium points are the solution of the nonlinear system of
algebraic equations

f(@) =0, (4.1)

where Z € R is an equilibrium point.

The analysis reveals that there are three possible equilibrium points,
whose location and stability may depend on the value of the dilution
rate:

e point 1 is the trivial equilibrium where there is no bacteria and no
phage (all populations are extinct);

e point 2 corresponds to a population of bacteria with no phage and

no infection, feeding on a substrate (this situation corresponds to
a reactor with no phage treatment);
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e points 3 represents the possible coexistence between the different
populations, which is a priori the equilibrium point of interest for
our analysis.

The equilibrium points are presented in Figure 4.1 as a function of
the dilution rate.
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Figure 4.1: Equilibrium points. Red dot: trivial point, blue diamond:
point 2, black square:point 3 .

The evolution of the equilibrium point 2 shows that the wash-out
occurs when D > p(S) (around D = 0.3901 A~ 1).

Points 3 is interesting to study, as it corresponds to the phage treat-
ment and the coexistence of the several populations. At low dilution
rates, the susceptible bacteria population is much smaller than with no
treatment. The infected bacteria population is washed out for dilution
rates larger than 0.3451h7L.
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4.2 Stability

The several equilibrium points have to be analyzed with respect to
their stability. An equilibrium point which is locally stable will attract
trajectories starting from initial conditions located in a close neighbor-
hood (this neighborhood is called the region of attraction of the equilib-
rium point).

Local stability is studied by evaluating the Jacobian matrix

Ofxg Ofxg 0Ofxg Ofxg
0Xg 0Xr oP oS
Ofx; Ofx; Ofx; Ofx;
= 0Xs 0Xr oP aS
A ofp  Ofp  Ofp  Ofp (42)
0Xg 0Xr oP oS
9fs  Ofs  Ofs  Ofs
0Xg 0Xr oP oS

at the equilibrium point under consideration. The eigenvalues were cal-
culated with the Matlab command eig, which returns a column vector
containing the eigenvalues of the square matrix A.The eigenvalues of A
are represented as a function of D in Figure 4.2.

The two first equilibrium points are saddle points, i.e., points char-
acterized by real positive and negative eigenvalues. This reflects the fact
that a small perturbation in the population will generate the onset of
bacteria, phages, and infection. The third equilibrium point is character-
ized by two negative real eigenvalues (stable), and two complex conjugate
cigenvalues, which are real negative for D > 0.0951~~!. For smaller di-
lution rates (D < 0.0951h71), the real part of these latter eigenvalues is
positive, yielding an unstable spiral.

Figure 4.3 presents phase plane plots for D = 0.05 h~! (subfigures
(a) and zoom (b)) and D = 0.2 h~! (subfigure (c)) for different initial
conditions and the parameters given in Table 3.1, in order to have a
deeper insight in the system trajectories. For D = 0.05 /h~!, the tra-
jectories form diverging spirals which collide into limit cycles, whereas
for D = 0.2 /b1, the trajectories form converging spirals towards the
equilibrium point 3.
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Figure 4.4 presents time evolution for D = 0.1 h~!, when a phage
concentration of 1-10? PFU mL™" is initially added. As expected, the
response converges towards equilibrium point 3 while oscillating. The
phage addition is successful from the point of view of controlling the
population of unwanted bacteria, since even though not all bacteria are
eliminated, their excessive growth is mitigated.

Finally, figure 4.5 focuses attention on the bacteria populations for
four different dilution rates, e.g., 0.05, 0.2, 0.3, and 0.42 ~!, respectively.
In the first case, equilibrium point 3 is unstable and the populations
present sustained oscillations. In the second and third cases, the equilib-
rium point is stable and the populations get to equilibrium values, while
in the last case, wash-out conditions are achieved.
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Figure 4.4: Time evolution. Initial conditions Xgq = 1-10° CFU mL™1,
Xi0=0,P=1-102 PFU mL™! and Sy = 0.1 mg mL~!. Dilution rate:
D =0.1h""
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Figure 4.5: Time evolution for different dilution rates. Initial conditions
Xgo=1-10°CFUmML™, X;9g =0, Py = 1-102 PFU mL™! and S) =
0.1 mg mL~'. Dilution rate in order black, blue, red, and green are
0.05,0.2,0.3,0.42 h~L.

4.3 Identifiability

Once a model structure is adopted, the next step in the model deriva-
tion is the estimation of the parameter values from experimental data.
A natural question arises on whether this is feasible with the data at
hand. This question is usually studied in two steps: (a) structural iden-
tifiability and (b) practical identifiability. While practical identifiability
refers to quantifying the uncertainty in parameter values when estimated
from sampled noisy measurements, structural identifiability considers an
ideal situation where the data is available in continuous time and with no
noise or errors whatsoever (Ljung and Glad, 1994; Audoly et al., 2001,
Hong et al., 2020; Lam et al., 2022). Of course, structural identifiability
is a prerequisite, which, if not achieved, should imply questioning about
the model structure and parametrization, and possibly a reformulation
of the model.

4.3.1 Structural identifiability analysis

In this study, structural identifiability is assessed referring to the con-
cept of observability as suggested by Villaverde (2019). Indeed, structural
identifiability can be seen as a particular case of observability if the pa-

49



4.3. IDENTIFIABILITY CHAPTER 4. MODEL ANALYSIS

rameters are considered as constant state variables, and it is possible to
simultaneously analyze the observability and structural identifiability of

a model using the conceptual tools of differential geometry(Villaverde,
2019).

The structural identifiability analysis is carried out for model 3.14,
regarding the vector of eight parameters (p).

p:{ﬂmax KM ) B n m Vg VP} (43)

and various possible measurement configurations, i.e., matrix C' in equa-
tions 3.15. Operational parameters, S;,, and D are known as they are
under the control of the operator.

This study is achieved using STRIKE-GOLDD (Villaverde et al.,
2019), a MATLAB toolbox that analyses the local structural identifia-
bility and observability of nonlinear dynamic models with multiple time-
varying and possibly unknown inputs. The algorithm adopts a differential
geometry approach, recasting the identifiability problem as an observabil-
ity problem. Essentially, the observability of the model variables (states,
parameters, and inputs) is determined by calculating the rank of a gener-
alized observability-identifiability matrix, which is built using Lie deriva-
tives. Unobservable variables exist when the matrix is rank deficient. If
these variables are parameters, they are called (structurally) unidentifi-
able. The procedure determines the subset of identifiable parameters, ob-
servable states, and observable (also called reconstructible) inputs, thus
performing a Full Input-State-Parameter Observability (FISPO) analy-
sis. This approach is directly applicable to many models of small and
medium-sized systems; larger systems can be analyzed using additional
features of the method (Villaverde et al., 2019).

Table 4.1 shows the results of the identifiability study with the STRIKE-
GOLDD toolbox. This analysis is first performed assuming that p is
completely unknown, x and xy wholly known; this scenario is called "4
measurements" since the four states can be measured. Afterwards, de-
pending on the known states, other measurement configurations with 3,

2 or 1 measurement are also considered.
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Table 4.1: Structural identifiability analysis.

States Parameters ;Identifiable?
Hmaz Ky vs ) 6 n vp m

4 measurements

Xg, X1, P, S X X X X X X X X Yes
3 measurements
Xg, Xp, P X X X X X X X X Yes
Xg, X1, S X X X X X X X X Yes
Xg, P, S X X X X X X X X Yes
X, P, S X X X X X X X X Yes
Xr, P, S X X X X X X X X Yes
2 measurements
Xg, X7 X X X X X X X X Yes
Xg, P X X X X X X X X Yes
Xg, S X X X X X X X X Yes
X, P X X X X X X X X No
X, P v v. X X X X X X Yes
X, P X X x v v x X X Yes
X5, S X X X X X X X X Yes
P, S X X X X X X X X Yes
Xr, P X X X X X X X X Yes
Xr, S X X X X X X X X Yes
1 measurement
Xg X X X X X X X X No
Xg v v x VvV Vv x X X Yes
Xy X X X X X X X X No
X7 v v x Vv VvV x x X Yes
P X X X X X X X X No
P v v  x Vv VvV x X X Yes
S X X X X X X X X No
S v v  x Vv VvV x x X Yes
Xr X X X X X X X X No
Xr v v  x Vv vV x x X Yes

x unknown v known.
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It is apparent that all the measurement configurations with 4 and
3 measurements (including also the situation where the total biomass
Xr = Xg + X can be measured) lead to a FISPO system. On the
other hand, the choice of measured variables becomes critical when only
2 measurements are available, and the system is not identifiable with
only 1 measurement.

Unidentifiable scenarios are therefore re-evaluated, assuming that some
of the parameters are a priori known and do not require further identifica-
tion. In practice, some preliminary experimental results may sometimes
be available beforehand which could be exploited to fix some of the pa-
rameters, e.g., tmqe and Kjy; could be estimated experimentally based on
a growth curve, § through an adsorption curve, and 3 from a one-step
test (Hyman and Abedon, 2009). Then, a few 1- and 2-measurement
configurations lead to a structurally identifiable system, where it would
be possible to estimate the remaining unknown parameters.

4.3.2 Practical identifiability: Parametric sensitivity
analysis

Practical identifiability focuses on the information content of the data
and the influence of sampling and noise. Here, the analysis is performed
in simulation and is restricted to a local parameter sensitivity analysis
around the equilibrium point corresponding to the conditions in Table
3.1.

The sensitivity coefficient was calculated as follows (Zambrano et al.,
2016):

:_/TS Ap+Ap, H—9w.t) (4.4)
(p. 1) '

where g(p,t) is the model value § at time ¢ using the parameter p,
y(p + Ap,t) is the model value ¢ at time ¢ evaluated under a change in
the parameter by Ap from its reference value p, and T is the simulation
time. To calculate the sensitivity coefficient for each model parameter,
one must change that parameter while keeping the remaining parameters
at their reference values. Since Xg, X;, P, and S profiles are available,
a sensitivity factor UQA P was calculated for each of them and evaluated by
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changing the reference parameter values by 5%. The outputs model were
integrated, and the sensitivity coefficients were normalized to facilitate
the comparison between the parameters and the different model outputs.
The results are presented in Figure 4.6.

m[ mr
vpt vl
nr nr
87 s
or St
vgr A
KM L KM L
Frax [ T Pmax
-4 -3 -2 -1 0 1 2 3 -1.5 -1 -0.5 0 0.5 1 1.5
Sensitivity coefficient (UVAP(*S%)) Sensitivity coefficient (zryA"(*S%) )
(a) Susceptible bacteria (b) Infected bacteria
ml
vpt
at
Bt
6 L
VS +
KM L
l‘max
-1 -0.5 0 0.5 1 1.5 -6 -5 -4 -3 -2
Sensitivity coefficient (U$p(i5 %)) Sensitivity coefficient (ayAp(is %))
(c) Phages (d) Substrate

Figure 4.6: Parametric sensitivity anélisis. Normalized values of JQAP for
the model outputs for a change of 5% in the parameters described in
Table 3.1.

This analysis confirms that if all the variables are measured, informa-
tion is a priori available to estimate all the parameters. The less sensitive
parameters are vp and Kj;. The natural phage inactivation coefficient
vp accounts for the stability of the phage over time, a very important
physical parameter in the infection, but that does not depend on the
operational parameters. Classically, the half-saturation coefficient K, is
more delicate to estimate if the feed to the reactor is not varied enough
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to get in the appropriate range of substrate concentrations (too high
concentrations hide this parameter, while too low concentrations make it
linearly dependent on i, ). These aspects have to be explored based on
the a posteriori estimates of the uncertainty on the actual identification
results, for instance on the basis of the Fisher Information Matrix.

4.4 Observability

Observability is the next interesting model property in view of the
design of state estimators or observers, or, in a more technical language,
software sensors, dedicated to the reconstruction of non-measured vari-
ables. This is particularly important in real case applications, where
online instrumentation is limited and the deployment of software sensors
is a key asset to monitor the plant at minimal costs. Software sen-
sors blend, or fuse, the predictive information of a dynamic model of
the process together with the measurement information from available
hardware sensors. A wide range of such state estimators, including the
extended Kalman filters, are available (see for instance, Bogaerts and
Wouwer (2003); Goffaux and Vande Wouwer (2005) for more details and
references).

The concept of observability describes the theoretical possibility of
inferring the state vector of a system from observations of the output
vector. Observability considers only the dynamic equations of the model,
including the definition of inputs and outputs, but not the actual char-
acteristics of the experimental measurements, such the noise level.

Local observability can be easily evaluated by calculating the rank of
an observability matrix, which is built as follows.

Consider a linear time-invariant system with n state variables given

by
t=Axr+ Bu, y=Cx (4.5)

where A, B and C are respectively the state transition, input and output
matrices . In the case of a nonlinear system, these matrices can be ob-
tained by computing Jacobian matrices at the point under consideration

(for instance matrix A has been evaluated for our model in Equation
4.2).
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The observability matrix is defined by

C
CA

0= |CA (4.6)

CA"
and the system is locally observable if and only if this matrix is full row-
rank (the rank calculation can be easily carried out in Matlab using the
sequence rank(obsv(A, C))).

This local analysis reveals that the model is observable around equi-
librium 3 for all possible combinations of the measurements, including
X, X;, the total biomass Xy = X, + X;, P, and S, starting with a
single measurement of one of these variables. In practice, the availability
of more measurement signals will allow improving the convergence and
robustness of the software sensor. It will also avoid loosing observability
in the case where the measured signal vanishes, provided the additional
measurement signals do not vanish at the same time of course.

Table 4.2: Structural observability analysis.

States {Observable?
Xr

n

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

N N N N N NS
T N R N N - N NN
T N N T N N N N B v
NI N N N A N N

x unknown V' known.
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The results of this local analysis are confirmed by the use of the Mat-
lab toolbox STRIKE-GOLDD, introduced earlier for the identifiability
analysis. The advantage of this tool is that it considers the original non-
linear model and provides a global analysis. Table 4.2 shows the results.
In conclusion, with at least one measured state (no matter which one),
the system is observable, and all state variables can be estimated with
an appropriate software sensor.

4.5 Model identification and discussion

In the previous sections, a detailed theoretical study was conducted.
The results obtained from the identifiability and observability analyses
yielded several possible scenarios; however, not all of them are experimen-
tally feasible. The difficulties in performing some measurements, coupled
with the lack of instrumentation and/or methodologies to determine all
the parameters and /or states, limit our ability to study only some of the
possible scenarios. We have compiled experimental data from partner
research groups and will evaluate which scenarios are actually possible
based on what can be achieved experimentally.

It is clarified that the Grupo IDIN y Servicios de Tecnologia Ltda.
(Chile) provided the following data under confidentiality agreement con-
ditions, solely for use in an academic setting. Therefore, we will refer to
the "bacteria" and the "phage" without specifying their identities. The
primary aim of this data was to control Salmonella in the agricultural
sector. This information is presented to exemplify what data can be de-
termined experimentally and what tests are performed for this purpose.
Data are shown in figures 4.7 and 4.8.

From the data presented in figure 4.7, it has been possible to ob-
tain the parameters: maximum growth rate fi,.. = 1.208 ™!, dou-
bling time tp = 34 min from the bacterial growth curve, burst size
B = 387 PFU CFU™!, and latency period 7 = 10 min from the one-
step analysis; absorption rate 3.3 - 107 mL CFU~! min~! from the
adsorption curve. Figure 4.8 shows the infection curve, from which it is
possible to observe that the bacterial concentration decreases after phage
application.
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Figure 4.7: Experimental data provided by IDIN group. (a) Left axis:

black dot, right axis: red square.

Figure 4.8: Infection curve, black dot: control curve, red square: infection
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Assuming that the data provided corresponds to the bacteria-phage
pair of interest for foaming and bulking control, out of the eight pa-
rameters considered in the model, three of them (4., 0, and ) can be
estimated through specific tests. Additionally, for a Monod-type kinetics,
a parameter identification can be made from the microbial growth curve,
obtaining the value of K;. Furthermore, as presented in 4.8, it is possi-
ble to monitor the states of X7 and P over time. With this information,
and according to the scenarios studied in section 4.3, only three of the
twenty proposed scenarios would be possible: the scenario corresponding
to two measurements (X7 and P), ), and the scenarios corresponding to
one measurement (X7 or P), with known values of ji,4:, Kpr, 0 and f.

On the other hand, we were able to obtain different phage infection
kinetics for some vibrios; Dr. Roberto Bastias’s group at PUCV provided
us with these datasets. The data are associated with various research
articles and publications (Bastias et al. (2010); Kalatzis et al. (2016);
Plaza et al. (2018); Kokkari et al. (2018). The data show different kinetics
for Vibrio parahaemolyticus and Vibrio alginolyticus and their respective
phages. The vibrios studied are associated with aquatic environments,
especially marine ecosystems. V. parahaemolyticus is a species found in
the sea and estuaries, which, when ingested, can cause gastrointestinal
illness in humans. V. alginolyticus is a marine bacterium of medical
importance, as it causes otitis and wound infections. It is also present in
animals such as pufferfish, where it is responsible for the production of
the potent neurotoxin tetrodotoxin.

Figures 4.9, 4.11, and 4.10 show the different kinetics of vibrios under
varying phages and MOIs (Multiplicity of Infection - ratio of the num-
ber of viral particles to the number of host cells in a specific infection
medium). The data indicate that the objective of the studies was to pro-
duce high phage concentrations rather than bacterial control. In these
cases, bacteria were used solely for phage propagation.
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Figure 4.9: Infection curves for V. parahaemolyticus and VP93 phage.
Black dot: bacteria, red square: phage (a) Xy = 5107 CFU mL™!,
Py=4-10" PFU mL™!, and MOI =10, (b) Xy =2.6-108 CFU mL™},
Py=18-10" PFU mL™*, and MOI = 1.
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Figure 4.10: Infection curves for V. parahaemolyticus and kvp40 phage.
Black dot: bacteria, red square: phage. X, = 6.4 - 10° CFU mL™!,
Py=4.7-10" PFU mL™', and MOI = 10.
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Figure 4.11: Infection curve for V. alginolyticus and ven2 phage. Black
dot: bacteria, red square: phage. Xo = 2.1-10" CFU mL™!, and Py =
5-10° PFU mL™*.

Again, the available experimental data correspond to concentrations
of X7 and P. The fact that the state S is not measured, despite its
quantification not being particularly complex, leads us to consider that
the model could be modified to assume a different growth pattern, such
as using a logistic equation. In that case, the parameter K;; would be
replaced by X,,.., and the parameters vg and m should be reconsidered.
These changes could enable the use of published experimental data to
validate our model. However, with the data currently available, having
only the total bacterial concentration quantified—without distinguishing
between the states Xg and X;—necessitates a reduction of our model
to such an extent that it would not be possible to estimate the missing
parameters. In this context, it would be more appropriate to analyze the
data using more general models, such as the Monod or logistic models.

Taking into account the experimental data provided and discussed, to
determine the kinetic parameters, the following tests are recommended:

e Growth curve: The bacteria’s growth in a phage-free environ-
ment should be recorded over time. Ideally, if this growth is as-
sociated with a specific substrate, or if growth can be determined
in terms of carbon availability—such as chemical oxygen demand
(COD)—the variation in substrate (COD) over time should also be
recorded.
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e Adsorption curve: The loss of free phages, in units of volume of
the infection medium per unit of time, should be monitored over
time.

e One-step: An assay in which the phages released from a host
cell infected by a phage are counted. The latent period is initially
observed, and then it can be assessed.

On the other hand, the infection assays are performed under condi-
tions of a complex, well-enriched medium, which ensures no limitation by
substrate, thereby not affecting bacterial growth. Therefore, only mea-
surements of the total bacteria and free phage states are taken over time.
However, it is recommended that COD measurements be taken over time
in future assays so that these data can be used within a wastewater treat-
ment system.

It is also recommended to perform infections with different initial
conditions, not only with MOI equal to 1 or 10, but also with initial
conditions that allow validation of the equilibrium behaviors presented
in section 4.2.

The theoretical studies developed in this chapter have been relevant
in determining the operational conditions that favor the improved perfor-
mance of phage therapy. Similarly, determining that the model meets the
properties of identifiability and observability is crucial for control. The
next chapter will explore in more depth how the observable nature of
the model enables it to be used for reconstructing unmeasured variables
(state observers) and optimal control.
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Chapter 5

State estimation and control

In wastewater treatment plants (WWTPs), variables such as dissolved
oxygen (DO), nitrates (NO; ), ammonia (N H, ), phosphorus (P), chem-
ical oxygen demand (COD), and total suspended solids (7°SS) are moni-
tored to ensure efficiency and compliance with environmental regulations
(Hongyang et al., 2018). More precisely, these variables are monitored
and controlled in the following way:

DO is measured online using optical sensors, enabling automated
adjustments to the air supply.

NOy is utilized in anoxic zones for denitrification and is monitored
using online ISE or UV sensors, ensuring optimal removal efficiency.

NH, is controlled in the aerobic stage. Online ISE (Ton Selective
Electrode) sensors enable dynamic strategies, such as Ammonia-
Based Aeration Control (ABAC).

Phosphorus is removed biologically or chemically. Online analyz-
ers provide real-time data for chemical dosing, complemented by
laboratory colorimetric tests for detection.

COD is primarily measured offline due to the complexity of stan-
dard methods, although soft sensors and UV-based estimations are
also employed.

TSS is calculated using online turbidity sensors and gravimetric
methods in the lab.
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Despite the variety of sensors currently available on the market, in
many industrial cases, the measurement of specific compounds of interest,
such as ammonium or phosphorus, is performed offline in the laboratory
using spectrophotometry or standard colorimetric methods. Figure 5.1
shows a WWTPs schematically, indicating where some of the sensors are
located.
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Figure 5.1: WWTPs scheme. Adapted from Ostace et al. (2013)

WWTPs employ traditional PI/PID loops and advanced strategies,
such as Model Predictive Control (MPC), fuzzy logic, and hierarchical
control, depending on the system’s complexity. PI/PID control is widely
used in industry for controlling DO, sludge recirculation, and clarifier
levels. Ostace et al. (2013) demonstrated multiple PI loops for DO, NOy,
and P control, achieving robust performance under variable conditions.

Moreover, cascade control systems, such as ABAC, adjust DO set-
points based on N H," readings, thereby optimizing aeration. Hierarchical
schemes, such as those proposed by Tejaswini et al. (2020), combine frac-
tional PI controllers with fuzzy or MPC supervisors, thereby improving
tracking and reducing costs. Revollar et al. (2020) controlled dissolved
oxygen (DQO) using the N/E index (NremovedperkWh), thereby bal-
ancing energy efficiency and effluent quality.

Model Predictive Control (MPC) anticipates future process behavior
to optimize control. Applied by Hongyang et al. (2018) to nitrogen and
phosphorus loops in BSM1-P, MPC outperformed PI controllers under
variable loads. Although effective, real-world implementation remains
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limited due to modeling complexity. Also, fuzzy logic control allows
decision-making based on heuristic rules. Santin et al. (2023) applied
it to minimize N,O emissions, improving efluent quality. Sheik et al.
(2022) developed SOPCA, combining fuzzy control and override logic,
enhancing phosphorus removal by 28.5% and lowering costs. Bertanza
et al. (2020) documented a fuzzy DO controller in a real plant, achieving
up to 50% energy savings.

More classical is chemical dosing control. Garikiparthy et al. (2016)
evaluated strategies for polymer dosing to control total phosphorus, find-
ing that advanced feedback control was most effective in minimizing
chemical use and meeting discharge limits. In the same way as a chemical
product is added, bacteriophages can be administered to the system as
a concentrated phage solution.

However, many of these new control strategies have not yet been
applied in the industry; most WWTPs use PI/PID loops and cascade
schemes. ABAC has proven energy savings, and fuzzy controllers are
finding application in DO control. MPC adoption is growing in large-
scale systems, but it remains rare due to its complexity.

Precise control of critical variables is essential in wastewater treat-
ment plants (WWTPs), and the control strategies employed are diverse.
Modern instrumentation enables real-time data for automated control,
and techniques have evolved from PI loops to advanced hybrid schemes
(Chen et al., 2021). Although real-world application of advanced con-
trol is limited, literature shows that intelligent supervisory layers over
traditional controls can enhance process stability, efficiency, and sustain-
ability. This chapter will examine two distinct phage control strategies:
the development of an EKF and the application of optimal control in
phage therapy.

5.1 State Observer

In standard wastewater treatment operations, online measurements
are often limited to physical-chemical parameters such as temperature,
pH, dissolved oxygen, and residual chlorine. However, measurements of
other variables that are highly important in monitoring WW'TPs, such as
Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD),
Fats, Oil, and Grease (FOG), Total Organic Carbon (TOC AOX), nitro-
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gen, phosphorus, solids, biomass concentrations, and products of interest,
are usually the results of sampling and off-line laboratory analysis. As
such, they are available at discrete times only and with relatively long
sampling intervals (several hours up to 1-2 days). In recent years, online
probes for measuring component concentrations have been developed,
but their use is still very limited. Although some hardware sensors are
readily available, they often present several drawbacks: cost, sample de-
struction, discrete-time measurements rather than continuous, processing
delay, sterilization needs, and disturbances in the hydrodynamic condi-
tions inside the bioreactor (Goffaux and Vande Wouwer, 2005; Bogaerts
and Wouwer, 2003).

Given these limitations, there is considerable interest in implementing
state observers—advanced computational algorithms designed to recon-
struct the unmeasured internal states of a process in real time. Unlike
basic software sensors, which may rely primarily on input-output rela-
tionships, state observers leverage a dynamic process model combined
with available measurements (often sparse or asynchronous) to continu-
ously estimate non-measured variables. The observer uses the system’s
mathematical representation to propagate the state forward in time, in-
tegrating available measurements to correct for model uncertainties and
disturbances (Bastin and Dochain, 1990; Kadlec et al., 2009).

Software sensors are based on the theory of state observation. As
mentioned in the previous chapter (chapter 4 section4.4), the system
candidate model is observable with at least one measured state (regard-
less of which one) and, therefore, could be used to implement a state
observer.

Many kinds of state observers have been proposed since the 1960s, and
most of them have been applied in the field of biotechnology. Each tech-
nique has its own advantages and drawbacks depending on its ability to
account for measurement errors, the necessity of using an accurate model
for reaction kinetics, whether it is based on local linearization of nonlin-
ear models or nonlinear theory, and on its convergence speed—which can
be arbitrarily fixed or determined by the culture conditions (Bernard and
Gouzé, 2002; Bogaerts and Wouwer, 2003).

A fundamental requirement for effective state observer design is strong
model connectivity between measured and unmeasured variables. Ap-
proaches such as Luenberger observers, extended Kalman filters (EKF),
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and moving horizon estimation (MHE) are widely employed in biopro-
cess engineering to estimate critical states such as biomass, substrate,
or metabolite concentrations, which are otherwise difficult or costly to
measure directly (Dochain, 2003; Kadlec et al., 2009). These observers
are particularly valuable in complex and nonlinear biological systems,
where real-time monitoring is essential for advanced process control and
optimization.

In bioprocess applications, one of the major techniques that have
emerged is Kalman filtering, and in particular, the continuous-discrete
Extended Kalman Filter (EKF), which allows the use of a continuous-
time dynamic model of the bioprocess together with discrete-time mea-
surements, and which takes into account process and measurement noise.
Process nonlinearity is approximately addressed through linearization
along the state estimate trajectory. State and measurement noise are
assumed to be normally distributed (Goffaux and Vande Wouwer, 2005;
Alexander et al., 2020).

Furthermore, recent studies have shown that tailored parameter esti-
mation procedures, specifically designed for observer-based monitoring,
enhance the sensitivity of estimated (non-measured) states to the mea-
sured outputs, thereby improving the reliability of real-time state re-
construction (Bogaerts and Wouwer, 2003; Kadlec et al., 2009). State
observers therefore play a crucial role in enabling effective monitoring,
diagnosis, and control of bioprocesses, compensating for the inherent lim-
itations of traditional hardware sensors.

5.1.1 Extended Kalman Filter (EKF)

The Kalman Filter is a widely used estimation algorithm in many
fields. It is designed to estimate the system hidden states, even when
the measurements are imprecise or uncertain. It also predicts the future
system state based on past estimations. The Kalman Filter solves the
estimation problem for linear systems. However, most real-life systems
are nonlinear. The EKF is used in nonlinear systems since it performs
analytical linearization of the model at each point in time. EKF is the
most common nonlinear extension of the Kalman Filter (Bogaerts and
Wouwer, 2003; Goffaux and Vande Wouwer, 2005; Rawlings et al., 2017;
Alexander et al., 2023).
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The EKF is a widely applied estimation technique due to its sim-
plicity, generally robust performance, and low computational cost. The
classical EKF formulation is well-documented in the literature (Bogaerts
and Wouwer, 2003; Goffaux and Vande Wouwer, 2005; Rawlings et al.,
2017; Alexander et al., 2023).

The EKF algorithm involves a linearization of the nonlinear state
equations around the current state estimate Z. As a result, a group of
iterative equations is obtained,

Given the following nonlinear system:

Ty = f(@Tn_1,Up_1) + wy, (5.1)
zZn = h(x,) + vy (5.2)

where x is the system states vector, u the actuation input and y the
measurement output. w is the process noise (model uncertainty) and v
the measurement noise (sensor errors). The EKF algorithm proceeds as
follows:

e The system equation f and measurement equation h are linearized
along the a posteriori estimation Z,,—1 1

e The state and covariance are predicted between two measurement
times t,_; and t,. The covariance prediction uses the Jacobian
matrix A and the process noise covariance matrix (J,,_;. The state
prediction uses the original nonlinear dynamics

"%n,n—l = f(jn—l,n—la un—l) (53&)

Pn,n—l = APn—l,n—lAT + Qn—l (53b)

where Z,,,,_1 is the a priori state estimate (based on the knowledge
of the measurement in ¢,_; and P, ,_; is the a priori covariance
matrix. A is the Jacobian matrix computed according 4.2.

e The state and covariance are corrected at time ¢,, when a new mea-
surement is available

First, the Kalman gain matrix K is given by,

K,=P,, \H (HP,, \H" +R,)™" (5.4)
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where H is the Jacobian of the measurement equation, and R, is
the measurement noise covariance matrix.

Then, the state and covariance update equations are

i'n,n = i'n,n—l + Kn(zn - Hj:n,n—l) (55&)
Pon=U—-K,H)P,, 1 (5.5b)
where 2, ,, and P, ,, are the a posteriori state and covariance matrix

estimates.
In the correction equation, the measurement z, is compared to the a
priori estimate 2, ,_1 = HZp 1
The algorithm can also be described by the steps displayed in Table
5.1.

Table 5.1: Steps of the extended Kalman filter algorithm

Step 1: Assign the initial values to the system when n = 0: ¢, ]30,0
(best initial guesses based on the initial measurements)

Step 2: Propagate the state in time using the nonlinear model: Z,, ,_;

Step 3: Propagate in time the covariance matrix based on the Jacobian
transition matrix and the process noise covariance Q: P, ,_1

Step 4: Compute the Kalman gain based on the a priori covariance
matrix, the measurement noise covariance R, and the Jacobian
of the measurement equation: K,

Step 5:  Update the state using the correction matrix and the online
measurement 2,: T

Step 6: Update the covariance matrix: P, ,

Regarding the EKF implementation, the Jacobian matrix (equation
4.2) was calculated analytically, as the model equations are relatively
simple and allow for straightforward symbolic differentiation. The ex-
pression of the resulting Jacobian is as follows.

H'mazs maz X, mazSX
(S+Kar) oP =D 0 —0Xs FS‘FK]MSS - !(LS"FKJM)g
A= oP —(D + ’17) 5X5 0
o —oP Bn —(D +vp +6Xg) 0
—lmaxVsS mazVsSX mazVsS
i —m 0 iR Gk P
(5.6)
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To compute the Kalman gain matrix, direct matrix inversion can be
numerically unstable, particularly when the state error covariance matrix
(P) is rank-deficient or ill-conditioned. Such conditions frequently arise
in biological or environmental systems due to the presence of noise, model
uncertainties, or limited observability. To overcome this issue, Cholesky
factorization is employed as a numerically robust alternative. By de-
composing the innovation covariance matrix into a product of triangular
matrices, Cholesky factorization enables the solution of linear systems
without explicitly computing matrix inverses. This approach enhances
numerical stability and prevents filter divergence, especially in EKF im-
plementations where P may be semi-definite or poorly conditioned.

Back to the bacteriophage application, only the substrate and phage
population can be measured, typically offline. In the case of bacteria,
quantifying their state at any given time—whether infected or suscepti-
ble—is impossible. In the following, we will therefore study the possibility
of applying EKF to the estimation of the bacteria populations using the
measurements of phages and substrate, or to estimate both bacteria and
phage based on the sole measurement of substrate.

When applying the EKF using both S and P measurements (figure
5.2), a notably rapid convergence of the state estimates was observed,
with the filter stabilizing in less than 20 hours. This rapid convergence
underscores the significant advantage of having multiple, complementary
measurements, as the additional phage data provide crucial information
to disambiguate the underlying system states and reduce the overall es-
timation uncertainty.

Conversely, in the scenario where only S measurements were available
(figure 5.3), the convergence of the EKF was considerably slower com-
pared with the previous scenario. In this case, the filter required nearly
twice as long—approximately 40 hours—to reach comparable levels of
convergence. This delay can be attributed to the loss of information as-
sociated with the absence of direct phage measurements, which limits
the filter’s ability to accurately reconstruct the full state of the system,
particularly for those variables that are only indirectly related to the
measured substrate.
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These results demonstrate the importance of measurement availabil-
ity and diversity in state estimation for bioprocess systems. While the
EKF is capable of providing reliable estimates even with a single measure-
ment, the estimation performance, in terms of both convergence speed
and transient accuracy, is markedly improved when multiple system vari-
ables are monitored.

5.1.2 Effect of the process noise

One of the main challenges in EKF-based estimation is providing ap-
propriate system and measurement covariance matrices (), and R. These
are often difficult to quantify, especially in processes where noise sources
are not clearly defined. It is therefore common to approximate them by
trial and error until satisfactory estimation results are achieved (Alexan-
der et al., 2023).

In this study, we consider a relative error model to simplify this tun-
ing. As an example, we consider 5 % of relative error for the measured
variables and relative errors for the process model varying between 0.01
% and 1 % (corresponding to a higher trust in the model).

The impact of different values of @ is illustrated in Figure 5.4. When
the process noise is set to a very low value (e.g., 0.01%), the filter places
substantial trust in the model predictions and gives comparatively little
weight to new measurement information. Under these conditions, the
filter’s state estimates closely follow the model trajectory, and the filter’s
ability to rapidly adapt to actual system disturbances may be limited.
This can result in persistent estimation errors, especially if the actual
process deviates from the assumed model dynamics. On the other hand,
increasing the value of @ (e.g., to 1%) effectively reduces the filter’s
confidence in the model, allowing it to respond more dynamically to
discrepancies revealed by the measurement data. This results in state
estimates that are more sensitive to actual process variability.

These results highlight the trade-off in selecting (), a lower process
noise covariance leads to more model-driven estimates, whereas a higher
covariance enables faster correction based on observed data but may
also amplify measurement noise in the estimates. The use of a relative
error model provides a systematic and reproducible framework for initial
tuning.
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5.1.3 Effect of initial errors in the state estimates

To evaluate the observer convergence, erroneous initial conditions are
used for the nonmeasured variables, e.g., 200 % of errors are considered
(the sensor output is used for the measured variables). Specifically, er-
ror magnitudes of 50%, 100%, and 200% were tested, as illustrated in
Figure 5.6.

The results show that, with a 100% error in the initial state, the esti-
mated trajectories initially overshoot above the accurate model output.
In contrast, when a 200% error is applied, the estimated state trajec-
tories initially undershoot, falling below the expected model behavior.
Despite these significant discrepancies, the EKF demonstrated robust
convergence properties. In both scenarios, the state estimates gradu-
ally approached the actual system values, albeit over a more extended
convergence period compared to cases with accurate initializations.

The increased convergence time observed under significant initial con-
dition errors can be attributed to the filter’s need to correct for the
substantial initial offset using only the available measurement updates.
Nonetheless, the EKF was able to overcome these initial uncertainties
and reliably estimate the true system states in the long term, indicating
a high degree of robustness to poor initial knowledge of the system.

These findings highlight the EKF’s practical suitability for WWTP
applications, where initial state information is often uncertain or impre-
cise. Although larger initial errors increase the time required for the ob-
server to stabilize, the filter’s convergence is ultimately assured, provided
that informative measurements are available throughout the process.

5.1.4 Effect of confidence interval

The previous results show the time trajectory of the actual variables
(emulated by a model), the estimated variables (calculated by EKF), to-
gether with 99% confidence intervals. To further evaluate the uncertainty
quantification provided by the filter, additional cases with 90% and 95%
confidence intervals were also illustrated, as shown in figure 5.7.

The results demonstrate that the width of the confidence interval re-
flects the degree of statistical certainty regarding the estimated state at
each time point. As expected, the 90% confidence intervals are narrower,
indicating higher certainty but increased risk of excluding the true value.
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In contrast, the 99% intervals are the widest, ensuring a higher probabil-
ity that the true state lies within the interval, but at the cost of reduced
precision.

For all confidence levels considered, the actual system trajectories re-
mained within the predicted intervals throughout most of the simulation,
confirming the reliability of the EKF’s uncertainty quantification. Over-
all, the EKF demonstrates robust performance in capturing estimation
uncertainty, with the flexibility to tailor the confidence level to the needs
of the WWTP under study.

5.1.5 Effect of model parameter errors

Lastly, to evaluate the robustness of the EKF, the values of the most
influential model parameters (fimaz, 9, 5,1) Were intentionally altered by
10% based on the sensitivity analysis (section 4.3). The results are shown
in figure 5.8. This scenario simulates a realistic situation where parame-
ter identification is imperfect, and the actual system parameters deviate
from those used in the observer model. As anticipated, the introduction
of parameter errors resulted in a deterioration of the EKF’s predictive
performance, as evidenced by an increase in the estimation error and a
slower convergence toward the actual state values. This decline in per-
formance is attributed to the model mismatch: the predictions generated
by the observer no longer accurately represent the real system dynamics
due to the parameter discrepancies.

To mitigate the negative impact of model uncertainty, the process
noise covariance matrix (Q) was increased from 1% to 10% relative error
for the process model, and the measurement noise covariance matrix (R)
was decreased from 5% to 0.5% relative error for the measurement. This
adjustment effectively reduces the filter’s confidence in the predictive
model and places greater emphasis on the measurement updates during
the correction step. As a result, the EKF was able to compensate for
the parameter-induced model errors, achieving convergence behavior and
estimation accuracy comparable to the baseline scenario with perfectly
identified parameters.

78



STATE OBSERVER

5.1.

CHAPTER 5. ESTIMATION & CONTROL

"I01I9 O 66 MO[[PA pue ‘I0110 0 ¢6 ofdind ‘10110 0/ () WIS ‘POJR[NO[RD [RAIOIUL dOUSIPYUO,) SOUI|
poysep ‘mdino [ppour :ouUI[ JOR[( ‘SIUSUWDINSROUWL :9Ienbs on[g [RAISJUI SOUSPHUO0D JO 100 :)°G 9INSI]

ore1ysqng (p) sedeyd (o)

(W) own
o

() oun
[

uoo
ueu0D

(qwyBw) uonenusd:
(win4d) vonea

L L
z

rLIDOR(Y PajoJu] (q) rLID)OR( 9[quIdeosng (v)

() suwn () own
09 o

o2 oo 08

I
0
00

(1w/n40) uoneuzouo;
(w/n40) uonesuaou

79



CHAPTER 5. ESTIMATION & CONTROL

5.1. STATE OBSERVER

SIUOWIOINSBOU
O} I0J IOLIO OATJR[OI 0/ C*() pPUR [opouwl $s9001d 91} I0] I01I0 DAIIR[AI O ()] pue siojourered OATIISUOS UI I0LIO
% 0T MO[[eA pue ‘[Epoul ss9001d 9} I0] IOLID SATIR[AI 0/ T PuUR siojowreIed OAIISUSS Ul IOIIO O ()] UOQIS
‘[epowt $s0001d 91} I0] IOIIO DATIR[OI 0/ T puUe s1ojotrered OAT)ISUOS UL IOLIO 0/ () POI ‘UOTIRUII)SO I3 :SI0P
‘ndino [ppouwr :OUI[ YOR[( ‘SjueWDINSeOW orenbs onjg siollo Isjouwrered [opoul Jo 100 QG 9INJIq

ore1ysqng (p) sedeyd (o)

(y) o (4) s
002 08 094 ok 0zt 004 002 08} 094 opk 0z} 00} 08 09 0z o)
T T T T T T T T T T T S ——

(uy/Bw) uonesusoUoD
(Tw/n4d) uonenueduod

T
I
©

0F

rLIDIORA PIYoRJU] (q) rLID)OR( 9[quIdeosng (e)
(4) auy (W) auy
004 0 002 081 91 ovl 0zt 004 08 09 oy 02 0

I
r
(w/n40) uoneusdu0D
I
)
(w/N49) uonenuaouo)

T
|
(

I
~

OF 0F

80



CHAPTER 5. ESTIMATION & CONTROL  5.1. STATE OBSERVER

In summary, these results demonstrate the EKF’s adaptability in the
presence of moderate parameter uncertainties. While the initial predic-
tion performance is degraded under parameter mismatch, appropriately
tuning the process noise covariance ()) and the measured noise covari-
ance (R) allows the filter to rely more heavily on available measurements,
thereby restoring its ability to track the true system states effectively.
This underscores the importance of carefully selecting filter parameters
in practical applications, particularly when the model is subject to un-
certainties inherent in the parameter identification process.

The observer estimations matched the model outputs within a rea-
sonable time frame for all non-measured states. Note that in all cases,
the response converges towards the equilibrium point while oscillating,
as described in the sections 4.1, and 4.2.

The application of Extended Kalman Filter (EKF) in real-world wastew-
ater treatment plants (WWTPs) remains somewhat limited; however, its
study represents a powerful tool for future implementation. EKF forms
the basis for Digital Twins (DTs), which are among the most effective
tools for managing complex systems, where optimal operation, predictive
maintenance, and automation are essential for addressing operational
challenges. DTs integrate model-driven and data-driven approaches, re-
lying on gray-box models and utilizing real-time data collected from a
limited number of non-intrusive sensors. Digital Twin technologies are
rapidly expanding across various domains, from healthcare to urban in-
frastructure management. In the industrial sector, DTs are applied to a
wide range of tasks, including real-time monitoring and predictive con-
trol. (Baldassarre et al., 2024; Isoko et al., 2024).

Despite the positive results achieved with the EKF, implementing it
using appropriate sensing technologies remains a challenge. As noted at
the beginning of this chapter, chemical oxygen demand (COD) is typ-
ically measured offline; however, it can be estimated online using soft
sensors and UV-based estimation techniques. Although the latter are
less commonly employed, they represent a promising alternative for eval-
uating the feasibility of large-scale EKF implementation. In contrast,
monitoring bacteria and phages presents a more complex scenario, as
their accurate quantification requires the use of specialized techniques,
such as those employed in molecular biology, to determine their concen-
trations specifically and reliably.
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5.2 Optimal Control

Continuing with the architecture of the control, an optimal control
in open-loop was studied. For this study, and to prevent disturbing the
operation of the actual system, the addition of phage is achieved using a
new input. Continuous phage production in a reservoir tank, which feeds
the reactor with a constant phage concentration, is considered. Figure 5.9
illustrates the proposed theoretical control scheme. The system is limited
to the AS reactor, as this is where phage therapy will be performed. It
is emphasized that the control system may differ in practice; however,
this approach represents a first step in investigating optimal control in
an open-loop system (assuming the ideal case where everything is ideal
and well known).

I:P ’ Pin

........

Figure 5.9: Control strategy scheme
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The model was modified simply as follows.

ddet(t) — u(9)Xs(t) — 6Xs(t)P(t) — DXs(t), (5.7a)

d)izlt(t) = 0X5(t)P(t) — nX;(t) — DX;(t), (5.7b)

%it) = —0Xs(t)P(t) + BnXi(t) — vpP(t) + DpPin — DP(t), (5.7¢)
%tt) = —v,(u(S)Xs(t) — mX;(t)) + DgSs — DS(t)). (5.7d)

where P, is the phage concentration on the phage flow input, Dg,
and Dp are the substrate and phage dilution rates, respectively, each is
denoted Fg/V and Fp/V, and the dilution rate is D = Dg + Dp.

The optimization problem is defined as follows:

e Find Dp that minimizes the total bacterial concentration, denoted
as Xy = Xg + Xy, and the phage flow rate Dp, according to the
following cost function:

min J (5.8)

Dp

where the cost function J is defined as
N 1/2
J = (Z XT(t,-)2> + ADp (5.9)
i=1

In this expression, Xr(t;) is the total bacterial concentration (the sum
of susceptible and infected bacteria) at each discrete time point t; of the
simulation, NV is the total number of time points, Dp is the (constant)
phage inflow rate, and A\ = 2 is a weighting parameter.

In the numerical implementation, the first term is computed using
the Matlab norm function applied to the vector of total bacterial con-
centrations throughout the simulated time horizon, while the second term
penalizes the magnitude of Dp.

In this context, A is a weighting parameter introduced in the cost
function J to balance the relative importance of the two terms being
minimized: the total biomass X and the flow rate Dp. Specifically, A
determines the degree to which changes in Dp influence the overall cost
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compared to changes in X7. The value A\ implies that the contribution
of the flow rate Dp to the cost function is weighted twice as heavily as
that of the total biomass Xr. This allows the optimization process to
prioritize the minimization of Dp accordingly, depending on the specific
objectives of the problem.

The optimal control was executed for a reactor volume (V') of 10 m?
with the parameters in Table 3.1. The fminunc function from MATLAB
was implemented to estimate the Dp that minimizes the cost function.
Different control strategies were studied, and the evolution of the vari-
ables for these scenarios has been presented in this section.

5.2.1 Constant Phage-flow

The most straightforward optimization study involves operating the
system with constant phage feeding. Regarding operationality, it repre-
sents the valve opening to feed a determined flow. To avoid the washout,
the problem was constrained as D < Dygshout- From section 4.1 it is
known that D,espows = 0.3901. Phage flow was constraines as Dp <
0.28 h=t. At P, = 1-10® PFU mL™!, the optimization problem was
solved, and the dilution rate that minimizes the cost function is Dp =
0.28 h=1, which corresponds to Fp = 28 m3 h=!. The phage input flow
is more than double compared to Fs, suggesting that phage elimination
may occur in this case due to the high dilution rate.

To evaluate the dilution rate effect, a scenario with constant flow and
phage concentration P;, = 0. The system response was modeled using
MATLARB, and the results are presented in figure 5.10.

The results show that the bacteria were eliminated when the phages
were applied. Regardless of whether phage was present or absent in the
input flow, the bacterial concentration decreased, by approximately 20 h
with phage addition and more than 50 A without them. The constant-
flow strategy is impractical, as in real-world applications, the required
phage flow is unrealistically high and therefore not viable. Maintaining
a continuous phage reservoir to supply such a flow is costly, making it
non-competitive compared to chemical strategies such as chlorine. How-
ever, the elimination of bacteria was primarily driven by the dilution
rate rather than phage infection, indicating that the phage flow should
be limited, and its application strategies should be studied.
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entration (CFU/ML)
tration (CFU/mL)

(a) Susceptible bacteria (b) Infected bacteria

—
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25 30 20 25
Time (h) Time (h)
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Figure 5.10: Time evolution with constant phage-flow. The blue and red
lines are cases with and without phage addition, respectively.

5.2.2 Variable Phage-flow

Continuing the study, and in an effort to approximate the scenario
to a more realistic context, a variable-flow strategy was proposed. This
approach was implemented as a sequence of discrete steps, simulating the
process of opening and closing a valve to introduce phages—analogous
to monitoring scenarios in which a sensor measures a variable of interest
and an operator adjusts the valve accordingly.

Ten time intervals were defined, each lasting 10 hours, and a new
Dp was recalculated for each interval. Figure 5.11 presents the temporal
evolution of the system states, while figure 5.12 displays the correspond-
ing phage flow profile. In the second, fourth, fifth, and seventh intervals,
the phage flow reached Fp = 28 m® h™!, which remains excessively high,
similar to the constant-flow scenario. As a result, the susceptible bacte-
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ria are eliminated between the fourth and fifth intervals, primarily due
to the high dilution rates. To address this behavior, the phage flow was
subsequently constrained to not exceed 10% of the substrate flow (i.e.,
Fp < 10%Fs). The updated time evolutions under this constraint are
compared in figures 5.12, and 5.11.

n (CFU/mL)
ation (CFU/mL)

B L -

50 60 40 50
Time () Time ()

(a) Susceptible bacteria (b) Infected bacteria

ntration (PFU/ML)
0

50 60 0 50
Tme() . Time 0]

(c) Phages (d) Substrate

Figure 5.11: Time evolution of variables with constraints on phage input
flow (Fp). Py, = 1-108 PFU mL™. The red line is a scenery where
D < Dyashout, and the blue line is a scenery where Fp < 10%Fy;,.

The constrained scenario aligns with industrial applications, as the
phage flow is not high enough to create a dilution rate effect or ren-
der the process economically unfeasible due to the substantial phage
production required. Under these conditions, the bacteria are not en-
tirely eliminated; however, their concentration remains between 2 - 10°
and 6-10° CFU mL™!, indicating their oscillatory behavior around their
equilibrium point (section 4.1). Thus, the bacterial population does not
grow uncontrollably to the point of causing operational issues, while still
fulfilling its intended function within the system.
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Figure 5.12: Flow profiles for scenarios with constraints on Fp. The

dashed line is F, the continuous line is Fp, and the black line is total
flow (F = Fs + Fp).

An important aspect to highlight is the number of intervals considered
in the study. This selection was based on the assumption that a control
system involving a manually operated valve would require intervention
by an operator. The operator would either rely on offline measurements
of the variable of interest or, based on system observation and opera-
tional experience, anticipate an emerging issue and respond accordingly
regarding the application or suspension of phage control. Consequently,
a 10-hour interval was deemed a reasonable timeframe for operating the
control valve. In contrast, a more robust control system equipped with
sensors and automated technology would enable faster response times,
thus allowing for shorter and more frequent control intervals.

Until now, the phage concentration in the input flow was maintained
at P, = 1-10% PFU mL~'. However, understanding the system’s be-
havior in response to variations in phage concentration in the feed is
essential to determine the minimum effective concentration that ensures
the phage reservoir remains effective for bacterial control. Figure 5.13
presents the system’s response to different P, values, while figure 5.14
shows the corresponding phage flow profiles for each input concentration.

The results indicate that a B, > 1- 10 PFU mL~! represents a
phage concentration capable of eliminating the bacteria in a very short
time. Conversely, a P;, < 1-108 PFUmL™! does not eliminate the bacte-
rial population and instead results in an oscillatory behavior of bacterial

concentration, indicating a coexistence of the bacteria-phage pair (section
4.1).
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Figure 5.13: Time evolution of variables for different initial phage con-
centrations. The color lines in order blue, red, yellow, purple, orange,
and green correspond to initial phage concentrations 0,1 -10%, 1 -10%,1 -
108,1-10%1- 10 PFU mL™*, respectively.

Detailing the flow profiles for P;, 1 -10° and 1 - 10 PFU mL™!,
in the former case, the phage flow remains mostly constant and close
to the imposed constraint value. However, in the latter case, the flow
profile is nearly constant and significantly below the constraint, which
represents a noteworthy behavior from the perspective of system control
and operation. This suggests that the process could be operated at very
low phage flow rates, making it more practical and cost-effective—with
smaller, more easily operated and maintained pumps, tanks, and associ-
ated equipment.
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Figure 5.14: Flow profiles for different initial phage concentrations.

A continuous or on-off control strategy is considered to conclude the
optimal control study. Based on the previous analysis, P;, should range
between Pj, 1-10° and 1- 10 PFU mL~!, and the phage flow should
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not exceed 10% of Fg. However, the question at this point is whether
ten intervals are sufficient to effectively control bacterial proliferation,
and whether phage addition can be discontinued after these intervals, or
if phage control must remain constant throughout plant operation. To
address this, a new analysis was conducted by extending the simulation
beyond the ten optimal control steps. In the first scenario, the valve was
closed, and no additional phage was added; in the second, phage feeding
was maintained at the last calculated flow rate. The bacterial response
and corresponding flow profiles are presented in figure 5.15.
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Figure 5.15: Time evolution if stops or continues the phage control. (a)
and (b) the control stops, (c) and (d) the control remains at the last
calculated flow. The red line is P, = 1-10° PFU mL~!, and the blue
line is P, = 1-10'° PFU mL~!.
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The simulations show that the bacteria begin to proliferate either
when the valve is closed (i.e., phage addition is stopped) or when the
phage flow is insufficiently low. This indicates that the phage-based
control strategy provides only a temporary solution. Therefore, periodic
monitoring of bacterial concentration is essential to prevent overgrowth
that could lead to operational issues and to initiate control measures in
a timely manner. This behavior can be further understood by analyzing
the model equations to identify their equilibrium points. A theoretical
analysis revealed five equilibrium points in the system: one trivial point,
three complex (non-real) solutions, and one point involving negative state
values, which are not physically meaningful (section 4.1). Consequently,
the equilibrium points were determined through numerical methods. The
average values of the system states are presented in table 5.2, and the
variables oscillate around these values when control is maintained.

Table 5.2: Equilibrium points for extended control. Numerical solution

P (PFUmML™Y)  1-10° 1101

Xs(CFUmML™) 422-10° 1.1-107°
X/(CFUmL™)  2.0-10" 7.80-101°
P(PFU mL™1) 8.31-107 5.35 - 107
S(mgmL™") 3.63 3.97

Note that under the condition of maintaining a continuous phage flow
at a concentration of P, = 1-10', an increase in bacterial concentration
is observed at the end of the studied time interval (approximately 180h).
This phenomenon can be explained by the fact that, at such a high
phage concentration, the bacteria are rapidly eliminated from the system,
and the viral particles—which can only proliferate in the presence of
susceptible bacteria—subsequently begin to be removed from the system
due to their natural decay. Therefore, in an environment where there are
not enough bacteria to support phage replication, the introduced phages
become inactivated and are washed out of the system, which ultimately
allows for a slight regrowth of bacteria within the reactor. This outcome
does not occur under the condition of maintaining a continuous phage
flow at a concentration of P, = 1-10%, since the persistent presence of
a threshold bacterial concentration in the system ensures that there is
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always a probability for infection to occur.

From an operational standpoint, the implementation of the optimal
control strategy could be facilitated by incorporating control parame-
ters such as the Sludge Volume Index (VSI). When VSI values exceed
150 mL g~ !, it indicates poor sludge settleability, typically associated
with the occurrence of bulking. In the case of foaming, control can be
achieved by monitoring foam height or volume, ensuring it does not ex-
ceed the maximum permissible limits in secondary clarifiers or aeration
tanks.

Both optimal control strategies and the Extended Kalman Filter
(EKF) were studied in a controlled environment involving a bacteria
and a phage; however, the activated sludge (AS) system represents a
significantly more complex scenario. The next chapter will focus on val-
idating the model under more realistic conditions. To this end, the pro-
posed model will be integrated into the well-established ASM1 (Activated
Sludge Model No. 1) framework.
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Chapter 6

Case studies: application to the
ASM1 model

The previous chapters involved developing and analyzing a bacteria-
phage model, studying its properties, and using it for control purposes.
This last chapter focuses on studying a more realistic environment; bulk-
ing and foaming are operative problems that affect activated sludge pro-
cesses. In that sense, the well-known model ASM1 (Activated Sludge
Model No.1) has been selected to evaluate the bacteria-phage behavior
in a real wastewater treatment system.

The Activated Sludge Model No. 1 was the result of five years of
development, during which many researchers and practitioners spent time
to get a solid platform for activated sludge processes. The ASMI is a
model of minimal complexity that was well-received and has been widely
used as a basis for further model development. ASMI1 has been the
core of numerous models, with supplementary details added in almost
every case. Matrix notation, introduced alongside ASM1, facilitates the
communication of complex models, allowing discussions to focus on the
essential aspects of biokinetic modeling (Henze et al., 2006). Therefore,
it is a proper option to incorporate the model that has been developed
for phage therapy.
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6.1 Activated Sludge Model No. 1

The ASM1 formulation brings together the most critical processes of
WWT. Below is a brief description of the components and phenomena
that constitute it.

The Chemical Oxygen Demand (COD) provides a link between elec-
tron equivalents in the organic substrate, the biomass, and the oxygen
utilized. Thus, a mass balance can be expressed in terms of COD. Con-
sequently, the concentrations of all organic materials, including biomass,
are in COD units in the ASM1 model.

The organic matter in wastewater can be subdivided into several cat-
egories. The first important subdivision is based on biodegradability.

Non-biodegradable organic matter is biologically inert, is not involved
in any conversion processes, and passes through an activated sludge sys-
tem unchanged in form. Nevertheless, it is included because it is crucial
to the process performance. Two fractions, depending on their physical
state, can be identified: soluble and particulate.

e Inert soluble organic matter, Sy, leaves the system at the same con-
centration that it enters. Soluble inert organic matter contributes
to the effluent COD.

e Inert suspended organic matter, X;, becomes enmeshed in the ac-
tivated sludge and becomes a part of the volatile suspended solids
in the activated sludge system, and is removed from the system
through sludge wastage.

Biodegradable organic matter may be divided into two fractions:
readily biodegradable and slowly biodegradable.

e The readily biodegradable material, S, consists of relatively simple
molecules generated through the hydrolysis of particulate organic
matter entrapped in the biofloc. These molecules can be directly
taken up by heterotrophic bacteria under either aerobic or anoxic
conditions and utilized for the growth of new biomass (is treated
as if it were soluble).

e The slowly biodegradable material, X, consisting of relatively com-
plex molecules formed by the decay of both heterotrophic and au-
totrophic biomass, must be acted upon extracellularly and con-
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verted into a readily biodegradable substrate by hydrolysis before
it can be used (is treated as if it were particulate).

The biomass in the system is represented by the heterotrophic biomass,
XpH, and the autotrophic biomass, Xp4. Both heterotrophic and au-
totrophic biomass may be present in the wastewater itself, thereby sig-
nificantly impacting system performance. Heterotrophic biomass can be
formed by growth under either aerobic or anoxic conditions. Meanwhile,
autotroph development only occurs under aerobic conditions. Both het-
erotrophic and autotrophic biomass are destroyed by decay.

Heterotrophic biomass, denoted as X gy, forms from growth on read-
ily biodegradable substrates in aerobic or anoxic environments, but is
presumed to halt in anaerobic conditions. Biomass loss occurs through
decay, which encompasses a range of mechanisms, including endogenous
metabolism, death, predation, and lysis. This decay is believed to convert
biomass into slowly biodegradable substrates and particulate byproducts.
Heterotrophic biomass plays a crucial role in phage therapy because it
comprises the bacteria that are targeted for elimination.

In the ASM1, it recognizes that not all biomass in an activated sludge
system is active, as is the case with particulate products X,,. This product
is formed by the decay of both heterotrophic and autotrophic biomass, yet
it is not destroyed. Its rate of destruction is so low that, for all practical
purposes, it appears inert within the SRTs commonly encountered in
activated sludge systems.

Nitrogenous matter in wastewater, like carbonaceous matter, can be
categorized into two types: non-biodegradable and biodegradable. Con-
cerning the non-biodegradable fraction,

e The particulate portion is that associated with the non-biodegradable
particulate COD,

e The soluble portion is usually negligibly small and is not incorpo-
rated into the model.

The biodegradable nitrogenous matter may be subdivided into:

e Ammonia (both the free compound and its salts), Sy, arises from
the ammonification of soluble biodegradable organic nitrogen and
is eliminated through the growth of biomass. The primary use of
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ammonia nitrogen is as an energy source for the aerobic develop-
ment of autotrophic biomass. Additionally, nitrogen is integrated
into biomass during cell synthesis.

e Soluble organic nitrogen, Sy p, results from the hydrolysis of par-
ticulate organic nitrogen and is transformed into ammonia nitrogen
through ammonification.

e Particulate organic nitrogen, Xy p, is generated from the decay of
both heterotrophic and autotrophic biomass.

The model also features nitrate nitrogen, Syo, which originates from
the aerobic growth of autotrophic bacteria and is depleted during the
anoxic growth of heterotrophic biomass. While nitrite nitrogen is an
intermediate that forms during nitrification, for the sake of simplicity in
modeling, it is assumed that nitrate is the sole oxidized form of nitrogen
present.

The volatile solids concentration (in COD units) in the activated
sludge system is the sum of the five particulate terms: Xg, Xpy, Xpa,
Xp, and X[.

The concentration of dissolved oxygen (DO), denoted as S,, is mea-
sured within the reactor. The processes outlined in this model focus
solely on removing oxygen from the solution, with no processes included
for its addition; thus, the matrix comprises entirely biological processes.
The oxygen balance equation determines the quantity of oxygen neces-
sary for the metabolic requirements of the bacteria. Oxygen consump-
tion is closely linked to the aerobic growth of both heterotrophic and
autotrophic biomass. To represent changes in dissolved oxygen (DO)
concentration, suitable oxygen transfer relations must be incorporated.

The twelve components outlined are viewed as the minimum necessary
for accurately modeling an activated sludge system that facilitates carbon
oxidation, nitrification, and denitrification. Nevertheless, a thirteenth
element, total alkalinity, represented as S4 1 x, exists. While adding
alkalinity to the model isn’t crucial, including it is beneficial as it offers
insights for predicting significant pH fluctuations.

The model incorporates four key processes: biomass growth, biomass
decay, ammonification of organic nitrogen, and the hydrolysis of partic-
ulate organics trapped within the biofloc.
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6.2 Application of phage control to ASM1

Until now, our proposed model has considered a scenario in which
heterotrophic bacteria grow in an environment utilizing a soluble carbon-
based energy substrate. In a straightforward conceptualization of this
situation, two fundamental processes occur: biomass increases through
cell growth and decreases through lysis caused by a phage. However, not
all heterotrophic bacteria are infected by the phage, a fact that makes
them non-susceptible to the phage. Non-susceptible, susceptible, and
infected bacteria compound the total heterotrophic bacteria population
of the system. In table 6.1 find all the states of the ASM1 and the
new variables added associated with phage control with their respective
notations.

Table 6.1: ASM1 modified model variables

St Soluble inert organic matter
Ss Readily biodegradable substrate
X7 Particulate inert organic matter

Xs Slowly biodegradable substrate
Xpr  Active heterotrophic biomass
Xpu,ns Non-susceptible heterotrophic biomass
Xpm,s Susceptible heterotrophic biomass
Xpm, Infected heterotrophic biomass
P Bacteriophage
XgBa Active autotrophic biomass
Xp Particulate products arising from biomass decay
So Oxygen
Sno Nitrate and nitrite nitrogen
Svg  NH] + NHj nitrogen
SND Soluble biodegradable organic nitrogen
Xnyp  Particulate biodegradable organic nitrogen
Sarx  Alkalinity - Molar units

ASM1, which incorporates phenomena such as carbon oxidation, ni-
trification, and denitrification, accounts for many reactions between many
components. The growth of heterotrophic biomass decreases as a reactor
solids retention time increases. This phenomenon is thought to be due
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to many mechanisms, including predation, lysis, and the need for main-
tenance energy. The presence of bacteriophage in an activated sludge
system and, therefore, infection is a natural phenomenon that exists in
the real system; nevertheless, it has always been neglected.

To have a mathematically tractable model while providing realistic
predictions, the reactions must represent the most essential fundamen-
tal processes occurring within the system. To use the model for phage
treatment, the bacteriophage infection is not a secondary process; on the
contrary, it plays an essential role in the bacteria population that impacts
the system operation.

The term process means a distinct event acting upon one or more
system components. The components in the model are shown across
the top of table 6.2, and the fundamental processes incorporated into
the model are listed in the leftmost column of the table, while the rate
expression is listed in the table 6.3.

Figure 6.1 shows the scheme for the activated sludge system to study
in this chapter. This consists of an aerobic reactor followed by a settler.
The clarified water of the settler is the wastewater treated (solid-free and
COD low), and a part of the sludge of the settler is recirculated to the
reactor. The equipment volumes and operational conditions are shown
in Table 6.4.

AEROBIC REACTOR SETTLER (SEC)
(AER)

o
0% 0,0
0000
0 o
Oooo

1 1
—_—

)

AIRFLOW

Q 4

EXTERNAL RECIRCULATION (Qg) WASTE (Qy)

Figure 6.1: Activated sludge system scheme
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For a model to have utility in the operation and control of wastewater
treatment systems, it must be possible to evaluate wastewater-specific
parameter values and estimate concentrations of essential components in
the influent. In this case, all the values to the simulation were taken from
the work of Flores-Alsina et al. (2012). This work examines the effect
of a reactive settler on biological nutrient removal as described by the
activated sludge models (ASM) 1, 2d, and 3. The values are presented

in table 6.4.

Table 6.4: ASM1 modified model parameter values.

Parameter Value
Operational parameters
Input flow rate Qin(m?® day™") 4611
Recirculation flow rate Qr(m3 day™) 18446
Waste flow rate Qu(m? day™1) 385
Reactor volume Vr(m?) 6000
Settler volume Vs(m?) 6000
Kinetic parameters
Heterotrophic growth and decay 1y (day=1) 4
Ks(COD m™3) 10
Kojj(chD ’NL73) 0.2
Kno(Nm™?) 0.5
b (day™) 0.3
Autotrophic growth and decay fia(day™t) 0.5
KNH(N m‘S) 1
Koa(—COD m™3) 0.4
ba(day™1) 0.05
Correction factor for anoxic growth of heterotrophs U 0.8
Ammonification ko(m?* COD™ day™") 0.05
Hydrolysis Kx((CODm™3) (CODm=3)™1) 0.1
kn(COD COD™ day™") 3
Correction factor for anoxic hydrolysis N 0.8
Stoichiometric parameters
Heterotrophic yield Yu(COD COD™) 0.67
Autotrophic yield Y4(COD COD™1) 0.24
Fraction of biomass yielding particulate products fp(COD COD™) 0.08
Mass N/Mas COD in biomass ixg(N COD™) 0.08
Mass N/Mas COD in products from biomass ixp(N COD™) 0.06
Infection parameters
Adsorption rate §(mL COD~'CODZ  day™')  3.02-1073
Burst size B(CODp COD™Y) 110
Lysis rate np(day=t) 0.5
Natural phage inactivation rate vp(day™) 1-10°
Other parameters
Volumetric oxygen transfer coefficient Kra(day™) 240
Oxygen saturation concentration S04s0:(COD m™3) 8
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The first study compared the behavior of the ASM1-modified model
with and without phages in the system. For calculation purposes, the
susceptible bacteria was assumed a 40% of the total heterotrophic bacte-
ria. Figure 6.3 presents the heterotrophic bacteria and phage evolution
in the reactor effluent. In addition, figure 6.2 shows all the nutrient con-
centrations in the reactor efluent. Note that all the values are given as

COD units.

It is observable and expected that the concentration of heterotrophic
bacteria decreases in the presence of the bacteriophage. However, this de-
crease in the heterotrophic bacteria population does not affect the nutri-
ent concentration. This is consistent with the fact that COD is degraded
not only by one type of microorganism. If one population decreases its
concentration in an activated sludge system, another can proliferate and
consume the remaining COD. The interactive nature of the AS system
presents an opportunity to apply phage control to a specific microorgan-
ism, rather than a chemical treatment that indiscriminately eliminates
all populations.

The percentage of susceptible bacteria was modified to analyze the
system behavior. Figure 6.4 shows the results, allowing us to distinguish
the decrease in heterotrophic susceptible bacteria concentration based on
the percentage of their presence. The distinction is the time required to
control the susceptible bacteria, which is approximately between 3 and 6
days, depending on the bacterial concentration. This result is significant
because it is necessary to ensure the continuity of the AS process, as
operational problems can take days and could be critical to the plant’s
performance.
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Figure 6.2: Nutrients in the Reactor efluent. The red line is with phages,
and the blue line is without phages.
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Figure 6.3: Reactor efluent. The red line is with phages, and the blue line
is without phages. The continuous line represents susceptible bacteria,
and the dashed line represents the total active heterotrophic biomass.
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Figure 6.4: Reactor outputs. The blue, red, and yellow lines are in
order 20%, 40%, and 60% of active heterotrophic susceptible biomass,
respectively. The continuous line is a susceptible bacteria, and the dashed
line is the total active heterotrophic biomass. The black line is the total
active heterotrophic biomass if no susceptible bacteria are present.
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6.3 Discussion

The enhancement of the Activated Sludge Model No. 1 (ASM1) to ex-
plicitly include bacteriophage-mediated infection marks a major step for-
ward in modeling biological wastewater treatment processes. In the past,
ASM1 and its variations have accounted for biomass decay using gen-
eral mechanisms like endogenous respiration, predation, and lysis, often
overlooking the significant role of bacteriophages within activated sludge
systems. By incorporating bacteriophage dynamics—including the dis-
tinctions among non-susceptible, susceptible, and infected heterotrophic
biomass—this revised model offers a more accurate and mechanistic rep-
resentation of biomass populations dynamics.

The simulations show that introducing phage infection mechanisms
significantly reduces the levels of susceptible heterotrophic bacteria while
not negatively impacting nutrient removal efficiency. This result is cru-
cial, as it indicates that targeted phage therapy can manage specific prob-
lematic bacterial populations, like filamentous bacteria that contribute to
sludge bulking and foaming, without compromising the overall stability
and effectiveness of the wastewater treatment process. In contrast to tra-
ditional chemical control methods, which tend to have broad-spectrum
toxicity, phage control provides a selective approach that complies with
the increasing environmental regulations on chemical use in wastewater
treatment.

The findings further underscore the resilience of the activated sludge
system: even with reduced susceptible heterotrophic biomass, the overall
chemical oxygen demand (COD) removal stays consistent. This consis-
tency is due to functional redundancy in microbial communities, where
resilient organisms take over for the lost susceptible ones. These ecolog-
ical insights, now integrated into a modeling framework, open doors to
more sophisticated operational strategies, such as the deliberate alter-
ation of microbial community structures via phage addition.

Moreover, varying the proportion of susceptible biomass in the simula-
tions revealed that the time required for phage-mediated control ranged
between three to six days, depending on initial concentrations. This
timescale is particularly important for real-world applications, as oper-
ational upsets or microbial shifts often occur over similar periods. The
ability to predict and manage bacterial populations proactively within
this timeframe could significantly enhance the robustness of wastewater
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treatment plants.

Notably, this modeling framework establishes a foundation for future
work on dynamic control strategies, in which real-time monitoring and
adjustment of phage dosing can be integrated into supervisory control
systems. The explicit inclusion of phage kinetics—adsorption rate, burst
size, lysis rate, and inactivation rate—provides new degrees of freedom
for model calibration and opens avenues for optimization under various
operational conditions.

In summary, incorporating bacteriophage infection into ASM1 en-
hances the biological accuracy of wastewater modeling and opens up op-
portunities for targeted, sustainable microbial management in activated
sludge systems. This advancement creates a connection between the ob-
served microbial ecology in wastewater systems and its mathematical
modeling, thus enriching both theoretical understanding and practical
applications in wastewater engineering
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Chapter 7

Conclusions & Perspectives

7.1 Conclusions

The bulking and foaming processes are phenomena that occur in both
aquaculture and WWTP. Both bulking and foaming represent some of
the most challenging problems to solve, as they result from the growth
of a range of filamentous microorganisms (bacteria and fungi) whose
growth and development factors remain poorly understood. The control
strategies commonly employed in WW'TPs aim to eradicate or elimi-
nate filamentous bacteria through chemical processes or methods, such
as chlorination, zonation, or the addition of hydrogen peroxide (H20s),
alum, or ferrous salts.

These operational problems treated with physicochemical treatments
are considered "effective"; however, this assessment is far from reality.
The corrective measures applied, generally chlorination, are not a specific
solution and require control and monitoring. Doses must be tied to cell
viability. If chlorine application is not controlled, the dose may be too
low, leading to waste of product, or too high, resulting in disruption of the
purification process (with the appearance of white foams). Many studies
have shown that phage therapy is desirable since it is highly specific,
environmentally friendly, and generally safe.

In recent years, researchers have studied the ecophysiological details
of its relationship with host cells and its method of host cell synthesis.
This information is necessary before its potential as an antifoam agent
can be appropriately tested.
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Zornoza (2017) list in their work the most common mistakes made
when faced with problems caused by the excessive proliferation of fila-
mentous bacteria in activated sludge. The first serious mistake is not
identifying the leading cause of the foaming and/or bulking episode. If
the filamentous bacteria are not identified, one will be “walking” blindly,
with very low chances of success.

Using non-specific corrective measures without first considering con-
trol strategies based on the in situ ecophysiology and ecology of filamen-
tous bacteria can be problematic. Some WWTP managers opt for non-
specific control measures as their primary choice, such as chlorination,
surface ozone application, or other physicochemical treatments, which
carry greater risks and operational costs. The initial approach should
always involve selecting control strategies based on the most recent data
available on the in situ ecophysiology and ecology of the dominant fila-
mentous bacteria. This data will help determine the logical order of the
measures to be applied, utilizing the best tools to control the effective-
ness of these measures. When all attempts at corrective measures based
on in situ ecology and ecophysiology have been exhausted, it is time to
resort to non-specific treatments.

Large-scale studies must be conducted to utilize bacteriophage as a
biocontrol mechanism in WWTP. To date, all studies have focused on
identifying, isolating, and sequencing numerous phage-lytic populations
capable of lysing certain strains, particularly Gordonia amarae and Gor-
donia pseudoamarae, members of the Mycolata, a principal group respon-
sible for bulking and foaming. All these studies have demonstrated the
effectiveness of phages in lysing bacterial populations. However, WWTPs
worldwide are particularly well endowed with bacteria possessing genes
encoding antiviral defense mechanisms.

At the pilot scale, involving specifically targeted bacteria, the real-life
scenario includes a complex community of microorganisms and certain
environmental stress factors that may affect the performance of bacte-
riophages used for phage therapy. To address these factors, a thorough
study of the treatment plant parameters and the involvement of the mi-
crobial community must be conducted to enable a large-scale study of
phage therapy. To utilize bacteriophage as a microbial control agent,
new infrastructure needs to be developed, and new practices must be
implemented. Phage banks must be created to house phages specific to
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the most critical targets in a WWTP system. A high concentration of
phage cocktails must be applied for successful biocontrol. Understanding

the necessary concentration of phage cocktail to treat the wastewater in
a WWTP is essential.

Computational modeling of reactor systems regarding the impact that
phage treatment can have on a wastewater treatment plant is essential
to initiate phage-based strategies aimed at addressing bulking and foam-
ing caused by an overgrowth of activated sludge microorganisms. The
models must be carefully formulated and evaluated for their properties.
This thesis adopted this approach as the chosen method to achieve the
objectives.

There are many infection models in the literature. These function
effectively in straightforward situations, but due to the complex nature
of the activated sludge system, a simple model to study its behavior is
essential. This work proposes a specific model that considers the most
relevant phenomena and is easy to implement from a computational per-
spective.

Models can be used for various purposes. They can help operate
the plant (avoid problems), optimize phage production on an industrial
scale, support phage operation and control design, and reconstruct non-
measured variables. Studying a model properties is fundamental for using
it for different purposes. The equilibrium and stability analyses provided
insight into the operational conditions, such as initial conditions and
stability. The identifiability and observability analyses determined that
the model can identify unknown parameters or states with a minimum
number of online measurements or critical known parameters. These
properties are essential for controlling purposes.

A vital advancement necessary is the development of software sensors
that utilize information from the models, enabling significant progress
in monitoring various biological variables. This complements the short-
fall of online hardware sensors capable of performing these tasks. The
EKF, as a state observer, facilitated the estimation of unknown variables,
which greatly aids this type of system where online measurement instru-
ments are lacking or absent. Consequently, monitoring and controlling
the treatment become more complex.

In a different method, optimal control facilitated the investigation of
a phage application strategy in an open loop. Furthermore, this research
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Figure 7.1: Thesis scheme. Open Loop

enables the assessment of concentrations, doses, and system response
times. Figure 7.1 presents the scheme that summarizes the work per-
formed in an open-loop control. A frequent error is expecting biological
changes to occur right after implementing corrective actions. Activated
sludge systems, being biological cultures, require time for modifications
to manifest at a macroscopic level. Understanding response times em-
powers plant managers to implement timely corrective actions.

This research greatly enhances our insight into the application of
phage therapy for tackling bulking and foaming in activated sludge sys-
tems. It offers vital resources for understanding and applying phage
treatments in wastewater treatment facilities aimed at controlling these
issues. Coupled with studies on the system’s ecological and physiological
dynamics, this approach positions bacteriophage treatment as a more ef-
fective, cost-efficient, and sustainable alternative to traditional chemical
methods.
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7.2 Perspectives

This doctoral thesis establishes a scientific foundation for the rational
application of bacteriophages in controlling filamentous bacteria within
activated sludge systems. The research not only addresses a critical op-
erational challenge in wastewater treatment plants but also generates a
methodological and conceptual platform upon which future technologi-
cal developments can be built. Moving forward, the following steps aim
to close the loop with feedback control and, ideally, validate it with im-
proved and sufficient data.

Given the inherent variability and frequent disturbances present in
wastewater treatment systems, implementing a closed-loop control strat-
egy is essential to ensure robust and reliable process performance. Unlike
open-loop approaches, closed-loop control enables the real-time adjust-
ment of operating parameters in response to deviations from the desired
system behavior, thereby improving disturbance rejection and maintain-
ing target performance despite fluctuations in influent characteristics or
unexpected process upsets. Model Predictive Control (MPC), in par-
ticular, is well suited for such complex biological systems, as it utilizes
a dynamic model to predict future system states and optimize control
actions over a receding horizon. This predictive capability enables antic-
ipatory adjustments that account for process delays and nonlinearities,
thereby enhancing system stability and efficiency under variable condi-
tions. Figure 7.2 presents the proposed closed-loop scheme.

Therefore, the thesis lays the groundwork for implementing closed-
loop control strategies, enabling the real-time regulation of filamentous
bacteria in activated sludge systems through the dynamic adjustment
of phage dosing. Experimental work is dedicated to validating proto-
cols for large-scale phage production, purification, and storage, ensuring
a consistent supply of stable and effective phage preparations suitable
for automated dosing systems. By integrating process monitoring with
mathematical modeling, the thesis demonstrates how feedback control
can be applied to maintain optimal sludge characteristics—such as the
sludge volume index—by continuously adjusting phage application in re-
sponse to measured process variables. This approach not only enhances
the efficacy and robustness of biocontrol interventions but also establishes
a technological foundation for advanced process automation in wastewa-
ter treatment plants.
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A central perspective of the thesis is its integration of experimental
and modeling work. Laboratory-scale experiments could be designed to
isolate, characterize, and select bacteriophages with high lytic activity
and stability under realistic wastewater conditions. These experimental
efforts should include evaluating phage performance in the presence of
environmental stressors commonly encountered in activated sludge, such
as variable pH levels, temperature fluctuations, and exposure to chemical
agents. The data generated would provide a robust basis for assessing
the feasibility and reliability of phage-based interventions under practical
conditions.

To advance the validation of the model, the thesis develops a math-
ematical model, the calibration of which is crucial for describing the in-
fection dynamics between bacteriophages and filamentous bacteria. By
combining experimental observations with computational modeling, the
work enables the prediction and optimization of dosing strategies, sup-
porting the practical application of phages to mitigate bulking and foam-
ing. These models not only facilitate the design of future experiments
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but also inform the scaling of laboratory findings to pilot and full-scale
treatment systems.

Overall, the doctoral thesis serves as both a reference and a method-
ological guide for future studies aiming to refine and deploy phage-based
solutions in wastewater treatment. Its combination of rigorous experi-
mentation and advanced modeling provides a framework for further re-
search, optimization, and potential industrial application. The outcomes
of this work thus have the potential to influence not only scientific under-
standing but also the practical management of activated sludge systems,
laying the groundwork for innovation in biological control strategies.
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